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Abstract—An enantiomorphous 240-vertex “diamond structure” is considered in the space of a three-dimen-
sional sphere S3, whose highly symmetric clusters determined by the subconfigurations of finite projective
planes PG(2, q), q = 2, 3, 4 are the specific clusters of diamond-like structures. The classification of the gener-
ating clusters forming diamond-like structures is introduced. It is shown that the symmetry of the configuration,
in which the configuration setting the generating clusters is embedded, determines the symmetry of diamond-
like structures. The sequence of diamond-like structures (from a diamond to a BC8 structure) is also considered.
On an example of the construction of PG(2, 3), it is shown with the aid of the summation and multiplication
tables of the Galois field GF(3) that the generalized crystallography of diamond-like structures provides more
possibilities than classical crystallography because of the transition from groups to algebraic constructions in
which at least two operations are defined. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Earlier [1], it was shown that the adequate mapping
of the symmetry of diamond-like structures requires a
change of the Euclidean basis of the structural crystal-
lography to a more general basis of algebraic (projec-
tive) geometry. In particular, the incidence graphs of
specific subconfigurations of finite projective planes
PG, q = 2, 3, 4 turned out to be isomorphous to the
graphs of the specific clusters of a diamond-like struc-
ture. These graphs are mapped onto themselves by the
groups of projective geometry and contain the orthogo-
nal groups of the classical crystallography as their sub-
groups.

The present article is the second of a series dedi-
cated to the construction of the generalized crystallog-
raphy of diamond-like structures as a particular struc-
tural application of algebraic geometry, which includes
as the limiting case the respective sections of the clas-
sical crystallography [2, 3]. For diamond-like struc-
tures, the penta-, hexa-, and heptacycles are the most
realistic [4–6]. Therefore, the present study is dedicated
mainly to the determination of the symmetrically pos-
sible types of generating clusters of diamond-like struc-
tures containing only these cycles. In the general case,
the specific clusters of a diamond-like structure are the
combinations of various generating clusters, whereas
1063-7745/02/4705- $22.00 © 20709
the diamond-like structures themselves are constructed
from a certain set of generating clusters in a way similar
to the construction of a three-dimensional Penrose divi-
sion from four types of tetrahedra [7].

The most highly symmetric diamond-like structure
is such a combination of two three-dimensional lattices
that can be implemented in the Euclidean space E3 as a
diamond and in the space of a three-dimensional sphere
S3 as an “enantiomorphous diamond” or an irregular
{240} polytope [4, 5, 8]. This shows the importance of
those specific clusters of the {240} polytope in the gen-
eralized crystallography of diamond-like structures that
are defined by the corresponding subconfigurations
PG(2, q) considered in detail in the present study.

The frequent detailed citation of [1] allows the
author to use the definitions introduced in [1] and the
results obtained there. For clarity, the author often sac-
rifices mathematical rigor and uses numerous illustra-
tions to be able to compare directly the mathematical
constructions with the clusters they determine. The
results obtained make the basis for constructing the sys-
tem of generating clusters, which allows the author to
derive diamond-like structures and determine all the
symmetrically possible structural phase transitions
between these structures.
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Mapping of substructures of polytopes in E3 [5, 10, 12]: (a) {3, 5} icosahedron whose three twofold axes coincide with the
X1-, X2-, and X3 axes of the Cartesian coordinate system (four hatched triangles and the center of the icosahedron belong to four
tetrahedra whose centers form a tetrahedron); (b) {4, 3} cube and its projection onto the plane represented in the form of a Schlegel
diagram (six-edge Petrie’s polygon of the cube and its Schlegel diagrams are shown by solid lines); (c) the projection of the {4, 3,

3} polytope in E3; solid lines show its eight-edge Petrie’s polygon; (d) the icosahedron and the stereographic projection of the 
group, whose fundamental domain is separated by the reflection planes R1, R2, and R3 shown by solid lines (the fivefold axis of the
icosahedron coincides with the X3-axis of the Cartesian coordinate system; the sections of the icosahedron by the plane normal to

X3-axis are the (0, 0, ) point, the hatched pentagon, etc.; a 10-edge Petrie’s polygon of the {3, 5} icosahedron is shown by solid

lines); (e) the rod of icosahedra sharing the fivefold axis (the part of the helix determined by the 101 screw axis of the {3, 3, 5}
polytope is shown by a solid line); (f) Bernal’s chain of tetrahedra; the 30/11 irrational screw helix corresponding to Petrie’s polygon
of the {3, 3, 5} polytope is shown by solid arrows; (g) the starlike polygon formed as a result of the orthogonal projection of
30 vertices of the {3, 3, 5} polytope along the 30/11 axis.
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x3
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A 240-VERTEX “DIAMOND” STRUCTURE
IN THE SPACE OF A THREE-DIMENSIONAL 

SPHERE S3—AN IRREGULAR {240} POLYTOPE

Three-dimensional Platonic solids can be general-
ized to projective Platonic solids—finite projective
planes PG(2, q). Taking into account the metric rela-
tionships, this generalization requires the transition
from the space E3 to the space En, n > 3. At n = 4, the
Platonic solids in the Schläfli notation {p, q} (Figs. 1a,
1b, 1d) are extended to the four-dimensional Platonic
solids—{p, q, r} polytopes built by the {p, q} cells in
such a way that each face {p} is shared by two cells and
each edge, by r cells. The location of the cells at the ver-
tex {p, q, r} corresponds to the location of the faces of the
{q, r}-vertex polyhedron of the polytope (Fig. 1c) [9–12].

The most important characteristic of the n-dimen-
sional polyhedron is its Petrie polygon; for the {p, q}-
polyhedron, it is a “zig-zag” consisting of h edges
C

(cos2(π/h) = cos2(π/p) + cos2(π/q)) in which any three
successive sides do not belong to one face. Thus, for a
{4, 3} cube, h = 6 (Fig. 1b). For a {3, 5} icosahedron,
Petrie’s polygon consists of h = 10 “side” edges of a
pentagonal antiprism (Fig. 1d). For a {p, q, r} polytope,
Petrie’s polygon is a set of edges in which any succes-
sive three (and not four) edges belong to the Petrie’s
polygon of the {p, q} cell [10]. For example, the Pet-
rie’s polygon of a four-dimensional cube (the {4, 3, 3}
polytope) is an octacycle, any three successive edges of
which belong to one cubic {4, 3} cell of this polytope
(Fig. 1c).

The division of E3 into regular tetrahedra is impos-
sible because the dihedral angle of the regular tetrahe-
dron equals 70.53° < 72° = 360°/5. The “angular defi-
cit” of the connected tetrahedra can be avoided if one
“sacrifices” their regularity by connecting 20 tetrahedra
into an icosahedron (Fig. 1a), which can be made only
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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by using two types of edges with the length ratio
~0.951 in the tetrahedra. In this case, 12 vertices of an
{3, 5} icosahedron provide the regular triangulation of
the sphere S2, which is mapped onto itself by the

orthogonal group  of order 120 set by the follow-
ing defining relationships for the generating elements
(code):

(1)

where Ri , i = 1, 2, 3 are the generating reflection planes
that single out the fundamental domain of the group

; R1R2, R2R3, R1R3 are the rotations by the angles
of 2π/3, 2π/5, and π, and R1R2R3 = 5 is the Coxeter ele-
ment whose degree h = 10 coincides with the number of
edges in the Petrie’s polygon of an icosahedron
(Fig. 1d) [13, 14].

In the space of a three-dimensional sphere S3

embedded in E4, the angular deficit of regular tetrahe-
dra is avoided because of a constant positive curvature;
in this case, the sphere is divided into 600 regular tetra-
hedra forming the {3, 3, 5} polytope (four-dimensional
icosahedron). One hundred and twenty vertices of the
polytope {3, 3, 5} are determined by the unit vectors
(with the origin at the center of S3) in E4 to which there
corresponds the set Y ' consisting of 120 specific quater-
nions–icosians

(2)

where A indicates that all the even permutations of

coordinates are allowed, σ = 1/2(1 – ), and τ =

1/2(1 + ). With respect to the multiplication opera-
tion of icosians, the set Y ' is a binary icosahedral group
isomorphous to the subgroup of the special unitary
group SU(2). The set J of all the finite sums q1 + … +
qt + … + qn (where each qt is an occasion from (2)) is a
ring (α, β, γ, δ) of icosians, where α, β, γ, and δ belong

to the ring of the golden section Q(τ) = {a + b }, a,
b ∈ Z, where Z is a set of integers [14, 15].

All the motions in E4 that bring the vertices of the
{3, 3, 5} polytope into coincidence form the subgroup
[3, 3, 5] of the orthogonal four-dimensional group O(4).
The group [3, 3, 5] of order 14 400 is the direct product
Y' × Y' that can be embedded in SU(2) × SU(2). The
group [3, 3, 5] is defined by the code

(3)

where Ri , i = 1, 2, 3, 4 are the generating reflection
planes, R1R2R3 = Q, R1R3R4 = P, and R1R2R3R4 = S is the
Coxeter element whose degree h = 30 coincides with
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the number of edges of the Petrie’s polygon of the
{3, 3, 5} polytope [13, 14]. Code (3) determines the
presence in the polytope {3, 3, 5} of the axes which in
E3 coincide with the axes of rotation by 2π/n, n = 2, 3,
5 (Fig. 1d), the conventional (rational) screw axes n1,
n = 6, 10 (Fig. 1e), and the irrational screw axis 30/11,
which provides the rotation by about 2π11/30 around
11/30 with the subsequent translation along this axis
(Fig. 1g). The 30/11 axis reflects the symmetry of a
30-edge Bernal helix composed by tetrahedra (Fig. 1f)
and corresponding to the Petrie’s polygon of the {3, 3, 5}
polytope [9, 10, 15].

In the {3, 3, 5} polytope, one can select 120 tetrahe-
dra whose centers form the congruent ϕ{3, 3, 5} poly-
tope, where ϕ is the enantiomorphous rotation in E4 and
O(4) ∋ ϕ ∉ [3, 3, 5]; in this case, in each icosahedron
from the {3, 3, 5} polytope, four tetrahedra are centered
so that their centers form a tetrahedron (Fig. 1a). The
connection of “white vertices” of the initial {3, 3, 5}
polytope with the closest “black vertices” of the ϕ{3, 3,
5} polytope results in the formation in S3 of an enanti-
omorphous structure consisting of 240 tetrahedrally
coordinated vertices connected by 480 edges forming
nonflat hexacycles (twist-boats). This structure is called
an irregular {240} polytope [4, 5, 8]. The group of
motion in E4 mapping the {240} polytope onto itself is
the subgroup of rotations (O' × Y ')/Z2 of the group O(4),
where O' is the binary octahedral group of order 48. The
order of (O' × Y ')/Z2 is 2880; the group of the {240}
polytope of the opposite chirality is the group (Y' ×
O')/Z2 [5]. 

The isomorphism of the group SU(2) to the sphere
S3 [5, 15] indicates that the definition SU(2) × SU(2) is
eight-dimensional and, in the final analysis, determines
the imbedding of {3, 3, 5} in E8—the close packing of
spheres S7 in E8 [14]. In this case, the isomorphism
between the set of 240 icosians Y ' ∪ τ Y ', τY ' = {τqt |
qt ∈ Y '}, and 240 vectors of the first coordination
sphere in E8 provides the isomorphism (in the Euclid-
ean norm) E8 and the ring of icosians J. The crystallo-
graphic root lattice in E8 (the system of vectors E8)
determines the maximum specific simple Lie algebra e8

and allows one to obtain the MOG construction [1]
whose boundedness for the generalized crystallography
of diamond-like structures [14] can be considered as
mapping of the maximality of e8 . The isomorphism of
the groups Y ', ϕY ', and τY ' indicates that the {240}
polytope also reflects the limiting symmetry of E8.
Thus, the finite projective plane PG(2, 4) embedded in
MOG and the {240} polytope reflect the limiting sym-
metry of E8, which signifies that the maximum super-
Euclidean symmetry of the specific clusters of a dia-
mond-like structure is determined by the maximum [1]
subconfigurations PG(2, q), q ≤ 4, which also determine
the clusters of the {240} polytope.
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Sections of the {3, 3, 5} polytope by the hyperplane beginning with the vertex and with the cell (Table 5 from [10])

{3, 3, 5} sections x4 (x1, x2, x3) Number of vertices Polyhedron

00 2 (0, 0, 0) 1 Point

10 τ (1, 0, τ–1) 12 Icosahedron

20 1 (1, 1, 1) 20 Dodecahedron

… (τ, τ–1, 0)

{3, 3, 5} sections x4 (x1, x2, x3) Number of vertices Polyhedron

13 τ2 (τ–1, τ–1, τ–1) 4 Tetrahedron

23 (–1, 1, 1) 4 Tetrahedron

33 2 (2, 0, 0) 6 Octahedron

43  τ (τ, τ, τ–2) 12 Cuboditetrahedron

…

2 2

5

SPECIFIC CLUSTERS OF THE {240} POLYTOPE 
DETERMINED BY THE SELF-DUAL 

SUBCONFIGURATIONS OF FINITE PROJECTIVE 
PLANES

The incidence graph PG(2, 2) determines the regu-
lar division of a torus into hexacycles and is a {6, 3}2, 1
map. The removal of set 4 consisting of three edges
(three empty circles in the incidence table of PG(2, 2))

results in the formation of the subgraph {6, 3 , which
provides the irregular division of the sphere into
hexacycles and which is the graph of the parallelohe-
dron of the diamond structure [1]. The interpretation of
the {240} polytope as an “enantiomorphous diamond”
in S3 allows us to repeat the reasoning in [1] and obtain

the enantiomorphous graph {6, 3 , which differs

from {6, 3  (by removing set 2 consisting of three
empty circles from the incidence table of PG(2, 2)),
which in E3 has the form of a 14-vertex combination of
six twist-boats (Figs. 2a, 2b) under the condition of the
equality of the edges (without their intersection) and
the angles formed by these edges [16].

The Petrie’s polygon of the {240} polytope can be
defined as the combination of two (white and black)
Bernal helices whose vertices form the 30/11 channel
(Fig. 2c). The generating cluster of this channel (gener-

ating 30/11 clusters) is a 14-vertex {6, 3  cluster
uniquely determined by the reject of set 3 of three
empty circles in the incidence table of PG(2, 2). To
these empty circles there correspond the bonds forming
a trigonal handle and supplementing the sphere to make

it a torus. As for the {6, 3  and {6, 3  clusters,
the rejection of this handle allows one to obtain a gen-

}2 1,
3 4( )

}2 1,
3 4( )

}2 1,
3 2( )

}2 1,
3 3( )

}2 1,
3 4( )

}2 1,
3 2( )
C

erating cluster whose graph provides the irregular divi-
sion of the sphere into hexacycles.

The {6, 3  cluster was determined in [2, 3] as
the projection in E3 of the “cell” of the {240} polytope,
which, in the Schläfli notation {p, q, r}, is represented
as

{240} = {3, 3, 5} ∪ ϕ {3, 3, 5} = {{6, 3 , 3}, (4)

where 6 is the symbol of the face of the hexacycle {p}

shared by two cells, {p, q} = {6, 3 ; 3 is the number
r of the cells at the shared edge; and the corresponding
{3, 3} tetrahedron provides the tetrahedral coordination
of each vertex of the {240} polytope and the formation

of the vertex {240} figure consisting of four {6, 3
cells. The inner braces in (4) indicate the irregularity of
the {240} polytope, and rejecting these braces, we
arrive at the symbol {6, 3, 3} of specific hyperbolic
honeycomb cells [4].

The section of a polygon by the E2(x3) plane normal
to the X3-axis and cutting the segment x3 on it is a poly-
gon whose center lies at the height x3 above the X1X2 =
E2(0) plane (Fig. 1d). In a similar way, the section of the
polytope by the hyperplane E3(x4) is a polygon whose
center lies at a “height” x4 above the space X1X2X3 =
E3(0). The upper section of the polytope {3, 3, 5}
(increased by a factor of two in comparison with (2)) is
a point of the “north pole” (0, 0, 0, 2), and, therefore, the
sections {3, 3, 5} ∩ E3(x4) are the sections of the {3, 3,
5} polytope originating from its top. The orthogonal
transformation ϕ rotates the {3, 3, 5} polytope in such
a way that its upper section is a tetrahedron, the {3, 3,
5} cell, and, therefore, the ϕ{3, 3, 5} ∩ E3(x4) sections

}2 1,
3 2( )

}2 1,
3 2( )

}2 1,
3 2( )

}2 1,
3 2( )
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Fig. 2. The vertex figure of the {240} polytope and its parts determined by the incidence tables of the corresponding subconfigura-
tions: (a) the cell of the “left” {240} polytope determined by the incidence table 73 without set 2 of three empty circles; (b) the cell
of the “right” {240} polytope determined by the incidence table of the cell of the “left” polytope in which the rows are replaced by
columns (the numbers of the corresponding vertices of the vertex figure shown in (d) are shown on the right and below the incidence
table); (c) the generating clusters of the Petrie’s polygon of the right {240} polytope consisting of white and black Bernal’s helices
(the twofold axis relating these helices is perpendicular to the middle of the 3–3' edge); the cluster is determined by the incidence
table 73 without set 3 consisting of three empty circles; the replacement of the rows by the columns corresponds to the enantiomor-
phous modification; (d) the vertex figure of the right {240} polytope as a combination of four cells shown in (b); vertices 1, 2–13
and 1'–4'; 5', 10', 13', 14'; and 6', 7', 8', 9', 11', 12' (the primed numbers enumerate black vertices) correspond to the sections 00–10

and 13–33 of the {3, 3, 5} polytope by the E3(x4) hyperplane indicated in the table (the sections n0 and n3 begin with the vertex and
the cell of the {3, 3, 5} polytope, respectively); (e) the layer part of the cluster shown in (d) determined by the incidence table of

the extended Desargues configuration  without empty circles; the numbers of corresponding rows and columns of the incidence

table of PG(2, 3) (Fig. 6) containing it are indicated on the right and below of the incidence table.

103
4

coincide with the sections of the {3, 3, 5} polytope
beginning with the cell [10]. In virtue of (4), we have

(5)

where the first and second parentheses indicate the sec-
tions of the {3, 3, 5} polytope beginning with the vertex
(a zero-dimensional object) and the cell (a three-dimen-

sional object). At  = 2, τ, the sections are a point and

an icosahedron; at  = τ2/ , , and , the
sections are tetrahedron, a tetrahedron, and an octahe-
dron, respectively. The projection of these sections onto

240{ } E
3

x4( )∩

=  3 3 5, ,{ } E
3

x4
0( )( )∩( ) ϕ 3 3 5, ,{ }( ) E

3
x4

3( )( ) ),∩∪

x4
0( )

x4
3( )

2 5/2 2
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E3(x4 = 2), which here is assumed to be the physical
space E3, results in the formation of a 27-vertex cluster
that is the combination of the point and the following
polyhedra: a tetrahedron, an icosahedron, a tetrahe-
dron, and an octahedron (see table). This cluster is char-
acterized by the symmetry 23 and is the combination of
18 twist-boats [8, 5, 16, 17] and is also the projection in
E3 of the figure of the {240} polytope centered by the

vertex—the combination of four {6, 3  cells.

Without vertex 14' (the primed numbers indicate
black vertices), this cluster corresponds to the “edge
figure” of the {240} polytope—the combination of

three {6, 3  cells sharing the 1–1' edge (Fig. 2d; cf.

}2 1,
3 2( )

}2 1,
3 2( )
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Fig. 3. Configurations 93, their incidence tables [12, 18], and the clusters of diamond-like structures determined by their subtables:
(a) Pappus configuration (93)1, whose incidence table without three empty circles determines an 18-vertex cluster of the lonsdaleite
structure; (b) configuration (93)2 of three triangles inscribed one into another: {7, 2, 3}, {1, 8, 9}, and {4, 5, 6} (subtable 7 × 7 is
indicated by solid lines; its incidence table determined the generating clusters of the lonsdaleite structure); (c) irregular configura-
tion (93)3 (subtable 7 × 7 is indicated by solid lines, its incidence table determines the generating clusters of the core of a screw
dislocation in the diamond structure). The primed numbers enumerate the straight lines corresponding to the black vertices of the
clusters of a diamond-like structure.

(c)
Fig. 5a from [1]). It was shown [1] that this 26-vertex
polyhedron is uniquely determined by the incidence
table of the maximum specific configuration {134}15

which arises from the incidence table of PG(2, 3) upon
the rejection of 15 incidence signs.

The projective plane PG(2, 3) also contains the

extended Desargues configuration , whose 10 × 10
incidence table contains 34 incidence signs, i.e., our
signs more than the incidence table of the Desargues

configuration 103 [18]. The intersection {134}15 ∩ 
uniquely determines a 20-vertex cluster—the layer part
of the vertex figure of the {240} polytope (Fig. 2e),
which is the building block of the assembly of dia-
mond-like structures that are not the traditional crystal-
lographic objects [16, 17].

A 27-atom cluster (Fig. 2d) “straightened” from the
{240} polytope in E3 shows the deviations from the
ideal tetrahedral coordination (the angles formed by the
bonds are not equal to 109.47°), but it is still more ener-
getically advantageous than a 27-atom cluster in the
diamond structure [5]. Obviously, further growth of this
cluster by the strengthening of clusters of ever increas-
ing dimensions in E3 from the {240} prototype should
result in ever less energetically advantageous clusters

103
4

103
4

C

with an icosahedral order and, finally, in the attainment
of a certain limit at which the crystal cluster with
almost ideal tetrahedral coordination restored due to
icosahedron deformation becomes more energetically
advantageous.

The  = τ and  =  sections in the {3, 3, 5}

polytope are followed by the section  = 1 (dodeca-

hedron) and section  = τ/  (cuboditetrahedron)
(Fig. 2d). Therefore, if one limits the choice of the ver-
tices by eight rotational dodecahedron vertices most
remote from the center forming a cube, the projections
of these sections in E3 would yield a 47-atom cluster
(Fig. 6c from [1]). Deformation of an octahedron
formed by white atoms transforms this cluster straight-
ened from the {240} polytope into the combination of
a 21-atom unit cell and a 26-atom Pauling polyhedron
of the cubic Frank–Kasper phases A15 and C15,
respectively [1, 19]. The unit cell of a hypothetical tet-
rahedrally coordinated crystal described by the sp. gr.

 [19] is also embedded in this cluster. One can
assume that this cluster is energetically advantageous,
which is provided by the outer cube of white atoms,
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Fig. 4. A BC8 crystal generated by a 14-vertex generating cluster determined by the intersection of the configurations (93)3 and (64,
83): (a) the location of the 3rd right incidence table (93)3 behind the 9th column results in an isomorphous incidence table whose
subtable 6 × 8 (solid lines) determines the generating clusters of the BC8 structure; (b) the incidence table of the nongeometric
(64, 83) configuration without empty circles determining the generating clusters of the BC8 structure; (c) the BC8 structure formed
by the generating clusters of BC8 are indicated by solid lines. Generating clusters of BC8 are uniquely determined by the subtable
8 × 6—the intersection of the incidence table (93)3 and the incidence table (64, 83) shown in (a) and (b). The graph of the generating
cluster of BC8 with the edges of the incidence graph of the configuration (64, 83) (empty circles in the incidence table (64, 83))
(shown by dashed line) coincides with the graph of a rhombododecahedron.
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Fig. 5. Finite non-Arguesian planes [18] and the generating clusters with penta-, hexa-, and heptacycles determined by the subtables
of their incidence tables: (a) the incidence table of the configuration (43, 62) of the tetragon and the generating clusters of the ada-
mantane structure determined by this configuration; (b, c) the incidence tables of the finite non-Arguesian planes extended with the
aid of arrows and clusters with penta-, hexa, and heptacycles determined by their 6 × 7 and 8 × 7 subtables. The sequence of the
incidence tables (without arrows) shown in (a–c) is the sequence of the steps T1, T2, and T3 formed during the alternating addition
of columns and rows to the previous step. The subtable of the previous step is indicated by the solid line on the subsequent step.
Penta- and heptacycles are indicated by solid lines. The bonds between the vertices of the same color are indicated by arrows.
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which, unlike an icosahedron, can ensure the division
of E3.

If rows 1, 2, 3, 6, 7, 8, 10, 11, 14, and 16 and col-
umns 1, 2, 3, 4, 6, 7, 8, 10, 11, and 12 in the incidence
table of PG(2, 4) (Figs. 6a, 6c in [1]) are rearranged as
6, 1, 2, 3, 7, 10, 11, 8, 14, 16 and 1, 2, 3, 6, 7, 10, 3, 7,
11, 4, 8, 12, then the intersections of the changed rows
and columns form the incidence table of the extended

Desargues configuration  [18]. This incidence table
can be embedded only in PG(2, 4) and determines a
specific 20-vertex cluster of a diamond-like structure,
which belongs to the unit cell [19] but does not belong
to the 27-vertex cluster shown in Fig. 2d.

CLASSIFICATION OF THE GENERATING 
CLUSTERS OF DIAMOND-LIKE STRUCTURES 

BY CONFIGURATION TYPE

The finite projective plane PG(2, q) is a self-dual
configuration nd = (nd , nd), where n = q2 + q + 1 and d =
q + 1 [9, 18]. If (mf , nd) is the minimum configuration
containing the given subconfigurations, then the latter
can be embedded in (mf , nd). All the specific clusters of
the diamond-like structures considered up to now con-
tained hexacycles as the cycles of the minimum length
and were determined by the subconfigurations which
could be embedded into the self-dual configurations,
which, in turn, could be embedded to the finite Argue-
sian planes [18]. Therefore, these configurations are
called Arguesian. The next section is dedicated to the
solution of the general problem of enumerating all
types of configurations in which the subconfigurations
determining the generating clusters with penta-, hexa-,
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Fig. 6. Construction of the incidence table of finite projec-
tive plane PG(2, 3) based on the summation and multiplica-
tion tables of the Galois field GF(3). The square C21 shown
by double lines corresponds to the intersection of row 2 and
column 1 of the multiplication table of the Galois field
GF(3) determining element 2 whose distribution in the
summation table of GF(3) is the distribution of the inci-
dence signs in the square C21. The squares Cmx with the
zero values either of m or x are the same and are, in fact, the
distribution of zeroes in the summation table of GF(3). The
square consisting of 32 Cmx squares with m, x = 0, 1, 2 is the
Q-contents of the table. The first four rows and columns
form a É hook [18].
C

and heptacycles can be embedded. Unlike the unique
implementation of self-dual configurations 73 and 83,
three self-dual 93 configurations are possible, namely,
Pappus configurations (93)1 (Fig. 3a), three triangles
inscribed into one another (93)2 (Fig. 3b), and an irreg-
ular configuration (93)3 (Fig. 3c) [9, 12, 18]. Therefore,
the solution of the problem is demonstrated on the gen-
eral example of 93.

If the bichromatic graph of generating clusters pro-
vides the irregular division of a sphere into hexacycles,
then, applying the Euler theorem for polyhedra, we
arrive at the following relationships:

F = 1/2(m1 + n1) – 1, E = 3F, (6)

where m1 and n1 are the numbers of the white and black
vertices of the graph, F is the number of hexacycles,
and E is the number of edges. The self-dual configura-
tion n3 = (n3, n3) can be represented in the form ((m1 +
m2)3, (n1 + n2)3), which allows one to single out the sub-
table m1 × n1 in the incidence table n3 . If this subtable
contains not less than 3(1/2(m1 + n1) – 1) incidence
signs and each row and each column has not less than
two incidence signs, then, in virtue of (6), this subtable
of the incidence table determines the generating clus-
ters either directly or when the incidence signs denoted
by empty circles are rejected from it.

The simplest case m2 = n2 = 0 illustrates a Pappus
configuration (93)1, whose incidence table without three
empty circles (i.e., the incidence table of subconfigura-
tion {(93)1}3) determines a 18-vertex cluster of lonsda-
leite with eight hexacycles (Fig. 3a).

The variant m2 = n2 = 2 is implemented for the con-
figuration (93)2 = ((7 + 2)3, (7 + 2)3)2, whose 7 × 7 sub-
table of the incidence table uniquely determines a
14-vertex generating cluster of lonsdaleite with six
hexacycles—two chairs and four boats (Fig. 3b). Sub-
configuration (93)2 with such an incidence table is
denoted as ((7 ∪ 2)3)2. In a similar way, the subconfig-
uration ((7 ∪ 2)3)3 of the configuration (93)3 uniquely
determines a 14-vertex generating cluster of a screw-
dislocation core in the diamond structure with six
hexacycles, two twist-boats, and four twist-chairs
(Fig. 3c) [16, 17, 20].

At m2 = 3 and n2 = 1, one can single out in a self-dual
configuration (93)3 a non-self-dual subconfiguration
((6 ∪ 3)3, (8 ∪ 1)3)3 with the 8 × 6 incidence table,
which is the intersection of (93)3 and the non-self-dual
configuration (64, 83) (Fig. 4). The configuration (64, 83)
can be considered as a set of eight vertices and six faces
of a cube, with each vertex being shared by three faces
and each face containing four vertices. Substituting
each face by a white dot, we arrive at a bichromatic
graph of a rhombododecahedron; since the faces of this
dodecahedron are tetragons, then (64, 83) is a nongeo-
metric configuration. The intersection (93)3 ∩ (64, 83) is
the maximum geometric subconfiguration of the con-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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figuration (64, 83) (Fig. 4b). The incidence table of
(64, 83) contains a smaller number of incidence signs
than the incidence table of (93)3 and, therefore, the sub-
configuration (93)3 ∩ (64, 83) determining a 14-vertex
generating cluster with six hexacycles is embedded in
the non-self-dual configuration (64, 83). The graph of
this generating cluster is obtained from the graph of a
rhombododecahedron upon rejection of the edges
shown by dashed lines (empty circles in the incidence
table (64, 83) (Figs. 4b, 4c). This graph is a graph of gen-
erating clusters of BC8 structure, the high-pressure
body-centered Si-phase [6, 19, 21]. This structure is a
diamond-like structure with distorted (up to 100°) “tet-
rahedral angles” (Fig. 4c). In [6, 19], the BC8 structure
was considered as the approximant of an icosahedral
quasicrystal.

All the generating clusters considered above are
determined by the Arguesian subconfigurations of the
planes of PG(2, q). However, these planes can also have
non-Arguesian subconfigurations. Thus, the Hall steps
T2 and T3 (Figs. 5b, 5c) are finite non-Arguesian projec-
tive planes [18] that can be embedded in PG(2, 2) and
PG(2, 3), respectively. Since T2 (T3) are non-Arguesian
projective planes, which is seen from the fact that some
columns (rows) do not intersect in the incidence table
of T2(T3), the bichromatic incidence graph T2(T3)
acquires the cycles absent in the PG(2, q) graph. The
latter cycles can be divided into smaller ones if they are
connected by the edges originating from the vertices of
the same color. This signifies that one can single out in
the “incidence-extended” space between the points or
between the straight lines of the Arguesian plane T2(T3)
the subconfiguration determining the division of a
sphere into penta-, hexa-, and heptacycles.
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
In addition to T2, the PG(2, 2) plane also contains
the subconfiguration 73 ∩ 103 considered in detail ear-
lier, which determines the parallelohedron of the dia-
mond structure (Fig. 3c from [1]). To the intersection of
(73 ∩ 103) with T2 there corresponds the rejection of
two more signs from the incidence table. Rejecting one
more sign from this incidence table and then establish-
ing the “incidence” between the points 2–4 and 6–7
with the aid of the arrows, we obtain the incidence table
which determines the subconfiguration {73 ∩ 103 ∩
T2}1–2. The superscript 1 in this subconfiguration signi-
fies one rejected bichromatic edge, and the 2 indicates
the introduction of two additional edges not belonging
to the incidence graph of the subconfiguration 73 ∩
103 ∩ T2 and connecting the vertices of the same color.
The projective plane PG(2, 3) contains the Hall step T3

and the configuration 83, and, therefore, the incidence
graph of the subconfiguration {83 ∩ (93)2 ∩ T3}–2 deter-
mines the graph of a 15-vertex generating cluster with
two heptacycles and four hexacycles (Fig. 5c).

It is possible to show that both in [1] and the present
article, all the types of generating clusters containing
only penta-, hexa-, and heptacycles have been consid-
ered, and, therefore, it is possible to classify these types
over the following configuration types: Arguesian
(Figs. 2–4), non-Arguesian (Fig. 5), self-dual (Figs. 2,
3), non-self-dual (Fig. 4), conventional, and extended
(Fig. 2d).

Now arrange the subconfigurations determining
14-vertex generating clusters with six hexacycles in the
order of lowering of their symmetry and the symmetry
of the configurations in which they can be embedded,
(7)

 

 

73 103, 73{ } 3 i( )
, 7 2∪( )3( )2, 7 2∪( )3( )3, 93( )3 64 83,( ).∩ ∩

PG(2, 2) = 73, (93)2, (93)3, (64, 83),

∪ ∪ ∪ . ∪
Indeed, PG(2, 2), being a finite projective plane, is
“more symmetric” than a conventional configuration
[18]; in this case, the unique configuration 73 ∩ 103
determining the generating clusters of the diamond
structure is more symmetric than the subconfigurations

{73}3(i) = {6, 3 , i = 2, 3 determining the generating
clusters of the cell of the {240} polytope and the 30/11
channel. The regular configuration (93)2 is more sym-
metric than the irregular one, (93)3 [12], which, in turn
is more symmetric than the non-self-dual configuration
(64, 83).

If a diamond-like structure is built by generating
clusters of one type, one can state that its symmetry

}2 1,
3 i( )
(understood at the level of the algebraic groups [14, 23,
24]) is determined by the symmetry of the subconfigu-
ration determining the generating clusters and the con-
figuration in which this subconfiguration is embedded.
Thus, it follows from relationships (7) that the symme-
try is lowered in the following sequence of diamond-
like structures: diamond, structures determined by the
{240} polytope, lonsdaleite, the core of a screw dislo-
cation in the diamond structure, and BC8. In the spirit
of Bernal’s article on the role of geometric factors in the
structure of matter [22], relationship (7) can be
regarded as the specification of the “projective–geo-
metrical factor” in diamond-like structures.
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CONCLUSIONS

It is shown on numerous examples both in [1] and
the present article that the graphs of the generating clus-
ters of diamond-like structures are uniquely determined
by the subtables of the incidence table of finite projec-
tive planes PG(2, q), q = 2, 3, 4. Within the framework
of classical crystallography, whose algebraic basis is
the group theory, no adequate reflection of the symme-
try of these graphs is possible. This signifies that the
incidence table of PG(2, q) reflects the symmetry of
such algebraic objects as rings, fields, algebras, etc., in
which, unlike the symmetry groups, at least two opera-
tions are defined [23, 24].

Indeed, the incidence tables of PG(2, q) are
uniquely constructed with the aid of the summation and
multiplication tables of the subtraction fields modulo
q—the Galois fields GF(q). Consider an example of
such a construction of the incidence table of PG(2, q)
with q = 3 (Fig. 6). It is well known that the distribution
of numbers in the summation table of GF(q) is diago-
nal, i.e., each column and each row of the q × q table has
only one number (from 0 to q – 1). One can see that to
each product of numbers m and x from the multiplica-
tion table, q × q, there corresponds the table Cmx con-
taining only the diagonal distribution of the number
t = mx from the summation table. In turn, all the tables
Cmx, m, x = 0, and 1 … q – 1 form the table q × q, which
(upon the replacement of all the numbers t by the black
circles) becomes the Q-contents of the incidence table
of PG(2, q). Upon the addition of the stepwise distribu-
tion of the incidence signs in the additional É-like hook
(consisting of q + 1 rows and a column), the incidence
table of PG(2, q) in the form of a É-table is formed [18].

Thus, the transition from the classical to the gener-
alized crystallography of diamond-like structures is, in
fact, the transition from the Euclidean to the projective
geometry, whereas at the algebraic level, it is the tran-
sition from a group to rings, fields, algebras, etc. Both
in [1] and in the present article, we replaced the alge-
braic constructions by their crystallographic equiva-
lents just as crystallographers determine the space
group using the corresponding plot from the Interna-
tional Tables [26] instead of their group-theoretical
determination [25]. In this sense, the subalgebras of dif-
ferent types [23] correspond to the subconfigurations of
different symmetries in (7).

The conclusions following from the present study
can be formulated as follows:

—highly symmetric clusters of the diamond struc-
ture in S3, the {240} polytope, are determined by the
subconfigurations of PG(2, q), q = 2, 3, 4 and, upon
their straightening in E3, become specific clusters of
diamond-like structures;

—the generating clusters, whose minimum cycles
are only hexacycles, are determined by the subconfigu-
rations which can be embedded in self-dual, non-self-
dual, conventional, or extended configurations of the
C

Arguesian finite projective planes. The generating clus-
ters containing penta-, hexa-, and heptacycles are deter-
mined by the subconfigurations that can be embedded
in the finite projective planes;

—the symmetry of diamond-like structures assem-
bled from generating clusters of one type is determined
by the symmetry of the configuration in which the set-
ting subconfiguration of the generating clusters is
embedded. This determines the lowering of the symme-
try in the sequence of diamond-like structures corre-
sponding to the lowering of the symmetry of the respec-
tive configurations. As an example, we considered the
following sequence of diamond-like structures: dia-
mond, structures determined by the {240} polytope,
lonsdaleite, the core of a screw dislocation in the dia-
mond structure, and BC8.
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Abstract—A series of fullerenes from C20 to C60 (a total of 5770) is obtained and their characterization in terms
of symmetry point groups is performed for the first time. The most symmetric forms with the sixth and higher
orders of automorphism groups (a total of 80) are represented in the Schlegel projection onto one of the faces.
It is noted that, among the 5770 fullerenes obtained, only 12 fullerenes exhibit noncrystallographic symmetry.
© 2002 MAIK “Nauka/Interperiodica”.
Considerable advances made in the crystallography
and mineralogy of carbon over the last fifteen years are
associated with the laboratory synthesis [1, 2] and the
subsequent discovery [3–5] of C60 stable clusters in
nature. Fullerenes containing less than 60 atoms are
unstable; furthermore, carbon clusters involving from
20 to 36 atoms fall within the so-called “forbidden gap”
[6, 7]. However, it is this type of crystallization cavities
that has been revealed in different clathrate compounds
over the last fifty years [8]. In the present work, we
derived all combinatorial types of fullerenes containing
from 20 to 60 atoms and proposed their classification in
terms of symmetry point groups. It should be noted that
the problem of enumeration of fullerenes is dual of the
problem of triangulation of a spherical surface. The lat-
ter problem has been intensively studied in the context
of the problem concerning the closest packing of iden-
tical particles on the spherical surface.

Let us now consider a fullerene in the form of a sim-
ple polyhedron (each vertex is shared by three faces) in
which only pentagonal and hexagonal faces are
allowed. It is assumed that f5 and f6 are the numbers of
pentagonal and hexagonal faces, respectively, and f, e,
and v are the numbers of all faces, edges, and vertices
in the polyhedron, respectively. Hence, from the rela-
tionships

f5 + f6 = f, 5f5 + 6f6 = 2e 

we obtain
f5 = 6f – 2e. 

Next, from the relationships
f – e + v  = 2, 2e = 3v  

we have
6f – 2e = 12.
1063-7745/02/4705- $22.00 © 20720
As a result, we obtain

f5 = 12, f = 12 + f6 

at any f6 ≥ 0.
Similarly,

v  = 2f – 4 ≥ 20, f6 = f – 12 = v /2 – 10.

Thus, any fullerene can be characterized by the ver-
tex (Cv-) and face (5126v /2-10) formulas.

The general idea of representing a fullerene in the
form of a Schlegel projection according to the face for-
mula is as follows. Face 1 is surrounded by other faces
that are numbered clockwise. The same operation is
repeated with faces 2, 3, etc. In the favorable case, the
basal face of the Schlegel projection will be generated
at the penultimate step. In particular, for the simplest
formula 512, the operation begins with the pentagonal
face and leads to a dodecahedron (see figure, no. 1).

For fullerenes described by the formula 5126n, the
above operation can begin with the hexagonal face. In
order to exhaust all the possible variants, it is necessary
to preliminarily enumerate the sequences (6, …) with
all kinds of arrangement of (n – 1) sextuples in (n + 11)
unoccupied positions. Then, pentagonal and hexagonal
faces are generated in accordance with these sequences.
For example, the sequence (6, 5, …, 5) with twelve
quintuples does not lead to a polyhedron, because the
51261 fullerene is nonexistent in nature. However, the
51262 fullerene (figure, no. 2) exists and can be specified
by the sequence (6, 5, …, 5, 6).

The aforementioned operation is terminated in the
following cases: (i) the fullerene is constructed accord-
ing to the face formula; (ii) the fullerene is constructed
prior to exhaustion of the formula; (iii) the fullerene is
not constructed, but the formula is exhausted; and
002 MAIK “Nauka/Interperiodica”
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

Fullerenes C20–C60 with the sixth and higher orders of automorphism groups in the Schlegel projection onto one of the faces.
(iv) at a certain step, the required face becomes neither
pentagonal nor hexagonal. All the fullerenes constructed
with the use of the given formula are sorted according to
combinatorial type, and repetitions are rejected.

The forms thus obtained are characterized by sym-
metry point groups. The algorithm of their determina-
tion is reduced to the enumeration of all kinds of redes-
ignation of vertices retaining contiguity. By certain cri-
teria, each redesignation is identified as a fullerene
symmetry element.

After executing this algorithm, we obtained 5770
combinatorially different fullerenes in which the num-
ber of vertices ranges from 20 to 60. The distribution of
the fullerenes over automorphism group orders and
symmetry point groups is given in the table. The vast
majority of the forms involved have the symmetry 1, 2,
or m. For a fixed v, the diversity of forms drastically
decreases with an increase in the order of the automor-
phism group. This is accompanied by an increase in the
physical stability of the fullerene [1, 2, 6, 7, 9]. The
most symmetric forms with the sixth and higher orders
of automorphism groups are depicted in the figure. The
symmetry point groups of these forms are as follows:

C20: 1 ( ); C24: 2 ( ); C26: 3 ( ); C28: 4

( ); C30: 5 ( ); C32: 6 (32), 7 ( ), 8 ( );

53m 12m2 6m2

43m 10m2 3m 6m2
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C34: 9 (3m); C36: 10, 11 ( ), 12 ( ), 13 (6/mmm);

C38: 14 (32), 15 (3m), 16 ( ); C40: 17 (3m), 18

(mmm), 19, 20 ( ), 21 ( ); C42: 22 (32); C44: 23,

24 (32), 25 (23), 26–28 ( ), 29, 30 ( ); C48: 31

(32), 32, 33 (mmm), 34, 35 ( ); C50: 36, 37 (32),

38 (3m), 39 ( ), 40, 41 ( ); C52: 42, 43 (3m),

44, 45 (mmm), 46–50 ( ), 51 (23); C54: 52 (32), 53

( ); C56: 54–59 (32), 60 (mmm), 61 ( ), 62, 63

( ), 64 ( ); C58: 65, 66 (3m); C60: 67–69 (32), 70

(3m), 71 (mmm), 72–75 ( ), 76 (52), 77 ( ), 78,

79 (6/mmm), 80 ( ).
Apart from the well-known form C60 (80), the most

probable fullerenes in the physical experiments are 34,
35, 40, 41, 64, and 77–79. Judging from the number of
atoms, these fullerenes fall far beyond the forbidden
gap and possess high symmetry. Except for forms 1, 2,
5, 19, 20, 34, 35, 40, 41, 76, 77, and 80, the fullerenes
C20–C60 exhibit crystal symmetry and, without symme-
try violation, can be considered as possible structural
units of the crystalline compounds. The listed 12 forms
are also encountered in crystalline compounds (for

42m 6m2

6m2

5m 43m

3m 6m2

12m2

6m2 10m2

42m

6m2 42m

3m 43m

42m 5m

53m
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Statistics of symmetry point groups of fullerenes C20–C60

AGO íÉë 20 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 Σ

1 1 2 7 8 23 42 69 117 195 307 470 700 4037 1508 4485

2 1 1

2 2 3 4 5 14 11 22 22 52 37 78 62 135 98 189 734

m 2 2 7 6 7 19 16 25 26 38 49 58 67 322

3 3 1 2 2 3 3 4 15

4 1 2 3

222 1 1 2 3 6 5 9 10 19 56

2/m 1 1 2 4 8

mm2 2 1 2 2 4 3 4 3 6 3 8 13 6 9 66

6 32 1 1 1 2 1 2 1 6 3 18

3m 1 1 1 2 2 1 9

8 mmm 1 1 2 2 1 1 7

m 2 5 1 4 12

10 52 1 1

12 23 1 1 2

m 1 3 2 6

m2 1 1 1 1 2 1 1 8

20 m 2 1 3

m2 1 2 3

24 6/mmm 1 2 3

m 1 1 1 3

m2 1 2 3

120 m 1 1 2

1 1 1 2 3 6 6 15 17 40 45 89 116 199 271 437 580 924 1205 1812 5770

Notation:  AGO = automorphism group orders and SPG = symmetry point groups.

1

4

4 2

3

6

5

10

4 3

12

5 3
example, C20 dodecahedra in clathrates [8]). In this
case, they are distorted and lower their own symmetry.

The schematic drawings of all 5770 fullerenes in the
Schlegel projections are available from the authors in
electronic form on request. In the immediate future, we
will publish a systematic catalog of fullerenes with
their complete characterization.
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Abstract—Nine regular tetragonal packings of spheres are considered. These packings satisfy the following
conditions: all the spheres have the same dimensions and environment, i.e., belong to one regular system of
points with the coordination number of the packing being not less than six. The examples of the real crystal
structures corresponding to seven of these packings are considered. © 2002 MAIK “Nauka/Interperiodica”.
Sphere packings with symmetry corresponding to
the tetragonal system are often considered as distorted
cubic or hexagonal packings. Clarke [1] described
some tetragonal sphere packings as independent types
and characterized 17 sphere packings, among which
there were three tetragonal packings. From the crystal-
lochemical standpoint, Clarke’s study is not free of
drawbacks. In particular, there are no data on the spatial
symmetry of these packings, which, may account for
the wrong statement that the cubic “diamond” packing
is noncentrosymmetric. Later, the tetragonal packing
(simple tetragonal packing, STP) with a density only
slightly lower than the densities of the cubic and hexag-
onal close packings was described as an independent
type of sphere packing [2–5].

Clarke’s packings and STP are far from being a
complete set of tetragonal regular sphere packings.
Table 1 gives the characteristics of nine different tetrag-
onal packings arbitrarily denoted by the symbols from
T-1 to T-9 and satisfying the following conditions: all
the spheres are of the same dimensions and have the
same environment, i.e., belong to one regular point sys-
tem (RPS); the coordination number (c.n.) of packings
is not less than six, i.e., each sphere is in contact with at
least six other spheres. For comparison, this table also
lists the characteristics of four well-known cubic pack-
ings of spheres (from C-1 to C-4) and the hexagonal
close packing (H-1). The sphere coordination in the tet-
ragonal packings under consideration is illustrated by
the figure. The characteristics of the coordination poly-
hedra are indicated in Table 2.

The density of the T-1 packing (STP) is only 3%
lower than the densities of the cubic and hexagonal
close packings. The T-1 packing is well known, because
it defines the arrangement of the B atoms in the com-
pounds described by the general formula AB2 , which
possess rutile-type structure where the A atoms occupy
the octahedral cavities formed by B atoms. The shapes
and arrangement of different cavities in the T-1 packing
and chemical compounds whose structures are deter-
1063-7745/02/4705- $22.00 © 20723
mined by this packing were considered in detail else-
where [3].

For an ideal T-1 packing, the c/a ratio is equal to 2 –

 = 0.586, and the parameter x is half as large as this
value. In the crystals of the AB2 compounds belonging
to the rutile structure type, the c/a and xB parameters
noticeably differ from their ideal values (generally, c/a
varies from 0.634 to 0.705, and xB ranges from 0.300 to
0.307). This can be considered as a certain “compro-
mise” between the parameters of the ideal T-1 packing,
which provide the regular coordination of the A atoms,
and the parameters that ensure the regular triangular

coordination of B atoms (c/a = /3 = 0.8165, xB =
1/3 = 0.333) [5].

The T-2 packing (body-centered tetragonal packing
described as packing no. 17 in [1]) was also considered
in more recent studies [4, 5]. This packing can be
readily obtained from body-centered cubic packing by
contracting it along one of the fourfold axes until the

c/a ratio of the tetragonal cell reaches the value /3 =
0.8165. Of all the known structures, the structure of
metal protactinium is very close to the T-2 packing,
although the c/a value for the unit cell of Pa (0.825)
slightly differs from the value corresponding to the
ideal T-2 packing. The high-barium modification of tin
formed at pressures exceeding 11.5 GPa has an analo-
gous structure. As far as we know, the T-2 packing has
not been encountered in the structures of minerals.
Conceivably, the absence of real structures with the T-2
packing is explained by the absence of regular cavities
between the spheres in this packing, i.e., because all the
octahedral cavities in this packing are substantially dis-
torted [4].

The T-3 packing was also described in [1] (packing

no. 14). The density of this packing is (2 – )π/3. The
T-3 packing, as far as we know, has not been mentioned
in crystal chemistry in general and in crystal chemistry
of minerals, in particular. However, this packing seems
to form the basis of the structures of the group of min-

2

6

6

2
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Table 1.  Characteristics of sphere packings

Packings Space group RPS q CN DP c/a

       Cubic:

C-1 (close packing) Fm m (a) 4 12 0.7405 1.000

C-2 (body-centered packing) Im m (a) 2 8 0.6802 1.000

C-3 (primitive) Pm m (a) 1 6 0.5236 1.000

C-4 (diamond) Fd m (a) 8 4 0.3401 1.000

       Hexagonal:

H-1 (close packing) P63/mmc (c) 2 12 0.7405 1.633

       Tetragonal:

T-1 (STP) P42/mnm (f) [1] 4 11 0.7187 0.586

T-2 (body-centered packing) I4/mmm (a) 2 10 0.6981 0.816

T-3 I4/mmm (e) [2] 4 9 0.6134 3.414

T-4 I41/amd (a) 4 8 0.6046 3.464

T-5 I41/amd (a) 4 6 0.5585 0.516

T-6 I41/amd (c) 8 6 0.5585 0.365

T-7 I41/amd (f) [3] 16 6 0.5406 0.254

T-8 I41/amd (h) [4] 16 10 0.6931 0.977

T-9 I4/mcm (h) [5] 8 7 0.6030 0.963

Note: [1] x = 0.2929, [2] z = 0.1464, [3] x = 0.1270, [4] y = 0.2838, z = 0.9065, [5] x = 0.1830; RPS is the regular point system; q is the
position multiplicity; CN is the coordination number; DP is the packing density.

3

3

3

3

erals including thalcusite Cu3FeTl2S4, murunskite
Cu3FeK2S4, and bukovite Cu3FeTl2Se4. The c/a ratio
for these minerals (3.41, 3.38, and 3.44, respectively) is
very close to its ideal value for the T-3 packing (2 +

). According to the X-ray diffraction data, these
minerals are described by the space group I4/mmm or

the space groups , , I422, and I4mm of the
same diffraction class. Taking into account that the
number of formula units per unit cell in these minerals
equals unity, the sulfur (or selenium in bukovite) atoms
may occupy RPS with a multiplicity of four. The c/a
ratio indicates that these atoms occupy the (e) position
necessary for the T-3 packing. Note also that the other
above-mentioned space groups of this diffraction class
contain positions analogous to the (e) positions in the
space group I4/mmm and possessing the same symme-
try. Thus, the structures of these minerals can be based
on the T-3 packing whether the whole structure has the
I4/mmm symmetry or not. 

The T-4 packing was described in [1] as packing

no. 13. The density of this packing is ( /9)π. As far
we know, the T-4 packing was not described in crystal
chemistry either. However, this packing forms the basis
for the structure type of thorium silicide α-ThSi2 ,
where thorium atoms occupy the (a) positions in the
space group I41/amd and the c/a value (3.476) is very
close to the ideal value for the T-4 packing. Silicon

2

I42m I4m2

3

C

atoms occupy the cavities formed by thorium atoms
(spheres in the T-4 packing). The shapes of these cavi-
ties correspond to a trigonal prism (the coordination
number of Si with respect to Th is 6). Each Th atom is
surrounded by eight Th atoms of the packing and
twelve Si atoms are located in the surrounding cavities.

A series of rare-earth silicides and uranium, nep-
tunium, and plutonium silicides belong to the α-ThSi2
structure type. In these structures, the c/a ratio ranges
from 3.18 to 3.48.

The NbAs structure type is also described by the T-4
packing. The structure of niobium arsenide is described
by the space group I41md, but both Nb and As atoms
occupy the positions analogous to the (a) position in the
space group I41/amd. For NbAs, the c/a ratio is 3.384.
For the NbP and TaP structures (also of this structure
type), c/a = 3.42.

The T-4 packing is the only packing of all the regu-
lar tetragonal sphere packings with the symmetry
I41/amd. It should be noted that in terms of structural
mineralogy and crystal chemistry, space group I41/amd
occupies a special position among the space groups of
the tetragonal system. It can be stated that the role of
space group I41/amd in the world of tetragonal minerals
is analogous to the role of space group Pbnm (which is
the “mineralogical” aspect of space group Pnma) in the
world of orthorhombic minerals. Without going into
details, we should like to indicate that the space groups
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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0.09
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T-1 T-2 T-3 T-4

T-5 T-6 T-7

T-8 T-9

Coordination of the spheres in the T-1–T-9 tetragonal packings of spheres (projections onto the XY plane). The solid circle indicates
the position of the center of one of the spheres; the positions of the nearest spheres are shown by empty circles. The unit cells are
shown by squares.
I41/amd and P4/mmm are the only two “panautosym-
metry groups” (the groups where all the possible lattice
complexes have the symmetry of this group) [6] in the
holohedral class of the tetragonal system. The only dif-
ference is that space group P4/mmm is symmorphic and
contains a large number of mirror planes m and fourfold
rotation axes, which considerably restricts the possible
arrangements of finite-size particles, whereas the non-
symmorphic group I41/amd provides much wider pos-
sibilities for filling the space with such particles.

Like the T-4 packing, the T-5 packing is character-
ized by the distribution of the spheres over the (a) posi-
tions of the space group I41/amd. However, the c/a ratio

has a different value (2/  = 0.5164). The density of
the T-5 packing is 8π/45. White tin (β-Sn) is structur-
ally similar to the T-5 packing. However, the c/a ratio in
the latter structure is 0.5455, i.e., substantially different

15
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
from the ideal value for the T-5 packing. As a result,
each atom in the tin structure has four nearest neighbors
at a distance of 3.02 Å and two neighbors at slightly
larger distances (3.18 Å).

In the T-6 and T-7 packings, the sphere centers
occupy the (c) and (f) positions of the same space group
I41/amd, respectively. As in the T-5 packing, the coor-
dination polyhedra in these packings can be considered
as pronouncedly distorted octahedron.

The T-8 packing is somewhat more complicated.
The sphere centers occupy the (h) positions of the space
group I41/amd. The coordinates of these positions are
characterized by the y and z parameters. If these param-
eters are assumed to be 0.2838 and 0.9065, respec-
tively, and the c/a ratio is assumed to be 0.977, each
sphere in the packing has eight nearest neighbors. In
addition, two spheres are located at a distance that is
only 2% larger than the eight shortest distances. Hence,
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Table 2.  Coordination polyhedra of the tetragonal sphere packings

Packing Number of 
vertices

Number of 
faces Symmetry Simple forms and their combinations

T-1 11 13 mm2 Rhombic pyramid + four dihedra + monohedron

T-2 10 12 4/mmm Tetragonal prism + tetragonal bipyramid

T-3 9 13 4mm Tetragonal prism + two tetragonal pyramids + monohedron

T-4 8 12 2m Tetragonal bipyramid + tetragonal tetrahedron

T-5 6 8 2m Tetragonal scalenohedron

T-6 6 8 2/m Rhombic prism + two pinacoids 

T-7 6 8 2 Four dihedra

T-8 10 12 m Three dihedra + six monohedra 

T-9 7 10 mm2 Two rhombic pyramids + dihedron

4

4

it can be assumed that the coordination number of the
packing is 10. The coordination polyhedron of the T-2
packing can be described as a slightly flattened cube
with tetragonal pyramids above two opposite faces,
whereas the coordination polyhedron of the T-8 pack-
ing can be characterized as a distorted cube with tetrag-
onal pyramids over two adjoining faces.

The arrangement of the chlorine atoms in the tho-
rium chloride structure, ThCl4, follows the packing law
of T-8. The unit-cell parameters of this structure differ
from the ideal values for the T-8 packing (y = 0.281, z =
0.907, c/a = 0.881). A series of metal halides of the
actinide group (ThBr4, PaCl4, UCl4, and NpCl4) belong
to the ThCl4 structure type.

In the T-9 packing, the sphere centers occupy the (h)
positions of sp. gr. I4/mcm. These positions are charac-
terized by the only parameter x. If this parameter is

assumed to be (  – 1)/4 = 0.183 and the c/a ratio is

chosen as  = 0.963, each sphere of the pack-
ing has seven nearest neighbors located at equal dis-
tances. The coordination polyhedron of the packing
may be approximated by an irregular pentagonal bipyr-
amid.

The arrangement of aluminum atoms in the CuAl2
structure (mineral khatyrkite) corresponds to the T-9
packing (slightly distorted). The structures of a wide
variety of compounds, primarily, of intermetallic com-
pounds, belong to the CuAl2 structure type. However,
the x parameter and the c/a ratio for all these com-
pounds substantially differ from the above-mentioned
ideal values for the T-9 packing. Generally, the x
parameter and the c/a ratio range from 0.158 to 0.167
and from 0.74 to 0.88, respectively. As a result, the
coordination polyhedra in the packing are distorted. For
example, the distances from the CuAl2 atom to seven

3

16x 2–
C

nearest Al atoms are 2.745 (one distance), 2.885 (two
distances), and 3.115 Å (four distances). In addition,
four Al atoms are located at distances of 3.22 Å [7].

An analogous arrangement of lead atoms is
observed in the PtPb4 structure. Although the structure
of this phase is described by the sp. gr. P4/nbm, the
positions of Pb atoms are very close to the (h) positions
in the sp. gr. I4/mcm. The PtPb4 structure is character-
ized by xPb = 0.175 and c/a = 0.897.

Apparently, other types of tetragonal packings of
spheres satisfying the above-mentioned conditions can
also occur in addition to the nine packings considered
above. Nevertheless, it is evident that these tetragonal
packings can be characterized by a wide variety of sym-
metry groups, coordination numbers, and coordination
polyhedra. Many of the tetragonal packings are really
encountered in real structures of inorganic compounds.
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Abstract—Within the framework of the discrete modeling of molecular packings, a metric approach to the
investigation of the mechanisms of crystal formation is proposed. This method is based on the construction of
a combination of polyhedra in a space in which the space division into polyhedra (or the periodic packing of
polyhedra) is specified by the multistage addition to the initial “seeding” polyhedron set of this division (pack-
ing) of the adjacent polyhedra. Crystal growth is modeled using the constructions of bounding boxes in the divi-
sion of the plane into polyominoes and the three-dimensional space, into polycubes. The formation of phenom-
enological polygons (polyhedra) in the growth of periodic structures is revealed and theoretically grounded. ©
2002 MAIK “Nauka/Interperiodica”.
The study of the mechanisms of crystal formation
has become an important problem in crystallography
virtually from the very beginning of its development.
On the one hand, a crystal is a combination of regularly
arranged atoms or molecules giving rise to a periodic
symmetrical structure and, on the other hand, it is a
polyhedron with a rather strictly specified set of faces.
The crystal is spontaneously formed from a disordered
chaotic medium surrounding the initial seed. Then,
questions arise about the physical factors governing the
inevitable growth of crystal structures upon the
achievement of particular growth conditions in the
medium. It is of interest to elucidate the (necessary and
sufficient) mechanism that ensures the retention of the
angles in the course of growth and also to establish the
physical factors responsible for the synchronous
growth of different faces. These and some others ques-
tions are still open [1].

The analysis of the geometric characteristics of the
coordination spheres in the single-crystal structures of
organic and heterocomplex compounds, as well as the
model periodic and nonperiodic space divisions into
polyhedra, forms the basis for a purely metric approach
to the study of the mechanisms of crystal formation.
This approach involves the construction of a combina-
tion of polyhedra in a space in which the periodic pack-
ing of polyhedra (or the periodic division into polyhe-
dra) is specified by the multistage addition to the initial
“seeding” combination of polyhedra of this packing
(division) of the adjacent polyhedra. The adjacency of
the polyhedra is determined by the adjacency graph
proceeding from geometric or some other consider-
ations. Below, we report an algorithm for modeling
crystal formation based on the use of the so-called
bounding boxes as combinations of polyhedra to be
added.
1063-7745/02/4705- $22.00 © 20727
To describe the structural organization of real crys-
tals, consider as the smallest structural unit of the pack-
ing in the three-dimensional space (in the particular
case of division) a polyhedron, substituting the space
region occupied by an individual molecule or a com-
plex ion. Such polyhedra can be Voronoi–Dirichlet
domains [2] or polycubes (three-dimensional polyomi-
noes) used in the discrete modeling of packings in
molecular crystals [3, 4]. Polyhedra sharing at least one
face are called adjacent polyhedra. In this approach, the
modeling of crystal growth consists in successive
enlargement of the surrounding of a chosen initial seed
(a polyhedron, a, or a combination of polyhedra, A) by
adding new structural units. A set of polyhedra forming
this surrounding at the nth step is called the nth bounding
box of the seed and is denoted by eq(a, n) or eq(A, n).

To determine the effects of the seed size and shape,
the parameters and the symmetry of the translation lat-
tice, and other characteristics of the division on the
geometry of bounding boxes, we preliminarily ana-
lyzed growth models, based on the plane division into
polyominoes and space division into polycubes. The
algorithm of such a division for two-dimensional mod-
els has been reported earlier [5].

In all cases, with an increase in the number of
bounding boxes, a particular phenomenological poly-
hedron (a polygon, in the two-dimensional case) is
gradually formed. A further growth of the polyhedron
proceeds with the preservation of its shape. Figure 1
shows the dynamics of this process in the two-dimen-
sional case, where one of 14 translationally indepen-
dent polyominoes of the division is used as a seed (the
code of the division is 3132033223332203232122
1111322311332230123220111221322313 in the pack-
ing space P 14 47). The stages of formation of a phe-
002 MAIK “Nauka/Interperiodica”
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(a) (b)

(c) (d)

Fig. 1. Formation of a growth polygon in the division of a plane into polyominoes. The first (a) 5, (b) 15, and (c) 25 bounding boxes
of the initial polyomino are blackened; (d) an octagon is a growth polygon.
nomenological octagon with a pronounced self-similar-
ity property are also shown in Fig. 1. Similar model
growth is shown for three-dimensional cases in Fig. 2,
where the phenomenological 14-vertex polyhedron

(Fig. 2d) is formed in the packing space  (the
code of the division is 753667345767).

Attempts to explain the appearance of phenomeno-
logical polyhedra resulted in the formulation of the fol-
lowing theorems.

I. Theorem of existence. For any periodic division
of a plane into polygons, there exists a centrally sym-

S32121
2

C

metric convex growth polygon Pol such that all the
polygons of the nth bounding box eq(a, n) of the seed-
ing polygon a belong to the c-neighborhood of the
polygon n · Pol derived from Pol by the homothety with
the coefficient n:

eq(a, n) – a ⊂  (n · Pol)c.

II. Theorem of growth stability. The neighborhood
(n · Pol)c has a finite effectively calculable width c that
is dependent on the division Til alone.

III. Theorem of self-similarity. Any finite subset A
of polygons Til of division can be taken as a seed
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002



        

MORPHOGENESIS OF CRYSTAL STRUCTURES 729

                                                 
(a) (b)

(c) (d)

Fig. 2. Formation of a growth polyhedron in the division of the space into polycubes; the (a) 5st, (b) 10th, and (c) 15th bounding
boxes of the initial polycube; (d) a 14-vertex polyhedron is a growth polyhedron.
instead of the polygon a. In this case, the growth poly-
gon Pol preserves its shape. For the nth bounding box,
the approximate equation eq(A, n) – a ⊂  (n · Pol)c is
valid, where a is a fixed polygon from A, and the width
of the c-neighborhood depends only on the division Til
and the seed A.

The proofs of these theorems are based on the com-
parison of the adjacency graph G and the division Til
and the detection of the sectors of local growth in this
graph. These sectors grow as a lexicographically
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      200
ordered graph of a square lattice of integer points Z2.
The affine construction used for proving these theorems
is extended to higher-order periodic divisions with n ≥
3. The theorems were proven by Zhuravlev [6].

Taking into account all the aforesaid, it can be con-
cluded that (i) the growth of the periodic structure pro-
ceeds within the framework of the model under consid-
eration with the formation of a convex growth polyhe-
dron, and (ii) the polyhedron grows preserving its shape
(self-similarity). It should be noted that the shape and
symmetry of the growth polyhedron depend not only on
2
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the division but also on the chosen law of adjacency
(the adjacency graph). For example, the introduction of
the directed adjacency graph may give rise to growth
polyhedra possessing no center of symmetry.
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Abstract—An algorithm for the generation of possible crystal structures with two inversion-related molecules
of known shape in a primitive unit cell is proposed within the method of discrete packing modeling in molecular
crystals. The algorithm is based on the replacement of molecules by polycubes (geometric figures composed of
identical cubes) and looking through a finite number of all the possible periodic packings of these polycubes
with a given coefficient of packing. A program package for personal computers is developed on the basis of the
proposed algorithm and is approved by the example of several crystal structures that were determined earlier
by X-ray diffraction. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The problem of prediction (generation) of the struc-
tures of organic molecular crystals becomes more and
more important. First of all, this is explained by the
increasing interest in phenomena whose occurrence
directly depends on the possible existence of different
crystal structures of chemical compounds, namely,
crystal polymorphism, phase transitions, and solid-
phase reactions. Moreover, the powder methods of
crystal structure investigation, which have been devel-
oping vigorously in the last few years, require specific
methods of structure solution, because the experimen-
tal data sets are limited and, as a consequence, tradi-
tional methods of structure determination, namely, the
direct and Patterson methods, are not efficient enough.
The methods of systematic search for possible struc-
tures occupy a special place among the rapidly develop-
ing new methods of structure determination.

Earlier [1], we reported the algorithm and the pro-
gram package for generation of Bravais molecular crys-
tal structures, that is, structures in which all the mole-
cules are translationally equivalent and, hence, identi-
cally oriented. However, according to [2], only 2% of
organic homomolecular crystals have Bravais struc-
tures. The structures that contain molecules related by
the center of inversion and, therefore, exhibit two
molecular orientations occur more often. These are
molecular crystals belonging to the following structural

classes: , Z = 2(1); P2/m, Z = 2(m); P2/m, Z = 2(2);
P21/m, Z = 2(m); C2/c, Z = 4(2); C2/c, Z = 4(m); Pmnm,
Z = 2(mm); etc. In this paper, we discuss the algorithms
for generation of molecular crystal structures of this
type and the computer programs based on these algo-
rithms.

P1
1063-7745/02/4705- $22.00 © 20731
An algorithm for the generation of structures that
contain one molecule in a primitive unit cell (Bravais
molecular structures) was proposed in [1]. This algo-
rithm is based on the replacement of a molecule by a
discrete model, a polycube, and the search for all the
possible variants of packing (with a given coefficient of
packing) according to the packing criterion that was
worked out within the method of discrete modeling of
molecular packings [3, 4]. We can propose two funda-
mentally different approaches to the extension of this
algorithm to the crystal structures with two inversion-
related molecules in a primitive unit cell.

The first approach involves an initial search for pos-
sible stable associates of two molecules related by the
center of inversion, centrosymmetric dimers. Then, for
each dimer obtained, a discrete model (polycube) is
built and a search for all the possible packings of the
polycube with a given coefficient of packing is per-
formed.

The second approach consists in searching for all
the possible packings of two polycubes that are discrete
models of the molecules related by the center of sym-
metry. For this search, the packing criterion for two
translationally independent polycubes with a given
packing coefficient is worked out within the discrete
modeling method. This criterion is similar to the pack-
ing criterion of the translationally identical polycubes
proposed earlier in [3, 4].

The first approach is easier for applying the appro-
priate algorithms and takes shorter time to calculate,
especially if the number of variants of stable dimers is
small. However, the absence of stable centrosymmetric
dimers in a crystal structure may become a fundamen-
tally insurmountable barrier in the first approach. The
002 MAIK “Nauka/Interperiodica”
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second approach is more rigorous and, in our opinion,
more promising. Now, we discuss some stages of the
second approach in more detail.

CRITERION FOR THE EXISTENCE
OF THE PACKING OF TWO TRANSLATIONALLY 

INDEPENDENT POLYCUBES RELATED 
BY THE CENTER OF INVERSION

A polycube is a connected geometric figure that
consists of a limited number of identical cubes. The
algorithm for the replacement of a molecule by a poly-
cube is described in detail in [1]. A polycube that con-
sists of p cubes can be specified by integer coordinates
of the centers of these cubes {li, i = 1, 2, …, p} in a basis
whose vectors are equal in length and parallel to three
perpendicular edges of the cube. If the polycube of a
molecule is specified by the set {li , i = 1, 2, …, p}, the
polycube of the centrosymmetrically related molecule
can be specified by the set {–li , i = 1, 2, …, p}.

The packing space [3, 4] is considered a lattice in
which each node is assigned a weight in such a way that
all the sets of lattice nodes with identical weights form
identical (except for displacement) sublattices of the
initial lattice. The columns of the vector coordinates (in
the basis of the initial lattice) of one of the bases of this
sublattice form the integer matrix

where 0 ≤ x2 < x1, 0 ≤ x3 < x1, 0 ≤ y3 < y2, and z3 > 0. The
Y matrix is the packing-space matrix. The order of the
packing space coincides with the sublattice index and
can be determined as the product of the diagonal ele-
ments of the Y matrix: N = x1y2z3.

By analogy with the criterion of packing of one
translationally independent polycube [4], we define the
criterion of packing of two translationally independent
inversion-related polycubes with a given packing coef-
ficient as follows.

In order for a translational packing of two poly-
cubes, {li , i = 1, 2, …, p} and {–li , i = 1, 2, …, p}, with
packing coefficient k = 2p/N to exist, it is necessary and
sufficient that, in one of the packing spaces of the Nth
order, pairs of points in the totalities of the sets {li , i =
1, 2, …, p} ∪  {r – li , i = 1, 2, …, p} have different
weights. The r vector is one of the vectors of the funda-
mental region of the translation sublattice, which is
specified by the packing space, for example, the vector

, where u, v, and w are the integers satisfying the

conditions 0 ≤ u < x1, 0 ≤ v  < y2 , and 0 ≤ w < z3 .

Y
x1 x2 x3

0 y2 y3

0 0 z3 
 
 
 
 

,=

u
v
w 

 
 
 
C

Here, the necessity means that the translation vector
cannot connect two different points within a polycube
or two points of the polycubes with different orienta-
tions. The sufficiency is proved by the reconstruction of
a variant of packing: if the set {li , i = 1, 2, …, p} ∪
{r – li , i = 1, 2, …, p} satisfies the packing space crite-
rion specified by the Y matrix, the set

where γ varies over all the possible integer vector-col-
umns, is the required translational packing of the poly-
cubes.

ALGORITHM FOR LOOKING 
THROUGH THE POSSIBLE VARIANTS 

OF PACKING OF INVERSION-RELATED 
POLYCUBES

We assume that the initial polycube {li , i = 1, 2, …,
p}, its centrosymmetric image {–li , i = 1, 2, …, p}, and
the packing coefficient k are specified.

First, the order of the packing space N is calculated
as the prime natural number closest to the fraction 2p/k.
The advantages of the choice of the prime order of the
packing space were noted in [1]. They are associated
with the substantial decrease in the computation time
for the weight of a packing-space point according to the
formula

(1)

(where {r} is the fractional part of number r), which is
simpler than that for the general case, and with the
smaller number of packing spaces, which, for prime N,
is equal to N2 + N + 1.

For each packing space of the Nth order, the packing
criterion is checked by the following procedure. First,
we check the initial polycube {Ii, i = 1, 2, …, p}. If the
weights in all the pairs of points are different, the crite-
rion is checked for the second polycube. According to
the theorem considered, the second polycube should be
shifted by N vectors of the fundamental region of the
translation lattice, which is specified by the packing
space. However, the procedure of looking through the
variants can be shortened considerably.

Prior to the checking stage, the first point of the ini-
tial polycube can be brought by a parallel shift to the
(0, 0, 0) coordinates; then, the first point of the cen-
trosymmetric polycube {li , i = 1, 2, …, p} will also
have the (0, 0, 0) coordinates. In this case, the displace-
ment vectors (u, v , w), for which the weights of the cor-
responding points g(u, v , w) coincide with the weight
of at least one point of the initial polycube, should be
excluded from consideration, because, upon shifting by
the vector (u, v , w), the first point of the second poly-
cube has the weight g(u, v , w). Thus, (N – p) vectors of
displacement are considered instead of N vectors.

Since the order of the packing space is a prime num-
ber, the fundamental region of the translation lattice can

Yγ li i 1 2 … p, , ,=,+{ } Yγ r li–+ i = 1 2 … p, , , ,{ } ,∪

g u v w, ,( ) u v x2– wx3–( )/N{ } N=
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Table 1.  Some data on the crystal structures used for the approbation of the algorithm for discrete modeling

Compound Empirical formula Structural class Reference

3-exo-Bromo-7-endo-(tribromomethyl)bicyclo[3.1.1]heptane C8H10Br4 P , Z = 2(1) [5]

4,4'-Dichlorobenzophenone* C13H8Cl2O C2/c, Z = 4(2) [6]

7-endo-Methyl-3-borabicyclo[3.3.1]non-3-yl 8-quinolinate C18H22BNO P21/m, Z = 2(m) [7]

3-Methylbicyclo[1.1.1]pentane-1-carboxylic acid C7H10O2 C2/m, Z = 4(m) [8]

1,3,3,5-Tetrabromopentane C5H8Br4 Pmnm, Z = 2(mm) [9]

Methyl 2,2-dichloro-3-methylbicyclo[1.1.1]pentane-1-carboxylate C8H10C12O2 P , Z = 2(1) [10]

3,7-Diacetyl-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonan-9-one C13H20N2O3 C2/c, Z = 4(2) [11]

3,7-Diacetyl-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonane C13H22N2O2 C2/c, Z = 4(2) [11]

2-[Cyano(ethoxycarbonyl)methylene]-4,5-dimethyl-1,3-dithiole (β-form) C10H11N1O2S2 P , Z = 2(1) [12]

* A temperature-induced phase transition was found in the structure. Both the initial and final phases were modeled.

1

1

1

Table 2.  Unit cell parameters of the real crystal structure studied by X-ray diffraction and the modeled crystal structure

a(Å) b(Å) c(Å) α (deg) β(deg) γ(deg)

Real structure 6.312 7.968 12.082 82.09 75.07 72.03

Model 6.36 8.11 12.20 83.4 74.5 71.4
be represented as an N × 1 × 1 parallelepiped. The par-
allel displacement of a point of the packing space of the
prime order by the vector (u, 0, 0) brings a point with
the g weight to the point with the (g + u) weight for g +
u < N or the (g + u – N) weight for g + u ≥ N. This allows
us to calculate the weights of the points of the second
polycube after the displacement from a simpler formula
than formula (1).

CALCULATION 
OF A CRYSTAL STRUCTURE

After the packing criterion is checked for all pack-
ing spaces of the Nth order, each possible variant of
packing of the polycubes {li , i = 1, 2, …, p} and {–li ,
i = 1, 2, …, p} is characterized by numbers N, x2 , and
x3 , which specify the packing space, and number u,
which specifies the vector of displacement of the poly-
cube {–li , i = 1, 2, …, p} with respect to the origin. In
addition, the atomic coordinates of the initial molecule
{rj , j = 1, 2, …, m} with respect to the orthonormal
basis, which is rigidly related to the polycube, are
assumed to be known. The vectors

a s
N

0

0

, b s
x2

1

0

, c s
x3

0

1

,= = =
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where s is the approximation step, specify one of the
bases of the translation lattice. From this basis, we
should change over to the standard crystallographic
basis an, bn, cn (using, for example, the Delone reduc-
tion algorithm), which is more convenient for further
calculations. Here, the traditional atomic coordinates
are represented in fractions of unit cell parameters:

 = (rj – 0.5δ), where Yn is the matrix of the vec-
tor-columns an, bn, cn with respect to the basis a, b, c,

and δ = s  is the vector of displacement of the second

polycube. The atomic coordinates  correspond to the
center of inversion at the origin of the coordinates.

OPTIMIZATION OF THE VARIANTS OBTAINED 
FOR CRYSTAL STRUCTURES

The models obtained for crystal structures at the
previous stage are rather crude, because there is no
point in using small approximation steps. In our pro-
gram package, the approximation step is chosen in the
range between 0.3 and 1.0 Å depending on the size of
the molecule. The errors in determination of the unit
cell parameters and positions of the molecules are of
the same order. One of the procedures of crystal struc-
ture refinement is the minimization of the energy of
intermolecular interactions.

r j' Yn
1–

u

0

0

r j'
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Let us consider the case of rigid molecules. In crys-
tal structures with two translationally independent
inversion-related molecules, the energy is a function of
twelve parameters: six parameters (for example, the
unit cell parameters a, b, c, α, β, and γ) specify the
translation lattice, three parameters (θ, ϕ, and ω) spec-
ify the orientation of molecules with respect to the lat-
tice, and the remaining three parameters (xc, yc, and zc)
specify the position of molecules with respect to the
center of inversion. The minimization of the function
U(a, b, c, α, β, γ, θ, ϕ, ω, xc, yc, zc) is performed, for
example, by the least-squares procedure and results, on
the one hand, in some improvement in the crystal struc-
ture model and, on the other hand, in a significant sim-
plification of the procedure of comparison of the vari-
ants obtained.

Note that the correct calculation and minimization
of the energy of intermolecular interactions in crystals
is a separate complex problem of crystal chemistry,
which is beyond the scope of this paper.

PROGRAM PACKAGE 
AND ITS APPROBATION

The algorithm considered above formed the basis of
the program package for IBM-compatible personal
computers. The program package was evaluated using
a number of crystal structures that have already been
studied by X-ray diffraction. The names, empirical for-
mulas, and structural classes for some of them are sum-
marized in Table 1. For each structure, the discrete
molecular models (polycubes) were calculated at
approximation steps varying in the range 0.5–1.0 Å and
the crystal structures were generated for packing coef-

C(3) C(2)

C(4) C(1)

C(7)

C(5)C(6)

Br(2)

Br(4)

Br(3)

Br(1)

Fig. 1. A perspective view of the molecule of 6-exo-bromo-
7-endo-(tribromomethyl)bicyclo[3.1.1]heptane.
C

ficients 0.6–0.8. Upon the optimization of the unit cell
parameters and molecular orientations, the “true” vari-
ant (corresponding to that obtained in the X-ray diffrac-
tion study) was chosen among the variants with the
lowest energy of intermolecular interactions.

As an example, we consider in more detail the
results of structure modeling for 6-exo-bromo-7-endo-
(tribromomethyl)bicyclo[3.1.1]heptane (I) (Fig. 1).
The crystal structure of this compound was studied ear-
lier by X-ray diffraction [5]. It belongs to the structural

class , Z = 2(1). In order to exclude possible distor-
tions of the molecular geometry in the crystal field, the
atomic coordinates for molecule I were not taken from
[5] but were calculated within the quantum-mechanical
approach using the MMX program [13]. Discrete mod-
els (polycubes) were built for nine random molecular
orientations at approximation steps s = 0.70, 0.71, …,
0.90 Å. Based on the δ criterion described in [1], the
five best polycubes were chosen. The possible variants
of the packing of these polycubes and their centrosym-
metric images were calculated for different packing
coefficients k. No packings with packing coefficients
larger than 0.73 were found, and for k < 0.69, the num-
ber of variants was very large. For packing coefficients
between 0.69 and 0.73, 75 variants of packing were
obtained. For all of them, the crystal structures were
calculated and refined using the method of atom–atom
potentials. The relationship for calculating the potential
has the form

where rij is the distance between the ith and jth atoms
and aij , bij, and cij are the parameters taken from [14].

P1

uij aijrij
6–

– bij cijrij–( ),exp+=

2

–22.8
0

–22.0 –21.2 –20.4 –19.6 –18.8
Energy of intermolecular interactions (kcal/mol)

4

6

8

10

12

14

16

18
Number of variants

Fig. 2. Histogram of the distribution of 75 variants of mod-
eled crystal structures over the energy of intermolecular
interactions.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002



GENERATION OF THE STRUCTURES OF MOLECULAR CRYSTALS 735
The potentials were summed over all pairs of atoms
whose interatomic distances were no larger than 14 Å.

Analysis of the distribution of the variants of struc-
tures over the energy of intermolecular interactions
(Fig. 2) showed that 19 variants are characterized by the
lowest energy, which is approximately 1.2 kcal/mol
less than the energy of the next group of variants. A
comparative crystal chemical analysis revealed that all
of these 19 variants are similar in mutual arrangement

Table 3.  Coordinates of the non-hydrogen atoms in the real
and modeled crystal structures

Atom x y z

Br(1) 0.5904 –0.2916 0.51420

0.541 –0.289 0.518

Br(2) 0.4741 0.2023 0.79517

0.465 0.198 0.808

Br(3) 0.9905 0.1083 0.65713

0.976 0.093 0.657

Br(4) 0.8590 –0.0550 0.90640

0.858 –0.072 0.902

C(1) 0.546 –0.2343 0.7553

0.526 –0.238 0.757

C(2) 0.572 –0.331 0.8693

0.566 –0.338 0.868

C(3) 0.816 –0.455 0.8636

0.809 –0.467 0.851

C(4) 0.999 –0.418 0.7595

0.983 –0.425 0.745

C(5) 0.894 –0.3036 0.6642

0.864 –0.308 0.658

C(6) 0.687 –0.3587 0.6596

0.652 –0.364 0.656

C(7) 0.720 –0.1261 0.7042

0.694 –0.130 0.704

C(8) 0.760 0.0125 0.7638

0.746 0.003 0.765
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
and orientation of molecules; that is, all of them corre-
spond to the same model of crystal structure. Compari-
son of this model with the crystal structure studied ear-
lier in [5] showed that they actually coincide. The unit
cell parameters averaged over the 19 models and the
parameters determined in the X-ray diffraction study
are given in Table 2. The coordinates of the non-hydro-
gen atoms are presented (Table 3) as fractions of the
corresponding unit cell parameters of these structures.
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Abstract—Double phosphates of zirconium and metals with an oxidation degree of +2 of the composition
M0.5Zr2(PO4)3 (M = Mg, Ca, Mn, Co, Ni, Cu, Zn, Sr, Cd, and Ba) are synthesized and characterized by X-ray
diffraction methods and IR spectroscopy. The crystal structures of all the compounds are based on three-dimen-
sional frameworks of corner-sharing PO4-tetrahedra and ZrO6-octahedra. Phosphates with large Cd2+, Ca2+,
Sr2+, and Ba2+ cations octahedrally coordinated with oxygen atoms form rhombohedral structures (space group

), whereas phosphates with small tetrahedrally coordinated Mg2+, Ni2+, Cu2+, Co2+, Zn2+, and Mn2+-cations
are monoclinic (space group P21/n). The effect of various structure-forming factors on the M0.5Zr2(PO4)3 com-
pounds with a common structural motif but different symmetries are discussed. © 2002 MAIK “Nauka/Inter-
periodica”.

R3
INTRODUCTION

Systematic studies of the crystal chemistry of
groups of compounds that have a common sign (or
common signs) are necessary for establishing the regu-
larities of their formation and understanding the rela-
tion between their structures and properties and the
analysis of the possible synthesis of compounds with
new structure types.

Phosphates with a common structural motif but with
different symmetries, in which PO4-tetrahedra and
LO6-octahedra form mixed {[L2(PO4)3]p–}3∞ frame-
works, are formed at the stoichiometric ratios L : P =
2 : 3. Depending on the charge of L and the condition
providing phosphate electroneutrality, the cavities of
their frameworks can be filled with cations of consider-
ably different sizes and oxidation degrees ranging from
+1 to +4 without considerable changes in the frame-
work geometry.

These phosphates are characterized by the existence
of stable individual groupings (“lanterns”) consisting
of two L-octahedra connected by three bridging P-tetra-
hedra along the ring and a small cavity in the shape of
a trigonal prism between the octahedra that cannot be
filled with cations (Fig. 1). The chemical bonds inside
these groupings (Fig. 1a) are much stronger than the
bonds formed by these groupings with one another and
with cations filling the cavities of the framework and
participating in the compound formation. Therefore,
the above stable structural fragments can change their
mutual spatial orientation under the effect of iso- and
heterovalent substitutions of cations located in the posi-
tions inside the framework and in the cavities between
the L- and P-polyhedra and also under the effect of var-
1063-7745/02/4705- $22.00 © 20736
ious external factors such as temperature and pressure.
The specific features of each structure type are deter-
mined by the packings of these groupings.

In widespread rhombohedral frameworks, these
structure-forming fragments build columns along the

-axes (Fig. 1b). In many instances, the symmetry of
the compounds with [L2(PO4)3]3∞ frameworks can be
lowered to orthorhombic or even monoclinic (Fig. 1c).
Theoretically, a monoclinic unit cell (sp. gr. P21/n) can
be obtained from a rhombohedral one (in the hexagonal
setting) by its slight deformation [1], and, therefore, the
monoclinic structural motif can have columns similar
to those singled out in rhombohedral frameworks. The
symmetry relations between the large variety of phos-
phate structures with {[L2(PO4)3]p–}3∞ frameworks
were established in our earlier study [2].

At present, the best studied phosphates are phos-
phates with mixed frameworks of the compositions
EIL2(PO4)3 (where EII is an alkali metal, L = Ge, Ti, Zr,

Sn, and Hf) and  L2(PO4)3 (where EI = Li, Na, and
L = Sc, Cr, Fe, and In) [3–8]. Quite a large number of

studies are dedicated to the compounds L2(PO4)3

(where EII is either an alkali earth or 3d-transition
metal, and L = Ti or Zr) [9–13]. However, the structural
studies of the latter compounds were usually reduced to
obtaining diffraction patterns. Neither their space
groups nor the character of the distribution of cations
with an oxidation degree of +2 have been definitevely
established. The information on the vibration spectra of

Zr2(PO4)3 phosphates is also quite scarce. At the
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same time, depending on the symmetry, the compounds
characterized by similar structural motifs can give dif-
ferent vibration spectra. The use of factor-group analy-
sis allows one to determine the number of active vibra-
tions of anion groupings on the Raman-scattering and
IR spectra and explain the differences in the vibration
spectra associated with different chemical composi-
tions and crystal symmetries.

Below, we generalize the X-ray diffraction and IR
spectroscopy data for a series of phosphates with the
composition å0.5Zr2(PO4)3, where M = Mg, Ca, Mn,
Co, Ni, Cu, Zn, Sr, Cd, and Ba. We also perform factor-
group analysis on vibrations of êé4-tetrahedra in the
structures of the compounds with [L2(PO4)3]3∞ frame-
works described by different space groups. Based on
the experimental data obtained and consideration of the
known data, we discuss the influence of various struc-
ture-forming factors on the specific characteristics of
M0.5Zr2(PO4)3 phosphates.

EXPERIMENTAL

The synthesis of M0.5Zr2(PO4)3 phosphates per-
formed by the sol–gel method was described in detail in
our earlier publications [12, 13]. The starting materials
were reagent-grade M(NO3)2 · xH2O or MCl2 · yH2O,
ZrOCl2 · 8H2O, and H3PO4. Electron probe analysis (a
Camebax microprobe) showed that the samples were
homogeneous, their compositions were close to the the-
oretical ones calculated by the formula M0.5Zr2(PO4)3,
and they contained no noticeable amounts of any iso-
morphous impurities.

The X-ray diffraction analysis of the samples was
made on a DRON-3M diffractometer (filtered CuKα
and CoKα radiations, scanning rate 1 deg/min) at room
temperature. The lattice parameters of the compounds
synthesized were determined from their indexed dif-
fraction patterns in the range of 2θ angles 8°–50° and
then were refined by the least squares method. In those
cases where the analysis of the systematic absences of
reflections did not allow the unique establishment of
space groups, the spectroscopic data were also ana-
lyzed.

The absorption spectra of the samples (finely dis-
persed films on KBr substrates) were recorded on a
Specord 75 IR spectrophotometer in the frequency
range 1800–400 cm–1.

ANALYSIS OF VIBRATIONS OF A PHOSPHORUS 
TETRAHEDRON IN THE STRUCTURES

OF COMPOUNDS WITH [L2(PO4)3]3∞-TYPE 
FRAMEWORKS

Compounds of various compositions based on the
[L2(PO4)3]3∞ frameworks are crystallized in several

space groups— , , R32, Pbca, Pbcn, Bb(Cc),R3c R3
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C2/c, P21/n, , and P213 [2]. Double phosphates of
zirconium and elements with an oxidation degree of +2

are crystallized either in the rhombohedral (sp. gr. )
or monoclinic (sp. gr. P21/n) systems. Since the PO4-
tetrahedra in the structures of these phosphates are dis-
torted to different degrees, one can expect the forma-
tion of different types of absorption bands active in the
IR range of vibration spectra.

In the vibration spectrum of an isolated PO4-ion (the
Td symmetry), four bands are possible—a fully sym-
metric A1 band (ν1, νs, symmetric stretching vibration
of a P–O bond), the degenerate E band (ν2, δs is the
symmetric deformation vibration of a P–O bond), and
two threefold degenerate F2 vibrations (ν3, νas is the
asymmetric stretching vibration and ν4, δas is the asym-
metric deformation vibration of a P–O bond). Of all
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Fig. 1. Mixed [L2(PO4)3]3∞ framework. (a) Schematic
depiction of a lantern and lantern packing in (b) the rhom-
bohedral framework and (c) its monoclinic modification.
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Table 1.  Type and number of vibration bands for a PO4-tetrahedron in rhombohedral and monoclinic phosphates of zirconium
and elements with oxidation degree +2

Vibration type Td symmetry of an 
isolated tetrahedron

C1 positional 
symmetry of
a tetrahedron

(RS and IR data)

Factor group C3i (R ) Factor group C2h (P21/n)

RS IR RS IR

ν1 A1(RS) A Ag + Eg Au + Eu 3Ag 3Au

ν2 E(RS) 2A 2Ag + 2Eg 2Au + 2Eu 6Ag 6Au

ν3, ν4 F2(RS, IR) 3A 3Ag + 3Eg 3Au + 3Eu 9Ag 9Au

Note: RS and IR indicate the bands in the Raman scattering and IR spectra, respectively, allowed by the selection rules.

3

Table 2.  Indexing of the diffraction patterns of M0.5Zr2(PO4)3 compounds with M = Cd, Ca, Sr, and Ba (d, Å; I/I0 %)

h k l
Cd Ca Sr Ba

dobs dcalcd I/I0 dobs dcalcd I/I0 dobs dcalcd I/I0 dobs dcalcd I/I0

0 0 3 7.431 7.430 9 7.557 7.552 4 7.783 7.789 3 7.986 7.986 4

0 1 1 7.219 7.227 18 7.213 7.209 5 7.172 7.171 7 7.144 7.138 6

1 0 2 6.298 6.302 5 6.307 6.313 18 6.325 6.332 9 6.347 6.343 8

0 1 4 4.503 4.502 40 4.537 4.542 55 4.619 4.617 29 4.672 4.674 17

1 1 0 4.414 4.411 100 4.386 4.390 78 4.350 4.350 66 4.318 4.318 68

1 0 5 3.850 3.850 19 3.897 3.892 5 3.971 3.772 4 4.033 4.033 7

1 1 3 3.790 3.793 84 3.790 3.795 83 3.798 3.798 63 3.795 3.798 60

2 0 1 3.767 3.765 12 3.751 3.749 10 3.732 3.720 9 3.695 3.696 5

0 2 2 3.616 3.614 5 3.603 3.604 5 3.584 3.586 4 3.566 3.570 3

2 0 4 3.151 3.151 39 3.154 3.156 58 3.165 3.166 35 3.172 3.172 24

0 2 5 2.901 2.901 13 2.913 2.912 6 2.933 2.933 11 2.950 2.948 8

1 1 6 2.840 2.842 82 2.864 2.863 100 2.901 2.902 100 2.931 2.931 100

2 1 1 2.864 2.864 23 2.853 2.851 17 2.825 2.827 13 2.807 2.808 14

1 0 8 2.616 2.618 11 2.653 2.654 6 2.724 2.724 6 2.778 2.779 10

1 2 4 2.563 2.564 49 2.561 2.563 29 2.562 2.560 13 2.557 2.557 5

3 0 0 2.547 2.547 51 2.534 2.534 46 2.511 2.512 35 2.493 2.493 31

1 2 5 2.422 2.424 11 2.426 2.427 4 2.431 2.432 6 2.435 2.435 6

3 0 3 2.409 2.409 9 2.402 2.403 4 2.390 2.391 6 2.380 2.380 4

0 2 8 2.251 2.251 11 2.271 2.271 8 2.308 2.308 8 2.338 2.338 6

1 1 9 2.159 2.160 11 2.185 2.184 11 2.230 2.230 7 2.266 2.266 6

1 2 7 2.140 2.139 6 2.149 2.149 4 2.167 2.167 8 2.179 2.180 8

2 2 3 2.114 2.114 12 2.109 2.108 16 2.096 2.095 13 2.085 2.085 18

3 0 6 2.099 2.100 14 2.104 2.104 9 2.111 2.112 10 2.114 2.115 6

1 2 8 2.004 2.005 34 2.017 2.017 25 2.041 2.039 17 2.055 2.056 11

1 0 11 1.959 1.959 3 1.988 1.988 6 2.044 2.045 16 2.091 2.091 6

3 1 4 1.982 1.981 15 1.976 1.976 14 1.967 1.968 9 1.960 1.960 4

2 0 10 1.926 1.925 9 1.945 1.946 8 1.986 1.986 7 2.017 2.017 6

1 3 5 1.914 1.914 16 1.913 1.912 4 1.908 1.908 12 1.905 1.904 6

2 2 6 1.896 1.896 30 1.898 1.898 33 1.899 1.899 36 1.899 1.899 32

4 0 2 1.882 1.883 3 1.875 1.875 5 1.859 1.860 4 1.849 1.848 3

1 2 10 1.766 1.765 9 1.779 1.779 26 1.807 1.807 21 1.828 1.827 12
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002



SYNTHESIS AND CRYSTAL CHEMICAL CHARACTERISTICS 739
these vibrations, only the ν3 and ν4 vibrations are active
in the IR range. Using the method of dividing the vibra-
tions of a complex ion in a crystal into internal and
external vibrations, we performed the group-factor
analysis of vibrations of an orthophosphorus tetrahe-

dron in the compounds described by the sp. gr.  and
P21/n. The positional symmetry of a complex PO4-ion
is lowered down to C1 in both rhombohedral and mon-
oclinic structures (phosphorous atoms are located in the
general position). Then, the vibration ν1 (A) becomes
active and the ν2 (2A), ν3, and ν4 (3A) vibrations
become nondegenerate. The transition from the repre-
sentation of the positional symmetry group of a tetrahe-
dron, C1, to the factor-group representations of the

space groups C3i ( ) and C2h (P21/n) is illustrated by
Table 1.

In centrosymmetric crystals, the alternative selec-
tion rule for internal vibrations of a complex ion is pre-
served—vibrations symmetric with respect to the inver-
sion center (the g vibrations) are active in the Raman
spectrum but are inactive in the IR spectrum. Thus, the
IR spectra of rhombohedral phosphates can have two
bands of symmetric stretching vibrations ν1 (Au, Eu),
four bands of symmetric deformation vibrations
ν2 (2Au, 2Eu), and six bands of asymmetric stretching
and six bands of asymmetric deformation vibrations ν3
and ν4 (3Au, 3Eu). The unit cell of phosphates described

by the sp. gr.  has only one independent phosphorus
position, 18f (at Z = 6, the unit cell contains 18 P atoms,
the multiplicity of the position with the symmetry C1 is
18). The monoclinic unit cell described by the sp.
gr. P21/n with Z = 4 contains 12 P atoms. The multiplic-
ity of the general position is 4; the unit cell has three
independent phosphorus positions. Thus, the selection
rules for the monoclinic compounds allow the forma-
tion of much more bands in the IR spectra—three ν1
(3Au) bands, six ν2 (6Au) bands, and nine ν3 and nine ν4
(9Au) bands.

RESULTS AND DISCUSSION

The X-ray phase analysis [12–14] showed the com-
plex interactions between the components of the reac-
tive mixtures, with the phase composition being essen-
tially dependent on the temperature and the nature of
divalent cations. The individual M0.5Zr2(PO4)3 com-
pounds were formed in the temperature range from 730
to 1150°ë.

The interplanar spacings in double phosphates of
zirconium and alkali earth elements of the composition
M0.5Zr2(PO4)3 and also in Cd0.5Zr2(PO4)3 are listed in
Table 2, their crystallographic characteristics are indi-
cated in Table 3.

Indexing of diffraction patterns from M0.5Zr2(PO4)3
polycrystals (M = Cd, Ca, Sr, and Ba) shows their struc-

R3

R3

R3
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tural analogy. The absences of the reflections of the
type h – k + l = 3n unambiguously indicate the R-lattice.

In the structures with a rhombohedral mixed frame-
work (Fig. 1b), the lanterns are “beaded” onto the three-
fold inversion axes and occupy all the vertices of an ele-
mentary rhombohedron and also the position in its cen-
ter; i.e., the rhombohedral unit cell includes two such
lanterns—the initial one and the second one (in the
rhombohedron center) inverted with respect to the ini-
tial one. It also connects six lanterns at the unit-cell ver-
tices, thus forming a continuous anionic framework.

The framework has two types of cavities in the pro-
portion 1 : 3. In the columns extended along the c-axis,
octahedral cavities of the M1 type are formed between
the two neighboring lanterns. Neighboring columns are
connected by single PO4-tetrahedra and, thus, create
M2-type cavities of an irregular shape with c.n. 8.

The precision analysis of Cd0.5Zr2(PO4)3 [15] and
Ca0.5Zr2(PO4)3 [11] structures based on the correspond-
ing powder diffraction data showed that Cd2+ and Ca2+

cations are orderly distributed over the octahedra
beaded onto threefold axes and occupy half of all the
M1 cavities, while the M2 cavities are empty. The aver-
age lengths of the Cd–O and Ca–O bonds coincide
within the error and are equal to 2.47 Å. The average
distances in independent Zr-octahedra are 2.03 and
2.05 Å for Cd0.5Zr2(PO4)3 and 2.06 and 2.08 Å for
Ca0.5Zr2(PO4)3. The P–O bond lengths in orthophos-
phorus tetrahedra range within 1.52–1.57 Å for cad-
mium-containing compound and within 1.52–1.54 Å
for calcium-containing one.

It can be seen from Table 3 that in the series of
M0.5Zr2(PO4)3 compounds with M = Cd, Ca, Sr, and Ba,
the a-parameter decreases and the c-parameter
increases with an increase in the radius of the M cation,
whereas the unit-cell volume increases with it. These
tendencies in the behavior of the unit-cell parameters
can be interpreted as follows. Since M cations occupy
the positions inside the columns between two faces of
the neighboring ZrO6-octahedra located along the
c-axis (Fig. 1b), the introduction of a larger M-cation
increases the c-parameter. This is accompanied by the
correlated rotation of zirconium octahedra and phos-
phorus tetrahedra connecting the parallel columns,
which, in turn, decreases the intercolumnar distances
and, thus, also the a-parameter. Slight deformation of
the structure (without any pronounced change of the
initial motif) is possible because of the existence of
large voids at a level of each Zr, P-lantern in the frame-

work and along the  axes. 
Figure 2 shows the IR-spectra of zirconium phos-

phates with large divalent Cd, Ca, Sr, and Ba cations.
The bands in the range 1250–1000 cm–1 are attributed
to asymmetric stretching vibrations ν3 of a PO4 ion. The
intense high-frequency bands at 1250–1170 cm–1 are
explained by the fact that, at large P–O–Zr bond angles,
the electron density of small polarized considerably

3
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Table 3.  Crystallographic characteristic of the compounds

Chemical formula Space group a, Å b, Å c, Å β, deg V, Å3 Z

Cd0.5Zr2(PO4)3 R 8.822(1) – 22.291(3) – 1502 6

Ca0.5Zr2(PO4)3 R 8.780(1) – 22.653(3) – 1512 6

Sr0.5Zr2(PO4)3 R 8.701(1) – 23.370(4) – 1532 6

Ba0.5Zr2(PO4)3 R 8.638(1) – 23.950(3) – 1548 6

Ni0.5Zr2(PO4)3 P21/n 12.385(3) 8.924(4) 8.840(3) 90.53(1) 977.0 4

Mg0.5Zr2(PO4)3 P21/n 12.384(3) 8.922(3) 8.844(3) 90.56(2) 977.1 4

Cu0.5Zr2(PO4)3 P21/n 12.389(3) 8.925(4) 8.841(3) 90.53(1) 977.4 4

Co0.5Zr2(PO4)3 P21/n 12.389(3) 8.928(3) 8.840(2) 90.54(1) 977.7 4

Zn0.5Zr2(PO4)3 P21/n 13.389(2) 8.929(3) 8.842(2) 90.54(1) 978.1 4

Mn0.5Zr2(PO4)3 P21/n 12.390(3) 8.931(4) 8.843(3) 90.55(1) 978.5 4

3

3

3

3

charged Zr4+-ions is partly localized on a P–O bond,
which results in high values of the force constants of
this bond [16].This range has five (Cd, Sr, and Ba) or
six (Ca) bands allowed by the selection rules. The
bands in the range 1000–950 cm–1 are attributed to the
symmetric ν1 vibrations, which are represented by a
broadened band with a shoulder. With an increase in
cation size, the asymmetric stretching bands are shifted
toward lower frequencies, and the symmetric stretching
vibrations, in the opposite direction. As a result, the
bands at 1025 cm–1 in the spectra of Sr- and Ba-contain-
ing phases are incompletely resolved and show a shoul-
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Fig. 2. IR spectra of M0.5Zr2(PO4)3 orthophosphates crys-

tallized in the trigonal system (sp. gr. ): (1)
Cd0.5Zr2(PO4)3, (2) Ca0.5Zr2(PO4)3, (3) Sr0.5Zr2(PO4)3,
and (4) Ba0.5Zr2(PO4)3.

R3
C

der against the background of the band at 1045 cm–1.
The bands in the range 640–545 cm–1 are considered as
deformation vibrations, ν4, and the band in the vicinity
of 425 cm–1, as the deformation ν2 vibrations of a PO4-
tetrahedron.

All the bands of symmetric vibrations of a PO4-tet-
rahedron in the M0.5Zr2(PO4)3 phosphates with M = Cd,
Ca, Sr, and Ba are intense and well resolved (Fig. 2).
The spectrum in this range differs from the spectra of
zirconium and alkali metal phosphates of the composi-
tions EZr2(PO4)3 with E = Na, K, Rb, and Cs, which are

crystallized in the sp. gr.  [17], where the stretch-
ing vibrations are represented by only one broad band
with some slightly distinguished maxima [18]. The
well resolved bands confirm a high degree of atomic
order in the structure. Indeed, Cd atoms are located in

the 3b positions in the layers (sp. gr. ), whereas the
3a positions remain empty [15]. Based on the analogy
of the spectra, one can state that in alkali-earth zirco-
nium phosphates, the Ca, Sr, and Ba atoms occupy the
layers of M1 cavities in the structure.

The interplanar spacings in Mg0.5Zr2(PO4)3 are
listed in Table 4, while those for M0.5Zr2(PO4)3 phos-
phates with M = Mn, Co, Ni, Cu, and Zn were indicated
in our earlier publication [13]. These compounds con-
taining small cations with an oxidation degree of +2 are
crystallized in the sp. gr. P21/n (Table 3). The similarity
of their chemical formulas, the closeness of the lattice
parameters and unit-cell volumes, and the same sym-
metry indicate the common basis for the formation of
their crystal structures and lead to the assumption that
they are isostructural. Knowledge of the Ni0.5Zr2(PO4)3
phosphate structure [19] allows us to state that the
structures of the M0.5Zr2(PO4)3 compounds (M = Mg,
Mn, Co, Ni, Cu, and Zn) are established quite reliably.

The P unit cells of these structures are monoclini-
cally distorted with respect to their R cells (Fig. 1). The

R3c

R3
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Table 4.  Indexing of the diffraction patterns of Mg0.5Zr2(PO4)3 (d, Å; I/I0, %)

h k l dobs dcalcd I/I0 h k l dobs dcalcd I/I0

1 0 –1 7.227 7.231 4 4 1 1 2.768 2.769 11

2 0 0 6.185 6.193 8 1 3 –1 2.747 2.750 17

1 1 –1 5.610 5.618 10 1 3 1 2.747

0 2 0 4.458 4.460 21 2 3 –1 2.568 2.569 10

0 0 2 4.420 4.423 100 2 1 –3 2.561 2.559 24

2 1 1 4.387 4.394 52 4 2 0 2.542 2.543 42

0 1 2 3.954 3.962 12 4 0 2 2.526 2.524 8

1 1 –2 3.782 3.784 30 1 2 3 2.403 2.409 3

3 0 –1 3.757 3.754 39 5 1 –1 2.313 2.310 3

3 0 1 3.723 3.726 16 0 0 4 2.211 2.211 6

3 1 –1 3.456 3.461 6 4 2 2 2.196 2.197 3

2 2 –1 3.358 3.357 12 0 4 2 1.992 1.991 8

2 2 1 3.342 3.343 11 2 3 –3 1.987 1.988 8

0 2 2 3.145 3.141 43 2 3 3 1.980 1.979 17

4 0 0 3.099 3.096 32 1 4 2 1.965 1.965 14

1 2 –2 3.051 3.049 9 6 1 1 1.957 1.957 29

1 2 2 3.043 3.039 6 5 2 2 1.939 1.938 3

1 0 –3 2.875 2.874 9 6 2 0 1.870 1.873 5

3 2–1 2.872 5 3 –1 1.863 1.863 4

2 2 2 2.797 2.793 7 6 0 2

4 1 –1 2.786 2.784 9 5 1 –3
main building elements of the framework (lanterns) are

located along the [102] and [ ] directions playing
the role of quasi-threefold axes. As a result, the Zr-octa-
hedra of two neighboring groupings form strongly dis-
torted tetrahedral voids occupied by small cations. The
M-ions occupy their positions with a probability of 0.5.

The cation–oxygen distances in the Ni2+-tetrahedra
in monoclinic Ni0.5Zr2(PO4)3 phosphate range from
1.89 to 2.26 Å, with the average distance being 2.11 Å
[19]. The average Ni–O distance in polyhedra of the
Ni0.5Zr2(PO4)3 phosphate is considerably longer than
that predicted from the sum of the ionic radii rIV(Ni) +
rIV(O) = 0.55 + 1.36 = 1.91 (Å) [20]. This indicates that
the non-structure-forming Ni site can be occupied by
cations with a somewhat larger size and an oxidation
degree of +2, such as Mg, Cu, Co, Zn, and Mn. The
average distances in each of the independent Zn octahe-
dra of the Ni0.5Zr2(PO4)3 phosphate are equal to 2.08 Å.
The average P–O lengths in the tetrahedra of this phos-
phate are 1.50, 1.51, and 1.53 Å.

In the range of ν3 vibrations, the IR-spectra of these
compounds (Fig. 3) have either all the nine bands
allowed by the selection rules (the Ni, Zn phases) or
have from six to seven bands (the Mg-, Co-, Cu-, and
Mn-containing phases). In the range of ν1 vibrations, all
three allowed bands are formed in all the phases except

102
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for the Mn-containing ones, where only one band is
formed. The spectra of ν4 vibrations have only six or
seven of the nine possible bands. The ν2 vibrations
recorded by a spectrophotometer are represented by
two bands. The somewhat different form of the IR spec-
trum of Mn0.5Zr2(PO4)3 phosphate seems to be caused
by a larger Mn-ion which “pushes apart” the tetrahedral
positions of their location, which, in turn, affects the
vibrations of phosphorus tetrahedra.

The above analysis of the vibrations in the related
structures of double orthophosphates of Zr and the ele-
ments with an oxidation degree of +2 described by dif-
ferent space groups shows that the IR spectra of the
phases with large and small cations differ in the charac-
ter, number, and types of their bands both in the stretch-
ing and deformation regions.

Thus, the synthesized compounds with
{[Zr2(PO4)3]–}3∞ frameworks containing Cd, alkali
earth elements, Mg, and 3d elements have similar struc-
tures but different arrangements of cations with an oxi-
dation degree of +2 located in the framework voids. The
structures of these phosphates can be divided into two
groups (Table 5)—zirconium phosphates with small
cations (Ni, Cu, Mg, Co, Zn, and Mn) described by the
sp. gr. P21/n with d-elements and Mg occupying the tet-
rahedral voids and phosphates with orthorhombic
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structures (sp. gr. ) and large Cd-, Ca-, Sr-, and Ba-
cations characterized by an octahedral environment.

However, the size of the M-cation is not the only fac-
tor determining the formation of a certain structure
type. Thus, the Cu0.5Zr2(PO4)3 phosphate has a stable
rhombohedral structure at temperatures higher than
520°C [21]. According to the DTA data, with an
increase in the temperature, Mg0.5Zr2(PO4)3 and
Zn0.5Zr2(PO4)3 phosphates undergo a phase transition at
670°C [22]. The established phase transitions accom-
panied by the change of the symmetry are associated
with the transformation of the crystal structure due to

R3

T
ra

ns
m

is
si

on
, %

1200 1000 800 600 400
ν, cm–1

1

2

3

4

5

6

12
15

11
85

10
95

10
50

96
0 64

0
60

0

44
0

Fig. 3. IR spectra of M0.5Zr2(PO4)3 orthophosphates crys-
tallized in the monoclinic system (sp. gr. P21/n)):
(1) Mg0.5Zr2(PO4)3, (2) Ni0.5Zr2(PO4)3, (3) Co0.5Zr2(PO4)3,
(4) Cu0.5Zr2(PO4)3, (5) Zn0.5Zr2(PO4)3, and
(6) Mn0.5Zr2(PO4)3.

Table 5.  Morphotropic series of phosphates of zirconium
and divalent elements M0.5Zr2(PO4)3

Compound Radius of M, Å C.n. M2+ Space group

Ni0.5Zr2(PO4)3 0.55 4 P21/n

Cu0.5Zr2(PO4)3 0.57 4

Mg0.5Zr2(PO4)3 0.57 4

Co0.5Zr2(PO4)3 0.58 4

Zn0.5Zr2(PO4)3 0.60 4

Mn0.5Zr2(PO4)3 0.66 4

Cd0.5Zr2(PO4)3 0.95 6 R

Ca0.5Zr2(PO4)3 1.00 6

Sr0.5Zr2(PO4)3 1.18 6

Ba0.5Zr2(PO4)3 1.35 6

3

C

changes in the temperature. These reconstructive tran-
sitions are accompanied by the change in the coordina-
tion number of an M cation from 4 to 6, with the pres-
ervation of the main islandlike structural groupings—
lanterns. In terms of structure, the polymorphism of
M0.5Zr2(PO4)3 phosphates with M = Mg, Cu, and Zn
seems to be associated with the easy deformability of
the oxygen environment and unstable coordination of
cations with an oxidation degree of +2, a rather flexible
construction built by Zr- and P- coordination polyhedra
(connected only via their vertices), and also with a
more uniform distribution of the stresses arising at large
amplitudes of atomic vibrations among various bonds.
Thr different temperatures of these phase transitions are
determined by the electronic structure and the stereo-
chemical characteristics of the M-cation.

The phenomenon of the high flexibility and stability
of the [L2(PO4)3]3∞ framework readily accommodating
various combinations of cations and variations in the
temperature and pressure seems to result from the com-
bination of two competing structure-forming factors.
The first one is associated with the existence of rela-
tively rigid octahedral–tetrahedral fragments (lan-
terns); the second, with the tendency to a more uniform
spatial distribution of tetrahedral phosphorus anions
and cations that have different charges in the cationic
and anionic parts of the structure, which is dictated by
the requirement of the local valence balance. These two
factors manifest themselves especially clearly at the
ends of the series of compounds with [L2(PO4)3]3∞
frameworks, which include the cations in the order of
the change in their ionic radii when the composition of
the anionic part (framework) of their structure is con-
stant.

In the morphotropic series of zirconium phosphates
of divalent elements, M0.5Zr2(PO4)3 (Table 5), the part
of the series with small M2+-cations (in comparison
with Zr4+-ions participating in the formation of the
anionic {[Zr2(PO4)3]–}3∞ framework), the main struc-
ture-forming factor is the mixed octahedral–tetrahedral
framework accommodating a smaller cation. In the part
of the series with large Cd2+-, Ca2+-, Sr2+-, and Ba2+-cat-
ions, the atomic arrangement is determined mainly by
the geometric factor—if the radius of a highly charged
cation (Zr4+) is much less than the radius of a less
charged ion (M2+), the general arrangement of these
cations and tetrahedral oxo anions results in the “push-
ing-apart effect” of large MO6 octahedra, which
changes the structure geometry. The phase transitions
in these compounds are accompanied by the rotation of
PO4 tetrahedra and some changes in the oxygen envi-
ronment of M atoms, while the general features of the
structure architecture are preserved.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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Role of Sublattices in the Formation of Electron Density
in Metal Nitrites
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e-mail: zhur@phys.kemsu.ru
Received October 2, 2001

Abstract—The self-consistent valence electron densities of NaNO2, AgNO2, and their constituent sublattices
are calculated on the basis of the theory of the local-density functional. The quantity characterizing the relation
between different sublattices is introduced as the difference density resulting from the subtraction of the densi-
ties of the individual sublattices from the total electron density. The role of metal in the formation of electron
density is established, and, in particular, it is shown that, in AgNO2, anionic bonds have the covalent component
formed at the expense of the electron density of the cation. It is also shown that, qualitatively, the difference
density in NaNO2 corresponds to the experimental deformation density. © 2002 MAIK “Nauka/Interperiod-
ica”.
INTRODUCTION

Metal nitrites have numerous phases that exist under
different pressures and temperatures. The order–disor-
der phase transitions in these nitrites have been exten-
sively studied by various methods [1, 2]. One of the
methods of studying crystal structures and phase tran-
sitions is the experimental determination or theoretical
calculation of the deformation electron density. The
deformation electron density characterizes the total
effect of electron redistribution between various atoms
and displacements of electrons from the atomic posi-
tions into interstitials. Traditionally, the effect of elec-
tron redistribution is interpreted in terms of the local
approach, i.e., in terms of the hybridization of orbitals
of the neighboring atoms, as is usually done in molec-
ular quantum chemistry. But the role of the long-range
order in chemical bonding in crystalline solids still
remains unclear. To study this problem, we elaborated
a new approach to the description of the changes in the
electron density of free atoms caused by their incorpo-
ration into the crystal lattice, which is based on the
notions of sublattices and difference density [3]. The
application of this approach to crystals with mainly
ionic chemical bonding allowed us to establish a num-
ber of electron-density characteristics associated with
long-range interactions between equivalent atoms in
the sublattices. Below, in order to establish the role of
the sublattices in the formation of the valence electron
density, we extend the method of sublattices [3] to
NaNO2 and AgNO2 crystals where, along with the ionic
component, there also exists a covalent component of
chemical bonds inside the molecular NO2 complex.
1063-7745/02/4705- $22.00 © 20744
METHODS AND OBJECTS 
OF STUDY

The electron density was calculated by the method
of nonempirical pseudopotential [4] in the basis of the
numerical sp3d5 atomic pseudoorbitals. The atomic
orbitals were calculated using the solution of the
Schrödinger equation with the same pseudopotentials
by fitting the occupation numbers to the well-known
diagrams of the energy states of an electron in an atom.
It was necessary to use of the virtual p- and d-states of
metal and d-states of nitrogen and oxygen in the
decomposition of crystal orbitals, because the former
play an important role in the distribution of the valence
electron charge. Taking account of the d-orbitals of
nitrogen was necessary for the reliable reconstruction
of the electron structure of an anion, whereas the dif-
fuse d-orbitals of oxygen were taken into account
because they are responsible for anion–anion interac-
tions. The details of the numerical variant of the method
can be found elsewhere [5].

In the method of sublattices, a crystal is divided into
a set of symmetrically related atoms of one kind with
the preservation of their real geometry and electroneu-
trality. Then, the self-consistent calculation of the elec-
tron density is performed for a crystal as a whole and
for each of its constituent sublattices. The sublattice
density automatically takes into account the hybridiza-
tion effects of the equivalent atoms. Subtracting the
sublattice densities from the crystal density, we obtain
the difference density that can be either positive or neg-
ative and clearly illustrates the electron transport
between the atoms of different kinds. The difference
electron density thus determined differs from the defor-
mation density, which is obtained by subtracting the
002 MAIK “Nauka/Interperiodica”
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spherically symmetric atomic density from the experi-
mental density. The difference is caused by the fact that,
in our approach, one distinguishes the hybridization
effects between the equivalent atoms that make up the
sublattices and the hybridization effects between the
sublattices themselves.

One of the selected objects is NaNO2, a ferroelectric
with the simplest crystal structure. Up to a temperature
of 437 K, sodium nitrite has an orthorhombic lattice

with the symmetry , then it undergoes the transi-
tion from the ferroelectric to the paraelectric phase

described by the group . The experimental study of
the deformation density in the vicinity of the phase-
transition point in NaNO2, the deformation density in
its ferroelectric phase, and small deviations from it
caused by the partial reorientation of the nitrite group
were studied in [1]. The second object, AgNO2, has an
atomic structure similar to that of sodium nitrite but has
been less studied both theoretically and experimentally.
In order to establish the role played by cations in chem-
ical bonding in metal nitrites, we calculated the crystal
and sublattice valence densities in NaNO2 and AgNO2.
The calculations were performed for the ordered ferro-

electric phase with the symmetry  and the lattice
parameters determined earlier for NaNO2 [6] and
AgNO2 [7].

CALCULATED RESULTS 
AND DISCUSSION

For convenience, we used the setting in which the z-
axis was directed along the crystallographic b-axis, and
the y-axis, along the c-axis [6]. The densities in both the
text and the figure captions are given in e Å–3 units.

The distribution of the crystal valence density and
the sublattice densities in the bc plane in NaNO2 are
shown in Fig. 1. Consider first the crystal density. It is
characterized by the obvious localization of the elec-
tron density at the anion and, in particular, oxygen
atoms. The density at the nitrogen atom is about ~1,
whereas at the oxygen maxima, which have the shape
of p-orbitals oriented normally to the N–O bond, the
density is about 2.5. The common density contours

“embrace” oxygen atoms in  with the density
value ~1.5 and the closest anions with the density ~0.5.
The common contours embracing the anions are also
formed in the ab plane, whereas in the ac planes only
the common contours connecting oxygen atoms in the

 complexes are formed. Such a density distribu-
tion is formed because of the overlapping wave func-
tions of the nitrogen and oxygen of the neighboring
anions. As is seen from Fig. 1, the nitrogen sublattice
provides the maximum density at the atoms in the form
of pz orbitals, and the oxygen sublattice, in the form of

C2V
20

D2h
25

C2V
20

NO2
–

NO2
–
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pxy orbitals. It is the hybridization of these orbitals that
provides bonding in the anion. In this case, both sublat-
tices share the density contours relating the atoms of the
neighboring anions, which manifests itself in the crys-
tal density. The density of the sodium sublattice is dis-
tributed rather uniformly, and its maxima are located in
the region between the oxygen atoms of the nearest
anions. Thus, an electron of the metal atom is trans-
ferred not to the anion but to the interanionic space.
Therefore, one has to consider not the M+–A– ionic
bond, but rather the ionic bond in terms of the whole
crystal, as being formed not with the participation of
individual atoms but with the participation of individ-
ual sublattices.

Figure 2 shows the distribution of the crystal
valence density and the density of the silver sublattice
in AgNO2 in the same bc plane as in NaNO2. It is seen
from Figs. 1 and 2 that the crystal densities at the anions
are close in both crystals; the density of the nitrogen
and oxygen sublattices are also very close (they are not
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Fig. 1. Distributions of crystal electron density and sublat-
tice densities due to Na, N, and O atoms in NaNO2.
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Fig. 2. Distribution of crystal electron density and sublattice
density due to Ag atoms in AgNO2.
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shown in Fig. 2 in order to save space). However, a con-
siderably larger number of valence electrons at silver
atoms (11, in our calculation) results in a drastic change
in the density of the metal sublattice in AgNO2 in com-
parison with the corresponding density in NaNO2,
which also manifests itself in the crystal density. First,
the shared contours relating silver atoms are formed in
AgNO2. Silver transfers a considerably larger charge to
the plane of anions than sodium, so that the noticeable
charge density is formed in the interanionic region,
which is also clearly seen from the crystal density. The
existence of common electron-density contours for
neighboring anions and also the small electron-charge
maximum between these contours lead to the assump-
tion that covalent bonding exists between the anions.

The charge redistribution between the sublattices is
described by the difference density ∆ρ(r) shown for
NaNO2 and AgNO2 in Fig. 3. It is seen that the differ-
ence densities in the vicinity of oxygen atoms and
inside the anionic group are close for both compounds.
The most pronounced differences are seen in the vicin-
ity of the cations, which is quite natural because of the

∆ρ(NaNO2)
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Fig. 3. Difference density in NaNO2 and AgNO2.
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Fig. 4. Difference density in the plane normal to the N–O
bond (on the left) and the experimental deformation density
in NaNO2 [6].
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considerable difference in the numbers of valence elec-
trons in sodium and silver.

The negative ∆ρ(r) values are in the direct vicinity
of nitrogen and oxygen nuclei and in the vicinity of cat-
ions. The maxima of the difference density correspond
to two points located symmetrically with respect to the
N–O bond and also to the middle points of these bonds.
The values of the two ending maxima are different. The
larger value has the maximum located closer to the cat-
ion along the O–Na bond length. At the same time, the
far maximum is deformed in a such way that it provides
the maximum charge along the N–O bond. This distri-
bution of the difference density is qualitatively similar
to the experimental deformation density determined in
[6, 8]. Thus, the sublattice interactions are most pro-
nounced between the oxygen and nitrogen sublattices
and result in the complicated redistribution of the elec-
tron charge between these sublattices, which can be
considered as covalent bonding. The negative ∆ρ(r)
values in the vicinity of the metal are explained by the
charge transfer from the metal sublattice to the nitrogen
and oxygen sublattices, which provides the formation
of the ionic component of the chemical bond.

Now, compare in more detail the calculated differ-
ence density in NaNO2 with the known experimental
data.

The deformation density in NaNO2 was studied by
the X-ray diffraction method elsewhere [6, 8]. As was
already indicated, in the vicinity of the nitrite group, the
deformation-density maps obtained in these studies are
qualitatively similar to the difference-density maps in
the bc plane (Figs. 3 and 4). Figure 4 shows the calcu-
lated map of ∆ρ(r) for NaNO2 in the plane perpendicu-
lar to the N–O bond (the left-hand side of Fig. 4) and
the experimental deformation density obtained in the
same plane in [6] (the right-hand side of Fig. 4). The
negative values of the deformation density are indicated
by dashed lines. This figure clearly shows the qualita-
tive similarity of the difference and the deformation
densities. The difference density is negative at the sites
of nitrogen and oxygen nuclei and also in the regions
that have the shape of p-orbitals oriented normally to
the N–O bond. The maxima of difference density are
located in the middle of this bond (the value 0.2) and
lower than the nitrogen and oxygen nuclei (the value
0.1). Thus, the interaction between nitrogen and oxy-
gen atoms in the crystal results in the electron-charge
transfer from the peripheral regions of the atoms to the
regions along the bond between them. This electron-
charge redistribution is typical of covalent chemical
bonding.

The similarity of the difference and deformation
densities is explained by the fact that the most pro-
nounced hybridization effects in nitrites take place
between the nitrogen and oxygen sublattices, whereas
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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the hybridization between the other sublattices and
inside the sublattices is much weaker.
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Abstract—The crystal structure of cation-deficient calciohilairite from the Lovozero massif (the Kola Penin-
sula) was established (Siemens P4 diffractometer, MoKα radiation, 409 independent reflections with |F| >
4σ(F), anisotropic refinement, R(F) = 0.037). Like other representatives of the hilairite structure type, calcio-
hilairite is described by the space group R32 (a = 10.498(2) Å, c = 7.975(2) Å, Z = 3), whereas its unit-cell
parameter c is reduced by a factor of two. Two positions in the cavities of the mixed zirconium–silicon–oxygen
framework are occupied by Ca and Na cations in the ratio of 1 : 1 (partly occupied A(1) position) and oxonium
cations (H3O)+ and H2O molecules in the ratio of 1 : 2 (A(2) position). Different types of isomorphous replace-
ment accompanying the formation of cation-deficient mixed-framework structures (lovozerite, vinogradovite–
lintisite, labuntsovite–nenadkevichite, eudialyte, etc.) are considered. Based on the X-ray diffraction data, the
following scheme of isomorphism in the structure of cation-deficient calciohilairite is suggested: 2Na+ +
H2O  0.5Ca2+ + 1.5h + (H3O)+, where h is a vacancy. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Calciohilairite CaZrSi3O9 · 3H2O is a rare mineral
attributed to the hilairite group according to its compo-
sition, X-ray diffraction data, and crystal morphology.
This mineral was discovered in hydrothermalites of
alkaline granites from the Golden Horn batholith
(Washington, USA) [1] and was also found in the deriva-
tives of the Mont-Saint-Hilaire and Saint-Amable agpaitic
massifs (Quebec, Canada) [2]. Intermediate members of
the calciohilairite–hilairite (Na2ZrSi3O9 · 3H2O) series
were discovered in the Strange Lake alkaline complex
[3]. Recently, calciohilairite was found in the endocon-
tact zone of the Lovozero alkaline massif (the Kola
Peninsula), where it is the major zirconium-containing
mineral of hydrothermalites developed in cavernous
albitized murmanite–eudialyte lujavrites from the Flora
Mountain. Isometric white and coffee-brown, usually
split, crystals (up to 0.4 mm in size) of calciohilairite
formed by the {012} faces of a rhombohedron and
{110} faces of the hexagonal prism occur in vugs in
association with aegirine, natrolite, lorenzenite,
labuntsovite-Mn, kuzmenkoite-Mn, carbonate-fluorap-
atite, and vuoriyarvite-K [4].

The structures of several minerals of the hilairite
group were studied, among which are hilairite [5],
komkovite [6], sazykinaite-(Y) [7], pyatenkoite-(Y)
[8], and calciohilairite [1]. The structure of hilairite was
1063-7745/02/4705- $22.00 © 20748
reported for the first time in [5] and was described as a
mixed framework consisting of helical chains of
[Si3O9] linked via Zr-octahedra. The cavities of the
framework are occupied by the Na cations and H2O
molecules. In addition to hilairite, the structures of its
rare-earth analogue sazykinaite-(Y) [7], pyatenkoite-
(Y) [8], and komkovite [6] were also established. In the
crystal structure of sazykinaite-(Y), one of two Zr posi-
tions is occupied by Y and rare-earth cations. In pyaten-
koite-(Y), the Zr ions in two positions are completely
replaced by Y + REE and Ti + Nb. The structure of
komkovite differs from hilairite in that Na atoms are
replaced by Ba atoms in the ratio 2 : 1. The crystal
structure of calciohilairite has not been established. In
the first study of this mineral, which was devoted to its
mineralogical description [1], it was only noted that the
unit-cell parameter a of this mineral is twice as large as
that of hilairite (a = 20.870(4) Å, c = 16.002(4) Å,
space group R32). However, the poor quality of single
crystals used in this investigation cast some doubt on
the reliability of the crystallographic and geometric
characteristics of calciohilairite. A new occurrence of
calciohilairite at the Lovozero alkaline massif, where
single crystals suitable for X-ray diffraction analysis
were found, and the presently available X-ray facilities
gave new impetus to the investigation of the structure of
this mineral.
002 MAIK “Nauka/Interperiodica”
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EXPERIMENTAL

Electron microprobe analysis of seven calciohilair-
ite crystals (Table 1) revealed the following character-
istic features:

—the presence of Nb and Ti impurities, which,
apparently, replace Zr; in all the analyses, the Si/Σ(Zr +
Nb + Ti + Hf) ratio was approximately 3 : 1;

—very wide variations in the Ca : Na ratio, includ-
ing variations within one crystal, which ranges from
sodium-free zones (i.e., from virtually pure calcio-
hilairite) to a calcium-containing variety of hilairite
(Na2 – x,Cax/2)ZrSi3O9 · 3H2O, where x < 1; the latter is
usually found in crystal cores;

—a substantial content of K and Sr impurities (often
K > Na);

—an overall deficiency of large low-valence cations
(Na + K + Ca + Sr + Mn + Zn); the sum of their formula
coefficients ranges from 0.6 to 1.0 with respect to three
Si atoms.

Thus, the mineral from the Lovozero massif is very
compositionally inhomogeneous and, on the whole,
can be assigned to a cation-deficient variety of calcio-
hilairite.

A single crystal of calciohilairite of dimensions
0.30 × 0.20 × 0.22 mm was selected using a Weissen-
berg camera. The X-ray diffraction data were collected
from this crystal on an automated Siemens P4 diffrac-
tometer. The crystallographic characteristics and the
details of X-ray data collection and structure refine-
ment are listed in Table 2.

The parameters of the trigonal unit cell a =
10.498(2) Å, c = 7.975(2) Å were determined by the
least-squares refinement with the use of the angular
parameters of 30 reflections in the range 19° ≤ 2θ ≤ 25°.
Both reduced parameters are approximately half as
large as those reported earlier [1]. The ψ-scan empirical
absorption correction was introduced. The structure
was refined within the space group R32 using the
SHELX97 program package [9] based on the modified
atomic coordinates determined earlier [5]. The subse-
quent stages, including the refinement of the electron
contents in three cation positions (A(1), A(2), and Zr)
and the refinement based on the anisotropic thermal
parameters, reduced the R(F) factor to 0.037. The cat-
ion distribution thus obtained confirmed that the Zr
position is completely occupied, whereas the
intraframework position A(1) is occupied by the Ca and
Na cations in the ratio 1 : 1 (calculated from the elec-
tron content) by only 33%. In spite of the shortened dis-
tances (~1.84(3) Å) between the symmetrically related
(Ca,Na) atoms located in the A(1) position, the partial
occupancy of the latter excludes any direct contact
between these atoms. For this reason, the maximum
occupancy of the A(1) position cannot be higher than
50% (one Ca atom per formula unit). An increase in the
cation content in the A(1) position of the hilairite struc-
ture should be accompanied by a twofold increase in
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      200
the unit-cell parameter c. The fact that the (Ca,Na) cat-
ions occupy the A(1) position is indirectly confirmed by
the octahedral coordination of these cations. This coor-
dination is formed by the water molecules located in the
A(2) position and the O(1) anions. The A(1) position
was also found in the structures of other minerals of the
hilairite group, whereas the A(2) position in the new
specimen, unambiguously revealed from a difference
electron density synthesis, was observed for the first
time. Taking into account the requirement of the elec-
troneutrality of the structural formula and the presence
of water in the mineral structure, we assumed that the
A(2) position is occupied by oxonium cations H3O+ and
water molecules in the ratio 1 : 2. The presence of the
mobile cations (H3O+) in the A(2) position accounts for
the high thermal parameter of the atoms in the A(2)
position (Table 3). Recently, similar thermal parame-
ters of the oxonium cations were found in the structure
of tsepinite-(Na), a representative of the labuntsovite
group [10]. The results of the X-ray diffraction analysis
confirmed the formula (Ca,Na)0.67ZrSi3O9[H2O,H3O]3.
The fact that this formula is slightly different from the
average composition of the mineral (the right column in
Table 1), in particular, the absence of K, is attributed to
the individual features of the grain under investigation.
On the whole, the weight contents of the components
corresponding to the idealized structural formula (CaO,
4.79; Na2O, 2.65; ZrO2, 31.90; SiO2, 46.66; H2O,

Table 1.  Variations in the chemical composition of the mine-
rals of the calciohilairite–hilairite series from the Flora Moun-
tain (Lovozero massif) according to the results of 17 electron
microprobe analyses for seven crystals (Camebax SX 50)

Component Ranges, wt %
Average

compositions, 
wt %

Average cation 
content (with

respect to Si = 3)

Na2O 0.00–2.4 0.28 0.04

K2O 0.4–3.2 2.09 0.18

CaO 4.1–11.5 6.96 0.50

SrO 0.00–1.3 0.67 0.03

MnO 0.00–0.9 0.89 0.01

ZnO 0.00–0.6 0.18 0.01

SiO2 41.6–47.4 44.90 3

TiO2 0.5–1.4 0.81 0.04

ZrO2 26.8–31.1 29.23 0.95

HfO2 0.0–0.8 0.31 0.01

Nb2O5 0.3–3.3 1.76 0.05

Sum 87.44

Note: In all the analyses, the Ba, Mg, Fe, Al, REE, F, and Cl
contents were lower than the detection limits.
2
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Table 2.  Crystallographic characteristics and details of
the X-ray diffraction study

Formula (Ca,Na)0.67ZrSi3O9
[H2O,H3O]3

Unit-cell parameters, Å a = 10.498(2),
c = 7.975(2)

Space group; Z R 32; 3

Unit cell volume V, Å3 761.1(2)

Calculated density ρ, g/cm3 2.543

Absorption coefficient µ, mm–1 1.679

Molecular weight 1165.54

F000 565.0

Diffractometer Siemens P4

Wavelength, Å 0.71073

2θmin, deg 6.80

2θmax, deg 59.72

Total number of reflections 1427

Total number of independent reflections 425

Number of independent reflections 
with |F | > 4σ(F)

409

Rint 0.044

Number of parameters used in
the refinement

33

RF 0.037

wR(F2) 0.089

GOOF 1.235

∆ρmax, e/Å3 0.80

∆ρmin, e/Å3      –0.48
C

14.00; Σ = 100 wt %) are close to the ranges of the com-
position variations of calciohilairite determined by the
electron microprobe analysis (Table 1). The final coor-
dinates of the basis atoms and thermal parameters are
listed in Table 3. The results of the calculations of the
valence balance [11, 12] are given in Table 4. The inter-
atomic distances in the coordination polyhedra have
standard values (the average Zr–O, Si–O, and (Ca,Na)–
O distances are 2.077, 1.625, and 2.410 Å, respec-
tively). The projection of the structure obtained using
the ATOMS program [13] is shown in the figure.

RESULTS AND DISCUSSION

The crystal structure of cation-deficient calciohilair-
ite is characterized by a twofold decrease in the size of
the unit cell compared to the unit cells of other repre-
sentatives of this mineralogical group (hilairite, komk-
ovite, and pyatenkoite-(Y)), with the space group R32
being retained. In addition, the structure of the new
mineral also has a position that is not found in other
representatives of this group. This position is occupied
by the H3O+ cations and water molecules. The configu-
ration of the zirconium–silicon–oxygen mixed frame-
work remains virtually unchanged. The presence of the
Ca or Na cations in the A(1) position excludes the
simultaneous presence of the oxonium cation in the
A(2) position and, on the contrary, allows water mole-
cules to occupy the latter position. The octahedral coor-
dination of the (Ca,Na) cations is formed by three water
molecules and three O(1) atoms at distances of 2.30(2)
and 2.52(1) Å, respectively. Unlike the completely
occupied A(2) position, the existence of vacancies in
the A(1) position is favorable for the simultaneous pres-
ence of the large oxonium cations H3O+ in the A(2)
position. The oxonium cation in the A(2) position is sur-
rounded by the é2– anions located at rather large dis-
tances (2.987(6) Å), which is consistent with the
ç3é+–O distance typical of this cation (~2.57 Å). In
this case, the oxonium cations can form weak hydrogen
Table 3.  Coordinates, multiplicities (Q), occupancies (q), and thermal parameters for the basis atoms

Position* x/a y/b z/c Q q  × 102, Å2

Zr 0.0 0.0 0.0 0.1667 0.1667 1.61(3)

A(1) 0.0 0.0 0.615(2) 0.3333 0.1117 9.6(5)

A(2) 0.0 0.201(2) 0.5 0.5 0.5 14.8(5)

Si 0.4141(2) 0.4141(2) 0.5 0.5 0.5 1.90(5)

O(1) 0.0951(6) 0.1860(3) 0.8488(4) 1 1 2.55(7)

O(2) 0.6475(6) 0.0 0.0 0.5 0.5 3.8(2)

* A(1) = Ca, Na; A(2) = H2O, H3O.
** The parameters Ueq were calculated from the anisotropic atomic displacements.

Ueq
**
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bonds with O(1) atoms, which were taken into account
in calculations of the valence balance [12].

The total water content in the A(2) position (H3O+ +
2H2O per structural formula) is in complete agreement
with the accepted formula of hilairite.

The constitution and the possible mechanism of the
formation of cation-deficient calciohilairite are not only
of interest by themselves but also might help one to elu-
cidate the nature of partially decationized varieties of
many zeolite-like minerals that are widespread in
hydrothermally altered alkaline rocks and their deriva-
tives.

The isomorphic relationship between hilairite and
“full-cation” calciohilairite is rather simple (2Na+ 
Ca2+ + h). This scheme often occurs in minerals, partic-
ularly in zeolites (analcime–wairakite, chabazite, gme-
linite, etc.). In some specimens, the additional water
molecules are located in the vacant cavities (2Na+ 
Ca2+ + H2O) and, thus, lower the symmetry. As an
example, we refer to zeolites of the natrolite
Na2(Al2Si3O10) · 2H2O–scolecite ëa(Al2Si3O10) · 3H2O
series [14].

However, the above schemes of isomorphism alone
cannot explain the constitution of cation-deficient cal-
ciohilairite. Proceeding from the conditions of the local
valence balance, it seems to be highly improbable that
a deficiency of positive charge in this mineral (resulting
from the overall deficiency of large extraframework
cations) can be compensated with the partial replace-
ment of O atoms in the framework by OH groups. The
data on the occupancies of the extraframework positions
and the cation–anion distances lead to the conclusion that
the residual positive charge is accounted for by the oxo-
nium cations. As a result, the general scheme of isomor-
phism, which leads from hilairite Na2ZrSi3O9 · 3H2O to
cation-deficient calciohilairite, can be represented as
follows: 2Na+ + H2O  0.5Ca2+ + 1.5h + (H3O)+.

Taking into account the zonal structures of some
crystals found at the Flora Mountain, it can be assumed
that initially they consisted of hilairite. The subsequent
decrease in alkalinity of hydrothermal solutions led to
ion exchange resulting either in partial or complete
leaching of Na and uptake of larger cations (Ca2+,
H3O+, K+, Sr2+), particularly in outer zones of individu-
als. The incorporation of the oxonium cations into the
channels of the mineral structure seems to be highly
probable, because it is well known that the acid–base
equilibrium in solutions is displaced to the (H3O)+ ions
under almost neutral conditions.

The fact that the leaching of Na from many zeolite-
like rare-element minerals is a process readily occur-
ring at the late-hydrothermal evolution stages of alka-
line massifs is supported by abundant evidence, includ-
ing numerous experimental data (for example, the
information on steenstrupine [15]). In this case, a defi-
ciency of positive charge can be compensated in a num-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
ber of ways. For example, isomorphism according to
the schemes Na+ + O2–  h + OH– and Na+ + O2– 
H2O + OH– was substantiated for Zr and Ti silicates of
the lovozerite group and for Ti silicates of the vinogra-
dovite–lintisite polysomatic series [16–18].

The former scheme “accompanies” the transforma-
tion of vinogradovite Na4Ti4(Si2O6)2 ·
[(Si,Al)4O10]O4(H2O,Na,K)3 into the so-called “vino-
gradovite II” Na2O2Ti4(Si2O6)(Si4O10)O2(OH)2 · 2H2O
[16].

These mechanisms seem to be the most probable
also for the orthorhombic representatives of the
labuntsovite group, whose structures contain narrow
channels [19]. In contrast, the Na+ cations in the struc-
tures of monoclinic labuntsovite-like phases and miner-
als of the eudialyte group with large cavities in the
framework can be replaced by oxonium cations (H3O)+

[10, 20]. The leaching of Na accompanied by hydration
is also typical of pyrochlore, catapleiite, gaidonnayite,
elpidite, and a number of other minerals. However, the
mechanism of this process should be elucidated for
many of these minerals.

To summarize, the results of the study of cation-
deficient calciohilairite from the Lovozero massif
allowed us to propose the most crystallochemically
probable structure model for an oxonium-stabilized
partly decationized zeolite-like mineral with a mixed

A(2)
O(2)

O(1)

A(1)Si

Structure of cation-deficient calciohilairite projected onto
the (001) plane; A(1) = Ca, Na; A(2) = H2O, H3O.

Table 4.  Calculated valence balance

Atom O(1) O(2) H2O

Ca, Na 0.057 0.108

Zr 0.687

Si 1.044 0.952[×2]

H3O+ 0.044

Σ 1.832 1.904 0.108



752 PUSHCHAROVSKIŒ et al.
(Zr,Nb,Ti)-Si-framework and describe one of the mech-
anisms of the “gentle” leaching of sodium from these
compounds. This phenomenon is widespread in nature.

ACKNOWLEDGMENTS
We are grateful to R.K. Rastsvetaeva for valuable

advice and helpful discussions.
This study was supported by the Russian Founda-

tion for Basic Research (project nos. 00-05-65399 and
00-15-96633) and by the Program “Russian Universi-
ties”. S. Merlino and M. Pasero acknowledge the sup-
port (40%) of the MURST project (“Structural Imper-
fections in Minerals: Microstructure, Modular Aspects,
and Structure Modulation”). D.Yu. Pushcharovskiœ
acknowledges the support of the program existing
within the framework of the Russian–Italian scientific
cooperation (project no. 62).

REFERENCES
1. R. C. Boggs, Amer. Mineral. 73, 1191 (1988).
2. L. Horvath, E. Pfenninger-Horvath, R. A. Gault, and

P. Tarasoff, Mineral. Rec. 29 (2), 83 (1998).
3. T. C. Birkett, R. R. Miller, A. C. Roberts, and A. N. Mar-

iano, Can. Mineral. 30, 191 (1992).
4. I. V. Pekov, Lovozero Massif: History, Pegmatites, Min-

erals (Ocean Pictures Ltd, Moscow, 2000).
5. G. D. Ilyushin, A. A. Voronkov, N. N. Nevskiœ, et al.,

Dokl. Akad. Nauk SSSR 260 (5), 1118 (1981) [Sov.
Phys. Dokl. 26, 916 (1981)].

6. E. V. Sokolova, A. V. Arakcheeva, and A. V. Voloshin,
Dokl. Akad. Nauk SSSR 320 (6), 1384 (1991) [Sov.
Phys. Dokl. 36, 666 (1991)].
C

7. R. K. Rastsvetaeva and A. P. Khomyakov, Kristal-
lografiya 37 (6), 1561 (1992) [Sov. Phys. Crystallogr. 37,
845 (1992)].

8. R. K. Rastsvetaeva and A. P. Khomyakov, Dokl. Akad.
Nauk 351 (1), 74 (1996).

9. G. M. Sheldrick, SHELX97: Program for the Solution
and Refinement of Crystal Structures (Siemens Energy
and Automation, Madison, 1997).

10. R. K. Rastsvetaeva, N. I. Organova, I. V. Rozhdestven-
skaya, et al., Dokl. Akad. Nauk 371 (3), 336 (2000).

11. N. E. Brese and M. O’Keeffe, Acta Crystallogr., Sect. B:
Struct. Sci. 47, 192 (1991).

12. G. Ferraris and G. Ivaldi, Acta Crystallogr., Sect. B:
Struct. Sci. 44, 341 (1988).

13. E. Dowty, Atoms 3.2: A Computer Program for Display-
ing Atomic Structures (Kingsport, 1995).

14. G. Gottardi and E. Galli, Natural Zeolites (Springer-Ver-
lag, Berlin, 1985).

15. E. Makovicky and S. Karup-Moller, Neues Jahrb. Min-
eral., Abh. 140 (3), 300 (1981).

16. S. Merlino and M. Pasero, EMU Notes Mineral. 1, 297
(1997).

17. N. A. Yamnova, Yu. K. Egorov-Tismenko, and
I. V. Pekov, Kristallografiya 46 (6), 1019 (2001) [Crys-
tallogr. Rep. 46, 937 (2001)].

18. U. Kolitsch, D. Yu. Pushcharovsky, I. V. Pekov, and
E. Tillmans, in Abstracts of the 19th European Crystal-
lographic Meeting, Nancy, 2000, p. 363.

19. I. V. Pekov, N. V. Chukanov, A. P. Khomyakov, et al.,
Zap. Vseross. Mineral. O-va 128 (3), 72 (1999).

20. I. A. Ekimenkova, R. K. Rastsvetaeva, and N. V. Chu-
kanov, Dokl. Akad. Nauk 371, 5 (2000).

Translated by T. Safonova
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002



  

Crystallography Reports, Vol. 47, No. 5, 2002, pp. 753–758. Translated from Kristallografiya, Vol. 47, No. 5, 2002, pp. 819–824.
Original Russian Text Copyright © 2002 by Eremina, Eremin, Kuznetsov, Furmanova, Urusov.

                                                                       

STRUCTURES
OF INORGANIC COMPOUNDS
Simulation of Defects Formed by Cations of Bivalent
and Trivalent Metals in the Structure of Potassium Dihydrogen 

Phosphate: A Computational Technique
T. A. Eremina*, N. N. Eremin**, V. A. Kuznetsov*, 

N. G. Furmanova*, and V. S. Urusov**
* Shubnikov Institute of Crystallography, Russian Academy of Sciences, 

Leninskiœ pr. 59, Moscow, 11733 Russia
e-mail: furm@ns.crys.ras.ru

** Moscow State University, Vorob’evy gory, Moscow, 119899 Russia
Received November 15, 2001

Abstract—This paper reports on the results of crystal chemical analysis and computer simulation of the defect
structure of potassium dihydrogen phosphate (KDP) containing impurities of bivalent and trivalent metals. It is
shown that these impurities can form defect centers of different types: isolated centers formed by M3+ and Ni2+

ions and, in part, by Co2+ ions at interstitial sites, chains composed of M2+ impurity ions with radii from ≈0.65
to ≈1.1 Å, and centers created through the substitution of large-sized bivalent cations for potassium ions either
with the formation of additional potassium vacancies or through the heterovalent isomorphism mechanism. The
calculations are performed using different-type interatomic interaction potentials, and a comparative analysis
of the results obtained is carried out. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In order to elucidate how local stresses produced by
impurities affect the crystallization (i.e., the structural
mechanism of impurity effect), it is necessary to know
the structure of defect regions and the strains induced
by these regions in the crystal matrix. In this work, we
performed a crystal chemical analysis of the structure
of potassium dihydrogen phosphate (KDP) and a com-
puter simulation of defect centers with the aim of
revealing the mechanism of incorporation of bivalent
and trivalent impurity metals (with ionic radii varying
over a wide range) into the structure. We analyzed the
variants of calculations within the purely ionic and
ionic–covalent approximations (for bivalent and triva-
lent cations) and calculations with inclusion of the har-
monic potential (for bivalent cations).

COMPUTATIONAL TECHNIQUE

The structure of KDP containing impurities of biva-
lent (Ni2+, Co2+, Fe2+, Mn2+, Ca2+, Sr2+, and Ba2+) and
trivalent (Al3+, Fe3+, Mn3+, Y3+, and La3+) metals was
simulated by minimizing the interatomic interaction
energy according to the GULP software package [1].
The results obtained in our earlier work [2] concerned
with the simulation of a perfect KDP structure were
used in calculations. As in [2–4], the effective charges
of impurity ions were taken equal to +2.7 e for M3+ cat-
ions and +1.9 e for M2+ cations. The ionic radii used in
analysis were taken from [5]. In most cases, the radius
1063-7745/02/4705- $22.00 © 20753
of the region adjacent to a defect and characterized by
considerable distortions was assumed to be 4.5 Å and
the radius of the region beyond which the structure can
be considered undistorted was 11.5 Å. The exceptions
were the calculations of three-particle impurity clusters
in which the above radii were increased to 6.5 and
16.5 Å, respectively.

Earlier [6], we performed a crystal chemical analy-
sis of the KDP structure and demonstrated that impurity
cations most probably occupy the interstitial holes M1
and M2 with the coordinates (0.25, 0.35, 0.125) and
(0.75, 0.22, 0.125). Large-sized cations can substitute
for K+ cations. These variants of incorporating ions into
the KDP structure were considered for all the cations
studied (the calculations in the framework of the purely
ionic model were described in detail in [3, 4]). Unlike
[3, 4], in the present work, similar calculations were
carried out with allowance made for a Morse potential
(for bivalent and trivalent cations) and different models
of calculating defect centers in the structure were ana-
lyzed comparatively.

In [3, 4], the M3+–O bond was treated as purely
ionic, even though this bond in the KDP structure is
partly covalent in character. The calculations proved
that the introduction of a covalent component (Morse
potential) into the expression for the M3+–O interatomic
interaction potential does not lead to radical changes in
the general pattern (Table 1). Therefore, the ionic
approximation in the case of defect formation by triva-
lent metals in the M1 and M2 holes is quite adequate
002 MAIK “Nauka/Interperiodica”
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and quantitatively describes the character of distor-
tions. The parameters of the M3+–O interatomic interac-
tion potential taking into account the Morse potential
are listed in Table 2.

All the foregoing is valid only for the incorporation
of trivalent impurities into the M1 and M2 sites, i.e., for
the incorporation of ions into commensurate holes. In
the case when M3+ cations occupy the K site with the
M3+–O distances obviously greater than the optimum
for trivalent cations, the ionic model cannot correctly
describe the incorporation pattern. Indeed, according to
calculations within this model, a decrease in the ionic

Table 1.  Energies (eV) of the defect formation by trivalent
metals at the M1 and M2 sites according to partly covalent
model 1 and ionic model 2

Ion Ionic
radius, Å

M1 M2

1 2 1 2

Al 0.53 –15.84 –6.90 –14.67 –5.15

Fe 0.55 –14.89 –5.71 –13.32 –4.67

Mn 0.58 –14.38 –5.05 –13.12 –3.13

Y 0.90 –12.11 –1.22 –10.49 0.88

La 1.03 –11.26 1.23 –9.49 2.89

Table 2.  Parameters of the M3+–O interatomic interaction
potential in the framework of the partly covalent model*

M3+ Bij, eV ρij, eV/Å6 Dij,  eV σij, Å
–1 R0, Å

Al 580.93 0.3118 0.412 1.604 1.91

Mn3+ 655.48 0.3214 0.441 1.556 2.03

Fe3+ 636.35 0.3239 0.425 1.516 2.11

Y 700.92 0.3588 0.604 1.432 2.40

La 701.96 0.3651 0.676 1.369 2.53

* Vij(Rij, f) = f 2[ZiZj/Rij + Bij exp(–Rij/ρij)] – (1 – f 2)

Dij{exp[2σij(  – Rij)] – 2exp[σij(  – Rij)]}.  Rij
0

Rij
0

Table 3.  Parameters of the å2+–é interatomic interaction
potential in the framework of the partly covalent model

Cation Bij, eV ρij, eV/Å6 Dij,  eV σij, Å
–1 R0, Å

Ni 1582.5 0.2882 0.43 1.7349 2.11

Co 1491.7 0.2951 0.48 1.6943 2.14

Fe 1207.6 0.3084 0.53 1.6213 2.16

Mn 1007.4 0.3262 0.55 1.5328 2.21

Ca 1090.4 0.3437 0.60 1.4546 2.40

Sr 959.1 0.3721 0.59 1.3437 2.58

Ba 905.7 0.3976 0.69 1.2575 2.76
C

radius in a series of trivalent metals leads to a decrease
in the energy of defect formation at the K site, which
has no physical meaning. We did not consider the occu-
pation of the K site by trivalent metals, because this sit-
uation virtually cannot occur in view of the small ionic
radius of these metals.

The calculation of the energy of defects created by
bivalent cations is a more complicated problem. The
occurrence of cations with radii close to the radius of
the potassium cation in the series of these metals
requires considering not only the M1 and M2 sites but
also the K sites as really possible. Therefore, in the case
of bivalent cations, the M2+–O bond should be treated
only within the partly covalent approximation. The
introduction of the Morse potential as the covalent term
results in a certain rigidity of the metal–oxygen config-
uration, because this potential is not a function that
monotonically decreases with an increase in the dis-
tance but rather exhibits a minimum at a distance that is
optimum for a particular ion pair. The Morse potential
is described by two coefficients, namely, the weighting
factor Dij and the softness coefficient σij . Furthermore,
the Morse potential is characterized by an optimum dis-
tance between ions involved in the bond, i.e., the opti-
mum M2+–O distance. This distance is approximately
estimated as the sum of the corresponding radii. The
parameter Dij is evaluated as the dissociation energy of
a single covalent bond with correction for the coordina-
tion number [7]. The softness parameter σij and the cor-
responding stiffness parameter ρij in the expression for
the Born–Mayer potential are related by the known for-
mula σij = 1/(2ρij) [8]. The bond ionicity f entering into
the expression for the Morse potential can be easily
estimated using the charges of ions involved in the
bond. For example, the ionicity of a bivalent metal with
a charge of +1.9 e is equal to 95% and the ionicity of an
oxygen atom (−1.14 e) is 57%. As a result, the ionicity
of the M2+–O bond is equal to 76%. The M2+–O inter-
atomic interaction parameters thus obtained are given
in Table 3. The energies of defect formation (calculated
within this model) are presented in Fig. 1 and Table 4.
However, it turns out that the results obtained have no
physical meaning. Indeed, according to these data, the
incorporation into the K site with the formation of a
potassium vacancy is most favorable for all the bivalent
cations. Therefore, even the inclusion of the Morse
potential does not lead to an adequate description of the
interactions at distances appreciably longer than the
optimum distances.

The reason resides in the form of the Morse poten-
tial itself. This situation can be illustrated using the fol-
lowing example (Fig. 2). Let us assume that a cation A
is in a tetrahedral oxygen environment and all the bond
lengths are equal to the optimum distance. This ideal
case corresponds to the minimum in the curve of the
Morse pair potential. When a polyhedron is distorted
(two bonds are shortened and two bonds are lengthened
by the same distance ∆R), the energy increases by
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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2∆E1 + 2∆E2 . Note that this distortion leads to practi-
cally no change in the volume of the coordination poly-
hedron which remains suitable for the A cation. How-
ever, if all four distances are lengthened and the volume
of the polyhedron becomes inappropriate for the given
cation, the energy increases by a considerably smaller
value, i.e., 4∆E2 (due to a strong asymmetry of the
Morse potential).

In order to solve the above problem, the second-
order harmonic component in the form of a symmetric
quadratic parabola was additionally introduced into the
relationship for the potential. According to Burkert and
Allinger [9], the harmonic potential can be used to
change the length of covalent bonds. The total interac-
tion potential has the form

Here, the optimum distance between the interacting
ions and the stiffness parameter k are the parameters of
the harmonic potential. The stiffness parameter was
chosen to be equal to 2.39 in the course of calculations.
The choice was governed by the stability of the simu-
lated defects. In the case, when the interaction between
ions is described by the harmonic potential, it is neces-
sary to determine the parameter that reduces the range
of this potential only to atoms of the first coordination
sphere. Reasoning from the crystal chemical analysis of
the structure, the last parameter was taken to be equal
to 3 Å.

The defect energies calculated in terms of the model
accounting for the contribution of the harmonic poten-
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Fig. 1. Energies of the defect formation by bivalent metal
ions at the K, M1, and M2 sites in the framework of the
partly covalent model. The solid lines represent the energies
of single defects, and the dashed line indicates the energies
of clusters.
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tial are presented in Fig. 3 and Table 5. Only within this
approximation did we succeed in obtaining reasonable
ratios between the energies of defect formation at dif-
ferent sites. It should be noted that, since independent
criteria for the reliability of the M2+–O interaction
potentials including the Morse and harmonic potentials
are absent, these potentials can be used only to compare
the defect energies in series of bivalent and trivalent
metals.

RESULTS AND DISCUSSION

As follows from the data obtained in our recent
work [4] and those presented in Tables 4 and 5, the cal-
culations within all three models offer similar results:
an increase in the ionic radius in the series of bivalent
metals leads to a change in the most favorable variant
of incorporating the impurity into the crystal structure,
namely, single defects give way to chains. Of the two
sites M1 and M2, the former site is most favorable for
all the cations. The M1 site corresponds to the mini-
mum energies of defect formation by all trivalent and
small-sized bivalent cations. The electroneutrality is
provided by removing two potassium cations and one
proton upon incorporation of M3+ and only two potas-
sium cations upon incorporation of M2+ [3, 4]. In the
latter case, the nearest hydrogen atom is displaced from
the site with the coordinates (0.125, 0.161, 0.125) to the
site with the coordinates (0.125, 0.099, 0.125). This
leads to a distortion of the hydrogen bond (the O···H
bond length increases from 1.27 to 1.29 Å, and the
O···H···O angle decreases to 149°). According to calcu-
lations, other variants of compensating for the valence
result in the instability of the simulated structure.

r0 – ∆r

∆E2

r0 r0 + ∆r

∆E1

r

E

Fig. 2. Schematic representation of the Morse potential. 
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Table 4.  Energies (eV) of the defect formation by bivalent metals at the K, M1, and M2 sites in the framework of the partly
covalent model

Cation Ionic radius, Å K(K + H)* K(K + K)** M1 M2 Chain

Ni 0.69 –1.801 –2.86 –2.427 –1.287 –2.321

Co 0.75 –1.93 –3.21 –2.533 –1.416 –2.703

Fe 0.78 –2.147 –3.46 –2.73 –1.634 –3.012

Mn 0.83 –2.033 –3.75 –2.61 –1.511 –3.074

Ca 1.12 –2.331 –3.97 –2.36 –2.327 –3.173***

Sr 1.26 –2.683 –4.39 –2.479 –2.447 –2.915***

Ba 1.42 –3.288 –5.99 –3.21 –3.156 –4.821***

* Incorporation into the K site with the removal of one potassium cation and hydrogen.
** Incorporation into the K site with the removal of two potassium cations.

*** Cluster consisting of three ions at the K sites.

Table 5.  Energies (eV) of the defect formation by bivalent metals at the K, M1, and M2 sites in the framework of the partly
covalent model with inclusion of the harmonic potential

Cation Ionic radius, Å K(K + H)* K(K + K)** M1**** M2**** Chain

Ni 0.69 0.63 –1.39 –2.40 –0.71 –1.94

Co 0.75 0.14 –1.58 –2.50 –0.92 –2.39

Fe 0.78 –0.31 –2.04 –2.69 –1.16 –2.82

Mn 0.83 –0.63 –2.37 –2.57 –1.08 –2.82

Ca 1.12 –1.75 –3.61 –2.32 –0.96 –2.81***

Sr 1.26 –2.01 –3.83 –2.01 –0.62 –2.38***

Ba 1.42 –3.17 –4.98 –3.92

* Incorporation into the K site with the removal of one potassium cation and hydrogen.
** Incorporation into the K site with the removal of two potassium cations.

*** Cluster consisting of three ions at the K sites.
**** The last empty squares correspond to the displacement to the K site.
The energies of defect formation by trivalent cations
in the framework of both the purely ionic and partly
covalent models regularly increase with an increase in
the ionic radius (Table 1). This suggests that the larger
the size of cations, the harder their incorporation into
the structure. Since the M1 sites in the KDP structure lie
in the (100) planes [2], the occupation of a part of them
by M3+ cations brings about the formation of sparse net-
works parallel to the (100) and (010) planes. These net-
works will be referred to as impurity networks of the
first type. The intersection of these networks gives rise
to channels that are extended along the Z-axis of the
crystal and are filled with impurity ions (at the A–G
sites in Fig. 4).

A more complex situation occurs with defects cre-
ated by bivalent cations. A comparative analysis of
these defects was performed in the framework of the
partly covalent model with due regard for the harmonic
potential. The calculations demonstrate that an increase
in the ionic radius leads to a change in the defect type
(Fig. 3, Table 5). Actually, for the smallest-sized Ni2+
C

cations, as for M3+ cations, the lowest energy of defect
formation is observed in the case of the isolated M1
sites. At the same time, Fe2+ and Mn2+ cations with the
highest probability form chain clusters of the ABDE…
and ABDF… types. These chains can make an angle of
60°–75° with the Z-axis. The chain formation and its
geometric prerequisites were considered in detail in [4].
Systems of these chains form impurity networks of the
second type in the crystal. Most likely, Co2+ cations are
statistically distributed over isolated sites and chains.

A closer examination revealed a number of charac-
teristic features. In the case when Ni2+ or Co2+ cations
form a three-particle cluster, they remain at the M1
sites. On the other hand, if chains are formed by Fe2+ or
Mn2+ cations, the third participant of a cluster is dis-
placed from the D site to the hole of a distant potassium
cation (hereafter, the potassium hole) in the course of
energy minimization. For Ca2+, Sr2+, and Ba2+ cations,
all participants of a three-particle cluster are displaced
to the potassium holes. Note that, in the framework of
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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the partly covalent model without regard for the har-
monic potential, all participants of a three-particle clus-
ter irrespective of their radius are displaced to the
potassium holes. This displacement is explained by the
fact that the K site (with the formation of a potassium
vacancy) appears to be most favorable within the sim-
ple partly covalent model.

In the framework of the partly covalent model with
inclusion of the harmonic potential, the displacement of
small-sized cations (Fe2+ and Mn2+) to the potassium
holes can be explained in the following way. The elim-
ination of a large number of atoms during the chain for-
mation in the structure results in the formation of a
local region of structural sparseness in which the larger
part of the free space is occupied by potassium polyhe-
dra freed from atoms. Therefore, the stabilization of the
loose region with Fe2+ ions by placing one out of three
ions in the potassium hole appears to be more favor-
able, even though the occupation of the M1 holes by
these ions is more preferable from the standpoint of
crystal chemistry. However, in real crystals, the transfer
of the D ion from the M1 site to the potassium hole is
limited by kinetic factors. Indeed, the formation of
impurity chains is most likely a step-by-step process:
the incorporation of the A impurity ion (Fig. 4) creates
favorable conditions in the adjacent hole B. In turn,
after the occupation of this hole, favorable conditions
arise in the D (or E) hole. Consequently, the D cation is
initially incorporated into the M1 site and then migrates
to the K site through the channels formed by vacancies
arising at potassium and hydrogen sites. This migration
in the crystal can be hindered. As a consequence, the
vast majority of impurity cations forming clusters
occupy the crystal chemically preferable M1 sites. In
this case, the D cations are in a nonequilibrium state
and external factors, for example, the heating of the
crystal, can facilitate their transfer to the potassium
holes. It is quite possible that this is a reason for the
improvement in the optical properties of KDP crystals
and the relieving of internal stresses in them in the
course of annealing at temperatures of 140–180°C [10,
11]. In [10, 11], the authors explained improvement in
the crystal quality by the structural changes in internal
defects without going into details of their structure.

For large-sized bivalent cations with a radius larger
than 1.1 Å, the incorporation into the M1 sites is ener-
getically unfavorable (Fig. 3, Table 5). These ions sub-
stitute for potassium ions in the structure and form
defects of the third type. The compensation for the
valence is provided by the formation of either potas-
sium vacancies or hydrogen vacancies; in this case, the
former variant is more preferable (Table 5). Moreover,
it should be noted that the substitution of barium ions
for potassium ions according to the heterovalent iso-
morphism mechanism ä+ + ê5+ = Ç‡2+ + Si4+ widely
occurs in natural minerals. A similar substitution under
conditions of laboratory experiments is confirmed by
the continued presence of noticeable amounts of silicon
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      200
in KDP mother solutions. This variant of the substitu-
tion was calculated only for Ba2+ cations. It is found
that the energy of formation of the double defect center
is equal to –5.12 eV, which corresponds to the mini-
mum energy for the barium cation.1 The defect energy
computed within the same model in the case of a simple
substitution is equal to –4.98 eV; i.e., it is slightly
higher than that for the substitution through the het-
erovalent isomorphism mechanism. It follows from
Table 5 that, for large-sized bivalent cations, the mini-
mum energies of defect formation are observed in the
case when the defects are created upon incorporation of
the impurity into the K site with removal of an addi-

1 The calculations were carried out within the partly covalent
model with allowance made for the harmonic potential.
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Fig. 3. Energies of the defect formation by bivalent metal
ions at the K, M1, and M2 sites in the framework of the
partly covalent model with inclusion of the harmonic poten-
tial. The solid lines represent the energies of single defects,
the dashed line corresponds to the energies of clusters, and
the closed circles indicate the energy of the defect formed
through the heterovalent isomorphism mechanism.
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Fig. 4. Orientation of impurity chains in the (100) plane.
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tional potassium atom. Therefore, the K site appears to
be preferable for large-sized cations. These cations are
incorporated into the K sites and either substitute for
the K+ ions with the formation of additional potassium
vacancies or form complex defect centers through the
heterovalent isomorphism mechanism. It seems likely
that, in real crystals, the incorporation proceeds accord-
ing to both substitution mechanisms.

Thus, the impurity ions of bivalent and trivalent
metals form defect centers of the following three types:
(i) the isolated defect centers occupying channels along
the Z-axis of the crystal (for M3+, Ni2+, and Co2+ cat-
ions), (ii) the impurity chain clusters oriented at an
angle of 60°–75° with respect to the Z-axis of the crys-
tal (for Fe2+, Mn2+, and, partly, Co2+ cations), and (iii)
the defect centers created at the K sites both with the
formation of potassium vacancies and through the het-
erovalent isomorphism mechanism.

The formation of different-type defect centers is
responsible for different degrees of strain of the KDP
crystal structure. A comparison of the energies of defect
formation shows that, compared to M2+ ions, M3+ ions
induce weaker local stresses in the structure.2 Although
Ni2+ and, partly, Co2+ ions form defect centers similar
to those created by M3+ ions, bivalent ions produce
stronger local stresses in the structure. Even stronger
stresses arise when impurity chains are formed by M2+

cations. In contrast, the incorporation of Ba2+ cations
into the K sites either with the formation of additional
vacancies or through the heterovalent isomorphism
mechanism (K+ + P5+ = M2+ + Si4+) generates weaker
stresses in the series of bivalent metals. In the last case,
a somewhat smaller radius of Ba2+ ions as compared to
that of K+ ions is compensated for by the larger size of
SiO4 polyhedra. Moreover, unlike the preceding cases,
this variant of the substitution does not require the for-
mation of additional vacancies.

CONCLUSIONS

The results of our investigation have demonstrated
that the incorporation of trivalent impurities into the
KDP structure is adequately described within the ionic
approximation. At the same time, the mechanism of
incorporation of bivalent cations has defied correct
interpretation even in terms of the partly covalent
model. In this respect, the potential involving the har-
monic component was proposed for describing bivalent
cations. The defects formed by trivalent cations were

2 A comparison was performed within the partly covalent model,
because the purely ionic model, as applied to bivalent cations, has
no physical meaning and the harmonic potential was not used in
analyzing trivalent ions.
C

also considered in the framework of the partly covalent
approximation. This made it possible to carry out a
qualitative comparative analysis of the incorporation of
bivalent and trivalent impurities.

The impurities of bivalent and trivalent metals form
defect centers of different types in the KDP structure.
These centers generate local stresses in the crystal
matrix and, thus, produce different strains of the crystal
structure. The calculated energies of defect formation
and the performed analysis of distortions of the crystal
structure in the nearest environment of impurity ions
allowed us to draw the inference that the minimum
stresses arise upon incorporation of trivalent cations.
The bivalent metals, which either form impurity chains
in the structure or substitute for the K+ ions at the potas-
sium sites (in the case of large-sized M2+ cations), give
rise to stronger stresses.
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Abstract—The structure and some physical properties of malayaite CaSnOSiO4 have been studied by the pre-
cision X-ray diffraction, Mössbauer spectroscopy, and computer simulation of the structure. The unit-cell
parameters a = 7.152(2) Å, b = 8.888(2) Å, c = 6.667(2) Å, β = 113.37(2)°, V = 389.0(3) Å3, and µr = 0.68 are
refined on a synthetic impurity-free sample. The distribution of the deformation electron density is analyzed in
the basic fragments of the crystal structure forming an anionic framework. The constructed potentials of pair
and three-particle interaction reproduced quite well the elastic, dielectric, and energy characteristics and
allowed us to predict their numerical values, which are in good agreement with the limited available experimen-
tal data. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Malayaite CaSnOSiO4 belongs to silicates contain-
ing isolated SiO4-groups with additional anions (titan-
ite group). This rare mineral was discovered in 1965 in
Malaysia [1]. Later [2], it was found that this mineral
forms a solid solution with isostructural high-tempera-
ture titanite (sphene) at elevated temperatures. Unlike
the low-temperature titanite modification, the tin atoms
in the malayaite structure at room temperature are
located in the center of SnO6-octahedra, which facili-
tates their crystallization in the space group A2/a [3]. A
fragment of the malayaite structure is shown in Fig. 1.

Recently, natural malayaite samples were studied by
Raman spectroscopy, transmission electron micros-
copy, and various X-ray methods (powder diffractome-
try, the use of synchrotron radiation for studying single
crystals) [4]. These data allowed us to obtain some
additional information on their structure and crystal
chemistry. Below, we describe our studies of synthetic
malayaite by precision X-ray diffraction and Möss-
bauer spectroscopy and also theoretical studies by com-
puter simulation of the structure.

PRECISION X-RAY STUDY

The X-ray refinement of the structure was made on
a synthetic impurity-free sample synthesized hydro-
thermally and shaped to a sphere of radius 0.12 mm.
The parameters of the monoclinic unit-cell of malayaite
were refined using 15 reflections measured on an auto-
mated four-circle Syntex P1 diffractometer: a =
7.152(2) Å, b = 8.888(2) Å, c = 6.667(2) Å, β =
113.37(2)°, V = 389.0(3) Å3, and µr = 0.68.
1063-7745/02/4705- $22.00 © 20759
The intensities of 3614 reflections were measured
within the +h, ±k, ± l hemisphere of the reciprocal
space (four equivalent reflections for each general-type
reflection, MoKα radiation, graphite monochromator).

We used 2θ–θ scanning at a rate of 2–24 deg/min up
to sinθ/λ = 1.2 Å–1. The scan angle increased from 2° to
3° with an increase in the scattering angle. To improve
the accuracy and statistics, we also measured the reflec-
tions in the far range of the reciprocal space for another
hemisphere, so that the number of the equivalent reflec-
tions for far general-type reflections increased to 8.
After averaging the equivalent reflections and the
removal of the control, spurious, and rejected reflec-
tions, the experimental data set consisted of 1517 inde-
pendent reflections with I > 1.96(σI).
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Fig. 1. A fragment of the malayaite structure. Tin atoms are
located in octahedra and silicon atoms are located in tetra-
hedra. The positions of calcium atoms are not shown.
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Table 1.  Coordinates of basic atoms and anisotropic temperature factors (Å2) in malayaite

Atom x/a y/b z/c B11 B22 B33 B12 B13 B23

Ca 0.25 0.66295(5) 0.5 2.63(4) 0.32(1) 0.50(1) 0.00(0) –0.14(1) 0.00(0)

Sn 0.5 0.5 0 0.26(1) 0.30(1) 0.30(1) –0.01(0) 0.11(0) 0.00(0)

Si 0.75 0.68203(8) 0.5 0.35(2) 0.24(1) 0.26(2) 0.00(0) 0.11(1) 0.00(0)

O(1) 0.75 0.58690(18) 0 0.33(3) 0.46(3) 0.97(4) 0.00(0) 0.32(3) 0.00(0)

O(2) 0.91293(20) 0.56796(12) 0.67555(19) 0.73(2) 0.62(2) 0.41(2) 0.23(2) 0.14(2) 0.13(2)

O(3) 0.37180(19) 0.71195(12) 0.89014(19) 0.66(2) 0.46(2) 0.56(2) 0.20(2) 0.33(2) 0.06(1)
All the computations were performed by the MIN-
EXTL program package [6]. After the introduction of
the correction for absorption, the malayaite structure
was refined within the framework of the superposition-
type atomic model by the least squares method in the
full-matrix approximation with due regard for the
anisotropic harmonic atomic vibrations, the secondary
extinction by Zachariasen (Ux = 3130 Å), and the
anomalous scattering of tin atoms.

The refinement using the set of the experimental
data from the high-angle range of the reciprocal space
with sinθ/λ > 0.95 Å–1 (407 reflections) was performed
to R = 0.0098, Rw = 0.0125, and S = 0.8727. For the full
set of 1517 reflections, R = 0.0130, Rw = 0.0230, and
S = 1.680. The final coordinates of the basic atoms and
their anisotropic thermal parameters are listed in
Table 1.

O(1)

O(3)

O(3)

O(1)

1 Å

Fig. 2. Deformation electron-density map in the equatorial
plane of the SnO6-octahedron of malayaite. Hereafter, iso-
lines are spaced by 0.1 e/Å3; positive isolines are shown by
solid lines; zero contour, by a dot-and-dash line; negative
isolines, by a dashed line.
C

The errors in the deformation electron-density maps
with respect to the superposition of neutral atoms esti-
mated according to [7] showed that the error in the
vicinity of the chemical bond is 0.02 e/Å3, at the posi-
tions of Si atoms, 0.06; at the positions of O atoms,
0.04–0.08; and at Sn atoms about 0.30 e/Å3. Such a
pronounced error at the tin nucleus should affect the
character of the electron distribution in the SnO6 octa-
hedron, therefore, the careful analysis of the deforma-
tion electron-density maps in this polyhedron was nec-
essary. For other structural fragments, the deformation
electron-density maps were expected to be more reli-
able.

The distribution of the deformation electron density
∆ρ in malayaite was analyzed in all the basic structural
fragments forming the anionic framework. The defor-
mation electron-density map passing through one Sn
atom and four O atoms is shown in Fig. 2. The zero syn-
thesis of the electron density confirmed our assumption
that the pronounced peaks located at the distance of
0.5 Å from the tin atom are explained by the series ter-
mination. The deformation electron-density map is the
most reliable at a distance of 0.8–0.9 Å from the tin
nucleus. The most pronounced ∆ρ peak 0.3 e/Å3 is
located on the Sn–O(3) line at a distance of 1.6 Å from
the tin atom and characterizes the σ-type bonds. On the
Sn–O(2) line, the σ-type 0.2 e/Å3-high peaks are also
located at close distances from the tin nucleus. The
bonding type in the Sn–O(1)–Sn chains along the octa-
hedral column is somewhat different because the coor-
dination number of the O(1) atom relative to Sn equals
two. In this situation, the O(1) atom seems to be in the
sp-hybridization, and, therefore, two additional elec-
tron-density peaks (0.2 e/Å3) around this atom are
found, whose displacement from the bond line can be
explained by the effect of the lone electron pair. Thus,
the malayaite structure has two types of Sn–O bonds,
which is also confirmed by the interatomic distances
(Sn–O(1) and Sn–O(2), Sn–O(3)).

Since the difference between the interatomic dis-
tances is explained by the different bond strengths sij

[8], we simulated the sij distribution in the malayaite
structure using the BONDVAL program. The results
are indicated in Table 2. There is a pronounced differ-
ence between the bond strengths of two groups of the
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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Sn–O distances (0.78 for Sn–O(1) and, on average, 0.61
for Sn–O(2) and Sn–O(3)).

The construction of deformation electron-density
maps passing through the SnO6-octahedron can be con-
sidered as an attempt at visualizing the regions of
excessive electron density, which were assumed to be
responsible for a high electric-field gradient (EFG) at
tin nuclei. Subtraction of the corresponding zero syn-
thesis from the deformation electron-density map,
where the effect of series termination is clearly seen,
showed that the maxima of the excessive density ∆ρ
really exist at the indicated points of the internuclear
space. However, this method is not reliable, and the
error of the determination of the deformation electron
density in the vicinity of a tin nucleus makes the above
explanation of the existence of a high EFG at the tin
nucleus in malayaite only one of the possible explana-
tions.

The ∆ρ map reflecting the redistribution of the elec-
tron density in the silicon–oxygen tetrahedron is shown
in Fig. 3. Approximately in the center of the Si–O dis-
tance (0.8–0.9 Å from the Si atom), the 0.3 e/Å3-high
maximum is formed on all four bonds, which indicates
that the silicon atom is sp3-hybridized and that the bond

O(3)

O(2)

Si

1Å

Fig. 3. Deformation electron-density map in the Si–O(3)–
O(2) plane crossing the silicon–oxygen tetrahedron of
malayaite.
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
is essentially covalent. This map is similar to the map
with the analogous distribution of the maxima in titan-
ite [9]. In both cases, despite the fact that all the Si–O
distances in the tetrahedron are almost equal, there are
two bond pairs that are slightly different from each
other. In contrast to titanite, in malayaite the bond max-
ima are equal, but the maxima of excessive electron
density on the Si–O(2) pair are slightly displaced from
the bond line, which is not observed for the Si–O(3)

Table 2.  Interatomic distances (Å) in the coordination
polyhedra in the malayaite structure calculated by the method
of bond-strength (sij)

Bond sij Rcalcd

Si–O(2) 1.039 1.610

Si–O(3) 0.961 1.639

Sn–O(1) 0.779 1.997

Sn–O(2) 0.649 2.065

Sn–O(3) 0.571 2.112

Ca–O(1) 0.442 2.270

Ca–O(2) 0.312 2.398

Ca–O(3) 0.234 2.505

85

–4
v , mm/s

–2 0 2 4

90

95

100
(b)

98

100 (a)

96

N, %

Fig. 4. Mössbauer spectra of (a) the SnO2-doped malayaite
sample synthesized from the solid phase and (b) the
undoped malayaite sample obtained by hydrothermal syn-
thesis.
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Table 3.  Hyperfine parameters of the Mössbauer spectra of malayaite synthesized by two different methods

Method of synthesis Spectrometer Model used in data processing δI, mm/s ∆, mm/s χ2

Solid-phase NZ-640/2 Two quadrupole doublets –0.049(2) 1.42(1) 0.97

Solid-phase MS 1101E Two quadrupole doublets –0.047(2) 1.42(1) 0.99

Hydrothermal MS 1101E One quadrupole doublet –0.058(6) 1.45(1) 0.93

Table 4.  Calculated asymmetry parameter η of EFG tensor and quadrupole splitting ∆ for 119Sn nuclei in CaSnOSiO4

Model
Sublattice

∆, mm/s η
Sn Si Ca O Ω

Formal charges +4.00 +4.00 +2.00 –2.00 – 0.37 –0.50

Effective charges +3.20 +2.40 +2.00 –1.52 – 0.28 –0.35

x = 1.00 x0 +3.20 +2.40 +2.00 –1.42 –0.25 0.70 –0.06

x = 0.85 x0 +3.20 +2.40 +2.00 –1.32 –0.50 0.82 –0.08

x = 0.81 x0 +3.20 +2.40 +2.00 –1.42 –0.40 1.20 +0.01

x = 0.81 x0 +3.50 +2.40 +2.00 –1.38 –0.50 1.38 –0.01

Experiment ? ? ? ? ? 1.42(2) ?
bonds. Possibly, this is associated with the π-compo-
nent of the Si–O(2) bond, whose multiplicity (valence)
slightly exceeds unity (1.04), whereas the multiplicity
of the Si–O(3) bonds is lower than unity (0.96). The
structural differences of the tetrahedron edges, O(3)–
O(3) and O(2)–O(2), are similar to those in titanite; i.e.,
the O(3)–O(3) edge connects the octahedra of the same
column, whereas the O(2)–O(2) edge connects the
octahedra of two different columns.

The deformation electron-density distribution in the
calcium polyhedron of malayaite is similar to its distri-
bution in titanite [9]—a pronounced displacement of
the 0.10–0.15 e/Å3 maxima of oxygen atoms. This indi-
cates the essentially ionic character of the chemical
interaction.

O

Sn

Ω

Ω

O

x0 O

O
O

O

O

Sn

Fig. 5. Scheme explaining the shifts of Ω-regions toward the
central tin atom in malayaite. The dashed circles show the
positions of these regions and a neighboring Sn atom in cas-
siterite.
C

The data obtained from the deformation electron-
density maps can be complemented with the total elec-
tron-density map, whose use allowed us to evaluate the
radius of the optimum separation for the Sn atom
(0.89 Å). This value is noticeably lower than in cas-
siterite (0.95–0.97 Å [10]). Different radii of tin atoms
in these minerals lead to the assumption that the effec-
tive tin charge in malayaite is higher than in cassiterite,
i.e., in the first case, the ionicity of the Sn–O bond is
more pronounced.

MÖSSBAUER SPECTROSCOPY STUDY

The samples of synthetic malayaite synthesized
hydrothermally [5] and from the solid phase were stud-
ied by Mössbauer spectroscopy. The solid-phase syn-
thesis was performed as follows. A stoichiometric
ground mixture of CaO, SiO2, and SnO2 was pressed,
placed into a corundum crucible, and annealed in a
muffle furnace for two weeks at a temperature ranging
from 1250 to 850°C. The microanalysis showed that the
sample contained 12.12 at. % Ca, 13.76 at. % Si, and
11.76 at. % Sn, which corresponded to the formula
CaSnOSiO4. To check the results of the synthesis, we
analyzed the material by the X-ray phase analysis
which showed a good agreement of the obtained X-ray
diffraction pattern with the data in [11]. However, the
model-based interpretation of the one quadrupole dou-
blet of the Mössbauer spectrum of this sample using the
SPECTR program [12] showed too high a value of the
functional χ2, which is characteristic of the presence of
a small amount of the second phase. After the model-
based fitting of the spectrum to two quadrupole dou-
blets, the hyperfine parameters of the partial malayaite
spectrum were determined and the presence of an SnO2
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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impurity corresponding to 10.5 at. % Sn was estab-
lished.

The Mössbauer spectrum of the malayaite sample
obtained by the method of solid-state sintering is shown
in Fig. 4a. The experiment was performed for 118 h (on
a NZ-640/2 spectrometer) at the Laboratory of Solid-
State Geochemistry at the Vernadsky Institute of
Geochemistry and Analytical Chemistry of the Russian
Academy of Sciences. The Mössbauer spectrum of the
malayaite sample obtained hydrothermally is shown in
Fig. 4b. The experiment was performed during 97 h (on
a MS1101E spectrometer) at the Department of Gen-
eral Physics of Moscow State University. Since the
microprobe analysis [5] showed the absence of a
noticeable impurity concentration in the second case,
the Mössbauer spectrum was fitted by one quadrupole
doublet using the SPECTR program [12]. The sample
synthesized from the solid phase was remeasured using
the same device. Thus, three independent Mössbauer
experiments were made on two malayaite samples
using different spectrometers, which allowed us to
check the reproducibility of the results and improve
their reliability. In all the cases, the 119mSn source in the
BaSnO3 matrix with an activity of several mCi was
used. To reduce the possible influence of texture, the
measurements were made on a conic sample with a par-
affin filler, with the normal to the sample surface form-
ing an angle of ~54.7° with the direction of the γ-quanta
flight. The processing of the experimental spectra
yielded the results listed in Table 3.

A negative value of the isomer shift δ relative to cas-
siterite SnO2 confirms the assumption that the ionicity
of the Sn–O bond in malayaite is more pronounced than
in standard cassiterite. However, the quadrupole split-
ting ∆ is too high for tetravalent tin compounds (∆ =
0.49 mm/s in SnO2). As was shown in [13], the main
contribution to the quadrupole splitting of the SnO2
Mössbauer line comes from the localized excessive
electron density in the interatomic space at a distance
shorter than the average distance to the anions of the
first coordination sphere. In malayaite, the ∆ value is
three times higher than in SnO2, thus indicating that the
regions of excessive electron density in this compound
are closer to the Sn nucleus. This assumption seems to
be quite reasonable, because it takes into account the
structural characteristics of malayaite: octahedra in a
column share their vertices, and, hence, the region of
the excessive electron density Ω has only one nearest
tin atom at the edge of the oxygen octahedron instead
of the two characteristic of cassiterite (Fig. 5), where
the octahedra share their edges. Taking into account the
electrostatic data, one can assume that the absence of
the positively charged second cation should promote a
displacement of the Ω region toward the tin nucleus,
i.e., to the observation point of the EFG.

In order to calculate the EFG by the method of mod-
ified point charges using the LATTICE program [14],
the following model was used. A point charge of the Ω
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      200
region varied from 0.25 to 0.50 e, and this region was
localized on a line connecting the center of the shortest
edge of the oxygen octahedron with the observation
point (Fig. 5). The EFG value in the vicinity of the 119Sn
nucleus was calculated as the resulting value of the
charges of all atomic sublattices and the sublattice of
the Ω regions. In each particular case, the values of the
effective atomic charges were calculated proceeding
from the neutrality principle with due regard for
optimization performed by computer simulation
(see Table 4). The position of the Ω region was fixed by
the x-coordinate (Fig. 5). In all the calculations, the val-
ues of the nuclear quadrupole momentum Q(119Sn) =
−0.109 bar [15] and antishielding factor γ∞ = –10 [16]
were used.

It can be seen from Table 4 that the enormously high
EFG value observed in malayaite is well simulated with
the aid of the point charges of 0.4–0.5 e located at the
distance of 0.9 Å from the Sn atom. This model
becomes invalid for shorter distances because of the
ambiguity in the antishielding factor γ∞. Note that the

Table 5.  Parameters of the pair potentials of interatomic
interactions used in malayaite simulation

Parameters
Model

ionic shell optimum

q(Sn) 4.00 2.42 3.20

q(Ca) 2.00 2.00 2.00

q(Si) 4.00 4.00 2.40

q(Sn–shell) 1.58

q(O–shell) –2.47

A(O–O), eV 15123.6 15123.6 15123.6

A(Si–O), eV 3134.35 3134.35 1092.56

A(Ca–O), eV 1090.49 1090.49 1090.49

ρ(O–O), Å 0.2230 0.2230 0.2230

ρ(Sn–O), Å 0.2765 0.2765 0.2765

ρ(Si–O), Å 0.2730 0.2730 0.2730

ρ(Ca–O), Å 0.3437 0.3437 0.3437

C(O–O), eV/Å6 28.430 28.430 28.430

K(Sn), eV/Å2 2037.8

K(O), eV/Å2 23.09

D(Sn–O), eV 0.3492

D(Si–O), eV 2.4448

β(Sn–O), Å–1 2.8080

β(Sn–O), Å–1 1.8315

r0(Sn–O), Å 2.050

r0(Sn–O), Å 1.620
2
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Table 6.  Calculated and experimental atomic coordinates for malayaite

Atom Coordinates Shell model Ionic model Optimum model Experiment*

Ca x 0.2500 0.2500 0.2500 0.25

y 0.9188 0.9251 0.9098 0.91295

z 0.7499 0.7500 0.7500 0.75

Sn x 0.5000 0.5000 0.5000 0.5

y 0.7500 0.7500 0.7500 0.75

z 0.2500 0.2500 0.2500 0.25

Si x 0.7500 0.7500 0.7500 0.75

y 0.9283 0.9245 0.9415 0.93203

z 0.7506 0.7500 0.7497 0.75

O(1) x 0.7507 0.7500 0.7500 0.75

y 0.8385 0.8286 0.8028 0.83690

z 0.2513 0.2500 0.2497 0.25

O(2) x 0.9164 0.8883 0.8794 0.91293

y 0.8093 0.8158 0.8349 0.81796

z 0.9246 0.9242 0.9257 0.92555

O(3) x 0.3801 0.3744 0.3836 0.37180

y 0.9647 0.9668 0.9608 0.96195

z 0.1412 0.1709 0.1804 0.14014

* In the simulation, we used another crystallographic setting that was dictated by the characteristics of the METAPOCS program; therefore,
the experimental coordinates are brought into correspondence with the setting of the model.
simulated EFG tensor is almost symmetrical within the
framework of this model. Thus, the considerable varia-
tion in the EFG values at tin nuclei in CaSnSiO5 and
SnO2 can be explained on the basis of the essential
structural and crystallochemical differences, and, in
both cases, the main contribution to EFG comes from
the electron redistribution in the SnO6-octahedron.
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1.4 2.0 3.2 4.0
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Sn charge

–39
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–41

–41
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–42
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E = –42.88 eV

Fig. 6. The atomization energy distribution in malayaite
depending on the charges of Si and Sn atoms.
C

THEORETICAL SIMULATION OF MALAYAITE 
STRUCTURE AND ITS PROPERTIES

The simulation was performed in a partly covalent
approximation by the original method of the minimiza-
tion of the atomization energy developed in [17] using
the METAPOCS program [18]. This simulation was
interesting in itself since the elastic and dielectric prop-
erties of this mineral have not yet been studied experi-
mentally.

To describe malayaite, a set of pair Born–Mayer–
Huggins potentials was used. The potentials of pair
Ca−O and O–O interaction were taken from [19]. The
potentials of the Sn–O and Si–O bonds with a varied
ionicity degree were developed earlier and tested in
[20] for the simulation of quartz and cassiterite.

To estimate the charges of the Sn and Si atoms, we
performed several calculations using a complex poten-
tial in the form

(1)

Vij Rij q,( ) q
2
ZiZ j/Rij λ ij

w
Rijρij–( )exp+=

+ dij
w

[2σij Rij
0

Rij–( )]exp 2 σij Rij
0

Rij–( )[ ]exp–{ }

– Cij/Rij
6
,
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where q is the degree of ionicity of the bond (0 < q < 1),

Zi and Zj are formal ionic charges,  is the sum of
covalent radii, and the empirical parameters λ and d are
attributed by weights at each value of the ionicity
degree. Two repulsion parameters (“softness” ρ and
“stiffness” σ) are related by the well-known equation

(2)

To reduce the number of computations, we restricted
the values of atomic charges from below—the tin
charge was varied from +2.6 to +4.0 e and the silicon
charge, from +1.4 to +4.0 e (the limit for tin corre-
sponds to an underestimated cation charge in SnO2 and
for silicon, to that value in α-quartz). Within these lim-
its, 64 model computations were performed for differ-
ent combinations of the effective charges of Si and Sn.

Rij
0

ρ 1
2
---σ 1–

.=

Table 7.  Calculated and experimental interatomic distances
(Å) in the structure of malayaite. The number of equivalent
bonds is indicated in braces

Atoms
Distance

experiment shell model

SiO4-tetrahedron

Si–O(2) {2} 1.640(1) 1.680(7)

Si–O(3) {2} 1.635(1) 1.671(2)

O(2)–O(2) {1} 2.566(2) 2.592(2)

O(2)–O(3) {2} 2.666(2) 2.693(1)

O(2)–O(3) {2} 2.815(3) 2.823(4)

O(3)–O(3) {1} 2.684(3) 2.758(2)

SnO6-octahedron

Sn–O(1) {2} 1.948(1) 1.954(1)

Sn–O(2) {2} 2.089(1) 2.079(1)

Sn–O(3) {2} 2.096(1) 2.101(2)

O(1)–O(2) {2} 2.840(1) 2.838(5)

O(1)–O(2) {2} 2.872(1) 2.868(3)

O(1)–O(3) {2} 2.742(1) 2.682(13)

O(1)–O(3) {2} 2.976(1) 3.032(8)

O(2)–O(3) {2} 2.942(1) 2.908(5)

O(2)–O(3) {2} 2.976(1) 3.003(5)

CaO7-polyhedron

Ca–O(1) {1} 2.241(8) 2.156(6)

Ca–O(2) {2} 2.401(6) 2.418(6)

Ca–O(3) {2} 2.746(5) 2.662(8)

Ca–O(3) {2} 2.422(5) 2.438(6)
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Taking into account that the Ca–O bond has a pro-
nounced ionic nature, the calcium charge was taken to
be +2.0 in all the cases. The oxygen charge was calcu-
lated proceeding from the unit-cell neutrality. For each
set of atomic charges, the structure simulation was per-
formed with a search for the minimum of the configu-
ration and atomization energies E with due regard for a
correction for the energy ∆E of charge transfer from
cations to anions determined for each set of atomic
charges from the data on the ionization energy of the
atomic valence states as described in [17, 20].

The charges corresponding to the minimum of the
atomization energy were taken to be optimal. To esti-
mate the optimum charge set more precisely, 36 more
cycles of simulation were performed, in which the tin
charge varied from +3.0 to +3.4 e and the silicon
charge, from +2.2 to +2.6 e.

Table 8.  Predicted properties of malayaite

Properties Ionic model Shell model Model with partly 
covalent bonding

Elastic constants and modules (Mbar)

C11 1.348 2.361 2.288

C12 1.430 1.322 0.929

C13 0.276 0.866 0.825

C15 0.366 0.685 0.584

C22 5.274 5.041 4.071

C23 1.493 1.478 1.160

C25 0.077 0.011 0.024

C33 3.426 3.715 2.848

C35 –0.927 –0.487 –0.438

C44 0.839 0.632 0.651

C46
0.436 0.452 0.244

C55 1.203 1.371 1.142

C66 0.836 0.749 0.709

K 1.827 2.049 1.671

µ 1.032 1.047 0.920

Dielectric constants

ε11 6.494 6.901 5.731

ε22 4.569 4.491 3.202

ε33 6.768 6.882 6.633

– 2.720 –

– 2.652 –

– 2.587 –

Energy characteristics (eV)

U –284.45 –285.68 –170.10

E –32.01 –33.24 –42.88

ε∞
11

ε∞
22

ε∞
33
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To obtain data on high-frequency dielectric con-
stants, we used a shell model of formal charges with
due regard for the polarization of tin and oxygen atoms
and three-particle O–Si–O interaction. The parameters
of the harmonic potentials for Sn and O were taken
from [19], and the parameters of three-particle poten-
tial, from [21].

The parameters of the different pair potentials for
the ionic, shell, and “optimum” models are listed in
Table 5. The predicted CaSnOSiO4 atomic coordinates
and new experimental data are listed in Table 6. Since
the atomic coordinates obtained for different theoreti-
cal models differ only insignificantly, the experimental
interatomic distances are compared only with the dis-
tances calculated based on the shell model (Table 7).
The calculated components of the tensors of elastic and
dielectric constants, as well as the structural, U =

, and atomization, E, energies, of malayaite are

listed in Table 8. The bulk compression modulus K (by
Voigt) and the shear modulus µ are calculated using the
well-known relationships.

As is seen from Tables 6 and 7, the structural char-
acteristics of malayaite are reproduced rather well
using any of the three models. The Si, Sn, Ca, and O(1)
atoms practically occupy the positions that were deter-
mined experimentally. The deviations from the experi-
mental positions observed for the O(2) and O(3) atoms
occupying the general positions are also small and do
not exceed 0.2–0.3 Å. Using the harmonic potential in
the shell model for Sn and O atoms, we could estimate
the high-frequency dielectric constants εij of malayaite.
However, allowance for the polarization only for Sn
and O atoms resulted in somewhat underestimated val-
ues of these constants, which is seen from the compar-
ison of the experimental and calculated refractive indi-
ces n. For natural malayaite, the refractive indices are
np = 1.764, ng = 1.798, and nm = 1.783 [22]. Hence, the
εij values in malayaite should be ~3.1–3.2 (compare
with the data in Table 8). However, it is necessary to
note that the n values are essentially dependent on the
sample composition, and the refractive indices of pure
malayaite can differ somewhat from the values indi-
cated in handbooks of mineralogy.

Using 100 values of the atomization energy E
obtained based on different models of charge distribu-
tion, we constructed the surface E(ZSn, ZSi), which has
a pronounced minimum at the charges Si = +2.40(4) e
and Sn = +3.20(4) e (Fig. 6). These atomic charges
were used in the “optimum” model. The E value at the
minimum is equal to –42.88 eV or –4133 kJ/mol. The
experimental E value obtained using the experimental
value of enthalpy of the malayaite formation from sim-

Vij∑
C

ple components (∆H298 = –2246 kJ/mol [5]) equals
−4424 kJ/mol, i.e., differs from the theoretical estimate
by 6.5%.

CONCLUSIONS

The following conclusions can be made from the
precision X-ray diffraction and Mössbauer studies and
computer simulation.

The effective tin charge in malayaite CaSnOSiO4 is
somewhat higher than in cassiterite SnO2.

In malayaite, two types of Sn–O bonds exist—the
bonds along the octahedral chain and the bonds
directed toward the adjacent chains; in the silicon–oxy-
gen octahedron, two pairs of bonds of different multi-
plicities based on sp3-hybridization of the Si-orbitals
are observed; the Ca–O bond is essentially ionic.

The anomalously high quadrupole splitting of the
Mössbauer spectrum of 119Sn nuclei in malayaite can be
explained by the formation of regions characterized by
the excessive electron density giving rise to charge
redistribution on the Sn–O bonds.

The semiempirical sets of the parameters of the pair
and three-particle interactions allow one to reproduce
the structural features of malayaite and predict the val-
ues of its elastic, dielectric, and energy characteristics,
which are in good agreement with the limited available
experimental data on its properties.
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Abstract—Single crystals of acid salt hydrates MI{MII[H(XO4)2](H2O)2}, where MI, MII, and X are K, Zn, and
S (I); K, Mn, and S (II); Cs, Mn, and S (III); or K, Mn, and Se (IV), respectively, were synthesized and studied
by X-ray diffraction analysis. Compounds I–IV (space group P ) are isostructural to each other and to hydrate
KMg[H(SO4)2](H2O)2 (V) studied earlier. Structures I–V, especially, the MI–O, MII–O, and X–O distances and
the O···H···O (2.44–2.48 Å) and éw–ç···é (2.70–2.81 Å) hydrogen bonds, are discussed. © 2002 MAIK
“Nauka/Interperiodica”.

1

INTRODUCTION

Considerable attention given to a class of acid salts
of inorganic oxygen-containing acids stems from the
interest in the characteristic features of hydrogen bond-
ing in their crystal structures. In recent years, acid sul-
fates and selenates of mono- and divalent metals,
including numerous adducts with acid H2XO4, were
systematically studied [1, 2]. Some hydrogen alkali
metal acid salts of the compositions MIHXO4 and

H(XO4)2 (MI = Rb or Cs and X = S or Se) undergo
phase transitions to form phases possessing high pro-
tonic conductivity [3]. The studies of phases containing
mixed MI cations showed that the phase-transition tem-
perature and other characteristics of phase transitions
are essentially dependent on the degree of replacement,

for example, in the Cs1 – x HSO4 phases [4]. In some
instances, these phases possess their own structure
types. As an example, we refer to K0.5Rb0.5HSO4 [5] or
Rb4LiH3(XO4)4 [6].

Hydrogen salts with metal cations in different
valence states were much less studied. Only one com-
pound containing mono- and divalent metals,
KMg[H(SO4)2](H2O)2 dihydrate, was structurally stud-
ied [7]. We performed a systematic study of the synthe-
sis and crystal structures of such salts and managed to
prepare hydrogen sulfate (selenate) hydrates possess-
ing other combinations of mono- and divalent metals of
the compositions MIMII[H(XO4)2](H2O)2 and

MII[H(SO4)2]2(H2O)2 . Below, we report the results of
our studies of four compounds of the first group.

M3
I

Mx
I

M4
I
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EXPERIMENTAL

Synthesis. The MIMIIH(XO4)2(H2O)2 compounds
were prepared by crystallization from aqueous solu-

tions of chalcogenates XO4 and MIIXO4 and acid
H2XO4. The molar ratio of the reagents was varied to
optimize the conditions of the synthesis. It was found
that the phases of the composition
MIMIIH(SO4)2(H2O)2 , where MI and MII = K and Zn (I),
K and Mn (II), or Cs and Mn (III), were crystallized, if
sulfates were taken in the molar ratio 1 : 2 in the pres-
ence of a fivefold or sixfold excess (with respect to its
stoichiometric amount) of sulfuric acid. Bimetallic
hydrogen selenate KMnH(SeO4)2(H2O)2 (IV) was pre-
pared with the use of an eightfold excess of selenic
acid. In some syntheses, the corresponding acid sul-
fates were used instead of alkali sulfate, or alkali metal
was introduced by dissolving its carbonate in an acid.

The XO4 and MIIXO4 salts or their mixtures were
crystallized from less acidic solutions. Hydrogen chal-
cogenate MIçXO4 was present among the products of
primary crystallization from solutions with an excess of
alkali cations. The phase purity of the resulting samples
were confirmed by X-ray powder diffraction analysis.
In order to grow larger (up to 5 mm) single crystals, the
solutions were concentrated, and crystallization
occurred at 50°C. The crystals thus obtained were non-
hygroscopic but they effloresced during storage for sev-
eral weeks in air.

Analogous experiments on crystallization in the

XO4–MIIXO4–H2XO4 systems for the K–Cd–S, K–

M2
I

M2
I

M2
I
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Table 1.  Crystallographic characteristics and the details of X-ray data collection and the refinement of structures I–IV

Compound I, KZn[H(SO4)2] ·
2H2O

II, KMn[H(SO4)2] ·
2H2O

III, CsMn[H(SO4)2] ·
2H2O

IV, KMg[H(SeO4)2] ·
2H2O

Molecular weight 333.63 323.20 417.01 386.37
Crystal system Triclinic Triclinic Triclinic Triclinic

Space group P P P P
a, Å 4.563(3) 4.693(2) 4.788(2) 4.671(3)
b, Å 5.751(4) 5.816(3) 5.843(3) 5.882(3)
c, Å 8.149(5) 8.247(2) 8.577(4) 8.479(5)
α, deg 103.43(3) 103.49(3) 104.31(3) 103.15(3)
β, deg 99.63(8) 99.81(3) 95.99(3) 99.02(4)
γ, deg 95.37(3) 96.08(3) 93.80(3) 96.95(4)
V, Å3/Z 203.1(2); 1 213.2(2); 1 230.2(2); 1 221.1(2); 1
ρcalcd, g/cm3 2.728 2.518 3.008 2.902
µ(MoKα), mm–1 4.088 2.562 5.818 8.940
T, K 180(2) 180(2) 180(2) 170(2)
θmax, deg 32.0 30.0 32.0 30.0
Number of measured and
independent reflections

1836/1413 2525/1237 2828/1525 1883/1290

Number of reflections with [I > 2δ(I)] 1345 1121 1431 903
Number of reflections and parameters in 
the least-squares refinement

1342/80 1126/80 1438/80 960/79

R1 [I > 2δ(I)]/wR2 (all reflections) 0.0224/0.0717 0.0187/0.0577 0.0255/0.0772 0.0398/0.1188

∆ρmax/∆ρmin, /Å3 0.990/–0.929 0.490/–0.443 1.763/–1.683 1.816/–1.712

1 1 1 1

e

Table 2.  Coordinates of the basis atoms and the equivalent (isotropic for H atoms) thermal parameters in structures I–IV

Atom x y z Ueq, Å2 Atom x y z Ueq, Å2

I III

K 0 0 0.5 0.0204(1) Cs 0 0 0.5 0.0166(1)
Zn 0 0 0 0.0073(1) Mn 0 0 0 0.0106(1)
S 0.60871(7) 0.31795(6) 0.24169(4) 0.0063(1) S 0.56694(11) 0.31480(9) 0.23521(6) 0.0100(1)
O(1) 0.7871(3) 0.1201(2) 0.2045(2) 0.0111(2) O(1) 0.7250(4) 0.1087(3) 0.1825(2) 0.0158(3)
O(2) 0.3470(3) 0.2850(2) 0.1026(2) 0.0113(2) O(2) 0.3019(4) 0.2887(3) 0.1278(3) 0.0207(4)
O(3) 0.7799(3) 0.5541(2) 0.2690(2) 0.0137(2) O(3) 0.7238(4) 0.5391(3) 0.2448(3) 0.0204(4)
O(4) 0.5069(3) 0.3013(2) 0.4061(1) 0.0118(2) O(4) 0.4989(5) 0.3082(3) 0.4022(3) 0.0207(4)
O(5) 0.2026(3) 0.7896(2) 0.1492(2) 0.0116(2) O(5) 0.1785(5) 0.7717(4) 0.1439(3) 0.0199(4)
H(1) 0.509(15) 0.445(11) 0.469(8) 0.02(1) H(1) 0.497(15) 0.445(10) 0.479(9) 0.02(1)
H(2) 0.0900(10) 0.673(8) 0.157(5) 0.04(1) H(2) 0.0300(22) 0.659(18) 0.175(12) 0.07(2)
H(3) 0.362(13) 0.732(11) 0.131(7) 0.06(1) H(3) 0.359(12) 0.736(10) 0.164(7) 0.03(1)
II IV
K 0 0 0.5 0.0306(1) K 0 0 0.5 0.0268(4)
Mn 0 0 0 0.0095(1) Mg 0 0 0 0.0104(4)
S 0.61755(6) 0.32218(5) 0.24745(3) 0.0087(1) Se 0.62029(8) 0.31979(7) 0.24200(5) 0.0093(2)
O(1) 0.7943(2) 0.1305(2) 0.2119(1) 0.0154(2) O(1) 0.8117(7) 0.1076(6) 0.2047(4) 0.0138(7)
O(2) 0.3635(2) 0.2851(2) 0.1083(1) 0.0154(2) O(2) 0.3391(7) 0.2828(6) 0.0942(4) 0.0141(7)
O(3) 0.7833(2) 0.5586(2) 0.2758(1) 0.0189(2) O(3) 0.8079(8) 0.5808(6) 0.2724(5) 0.0179(7)
O(4) 0.5159(2) 0.3034(2) 0.4089(1) 0.0153(2) O(4) 0.5094(8) 0.2994(6) 0.4172(4) 0.0149(7)
O(5) 0.2010(2) 0.7766(2) 0.1505(1) 0.0162(2) O(5) 0.2086(8) 0.7919(7) 0.1301(5) 0.0148(7)
H(1) 0.510(11) 0.448(8) 0.466(6) 0.02(1) H(1) 0.569(29) 0.464(27) 0.471(16) 0.02(1)
H(2) 0.101(7) 0.668(6) 0.174(4) 0.044(7) H(2) 0.125(17) 0.696(14) 0.160(9) 0.02(2)
H(3) 0.348(8) 0.715(6) 0.137(4) 0.048(8) H(3) 0.369(24) 0.732(18) 0.100(12) 0.04(2)
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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Table 3.  Interatomic distances d (Å) in the crystal structures of MIMII[H(XO4)2](H2O)2

(d) I (d) II (d) III (d) IV (d) V [7]**

MI(r, Å)* K (1.55) K (1.55) Cs (1.81) K (1.51) K (1.55)

MII(r, Å)* Zn (0.745) Mn (0.820) Mn (0.820) Mg (0.720) Mg (0.720)

X S S S Se S

MII–O(1) 2.081(1) 2.161(1) 2.153(2) 2.073(4) 2.069(2)

MII–O(2) 2.080(1) 2.156(1) 2.138(2) 2.067(4) 2.051(2)

MII–O(5) 2.077(1) 2.175(1) 2.186(2) 2.057(4) 2.068(2)

MII–O (average distance) 2.079 2.164 2.159 2.066 2.066

MI–O (range) 2.71–3.16 2.72–3.21 3.13–3.26 2.71–3.14 2.76–3.22

MI–O (average distance) 2.958 2.990 3.192 2.917 2.991

X–O(1) 1.464(2) 1.464(1) 1.466(2) 1.624(3) 1.465(2)

X–O(2) 1.467(2) 1.466(1) 1.465(2) 1.623(3) 1.458(2)

X–O(3) 1.452(2) 1.453(1) 1.446(2) 1.617(4) 1.452(2)

X–O(4) 1.510(2) 1.512(1) 1.511(2) 1.673(4) 1.508(2)

O(4)–H(1) ⋅ ⋅ ⋅O(4')*** 2.451(3) 2.461(2) 2.444(4) 2.476(7) 2.478(3)

O(5)–H(2) ⋅ ⋅ ⋅O(3'')*** 2.695(2) 2.701(2) 2.813(3) 2.707(6) 2.738(3)

* Radii of the cations for M I (c.n. 10), MII (c.n. 6), and K+ (c.n. 8) in IV were taken from [10].
** The scheme of atomic numbering for the O and H atoms is brought into correspondence with that used in this study.

*** The O ⋅ ⋅ ⋅O distances in hydrogen bonds. The symmetry codes for the O(4') and O(3'') atoms: 1 – x, 1 – y, 1 – z and x – 1, y, z, respectively.
Zn–Se, and K–Mg–Se triads did not result in the
growth of bimetallic hydrogen chalcogenates. Instead,
basic or acid salts of MI and MII metals or their mixtures
were detected by X-ray powder diffraction analysis in
the crystallization products.

X-ray diffraction study. X-ray diffraction data for
single crystals of I–IV were collected at a low temper-
ature on an automated four-circle STADI-4 (Stoe) dif-
fractometer (MoKα radiation, graphite monochromator,
λ = 0.71073 Å, ω–2θ scan technique). The crystallo-
graphic characteristics and details of the structure
refinement are given in Table 1. Either the numerical
absorption corrections taking into account the real crys-
tal shape (III) or the empirical absorption corrections
with the use of ψ-scan data for four to six reflections
(I, II, and IV) were applied.

The coordinates of the non-hydrogen atoms were
determined by the direct method [8] and then were
refined by the full-matrix least-squares method with the
anisotropic thermal parameters [9]. The positions of
hydrogen atoms in the structures of I–IV were revealed
from difference electron-density syntheses and refined
by the least-squares method with the isotropic thermal
parameters. One of three independent hydrogen atoms,
H(1), appeared to be disordered over two positions
around the center of inversion. The atomic coordinates
in the structures of I–IV and their equivalent (isotropic
for H atoms) thermal parameters are given in Table 2.
Since all the compounds are isostructural, we used the
unified atom numbering scheme. The interatomic dis-
C

tances for the coordination environments around the
MI, MII, and X atoms and the hydrogen bond lengths are
listed in Table 3.

RESULTS AND DISCUSSION

X-ray diffraction analysis demonstrated that hydro-
gen salt hydrates I–IV are isostructural to each other
and to the salt KMg[H(SO4)2](H2O)2 (V) studied earlier
[7]. The linear unit cell parameters vary according to
the relative sizes of the cations (MI and MII [10]) and
XO4 anions (Table 1). The large MI cations (K and Cs),
smaller MII cations (Zn, Mn, and Mg), compact XO4
anions (X = S and Se), and water molecules can be con-
sidered as structural blocks (figure). The centrosym-
metric coordination environment around the MI cations
is formed by the O atoms of the XO4 groups located at
shorter distances and the O(H) and Ow atoms located at
longer distances (Table 3). If the size of the coordina-
tion polyhedron is limited by the maximum K–O dis-
tance (3.25 Å), the coordination number of the potas-
sium atom in the structures of I, II, and V is equal to 10,
whereas the coordination number of this atom in the
structure of IV is equal to 8 (the K–Ow distance is
3.43 Å). In the structure of III containing the Cs atom
with the coordination number 10, the corresponding
distances are substantially larger in accordance with its
larger, ionic radius.

The centrosymmetrical octahedral coordination
about the MII cations is formed by four O atoms of the
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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XO4 groups [O(2) and O(3)] and two O(5) atoms of the
water molecules. The MII–O bond lengths have close
values. The average MII–O distances depend on the
ionic radius of the metal atom. In the XO4-tetrahedra,
the X–O bond lengths are determined by the nature of
the chalcogen atom and the additional structural func-
tions of the oxygen atoms. On the whole, the S–O
bonds are shorter by 0.16–0.17 Å than the analogous
Se–O bonds, which is consistent with the analogous
values observed in other structures containing XO4
anions [1]. The structures under consideration are char-
acterized by the presence of three X–O bonds of
approximately equal lengths, whereas the fourth X–
O(4) bond is noticeably longer (Table 3). The O(1) and
O(2) atoms are involved not only in the formation of the
X–O bonds but also in the coordination of the MII

atoms, which results in the virtually equal X–O(1) and
X–O(2) bond lengths. The O(3) atom acts as an accep-
tor (A) of the hydrogen atom in the O(5)–H(2)···O(3'')
hydrogen bond, whereas the X–O(3) bonds are slightly
shortened. The fact that the X–O bond length depends
more substantially on the coordination of the metal
atom (M) than on the acceptor function (A) is attributed
to the relatively small radii of the M2+ dications. The
structures of hydrogen chalcogenates containing sin-
gly-charged cations (K, Rb, or Cs) are characterized by
the inverse ratio of the effects exerted by the M and A
functions on the X–O bond lengths [1, 11]. Finally, the
largest X–O(4) bond length is associated with the par-
ticipation of the O(4) atom in the disordered O(4)–
H(1)···O(4') hydrogen bond, where it plays the role of a
half-donor (D) and half-acceptor of the H atom (1/2D +
1/2A).

The system of hydrogen bonds includes the short
O(4)–H(1)···O(4') bonds (2.44–2.48 Å) that link two
XO4-tetrahedra into a dimer with the formation of iso-
lated hydrated anions {[H(XO4)2](H2O)2}3–, and longer
O(5)–H(2)···O(3'') bonds (2.70–2.81 Å) between
dimers and water molecules. The H(1) atom involved in
the strong hydrogen bond is disordered around the
inversion center. In the structures of I–III, established
with a higher accuracy, the O(4)–H(1) and H(1)···O(4')
distances are 0.86–0.91 and 1.56–1.60 Å, respectively,
and the O(4)–H(1)···O(4') angles are 172°–175°. Ini-
tially, proceeding from difference Fourier syntheses,
we placed the H(1) atom in the structure of I into the
inversion center. However, the subsequent refinement
of the structure gave somewhat better results (the UH(1)
parameter) for a model containing the disordered H(1)
atom. Such disorder was also observed in structures II–
IV studied at low temperatures and in structure V at
room temperature [7]. One hydrogen atom of the water
molecule is involved in the O(5)–H(2)···O(3'') hydro-
gen bond, whereas another hydrogen atom, H(3), virtu-
ally does not participate in the hydrogen bonding,
apparently, because of the fact that the O(1)–O(4)
atoms perform some additional functions. A double
acceptor function (2A), which is quite common in the
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
structures of many acid salts, is not realized for the O(3)
atom, presumably, because the O(5)–H(3) bond is
directed toward the space between the oxygen atoms.

The M[H(XO4)2] salts with M = Na–Cs [12] are
rather similar to the structure type under consideration.
The structures of these salts are also characterized by
the formation of the [H(XO4)2] dimers via a symmetric
hydrogen bond. Some of these compounds (M = Rb or
Cs) undergo high-temperature phase transitions giving
rise to phases with high protonic conductivity [13, 14].
The absence of water molecules in their structures is

K

O(1)
O(4)

H(1)

O(2)

O(3)
H(2)

H(3)H(3)H(3)

O(5)O(5)O(5)

a

b c

b

ca

Crystal structure of KMn[H(SO4)2](H2O)2 (II) projected
along the a-axis (at the top) and the b-axis (at the bottom).
The coordination environments of Mn and S atoms are
shown as octahedra and tetrahedra, respectively. The disor-
dered H(1) atoms are indicated by empty circles.
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responsible for the higher thermal stability of these
compounds. In addition, the disordered arrangement of
the XO4-tetrahedra (necessary for the manifestation of
high proton conductivity) is not suppressed by the for-
mation of additional hydrogen bonds.

In the structures of hydrates that have close compo-
sitions, MII(HXO4)2 · H2O (MII = Mg, Mn, or Cd [2, 15,
16]), no hydrogen bonds between the anions are
formed, and the water molecules are both donors and
acceptors of the H atoms (from the HXO4 groups) in
hydrogen bonds. In the structures of MII(HXO4)2 con-
taining no water molecules, the hydrogen bonds

between the HX  anions lead to the formation of infi-
nite zigzag chains [17].
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Abstract—Double potassium indium and rubidium indium phosphates K3In(PO4)2 (I) and Rb3In(PO4)2 (II)
are synthesized by solid-phase sintering at T = 900°C. The compounds prepared are characterized by X-ray
powder diffraction (I and II), X-ray single-crystal diffraction (II), and laser-radiation second harmonic gener-
ation. Structure I is solved using the Patterson function and refined by the Rietveld method. Both compounds
crystallize in the monoclinic crystal system. For crystals I, the unit cell parameters are as follows: a =
15.6411(1) Å, b = 11.1909(1) Å, c = 9.6981(1) Å, β = 90.119(1)°, space group C2/c, Rp = 4.02%, and Rwp =
5.25%. For crystals II, the unit cell parameters are as follows: a = 9.965(2) Å, b = 11.612(2) Å, c = 15.902(3) Å,
β = 90.30(3)°, space group P21/n, R1 = 4.43%, and wR2 = 10.76%. Structures I and II exhibit a similar topology
of the networks which are built up of {In[PO4]2} (I) and {In2[PO4]4} (II) structural units. 

M3
I

INTRODUCTION

The crystal chemical features of double phosphates

of composition MIII(PO4)2 (where MI = K and Rb)
have been investigated in sufficient detail in the case of
scandium, yttrium, and rare-earth elements. These
compounds have been studied by different methods. It
has been demonstrated that phosphates containing rare-
earth elements hold considerable promise for use as
laser and luminescent materials [1–3]. All the known
double phosphates of composition K3MIII(PO4)2 are
structural analogues of arcanite β-K2SO4 (for MIII = Y,
La–Yb) or glaserite K3Na(SO4)2 (for MIII = Lu and Sc)
[2–5]. Double phosphates Rb3MIII(PO4)2 (where MIII =
Y, Dy–Lu) belong to the K3Na(SO4)2 structural type
[4, 6]. Among the double indium phosphates

In(PO4)2 , only the β and α modifications of the
compound Na3In(PO4)2 are known [7, 8]. The low-tem-
perature β modification of Na3In(PO4)2 belong to
arcanite-like phosphates. The same is also true for the
β-Na3MIII(PO4)2 compounds (where MIII = La–Lu),
whose structure is characterized by a combination of β-
K2SO4 and Na2CrO4 structural motifs [9]. The role
played by the structural motif of sodium chromate in
the structure of the Na3In(PO4)2 compound increases
upon the β  α polymorphic transition (T = 700°C).

Until very recently, double phosphates In(PO4)2

(where MI = K and Rb) were unknown. However, reli-
able information on the structure of these compounds is

M3
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I
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I
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required to elucidate how the size and structure of the
electron shell of the trivalent cation and the size of an

alkali cation affect the crystal structure of MIII(PO4)
phosphates in the series MIII = La– ··· –Lu–In–Sc–Fe.

In this respect, the purpose of the present work was
to synthesize the compounds K3In(PO4)2 (I) and
Rb3In(PO4)2 (II) and to perform the X-ray structure
investigation.

EXPERIMENTAL

Synthesis. The compounds K3In(PO4)2 (I) and
Rb3In(PO4)2 (II) were prepared by the solid-phase reac-
tion from stoichiometric amounts of In2O3 (chemically
pure), M2HPO4 (analytical grade), and M2CO3 (analyt-
ical grade) at a temperature of 900°C for 120 h. The
synthesis was carried out in alundum crucibles in air.
Every 24 hours, samples were ground in order to ensure
homogenization of the mixture. The completeness of
the reaction was controlled using X-ray diffraction. The
samples were annealed at higher temperatures (up to
T = 1250°C) with the aim of preparing single crystals
and elucidating the character of melting of the relevant
compounds. A rapid cooling of the melt of compound I
to temperatures below 1200°C and a slow cooling of
the melt of compound II from 950 to 900°C (at a rate
of 5 K/h) led to the formation of transparent, light yel-
low crystals in the form of prismatic needles with a
maximum length of 3 mm. The crystals prepared were

M3
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washed from the melt with a large amount of warm dis-
tilled water and dried in air at 50°C.

Attempts to synthesize these compounds under
hydrothermal conditions (T = 200°C and p = 20 atm) in
the range 7 ≤ pH ≤ 10 were unsuccessful. The hydroxo
phosphates MIIn(OH)PO4 (where MI = K and Rb) were
formed over the entire range of pH [10, 11]. It should
be noted that, in the case of compound II, we observed
the cocrystallization with a phase of unknown compo-
sition whose fraction decreased with an increase in pH.

X-ray powder diffraction analysis was performed
on an STOE diffractometer [Cu  radiation; λ =
1.5406 Å; SiO2 monochromator; 2θ step-scan mode;
step width, 0.02° in 2θ; 2θ = 5°–80°].

X-ray structure analysis. The crystal structures of
double phosphates were investigated using crystals of
K3In(PO4)2 (0.35 × 0.12 × 0.10 mm in size) and
Rb3In(PO4)2 (0.30 × 0.15 × 0.13 mm in size) that were
chosen with the use of a polarizing microscope and
mounted on the goniometer head of an Enraf–Nonius
CAD4 four-circle diffractometer (MoKα radiation,
graphite monochromator). The unit cell parameters
were determined with a sufficient number of well-
resolved reflections measured in the course of initial
data collection. In the case of single crystal I, among
the twenty five reflections observed, five reflections
were characterized by fractional indices hkl. This
allowed us to assume that the high-temperature phase
of compound I has a modulated crystal structure, which
was subsequently confirmed by the X-ray single-crystal
investigation [12]. However, the incommensurate mod-
ulated structure of single crystals I was not thoroughly
investigated because of the limited technical potentiali-
ties of the diffractometer used in our experiments. The
structure of single crystal II was solved and refined
using a complete X-ray diffraction analysis (room tem-
perature, ω–2θ scan mode). The initial processing of
the intensities of diffraction reflections was carried out
according to the XCAD [13] and PSICALC [14] soft-
ware packages (the Lorentz and polarization effects
were taken into account, and absorption correction was
introduced using the azimuthal scanning of reflections
with χ angles close to 90°). The space group P21/n
(no. 14) was uniquely determined from the conditions
for absences of reflections (h0l: h + l = 2n; 0k0 : k = 2n;
h00 : h = 2n; and 00l : l = 2n). The structure was solved
by the direct method and refined on F2 with the full-
matrix least-squares procedure in the isotropic approx-
imation and then in the anisotropic approximation for
all the atoms (according to the SHELXS97 [15] and
SHELXL97 [16] software packages). The final reliabil-
ity factors are as follows: R1 = 4.43% and wR2 =
10.76% for F and F2, respectively.

Intensities of experimental reflections used for
determining the structure of compounds I and II syn-
thesized at 900°C in the form of polycrystalline sam-
ples were collected on an STADI-P (STOE) powder

Kα1
C

diffractometer (transmission geometry, Cu  radia-
tion, λ = 1.5406 Å, germanium monochromator, posi-
tion-sensitive detector) for I and a SIEMENS D500
powder diffractometer (reflection geometry, Cu
radiation, SiO2 monochromator) for II. The scanning
was performed in the 2θ range 9(10)°–100° with a step
of 0.01(0.02)° and an exposure time of ~30 min per
point. The X-ray diffraction pattern of compound I was
initially indexed in the orthorhombic crystal system [a
= 15.638(1) Å, b = 11.192(1) Å, c = 9.694(1) Å, M20 =
38.7, and F20 = 67.8 (0.0085, 52)] with the use of the
TREOR90 program [17]. A closer examination of large-
angle reflections (2θ > 50°) revealed a monoclinic dis-
tortion of the unit cell with the angle β = 90.13°. The
conditions determined for the absences (hkl: h + k = 2n)
indicated two possible space groups, namely, the Cc
acentric (no. 9) and C2/c centrosymmetric (no. 15)
groups. The monoclinic unit cell parameters deter-
mined for compound II from the first 35 peaks [a =
9.967(1) Å, b = 11.616(1) Å, c = 15.902(1) Å, β =
90.32(1)°, M20 = 28.6, and F30 = 65.3 (0.0067, 69)] were
close to the corresponding parameters obtained for the
single crystal. The results of indexing of the X-ray dif-
fraction patterns of compounds I and II have been
deposited with the JCPDS–ICDD Powder Diffraction
File.

The peak profiles were described by the modified
(split-type) pseudo-Voigt function [18]. The back-
ground profile was approximated by the Chebyshev
polynomial. The X-ray diffraction patterns were
decomposed into individual peaks according to the full-
pattern-decomposition (FPD) procedure with the
MRIA software package [19]. In this case, the FPD reli-
ability factors were χ2 = 3.17% and Rp = 3.15% for
compound I and χ2 = 6.27% and Rp = 2.91% for com-
pound II. When solving crystal structure I, the heaviest
atoms (K, In, and P) were located by the Patterson
method with the use of 613 |F2 | values (according to the
DIRDIF96 program [20]). The positions of the oxygen
atoms were determined using a procedure with step-by-
step displacement (with a step of 0.7 Å for translations
along the a-, b-, and c-axes) and rotation (with a step of
20° for the ψ, ϕ, and κ angles) of the known fragment

(P  group) in the asymmetric part of the unit cell.
The starting model for the refinement of structure II
was based on the single-crystal data. The subsequent
refinement of both structures by the Rietveld method
with a gradual weakening of constraints on the bond
lengths in the tetrahedra resulted in satisfactory reliabil-
ity factors: χ2 = 4.88%, Rp = 4.02%, and Rwp = 5.25%
for compound I and χ2 = 7.82%, Rp = 3.83%, and Rwp =
5.16% for compound II. After the refinement of all
100 parameters for compound I and all 150 parameters
for compound II (these parameters included the struc-
tural, background, profile, and unit cell parameters and
also the scale factor and zero-point shift) within the

Kα1

Kα1

O4
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Fig. 1. Fragments of (1) calculated, (2) experimental, and (3) difference X-ray diffraction patterns and (4) positions of Bragg reflec-
tions for (a) K3In(PO4)2 and (b) Rb3In(PO4)2 compounds.
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Table 1.  Data collection and refinement parameters for K3In(PO4)2 and Rb3In(PO4)2 structures

Compound K3In(PO4)2 (powder) Rb3In(PO4)2 (crystal)

Diffractometer STADI-P (STOE) CAD-4 (Nonius)

Crystal system Monoclinic

Space group; Z C2/c, 8 P21/n, 8

2θ (θ) range, deg 8–100 (2θ) 2–26(θ)

Unit cell parameters, Å:

       a 15.6411(1) 9.965(2)

       b 11.1909(1) 11.612(2)

       c 9.6981(1) 15.902(2)

       β, deg 90.119(1) 90.30(3)

       V, Å3 1697.53(3) 1840.1(7)

Number of reflections 890 3625 [Rint = 0.023]

Number of unique reflections with I > 2σ(I) 2204

Number of refined parameters:

       structural 60

       other 40 253

Reliability factors, %:

χ2; Rp; 4.88; 4.02; 5.25

R1; w 4.43; 10.76

  * Rp = (Σ|yi, exp – yi, calcd|)(Σyi, exp); Rwp = {(Σwi[yi, exp – yi, calcd]2)/(Σwi[yi, exp]2)}1/2.

** R1 = Σ( |Fexp| – |Fcalcd|)/Σ|Fexp|; wR2 = [Σw( )2/Σw ]1/2, w–1 = σ2  + (0.041P)2, P = /3.

Rwp
*

R2
**

Fexp
2

Fcalcd
2

– Fexp
2( )

2
Fexp

2( ) Fexp
2

2Fcalcd
2

+( )
chosen model, the experimental and theoretical X-ray dif-
fraction patterns were in good agreement (Figs. 1a, 1b).

The crystal data and refinement parameters for
structures I and II are summarized in Table 1. The coor-
dinates of the basis atoms, thermal parameters, and
selected interatomic distances are listed in Tables 2
and 3.

Laser-radiation second harmonic generation in
powders of the compounds prepared was measured in a
reflection geometry with the use of an Nd : YAG laser
as a radiation source (λ = 1064 nm, frequency ν =
6.25 kHz, pulse duration τ = 12 ns, mean power W =
9.5 MW). Finely crystalline quartz was used as a refer-
ence sample.

RESULTS AND DISCUSSION

Double phosphate I crystallizes in the monoclinic
crystal system in the centrosymmetric space group
C2/c. The choice of this space group is in agreement
with the laser-radiation second harmonic generation
data [I2ω/  = 0.02]. For compound II, zero laser-
radiation second harmonic generation signal uniquely
confirms the choice of the centrosymmetric unit cell
(space group P21/n). All the atoms in structure II
occupy general positions, whereas two atoms in struc-

I2ω SiO2( )
C

ture I are located in special positions (on the twofold
axis). The mean In–O distances in InO6 octahedra
(2.141 and 2.155 Å in II and 2.136 Å in I) are typical
and comparable to those observed in other indium
phosphates [7, 8]. All the InO6 octahedra have a sub-
stantially distorted structure. It is seen from Table 3
that, in structure II, four In3+–O interatomic distances
in the In(1)O6 octahedron fall in the range 2.072–
2.150 Å and the distances to two oxygen atoms are
equal to 2.219 and 2.218 Å. In the In(2)O6 octahedron,
two distant oxygen atoms are located at distances of
2.251 and 2.231 Å. In structure I, the spread in the In3+–
O distances is larger and the two longest distances are
equal to 2.238 and 2.331 Å. This distortion of the
indium polyhedra is associated with the necessity of
attaining a balance of the bond valences at the oxygen
anions in the presence of common edges between the
InO6 octahedra and the PO4 tetrahedra (Fig. 2). The cal-
culated sums of bond valences [21] at the In(1) (3.18)
and In(2) (3.07) atoms in structure II and at the In atom
(3.33) in structure I agree well with the formal oxida-
tion number of indium.

The presence of two common oxygen atoms
between the P(1) and In atoms in structure I [P(1) and
In(1), P(4) and In(2) in structure II] is likely responsi-
ble for the insignificant distortion of the phosphate tet-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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Table 2.  Atomic coordinates and thermal parameters (Å2) for K3In(PO4)2 and Rb3In(PO4)2 compounds

Atom x y z Biso/Ueq × 102****

K3In(PO4)2

In 0.1251(1) 0.1377(1) 0.0747(1) 3.0(1)
K(1a)* 0.0918(2) 0.6085(3) 0.0966(4) 3.7(3)
K(1b)** 0.1828(3) 0.5985(4) 0.1009(6) 3.7(3)
K(2) 0.7532(1) 0.8824(2) 0.2915(2) 3.1(1)
K(3) 0 0.3755(4) 0.25 5.1(1)
K(4) 0 0.8854(3) 0.25 5.7(1)
P(1) 0.6525(1) 0.1498(3) 0.4274(3) 2.1(1)
P(2) 0.4001(1) 0.3684(2) 0.5835(3) 2.6(1)
O(11)*** 0.5925(3) 0.0579(4) 0.3625(5) 2.8(1)
O(12) 0.6357(3) 0.2730(3) 0.3690(5) 3.1(2)
O(13) 0.6338(3) 0.1545(4) 0.5831(4) 3.2(2)
O(14) 0.7448(2) 0.1135(4) 0.4025(6) 2.8(2)
O(21) 0.4914(2) 0.3299(4) 0.5557(6) 3.2(1)
O(22) 0.3914(3) 0.4192(4) 0.7298(5) 3.0(2)
O(23) 0.3416(3) 0.2588(5) 0.5724(6) 7.0(2)
O(24) 0.3718(4) 0.4623(4) 0.4798(5) 5.7(2)

Rb3In(PO4)2

In(1) 0.42228(7) 0.63098(7) 0.13117(5) 0.96(2)
In(2) 0.07342(7) 0.65243(7) –0.11421(5) 0.98(2)
Rb(1) 0.2938(1) 0.8802(1) –0.0079(1) 2.08(3)
Rb(2) 0.7397(1) 0.6071(1) 0.0009(1) 1.91(3)
Rb(3) –0.1002(1) 0.8785(1) 0.0837(1) 2.59(3)
Rb(4) 0.7889(1) 0.5991(1) 0.2464(1) 2.09(3)
Rb(5) 0.1137(1) 0.5841(1) 0.3281(1) 2.71(3)
Rb(6) 0.3126(1) 0.3640(1) 0.2427(1) 2.27(3)
P(1) 0.4351(3) 0.6378(3) 0.3548(2) 1.13(6)
P(2) 0.0808(3) 0.6214(3) 0.1017(2) 0.93(6)
P(3) 0.4145(3) 0.6333(3) –0.0943(2) 0.92(6)
P(4) 0.5550(3) 0.8408(2) 0.1624(2) 1.01(6)
O(11) 0.1209(8) 1.0422(7) 0.0884(5) 2.03(19)
O(12) 0.3986(9) 0.6066(7) 0.2643(5) 2.05(19)
O(13) 0.0891(7) 0.8440(6) –0.1333(5) 1.35(17)
O(14) –0.1250(8) 0.7408(7) –0.1229(5) 1.81(18)
O(21) 0.0326(8) 0.6994(7) 0.1708(5) 1.78(18)
O(22) 0.0120(8) 0.4846(7) –0.0943(5) 1.72(18)
O(23) 0.0791(8) 0.6893(7) 0.0183(5) 1.93(18)
O(24) 0.2242(8) 0.5742(7) 0.1215(5) 2.30(20)
O(31) 0.4428(9) 0.7449(6) –0.1397(5) 2.38(21)
O(32) 0.4373(9) 0.6494(8) 0.0001(5) 2.81(22)
O(33) 0.2704(8) 0.5914(8) –0.1105(5) 2.60(21)
O(34) 0.4903(8) 0.4626(7) 0.1249(5) 2.54(21)
O(41) 0.0755(9) 0.6221(7) –0.2471(5) 2.52(21)
O(42) 0.3911(9) 1.0655(7) –0.1051(5) 2.17(20)
O(43) 0.6176(7) 0.7210(6) 0.1448(4) 1.11(16)
O(44) 0.4023(7) 0.8198(7) 0.1480(5) 1.74(18)

* Occupancy of the K(1a) site is equal to 0.58(3).
** Occupancy of the K(1b) site is equal to 0.42(3).

*** Designations of oxygen atoms: the first numeral is the number of the tetrahedron, and the second numeral is the number of the oxygen
         atom in the tetrahedron.
**** The thermal parameters Biso are given for K3In(PO4)2, and the equivalent thermal parameters Ueq calculated as a one-third of the
         orthogonal tensor Uij are presented for Rb3In(PO4)2.
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Table 3.  Selected interatomic distances and angles in K3In(PO4)2 and Rb3In(PO4)2 structures

Distance d, Å Distance d, Å

K3In(PO4)2

In–O(12) 2.238(2) K(2)–O(11) 3.264(2)
O(13) 2.331(4) O(12) 2.637(2)
O(14) 2.064(1) O(13) 2.780(3)
O(21) 2.130(1) O(14) 2.804(3)
O(22) 2.017(3) O(22) 3.157(3)
O(24) 2.033(4) O(23) 2.539(2)

〈In–O〉 2.14 O(23') 3.351(3)
K(1a)–O(11) 2.965(4) O(24) 2.750(3)

O(11') 2.640(4) 〈K(2)–O〉 2.91
O(11'') 2.936(5) K(3)–O(11) × 2 2.728(3)
O(12) 3.291(4) O(13) × 2 2.670(3)
O(13) 3.019(6) O(21) × 2 2.975(4)
O(21) 3.163(6) O(23) × 2 3.368(3)
O(23) 2.571(4) 〈K(3)–O〉 2.94

〈K(1a)–O〉 2.94 K(4)–O(12) × 2 2.722(2)
K(1b)–O(11) 3.223(4) O(21) × 2 3.032(5)

O(11') 2.942(4) O(22) × 2 2.776(3)
O(13) 2.938(4) O(24) × 2 3.122(3)
O(14) 3.084(6) 〈K(4)–O〉 2.91
O(14') 3.206(3) P(2)–O(21) 1.615(5)
O(23) 2.487(6) O(22) 1.535(4)
O(23') 2.966(4) O(23) 1.534(2)

〈K(1b)–O〉 2.98 O(24) 1.520(3)
P(1)–O(11) 1.527(2) 〈P(2)–O〉 1.53

O(12) 1.513(3)
O(13) 1.540(4)
O(14) 1.520(5)

〈P(1)–O〉 1.53

Angle ω, deg Angle ω, deg

∠ (O(11)–P(1)–O(12)) 110.7(3) ∠ (O(21)–P(2)–O(22)) 110.8(3)
∠ (O(11)–P(1)–O(13)) 108.0(0) ∠ (O(21)–P(2)–O(23)) 108.8(2)
∠ (O(11)–P(1)–O(14)) 109.7(2) ∠ (O(21)–P(2)–O(24)) 110.6(3)
∠ (O(12)–P(1)–O(13)) 107.6(3) ∠ (O(22)–P(2)–O(23)) 107.9(3)
∠ (O(12)–P(1)–O(14)) 110.4(3) ∠ (O(22)–P(2)–O(24)) 109.2(3)
∠ (O(13)–P(1)–O(14)) 110.3(3) ∠ (O(23)–P(2)–O(24)) 109.5(3)
〈∠ (O–P(1)–O)〉 109.5 〈∠ (O–P(2)–O)〉 109.5

Rb3In(PO4)2

In(1)–O(12) 2.150(8) In(2)–O(13) 2.251(7)
O(24) 2.086(8) O(14) 2.231(8)
O(32) 2.101(8) O(22) 2.067(8)
O(34) 2.072(8) O(23) 2.150(8)
O(43) 2.219(7) O(44) 2.088(8)
O(44) 2.218(8) O(41) 2.143(8)

〈In(1)–O〉 2.141 〈In(2)–O〉 2.115
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Table 3.  (Contd.)

Distance d, Å Distance d, Å

Rb3In(PO4)2

Rb(1)–O(11) 2.995(8) Rb(2)–O(14) 2.851(8)
O(13) 2.876(7) O(22) 3.070(8)
O(23) 3.110(8) O(22') 3.423(8)
O(31) 3.017(8) O(24) 2.890(9)
O(32) 3.041(9) O(32) 3.054(9)
O(42) 2.824(8) O(32') 3.461(9)
O(44) 2.790(8) O(33) 2.893(9)

〈Rb(1)–O〉 3.093 O(34) 3.140(9)
Rb(3)–O(11) 2.886(8) O(43) 2.915(7)

O(11') 2.956(9) 〈Rb(2)–O〉 3.077
O(13) 3.319(8) Rb(4)–O(13) 2.845(7)
O(21) 2.824(8) O(21) 2.955(8)
O(23) 3.020(8) O(22) 3.284(8)
O(42) 2.992(9) O(31) 2.981(8)
O(43) 3.496(7) O(33) 3.146(8)

〈Rb(3)–O〉 3.07 O(41) 2.903(8)
Rb(5)–O(11) 2.990(8) O(42) 3.200(8)

O(12) 3.032(9) O(43) 2.739(7)
O(21) 2.947(8) 〈Rb(4)–O〉 3.007
O(31) 2.667(8) Rb(6)–O(11) 3.467(8)
O(42) 3.015(8) O(12) 2.964(8)
O(44) 3.097(8) O(14) 2.927(8)

〈Rb(5)–O〉 2.958 O(21) 2.812(8)
P(1)–O(11) 1.521(8) O(24) 3.229(8)

O(12) 1.527(8) O(31) 3.204(8)
O(13) 1.560(8) O(34) 2.827(9)
O(14) 1.573(8) O(44) 2.813(8)

〈P(1)–O〉 1.545 〈Rb(6)–O〉 3.03
P(3)–O(31) 1.510(8) P(2)–O(21) 1.504(8)

O(32) 1.529(8) O(22) 1.543(8)
O(33) 1.537(8) O(23) 1.544(8)
O(34) 1.543(8) O(24) 1.561(8)
〈P(3)–O〉 1.530 〈P(2)–O〉 1.538

P(4)–O(41) 1.515(8)
O(42) 1.520(8)
O(43) 1.550(7)
O(44) 1.556(7)

〈P(4)–O〉 1.535
Angle ω, deg Angle ω, deg

∠ (O(11)–P(1)–O(12)) 107.7(5) ∠ (O(21)–P(2)–O(22)) 110.1(5)
∠ (O(11)–P(1)–O(13)) 112.9(5) ∠ (O(21)–P(2)–O(23)) 108.5(4)
∠ (O(11)–P(1)–O(14)) 111.5(5) ∠ (O(21)–P(2)–O(24)) 111.1(5)
∠ (O(12)–P(1)–O(13)) 112.0(5) ∠ (O(22)–P(2)–O(23)) 109.8(5)
∠ (O(12)–P(1)–O(14)) 109.7(5) ∠ (O(22)–P(2)–O(24)) 106.5(5)
∠ (O(13)–P(1)–O(14)) 103.1(4) ∠ (O(23)–P(2)–O(24)) 111.0(5)
〈∠ (O–P(1)–O)〉 109.5 〈∠ (O–P(2)–O)〉 109.5
∠ (O(31)–P(3)–O(32)) 109.7(5) ∠ (O(41)–P(4)–O(42)) 108.6(5)
∠ (O(31)–P(3)–O(33)) 111.6(5) ∠ (O(41)–P(4)–O(43)) 112.0(5)
∠ (O(31)–P(3)–O(34)) 110.6(5) ∠ (O(41)–P(4)–O(44)) 108.1(5)
∠ (O(32)–P(3)–O(33)) 109.7(5) ∠ (O(42)–P(4)–O(43)) 113.0(4)
∠ (O(32)–P(3)–O(34)) 108.0(5) ∠ (O(42)–P(4)–O(44)) 111.9(5)
∠ (O(33)–P(3)–O(34)) 107.1(5) ∠ (O(43)–P(4)–O(44)) 103.1(4)
〈∠ (O–P(3)–O)〉 109.5 〈∠ (O–P(4)–O)〉 109.5
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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Fig. 2. A fragment of the crystal structure of the Rb3In(PO4)2 compound. Bonds and atoms in the form of thermal ellipsoids at a
50% probability level are shown schematically.

In(1)
rahedra (Table 3). The mean P–O distances correlate
well with the sum of the relevant ionic radii (according
to Shannon [22]).

The skeleton of structure I is a three-dimensional
network consisting of InO6 octahedra (isolated from
each other) and PO4 tetrahedra shared by vertices and
edges. The network is built up of the characteristic
structural units {In[PO4]2} formed by three symmetri-
cally independent polyhedra: one InO6 octahedron and
two PO4 tetrahedra. In the xy plane, these units are
linked together into parallel columns with the forma-
tion of pseudolayers. The columns of one pseudolayer
are rotated with respect to the columns of the other
pseudolayer, alternate along the z-axis, and form the
{In[PO4]2}∞ framework (Fig. 3a). In structure II, the
topologically identical framework of the same compo-
sition is comprised of six symmetrically independent
polyhedra: two InO6 octahedra and four PO4 tetrahedra
(Fig. 3b). The P(2)O4 tetrahedra in I [the P(2)O4 and
P(3)O4 tetrahedra in II] are involved in the bonding of
the columns of adjacent pseudolayers. At the same
time, the P(1)O4 tetrahedra that have common edges
with the indium polyhedra in I [the P(1)O4 and P(4)O4

tetrahedra in II] are responsible for the formation of
columns. Along the main crystallographic directions,
C

the channels are formed in the structures. The size and
shape of these channels are governed by alkali cations.

In structure I, five crystallographically independent
potassium atoms, as a rule, have an eightfold coordina-
tion. The sole exception is provided by the K(1a)O7 and
K(1b)O7 polyhedra (Table 3). Their oxygen environ-
ment is characterized by two coordination spheres. The
first coordination sphere is composed of four to six oxy-
gen atoms located at distances of 2.487–3.084 Å. The
second coordination sphere consists of two or three
more distant oxygen atoms (3.122–3.368 Å). The
K(1a) and K(1b) atoms statistically occupy two sites
separated by a distance of 1.47 Å with occupancies of
0.58(3) and 0.42(3), respectively. Allowance made for
this splitting of the K(1) position into two positions in
the refinement of structure I leads not only to a consid-
erable decrease in the factor Rp from 5.39 to 4.02% and
a decrease in the thermal parameter Biso for the K(1)
atom from 12.5 to 3.7 Å2 for each split position but also
results in a certain increase in the anomalously short
distance K(1)–O(23) from 2.394 Å to 2.571 Å for
K(1a)–O(23) and to 2.487 Å for K(1b)–O(23). Most
likely, this is responsible for the modulation of atomic
positions in the structure of the high-temperature phase
of compound I, which was obtained in the form of sin-
gle crystals upon rapid cooling of the stoichiometric
melt K3In(PO4)2 to temperatures below 1200°C.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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MI

InO6

PO4

(‡) (b)

b

a

b

c

Fig. 3. Projections of the crystal structures of (a) K3In(PO4)2 and (b) Rb3In(PO4)2 compounds along the z- and x-axes.
In structure II, six crystallographically independent
rubidium atoms form polyhedra with different coordi-
nation numbers (from 6 to 9). The Rb(5) atom is located
in a distorted octahedron. This fact itself is very unusual
because a coordination number of 6 is not characteristic
of the environment of large-sized alkali cations (Rb+

and Cs+). In this case, the sixfold coordination can be
associated with the position of the Rb(5) atom in the
framework in which this atom, like the Rb(3) atom,
occupies a niche between the columns of the pseudola-
yer. Similar positions of MI cations in structure I are
occupied by the K(1a) and K(1b) atoms, whereas the
other atoms are located in the channels of the struc-
tures. In the Rb(5)O6 polyhedron, the distances from
the Rb(5) atom to five oxygen atoms vary from 2.947 to
3.097 Å and one oxygen atom is located at an anoma-
lously short distance of 2.667 Å. Note that the contribu-
tion from this short Rb–O contact to the sum of the
bond valences at the Rb(5) atom is equal to 0.34. The
coordination numbers of the Rb(1) and Rb(3) atoms are
equal to 7 (7 and 6 + 1, respectively). In the Rb(1)O7

polyhedron, the distances from the Rb(1) atom to all
seven oxygen atoms lie in the range 2.824–3.11 Å. At
the same time, in the Rb(3)O7 polyhedron, the distances
from the Rb(3) atom to six oxygen atoms range from
2.824 to 3.319 Å and the seventh oxygen atom is
located at a distance of 3.496 Å. According to Donnay
and Allmann [23], this distance exceeds the limiting
Rb–O bond length (3.42 Å). The contribution from this
oxygen atom only slightly affects the sum of the bond
valences at the Rb(3) atom and is equal to 0.04. The
Rb(4) and Rb(6) atoms form eight-vertex polyhedra in
which two coordination spheres can be distinguished.
The nearest environment of these atoms is formed by
five oxygen atoms located at distances of 2.739–2.981
and 2.8224–2.964 Å. The second coordination spheres
YSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
each involve three oxygen atoms at distances of 3.146–
3.284 and 3.204–3.467 Å. The nine-vertex polyhedron
Rb(2)O9 has a more complex geometry of the oxygen
environment. In this case, it is possible to separate three
rubidium coordination spheres (4 + 3 + 2), among
which two oxygen atoms of the third sphere are located
at distances of 3.423 and 3.461 Å. All the rubidium
polyhedra are shared either by oxygen edges or by ver-
tices. This permits us to draw the inference that the net-
work composed of rubidium atoms is formed in the
structure. The sums of the bond valences at the Rb(1)–
Rb(6) atoms fall in the range 0.94–1.18, which is in
agreement with the formal oxidation number of rubid-
ium.

Therefore, the replacement of the K+ cation by the
larger sized Rb+ cation is accompanied by an increase
in the number of crystallographically independent posi-
tions of MI atoms and a change in the coordination
numbers and geometry of the MIOx coordination poly-
hedra. Moreover, unlike structure I, structure II is char-
acterized by the complete occupation of sites by alkali
cations. A comparison between the structures of double

phosphates In(PO4)2 (where MI = K and Rb) dem-
onstrates that, despite the lowering of the symmetry of
the unit cell, the framework structures remain topolog-
ically similar.

It is of interest to compare the structural data

obtained in our work for phosphates In(PO4)2

(where MI = K and Rb) with the data available in the lit-
erature for the compounds Na3In(PO4)2, K3MIII(PO4)2

(where MIII = Y, La–Lu, Sc), and Rb3MIII(PO4)2 (where
MIII = Y, Dy–Lu) [2–8]. The structural transformations
in the previously known compounds with layered struc-
tures correlate with the ionic radii of cations. It seems

M3
I

M3
I
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likely that no clear similarity in the structures of the β-
Na3In(PO4)2, K3In(PO4)2, and Rb3In(PO4)2 compounds
is observed because of the substantial difference
between the ionic radii of sodium and potassium
(rubidium). For like compounds, such as K3MIII(PO4)2

and Rb3MIII(PO4)2 , the structural topology almost com-
pletely depends on the radius of the MIII cation. In this
regard, the series K3MIII(PO4)2 is most significant. The
crossover from an arcanite-like structure (typical of the
majority of rare-earth elements) to a glaserite-like
structure occurs upon changing over from ytterbium to
lutecium in the lanthanide series and is attended by a
rise in the symmetry of the unit cell from monoclinic
(MIII = Y, Na–Yb) to trigonal (MIII = Lu and Sc). The lat-
ter symmetry is also observed in the case of the com-
pounds Rb3MIII(PO4)2 (where MIII = Y, Dy–Lu). The

compounds In(PO4)2 (where MI = K and Rb) have
specific structures of the framework type. On the other
hand, judging only from the size factor [i.e., from the
difference ∆r between the ionic radii of M+ and In3+

(rVI = 0.79 Å), Lu3+ (rVI = 0.85 Å), and Sc3+ (rVI =
0.745 Å)], the indium compounds should belong to lay-
ered (glaserite-like) phosphates that are stable in the
range 0.38 Å ≤ ∆r ≤ 0.89 Å [24]. The difference

between the crystal structures of In(PO4)2 com-

pounds and the glaserite-like structures of Lu(PO4)2

(where MI = K and Rb) and K3Sc(PO4)2 is most likely
associated with the specific features of the electronic
structure of scandium, indium, and lutecium atoms.
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Abstract—Crystals of Ca[CoIII(Nta)(Pic)]2 · 6H2O (I) (where Nta3– and Pic– are the nitrilotriacetate and picoli-
nate ions, respectively) are prepared and characterized by the X-ray diffraction technique. Crystals I are mon-
oclinic, a = 18.599(4) Å, b = 12.556(3) Å, c = 14.042(3) Å, β = 102.90(3)°, V = 3196(1) Å3, Z = 4, space
group P21/c, R1 = 0.0278, wR2 = 0.0716, and Goof = 1.054 for 4982 reflections with I > 2σ(I). Structure I is
built of the {Ca(H2O)4[Co(Nta)(Pic)]2}1∞ polymer ribbons and molecules of crystallization water. One of the
two symmetrically independent anionic complexes (B) is included in the chain and alternates with cationic
units, whereas the other anionic complex (A) forms a branch of this chain. The cationic and anionic units are
interlinked via the interactions of the Ca2+ cations with the carbonyl atoms of the main (Nta3–) and additional (Pic–

) ligands. The octahedral environment of the Co(III) atoms consists of donor atoms of the Nta3– (N + 3O) and
Pic– (N + O) ligands. The coordination polyhedron of the Ca atom (pentagonal bipyramid) includes two carbo-
nyl O atoms of two Nta3– ligands, one OPic atom, and four Ow atoms of water molecules. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Structural studies of transition metal (M) mixed-
ligand complexes with monoaminocarboxylate (L) and
additional (L') ligands have revealed that, at the ratio
nM : nL = 1 : 1, donor atoms of the L ligand occupy only
some of the sites in the coordination sphere of the metal
atom and the remaining sites are occupied by atoms of
the L' ligands [1]. In the presence of alkaline-earth cat-
ions (M'), the monoaminocarboxylate ligands, whose
coordination capacity is potentially low, often form
polymeric structures due to interactions between M'
cations and éL oxygen atoms of the ligands.

The structures of Co(III) mixed-ligand aminocar-
boxylates, namely, Ca[Co(Nta)(En)(CN)]2 · 6H2O (II)
[2], Ba[Co(Nta)(CN)2] · 3H2O (III) [3], and
Ba[Co(Nta)(Gly)]ClO4 · 4H2O (IV) [4], where L' is eth-
ylenediamine (En), cyanide ion (CN–), or glycinate ion
(Gly–), were reported earlier. In our recent work [5], we
investigated the structure of Ca[Co(Nta)(ç2é)]2 · 4H2O
(V) and revealed that, in the absence of additional
ligands, the coordination sphere of the Co(II) atom
includes, apart from the donor atoms of the Nta3–

ligand, a water molecule and the terminal O atom of an
1063-7745/02/4705- $22.00 © 20783
adjacent ligand. The latter bond links the anions into
chains.

In order to determine the structural functions of the
main and additional ligands and the role of the Ca2+ cat-
ions in the crystal structure formation, we performed an
X-ray structure analysis of Ca[CoIII(Nta)(Pic)]2 · 6H2O
(I), where Nta3– and Pic– are the nitrilotriacetate

(N(CH2COO ) and picolinate (pyridine-2-carboxy-
late, NC5H4COé–) ions, respectively.

EXPERIMENTAL

Synthesis. Crystals I were prepared as follows. A
solution of CoCl2 · 6H2O containing an excess of
hydrogen peroxide was cooled to 0°C and added drop-
wise to a mixture with an equimolar amount of H3Nta
and a fourfold amount of KHCO3. After vigorous gas
evolution, the [Co(Nta)(CO3)]2– ions, which imparted a
blue color to the solution, were formed. When the gas
evolution terminated, picolinic acid (1 equivalent) was
added to the solution. Heating of the mixture to 60°C
resulted in a change in its color to dark rose, which is
typical of [CoIIINta(Pic)]– ions with nitrogen atoms of
the main and additional ligands in the trans positions.

)3
3–
002 MAIK “Nauka/Interperiodica”
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Fig. 1. A link of the {Ca(H2O)4[Co(Nta)(Pic)]2}1∞ ribbon in structure I.

O(6'a)
The solution was passed through a Sephadex G-10 col-
umn to remove low-molecular admixtures (KCl and
others) and a column packed with a Sephadex DEAF-
25 anion-exchange resin in the Cl– form to separate the
target ions from other complexes ([Co(Pic)3] and
[Co(Nta)2]3–). A rose band of trans-N-[Co(Nta)(Pic)]–

anions was eluated with a CaCl2 solution (0.05 mol/l).
The violet cis-N-[Co(Nta)(Pic)]– ions, which should be
eluated before the trans-N isomer, were not observed in
the column. Concentration of the eluate led to the pre-
cipitation of Ca[CoIII(Nta)(Pic)]2 · 6H2O (I) crystals.

X-ray diffraction study. Crystals I
(C24H32N4O22Co2Ca1) are monoclinic; a = 18.599(4) Å,
b = 12.556(3) Å, c = 14.042(3) Å, β = 102.90(3)°, V =
3196(1) Å3 , ρcalcd = 1.842 g/cm3, µåÓ = 1.30 mm–1,
Z = 4, and space group P21/c.

The diffraction data were obtained on an Enraf–
Nonius CAD4 diffractometer (MoKα radiation, graph-
ite monochromator, ω scan mode, θmax = 27°). The
structure was solved by the direct method. The calcula-
tions were performed with the SHELX86 [6] and
SHELX97 [7] program packages. The non-hydrogen
atoms were refined by the least-squares procedure in
the anisotropic approximation. The hydrogen atoms
were located from the difference Fourier synthesis and
refined in the isotropic approximation. The hydrogen
atoms of the w5 and w6 water molecules were refined
in a rider model with Uiso values 1.2 times larger than
the Ueq values of the Ow(5) and Ow(6) atoms. The refine-
ment led to the following discrepancy factors: R1 =
0.0479, wR2 = 0.0775, and Goof = 1.054 for all the
6326 unique reflections; R1 = 0.0278, wR2 = 0.0716,
and Goof = 1.054 for 4982 reflections with I > 2σ(I).
The residual electron density lies between –0.370 and
0.392 e/Å3 .
C

The atomic coordinates and thermal parameters (Ueq
or Uiso) are listed in Table 1, and selected bond lengths
are given in Table 2.

RESULTS AND DISCUSSION

The structure of mixed-ligand complex I is built of
the {Ca(H2O)4[Co(Nta)(Pic)]2}1∞ zigzag chains and
crystallization water molecules. The structural formula
of I is {Ca(H2O)4[Co(Nta)(Pic)]2}1∞ · 2H2O.

The Co(III) atoms occupy two symmetrically inde-
pendent positions and form anionic complexes (A and
B, Fig. 1) of the same composition, [Co(Nta)(Pic)]–.
The B anionic complex is included in the
{Ca(H2O)4[Co(2) · (Nta)(Pic)]  zigzag chain run-
ning along the twofold screw axis 21, and the A anionic
complex, [Co(1)(Nta)(Pic)]–, forms a branch of this
chain. The anionic and cationic units that alternate in
the chain are linked via the interactions between the
Ca2+ cation and the carbonyl O(6'a) and O(8') atoms of
the neighboring B complexes. The A anionic fragments
are linked to the chains by the Ca–O(6) bonds to form
broad ribbons (Fig. 2). All the Ca–O interactions are
due to a bidentate bridging function of three carboxy-
late groups. A similar manner of formation of branched
chains is observed in the structure of Ca[FeIII(Edds)]2 ·
8H2O (VI) (where Edds4– is the ethylenediaminedisuc-
cinate anion) [8]; however, in this case, the chains are
more compact.

In structure I, two Co(III) polyhedra have identical
octahedral structures. The environment of the Co(1)
and Co(2) atoms consists of donor atoms of the Nta3–

(N + 3O) and Pic– (N + O) ligands. In the A and B com-
plexes, the N atoms of the main and additional ligands
are located in the trans positions, as is the case in struc-
tures II and IV.

}1∞
+
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Table 1.  Atomic coordinates and thermal parameters in structure I

Atom x/a y/b z/c Ueq/Uiso, Å2

Co(1) 0.56494(2) 0.04385(2) 0.71643(2) 0.0180(1)
Co(2) 0.05025(2) 0.32887(2) 0.68872(2) 0.0166(1)
Ca(1) 0.23626(2) 0.00169(4) 0.72005(3) 0.0209(1)
O(1) 0.5469(1) 0.1577(1) 0.6251(1) 0.0255(4)
O(2) 0.5553(1) 0.3341(2) 0.6331(1) 0.0363(4)
O(3) 0.5835(1) –0.0581(1) 0.8177(1) 0.0258(4)
O(4) 0.6022(1) –0.0658(2) 0.9796(1) 0.0376(5)
O(5) 0.4702(1) –0.0122(1) 0.6641(1) 0.0227(4)
O(6) 0.3538(1) –0.0041(1) 0.6764(1) 0.0303(4)
O(7) 0.6596(1) 0.1046(1) 0.7655(1) 0.0252(4)
O(8) 0.7706(1) 0.1152(2) 0.7317(1) 0.0352(4)
O(1') 0.0961(1) 0.3703(1) 0.8175(1) 0.0236(4)
O(2') 0.1276(1) 0.2966(2) 0.9648(1) 0.0364(5)
O(3') –0.0029(1) 0.2785(1) 0.5667(1) 0.0250(4)
O(4') –0.0702(2) 0.1428(2) 0.5007(2) 0.0590(7)
O(5') –0.0226(1) 0.4341(1) 0.6837(1) 0.0227(4)
O(6') –0.1302(1) 0.4639(1) 0.7213(1) 0.0334(4)
O(7') 0.1245(1) 0.2232(1) 0.6961(1) 0.0233(4)
O(8') 0.2379(1) 0.1978(1) 0.6748(1) 0.0273(4)
N(1) 0.5216(1) 0.1313(2) 0.8009(1) 0.0212(4)
N(2) 0.6136(1) –0.0396(2) 0.6358(1) 0.0216(4)
N(1') –0.0081(1) 0.2340(2) 0.7474(1) 0.0197(4)
N(2') 0.1136(1) 0.4134(2) 0.6283(1) 0.0187(4)
C(1) 0.5367(1) 0.2430(2) 0.7740(2) 0.0286(6)
C(2) 0.5467(1) 0.2484(2) 0.6695(2) 0.0233(5)
C(3) 0.5597(2) 0.0988(2) 0.9022(2) 0.0291(6)
C(4) 0.5828(1) –0.0174(2) 0.9020(2) 0.0258(5)
C(5) 0.4411(1) 0.1064(3) 0.7810(2) 0.0335(6)
C(6) 0.4190(1) 0.0244(2) 0.7020(2) 0.0216(5)
C(7) 0.7095(1) 0.0749(2) 0.7203(2) 0.0248(5)
C(8) 0.6856(1) –0.0150(2) 0.6493(2) 0.0224(5)
C(9) 0.7314(2) –0.0666(2) 0.5995(2) 0.0311(6)
C(10) 0.7018(2) –0.1449(2) 0.5327(2) 0.0345(6)
C(11) 0.6277(2) –0.1689(2) 0.5184(2) 0.0317(6)
C(12) 0.5846(1) –0.1147(2) 0.5711(2) 0.0253(5)
C(1') 0.0412(1) 0.2035(2) 0.8430(2) 0.0239(5)
C(2') 0.0924(1) 0.2963(1) 0.8798(1) 0.0234(5)
C(3') –0.0277(2) 0.1454(1) 0.6755(1) 0.0269(5)
C(4') –0.0358(2) 0.1907(1) 0.5725(1) 0.0290(6)
C(5') –0.0740(1) 0.2945(1) 0.7617(1) 0.0266(5)
C(6') –0.0772(1) 0.4054(1) 0.7188(1) 0.0223(5)
C(7') 0.1826(1) 0.2540(1) 0.6692(1) 0.0200(5)
C(8') 0.1778(1) 0.3644(1) 0.6277(1) 0.0188(5)
C(9') 0.2306(1) 0.4108(2) 0.5868(2) 0.0264(5)
C(10') 0.2155(2) 0.5094(2) 0.5427(2) 0.0314(6)
C(11') 0.1493(2) 0.5580(2) 0.5413(2) 0.0294(6)
C(12') 0.0991(1) 0.5082(2) 0.5854(2) 0.0246(5)
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Table 1.  (Contd.)

Atom x/a y/b z/c Ueq/Uiso, Å2

O(1w) 0.2257(2) –0.1798(2) 0.6538(2) 0.0422(5)

O(2w) 0.1634(1) 0.0158(2) 0.5629(2) 0.0439(6)

O(3w) 0.2824(1) 0.1107(2) 0.8615(2) 0.0455(6)

O(4w) 0.2962(1) –0.1130(2) 0.8537(2) 0.0444(5)

O(5w) 0.6346(2) 0.3369(2) 0.9819(2) 0.0567(6)

O(6w) 0.7725(2) 0.2705(2) 1.0504(2) 0.0719(8)

H(1A) 0.494(2) 0.287(3) 0.776(2) 0.043(9)

H(1B) 0.584(2) 0.266(3) 0.816(2) 0.048(9)

H(3A) 0.527(2) 0.110(2) 0.948(2) 0.033(8)

H(3B) 0.601(2) 0.143(2) 0.923(2) 0.031(8)

H(5A) 0.430(2) 0.084(3) 0.842(3) 0.07(1)

H(5B) 0.410(2) 0.171(3) 0.760(2) 0.06(1)

H(9) 0.778(2) –0.050(2) 0.612(2) 0.038(8)

H(10) 0.731(2) –0.181(2) 0.497(2) 0.038(8)

H(11) 0.604(2) –0.222(2) 0.476(2) 0.038(8)

H(12) 0.538(2) –0.132(2) 0.567(2) 0.027(7)

H(1A') 0.068(2) 0.143(2) 0.833(2) 0.031(8)

H(1B') 0.012(1) 0.186(2) 0.893(2) 0.024(7)

H(3A') –0.072(2) 0.110(2) 0.683(2) 0.035(8)

H(3B') 0.014(2) 0.100(3) 0.690(2) 0.042(9)

H(5A') –0.074(2) 0.295(2) 0.828(2) 0.034(8)

H(5B') –0.120(2) 0.251(3) 0.732(2) 0.041(8)

H(9') 0.275(2) 0.372(2) 0.591(2) 0.037(8)

H(10') 0.251(2) 0.544(2) 0.517(2) 0.034(8)

H(11') 0.136(1) 0.622(2) 0.512(2) 0.027(7)

H(12') 0.052(1) 0.534(2) 0.582(2) 0.016(6)

H(1w1) 0.234(2) –0.238(4) 0.685(3) 0.07(1)

H(2w1) 0.216(3) –0.189(4) 0.607(3) 0.08(2)

H(1w2) 0.133(2) –0.033(3) 0.536(3) 0.08(1)

H(2w2) 0.154(2) 0.066(3) 0.538(2) 0.04(1)

H(1w3) 0.314(2) 0.088(4) 0.913(3) 0.08(1)

H(2w3) 0.273(4) 0.185(5) 0.858(5) 0.08(1)

H(1w4) 0.344(2) –0.130(3) 0.867(3) 0.06(1)

H(2w4) 0.275(2) –0.160(3) 0.872(3) 0.06(1)

H(1w5) 0.630 0.405 0.947 0.068

H(2w5) 0.602 0.338 1.026 0.068

H(1w6) 0.725 0.284 1.025 0.086

H(2w6) 0.790 0.321 1.099 0.086
In the A and B complexes, coordinated Nta3– ligands
form the G(1), G(2), G(3) and G(4), G(5), G(6) glyci-
nate rings, respectively. The distortions observed in the
bond angles in the Co(1) and Co(2) polyhedra due to
the formation of three glycinate rings closed by the
Nta3– ligand are insignificant: the NCoO endocyclic
angles lie between 86.43(8)° and 88.87(8)°. The
C

O(1)Co(1)O(3) and O(1')Co(2)O(3') exocyclic angles
[173.87(8)° and 173.49(7)°] deviate from the ideal
value most of all. This is apparently associated with the
fact that the atom pairs O(1), O(3) and O(1'), O(3')
belong to the conjugated rings G(1), G(2) and G(4),
G(5), respectively. In turn, these rings lie approxi-
mately in the equatorial planes of the A and B com-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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Table 2.  Bond lengths in the polyhedra of the Co and Ca atoms in structure I

Bond
Complex A Complex B Bond d, Å

d, Å d, Å Ca–O(6) 2.399(2)

ëÓ(1)–é(1) 1.899(2) 1.893(2) Ca–O(6'a) 2.349(2)

ëÓ(1)–é(3) 1.886(2) 1.886(2) Ca–O(8') 2.545(2)

ëÓ(1)–é(5) 1.887(2) 1.882(2) Ca–Ow(1) 2.453(2)

ëÓ(1)–é(7) 1.901(2) 1.901(2) Ca–Ow(2) 2.324(2)

ëÓ(1)–N(1) 1.920(2) 1.917(2) Ca–Ow(3) 2.406(2)

ëÓ(1)–N(2) 1.911(2) 1.918(2) Ca–Ow(4) 2.430(2)

Note: The symmetry transformation for the O(6'a) atom is as follows: –x, y – 0.5, –z + 1.5.
plexes, which were defined so by analogy with those in
diaminocarboxylates [1].

The conjugated rings G(1), G(2) and G(4), G(5) in
the A and B complexes are most strained as evidenced
by the sums of endocyclic angles, which are equal to
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
529.4°, 530.6° and 527.9°, 529.3°, respectively. In the
G(3) and G(6) rings, like the five-membered rings
closed by the picolinate ions, the sums of endocyclic
angles (540.0°, 539.8°, 539.4°, and 539.6°, respec-
tively) are close to the ideal value (538.4°). In the pla-
O(8)

N(2)
O(7)

O(1)

N(1)
O(2)

Co(1) O(3)

O(4)

O(5)

O(6)
O(3w) O(4w)

O(1w)
Ca(1)

O(2w)

O(8')

O(6'a)O(7')
O(2')

O(1')
Co(2)

N(1')

O(4')
O(6')

O(3')O(5')

N(2')

A

B

0

X

Y

Fig. 2. Projection of the ribbon onto the (001) plane.
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Table 3.  Geometric characteristics of hydrogen bonds in structure I*

A–H···B bond
Distance, Å AHB,

angle, deg Position of the B atom
A–H H···B A···B

Ow(1)–H(1)w1···O(8) 0.84(4) 2.20(5) 3.027(4) 167(5) –x + 1, y – , –z + 

Ow(1)–H(2)w1···O(6) 0.64(5) 2.33(5) 2.941(5) 159(6) –x + 1, y – , –z + 

Ow(2)–H(1)w2···O(4') 0.86(4) 1.81(4) 2.660(4) 171(4) –x, –y, -z + 1 

Ow(2)–H(2)w2···O(2') 0.72(4) 2.02(4) 2.734(3) 178(4) x, –y + , z – 

Ow(3)–H(1)w3···O(4) 0.87(4) 1.93(4) 2.788(4) 166(6) –x + 1,–y, –z + 2

Ow(3)–H(2)w3···O(8') 0.95(7) 2.52(7) 2.791(3) 141(5) x, y, z 

Ow(4)–H(1)w4···O(2) 0.89(4) 1.93(4) 2.807(4) 169(4) –x + 1, y – , –z + 

Ow(4)–H(2)w4···Ow(6) 0.78(4) 2.08(6) 2.850(5) 167(5) –x + 1, –y , –z + 2

Ow(5)–H(1)w5···O(6) 0.99 2.16 3.031(4) 148 –x + 1, y + , –z + 

Ow(5)–H(1)w5···O(5) 0.99 2.38 3.132(4) 133 –x + 1, y + , –z + 

Ow(5)–H(2)w5···O(1) 0.96 1.90 2.859(4) 174 x , –y + , z + 

Ow(6)–H(1)w6···Ow(5) 0.90 1.78 2.664(5) 168 x, y, z

Ow(6)–H(2)w6···O(8) 0.93 2.13 2.930(4) 143 x, –y + , z + 

* The hydrogen atoms in the w5 and w6 water molecules were refined in a rider model.
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nar six-membered picolinate rings, the sums of angles
are equal to the ideal value [720.0(2)°], within the
experimental error. In structures III–V, in which all the
three arms of the Nta3– ligand are coordinated, the sums
of endocyclic angles can also be divided into two
groups.

In the A complex, the Co–N(1)Nta bond (Table 2) is
slightly longer than the Co–N(2)Pic bond, whereas in
the B complex, the corresponding bond lengths are vir-
tually equal to each other. The Co–ONta bonds in the A
and B complexes have mean lengths of 1.891(2) and
1.887(2) Å, respectively, and are shorter than the Co–
OPic bond. On the whole, the lengths of the Co–N and
Co–O bonds formed by the Nta3– and Pic– ligands in the
A and B complexes of structure I are close to each other
and comparable to those in structures II–IV.

In the Nta3– ligands, the C(sp3)–C(sp3) bonds are the
shortest [1.502(4) and 1.514(4) Å in the least distorted
axial G(3) and G(6) rings, respectively] and are approx-
imately equal [mean, 1.524(4) Å] in the G(1), G(2),
G(4), and G(5) equatorial rings. The mean C(sp2)–
C(sp2) bond lengths in the pyridine rings in the A and B
complexes are 1.382(4) and 1.377(4) Å, respectively.
C

The N–C(sp3) bond lengths in the Nta3– ligand have
normal values. Their mean values are 1.496 and
1.494(4) Å in the A and B complexes, respectively. The
N(2)–C(8) and N(2)–C(12) bond lengths in the pyri-
dine rings are slightly different [1.346 and 1.337(3) Å
in the A complex and 1.345 and 1.333(3) Å in the B
complex].

The difference between the C–Oc and C–Ou bond
lengths (Oc and Ou are the oxygen atoms involved and
not involved in the Co coordination, respectively) var-
ies from 0.037 to 0.082 Å. The minimum values of ∆ë–é

are observed for the G(3) and G(6) rings [0.037 and
0.039(3) Å], in which the Ou(6) and Ou(6'a) atoms coor-
dinate the Ca atom at the trans positions in its polyhe-
dron. The decrease in the ∆ë–é values (equalizing the
C–O bond lengths) suggests a redistribution of the elec-
tron density due to the Ca–Ou interaction. For compar-
ison, we note that, in the framework structure V, in
which all the O terminal atoms of the Nta3– ligand coor-
dinate metal atoms (one of them forms the Co–Ou bond,
and two other form the Ca–Ou bonds), the largest value
of ∆ë–é is only 0.020(2) Å.
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A comparison of the symmetrically independent
anionic fragments A and B with the use of the SUSY
program [9] showed that these fragments are closely
allied geometrically. The differences between the A and
B anions are quantitatively characterized by the crite-
rion s (0.11 Å) and the discrepancies Ri, that is, the dis-
tances between the corresponding atoms of the anions
under comparison at their closest coincidence. The
maximum discrepancy (0.25 Å) is observed for the
O(4) and O(4') terminal carbonyl atoms of the Nta3–

ligand. These atoms are not involved in the Ca coordi-
nation, but the O(4') atom forms the shortest hydrogen
bond with the w2 water molecule [O···O, 2.660(4) Å] in
structure I, which leads to a decrease in the ∆ë–é value
to 0.046(3) Å [in the A complex, the corresponding
value is 0.064(3) Å].

The environment of the Ca2+ cation (C.N. = 7, dis-
torted pentagonal bipyramid) includes two carbonyl
oxygen atoms of the Nta3– ligands of the A and B com-
plexes [Ou(6) and Ou(6'a)], the Ou(8') atom of the Pic–

ion of the B complex, and four water molecules (w1–
w4). The O(1w)–O(4w) atoms and the Ou(8') atom lie in
the base of the pentagonal bipyramid, whereas the
Ou(6) and éu(6'a) atoms occupy its axial sites. The
Ou(6)ë‡Ou(6'a) angle is equal to 165.35(7)°, and the
angles formed by the Ca–O bonds in the base of the
pentagonal bipyramid range between 68.54(9)° and
74.36(9)°. The Ca–ONta distances [2.349 and 2.399(2) Å]
are significantly shorter than the Ca–OPic distance
[2.545(2) Å] but comparable to the Ca–Ow distances
[2.324(2)–2.453(2) Å]. In structure II (C.N.Ca = 8,
polyhedron of an irregular shape), the Ca–ONta dis-
tances [2.36–2.60(1) Å], with two exceptions, are
longer than the Ca–Ow distances [2.36 and 2.37(1) Å].
The shortest Ca–ONta distance [2.271(1) Å] is observed
in the centrosymmetric octahedral Ca polyhedron in
structure V; the other Ca–ONta distance is 2.420(2) Å,
and the Ca–Ow distance is 2.351(2) Å. The Ca polyhe-
dron (C.N. = 7, pentagonal bipyramid), which most
closely resembles the polyhedron in structure I, is
observed in structure VI. As in I, it is formed by three
terminal Ou atoms and four Ow atoms. However, in
structure VI, all the three Ou atoms are located in the
base of the pentagonal bipyramid and the Ca–OEdds dis-
tances [2.41–2.48(1) Å] are significantly longer than
the Ca–ONta distances in I.

In structure I (Fig. 2), the polymer ribbons
{Ca(H2O)4[Co(Nta)(Pic)]2}1∞ run along the twofold
screw axes 21 and form layers that are parallel to the
(001) coordinate plane and pass at z = 1/4 and 3/4. The
B anionic complexes, which are included in the poly-
mer chains, are located along the twofold screw axes 21
at x = 0, and the A fragments (branches of the chains)
are located at x = 1/2. The cationic units lie between
them (x ≈ 1/4) in conventional layers aligned parallel to
the (100) plane.
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The system of hydrogen bonds (Table 3) links rib-
bons into layers and the layers into a three-dimensional
framework. In the Ca polyhedron, the w1 and w4 mol-
ecules each form one hydrogen bond with an oxygen
atom of the A complex [Ou(8) and Ou(2), respectively]
inside the layer and the other hydrogen bond with the
w6 crystallization water molecule. The w6 molecule, in
turn, forms the hydrogen bond with the Ou(8) atom of
the adjacent layer. As a result, the continuous hydro-
gen-bond chain ···Ou(8)···ç–éw(1)–H···éw(6)–
H···Ou(8)··· is formed. The w6 molecule forms one
more bond with the w5 crystallization water molecule,
which links the A anionic fragments inside the layer via
the hydrogen bond with the Oc(1) atom and via the
bifurcate bond with the Oc(5) and Ou(6) atoms of the
same carboxylate group. Two water molecules from the
Ca environment form hydrogen bonds between the lay-
ers: the w2 molecule is bound to the Ou(2') and Ou(4')
atoms of the B complexes, and the w3 molecule is
bound to the Ou(4) atom. The w5 and w6 molecules are
linked by the short hydrogen bond [2.664(5) Å] and
play an important role in the structure formation: these
molecules are located in holes between layers of poly-
mer ribbons and, thus, stabilize the layers and link them
via hydrogen bonds [O···O, 2.664(4)–3.132(4) Å] into
a three-dimensional structure.

CONCLUSIONS

For the A and B complexes of structure I, the total
coordination capacity of the Nta3– ligand (DNta), by
which we mean the total number of bonds formed by
the ligand with the transition and alkaline-earth metal
atoms, is equal to five: each Nta3– ligand is tetradentate
relative to the Co atoms (DëÓ = 4) and monodentate rel-
ative to Ca2+ (Dë‡ = 1). The Pic– ligand is bidentate in
the A complex (DëÓ = 2) and tridentate in the B complex
(DëÓ = 2 and Dë‡ = 1).

In complexes II, III, and IV, which also have a poly-
mer-type structure, the total coordination capacity of
the DNta ligand is larger than that in complex I (biden-
tate bridging), because the carboxylate groups of the
Nta3– ligands have more complex functions (tridentate
bridging–cyclic). For example, in chainlike structure IV,
DNta = 7 (DëÓ = 4 and DBa = 3). In chainlike structure II,
which contains rods built only of the bonds between the
Ca atom and the oxygen atoms of the uncoordinated
acetate arm of the Nta3– ligand, DNta = 6 (DëÓ = 3 and
Dë‡ = 3). In framework structure III, DNta = 8 (DCo = 4
and DBa = 4). In structure V, one of the carboxylate
groups links two Co atoms in the anionic chain (DëÓ =
4 + 1). This structural function is rather uncommon for
aminocarboxylates. In addition, the ligand forms two
bonds with the Ca2+ cations (Dë‡ = 2), thus linking the
anionic chains into a framework and increasing the
coordination capacity of the Nta3– ligand to seven.
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Abstract—The crystal structures of two organosilicon compounds are studied by X-ray diffraction. Crystals of
trans-2,8-dihydroxy-2,4,4',6,6',8,10,10',12,12'-decamethyl-5,11-dicarbacyclohexasiloxane, C12H36O6Si6, (I)
are studied at 293 K [a = b = 16.310(4) Å, c = 9.849(3) Å, V = 2620(1) Å3, dcalcd = 1.128 g/cm3, space gro-
up P4(2)/n, Z = 4, 3370 reflections, wR2 = 0.1167, R1 = 0.0472 for 2291 reflections with F > 4σ(F)]. Crystals
of trans-1,4-dihydroxy-1,4-dimethyl-1,4-disilacyclohexane, C6H16O2Si2, (II) are studied at 110 K [a =
6.8253(5) Å, b = 9.5495(8) Å, c = 12.0064(10) Å, α = 101.774(2)°, β = 102.203(2)°, γ = 95.068(2)°, V =

741.8(1)Å3, dcalcd = 1.184 g/cm3, space group , Z = 3, 6267 reflections, wR2 = 0.1052, R1 = 0.0421 for 3299
reflections with F > 4σ(F)]. It is found that the conformation of the ring in compound I, which contains two
methylene groups in the cyclohexasiloxane ring, differs from those in its analogues containing only oxygen
atoms or one methylene group in the ring. The noticeable difference between the SiCSi angle [123.0(2)°] and
the tetrahedral angle is characteristic of cyclohexasiloxanes. Structure II contains three independent molecules
with very close conformations. The cyclohexane rings adopt a chair conformation. The methylene groups in II,
in distinction to those in I, are characterized by a standard tetrahedral coordination. © 2002 MAIK
“Nauka/Interperiodica”.

P1
INTRODUCTION

The ability of cyclolinear polyorganosiloxanes to
self-organize into the mesomorphic state and to form
monomolecular Langmuir–Blodgett films at the air–
water interface was reported for the first time in [1, 2].
This self-organization was observed in cyclolinear
polyorganosiloxanes with cyclosiloxane rings of vari-
ous sizes in homopolymers and copolymers. It was
found that the ability to self-organize is retained upon
the replacement of some oxygen atoms by the methyl-
ene groups in both the ring and the linking fragment
(bridge) between the rings [3, 4]. This opens the way to
control the properties of cyclolinear polyorganosilox-
anes by varying the Si–O/Si–CH2 ratio. Apparently, the
aforementioned properties depend on the size and con-
formation of the monomers and the nature of the sub-
stituents at the Si atoms. The conformational ability of
the monomers and, hence, the polymers depends on the
SiOSi and SiCSi angles.

In particular, the X-ray diffraction study of two
bicyclic monomers, namely, 2,2',4,4',6,8,8',10,10',12-
decamethylbicyclo[5.5.1]hexasiloxane and 2,2',4,4',6,8,
8',10,10',12-decamethylbicyclo[5.5.1]-9-car-bahexasil-
1063-7745/02/4705- $22.00 © 20791
oxane, showed that the replacement of one oxygen
atom by the methylene group is accompanied by the
conformational changes in the bicycle, which are not
very significant but are still noticeable, and the devia-
tion of the SiCSi angle [121.0(1)°] from the tetrahedral
value [5]. Similar conformational changes in the
cyclosiloxane ring and a close value of the SiCSi angle
[122.1(1)°] were found in the structure of 2,8-dihy-
droxy-2,4,4',6,6',10,10',12,12'-decamethyl-5-carbahexa-
cyclosiloxane [6]. Moreover, the structural data for 2,8-
dihydroxy-2,8-diphenyl-4,4',6,6',10,10',12,12'-octa-met-
hyl-cyclohexasiloxane [6] indicate that the conforma-
tion of the cyclohexasiloxane ring changes upon the
replacement of substituents at the Si atom by substitu-
ents that differ in nature, in particular, the replacement
of methyl groups by phenyl groups. With the purpose of
elucidating the specific conformational features of the
cyclohexasiloxane ring containing two CH2 groups, we
preformed X-ray diffraction analysis of the crystal
structures of trans-2,8-dihydroxy-2,4,4',6,6',8,
10,10',12,12'-decamethyl-5,11-dicarbacyclohexasiloxane
(I) and trans-1,4-dihydroxy-1,4-dimethyl-1,4-disilacy-
clohexane (II).
002 MAIK “Nauka/Interperiodica”
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EXPERIMENTAL

Compound I was prepared by the reaction of step-
C

by-step condensation followed by the hydrolysis of a
mixture of compounds Ia and Ib according to the fol-
lowing scheme:
Cl Si

O

O

Me Si

Si CH2

Me Me
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Me Me

Si O

Me Me

Si O

Me Me
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HOMe2SiCH2SiMe2OH
+

+

H2O + 2Acceptor

2Acceptor + HCl
I‡ + Ib

Ia Ib

I

2Acceptor

2Acceptor + HCl
A solution containing a mixture of isomers Ia and
Ib (0.95 g, 1.97 mmol) in diethyl ether (6 ml) was
added to a mixture of aniline (0.42 g, 4.53 mmol) and
water (0.073 g, 4.3 mmol) in ether (6 ml). The reaction
mass was stirred for 1 h at a temperature between 0 and
+5°C and filtered to remove C6H5NH2HCl. After the
ether was distilled off, the reaction product (0.8 g) was
separated and dissolved in pentane (2.5 ml). Crystals
(0.25 g, 28%) with Tm = 82–83°C precipitated at
−10°C. Single crystals of compound I were obtained by
recrystallization from pentane. NMR spectra (D-ace-
tone), 1ç δ: 0.011 (s, 4H, CH2); 0.042 (s, 6H, CH3);
0.142, 0.16 (2s cis/trans, 24H, CH3); 2.88, 2.91 (2s
cis/trans, 2H, OH). 29Si δ: 5.76 (s, 4Si, SiCH2Si);
−55.60; 55.73 (2s, 2Si, SiOH).

Single crystals of compound II, which was synthe-
sized according to the procedure in [7], were obtained
by slow evaporation of a hexane solution. The main
crystal data and experimental parameters at 293 and
110 K for I and II, respectively, are listed in Table 1.
The processing of the experimental data and subse-
quent calculations were carried out with the SAINT [8]
and SHELXTL97 [9] program packages.

Both structures were solved by the direct method,
and the non-hydrogen atoms were refined in the full-
matrix anisotropic approximation. All the hydrogen
atoms were located from the difference Fourier synthe-
ses and refined in the isotropic approximation. The
coordinates and equivalent isotropic thermal parame-
ters of the non-hydrogen atoms are listed in Tables 2
and 3.

RESULTS AND DISCUSSION

In structures I and II, the molecules occupy special
positions at the centers of symmetry. The characteristic
feature of compound I is the presence the oxygen atoms
and two methylene groups in the siloxane ring (Fig. 1).
Certainly, this determines the difference between the
conformation of this ring and the conformations of the
rings in the purely oxygen analogue and the compound
with one methylene group (2,8-dihydroxy-
2,4,4',6,6',10,10',12,12'-decamethyl-5-carbahexacyclo-
siloxane). The SiOSi angles [143.8(1)° and 144.2(2)°]
are characteristic of cyclosiloxanes and actually coin-
cide with the corresponding angles in an oxygen ana-
logue of compound I, namely, the trans isomer of 2,8-
dihydroxy-2,4,4',6,6',8,10,10',12,12'-decametylcyclohe-
xasiloxane (144.9°, 145.6°, and 146.8°) [10]. Note that,
in the cis isomer of this compound, four SiOSi angles
(145.7°–150.2°) are characteristic of most cyclosilox-
anes and two angles increase to 173.6° and 174.1° [10].
In the structure of 2,8-dihydroxy-2,4,4',6,6',10,10',12,12'-
decamethyl-5-carbahe-xacyclo-siloxane studied earlier,
which contains one methylene group in the ring [6],
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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two SiOSi angles [145.3(2)° and 145.8(2)°] also nearly
coincide with the corresponding angles in I, but the
third angle increases to 161.7(5)°.

As was expected, the Si(1)–C(6)–Si(3) (–x + 2, –y +
1, –z +2) bond angle in I [123.0(2)°] differs noticeably
from the tetrahedral value; however, it is close to the
values determined earlier in the structures of 2,8-dihy-
droxy-2,4,4',6,6',10,10',12,12'-decamethyl-5-carbahexa-
cyclosiloxane [122.1(1)°] [6] and 2,2',4,4',6,8,8',10,
10',12-decamethylbicyclo[5.5.1]-9-carbahexasiloxane
[121.0(1)°] [5]. The Si(1) and Si(3) atoms have a stan-
dard tetrahedral coordination and normal Si–C and
Si−O bond lengths (1.830–1.860 and 1.610–1.638 Å,
respectively). Note that, in 2,2',4,4',6,8,8',10,10',12-

Table 1.  Crystallographic parameters and experimental data
for structures I and II

Parameter I II

Empirical formula C12H36O6Si6 C6H16O2Si2

Mr 444.94 176.37

Crystal system Tetragonal Triclinic

Space group P4(2)/n P

Z 4 3

a, Å 16.310(4) 6.8253(5)

b, Å 16.310(4) 9.5495(8)

c, Å 9.849(3) 12.0064(10)

α, deg 90 101.774(2)

β, deg 90 102.203(2)

γ, deg 90 95.068(2)

V, Å3 2620(1) 741.8(1)

dcalcd, g/cm3 1.128 1.184

µ, mm–1 0.338 0.309

F(000) 960 288

Diffractometer Siemens P3/PC Smart 1000 CCD

λ, Å 0.71073 0.71073

T, K 293(2) 110(2)

θmax, deg 28.06 30.05

Total number of
reflections

3370 6267

Number of reflections 
with F > 4σ(F)

2291 3299

Refinement on F2 F2

R1 0.0472 0.0421

wR2 0.1167 0.1052

S 1.094 0.979

1
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decamethylbicyclo[5.5.1]hexasiloxane, the SiOSi bond
angle at the oxygen atom that occupies the position of
the methylene group in its analogue (2,2',4,4',6,8,
8',10,10',12-decamethylbicyclo[5.5.1]-9-carbahexasil-
oxane) is 146.4(1)° [5].

The deviation of the SiCSi angle from the normal
value is observed in the linear monomer of bis(hydrox-
ydimethylsilyl)methane [11], in which the Si atoms are
characterized by a standard tetrahedral coordination
and the SiCSi angle is 118.1(3)°.

The shape of the cyclohexasiloxane ring in I can be
described as a crown: the Si atoms alternately deviate
from the mean plane of the ring in opposite directions

Table 2.  Coordinates (×104) and isotropic thermal parame-
ters (Å2 × 103) of the non-hydrogen atoms in structure I

Atom x y z Ueq

Si(1) 8875(1) 4280(1) 8367(1) 55(1)

Si(2) 9129(1) 6110(1) 7659(1) 50(1)

Si(3) 9497(1) 6682(1) 10589(1) 56(1)

O(1) 8708(1) 5227(1) 7884(2) 70(1)

O(2) 9614(1) 6397(1) 9004(2) 66(1)

O(3) 8373(1) 6726(1) 7336(3) 73(1)

C(1) 8344(4) 3595(3) 7159(6) 104(1)

C(2) 8432(2) 4149(3) 10085(4) 82(1)

C(3) 9855(3) 6106(3) 6242(4) 85(1)

C(4) 8381(2) 6709(3) 10978(6) 97(1)

C(5) 9964(4) 7705(2) 10807(5) 94(1)

C(6) 9995(2) 4094(2) 8335(4) 65(1)

Table 3.  Coordinates (×104) and isotropic thermal parame-
ters (Å2 × 103) of the non-hydrogen atoms in structure II

Atom x y z Ueq

Si(1A) –3219(1) 1461(1) 749(1) 17(1)

O(1A) –3483(2) 1618(1) 2114(1) 20(1)

C(1A) –1207(3) 2898(2) 720(2) 25(1)

C(2A) –2591(2) –383(2) 194(1) 19(1)

C(3A) –5742(2) 1623(2) –146(1) 20(1)

Si(1B) 976(1) –15(1) 3792(1) 16(1)

O(1B) 313(2) 1473(1) 3396(1) 19(1)

C(1B) 2335(3) –994(2) 2754(2) 24(1)

C(2B) 2569(2) 451(2) 5325(1) 20(1)

C(3B) –1428(2) –1128(2) 3758(1) 20(1)

Si(1C) 4625(1) –5296(1) 3513(1) 18(1)

O(1C) 3707(2) –7042(1) 3098(1) 21(1)

C(1C) 4740(3) –4561(2) 2202(2) 25(1)

C(2C) 2868(2) –4411(2) 4344(2) 21(1)

C(3C) 7186(2) –5067(2) 4523(1) 21(1)
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Fig. 1. Structure of molecule I.
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Fig. 2. Structure of molecule II (A).
(Fig. 1); however, in most compounds, these rings have
complex puckered conformations, which can hardly be
described by some standard shape. The exception is
provided by the cis isomer of 2,8-dihydroxy-
2,4,4',6,6',8,10,10',12,12'-decametylcyclohexasiloxane
whose ring adopts a boat conformation [10] due to
increased SiOSi angles (173.6° and 174.1°).

In structure II, the molecules are located at different
centers of symmetry (–x – 1, –y, –z; –x, –y, –z + 1; and
–x + 1, –y – 1, –z + 1), so that there are three crystallo-
graphically independent molecules (A, B, and C). The
torsion angles indicate that all three molecules have
closely similar conformations. The six-membered rings
adopt chair conformations (Fig. 2): the silicon atoms in
molecules A, B, and C deviate from the mean plane of
the carbon atoms by 0.809, 0.787, and 0.804 Å, respec-
tively.
C

In structure II, the bond angles at the carbon and sil-
icon atoms in the six-membered rings have standard tet-
rahedral values. At the same time, in the structure of a
cyclic monomer, namely, 1,3-dihydroxy-1,3-dimethyl-
1,3-disilacyclobutane, which contains two independent
molecules with planar four-membered rings and close
geometric characteristics [12], the SiCSi angle is
88.2(2)°. In the latter structure, the Si atoms have a dis-
torted tetrahedral coordination in which the endocyclic
CSiC angle decreases to 91.2(2)°. This angle is close to
the CSiC angle (92.8°) in 1,3-diphenyl-1,3-dimethyl-
1,3-disilacyclobutane, in which the SiCSi angle is 86.6°
[13]. Note that the above angles (close to 90°) are char-
acteristic of strained 1,3-disilacyclobutane systems
[14–20]. Apparently, the six-membered rings in struc-
ture II, in which the angles are characterized by tetra-
hedral values, are less strained than the cyclobutane
systems.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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0 b

a

O(3)

Si(1)
Si(2) Si(3)

Fig. 3. Projection of the molecular packing in crystal I onto the ab plane. Dashed lines indicate intermolecular hydrogen bonds that
link the molecules into tetramers.
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O(1A)

O(1C)
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Fig. 4. System of hydrogen bonds in structure II.
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b

c

Fig. 5. Projection of the molecular packing in crystal II onto the bc plane. Dashed lines indicate intermolecular hydrogen bonds that
link the molecular columns along the x-axis.
The molecular packing in crystal I (Fig. 3) is similar
to that in the crystal of 2,8-dihydroxy-
2,4,4',6,6',10,10',12,12'-decamethyl-5-carbahexacy-
closiloxane [6]. The molecules are associated into tet-
ramers through the intermolecular hydrogen bonds
O(3)···O(3) (–y + 1.5, x, –z + 1.5) [2.709(3) Å] around
the fourfold inversion axes. This molecular arrange-
ment was also observed in the trans isomer of 2,8-dihy-
droxy-2,4,4',6,6',8,10,10',12,12'-decametylcyclohexas-
iloxane [10]. The same space groups, the closeness of
the unit cell parameters, and similarity of the packings
in I, the trans isomer of 2,8-dihydroxy-2,4,4',-
6,6',8,10,10',12,12'-decametylcyclohexasiloxane, and 2,8-
dihydroxy-2,4,4',6,6',10,10',12,12'-decamethyl-5-carba-
hexacyclosiloxane indicate that this type of molecular
packing is efficient for these compounds. Note that,
although the crystals of I and 2,8-dihydroxy-
2,4,4',6,6',10,10',12,12'-decamethyl-5-carbahexacyclo-
siloxane have close structures, they are not isostruc-
tural.

In crystal II, an infinite system of intermolecular
hydrogen bonds [O(1A)···O(1B), 2.750(4) Å;
O(1B)···O(1C) (x, y + 1, z), 2.735(4) Å; and
C

O(1°C)···O(1A) (x + 1, y – 1, z), 2.737(4) Å] (Fig. 4)
interlinks molecular columns running along the x-axis
(Fig. 5).

CONCLUSIONS

In structure I, the presence of two methylene groups
in the cyclohexasiloxane ring results in a change in the
conformation of the ring as compared to the cis and
trans isomers of the oxygen analogue and the 2,8-dihy-
droxy-2,4,4',6,6',10,10',12,12'-decamethyl-5-carba-
hexacyclosiloxane molecule, which contains one meth-
ylene group. This conformational difference is due to
the different electron nature of the oxygen atoms and
the methylene groups and, apparently, shows itself geo-
metrically in different values of the SiOSi and SiCSi
angles. The latter angles differ significantly from the
standard tetrahedral value. As was noted above, the
conformational flexibility makes the variation of phys-
icochemical properties of cyclolinear polyorganosilox-
anes possible.

In structure II, which contains three conformation-
ally close independent molecules, the cyclohexane
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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rings adopt a chair conformation and the methylene
groups, in contrast to I, have a standard tetrahedral
coordination.

The data on the SiCSi angles indicate that they vary
over a wide range. In the cyclosiloxane systems, these
angles vary from ~90° in 1,3-disilacyclobutanes to
~123° in 2,8-dihydroxydecaorganocyclohexasiloxanes.
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Abstract—The crystal structures of two organosilicon compounds are studied by X-ray diffraction. Crystals of
trans-2,8-dihydroxy-2,8-diphenyl-4,4',6,6',10,10',12,12'-octamethylcyclohexasiloxane, C20H36O8Si6, (I) are
triclinic; at 110 K, a = 11.476(1) Å, b = 12.106(1) Å, c = 13.636(1) Å, α = 94.337(1)°, β = 112.669(1)°, γ =
112.216(1)°, space group , Z = 2, and R = 0.057 for 5069 reflections with F > 4σ(F). Crystals of trans-2,8-
dihydroxy-2,4,4',6,6',8,10,10',12,12'-decamethyl-5-carbahexacyclosiloxane, C11H34O7Si6, (II) are tetragonal;
at 293 K, a = b = 15.487(3) Å, c = 11.364(3) Å, space group P42/n, Z = 4, and R = 0.055 for 955 reflections
with F > 4σ(F). It is found that the structure of compound I, in which the substituents at the Si(1) atom differ
in volume and inductive effect, contains two crystallographically independent molecules with different confor-
mations of the hexasiloxane ring. In structure II, the oxygen atom and the methylene group are statistically dis-
ordered as a result of the location of the molecule at the center of symmetry. Although the SiCSi angle
[122.1(1)°] differs noticeably from the tetrahedral angle, its value is characteristic of cyclohexasiloxanes and is
not related to the disorder. © 2002 MAIK “Nauka/Interperiodica”.

P1
INTRODUCTION

Among the numerous organosilicon compounds,
cyclolinear polyorganosiloxanes, that is, compounds
whose macromolecules consist of rings differing in size
and connected through oxygen atoms or other flexible
links, are of particular interest. The properties of cyclo-
linear polyorganosiloxanes can change considerably
depending on the number of flexible elements in both
the ring and the linear chain, as well as on the ring size.
In particular, the liquid-crystal properties of cyclolinear
polyorganosiloxanes and their application to LB tech-
nologies are to a large degree determined by the confor-
mational flexibility of monomers and polymers as a
whole [1].

In the previous paper [2], we discussed the confor-
mational characteristics of two bicyclic monomers,
namely, 2,2',4,4',6,8,8',10,10',12-decamethylbicyclo-
[5.5.1]hexasiloxane and 2,2',4,4',6,8,8',10,10',12-deca-
methylbicyclo[5.5.1]-9-carbahexasiloxane, which dif-
fer in the number of SiOSi and SiCH2Si groups. With
the goal of determining the effect of the substituents at
the Si atom on the conformation of cyclohexasiloxanes
and revealing the conformational changes upon
replacement of the oxygen atom by the methylene
group, we performed X-ray diffraction studies of two
1063-7745/02/4705- $22.00 © 20798
compounds, namely, trans-2,8-dihydroxy-2,8-diphe-
nyl-4,4',6,6',10,10',12,12'- octamethylcyclohexasiloxane
(I) and trans-2,8-dihydroxy-2,4,4',6,6',8,10,10',12,12'-
decamethyl-5-carbahexacyclosiloxane (II).

EXPERIMENTAL

Single crystals of compounds I and II, which were
synthesized according to the procedure described in
[3, 4], were grown by slow evaporation of heptane solu-
tions. The main crystal data and experimental parame-
ters for I at 110 K and II at 293 K are listed in Table 1.
The processing of the experimental data and the subse-
quent calculations were carried out with the SAINT [5]
and SHELXTL97 [6] program packages. Both struc-
tures were solved by the direct method, and the non-
hydrogen atoms were refined in the full-matrix aniso-
tropic approximation.

At the beginning of the refinement, the methylene
group was replaced by the oxygen atom, because mol-
ecule II occupies the center of symmetry. Upon the
refinement of the structure, one more peak of the elec-
tron density was revealed near this oxygen atom and
assigned to the carbon atom of the methylene group.
For these atoms, the site occupancy G is equal to 0.5.
002 MAIK “Nauka/Interperiodica”
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Table 1.  Crystallographic parameters and experimental data for structures I and II

Parameter I II

Empirical formula C20H36O8Si6 C11H34O7Si6
Mr 573.03 446.92
Crystal system Triclinic Tetragonal

Space group P P42/n

Z 2 4
a, Å 11.476(1) 15.487(3)
b, Å 12.106(1) 15.487(3)
c, Å 13.636(1) 11.364(3)
α, deg 94.337(1) 90
β, deg 112.669(1) 90
γ, deg 112.216(1) 90
V, Å3 1563.2(2) 2726(1)
dcalcd, g/cm3 1.217 1.089
µ, mm–1 0.304 0.328
F(000) 608 960
Diffractometer Smart 1000 CCD Siemens P3/PC
λ, Å 0.71073 0.71073
T, K 110(2) 293(2)
θmax, deg 30.08 25.05
Total number of
reflections

8882 2301

Number of reflections with F > 4σ(F) 5069 955
Refinement on F2 F2

R1 0.057 0.055
wR2 0.148 0.129
S 0.872 0.879

1

Table 2.  Coordinates (×104) and isotropic thermal parameters (Å2 × 103) of the non-hydrogen atoms in structure I

Atom
Molecule A

Atom
Molecule B

x y z Ueq x y z Ueq

Si(1) 6486(1) 7170(1) 2033(1) 44(1) Si(1) 527(1) 1463(1) 3862(1) 52(1)
Si(2) 5334(1) 4387(1) 1940(1) 48(1) Si(2) 2754(1) 506(1) 4448(1) 55(1)
Si(3) 7505(1) 7148(1) 167(1) 48(1) Si(3) –1213(1) 1910(1) 4971(1) 56(1)
O(1) 7801(2) 8236(2) 3101(2) 66(1) O(1) –566(3) 344(2) 2780(2) 88(1)
O(2) 5962(2) 5882(1) 2351(1) 54(1) O(2) 1910(2) 1281(2) 4594(2) 62(1)
O(3) 7066(2) 7084(2) 1158(2) 66(1) O(3) –119(2) 1566(2) 4697(2) 71(1)
O(4) 3796(2) 3907(2) 911(2) 71(1) O(4) 2078(3) –812(2) 4664(2) 98(1)
C(1) 5057(2) 7642(2) 1508(2) 45(1) C(1) 1054(3) 2889(2) 3409(2) 56(1)
C(2) 5317(3) 8799(3) 1321(3) 68(1) C(2) 155(5) 3040(4) 2467(3) 93(1)
C(3) 4254(4) 9172(3) 929(1) 88(1) C(3) 581(9) 4173(6) 2182(5) 119(2)
C(4) 2909(3) 8377(3) 715(3) 80(1) C(4) 1872(7) 5112(4) 2823(5) 115(2)
C(5) 2619(3) 7229(3) 880(3) 71(1) C(5) 2765(6) 4970(4) 3755(6) 110(1)
C(6) 3674(2) 6853(3) 1270(2) 55(1) C(6) 2348(4) 3882(3) 4037(4) 82(1)
C(7) 5147(5) 3745(4) 3072(4) 80(1) C(7) 4593(4) 1398(6) 5490(5) 103(2)
C(8) 6490(3) 3984(3) 1521(3) 64(1) C(8) 2595(6) 268(5) 3058(3) 92(1)
C(9) 7894(5) 8687(3) –90(1) 89(1) C(9) –139(9) 3323(7) 6075(8) 167(4)
C(10) 8997(4) 6769(4) 528(4) 84(1) C(10) –2422(7) 2138(9) 3756(6) 136(2)
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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Table 3.  Coordinates (×104) and isotropic thermal parameters (Å2 × 103) of the non-hydrogen atoms in structure II

Atom x y z Ueq

Si(1) 5997(1) 4041(1) 1815(1) 82(1)

Si(2) 5793(1) 6021(1) 2107(1) 71(1)

Si(3) 5704(1) 6643(1) –512(1) 86(1)

O(1) 6198(2) 5059(2) 2060(3) 95(1)

O(2) 5440(2) 6300(2) 812(3) 104(1)

O(3) 5054(3) 3806(8) 1280(10) 123(3)

O(4) 6589(2) 6643(2) 2520(4) 99(1)

C(1) 6331(7) 3417(5) 3111(7) 204(4)

C(2) 6640(5) 3703(5) 498(7) 160(3)

C(3) 4880(4) 6125(4) 3174(6) 142(3)

C(4) 6855(5) 6400(5) –797(7) 175(3)

C(5) 5498(4) 7815(3) –564(6) 129(2)

C(6) 4822(1) 4000(10) 1650(10) 75(4)

Table 4.  Torsion angles (deg) in structures I and II

Angle
I(A) I(B)

Angle
II

τ τ τ

O(4)–Si(2)–O(2)–Si(1) –64.4(2) –87.6(2) O(3)–Si(1)–O(1)–Si(2) 8.7(7)

O(3)–Si(1)–O(2)–Si(2) –27.2(2) 142.0(2) C(6)–Si(1)–O(1)–Si(2) –7.4(7)

O(2)–Si(1)–O(3)–Si(3) 139.8(7) 167.3(3) O(2)–Si(2)–O(1)–Si(1) –62.7(5)

O(4)*–Si(3)–O(3)–Si(1) –82.0(8) 130.5(3) O(1)–Si(2)–O(2)–Si(3) –77.3(5)

O(2)–Si(4)–O(4)–Si(3)* 161.0(3) –15.2(8) O(1)–Si(1)–C(6)–Si(3)* 138(1)

Si(2)–O(3)–Si(3)*–O(3)* –77.4(5) 14.0(6) O(1)–Si(1)–O(3)–Si(3)* 140(4)

O(3)*–Si(3)–O(2)–Si(2) 148.7(5)

C(6)*–Si(3)–O(2)–Si(2) 131.4(5)

Si(1)–O(3)–Si(3)*–O(2)* –67(1)

Si(1)–C(6)–Si(3)*–O(2)* –63(1)

Note: In molecules A and B of structure I, the asterisked atoms are related to the reference atoms by the symmetry operations (–x + 1, −y +
1, –z) and (–x, –y, –z + 1), respectively. In structure II, the asterisked atoms are related to the reference atoms by the symmetry
operation (–x + 1, –y + 1, –z).
Note that the refinement of structure II, in which the
oxygen atom and the methylene group were disordered
over two positions, led to worse geometric parameters
of the molecule.

The presence of the methylene group in II is
confirmed by the NMR spectrum, which contains sig-
nals characteristic of the –CH2– group in the cyclic frag-
ment [4].
C

The positions of the hydrogen atoms in the methyl-
ene group (G = 0.5) in II were calculated from geomet-
ric considerations. All the remaining hydrogen atoms in
structures I and II were located from the difference
Fourier syntheses. All the hydrogen atoms were refined
isotropically. The coordinates and equivalent isotropic
thermal parameters of the non-hydrogen atoms in I and
II are presented in Tables 2 and 3, respectively. The tor-
sion angles are listed in Table 4.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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Fig. 1. Structure of molecule I(A).
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Fig. 2. Structure of molecule II.
RESULTS AND DISCUSSION

In structures I and II, the molecules occupy special
positions at the centers of symmetry. In structure I
(Fig. 1), the molecules are located at different centers
of symmetry (–x + 1, –y + 1, –z; –x, –y, –z + 1); there-
fore, there are two crystallographically independent
molecules. The difference in the endocyclic torsion
YSTALLOGRAPHY REPORTS      Vol. 47      No. 5      200
angles (Table 4) indicates that the two molecules have
different conformations. This agrees with the wide scat-
ter of SiOSi bond angles [145.7°–169.1° in I(A) and
139.1°–162.7° in I(B)].

The specific feature of structure II is the location of
the O(3) oxygen atom and the C(6) carbon atom of the
methylene group at the same link of the ring (Fig. 2)
2
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0

b

c
H(1B)

O(1B)

H(1A)
O(3B)

O(2B) O(1A)

Fig. 3. Projection of the molecular packing in crystal I onto the bc plane. Dashed lines indicate intermolecular hydrogen bonds.
because of the centrosymmetric position of the mole-
cule. Most probably, this is explained by the statistical
arrangement of the enanthiomers which form the cen-
trosymmetric packing in crystal II.

Although the centrosymmetric siloxane ring in II is
disordered, the Si(1)O(3)Si(3)* bond angle [161.7(5)°]
lies in the range of values reported [7] and the
Si(1)C(6)Si(3)* bond angle [122.1(1)°] is close to the
angle [121.0(1)°] observed in the structure of
2,2',4,4',6,8,8',10,10',12-decamethylbicyclo[5.5.1]-9-
carbahexasiloxane [2]. The other two angles [145.3(2)°
and 145.8(2)°] at the oxygen atoms in the ring actually
coincide with the corresponding angles [144.9°,
145.6°, and 146.8°] in an oxygen analogue of com-
pound II, namely, the trans isomer of 2,8-dihydroxy-
2,4,4',6,6',8,10, 10'12,12'-decamethylcyclohexasiloxane
[8]. Note that, in the cis isomer of 2,8-dihydroxy-
2,4,4',6,6',8,10,10,',12,12'-decamethylcyclohexasiloxa-
ne, four SiOSi angles (145.7°–150.2°) are characteris-
tic of the majority of cyclosiloxanes and the two angles
increase to 173.6° and 174.1° [8].
C

In the structures studied, the rings have puckered
conformations that can hardly be described by some
standard shape. This is characteristic of most com-
pounds of this type. The exception is provided by the
cis isomer of 2,8-dihydroxy-2,4,4',6,6',8,10,10'12,12'-
decamethylcyclohexasiloxane, in which increased
SiOSi angles (173.6° and 174.1°) enable the ring to
adopt a boat conformation [8].

The hydroxyl groups in the structures studied are
involved in hydrogen bonding. In structure I, the hydroxyl
groups form intermolecular hydrogen bonds with each
other and with two oxygen atoms of the ring
[O(1B)···O(1A) (x – 1, y – 1, z), 2.721(4) Å; O(1A)···O(2B)
(–x + 1, –y + 1, –z + 1), and 3.016(3) Å; O(1A)···O(3B)
(–x + 1, –y + 1, –z + 1), 3.066(3) Å]. The molecules are
linked through the hydrogen-bond system into infinite
chains (Fig. 3).

In crystal II, similar to the structure of the trans iso-
mer of 2,8-dihydroxy-2,4,4',6,6',8,10,10'12,12'-decam-
ethylcyclohexasiloxane, the intermolecular hydrogen
bonds O(4)–H···O(4) (y, –x + 1.5, –z + 0.5) form squares
with sides of 2.740(4) Å, so that the molecules are asso-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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Fig. 4. Projection of the molecular packing in crystal II onto the ab plane. Dashed lines indicate intermolecular hydrogen bonds.
ciated into tetramers around the fourfold inversion axes
(Fig. 4).

Thus, it was found that the structure of compound I,
in which the substituents at the Si(1) atom differ in vol-
ume and inductive effect, consists of two crystallo-
graphically independent molecules with different
conformations of the hexasiloxane ring. As in the bicy-
clic systems 2,2',4,4',6,8,8',10,10',12-decamethylbicy-
clo [5.5.1]hexasiloxane and 2,2',4,4',6,8,8',10,10',12-
decamethylbicyclo[5.5.1]-9-carbahexasiloxane [2], in
structure II, the replacement of one O atom by the CH2
group is accompanied by slight conformational
changes (Table 4). We assume that the accumulation of
monomers with a slightly changed conformation in
cyclolinear polyorganosiloxanes should result in
changes in the physicochemical properties. This makes
it possible to control the physicochemical properties by
selecting the conformational characteristics of the
monomers, in particular, with consideration for the dif-
ferent hydrophilic–hydrophobic nature of the O atoms
and the CH2 groups.

Moreover, the structural studies of molecules I and
II confirmed again the wide variability of SiOSi bond
angles and revealed a noticeable difference between the
SiCSi angle [122.1(1)°] and the tetrahedral angle. Tak-
ing into account that the SiCSi angles in 1,3-disilacy-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
clobutane systems are close to 90° [9–16], we can state
with confidence that the SiCSi angles in cyclosiloxane
systems exhibit a rather wide variability.
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Abstract—The molecular and crystal structures of chiral 1R,4R-cis-2-(4-hydroxybenzylidene)-p-menthan-3-
one (I) are determined by X-ray diffraction analysis. Single crystals of I are orthorhombic, a = 8.997(2) Å, b =
11.314(2) Å, c = 14.847(3) Å, V = 1511.3(5) Å3, Z = 4, and space group P212121. The cyclohexanone ring in
molecules of compound I has a chair-type conformation with the axial methyl and equatorial isopropyl groups.
The enone and benzylidene groupings are nonplanar. The considerable distortion of bond angles at the sp2 car-
bon atoms of the benzylidene grouping and the puckering parameters of the cyclohexanone ring in the structure
of I are close to those observed for the previously studied compound with the p-methoxy substituent. In the
crystal, molecules I are linked by very short intermolecular hydrogen bonds C=O···HO–. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The molecular and crystal structures of a number of
derivatives of chiral cyclic ketones, namely, 1R,4R-cis-
and 1R,4S-trans-p-menthan-3-ones, were investigated
by X-ray diffraction in our earlier works. In particular,
we determined the structures of diastereomeric
2-arylidene substituted compounds with substituents of
different electronic nature in the arylidene fragment [1–
7] and stereoisomeric β-hydroxy ketones with different
configurations of the C(2) and exocyclic chiral centers
and the same 1R,4S configuration [8–10]. It has been
found that the molecular structures of diastereomeric
2-arylidene substituted compounds have a number of
common features: (i) nonplanarity of the enone and
arylidene groupings, which substantially depends on
the electronic nature of the para substituent; (ii) consid-
erable distortion of bond angles at the sp2 carbon atoms
of the arylidene fragment; and (iii) shortened intramo-
lecular contacts between the atoms of the benzene ring
(in the ortho position with respect to the vinyl bond)
and the atoms of the C(1)HCH3 group. In crystals of
1R,4R-cis diastereomers, the cyclohexanone ring
adopts a chair-type conformation (with the axial methyl
and equatorial isopropyl groups), which is significantly
distorted in the case of derivatives with electron-donor
substituents [OCH3, N(CH3)2, and C6H5]. In crystals of
the compounds with the 1R,4S-trans configuration, the
cyclohexanone ring exhibits either a chair-type confor-
1063-7745/02/4705- $22.00 © 20805
mation with axial alkyl groups (p-carbomethoxy substi-
tuted compound [7]) or a twist conformation (p-phenyl
derivative [3]). According to the results of molecular
mechanics calculations and 1H NMR spectroscopic
data [3, 11], these compounds in solutions exist in the
form of an equilibrium mixture of both conformers.
The structural features of different 2-arylidene deriva-
tives of p-menthan-3-ones and cyclohexanone are inter-
preted by assuming the combined influence of two fac-
tors, namely, conjugation and steric effects [5, 6]. The
first factor (conjugation) favors a flattening of the cin-
namoyl fragment, which, in turn, causes a distortion of
the cyclohexanone ring toward a half-chair conforma-
tion and gives rise to a steric strain of the molecules, as
judged from the shortened intramolecular contacts. At
the same time, by virtue of the second factor (steric
effects), the cyclohexanone ring shows a tendency to
retain a chair-type conformation.

In β-hydroxy ketones with the chiral 1R,4S-p-men-
than-3-one fragment, the hydrogen bonds differ in
character depending on the configurations of the C(2)
and exocyclic chiral centers. It is revealed that their
structures can involve the strong intramolecular hydro-
gen bonds –OH···OC  (1R,2R,4S,1'S [9] and
1R,2R,4S,1'R [10] derivatives) and the cooperative
bonds –OH···OH···OH [8].

In the present work, we carried out X-ray diffraction
investigation of the molecular and crystal structures
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Molecular structure of compound I.
of  1R,4R-cis-2-(4-hydroxybenzylidene)-p-menthan-3-
one (I):

It was of interest to compare the molecular structure
of I and the molecular structures of the derivatives with
the same 1R,4R-cis configuration and different elec-
tron-donor substituents (such as OCH3, N(CH3)2, and
C6H5 groups) with the aim of elucidating how the
p-hydroxy substituent involved in hydrogen bonding
affects the molecular geometry (especially, the geome-
try of the cyclohexanone fragment). Moreover, it was
important to determine the type of intermolecular
hydrogen bonds (–OH···OC  or –OH···OH···OH)
formed in crystals of compound I with a considerable
steric screening of the carbonyl group.

EXPERIMENTAL

Compound I was synthesized through condensation
of (–)-menthone with 4-tetrahydropyranylhydroxyben-
zaldehyde according to a procedure similar to that
described in the patent [12] followed by the removal of
the tetrahydropyranyl group [13] and was then purified
by crystallization from acetonitrile (Tm = 154–155°C).
Colorless transparent single crystals suitable for X-ray
diffraction analysis were grown from hexane with a
small addition of isopropanol. A single crystal 0.5 ×
0.4 × 0.3 mm in size was chosen for X-ray structure
analysis. Crystals of compound I are orthorhombic,
C17H22O2, M = 258.35, a = 8.997(2) Å, b = 11.314(2) Å,
c = 14.847(3) Å, V = 1511.3(5) Å3, Z = 4, dcalcd =

O X

1
23

4

X = OH (I),
X = OCH3 (II) [1]; X = N(CH3)2 (III) [5],
X = C6H5 (IV) [6].
C

1.135 g/cm3, µ(MoKα) = 0.073 mm–1, and space group
P212121.

X-ray diffraction analysis was performed on an
Enraf–Nonius CAD4 automated diffractometer (MoKα
radiation, graphite monochromator, θ-5/3θ scan mode,
θmax = 25°). The intensities of 3113 reflections were
measured in the index ranges 0 < h < 10, 0 < k < 13, and
–17 < l < 17. After averaging of the equivalent reflec-
tions, the final data set included 2660 independent
reflections (Rint = 0.0298), which were used in further
calculations. The structure was solved by the direct
method and refined by the full-matrix least-squares

procedure on  in the anisotropic approximation for
the non-hydrogen atoms. The hydrogen atoms were
located from the difference Fourier synthesis and
refined in the isotropic approximation. The final dis-
crepancy factors were as follows: R1 = 0.0387 (calcu-
lated from Fhkl for 2008 reflections with I > 2σ(I)),

wR2 = 0.1259 (calculated from ) for all 2660 ref-
lections used in the refinement), and Goof = 0.937. The
absolute configuration was determined from the known
R configuration of the C(1) chiral center. All the calcu-
lations were performed using the SHELXTL PLUS 5.2
software package. The atomic coordinates are listed in
Table 1.

RESULTS AND DISCUSSION

Figure 1 shows the molecular structure of com-
pound I, which was determined from the X-ray diffrac-
tion data. The bond lengths are presented in Table 2.
The bond angles are listed in Table 3. The selected tor-
sion angles are given in Table 4. For comparison, the
selected torsion angles in molecules of compounds II–
IV are also presented in Table 4.

As in the previously studied structures II–IV, the
cyclohexanone ring in structure I has a chair-type con-
formation [the signs of the endocyclic torsion angles

Fhkl
2

Fhkl
2
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Table 1.  Atomic coordinates (×104) and equivalent isotropic thermal parameters Ueq (×103) for structure I

Atom x/a y/b z/c Ueq, Å2

O(1) –3845(2) 5870(2) 5813(1) 72(1)

O(2) 1984(2) 9027(2) 9529(1) 76(1)

C(1) –4319(3) 6475(2) 8180(2) 55(1)

C(2) –3576(2) 6668(2) 7274(1) 51(1)

C(3) –4450(3) 6331(2) 6467(2) 54(1)

C(4) –6091(3) 6636(2) 6461(2) 56(1)

C(5) –6797(3) 6372(3) 7368(2) 70(1)

C(6) –5929(3) 6911(3) 8141(2) 69(1)

C(7) –4227(4) 5170(2) 8442(2) 70(1)

C(8) –6909(3) 6146(2) 5634(2) 68(1)

C(9) –7006(5) 4808(3) 5642(3) 93(1)

C(10) –8463(4) 6677(4) 5544(3) 101(1)

C(11) –2240(2) 7149(2) 7119(2) 54(1)

C(12) –1140(2) 7615(2) 7762(1) 53(1)

C(13) –875(3) 7129(2) 8610(2) 60(1)

C(14) 165(3) 7604(2) 9175(2) 63(1)

C(15) 977(3) 8592(2) 8927(2) 59(1)

C(16) 752(3) 9072(2) 8088(2) 61(1)

C(17) –281(3) 8589(2) 7514(2) 60(1)

H(1) –3750(30) 6970(20) 8621(17) 55(6)

H(4) –6070(30) 7450(30) 6460(17) 65(7)

H(5A) –7820(40) 6680(30) 7240(20) 106(10)

H(5B) –6820(30) 5550(20) 7482(17) 60(7)

H(6A) –5920(30) 7890(30) 8102(18) 77(8)

H(6B) –6380(40) 6730(30) 8720(20) 82(9)

H(7A) –3180(40) 4920(30) 8570(20) 79(8)

H(7B) –4770(30) 4700(20) 7950(20) 71(8)

H(7C) –4720(40) 5060(30) 8990(20) 83(9)

H(8) –6310(30) 6440(20) 5020(20) 76(8)

H(9A) –5920(40) 4530(40) 5660(20) 89(9)

H(9B) –7490(50) 4590(30) 5100(30) 129(15)

H(9C) –7820(50) 4500(30) 6040(30) 122(14)

H(10A) –9020(70) 6180(50) 6120(40) 180(20)

H(10B) –8290(40) 7630(20) 5470(20) 111(11)

H(10C) –8980(40) 6520(20) 4870(20) 96(9)

H(11) –1990(30) 7260(20) 6506(18) 56(6)

H(13) –1360(30) 6400(20) 8814(15) 54(6)

H(14) 370(30) 7220(20) 9805(17) 69(7)

H(16) 1250(40) 9630(30) 7850(20) 94(10)

H(17) –480(40) 9090(30) 7010(20) 91(9)

H(O2) 2570(40) 9760(30) 9250(20) 84(9)

Note: The equivalent isotropic thermal parameters Ueq for non-hydrogen atoms are calculated from the anisotropic thermal parameters Uij
(for hydrogen atoms, Ueq = Uiso).
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002



808 KULISHOV et al.
ϕ1–ϕ6 alternate (Fig. 1, Table 4)]. The alkyl substituents
are characterized by the cis orientation with respect to
the cyclohexanone ring. The methyl group occupies the
axial position, and the propyl group is in the equatorial
position (see the torsion angles ϕ7–ϕ10). It should be
noted that, as in the earlier-studied compounds [1, 5,
14], the R configuration of the C(1) center in the initial
(–)-menthone remains unchanged during synthesis of
the compound under investigation. Therefore, the cis
orientation observed for 1,4-alkyl substituents unam-
biguously indicates that the C(4) chiral center also has
an R configuration. Consequently, compound I belongs
to the 1R,4R diastereomers.

The conformation of the cyclohexanone ring in
structure I can be described, with a high accuracy, as a
chair-3,6, because the atoms of the opposite bonds in
this ring [C(1)–C(2) and C(4)–C(5)] are coplanar to

Table 2.  Bond lengths in structure I

Bond d, Å Bond d, Å

C(1)–C(2) 1.518(3) C(8)–C(9) 1.516(4)

C(1)–C(6) 1.531(4) C(8)–C(10) 1.528(4)

C(1)–C(7) 1.530(4) C(11)–C(12) 1.473(3)

C(2)–C(3) 1.483(3) C(12)–C(13) 1.394(3)

C(2)=C(11) 1.340(3) C(12)–C(17) 1.395(3)

C(3)–O(1) 1.230(3) C(13)–C(14) 1.367(4)

C(3)–C(4) 1.516(3) C(14)–C(15) 1.386(4)

C(4)–C(5) 1.518(4) C(15)–C(16) 1.374(4)

C(4)–C(8) 1.535(3) C(15)–O(2) 1.364(3)

C(5)–C(6) 1.517(4) C(16)–C(17) 1.375(4)
C

within 0.02 Å and the C(3) and C(6) atoms deviate from
the root-mean-square plane by 0.48 and 0.66 Å, respec-
tively. Judging from the calculated puckering parame-
ters [15, 16], the distortion of the chair-type conforma-
tion due to the presence of two sp2 carbon atoms in the
cyclohexanone ring in the structure under investigation
is insignificant and similar to that observed in the meth-
oxy substituted compound II (Table 4), which contains
a relatively weak electron-donor substituent in the
arylidene grouping. The relatively small difference
between the torsion angles ϕ7 and ϕ8 (or ϕ9 and ϕ10) in
compound I also indicates a slight distortion of the
chair-type conformation of the cyclohexanone ring as
compared to those in structures III and IV in which the
difference between these angles is approximately equal
to 20° (Table 4).

The enone grouping in the studied compound is sub-
stantially nonplanar: the ϕ11 torsion angle is equal to
40.4°. This angle slightly exceeds the corresponding
angle in the methoxy substituted compound II and is
considerably larger than the ϕ11 torsion angle in com-
pounds III and IV (Table 4). Similar regularities are
observed for the ϕ12 torsion angle in the twisted
arylidene grouping.

The structure of compound I is characterized by a
considerable distortion of the bond angles at the sp2 car-
bon atoms, specifically of the bond angles
C(1)C(2)C(11) (ωα) and C(2)C(11)C(12) (ωβ)
(Table 3), as is the case in structures II–IV and a num-
ber of other derivatives of 2-arylidenecyclohexanones
studied earlier in [1–7, 17]. In [5], it was noted that
changes in the ωβ bond angles in the series of  substi-
tuted 2-arylidene-p-menthan-3-ones and 2-arylidene-
cyclohexanones are associated with changes in the
Table 3.  Bond angles (ω, deg) in structure I

Bond angle ω Bond angle ω

C(2)–C(1)–C(6) 109.7(2) C(4)–C(8)–C(9) 122.4(3)

C(2)–C(1)–C(7) 109.9(2) C(4)–C(8)–C(10) 111.5(2)

C(6)–C(1)–C(7) 111.8(2) C(9)–C(8)–C(10) 109.9(3)

C(1)–C(2)–C(3) 116.4(2) C(2)–C(11)–C(12)** 129.5(2)

C(1)–C(2)–C(11)* 127.3(2) C(11)–C(12)–C(13)*** 124.0(2)

C(3)–C(2)–C(11) 116.2(2) C(11)–C(12)–C(17) 118.9(2)

C(2)–C(3)–C(4) 117.6(2) C(13)–C(12)–C(17) 117.1(2)

C(2)–C(3)–O(1) 120.8(2) C(12)–C(13)–C(14) 121.1(2)

C(4)–C(3)–O(1) 121.6(2) C(13)–C(14)–C(15) 121.0(2)

C(3)–C(4)–C(5) 111.0(2) C(14)–C(15)–C(16) 118.8(2)

C(3)–C(4)–C(8) 112.9(2) C(15)–C(16)–C(17) 120.3(2)

C(5)–C(4)–C(8) 116.0(2) C(12)–C(17)–C(16) 121.7(2)

C(4)–C(5)–C(6) 112.1(2) O(2)–C(15)–C(14) 117.9(2)

C(1)–C(6)–C(5) 112.8(2) O(2)–C(15)–C(16) 123.3(2)

Note: In structures II, III, and IV, the asterisked bond angle is equal to (*) 130.4°, 125.9°, and 126.1°; (**) 130.0°, 131.5°, and 134.1°;
and (***) 124.4°, 127.0°, and 127.3°, respectively [1, 5, 6].
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Table 4.  Selected torsion angles (ϕi, deg) according to the X-ray diffraction data and calculated puckering parameters for
compounds I–IV

Angle
ϕi

I II III IV

ϕ1, C(1)C(2)C(3)C(4) 41.2(3) 39.2 21.6(6) 20.8(4)

ϕ2, C(2)C(3)C(4)C(5) –42.6(3) –46.1 –23.1(6) –27.2(4)

ϕ3, C(3)C(4)C(5)C(6) 50.5(3) 60.4 42.1(6) 46.2(3)

ϕ4, C(4)C(5)C(6)C(1) –58.6(3) –66.3 –60.5(6) –61.1(3)

ϕ5, C(5)C(6)C(1)C(2) 53.5(3) 57.7 56.7(5) 53.4(3)

ϕ6, C(6)C(1)C(2)C(3) –44.7(3) –44.4 –37.5(5) –32.7(4)

ϕ7, C(7)C(1)C(2)C(3) 78.7(3) 82.3 87.9(5) 92.5(3)

ϕ8, C(7)C(1)C(6)C(5) –68.7(3) – –68.2(5) –70.0(3)

ϕ9, C(8)C(4)C(3)C(2) –174.8(2) –170.6 –156.8(4) –159.4(3)

ϕ10, C(8)C(4)C(5)C(6) –178.9(2) – 174.0(4) 177.1(2)

ϕ11, O(1)C(3)C(2)C(11) 40.4(3) 34.9 20.2(7) 13.0(4)

ϕ12, C(2)C(11)C(12)C(13) 35.9(4) 31.7 23.2(8) 4.9(5)

Puckering parameters

θ, deg 6.79 9.76 19.59 19.00

Ψ, deg 20.24 24.70 6.53 19.66

S 1.00 1.09 0.89 0.88
degree of nonplanarity of the arylidene grouping with
variations in the electronic properties of the para sub-
stituent. The results obtained for structure I are com-
pletely consistent with the observed tendency of the ωβ
bond angle to increase when the ϕ12 torsion angle
decreases. According to these two characteristics,
structure I and the methoxy substituted structure II are
similar to each other. Moreover, a comparison of the
angles ωβ and ϕ12 in compounds I and II shows that the
electron-donor effect of the hydroxyl group involved in
the formation of an intermolecular hydrogen bond in
the crystal is less pronounced than that of the methoxy
substituent.

Unlike the sterically strained structures III and IV,
which contain either the strong electron-donor p-dime-
thylamino substituent (compound III) or the biphenyl
grouping (compound IV), structure I can be considered
substantially less strained. This follows from the afore-
mentioned distortion of the bond angles, the weak dis-
tortion of the chair-type conformation of the cyclohex-
anone ring, and the analysis of the intramolecular con-
tacts between the atoms of the benzene ring and the

C(1)HCH3 fragment (Table 5). The H(1)···H(13)
intramolecular contacts are shortened in structures III
(2.13 Å [5]) and IV (1.93 Å [6]) and are close to the
sum of the van der Waals radii of hydrogen atoms
(2.32 Å [18]) in structures I [2.26(4) Å] and II (2.38 Å
[1]). A similar situation is observed for the C(13)···H(1)
and C(1)···H(13) intramolecular contacts, which are
close to the sum of the van der Waals radii of carbon
and hydrogen atoms (2.87 Å [18]) in structure I
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      200
[2.77(3) and 2.83(3) Å, respectively] and are shortened
in structures III (2.64 and 2.68 Å [5]) and IV (2.65 and
2.66 Å [6]). In the aforementioned molecular fragment
of structure I, as in structures II–IV, only the intramo-
lecular contact C(1)···C(13) [3.25(4) Å] is noticeably

Table 5.  Shortened intramolecular contacts (d, Å) in struc-
tures I–IV

Contact
d

I II III IV

H(1) ⋅ ⋅ ⋅H(13) 2.26(4) 2.38 2.13 1.93
H(1) ⋅ ⋅ ⋅C(13) 2.77(3) 2.75 2.64 2.65
H(13) ⋅ ⋅ ⋅C(1) 2.83(3) 2.69 2.68 2.66
C(1) ⋅ ⋅ ⋅C(13) 3.25(4) 3.19 3.35 3.28
H(1) ⋅ ⋅ ⋅C(12) 2.77(3)
H(5A) ⋅ ⋅ ⋅C(10) 2.58(3)
H(5A) ⋅ ⋅ ⋅H(10A) 2.06(7)
H(5B) ⋅ ⋅ ⋅C(7) 2.77(3)
H(5B) ⋅ ⋅ ⋅H(7B) 2.19(4)
H(7B) ⋅ ⋅ ⋅C(5) 2.77(3)
H(9A) ⋅ ⋅ ⋅C(3) 2.71(3)
H(9A) ⋅ ⋅ ⋅O(1) 2.42(4)
H(9C) ⋅ ⋅ ⋅H(10A) 2.19(7)
H(10A) ⋅ ⋅ ⋅C(5) 2.73(6)

Note: The sums of the van der Waals radii are as follows [18]:
H⋅⋅⋅H, 2.32 Å; H⋅⋅⋅C, 2.87 Å; H⋅⋅⋅O, 2.45 Å; and C⋅⋅⋅C,
3.42 Å.
2
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Fig. 2. Projection of a fragment of the molecular packing in crystal structure I along the c-axis. Hydrogen bonds are shown by
dashed lines.
shortened (the sum of the van der Waals radii of carbon
atoms is equal to 3.42 Å [18]). A comparison of the
available data for structures I–IV and a number of other
1R,4R-2-arylidene-p-menthan-3-ones [5, 17] demon-
strates that the presence of shortened intramolecular
contacts between the atoms of the
CH3HC(1)C(2)=CHC6H4X fragment—an indication of
C

its steric strain—correlates with the degree of nonpla-
narity of the benzylidene grouping, which is character-
ized by the ϕ12 torsion angle (Table 4). Actually, the
shortest contacts, especially the H(1)···H(13) contacts,
are observed in structures III and IV with the smallest
torsion angles ϕ12 . However, the H(1)···H(13) contact
(2.28 Å) is not shortened in the related compound con-
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taining the substituent X = NO2 [5] and the substantially
nonplanar arylidene group (ϕ12 = 42.4°). Therefore, the
relation between the steric strain of the molecular frag-
ment under consideration and the electronic nature of the
para substituent in the aryl group is beyond question.

The conformation of the isopropyl fragment in the
structure of compound I is virtually identical to that in
the structures of other 1R,4R-2-arylidene-p-menthan-3-
ones studied earlier in [5, 6]. In crystal I, the H(4)–C(4)
and H(8)–C(8) bonds exhibit a gauche orientation [the
torsion angle is equal to 61.1(2)°]. One methyl group is
in the trans position with respect to the H(4)–C(4) bond
[the torsion angle is 177.8(2)°], and the other methyl
group is in the gauche position to this bond [the torsion
angle is –53.9(2)°]. In this conformation, both methyl
groups of the isopropyl fragment are significantly dis-
tant from the carbonyl group (Fig. 1), even though the
shortened intramolecular contacts are observed
between the atoms of the methyl group in the trans
position with respect to the C(4)–H(4) bond and the
atoms of the 5-methylene fragment: H(5A)···C(10),
2.58(3) Å; H(10A)···C(5), 2.73(6) Å; and
H(5A)···H(10A), 2.06(7) Å (Table 5). On the other
hand, the intramolecular contact between the H(9A)
atom of the gauche-methyl group and the carbonyl car-
bon atom is considerably shortened [H(9A)···C(3),
2.71(3) Å], whereas the H(9A)···O(1) contact
[2.42.(4) Å] is close to the sum of the van der Waals
radii of hydrogen and oxygen atoms (2.45 Å [18]).

In the crystal structure of compound I, the mole-
cules are linked by the hydrogen bonds –OH···O=C
(Fig. 2). The parameters of the hydrogen bonds are
given below.

The length of the hydrogen bond OH···O, on the
whole, is typical of the hydrogen bonds formed by the
hydroxyl group of the benzene fragment with the car-
bonyl grouping of α,β-unsaturated ketones in both the
s–cis and s–trans conformations [19]. Such a short
(and, correspondingly, strong) hydrogen bond is unde-
niably associated with the “phenol” origin of the
hydroxyl group in the compound under investigation.
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Abstract—The unipolar state of a chromium- and L, α-alanine-doped ferroelectric triglycine sulfate (TGS)
crystal has been studied. The experimental data on the distribution of internal bias fields with respect to a seed
are considered. The possible mechanisms of the formation of an internal bias field during the growth of TGS
crystals with a low impurity concentration are considered. © 2002 MAIK “Nauka/Interperiodica”.
The unipolar state of a ferroelectric crystal is char-
acterized by only one of several equiprobable polariza-
tion states. The static unipolarity is determined by the
ratio of the areas of the domains of opposite signs. The
most popular method of estimating the degree of the
dynamic unipolarity in ferroelectrics is the determina-
tion of the value of the so-called internal bias field, for
example, from the displacement of the dielectric-hys-
teresis loop along the E axis.

At present, it is assumed that the defects produced
by different external factors (e.g., the surface treatment
or material irradiation with the quanta of different ener-
gies) are responsible for the unipolar state of ferroelec-
trics, together with the dopants that are specially intro-
duced into a crystal during its growth [1–4]. In most
cases, the causes of the formation of the unipolar state
in ferroelectric crystals by these defects are not quite
clear.

The study of the formation of the unipolar state in
TGS, TGS + Cr3+ , and TGS + L,α-alanine [4] showed
that this state can be formed due to the nonsymmetrical
incorporation of the dopant into a crystal. To refine the
above assumptions, we studied the laws of the forma-
tion of an internal bias field Eb during the growth of a
TGS crystal double doped with chromium ions and
L,α-alanine molecules.

A double-doped TGS crystal and crystals doped
either with chromium ions or L,α-alanine molecules,
which were compared, were grown in the ferroelectric
phase by the method of decreasing the saturated-solu-
tion temperature. To prepare the samples from the crys-
tals grown, a ~40-mm-long bar in the shape of a rectan-
gular parallelepiped was sawn from the crystal whose
long axis coincided with the polar Y-axis and the 5 ×
5 mm2 cross section was in the XZ plane. Then the bar
was cleaved along the cleavage planes into ~1-mm-thick
samples. The samples of a TGS crystal located at differ-
ent distances from the seed were studied. We used the
silver electrodes deposited in vacuum. The intensity
1063-7745/02/4705- $22.00 © 20812
and sign of the internal bias field were determined from
the displacement of the loops of dielectric hysteresis.

In Cr-doped crystals, the concentration of chro-
mium ions (Cr3+) was 0.03 mol %, whereas the concen-
tration of L,α-alanine molecules in solution was 1 mol %.
We chose such concentrations to ensure almost equal
internal bias fields (~50 V/cm) in crystals with different
dopants (Fig. 1). To compare the influence of one impu-
rity with the influence of two impurities, the concentra-
tions of chromium and double-doped L,α-alanine were
chosen to be the same as in the material doped with
only one dopant (chromium or L,α-alanine).

As is seen from Fig. 1, the signs of the field Eb for a
nominally pure TGS crystal and a chromium-doped
TGS crystal on different sides of the seed were oppo-
site, but were the same for a L,α-alanine-doped TGS
crystal, in accordance with [4]. In both cases, the field
Eb increases with the distance from any side of the seed.
In a double-doped crystal (Fig. 2, curve 1), the depen-
dence of Eb on the distance from the seed is qualita-
tively the same as the dependence of the sum of the
fields formed in a Cr-doped TGS crystal or L,α-alanine-
doped TGS crystal (Fig. 1, curve 3). However, the
intensity of this field in a double-doped crystal is essen-
tially higher (up to ~260 V/cm) than total field Eb (up to
~60 V/cm) in a chromium- or L,α-alanine-doped TGS
crystal (Fig. 2, curve 2). This discrepancy is observed
for all the samples located at different distances from
the seed and ranges approximately from 100 and
200 V/cm.

The internal bias fields evaluated from the displace-
ment of the dielectric-hysteresis loop agree with the
degree of unipolarity evaluated from the ratio of the
areas of the opposite-sign domains. The sample unipo-
larity does not exceed 70% on the one side of the seed,
but reaches 90% on its other side.

The occurrence of the internal bias field can be
explained as follows. Because of different trapping
002 MAIK “Nauka/Interperiodica”
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coefficients and mobilities of different impurities asso-
ciated with their different dimensions and characteris-
tics of their electronic structure, the crystallization front
is a surface which efficiently separates the impurities
whose charges have opposite signs. This results in the
formation of the electric field Ef along the direction nor-
mal to the crystallization front and the separation of a
certain direction in a growing ferroelectric crystal, thus
promoting the formation of an internal bias field in the
crystal.

In a crystal with charged point defects (for example,
in a chromium-doped TGS crystal and in a nominally
pure TGS crystal that still contains a certain number of
such defects), the composite dipole configurations are
formed from the present impurities of opposite signs
(or an impurity and its vacancy) during crystal growth,
because their formation reduces the electrostatic energy
of the crystal.

The average orientation of the axes of such dipoles
in the field Ef is determined either by the growth direc-
tion or the direction closest to it determined by the crys-
tal structure; in other words, this orientation will be
completely determined. The energies of the polarized
defects in the domains of opposite signs are different,
which promotes the formation of the preferred polar-
ization direction, i.e., the formation of the unipolar
state.

Now, evaluate the internal bias field thus formed.
According to [2], the internal field in a crystal with ori-
ented polar defects is

(1)

where κ is the correlation constant, d is the defect size,
N is the concentration of the dipole impurity in a crys-
tal, and η0 is the order parameter fixed at the defect
nucleus. To evaluate Eb, it is necessary to set the con-
centration of the dipole impurity in the crystal depen-
dent on the electric field intensity at the crystallization
front. The field Ef was calculated in [6] using the
boundary layer method [5]. Using these data, we obtain
the expression for the internal bias field as

(2)

Here, LD is the Debye screening length, γ is the numer-
ical factor [2] entering the expression for the order
parameter η0 = , in which  is the average value
of electrical moment of the dipole complex that is
formed during crystal growth and whose orientation is
influenced by the field Ef.

If this complex has only two possible orientational
states (along the direction of growth of the face and in
the opposite direction), then  acquires the form

(3)

Eb 4πκdNη0,=

Eb 4πγκd p
2
N

2
/eLD kmin.=

γpN p

p

p p
2
E f /T ,≅
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where p is the dipole moment of the composite dipole
complex and T is the temperature.

The evaluation of Eb using formula (2) at
κ ~ 10−15 cm2, LD ~ 10–6 cm, γ ~ 1, d ~ 10–7 cm, N ~
1019 cm−3, and p ~ 10–17 yields ~50 V/cm [4], which
coincides with the experimentally observed value for a
nominally pure TGS crystal and a TGS crystal with a
low concentration of chromium ions (Fig. 1).

Note that, according to the model under consider-
ation, the internal field induced on the opposite faces
should be opposite in sign. This corresponds to the
experimental situation with a nominally pure crystal
and a crystal with a chromium impurity (Fig. 1).
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Fig. 1. Distribution of internal bias fields Eb with respect to
the seed in a TGS crystal doped either with (1) L,α-alanine
molecules or (2) chromium ions. Curve 3 is obtained by
interpolation of the sum of curves 1 and 2 at discrete points.
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Fig. 2. Distribution of internal bias fields Eb with respect to
the seed in a TGS crystal double doped with L,α-alanine
molecules and chromium ions: (1) experimental data and
(2) calculation data.
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The above mechanism also works in a crystal doped
with L,α-alanine. However, in this case, the orientation
of dipole complexes “frozen” into a crystal lattice is
essentially dependent on an increase in the system
energy due to the formation of the orientations of “head
to head” and “tail to tail” type in the complexes, which
leads to the same orientations of the dipole complexes
over the whole growing crystal.

In a TGS crystal simultaneously doped with chro-
mium and L,α-alanine, both the above mechanisms
should work simultaneously. However, in such crystals,
the intensities of internal bias fields determined experi-
mentally are somewhat higher than their calculated
intensities (Fig. 1, curve 2). The absence of such a sim-
ple “superposition” of the mechanism can be caused by
the mechanical stresses arising in the crystals because
of the large dimensions of L,α-alanine molecules (in
comparison with the replaced glycine molecules) incor-
porated into the crystal during its growth. These
stresses increase the unit-cell volume in such crystals
[7, 8], which, in turn, increases the correlation constant
and, hence, the intensity of the field Eb.
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Abstract—The matrix D suggested by Berreman for optically active crystals of various symmetry classes has
been calculated with the use of the Mathematica-4.1 package. It is shown that the eigenvalues of this matrix are
the refractive indices, whereas its eigenvectors determine the polarization states of eigenwaves propagating in
the crystal. The relation between the components of the gyration tensors obtained on the basis of various con-
stitutive equations is established. The essential differences in the optical activity described on the basis of these
equations are also discussed. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Earlier [1], we described in detail the Berreman
method [2, 3] and the possibilities provided by the use
of this method in combination with computer mathe-
matics—the Mathematica-4.1 package. Below, we
describe a detailed study of the matrix D for optically
active nonmagnetic crystals of various symmetry
classes.

The matrix D is obtained from the optical matrix M
6 × 6 of a medium characterized by an arbitrary set of
optical properties determined by the dielectric constant,
electrical conductivity, magnetic susceptibility, and
gyration tensors written in the general form. The form
of the matrix M and, therefore, also that of the matrix
D, depend on the form of the constitutive equation used
in the consideration of the Maxwell equations. The
application of different forms of the constitutive equa-
tions in different studies is explained by the allowance
for the optical activity of crystals and the form of the
gyration tensor. Some authors believe that the gyration
tensor can have symmetric or antisymmetric compo-
nents, whereas other state that the nondiagonal ele-
ments can only be symmetric. We cannot discuss here
all the relevant publications and, therefore, mention
only the articles most often cited and used in the solu-
tion of various problems.

Generally speaking, the form of the gyration tensor
is independent of the constitutive equations, because it
is determined by the crystal symmetry. Voigt was one
the first to obtain the components of the gyration tensor
for crystals of 18 symmetry classes, in which this tensor
had any form [4]. The same gyration tensor was also
1063-7745/02/4705- $22.00 © 20815
used by F.I. Fedorov and his students and followers
[5−7].

Historically, the optical activity of crystals was
described in the same way as in the Born study [8], i.e.,
on the basis of the symmetric gyration tensor [9–12].
As a result, the antisymmetric tensors were ignored,
and only the crystals of 15 symmetry classes were con-
sidered to be optically active. The optical activity in
almost all the experimental studies was described based
on the symmetric gyration tensor and was represented
in the form of gyration surfaces [13], although it is quite
clear that gyration surfaces cannot describe the specific
rotation of the polarization plane, because they corre-
spond only to the symmetric components of the gyra-
tion tensor.

In addition to different forms of the gyration tensor
used in different studies, the constitutive equations
themselves are also written in different forms. Proba-
bly, this fact is not worth mentioning here, but the
authors of the theoretical and experimental studies
describe the optical activity in different ways, which
can result in incredible confusion. Different descrip-
tions of the optical activity in various theories is of fun-
damental importance, which has been ignored because,
in many instances, the theoretical and experimental
studies are performed almost independently. At first
glance, it may seem that one can use any form of con-
stitutive equations. However, it is absolutely obvious
that, first, one has to establish the relation between the
tensors used in different studies and, second, to deter-
mine the applicability range of each of these theories.
This problem can be solved by different methods.
Below, we use the Berreman method and the Mathe-
002 MAIK “Nauka/Interperiodica”
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matica-4.1 package to consider the matrix D for crystals
of various symmetry classes in the analytical form,
establish the boundaries of various theories in the
description of optical activity, and determine the appro-
priate approximation that can be used in each specific
instance.

VARIOUS FORMS OF CONSTITUTIVE 
EQUATIONS USED TO DESCRIBE THE OPTICAL 

ACTIVITY OF CRYSTALS

The elements of the matrix D and the result of the
solution of the boundary problems are essentially
dependent on the form of the constitutive equations and
the method of the formation of the block optical matrix
M. Now, consider in detail different forms of the con-
stitutive equations with allowance for the optical activ-
ity. In the general form, each of the tensors in the con-
stitutive equations has nine components.

In [5], which constitutive equations provide the cor-
rect description of the optical activity was determined.
The same constitutive equations were obtained in [14].
These equations were also used in [15–26]. Hereafter,
we refer to these equations as the Condon–Fedorov
equations,

Dj = εjkEk + iαjkHk, Bj = µjkHk – i Ek . (1)

In [8, 9], the constitutive equations have the form

Dj = (εjk + iejklglmnm)Ek , Bj = µjkHk (2)

and are considered as approximate equations, hereafter
referred to as the Born–Landau equations, where ejkl is
the Levi–Civita tensor and nm are the directional
cosines of the wave normal.

In [27], the so-called Drude constitutive equations
are suggested, which are also used in [2, 3, 28] and have
the form

Dj = εjkEk + iγjkHk , Bj = µjkHk . (3)

In the above constitutive equations, the second-rank
pseudotensors αjk, glm, and γjk are used, which describe
the optical activity in different ways and which are
therefore named differently by different authors. As
was indicated earlier [1], all these pseudotensors are
referred to as simply gyration tensors.

For optically active crystals, constitutive equations
(1)–(3) are written as [2, 3]

D = εE + ρH, B = µH + ρ’E. (4)

It can be seen from Eqs. (4) how one can write the
relation between the field vectors E, H and the induc-
tion vectors D, B for their use in the Berreman method
and which blocks should be possessed by the optical
matrix M in this case [2], namely,

(5)

α̃ jk

D
B

M
E
H

, M ε ρ
ρ' µ 

 
 

.= =
C

As was indicated above, we consider here nonmagnetic
crystals, and therefore the tensor µ is assumed to be the
unit tensor in all the constitutive equations.

It was shown in [5] that the use of Eqs. (2) and (3) in
solving the boundary problem on light propagation
through an optically active plate results in the violation
of the law of energy conservation—the sum of the
intensities of the transmitted and reflected waves differs
from the intensity of the incident one. Therefore, the
theory of the optical activity based on constitutive
equations (2) and (3) is only an approximate one,
whereas the theory based on constitutive equations (1)
is rigorous, although up to now many authors have
described the optical activity based on constitutive
equations (2) and (3). Below, we indicate the expres-
sions which would allow one to justify the use of the
approximate theory in the computations or interpreta-
tion of the results obtained for concrete crystals.

At present, we face a situation in which the compo-
nents of the gyration tensor gjk are calculated in the
experimental studies of optically active crystals based
on Eqs. (2) and the relationships derived from these
equations, whereas the use of Eqs. (1) would result in
different descriptions of the same results, with this dif-
ference being of essential importance. Therefore, it is
necessary to consider the relation between the compo-
nents of the gyration tensors αjk , gjk, and γjk entering
constitutive equations (1)–(3).

We shall show the results to which the differences
between the equations indicated above lead in the cal-
culation of the refractive indices and polarization
parameters of eigenwaves in crystals of various sym-
metry classes.

PHYSICAL MEANING OF EIGENVALUES 
AND EIGENVECTORS OF THE MATRIX D
In principle, the differences in the description of the

optical activity with the aid of constitutive equations
(1)–(3) can be seen quite clearly by examining either
the equations of the normals that are necessary for the
calculation of refractive indices or the polarization of
the waves propagating in a crystal (eigenwaves). The
corresponding procedure is rather time- and labor-
intensive. However, as has already been indicated, one
can analyze the matrix D using different constitutive
equations. First, clarify the physical meaning of the
eigenvalues and eigenvectors of this matrix, which are
not simply a secondary result of the calculations but
also a source of useful information on the optical prop-
erties of the medium. Moreover, upon the calculation of
the matrix D, one can also determine the characteristic
equation of this matrix and its eigenvalues and eigen-
vectors.

We derived the characteristic equation of the matrix
D for optically active uniaxial crystals using the consti-
tutive equations from [5]. Comparing this equation
with the rigorous equation of the normals also given in
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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[5], we established that the coefficients of both fourth-
order equations coincide. Thus, at normal light inci-
dence, the characteristic equation of the matrix D deter-
mines the refractive indices of the waves propagating in
the crystal, whereas, at oblique incidence, it determines
the projections of the refractive indices of these waves
on the direction of the normal, z, to the plate.

Consider this statement in more detail. Earlier [5], it
was shown that at oblique light incidence, the projec-
tions of the refraction vectors of all the waves (incident,
refracted, and reflected) on the x-axis are equal and are
determined by the refractive index ni of the ambient
(incidence) medium and the incidence angle φi. Now,
write the refraction vectors mj (j = 1, …, 4) of the waves
propagating in the crystal as was suggested in [5]

mj = ξex + ηjez = nj nj , (6)

where ξ = ni sinφi , ex and ez are the unit vectors along
the x and z directions, respectively; ηj are the projec-
tions of the vectors mj on the z-axis; and nj and nj are
the refractive indices and the unit vectors of the wave
normal of the respective waves. The relationship

(7)

uniquely relates the refractive indices of the waves
propagating in a crystal and the quantities ηj corre-
sponding to the eigenvalues of the matrix D at the
oblique incidence. The positive ηj-values correspond to
all the waves propagating along the “forward” direc-
tion, i.e., the waves propagating from the upper to the
lower face, whereas the negative ones, to the waves
propagating in the “backward” direction. Obviously, at
normal light incidence onto the crystal (ξ = 0), the
eigenvalues of D completely determine the refractive
indices of the waves propagating in the crystal.

We should like to emphasize once again that the ηj

values calculated from the rigorous equation of normals
[5] obtained based on constitutive equations (1) fully
coincide with the eigenvalues of the matrix D.

The eigenvectors yj = [Exj , Hyj , Eyj , –Hxj] of the
matrix D are the generalized vectors of the fields of
eigenwaves (refracted and reflected) propagating inside
the crystal. The eigenwave polarization is determined
by the mutual spatial orientation of the crystal and the
refraction vector of the incident wave. The vectors yj

determine the x and y components of the electric and
magnetic fields of the corresponding waves. The vec-
tors corresponding to the positive eigenvalues of the
matrix D describe the “forward” waves, whereas the
negative ones describe the “backward” waves. At nor-
mal light incidence and the coincidence of the axes of
the chosen coordinate system with the principal axes of
the tensor εjk and the gyration tensor (αjk, gjk, or γjk), the
relationships

kE = Eyj /Exj and kH = Hyj/Hxj (8)

m j
2

n j
2 ξ2 η j

2
+= =
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determine the polarization state of the fields Ej and Hj

of the jth eigenwave in the crystal corresponding to the
refractive index nj [see Eq. (7)], i.e., determine the ellip-
ticity of the eigenwaves in the crystal. At oblique inci-
dence, the above relationships determine the ellipticity
of the projections of the polarization ellipses of eigen-
waves on the surface of the crystalline plate.

Thus, it is obvious that the matrix D contains all the
information on the optical properties of the medium,
including the information on the polarization of eigen-
waves and their refractive indices.

COMPARISON OF THE REFRACTIVE INDICES 
AND POLARIZATION OF EIGENWAVES 

DETERMINED FROM DIFFERENT 
CONSTITUTIVE EQUATIONS

As was indicated above, upon writing the constitu-
tive equations, one can obtain the expressions for deter-
mining the refractive indices of the waves propagating
in a crystal from the equation of the normals or the
characteristic equation of the matrix D. Now, consider
the differences between these expressions in the case of
constitutive equations (1)–(3).

Crystals of Classes 32, 422, and 622

First, consider in detail the optically active crystals
whose dielectric constant tensors εjk and gyration ten-
sors αjk , gjk, and γjk that describe the optical activity in
various constitutive equations (1)–(3) have the same
diagonal form. These are the crystals of the axial sym-
metry classes 32, 422, and 622 (ε11 = ε22 ≠ ε33, α11 =
α22 ≠ α33, g11 = g22 ≠ g33, and γ11 = γ22 ≠ γ33) and the
crystals of the cubic classes 23 and 432 whose diagonal
tensor components ε, α, g, and γ are equal.

In the majority of experimental studies, the refrac-
tive indices n1 and n2 were calculated from the equa-
tions of the normals obtained based on the constitutive
equations (2)

(9)

whose solution has the form

(10)

where

(11)

n01 and n02 are the refractive indices of the eigenwaves
propagating in the crystal with no allowance for the
optical activity, and G is the scalar gyration parameter

G = giknink . (12)

In unaxial crystals, g22 = g11 and G takes the form

(13)

n
2

n01
2

–( ) n
2

n02
2
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2
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n1 2,
2
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2
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2
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1/2
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2 ε11, n02
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where θ is the angle between the wave normal and the
optic axis; consequently, at a normal incidence, is the
angle betwrrn the optic axis and the normal to the sur-
face of the plate.

Now, write the expressions for  obtained from
the characteristic equation of the matrix D based on
constitutive equations (1). If the optic axis of the crystal
is parallel to the direction {sinθ, 0, cosθ}, this expres-
sion has the form

(14)

where z = (ε11sin2θ + ε33cos2θ) – (α11sin2θ +

α33cos2θ)2, r1 = ε11 – , r3 = ε33 – .

As was shown in [29], constitutive equations (2), (3)
describe the phenomenon of optical activity within an
accuracy of the product of the anisotropy parameters by
the gyrotropy parameters. We shall show that it is with
precisely this accuracy that expression (14) of the rig-
orous theory is transformed into expression (10) of the
approximate theory. With this aim, we write

(15)

where  = (ε11 + ε33)/2 and ∆ε = (ε33 – ε11)/2. Ignoring
the terms of the order (∆ε α) in (14) and the terms
(αii αjj) in the expressions of the form (εkk ± αii αjj) and
taking into account Eq. (11), we can transform expres-
sion (14) into the form

(16)

It is clearly seen that the notation

(17)

transforms Eq. (16) into Eq. (10) with an accuracy up
to the factor /(ε11sin2θ + ε33cos2θ). We emphasize
once again that the angle θ in the expressions of the
approximate theory is formed by the wave normal and
the optic axis of the crystal, whereas, in the expressions
of the rigorous theory, this angle is formed by the optic
axis and the normal to the plate surface. In both theo-
ries, this angle has the same meaning only for uniaxial
crystals at normal light incidence.

Now, compare the expressions for the refractive
indices obtained using constitutive equations (1), (2),

n1 2,
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n1 2,
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g11 ε α11 α33+( ), g33 2α11 ε11= =

ε

C

and (3) for the two most important cases—the light
incidence along the optic axis and normal to it.

Consider, first, the light propagation along the optic
axis and tabulate the results obtained. It should be indi-
cated that the expressions for the eigenvector compo-
nents given below are written within the accuracy of a
constant. One also has to bear in mind that, in constitu-
tive equations (2), the tensor εjk is written in a different
form from that in constitutive equations (1), namely,

(18)

In other words, the components εjk are complex
quantities, whereas the existence of the optical activity
is determined by their imaginary parts.

Even this simplest case shows that the refractive
indices are calculated in different ways depending on
the constitutive equations used, and the relation
between these refractive indices has the form

(19)

One should pay attention to the fact that n1, 2 values
calculated by constitutive equations (1) are accurate,
whereas their values calculated from constitutive equa-
tions (2), (3) are only approximate (resulting from the
approximate evaluation of the square root). Expression
(19) yields the following relation between the compo-
nents of the gyration tensors used in various constitu-
tive equations:

α11 = g33/(2 ) = γ11/2. (20)

It should be emphasized that the use of any of con-
stitutive equations (1)–(3) provides the ellipticity of the
eigenwaves, kE = Eyj /Exj = ±i; in other words, the eigen-
waves are circularly polarized with opposite bypass
directions despite the fact that all the equations are writ-
ten differently.

Now, write the expressions of the refractive indices
resulting from the use of constitutive equations (1) and
(2) for a plate cut out parallel to the optic axis (θ = 90°),
i.e., for light propagating normally to the optic axis

(21)

(22)

Comparing the refractive indices obtained, we see
that

g11 = (α11 + α33) , (23)

ε
ε11 ig33– 0

ig33 ε11 0

0 0 ε33 
 
 
 
 

.=

n1 2, ε11 α11+− ε11 g33/ 2 ε11( )+−≈=

≈ ε11 γ11/2.+−

ε11

n1 2,
2 ε11 ε33 2α11α33+ +(=

ε33 ε11–( )2
4 α11 α33+( ) α11ε33 α33ε11+( )+ )/2,±

n1 2,
2 ε11 ε33 ε33 ε11–( )2

4g11
2

+±+( )/2.=

n
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where  =  under the condition that
quantity (2α11α33) is negligible in comparison with
(ε11 + ε33) and that the quantities of the order of the
product of the gyration-tensor components by crystal
anisotropy are also ignored. It has already been indi-
cated that the approximate theory of the optical activity
is valid just under these approximations [29]. We do not
indicate here the expressions for the refractive indices
which follows from other constitutive equations.

As in the previous case of light propagation along
the optic axis, the most important factor in the case of
light propagation normally to the optic axis is the essen-
tial difference in the description of the optical activity
based on different constitutive equations. The rotation
of the polarization plane through the angle χ in the case
of light propagation along the optic axis is determined
by different gyration-tensor components and the use of
different constitutive equations, namely:

(24)

Using constitutive equations (2) in the case of light
propagation along the optic axis, the difference in the
refractive indices and, therefore, also the rotation of the
polarization plane are determined by the component
g33, which differs from two other equal components. In
the description of the optical activity by constitutive
equations (1), the rotation of the polarization plane is
determined by two equal components of the gyration
tensor, α11. In the description of the optical activity
along the direction normal to the optic axis, all the opti-
cal parameters in the case of constitutive equations (2),
including the refractive indices and the ellipticity of
eigenwaves, are determined by two equal components
of the gyration tensor, g11 = g22. In the case of constitu-
tive equations (1), these optical parameters are deter-
mined by the sum of the tensor components (α11 + α33).
The approximate relation between these components is
established by relationship (23). This is the essential
difference in the description of the optical activity by
various constitutive equations. This should be kept in
mind in the consideration of the phenomenon of optical
activity when using various constitutive equations.

We believe that the relation between the gyration-
tensor components in different descriptions of the opti-
cal activity was first noticed in [29], where the equa-
tions of the normals obtained with the aid of constitu-
tive equations (1) and (2) were compared and the rela-
tionships between the gyration tensors used in different
equations were established. However, at that time, no
importance was given to this result.

It should be underlined once again that at present, it
is commonly believed that the constitutive equations
suggested in [5, 14] are quite rigorous and used mainly
in theoretical studies, whereas the constitutive equa-
tions suggested in [8, 9] are approximate and used in
experimental studies. When selecting the constitutive

n ε11 ε33+( )/2

χ πd n2 n1–( )/λ πd2α11/λ= =

πdg33/ λ ε11( ) πdγ11/λ .=≈
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equations, one has to bear in mind the applicability
range of the approximate equations and also the rela-
tionships between the gyration-tensor components used
in various constitutive equations.

Thus, we described in detail the calculation of the
refractive indices for the crystals described by the axial
classes 32, 422, and 622. These calculations for the
crystals described by other symmetry classes are not
considered in such detail. For the latter crystals, only
some essential features of the use of various constitu-
tive equations are considered.

Crystals of Classes 3, 4, 6 and 3m, 4mm, and 6mm

Unlike crystals of the classes 32, 422, and 622, the
gyration tensor of the crystals of the classes 3, 4, and 6
has, in addition to diagonal components, also antisym-
metric ones, α21 = –α12 [5]. When using constitutive
equations (2), we assumed that the gyration tensor is
completely symmetric. Therefore, crystals of the
classes 32, 422, 622 and 3, 4, 6 were described by the
same diagonal gyration tensor, whereas the compo-
nents α21 = –α12 were assumed to be zeroes [8]. The
matrix D for the crystals of these classes in the case of
the oblique light incidence θ = 0° (the optic axis is nor-
mal to the plate plane), ψ = 0°, and an arbitrary angle ϕ

Different constitutive equations, refractive indices n1, 2, ge-
neralized field vectors ψ1, 2 of the eigenwaves, and the form
of the D matrices for optically active isotropic crystals of the
classes 23, 432 and uniaxial crystals of the classes 32, 422,
and 622 along the direction of the optic axis (θ = 0°) in the
case of normal light incidence

Authors, references,
constitutive equations, n1, 2, ψ1, 2

∆ matrix

Fedorov, Condon [5, 14]
Dj = εjkEk + iαjkHk ,
Bj = µjkHk – i Ek

n1, 2 = 

ψ1, 2 = [±i/ , ±i, 1/ , 1]

Born, Landau [8, 9]
Dj = (εjk + iejklglmnm)Ek, Bj = µjkHk

n1, 2 = 

ψ1, 2 = [±i/ , ±i,

1/ , 1]

Berreman, Drude [2, 27]
Dj = εjkEk + iγjkHk, Bj = µjkHk

n1, 2 = 

ψ1, 2 = [i(± / ε11,

±i, 1/( ), 1]

α̃ jk

ε11 α11+−

ε11 ε11

0 1 iα11– 0

ε11 0 0 iα11–

iα11 0 0 1

0 iα11 ε11 0

ε11 g33+−

ε11 g33+−

ε11 g33+−

0 1 0 0 

ε11 0 ig33 0 

0 0 0 1 

ig33– 0 ε11 0

 

ε11 + γ11
2 /4 γ11/2+−

ε11 + γ11
2 /4 + γ11)

ε11 + γ11
2 /4 γ11+−

0 1 0 0

ε11 0 0 iγ11–

0 0 0 1

0 iγ11 ε11 0
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has the form

(25‡)D

iα12–
ε33 α33

2
– ξ2

–

ε33 α33
2

–
-------------------------------

i α11 ε33 α33
2

–( ) α33ξ
2

+( )

ε33 α33
2

–
------------------------------------------------------------– 0

ε11 iα12 0 iα11–

iα11 0 iα12– 1

0
i α11 ε33 α33

2
–( ) α33ξ

2
+( )

ε33 α33
2

–
------------------------------------------------------------

ε11 ε33 α33
2

–( ) ε33ξ
2

–

ε33 α33
2

–
-------------------------------------------------- iα12

 
 
 
 
 
 
 
 
 
 
 

.=
Hereafter, the angles ϕ, θ, and ψ determine the position
of the orthogonal system of the principal axes of the
tensor in the laboratory coordinate system xyz. In the
Mathematica-4.1 package, the transition from one
coordinate system to another is performed via three
successive rotations: by angle ϕ around the z-axis, then
C

by angle θ around the x-axis, and, finally, by angle ψ
around the z-axis.

In the case θ = 90° (the optic axis lies in the plate
plane), with the other conditions being the same, D is
written as
(25b)D

α11α12ξ

ε11 α11
2

–
--------------------–

ε11 α11
2

– ξ2
–

ε11 α11
2

–
-------------------------------

i α33 ε11 α11
2

–( ) α11ξ
2

+[ ]

ε11 α11
2

–
------------------------------------------------------------–

iα12ξ

ε11 α11
2

–
--------------------

ε11 ε11 α11
2

– α12
2

–( )

ε11 α11
2

–
----------------------------------------------

α11α12ξ

ε11 α11
2

–
--------------------–

iε11α12ξ

ε11 α11
2

–
--------------------–

iα11 ε11 α11
2

– α12
2

–( )

ε11 α11
2

–
-------------------------------------------------–

iα11 ε11 α11
2

– α12
2

–( )

ε11 α11
2

–
-------------------------------------------------

iα12ξ

ε11 α11
2

–
--------------------–

α11α12ξ

ε11 α11
2

–
--------------------

ε11 α11
2

– α12
2

–

ε11 α11
2

–
----------------------------------

iε11α12ξ

ε11 α11
2

–
--------------------

i α33 ε11 α11
2

–( ) α11ξ
2

+[ ]

ε11 α11
2

–
------------------------------------------------------------

ε33 ε11 α11
2

–( ) ε11ξ
2

–

ε11 α11
2

–
--------------------------------------------------

α11α12ξ

ε11 α11
2

–
--------------------

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.=
The above matrices are applicable to the crystals of
the classes 32, 422, and 622 under the condition α12 =
α21 = 0; the crystals of the classes 3m, 4mm, 6mm under
the condition α11 = α22 = α33 = 0; and the crystals of the
classes 23 and 432 under the conditions α11 = α22 = α33
and α12 = α21 = 0.

In the crystals of the symmetry classes 3, 4, and 6,
the component α12 enters the expressions of the refrac-
tive indices (here, they are given for the cases θ = 0° and
θ = 90°, respectively):

(26‡)

(26b)

n1 2, ε11 α12
2

– α11;±=

n1 2,
2 ε11 α11

2
– α12

2
–

ε11 α11
2

–
---------------------------------- ε11 ε33 2α11α33+ +(=

± ε33 ε11–( )2
4 α11 α33+( ) α11ε33 α33ε11+( )+ )/2.
Obviously, if α12 = 0, expressions (26) are transformed
into the corresponding expressions for the classes 32,
422, and 622.

The crystals of the classes 3m, 4mm, and 6mm have
been believed to be optically inactive for quite a long
time, because their optical activity is described by fully
antisymmetric gyration tensor, α21 = –α12 and α11 =
α22 = α33 = 0. However, it was shown [30] that the opti-
cal activity of these crystals manifests itself only in the
case of oblique light incidence (the ellipticity of the
eigenwaves has the nonzero value), despite the fact that
it is seen from expressions (26) that, even at normal
light incidence, the refractive indices depend on the
component α12.

Crystals of Classes ( , )

In crystals of the class , the components of the
gyration tensors are α22 = –α11, α33 = 0, and α21 = α12.

4 42m

4
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In crystals of the class , the gyration tensor α12 =
α21 = 0 differs from the gyration tensor of the remaining
uniaxial crystals. This difference reduces to the fact that
only one axis of the tensor α coincides with the axis of
the tensor α, and both axes coincide with the direction
of the optic axis of the crystal. If the direction of the
optic axis coincides with the direction of the z-axis of
the chosen laboratory coordinate system, then two
other principal axes of the tensor α are directed along
the x- and y-axes, respectively, whereas two other
orthogonal principal axes of the tensor α are rotated by
a certain angle around the x- and y-axes, respectively. If
the expressions of the refractive indices are to contain
the nondiagonal components of the tensor α, the system
of the principal axes of tensors α and ε should be
rotated by an angle ϕ around the z-axis. We should like
to draw attention to the fact that, in uniaxial crystals of
other classes, this rotation by the angle ϕ does not
change the form of the tensors α and ε at θ = 0° and θ =
90° irrespective of normal or oblique light incidence,

whereas in crystals of the classes  and , the rota-
tion by an angle ϕ plays a decisive role in the calcula-
tion of the refractive index at θ = 90°, with the tensor ε
remaining constant. The matrix D for these crystal at
normal light incidence at θ = ψ = 0° and an arbitrary
value of the angle ϕ is

(27‡)

Under the same conditions but at θ = 90°, the matrix D
has the form

(27b)

where u = α11cos2ϕ + α12sin2ϕ, v  = ε11 –  – ,

and z = ε11 – u2.

These matrices provide the determination of the
refractive indices in the form

(28‡)

42m

4 42m

D

iα12– 1 iα11 0

ε11 iα12 0 iα11–

iα11 0 iα12 1

0 iα11– ε11 iα12– 
 
 
 
 
 
 

.=

D

0 1 0 0

v ε11

z
----------- 0 0 iuv

z
---------–

iuv
z

--------- 0 0
v
z
----

0 0 ε33 0 
 
 
 
 
 
 
 
 

,=

α11
2 α12

2

n1 2,
2 ε11 α11

2
– α12

2
–=
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at θ = 0°, and

(28b)

at θ = 90°.

Using constitutive equations (2), one arrives at the
expression for n1, 2 at θ = 90° in the form

(29)

Comparing expressions (28b) and (29), we clearly
see which approximations and which relations for the
components were used in the rigorous and approximate
theories:

(30)

Crystals of Orthorhombic Class 222

In the general case, all the components of the tensors
ε and α have nonzero values. In this case, the tensor ε
is symmetric, while the tensor α can be of an arbitrary
form. Using the Mathematica-4.1 package, the matrix D
can be obtained in a general but rather cumbersome
form and, therefore, is not indicated here. Moreover,
this general matrix is characteristic of only one class of
crystals—triclinic crystals of class 1. For crystals of the
classes 2, m, and mm2 , the gyration tensor has nondiag-
onal components. Only one of its principal axis coin-
cides with one of the principal axes of the tensor ε,
whereas the orthogonal pairs of two other principal
axes of each tensor are located in the xOy plane and are
rotated by different angles around the x- and y-axes,
respectively. In order to obtain the correct dependence
of the refractive indices of eigenwaves on angle ϕ, one
has to perform transformations similar to those made

for crystals of class . The corresponding expressions
are too cumbersome and, therefore, are not given here.

Consider the crystals of the orthorhombic class 222.
Here, the directions u1, u2, and u3 (|uj | = 1) of the prin-
cipal axes of the tensors ε and α coincide with the sym-
metry axes 2 of the crystal. In the laboratory coordinate
system, these tensors are diagonal (ε11 ≠ ε22 ≠ ε33 ≠ 0,
εjk = 0, α11 ≠ α22 ≠ α33 ≠ 0, αjk = 0, j ≠ k) if u1 || ex , u2 ||
ey , u3 || ez (the Eulerian angles are ϕ = θ = ψ = 0°). In

n1 2,
2

 = 
ε11 α11

2
– α12

2
–

2 ε11 α11 2ϕcos α12 2ϕsin+[ ] 2
–( )

--------------------------------------------------------------------------------- ε11 ε33+(

ε33 ε11–( )2
4 α11 2ϕcos α12 2ϕsin+[ ] 2ε33+ )±

n1 2,
2 ε11 ε33+(=

ε33 ε11–( )2
4 g11 2ϕcos g12 2ϕsin+[ ] 2

+ )/2.±

g11 α11n, g12 α12n.= =

4

2
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this case, the matrix D at oblique incidence has the form

(31)D

0
ε33 α33

2
– ξ2

–

ε33 α33
2

–
-------------------------------

i α22 ε33 α33
2

–( ) α33ξ
2

+( )

ε33 α33
2

–
------------------------------------------------------------– 0

ε11 0 0 iα11–

iα11 0 0 1

0
i α22 ε33 α33

2
–( ) α33ξ

2
+( )

ε33 α33
2

–
------------------------------------------------------------

ε22 ε33 α33
2

–( ) ε33ξ
2

–

ε33 α33
2

–
-------------------------------------------------- 0

 
 
 
 
 
 
 
 
 
 
 

.=
At the normal light incidence, the refractive indices
are

(32)

If ϕ = 0° and θ = ψ = 90°, then u2 || ez, and if ϕ = θ = 90°
and ψ = 0°, then u1 || ez. Therefore, the subscripts of the
εij and αij of the matrices D and, naturally, in the refrac-
tive indices corresponding to each of the above cases
are changed by cyclic permutation. With due regard for
this approximation, the relation between the gyration-
tensor components gii and αjj can be written as

       (33)

In the above expression, the relation between the com-
ponents is analogous to the relation established for the
crystals of the classes 32, 422, and 622 in expression
(23) and is also valid in the same approximation.

CONCLUSIONS
The analytical form of the matrix D and the specific

features of its characteristics for optically active crys-
tals of different symmetry classes was obtained and
analyzed by the Berreman method using the Mathemat-
ica-4.1 package. It is shown that the matrix D is in itself
of interest for studying crystals, since its eigenvalues
are the refractive indices and its eigenvectors determine
the polarization state of the waves propagating in crys-
tals.

The relation between the components of the gyra-
tion tensors used in the description of the optical activ-
ity in some commonly used theories is established. It is
shown that the rigorous Condon–Fedorov constitutive
equations, most often used in theoretical studies,
describe the phenomenon of the optical activity in a

n1 2,
2 ε11 ε22 2α11α22+ +(=

ε22 ε11–( )2
4 α11 α22+( ) α11ε22 α22ε11+( )+ )/2.±

g11 α22 α33+( )
ε22 ε33+

2
-------------------,≈

g22 α11 α33+( )
ε11 ε33+

2
-------------------,≈

g33 α11 α22+( )
ε11 ε22+

2
-------------------.≈
C

way that is essentially different from the approximate
Born–Landau constitutive equations used in the exper-
imental studies. The expressions obtained for refractive
indices based on different constitutive equations pro-
vide the determination of the applicability ranges of the
approximate theory.
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Abstract—The inverse Faraday effect in anisotropic media has been studied theoretically. All the 32 symmetry
classes of crystals are considered at various relative orientations of the optic axes and directions of light prop-
agation. The specific features of the inverse Faraday effect in uni- and biaxial crystals are considered. © 2002
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Nonlinear optical phenomena still attracts great
attention among experts in laser optics and its various
applications. Among these phenomena, a special group
is formed by the dc effects (the effects of optical recti-
fication). One of these effects, the so-called inverse
Faraday effect [1], consists in the induction of dc mag-
netization in a dielectric by circularly polarized light,
i.e., magnetic optical rectification (detection), which
was first predicted by Pitaevskiœ [2]. An interesting fea-
ture of this effect is its manifestation in nonabsorbing
media, which is of primary importance for quantum
optics in the case of nondestructive measurements [3].

GENERAL THEORY OF INVERSE FARADAY 
EFFECT IN CRYSTALS

The inverse Faraday effect in nonabsorbing media
can be conveniently described by the Pershan energy
method based on the free-energy function [4]. This
approach showed that it follows from the law of energy
conservation that the rotation of the polarization plane
in a magnetic field, the Faraday effect, and the inverse
Faraday effect are described by the same tensor.

Let a light wave propagate through a nonabsorbing
medium in a constant magnetic field. Then the free
energy of the medium F has the form

(1)

where E(ω) is the electric field of the wave, H(0) is the
applied constant magnetic field, and χ is a third-rank
pseudotensor that describes the interaction of the field
with the material.

For crystals that are invariant with respect to the
time reversal, i.e., that have no magnetic order, the fol-

F
1
2
--- χ ijk ω ω 0, ,( )Ei* ω( )E j ω( )Hk 0( )(–=

+ χ ijk* ω ω 0, ,( )Ei ω( )E j* ω( )Hk 0( ) ),
1063-7745/02/4705- $22.00 © 20824
lowing condition is valid [4]:

(2)

in other words, the pseudotensor χ is purely imaginary.
It follows from the symmetry of Eq. (1) with respect to
the permutation of the electric-field components of the
incident wave that

(3)

Combining conditions described by Eqs. (2) and (3),
we have

(4)

where eijl is the totally antisymmetric Levi–Civita
pseudotensor and A is the real second-rank tensor dual
to the tensor χ.

According to the definition of the free energy, the
polarization P(ω) induced by the incident wave and
responsible for the Faraday effect has the form:

(5)

Differentiating free energy described by Eq. (1)
with respect to Hk(0), we obtain the induced magnetiza-
tion M(0) in the field of the light wave E,

(6)

Comparing Eqs. (5) and (6), we see that the induced
polarization and magnetization are described by the
same tensor.

As far as we know (see, e.g., [5]), all the previous
studies considered only the isotropic media, for which
the Alk tensor becomes a scalar. Then, Eq. (5) describes
the rotation of the polarization plane of a wave in a
transverse constant magnetic field, while Eq. (6), the
magnetization of the medium along the direction of

χ ijk χ ijk*– i χ ijk ;= =

χ ijk χ jik* .=

χ ijk ieijlAlk,=

Pi ω( ) ∂F

∂Ei*
----------– ieijlAlkE j ω( )Hk 0( ).= =

Mk 0( ) ∂F

∂Hk* 0( )
-------------------– ieijlAlkEiE j*.= =
002 MAIK “Nauka/Interperiodica”
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propagation of a circularly polarized wave. Below we
consider a more general case of the inverse Faraday
effect in anisotropic crystals for various geometries of
the mutual orientation of the wave vector and the crys-
tal axes.

To study the inverse Faraday effect, we use the ten-
sor notation that is not based on coordinates [6]. For
isotropic media of symmetry ∞∞m and gyrotropic
media of symmetry ∞∞ and also for cubic crystals of

the symmetry classes 23, , 432, , and ,
the tensor Alk has the form

(7)

where ei are the unit vectors along the coordinate axes
of the crystallophysical basis and A is the constant that
describes the Faraday effect.

For trigonal crystals of the classes 32, 3m, and ;

tetragonal crystals of the classes 422, 4mm, , and
4/mmm; hexagonal crystals of the classes 622, 6mm ,

, and 6/mmm; the textures of the classes ∞2, ∞m,
and ∞/mm, we have

(8)

For trigonal crystals of the classes 3 and ; tetrago-

nal crystals of the classes 4, , and 4/m; hexagonal

crystals of the classes 6, , and 6/m; and textures of the
classes ∞ and ∞/m, we have

(9)

For all the orthorhombic crystals of the classes 222,
mm, and mmm, we have

(10)

For monoclinic crystals of the classes 2, m, and 2/m
(2 || X3, m ⊥ X3), we have

(11)

For monoclinic crystals of the classes 2, m, and 2/m
(2 || X2, m ⊥ X2), we have

(12)

For triclinic crystals of the classes 1 and , we have

(13)

m3 m3m 43m

A Aeiei,=

3m

42m

6m2

A A1eiei A2e3e3.+=

3

4

6

A A1eiei A2e3e3 A3 e1e2 e2e1–( ).+ +=

A A1e1e1 A2e2e2 A3e3e3.+ +=

A A1e1e1 A2e2e2 A3e3e3+ +=

+ A4 e1e2 e2e1+( ) A5 e1e2 e2e1–( ).+

A A1e1e1 A2e2e2 A3e3e3+ +=

+ A4 e1e3 e3e1+( ) A5 e1e3 e3e1–( ).+

1

A A1e1e1 A2e2e2 A3e3e3+ +=

+ A4 e1e2 e2e1+( ) A5 e1e2 e2e1–( )+

+ A6 e1e3 e3e1+( ) A7 e1e3 e3e1–( )+

+ A8 e2e3 e3e2+( ) A9 e2e3 e3e2–( ).+
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According to (6) and (7), for isotropic media ∞∞m,
gyrotropic media ∞∞, and cubic crystals of the classes

23, , 432, , and , the induced magnetiza-
tion has the form

(14)

where Ei is the ith component of the electric field of the
electromagnetic wave in the crystal physical basis.

In the general case, the phase anisotropy associated
with the birefringence of the crystal should also be
taken into account. In order to determine the electric-
field components, it is necessary to solve a standard
problem of the propagation of light in an anisotropic
medium [7].

Since the phase shift of the field components in
Eq. (14) is constant during light propagation, the mag-
netization M(0) can be written as

(15)

One can readily see that the induced magnetization
is aligned along the wave vector, with the effect having
the nonzero value only at a nonlinear polarization of the
incident wave. In other words, we obtained a result sim-
ilar to the result for isotropic media.

INVERSE FARADAY EFFECT IN UNIAXIAL 
CRYSTALS

Consider normal light incidence for uniaxial crys-
tals.

For trigonal crystals of the classes 32, 3m, and ;

tetragonal crystals of the classes 422, 4mm, , and
4/mmm; hexagonal crystals of the classes 622, 6mm,

; and 6/mmm, and textures of the classes ∞2, ∞m,
and ∞/mm, the magnetization is written as

(16)

Assume the wave vector is directed along the optic
axis. Then (16) takes the form

(17)

where B = A1 + A2.
As in the previous case, the induced magnetization

is parallel to the wave vector and necessarily has a cir-
cular component of the incident-wave polarization.

Assume now that the light propagates normally to
the optic axis. Then, the induced magnetization has the
form

(18)

where ko and ke are the wave vectors of the ordinary
and extraordinary waves, respectively, s is the unit vec-
tor parallel to the wave vector of the incident wave,

m3 m3m 43m

M 0( ) iA E2*E3 E2E3*–( )e1(=

+ E3*E1 E3E1*–( )e2 E1*E2 E1E2*–( )e3+ ),

M 0( ) iA E E*×[ ] .=

3m

42m

6m2

M 0( ) iA1 E E*×[ ] iA2 E1E2* E1*E2–( )e3.+=

M 0( ) iB E E*×[ ] e3,=

M 0( ) A1EoEe ko ke–( )r ϕ+( )s,sin=
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Eo and Ee are the components of the ordinary and
extraordinary waves in the incident field, and ϕ is the
phase shift between these components at the interface.

It is seen from Eq. (18) that the magnetization M(0)
is parallel to the wave vector. We should like to empha-
size that, unlike isotropic media, in this case the inverse
Faraday effect takes place also for the linear polariza-
tion of the incident wave because of two normal orthog-
onally polarized waves propagating with different
velocities. Hence, the polarization of the wave propa-
gating in a crystal periodically changes in space from
circular to linear with the period λ/∆n, where λ is the
wavelength in a free space and ∆n is the difference in
the refractive indices of the ordinary and extraordinary
waves. The periodic variation in the wave polarization
results in the spatial oscillations of magnetization,
which is reflected in Eq. (18).

Now, consider a more general case where light prop-
agates at an arbitrary angle to the optic axis. Here, the
induced magnetization is not parallel to the wave vec-
tor, because the electric field vector of the extraordinary
wave forms a certain angle with the wave vector.

For uniaxial crystals, the refractive indices and the
unit vectors of the electric field of the ordinary and
extraordinary waves can be represented as [7]

(19)

(20)

where s and c are the unit vectors along the wave vector
of the incident wave and the optic axis, respectively,
and ε1 and ε3 are the eigenvalues of the permittivity
tensor.

Substituting Eq. (20) into the general expression for
magnetization, (16), we arrive at

(21)

The first term is similar to Eq. (18) for light propa-
gation normal to the optic axis, but, because of the lon-
gitudinal component of the electric field of the extraor-
dinary wave, the induced magnetization is not parallel
to the wave vector. The second term accounts for mag-
netization along the optic axis of the crystal which
oscillates in space.

Now, consider the next group of crystals. We can
write the following expression for the magnetization of

trigonal crystals of the classes 3 and , tetragonal crys-

no ε1, ne

ε1ε3

ε1 ε3 ε1–( ) sc( )2
+( )

1/2
------------------------------------------------------,= =

eo
s c×[ ]

1 sc( )2
–( )

1/2
-------------------------------,=

ee
1

1 sc( )/ε1( )2
–( )

1/2
------------------------------------------- s sc( )

ε1
------------ c– 

  ,=

M 0( ) A1 eo ee×[ ] ko ke–( )r ϕ+( )EoEesin=

+ A2 eoe1( ) eee1( ) eee1( ) eoe2( )+( )
× ko ke–( )r ϕ+( )EoEee3.sin

3

C

tals of the classes 4, , and 4/m, hexagonal crystals of

the classes 6, , and 6/m, and textures of the classes ∞
and ∞/m:

(22)

Consider two particular cases where light propa-
gates along the optic axis and normally to it.

In the first case, the result obtained is similar to (16),
and induced magnetization is parallel to the wave
vector.

The second case, where light propagates normally to
the optic axis, is more interesting. Representing the
electric field of the incident wave in the form

(23)

we arrive at

(24)

It can be seen (24) that induced magnetization is not
parallel to the wave vector. The first term contributes to
the longitudinal component of magnetization, while the
second term, to the transverse component. Comparing
Eqs. (24) and (9), we see that longitudinal magnetiza-
tion is described by the symmetric part of the tensor Alk,
whereas transverse magnetization, by the antisymmet-
ric one.

At an arbitrary angle between the wave vector and
the optic axis, we use Eq. (21) to obtain

(25)

INVERSE FARADAY EFFECT IN BIAXIAL 
CRYSTALS

For all the orthorhombic crystals of the classes 222,
m, and mmm, we have

(26)

Generally, the magnetization direction is not paral-
lel to the direction of a wave propagation. In this case,

4

6

M 0( ) iA1 E E*×[ ] iA2 E1E2* E1*E2–( )e3+=

+ A3 E3E2* E2E3*–( )e2 E1E3* E3E1*–( )e1–( ).

E Eo 1/ 2( ) s c×[ ] Ee 1/ 2( ) iϕ( )e3,exp+=

M 0( ) A1EoEe ko ke–( )r ϕ+( )ssin=

+ A3EoEe s c×[ ] ko ke–( )r ϕ+( ).sin

M 0( ) A1 eo ee×[ ] ko ke–( )r ϕ+( )EoEesin=

+ A2 eoe1( ) eee2( ) eee1( ) eoe2( )+( )

× ko ke–( )r ϕ+( )EoEee3sin

+ A3 eoe3( ) eee2( ) eee3( ) eoe2( )+( )

× ko ke–( )r ϕ+( )EoEee2sin

+ A3 eoe3( ) eee1( ) eee3( ) eoe1( )+( )

× ko ke–( )r ϕ+( )EoEee1.sin

M 0( ) A1 E3E2* E2E3*–( )e1=

+ A2 E1E3* E3E1*–( )e2 A3 E2E1* E1E2*–( )e3.+
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spatial oscillations of magnetization with the period
dependent on the direction of light propagation are
observed. The only exception is the case of the config-
urations in which the wave vector is parallel to one of
the optic axes.

As is well known, the optic axes in orthorhombic
crystals lie in the xz-plane symmetrically with respect
to the z-axis and form an angle β with it. This angle is
defined by the equation

(27)

where εx < εy < εz are the principal values of the permit-
tivity tensor. If the wave vector is parallel to one of the
optic axes, the electric-field components are related by
the following expressions:

(28)

Substituting Eq. (28) into Eq. (26), we obtain

(29)

(30)

where Mc is the magnetization induced along the optic
axis, and M⊥  is the magnetization induced normally to
this axis.

An interesting feature of the inverse Faraday effect
is observed if the electric field has all the three compo-
nents. Then, the induced magnetization is not parallel
to the wave vector because of the crystal anisotropy,
despite the absent spatial oscillations. In this case, the
incident wave should be circularly polarized.

For the monoclinic crystals of classes 2, m, and 2/m
(2 || X3, m ⊥ X3), we have

(31)

If light propagates along the X3-axis, the induced
magnetization is also parallel to this axis. In all the
other cases, the wave vector and magnetization are not
parallel. As in the case of orthorhombic crystals, a cir-
cularly polarized wave propagating along one of the
optic axes induces magnetization that is constant in
space, but not parallel to the wave vector.

For triclinic crystals of the classes 1 and , we have

βtan
1/εx 1/εy–
1/εy 1/εz–
--------------------------,±=

Ex βsin Ez βcos+  = 0, Ex
2

1 βtan
2

+( ) Ey
2

+  = E
2
.

Mc 0( ) Ex E
2

Ex
2
/ βcos

2
– A1 A3+( ) βsin( ),=

M ⊥ 0( ) = Ex E
2

Ex
2
/ βcos

2
– A1 βtan

2
A3–( ) β,cos

M 0( ) A1 E2E3* E2*E3–( )e1=

+ A2 E3E1* E3*E1–( )e2 A3 E1E2* E1*E2–( )e3+

+ A4 E3E2* E2E3*–( )e2 E1E3* E3E1*–( )e1+( )

+ A5 E3E2* E2E3*–( )e2 – E1E3* E3E1*–( )e1( ).

1

M 0( ) A1 E2E3* E2*E3–( )e1=
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(32)

The anisotropy is most pronounced in triclinic crys-
tals, because these crystals have no axes or planes of the
crystallographic symmetry. In these crystals, the
induced magnetization and the wave vector, as follows
from Eq. (32), are not parallel, regardless of the config-
uration. As in the two previous cases, the magnetization
is constant in space if light propagates along one of the
optic axes. In all the other cases, spatial oscillations of
the induced magnetization with a period dependent on
the direction of light propagation are observed.

CONCLUSIONS

Thus, we considered the specific features of the
inverse Faraday effect in anisotropic crystalline media.
Because of birefringence, the inverse Faraday effect
also takes place if the incident light is linearly polar-
ized, but then the magnetization oscillates in space. In
this case, a one-dimensional magnetic lattice is formed.
It is also worth noting that the inverse Faraday effect in
biaxial crystals has a specific feature. If light propa-
gates along one of the optic axes, the induced spatially
constant magnetization is not parallel to the wave vec-
tor of the incident wave. Using additional optical beams
propagating along other directions, one can create two-
and three-dimensional periodic magnetic structures.
These structures can be used for the creation of photon
crystals, which presently attract much attention.

Finally, let us consider the numerical value of the
above effects. Magnetization in isotropic media has the
form [8]

(33)

where V is the Verdet constant, λ is the light wave-
length, I is the intensity of the incident wave, ξ is the
degree of the wave ellipticity, c is the light velocity in
vacuum, and n is the refractive index of the medium.

The Verdet constant for a ZnSe crystal at the wave-
length 600 nm is about 300 rad T–1 m–1 [9]. Modern
femtosecond lasers can emit nondestructive pulses with
a power of up to several TW. According to Eq. (33), the
induced magnetization is of the order of 0.5 × 104 A/m,
which corresponds to the magnetic field with the induc-
tion of 0.05 T. The period of the spatial oscillations of

+ A2 E3E1* E3*E1–( )e2 A3 E1E2* E1*E2–( )e3+

+ A4 E3E2* E2E3*–( )e2 E1E3* E3E1*–( )e1+( )

+ A5 E3E2* E2E3*–( )e2 – E1E3* E3E1*–( )e1( )

+ A6 E3E2* E2E3*–( )e3 + E2E1* E1E2*–( )e1( )

+ A7 E3E2* E2E3*–( )e3 – E2E1* E1E2*–( )e1( )

+ A8 E1E3* E3E1*–( )e3 + E2E1* E1E2*–( )e2( )

+ A9 E1E3* E3E1*–( )e3 – E2E1* E1E2*–( )e2( ).

M Vλ Iξ /2π2
cn,=
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the magnetization is λ/∆n, i.e., 10–100λ. A resolution
of several microns in the measurements of these fields
has long been available [10]. Thus, one can hope that
the inverse Faraday effect in crystals will soon be
experimentally detected and used in practice.
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Abstract—The polarizabilities of ions in the MgF2, ZnF2, TiO2, and SnO2 compounds have been calculated
based on the point-dipole model. It is shown that cation polarizabilities produce a stronger effect on the bire-
fringence of AX2(X = F, O) compounds than anion polarizabilities. © 2002 MAIK “Nauka/Interperiodica”.
The point-dipole model [1–7] allows one to calcu-
late theoretically the parameters of the optical indica-
trix of a crystal knowing its structure data and polariz-
abilities of structural units. The latter can be optimized
so as to reduce to a minimum the differences between
the calculated and experimentally measured optical
properties. This study is devoted to modeling optical
properties in the point-dipole approximation and refin-
ing the polarizabilities of ions in AX2(X = F, O) com-
pounds with a rutile-type structure.

In terms of the point-dipole model, atoms in a crys-
tal are considered as dipoles, whose dimensions are
negligibly small in comparison with the interatomic
distances. In this approximation, the local electric field
induced by a light wave in the position k of the unit cell
has the form [1]

F(k) = E + (1)

where E is the macroscopic field, P(k') is the dipole
moment in the position k', v  is the unit cell volume, and
L(kk') is the Lorenta-factor tensor, which depends on
the geometry of the structure.

The dipole moment in the k' position is related to the
local electric field F(k') in the same position by the
equation

P(k') = ε0α(k')F(k'), (2)

where α(k') is the polarizability. Substituting Eq. (2)
into Eq. (1), we obtain the system of linear equations
with respect to the components of the F vector. Solving
this system and summing up the components of the vec-
tor F multiplied by the corresponding polarizabilities
over all the k positions, one obtains the tensor relating
the total dipole moment of the unit cell to the vector of
the macroscopic field. Dividing the components of this
tensor into the unit-cell volume, one obtains the dielec-

L kk'( )P k'( )/ε0v ,
k'

∑
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tric susceptibility tensor and can pass to the dielectric
constant tensor.

To perform such a calculation, I wrote a program
entitled AnRef. The input data are the parameters of an
elementary parallelepiped, the fractional coordinates of
all the atoms in the unit cell, and their polarizabilities.
The Lorenta-factor tensor is calculated by the method
stated in [1]. If the calculated dielectric-constant tensor
is not diagonal, the program reduces it to the principal
axes; then, the principal refractive indices equal to
square roots of the diagonal components are calculated.

For the crystals of intermediate systems, to which
the AX2 compounds are related, two of the diagonal
components of the dielectric-constant tensor are equal
to the squared refractive index No of an ordinary ray
and one diagonal component is equal to the squared
refractive index Ne of an extraordinary ray.

Using the AnRef program, we determined the polar-
izabilities of R-ions in the MgF2, ZnF2, TiO2, and SnO2
compounds (see table), with due regard for their struc-
tural data [8] and also the principal refractive indices
for the D line (λD = 589 nm) [9]. All the AX2 com-
pounds with a rutile structure are isostructural and crys-
tallize in the tetragonal sp. gr. P42/mnm [8].

Numerous calculations were made using different
polarizabilities of cations and anions until the attain-
ment of the good agreement between the calculated and
experimentally measured No and Ne values. The
uniqueness of such a choice was provided by the fact
that the number of calculated polarizabilities coincided
with the number of independent components in the
dielectric-constant tensor. It is important that each ion
or cation, for which the polarizability was determined,
occupies only one position in the crystallographically
independent region of the unit cell.

The polarizabilities of ions depend on many factors,
e.g., on the bond polarity. As a consequence, they are
essentially different in different compounds but remain
002 MAIK “Nauka/Interperiodica”
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Optimized ion polarizabilities

Compound No, Ne Ion R0, cm3 R*, cm3 (V0–V), Å3 (R0–R)/(V0–V)

MgF2 1.378 Mg2+ 0.5 1.22 2.858 –0.252

1.390 F– 2.0 1.64 –1.430 –0.252

ZnF2 1.510 Zn2+ 1.7 1.69 3.011 0

1.526 F– 2.0 2.22 –1.506 0.1

TiO2 2.6211 Ti4+ 1.7 7.443 2.800 –2.1

2.9085 O2– 3.8 1.432 –1.400 –1.7

SnO2 2.0006 Sn4+ 3.6 5.823 3.072 –0.7

2.0972 O2– 3.8 1.887 –1.536 –1.2

* R=NAα/3ε0 where NA is the Avogadro number and α is the polarizability in Eq. (2).
close to the ionic refraction R0 of the corresponding
chemical elements [10].

The optimized cation polarizabilities for all the
compounds except for ZnF2 (where the selected polar-
izabilities are close to the refraction values) are much
higher, and the anion polarizabilities are less than the
corresponding refraction values. It should be indicated
that the volume V of the Voronoœ–Dirichlet polyhedron
of the cation [11] is smaller, whereas that of the anion
is larger than the average volume per atom in the crys-
tal. Nevertheless, the cation and the anion in each com-
pound have comparable (R0 – R)/(V0 – V) ratios.

The anions in the crystals of the compounds with a
rutile-type structure form a slightly distorted close
packing. The close packed layers of anions in AX2 are
corrugated in such a way that the fourfold symmetry
axes are parallel to the layers and the optic axis is par-
allel to these symmetry axes. Since the optic axis is par-
allel to the layers of the anion packing, which has
pseudohexagonal symmetry, the variation in the princi-
pal birefringence in various AX2 compounds should be
caused mainly by the different polarizabilities of cat-

0.06

0.04

0.02

0

1 2 3 4 5
R, cm3

Ne–No

1.5

2.0

2.5

3.0

Birefringence of AX2 crystals as a function of cation polar-
izabilities at various anion polarizabilities (indicated at the
corresponding curves).
C

ions and not of anions. The problem of the most pro-
nounced influence of cation polarizability on birefrin-
gence is of special importance because the polarizabil-
ity of a cation can be evaluated based on the value of
birefringence ignoring the principal refractive indices.
The method is very advantageous for estimating polar-
izability because it is relatively simple in comparison
with measurements of the principled refraction indices.

The principal refractive indices for various ion
polarizabilities for CoF2, NiF2, ZnF2, MnF2, MgF2,
FeF2, SnO2, TiO2, GeO2, and MnO2 compounds were
calculated with the aid of the AnRef program and struc-
tural data [8]. For each compound, the plots of birefrin-
gence as a function of a cation polarizability were con-
structed at different anion polarizabilities. Since these
compounds are isostructural, the plots thus constructed
reflect the influence of cation polarizability on birefrin-
gence.

The Ne – No dependences as functions of cation
polarizability calculated for the MnF2 structure are
shown in the figure. Each curve corresponds to a certain
value of anion polarizability (1.5–3.0). Within the range
of cation polarizability from 1.0 to 3.0, the curves lie
close to one another.

The plots obtained for other AX2 structures are sim-
ilar to the one considered above. To determine the slope
of the curves, we calculated the change in birefringence
per unit polarizability of the cation ∆(Ne – No)/∆R for
the curve corresponding to anion polarizability equal to
1.5. In the range of cation polarizability from 1.0 to 1.5,
∆(Ne – No)/∆R varies from 0.010 to 0.015 for fluorides
AX2 and from 0.017 to 0.030 for oxides. The close
curve positions at the cation polarizability 1.5 is char-
acterized by the difference in birefringence ∆(Ne – No),
which correspond to anion polarizabilities 2.5 and 1.5
for fluorides and 3.5 and 1.5 for oxides. The value of
∆(Ne – No) is considerably lower than the value of
∆(Ne – No)/∆R and is equal to 0.0009–0.0024 for AX2
fluorides, and 0.0045–0.0118 for oxides. The point of
intersection of the curve for anion polarizability equal
to 1.5 with the vertical coordinate axis is characterized
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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by birefringence ∆N0 when the cation polarizability is
equal to zero. The value of ∆N0 varies from –0.0042 to
–0.0032 for AX2 fluorides and from –0.0056 to –0.0035
for oxides.

Two compounds, FeF2 and MnO2, are of special
interest. They have a much lower value of ∆(Ne –
No)/∆R and a much higher value of ∆(Ne – No)/∆R than
all the other compounds. The value of ∆(Ne – No)/∆R is
equal to 0.002 for FeF2 and to 0.012 for MnO2; the
value of ∆(Ne – No) is equal to 0.009 for FeF2 and to
0.035 for MnO2.
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Abstract—Absorption and circular-dichroism spectra of iron-doped AlPO4 crystals have been studied. For the
first time, the experimental data on the electronic states of the [FeO4]5– complex are obtained in the range from
190 to 350 nm with due regard for the interactions that cannot be described within the one-electron approxima-
tion. The bands observed in the absorption and circular-dichroism spectra are attributed to corresponding elec-
tronic transitions. The advantages of the use of crystal-field-induced circular dichroism in comparison with
other spectroscopic methods in the analysis of the electronic states of impurity ions in gyrotropic crystalline
matrices are considered on the [FeO4]5– complex. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Berlinite (AlPO4) crystals are a promising material
for acoustic devices [1–3], which has stimulated the
study of its crystallization conditions, the growth of
large perfect berlinite crystals [4–9], and their charac-
terization [10–15]. It is well known that impurities
essentially change the physical properties of crystals,
which is also true for berlinite crystals. In this study, we
detected impurity iron ions in a crystal by the method
of circular dichroism along with the conventional
method of adsorption spectroscopy. For optically active
crystals, this method provides additional information
on the forbidden electronic transitions of the d- and f-
elements [16].

Berlinite crystals are structurally similar to quartz

(sp. gr. P3121 ( ) or P3221 ( ), a = 4.93, c =
10.94 Å, Z = 3) [17]. The Al and P atoms alternately
occupy equivalent positions with symmetry 2 in the
centers of slightly distorted oxygen tetrahedra around
the 31 or 32 axes forming the chains in the crystal struc-
ture. If the iron atoms isomorphously replace aluminum
atoms, then the electronic transitions of a Fe3+ ion in a
chiral crystalline field can be active in the formation of
circular-dichroism spectra.

Below, we describe the study of the absorption and
circular-dichroism spectra of undoped and iron-doped
AlPO4 crystals. The choice of an iron activator is
explained by the specific features of hydrothermal syn-
thesis, which make iron the most probable impurity that
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can be isomorphously incorporated into the berlinite
crystal lattice.

Undoped berlinite crystals were grown from a solu-
tion of orthophosphoric or sulfuric acids under different
conditions. The growth conditions are described in
detail elsewhere [7, 8]. Iron-doped berlinite crystals
were grown from a sulfuric-acid solution. The iron con-
centration in crystals determined by flame photometry
varied from 0.1 to 0.001 wt %. The measurements were
made on plane-parallel plates cut out from single crys-
tals with different iron content normal to the optic axis.

The absorption spectra were measured on a Specord
M-40 spectrophotometer; the circular-dichroism spec-
tra were measured on a Mark-3 (Jobin–Yvon) dichrom-
eter in the spectral range from 190 to 800 nm.

ABSORPTION AND CIRCULAR-DICHROISM 
SPECTRA

The absorption and circular-dichroism spectra of
iron-doped AlPO4 crystals recorded at room tempera-
ture showed the bands caused by a presence of Fe3+ iron
ions (Figs. 1, 2). The experimental data obtained are
listed in the table. Data [18] on the polarized (π(E || c)
and σ(E ⊥ c)) orthoaxial spectra of iron-doped AlPO4,
GaPO4, AlAsO4, and SiO2 crystals are also indicated in
this table. In general, our absorption spectra are consis-
tent with the data in [18]. However, the number of the
registered bands in our axial spectra exceeds their num-
ber in [18]. The last column of the table indicates the
002 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Absorption and (b) circular-dichroism spectra of iron-doped AlPO4 crystals in the range of d–d transitions.
possible identification of the bands observed with the
corresponding electronic transitions.

With due regard for the close ionic radii of Al3+ and
Fe3+ ions [19] and the isostructurality of AlPO4 and
FePO4 crystals [20], one could expect that iron atoms
replace aluminum atoms in the oxygen octahedra in the
berlinite lattice. Taking into account all the above data,
we shall interpret the obtained spectra based on the data
on electronic states of the tetrahedral [FeO4]5– complex.
The energies of the Fe3+ electronic states (3d5-configu-
ration) in a tetrahedral crystalline field are calculated in
YSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
[21]. It is well known that the ground state of the Fe3+

ion in a tetrahedral crystalline field is the 6A1-state. All
the excited states are either quartets or doublets. Thus,
the transitions in the crystalline field are parity- and
spin-forbidden. The simultaneous influence of different
mechanisms of acquiring the intensity, such as spin-
orbital interaction, the distortion of tetrahedra, etc.,
results in a low resolution of the transitions to the quar-
tet states. It is seen from the spectra shown in Fig. 1a
that, as in [18], the absorption-band intensities in the
range from 300 to 800 nm are weak. First, as was



 

834

        

BURKOV 

 

et al

 

.

                                                                          
Absorption and circular-dichroism bands due to electronic transitions of Fe3+ ions in tetrahedral crystalline field and bands
due to transitions with charge transfer in iron-doped AlPO4 crystals

Positions of the band maxima

Terms and transitionsabsorption spectra circular-dichroism spectra absorption spectra [17]

λ, nm ν, cm–1 λ, nm ν, cm–1 λ, nm ν, cm–1

543 18 400 (4T1)

505 19 420 4T1(G)

495 20 202 2T2(G)
485 20 685

473 21141 470 21 276 474 21100 (4T2) 4T2(G)
445 22472 445 22 472

430 23256 430 23 256 432 23100 (4A1,4Ö) 4T1, 4Ö(G)

405 24690 406 24 630 406 24500 (4T2) 4T2 (D)

377 26525 376 26 580 376 26580 (4Ö) 4Ö (D)

360 27777 362 27 425 4T2 (P)

337 29673 335 29 851 2A2, 2T1(F)

275 36 363 6A1  4T1

(t  2e)246 40650 252 39 683 6A1  6T1

218 45870 225 44 444 218 45900 (t  2e) 6A1  6T2
already noted, all the electronic transitions of Fe3+ ions
in the tetrahedral crystalline field (d–d transitions) are
forbidden, and, second, the iron concentration in our
crystals is very low (CFe < 0.1 wt %). In the circular-
dichroism spectra obtained (Fig. 1b), these forbidden
transitions are seen to be much better. All circular-
dichroism bands of dextrotating light in the range of
300–800 nm have a negative sign, except for the low-
intensity band at 470 nm (ν ≈ 21276 cm–1).

As is shown in a number of studies (e.g., [22]), the
transitions of the [FeO4]5– complex occurring with
charge transfer are in the range λ < 300 nm (or ν >
33000 cm–1). Indeed, in the UV-range (Fig. 2a), the
intensity of the absorption band is two orders of magni-
tude higher than the intensity of the bands considered
above, and, therefore, it can be attributed to transitions
proceeding with charge transfer (probably, t1  2e
[22]). Unlike the data in [18], a weak inflection is
observed at the long-wave wing of the absorption band,
which indicates that this band consists of several over-
lapping bands. The decomposition of the contour of this
band into Gaussian components allowed us to select at
least three bands, two of which have maxima at 218 and
246 nm. The third band has a maximum at λ < 190 nm.
The circular-dichroism spectra clearly show (Fig. 2b)
that, in the absorption range, three bands are formed, at
225, 252, and 275 nm, one of which has the maximum
at λ = 252 nm and a sign opposite to the sign of the
other bands.

The formation of two bands in the range of transi-
tion with charge transfer at 218 and 246 nm can be
C

explained as follows. Consider a transition with charge
transfer t  2e. The state with the lowest 5E energy of
the excited (e)3(t2)3 configuration provides the forma-
tion of two sextet and two quartet states 6T1, 6T2, 4T1 ,
and 4T2 because of the interaction with a hole at the
ligand orbital. The transition 6A1  6T2 is allowed in
the electrical dipole approximation and determines the
band intensity in the absorption spectrum. The intensity
of the transition 6A1  6T1 (allowed in the magnetic
dipole approximation) should be essentially lower in
the absorption spectra. However, the intensities of the
transitions to 6T2 and 6T1 in the circular-dichroism spec-
trum can be comparable if the symmetry is reduced
from Td to T. Since Fe3+ ions are located at the points
with the C2 symmetry, all the degenerate states of these
ions are split and also mixed, so that the symmetry of
the states formed is either A or B. Within the framework
of the C2 symmetry, the transition from the ground state
to any excited state would be allowed in terms of the
symmetry in the electrical-dipole and magnetic-dipole
approximation and, hence, it would be active in the cir-
cular-dichroism spectrum. Thus, the presence of two
bands in the absorption spectrum and three bands in the
circular-dichroism one is caused by splitting the tetra-
hedral states and mixing the split components within
the C2 symmetry. The presence of the d–d transition
6A1  4T1 in the circular-dichroism spectrum is,
apparently, explained by the spin-orbital mechanism of
the intensity transfer from the 6A1  4T2 transition. It
should be noted that experimental data on the electronic
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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states of iron in the range from 190 to 350 nm are
obtained for the first time.

As is shown experimentally, the absorption and cir-
cular-dichroism spectra of undoped berlinite crystals
(Fig. 3) in the range 190–300 nm have bands similar to
those observed in the spectra of iron-doped crystals, but
they have a much lower intensity. It can be seen that the
wavelengths of the maxima of these bands slightly dif-
fer from the wavelengths of corresponding maxima of
analogous bands in the spectra of doped crystals. Since
berlinite crystals are grown by hydrothermal synthesis
from acid solutions in metal autoclaves under “severe”
conditions, we cannot exclude the presence of other
metals in crystals along with iron. Thus, the above
changes in the positions of the band maxima can be
explained by the presence in “pure” AlPO4 crystals of
small amounts of other metal ions and defects along
with iron, which provide the formation of typical bands
in the absorption and circular-dichroism spectra in this
spectral range [23]. The presence of defects and a num-
ber of metals in undoped berlinite crystals was also
observed in [24].
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Fig. 2. (a) Absorption and (b) circular-dichroism spectra of
iron-doped AlPO4 crystals in the range of transitions with
charge transfer. Dashed lines show the decomposition of the
band contour into Gaussian components.
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It should be emphasized that when studying differ-
ent iron-doped crystals, we established that, despite the
isostructurality of AlPO4 and FePO4 and close ionic
radii of Al3+ and Fe3+, iron-doped berlinite crystals are
characterized by a nonuniform distribution of Fe3+ ions
over the sample volume (which is apparently caused by
the varying conditions of growth of single crystals).
Moreover, according to local X-ray spectroscopy anal-
ysis (MS-46 Cameca), the crystals had some (mainly,
iron) inclusions (≤1 µm in size).

CONCLUSION

It is shown that berlinite crystals can be a convenient
gyrotropic matrix for studying induced circular dichro-
ism in the range of the allowed electronic transitions of
the 3d-elements. For the first time, data on the interac-
tions that cannot be described within the one-electron
approximation are obtained by the method of induced

–0.5
200

λ, nm

∆ε × 103, cm–1

220 240 260 280 300 320 340

0

0.5

1.0

1.5

2.0

2.5

180

K, cm–1

200 220 240 260 280 400 800

0.5

1.0

1.5

2.0

2.5

∼ ∼

500 700600

(a)

(b)

Fig. 3. (a) Absorption and (b) circular-dichroism spectra for
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circular dichroism for transitions with charge transfer
in a [FeO4]5– complex.
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Abstract—A technique for the characterization of crystal homogeneity is proposed. It is based on the analysis
of three-dimensional patterns corresponding to the intensity distributions of the Rayleigh component of scat-
tered light 3DIR(r). The potentialities of this technique are analyzed in comparison with those of the transmis-
sion tomography. Its efficiency is demonstrated by the study of a set of natural calcite samples. These samples
were certified according to the conventional scheme used in geology. In this technique, the dynamic range of
the inhomogeneity-parameter variation exceeds 104. The method for finding the simple growth shape based on
the processing of 3DIR(r) patterns is described. The proposed technique for the characterization of crystal
homogeneity involves the quantitative description of the zonal structure of crystals including the contrast and
the main period. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The spectroscopy of scattered light is an efficient
method of studying crystal homogeneity. Indeed, any
distortion of the crystal structure results in a change in
polarizability of a volume element of the crystal,
which, in turn, contributes to the intensity of the unbi-
ased component IR of scattered light. The inelastic part,
of the intensity, in particular, IåB (the Mandelshtam–
Brillouin component), is provided by the scattering of
light by thermal excitations in the crystal. Their param-
eters Ω and k are determined from the conservation
laws of the momentum and energy. The intensity IåB is
given by the relationship IåB (~n8p2ω4/ρv 2) [1], where n
is the refractive index, p are the photoelastic constants,
ρ is the density, and v  is the sound velocity. It is impor-
tant that IåB only slightly depends on the defect concen-
tration in the crystal over a rather wide range of its vari-
ation, which allows one to use IåB as an internal stan-
dard of the intensity IR, which is taken to be a measure
of crystal inhomogeneity, as was suggested in [2, 3].
Another, not less important, feature of the experiments
on light scattering is the possibility of obtaining three-
dimensional patterns of IR(r) distribution by limiting
the dimensions of the scattering volume, which is espe-
cially important in studies of crystals possessing large-
scale inhomogeneities comparable with the crystal size,
such as its zones and sectors [4]. It is well known that
the distributions ∆n and ∆k, the static variations in the
real and imaginary parts of the dielectric constant ε,
respectively, are determined by tomographic methods
[5]. However, the tomographic techniques are insuffi-
ciently efficient for rather perfect crystals because of
their low contrast. Figure 1 and Table 1 show the com-
parative characteristics of the transmission tomography
and the method proposed in the present paper.
1063-7745/02/4705- $22.00 © 20837
The main drawback of transmission tomography is
its low contrast, because the receiver records all the
radiation transmitted by the sample. The technique sug-
gested here practically excludes this drawback because
of the special geometry of the experiment and the spec-
tral analysis of the transmitted light. In other words, we
measure experimentally the quantity IR, whose level is
almost determined by the static perturbations ∆n. The
high contrast of this method, in turn, requires the use of
a high-sensitive recording system, which seems to be
the main drawback of this method.

RESULTS AND DISCUSSION

The three-dimensional (3D) patterns of the IR distri-
butions were recorded on a high-resolution spectrome-
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Fig. 1. Schematic diagram for tomography (a) in the trans-
mitted and (b) scattered light: 1, light source; 2, sample;
3, radiation receiver. (a) Scanning of the sample: rotation of
the sample through fixed angles ϕi; (b) sample displace-
ments along the Cartesian axes. The linear dimension of the
scattering volume v is about 0.2 mm.

ϕi
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Table 1.  Comparison of tomography characteristics in the (a) transmitted and (b) scattered light

Experiment a b

Set of data on the projections of 
the sample at the fixed rotation 
angles ϕi

Recording of the intensity of the Rayleigh component 
scattered from a limited volume v  of the sample during 
scanning along the Cartesian coordinates

Processing of experimental data Reconstruction of F(∆ε) by solv-
ing the Radon problem

Obtaining the image of F(∆n) in the direct experiment

Contrast Low High

The level of the analyzed radiation ~I0 ~10–4–10–7 I0
ter based on a scanning Fabri–Perot interferometer. The
cooled photomultiplier was used as a receiver of scat-
tered light. The recording system was based on the
method of counting photons. The source of light exci-
tation was a He–Ne laser. The spectrometer had such a
sensitivity that the signal-to-noise ratio was of the order
of ~102 for the longitudinal component in quartz in the
x(zz)y scattering geometry (at a laser power of about
20 mW and a time constant of the system of about 4s).
The sample was mounted on a three-axis table. The spa-
tial images of the IR(r) distribution, were recorded
using the following type of scanning: it was continuous
along the x-axis (the direction of the propagation of the
exciting light waves) and stepwise along the two other
axes, with a step of about 0.1 mm. The 3D patterns cor-
responding to the IR(r) distributions over the xz sections
were recorded automatically (here, the z-axis coincides
with the direction normal to the scattering plane xy).
The translation of the sample along the x- and z-axes
was provided by step motors.

An example of the 3D pattern of the IR(r) distribu-
tion in twinned natural calcite is shown as a stereo-
scopic pair in Fig. 2. The low level of IR(r) corresponds
to the twin boundary. Note that the patterns similar to
the pattern shown here were also observed in some
C

other crystals. This fact clearly demonstrates the obvi-
ously insufficient characterization of the crystal homo-
geneity by only one parameter η proposed in [2, 3].
Here, we suggest the use of the following set of numer-
ical parameters characterizing the observed IR(r) distri-
bution: , the IR/IåB value averaged over the crystal;
M = / min, the ratio of average maximum and min-

imum η values; and , the average value of the main
oscillations period in IR(r). This set of parameters pro-
vides only the general characteristics (without details)
of the homogeneity of the crystal. Its main “goal” is to
yield initial information for the comparison of the char-
acteristics of different samples. The exhaustive analysis
of the internal morphology of the sample is performed
by processing the pattern of the spatial IR(r) distribu-
tion.

To examine the efficiency of the proposed technique
of characterization of the crystal homogeneity, we stud-
ied a set of natural Iceland spar samples (calcite
CaCO3) certified according to the conventional scheme
currently adopted in geology and based on the classifi-
cation of the samples over certain classes according to
the given level of light transmission in the ultraviolet,
visible, and infrared ranges. The homogeneity was

η̃
η̃max η̃

τ̃

Fig. 2. Stereoscopic pair of the spatial distribution of the Rayleigh component IR(r) in natural twinned calcite (CaCO3). The scan-
ning step along the 0x and 0z axes is 0.5 mm. The low IR(r) level corresponds to the twin boundary.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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Table 2.  Comparative characteristics of a number of natural calcite crystals (Iceland spar) obtained according to the scheme
adopted in geology (grade) and by the method proposed in this paper (2ηav)

Sample Type, grade ηav Mav τav Sample Type, grade ηav Mav τav

1 ISU,“unique” 1.6 – – 8 ISU, 1 1.5(50) 1.3 –

2 ISO,“unique” 1(4) 2.5 1 9 ISI, 1 2.5 × 103 1.4 0.3

3 ISI,“unique” 1.4(8.6) 3(10) 1(0.5) 10 ISU, II 1.9 × 104 12 0.5

4 ISU,“extra” 460 1.5 1 11 SU, II 5 × 103 4.3 0.5

5 ISO, “extra” 1.5 4.0 0.5 12 ISI, II 54(600) – –

6 ISI, “extra” 49(220) 1(2) (0.5) 13 ISU, III 40 – –

7 ISU, 1 920 2 0.4 14 ISI, III 2.4 × 104 4.0 0.7

Note: IS is Iceland spar, ISU is Iceland spar studied in the ultraviolet range, ISO is Iceland spar studied in the optical range, ISI is Iceland
spar studied the infrared range.
evaluated visually according to the intensity level of
scattered light and the samples were divided into five
grades (in the order of increase of Iscat): “unique,”
“extra,” and classes I, II, and III. Table 2 summarizes
the results for a set of natural Iceland spar samples cer-
tified according to this scheme. The samples were stud-
ied by the method proposed in the present paper. The
examples of the IR(x) distributions for some samples are
shown in Fig. 3. The comparison was performed based
on  data and the sample class in each grade. The num-
bers in brackets correspond to the different parts of the
same sample (different simple growth forms). The data
presented in Table 2 demonstrate that the homogeneity
characterization according to both techniques yields
rather close results. Some discrepancies seem to be
explained by the subjective evacuation of the scattered-
light intensity based on visual examination. As an
example, consider here a few of the most typical cases.
Sample 5 should be classified as unique. Samples 9 and
12 should be interchanged in the grade classification.
Sample 13 should be classified as extra. Sample 8 con-
sists of crystals of two grades—unique and extra. It is
necessary to note that the visual inspection involves not
only a subjective source of errors but also an objective
one—the radiation provided by the inelastic processes
(such as the Mandelshtam–Brillouin and Raman scat-
tering) and, in some cases, also the luminescence. The
effect of the two latter phenomena can be eliminated by
the use of a narrow-band filter in the channel between
the trace of the laser beam in the crystal and the eye of
the observer, whereas the effect of IåB can hardly be
eliminated because of small values of the IåB shift with
respect to IR (of the order of 0.1 cm–1). This fact is of
special importance for highly homogeneous crystals
(  of the order of unity and less). Despite poor metro-
logical potentialities, the visual method of control is
very popular as a technique for the rapid analysis of
crystal quality.

Up to now, we evaluated crystal homogeneity with
the aid of only one parameter, . Being a measure of
the average level of the defect content in a crystal, it

η̃

η̃

η̃
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plays the most important role among all the parameters
included in the set of numerical parameters if only
because of the fact that its value should be determined
for all kinds of IR(r) distributions.

Now, let us discuss the characteristics of 3D IR(r)
patterns and the information obtained from their pro-
cessing. In turn, this allows one to understand better the
physical sense of the parameters τ and M. Earlier [6],
we proposed the method of passage from continuous
distributions to discrete data, which allowed us to find
the type of simple growth form of the samples. The pro-
cedure of the graphical construction of the discrete set
can be illustrated based on the actual 2D IR(y, z) pattern
shown in Fig. 4a and characteristic of the sample cut
out from one sector of the simple growth form and of
the scanning type used in our study—continuous scan-
ning along the y-axis and at discrete steps along the z-
axis. This distribution corresponds to the system of dots
which are the projections of the IR(y, z) maxima onto the
abscissa in each scan (Fig. 4b). Thus, the system of dots
constructed has two main periods, δ and τ1. They are of
different nature—the first parameter is purely techno-
logical and depends on researcher choice, whereas the
second one is determined by the internal structure of the
crystal. In fact, with a decrease in δ, the dot density
increases in the  direction but remains unchanged
in the y direction (it is shown by smaller dots). In the δ

 0 limit, the set of dots belonging to the ∈  is
transformed into a straight line—a trace of the intersec-
tion of the face of the simple growth form and the scan-
ning plane zy. Thus, we obtain the first characteristic
angle ρav = 54.4°. Upon a similar construction for the
cross-section perpendicular to zy, for example xy, we
find the second characteristic angle, ϕav = 0°15′. The
angles ϕ and ρ unambiguously determine the type of
the simple growth form for the given sample orienta-
tion.

In the above example, the angle values correspond
to a π-rhombohedron (the tabulated angles are ϕ = 0°
and ρ = 54°4′). Thus, the observed spatial intensity

χ iχ i'

χ iχ i'
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oscillations of the Rayleigh component or the defect-
density waves are the manifestations of the zonal struc-
ture of the crystal. Therefore, hereafter the lattice con-
structed in such a way is called a zonal lattice. Its regu-
lar nature for the real crystal is determined by the sta-
bility of growth conditions. In practice, the ∆τ value can
be used as an additional parameter characterizing the
degree of homogeneity and also a measure for the sta-
bility of growth conditions. It is possible to propose at
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Fig. 3. Examples of individual scans of IR(x) for a number
of CaCO3 samples: (a) 1, (b) 4 (c) 10, and (d) 9 are the sam-
ples indicated in Table 2.

1.0
C

least two methods for determining the characteristic
directions. The first (static, at δ  0) method yields
the characteristic direction corresponding to the maxi-
mum dot density. The second method (dynamic, which
can be efficient for computer-based data processing)
yields the characteristic direction corresponding to the
maximum derivative of the dot density with respect
to δ.

Now, consider the contrast of the zonal structure, or,
in terms of the suggested system, the modulation depth
M of the IR(r) distribution. In early studies of the zonal
structure [4], some known impurities were introduced
into the crystal to increase the contrast. In practice, in
studies of crystal homogeneity one has to solve the
inverse problem—to identify the types of defects that
give rise to crystal inhomogeneity. This problem cannot
be solved by the Rayleigh scattering method alone.
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Fig. 4. An example of the determination of a simple growth
form. (a) Two-dimensional IR(yz) distribution for a natural
calcite sample cut out from one sector of the π-rhombohe-
dron;  are the zero-level lines for IR(y). The scanning

step along the 0z axis is 0.5 mm; (b) a family of dots corre-
sponding to the projections of the IR(yz) maxima onto the

 lines;  are the characteristic straight lines passing

through the maxima of dot density; these straight lines are
the intersections of a face of the π-rhombohedron by the yz
plane; ρ is the polar angle; τ0 is the main period of the zonal
structure. The scheme shows the change of the pattern with
a fivefold increase in the scanning step and the area limited
by  and  lines.
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Indeed, as was mentioned above, any defect contributes
only to the intensity of the Rayleigh component.

One of the methods of solving this problem is to
obtain the 3D distribution of the concentration of a cer-
tain kind of defects and then to compare this distribu-
tion with the IR(r) patterns to reveal the contribution
made by these defects to the observed inhomogeneity.

This approach is illustrated by the study of single
crystals of natural calcite. It is well known that the main
defects in these crystals are ions of transition elements
of the iron group and organic impurities (bitumens).
The study of the luminescence spectra and the compar-
ison of the results obtained with the data from [7]
allowed us to identify the defects. These are Mn++ ions
and bitumens with characteristic spectral bands. The
Mn++ ions yield one band centered at 580 nm with the
halfwidth of 40 nm. Bitumens, yield two bands cen-
tered at 400 and 525 nm with halfwidths of 120 and
100 nm, respectively. It is important that these bands do
not overlap. The spatial distributions of the lumines-
cence intensities (x) and Il.bit(x) and the IR(x) pat-I

l.Mn++

1 2 3 4 5 x, mm
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Fig. 5. Spatial distributions of the intensity of (a) the Ray-
leigh component IR(x), (b) luminescence from bitumens
Il.bit(x), and (c) of Mn2+ ions (x) from the same sam-
ple of natural calcite.
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tern obtained by the scanning of the same volume of the
CaCO3 crystal are shown in Fig. 5. The IR(x) pattern
demonstrates the distribution of inhomogeneities over
the crystal or, in fact, its zonal structure, whereas

(x) and Il.bit(x) show the distributions of these

defects over the same crystal volume.
The curves in Figs. 5a and 5b have analogous fea-

tures: the same spatial phase relations and close values
of the parameter M of their low-frequency harmonics
(the fine structure of zonal pattern requires a special
consideration). The above facts indicate the key role
played by bitumens in the formation of the inhomoge-
neity distribution in the samples. On the other hand, the
comparison of the curves in Figs. 5a and 5c show that
Mn++ ions play a minor role in the formation of inho-
mogeneity because of the close values of the binding
energies for Ca++ and Mn++ ions in calcite crystals. This
example demonstrates the dominant role of non-iso-
morphic defects in the formation of the contrast in the
zonal structure (or the M value).

Thus, the technique for evaluation of crystal homo-
geneity suggested above and involving the consider-
ation of three-dimensional images of the crystals in
scattered light and the set of numerical parameters ηav,

, and M, provides information on the internal struc-
ture of the crystals and the determination of the type of
simple growth form. The suggested set of the numerical
parameters has a clear physical meaning: ηav is the
average degree of inhomogeneity in the units of IåB and
τ0 and M are the quantitative characteristics of the zonal
structure of the crystal, i.e., the main period and the
contrast, respectively.
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Abstract—The processes of plastic macro- and microchanges in the shape of 2H-BN and 6H-SiC crystals dur-
ing their deformation under high pressures (7.7 GPa) and temperatures (1200–1600°C) have been studied by
transmission electron microscopy. It is established that deformation in crystals with a high density of basal
stacking faults is induced by the rotations in the individual regions of the crystals. The shape changes are asso-
ciated with rotation, tilt, bending, and displacement of the crystal regions of various dimensions. The localized
crystallographic shears along the pyramidal { } planes and the rotations about the [0001] axis are revealed.
It is shown that all the above processes result in crystal fragmentation. © 2002 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Earlier [1, 2], it was shown that the main mechanism
of the translation deformation of the crystals of the
wurtzite 2H-BN and 6H-SiC phases under high temper-
atures and quasihydrostatic-compression pressures
consists in plastic shears caused by glide of split a/3

[ ]-type dislocations in the basal planes of the
crystals. This deformation also causes the development
of the intracrystallite layer-by-layer transition of the
initial wurtzite phase into the sphalerite one (3C). Our
subsequent studies showed that this transition is pre-
ceded by two stages of structural transformations in
crystals—disordering along the [0001] direction
caused by the accumulation of randomly distributed
basal stacking faults and the formation of multilayer
polytypes. The first stage proceeds over the whole crys-
tal volume, whereas the second one is accompanied by
the transformation into the 3C phase occurring during
the formation of the misorientation boundaries in crys-
tals with stacking faults. Below, we present the results
obtained in the study of the nature of plastic deforma-
tion in crystals associated with the formation of such
boundaries.

INITIAL MATERIALS AND EXPERIMENTAL 
METHODS

We studied polycrystalline samples 5 mm in diame-
ter and 8 mm in height obtained by sintering powder
particles in a “toroid”-type high-pressure chamber
under conditions of quasihydrostatic compression pro-
viding the uniaxial compression along the sample
height. Sintering was carried out under a pressure of
7.7 GPa in the temperature ranges 1200–1600°C for
2H-BN and 1200–1800°C for 6H-SiC. The dimension
of the initial single-crystal 6H-SiC particles ranged

1100
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within 10–20 µm, and the samples usually had the
shape of polyhedra and, in some rare instances, plate-
lets. The 2H-BN particles had the shape of platelets
parallel to the (0001) plane with dimensions ranging
within 1–3 µm and thickness, within 300–700 Å. Most
of the 2H-BN particles were single crystals or slightly
fragmented crystals with the azimuthal misorientation
of the fragments in the (0001) plane not exceeding 5°–
7°. The 2H-BN samples were either randomly oriented
particles or oriented packings. In the latter case, the
specimens were textured, because the particles were
oriented with their basal planes parallel to one another.

The samples in the form of thin foils obtained by ion
sputtering were studied by transmission electron

microscopy. We studied the prismatic { } sections
of the crystals. This allowed us to observe the changes
in the shape of plateletlike crystals and the formation of
a microrelief on the faceting planes. These sections
showed the fringe contrast of basal stacking faults (the
traces of the basal layers). The corresponding microdif-
fraction patterns had rows of nodal 00l and h0l reflec-
tions, whose analysis provided the diagnostics of the
structural state of the crystals. The diffuse streaks
observed between the rows of the nodal reflections indi-
cated disorder along the [0001] axis, whereas the sys-
tems of additional spot reflections indicated the forma-
tion of multilayer polytypes. The change in the stack-
ing-fault fringes and contrast (its decrease or complete
disappearance) and the microdiffraction patterns
allowed us to determine the nature of the formation of
the misoriented regions (fragments) in the crystals. The
following typical cases were observed.

In the case of the group (i.e., relating to individual
regions of the crystals) smooth tilts or sharp bends of
the basal layers, the microdiffraction patterns had the
intersecting rows of 00l and h0l reflections indicating
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the misorientation of the individual microregions in the
crystal (Figs. 1a, 1b). The angles formed by the inter-
secting rows of one type and the corresponding angles
of the intersection of the regular stacking-fault fringes
on the images corresponded to the misorientation
angles of the c-axis of the matrix crystal and the crystal
region determined from the tilt or bend of the basal lay-
ers (Fig. 1c). Obviously, in this case, the misorientation
is caused by the rotation of the basal layers around the
axes lying in the (0001) plane. If the h0l rows are inter-
sected at the nodal h00 reflections, the a-axes of the
matrix crystal and the misoriented regions are parallel
(Fig. 1a); in all the other cases, these axes are misori-
ented (Fig. 1b). The misorientation of the a-axes
because of the rotation around the c-axis is also seen
from the weakening or complete disappearance of the
fringe contrast of stacking faults in some regions in the
crystal section. The weakening of the contrast is
observed at the rotation angle up to 19°, i.e., prior to the

formation of the { } orientation indicated by the
characteristic presence of the h0l rows at distances that
are not multiples of the interplanar spacing d(100) on the
microdiffraction patterns (Fig. 1d). The rotation by
angles exceeding 19° results in the disappearance of the
stacking-fault fringes and the formation of new orienta-

tions, including those of prismatic { } type
(Fig. 1e) corresponding to the rotation of the crystal
region by an angle of 30°.

RESULTS AND DISCUSSION

Studying crystalline platelets of 2H-BN crystals
with a high stacking-fault density, we established that
their deformation occurs with a pronounced change in
the shape of the well-developed (basal) surface without
the loss of continuity. The most typical deformation of

2H-BN crystals is shown in Fig. 2. The { } sec-
tions of almost all the 2H-BN and 6H-SiC samples
showed group bends, kinks, displacements (Figs. 2f, 3,
4), and also rotations of the basal layers (Fig. 5).

The above specific features of the substructure are
evidence of the fact that the plastic change in the shape
of the crystals with high stacking-fault densities occur
due to the displacements of individual microregions in
the crystal bulk. This signifies that the rotational or
cooperative plastic deformation typical of metals [3–5]
takes place, which is a certain relaxation process occur-
ring under the effect of the applied load under condi-
tions of constrained deformation and the suppression of
the translational plasticity. Two mechanisms of rota-
tional plasticity proceeded via kink formation (irregular
rotation), and the formation of the misorientation fringe
formation was conditionally suggested in [4].

The development of the rotational deformation
(kink formation) is studied in detail for nonmetal crys-
tals with ionic bonding [6]. In some studies, it was
established that such deformation at high temperatures
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can also occur in crystals with ionic–covalent (Al2O3
[7], SiC [8]) and covalent (diamond, 3C-BN [9]) bond-
ing. For ionic crystals, such deformation is also possi-
ble at room temperature.

We distinguish between several individual pro-
cesses of rotational deformation in the 2H-BN and 6H-
SiC crystals.

I. Kink formation is observed either as a global
process resulting in macroscopic changes in particle
shape (Fig. 2) or as a local process occurring in the indi-
vidual volumes of the crystals (Figs. 1c–1e, 3, 4). As is
seen from the changes in the shape of the stacking-fault
contrast, both cases are characterized by the group tilt
of the basal layers with respect to the axes lying in the
(0001) plane, i.e., in the main acting glide plane. In the
local processes, the basal layers can acquire sharp
kinks, including those accompanied by the formation of
wedgelike misoriented regions with rectilinear inter-
faces (Figs. 1a, 1c) and the bends of various complexity
up to the formation of vortex-like elements (Fig. 3). The
rotation angles of the individual regions, even in an
individual crystal, can vary from several degrees to tens
of degrees (Figs. 1c, 3, 5). The kink formation can
either proceed over the whole section of the crystal or
can be decelerated in this section. In the latter case,
complicated changes in the shape of the basal layers are
observed. In the misoriented volume formed as a result
of the kink formation, new bends or kinks of the basal
layers can be formed, including those accompanied by
rotations (Figs. 1c, 3).

II. Formation of misorientation fringes. Three
characteristic cases of the formation of such fringes
without changes in the shape of flat surfaces of particle
faceting are distinguished: sharp rotations of individual
regions about the [0001] axis or the axes tilted to it [the
rotation angle of these regions can vary quite pro-
nouncedly along the crystal section (Fig. 6)]; local rota-
tions about arbitrary axes (Fig. 1d); and a combination
of rotation around the [0001] axis with the tilt with
respect to the axes lying in the basal plane (Fig. 4).

III. Localized crystallographic shears were
revealed only in 2H-BN crystals from the presence of

rectilinear boundaries in the ( ) section against the
background of stacking-fault fringes. Usually, these
boundaries limit the regions in the shape of isosceles
triangles whose base is parallel to the trace of the
(0001) plane. On the corresponding electron-micros-
copy images, the angle at the vertex of this triangle is
about 90°, whereas the angle of intersection of the side
surfaces with the basal plane is about 45° (Fig. 7).
These angles are close to the calculated angles formed

by the ( ) and ( ) planes with the basal plane
in the 2H-BN lattice (Fig. 8). The angles were calcu-
lated at the lattice parameters a = 0.255 nm and c =
0.423 nm [10]. These data lead to the conclusion that
the formation of the boundaries is provided by shears
occurring simultaneously along two pyramidal planes.
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Fig. 1. Typical substructures of deformed crystals with basal stacking faults in ( ). (a) The portion of a 6H-SiC crystal with
weak kinks and rotations of basal layers. The corresponding microdiffraction pattern shows split h0l reflections and their intersec-
tions along the a-axis. The arrows indicate streaks between the nodal reflections; (b) microdiffraction pattern with the intersected
h0l rows along the direction inclined to the a-axis; (c) micrographs of a sharp kink of basal layers, which provides the formation of

wedgelike fragments; the arrows indicate the high-angle boundaries between the fragments; (d) the region with ( )-type orien-
tation in the section of the 2H-BN crystal (indicated by arrows). The corresponding diffraction pattern shows a row of nodal reflec-

tions parallel to the h0l rows of the matrix; (e) the region of the section of a 2H-BN crystal with the region of the ( )-type
orientation separated by the rectilinear boundary and extinction bend contours (indicated by arrows).
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IV. Localized crystallographic rotations. The
most typical case is sharp rotations of 30° of the crystal
microregions about the [0001] axis over the whole crys-
tal thickness resulting in the formation of fragments

with ( ) misorientation in the ( ) section of
the crystal. The conjugation boundaries between the
fragments and the matrix are rectilinear and perpendic-
ular to the basal plane (Figs. 1e, 9).

V. Processes of particle shaping allows the forma-
tion of a microrelief on the (0001) surface. These pro-
cesses occur because of the displacement of microvol-
umes in the particles without a break in their continuity.
Two cases are the most typical. 

(1) The displacement of microvolumes in the crystal
without a change in their orientations and the formation
of misoriented interlayers. Most often, this takes place
either along the [0001] axis or the axes tilted to it. Then,
a microrelief consisting of steps of different heights is
formed (Figs. 4f, 9) on the initial (0001) surface. We
also observed the displacement of the structural ele-
ments with the triangular sections in the observation
plane proceeding along the side planes and accompa-
nied by the formation of ledges on the flat surfaces of
particle faces (Fig. 4b). 

(2) The displacement of microvolumes along the
[0001] axis and the axes tilted to it in combination with
their rotation about the [0001] axis (Fig. 9).

Structural transformations I–V in polycrystalline
samples with high stacking-fault densities occur practi-
cally simultaneously. One can state that at t = 1200°C,
the change in the shape of a crystal as a whole and the
change in the shapes of the local volumes are provided
mainly by kink formation, the formation of bends, and
kinks in the (0001) plane with respect to the axes
located in the basal plane, including the formation of
the wedgelike structural elements. With an increase in
temperature, the transformations in the crystals occur
with the participation of localized shears and rotations.

Macro- and microchanges of crystal shape were
observed both in the cases of random packing and the
oriented packing characteristic of the 2H-BN-based
samples. In the latter case, the most frequent processes
were shear with the formation of fragments with trian-
gular sections, rotations with the formation of linear
boundaries, and the displacements of microvolumes
parallel to the [0001] axis.

The above characteristics of the changes in crystal
shape can be interpreted with the use of well-known
data on the plastic deformation of anisotropic crystals.

It is well known that in crystals with a wurtzite
structure, the action of different glide systems at high
temperature is determined (as was proven by the exam-
ple of ZnO [11]) by the angle θ of the deviation of the
acting uniaxial stress from the [0001] axis. In the angu-
lar range 0° < θ < 67°, mainly glide in the basal plane
takes place, whereas in the angular range 67° < θ < 90°,
prismatic glide is most important. If the above direc-
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Fig. 2. Most typical cases of the changes in the shape of a
2H–BN crystal. (a, b) Bends; (c, d) kinks; (e) combinations
of bends and kinks, (f) the dark-field image of a bent crystal.

Fig. 3. Image of a bent 6H-SiC crystal, ( ) section.
(a) Complicated bend of the basal layers and (b) the region
of the decelerated kink.
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tions coincide, only pyramidal glide is possible,
whereas at the intersection of these directions at an
angle of 90°, a combined pyramidal and prismatic glide
takes place. As was indicated above, the translational
deformation in the 6H-SiC and 2H-BN crystals during
their thermobaric treatment is provided only by the
glide of the basal split dislocations. Thus, one can con-
clude that such glide in the crystals studied (as well as
in hexagonal close packed structures) is the easiest
glide, which is provided by the low energy of basal
stacking faults. As a result, the action of other glide sys-
tems and dislocation climb are hindered. Upon the
completion of the action of the basal glide system, i.e.,
at high stacking-fault density, the rotational plastic
deformation of crystals takes place.

Kink formation as an elementary event of plastic
deformation in crystals can be caused by the local bend-
ing stresses orthogonal to the (0001) plane, i.e., can
occur in cases where no basal glide is possible. It is
under these conditions that kink formation on the sur-
faces of hcp metal crystals takes place [12].

The localized shears accompanied by the formation
of structural elements with sections in the shape of isos-
celes triangles (Fig. 7) seem to take place under the

(a)

(b) 0.3 µm

Fig. 4. Dark-field image of the ( ) section of 2H-BN
crystals obtained in the 100 reflection with different changes in
the shape of the faces caused by the displacement of fragments
(the arrows show the traces of the basal planes) of (a) an
arbitrary shape and (b) the triangular section.

1120
C

most favorable conditions for pyramidal glide. Since
deformation occurs in crystals with high stacking-fault
densities, this glide can occur only under pronounced
stresses, which give rise to the shear of microvolumes
along the pyramidal planes. This is confirmed by the
data on textured 2H-BN samples in which the (0001)
surfaces of the platelet crystals were located during
deformation normally to the compression axis. The dis-
placement of microvolumes along the direction close to

0.25 µm

(‡)

(‡)

(‡)

(b)

(b)

Fig. 5. Typical image of the ( ) section of a 6H-SiC
crystal (a) with group tilts and (b) rotations of the basal lay-
ers with respect to the [0001] axis.
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1 µm

Fig. 6. High-angle misorientation boundary (indicated by
arrows) in the ( ) section of a 6H-SiC crystal formed
because of the rotation with respect to the tilted axis.
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the [0001] axis (Fig. 9) can be caused by the crystal ori-
entation favorable for prismatic glide. Similar to the case
of shear along the pyramidal planes, this glide in a crystal
with a high stacking-fault density occurs as a microshear.
The high levels of stresses along the [0001] axis are
also indicated by the extinction bend contours observed

in the ( ) section (Fig. 1e).

Rotations about the [0001] axis in the macro- and
microvolumes of the crystals with the preservation of
their continuity (Fig. 1e) seem to proceed under condi-
tions of blocking all the glide systems and the action of
the uniaxial compression stress. The formation of the
linear boundaries of the fragments parallel to the traces
of the prismatic planes during these rotations seems to
be caused by either preceding or accompanying shears
along these planes. These shears can really occur via
the formation of prismatic stacking faults. Indeed, we
observed such stacking faults in 2H-BN [1].

The above structural transformations lead to crystal
fragmentation because of their “saturation” with the
misorientation boundaries.

One distinguishes the following types of bound-
aries.

High-angle boundaries. Plane boundaries appear
already at t = 1200°C because of sharp shears, localized
shears, and rotations (Figs. 1c, 6, 9). The boundaries of
arbitrary shapes are formed as a result of the restructur-
ing of the dislocation boundaries at t ≥ 1600°C in the
course of deformation (Fig. 10).

Boundaries in the shape of plane and volume dis-
location pileups. Boundaries in the substructures with
smoothly varying misorientations. These substructures
were studied in detail in [5]. Their typical features are
the spreading of nodal reflections on the microdiffrac-
tion patterns into arcs, the formation of fringes (relief
edges) on dark-field images of the fragments (Fig. 4a),
the change in the positions of the fragments when the
samples are tilted in an electron microscope, and the
presence of dislocation pileups in the form of extinction
bend contours (Fig. 10). These substructures are
formed in the 2H-BN and 6H-SiC crystals during the
development of geometrically arbitrary or decelerated
kinks and also during the formation of the reorientation
fringes.

In some crystals, it is possible to reveal the bound-
aries with different misorientation angles and structural
states. The most typical manifestation is the formation
of boundaries because of sharp and smooth kinks of dif-
ferent strengths (Figs. 3, 5); the manifestation of the lat-
ter case is the formation of the boundaries at the stage
of the dynamic rearrangement of their substructure
(Fig. 10).

The most interesting fact is the appearance of plane
high-angle boundaries at low temperatures (1200°C),
where the diffusion processes are suppressed because
of mainly covalent bonding in the crystals, whereas
high pressures reduce the diffusion mobility. The for-

1120
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(a)

(b)

0.3 µm

0.35 µm

Fig. 7. Image of the fragments in a 2H-BN crystal. (a) Gen-
eral view, (b) dark-field image in the 100 reflection of the
unit fragment with a triangular section.

Fig. 8. Scheme of the intersection of the planes in the 2H-
BN lattice.
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mation of these boundaries can be explained based on
the well-known concepts of the physical nature of the
rotational plasticity and the crystal fragmentation
induced by it. According to [3, 4], rotations are caused
by the collective motion of the groups of interacting
dislocations considered as a new element of the dislo-
cation substructure—a disclination. It is the develop-
ment of disclination-induced kinks that can provide the
formation of the plane high-angle boundaries [3] (the
so-called deformation knife boundaries) observed in
molybdenum.

1 µm

Fig. 9. Electron micrograph of the section of a platelet 6H-
SiC crystal upon the displacement and rotations of the frag-
ments with respect to the [0001] axis or the axes tilted to it
(the arrows indicate the traces of the basal planes).

0.3 µm

(‡
) (‡)

(c)

(c)
(b)

Fig. 10. Image of a 6H-SiC crystal with (a) high-angle
boundaries, (b) the boundaries in the form of dislocation
pileups, and (c) the boundaries with the region of the sub-
structure with continuously varying misorientation. The
arrows indicate of extinction bend contours.
C

CONCLUSIONS
As is clear from the above, fragmentation of the 2H-

BN and 6H-SiC crystals during thermobaric treatment
is caused by their deformation as a result of the devel-
opment of rotational plasticity at the stage of transla-
tion-shear suppression. This type of plasticity results
from kink formation, the appearance of reorientation
fringes, the rotations and displacements of microvol-
umes on different scales, localized crystallographic
shears along the pyramidal planes, and rotations along
the prismatic planes. The above transformations lead to
the appearance of misorientation boundaries of various
types in the crystals—from the boundaries characteris-
tic of the substructures with continuously varying mis-
orientation to high-angle boundaries. Our studies
showed [13] that the subsequent transformations taking
place in such fragmented crystals under thermobaric
treatment occur via translational deformation caused by
the glide of split dislocations in the (0001) planes pro-
ceeding independently in each fragment and promoting
the phase transition from the wurtzite to the sphalerite
structure type. Transformations can also take place as a
result of structural rearrangements on the conjugating
surfaces of the fragments with the appearance of high-
angle boundaries. The latter stage determines the devel-
opment of primary recrystallization.
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Abstract—Lamellar polymorphism in multicomponent lyotropic systems based on alkyltrimethylammonium
bromide detergents has been studied by polarization microscopy and 1H-, 2H-, and 13C-NMR spectroscopy. The
Lα1, Lα1-h, and Lαh lamellar phases are revealed, identified, and characterized. The alignment of the Lα1-h lamel-
lar phase in high magnetic fields is established. © 2002 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

As is well known, molecules of detergents in aque-
ous solutions are prone to association. The formation of
different structures and aggregates results in lyotropic
polymorphism. This rich polymorphism is often associ-
ated with changes in temperature, component concen-
tration, and the application of external electric and
magnetic fields [1, 2]. There exist nematic disklike (ND)
[3–7], cylindrical (NC) [4–8], hexagonal (H) [9], and
several types of lamellar (L) phases [10–12]. A struc-
tural unit in lamellar phases is a bilayer associate of
detergent molecules surrounded by water. The struc-
tural basis of cell membranes is a lipid bilayer, and,
therefore, the lamellar phases are simple universal
models of cell membranes [13–15]. On heating, the
cubic C and lamellar Lα phases are destabilized and, as
a result, the reversed hexagonal phase HII is formed in
the model lipids systems [15]. The interest in studies of
the lamellar phase is associated with the intermediate
Lα /HII phase transformation. This type of transforma-
tion may play an important role in the functioning of
biomembranes [16].

In the two-component didodecyldimethylammo-
nium bromide–water system, the lamellar phase
observed consists of two phases: Lα1 and Lα2 . The Lα1
phase (Helfrich phase) is characterized by a pseudoiso-
tropic texture and the accompanying Maltese crosses.
The Lα2 lamellar phase with a mosaic texture is more
structurized than the Lα1 phase [11, 17].

The Lα1, Lα1-h, and Lαh lamellar phases are estab-
lished in the mixtures of C12 and C14 alkylpolyglyco-
sides [18, 19]. In this case, only the Lαh phase is charac-
terized by a pseudoisotropic texture with the homeotro-

1 This article was presented by the authors in English.
1063-7745/02/4705- $22.00 © 20849
pically oriented micelles [19]. The Lα1-h phase is
characterized by a woven texture-like thermotropic SC

phases [20] or a schlieren texture characteristic of the
nematic NC lyomesophases with cylindrical micelles
[19].

The changes in the bilayer structure result in the for-
mation of the vesicular, planar smectic Lα, or sponge L3
phases [21]. Moreover, in the lamellar phases, the
bilayers can be rearranged and form various supramo-
lecular structures [10, 22–25].

At present, the focal conic domains of the first type
(FCD-I) with a negative Gaussian curvature (texture
with oily streaks) are considered as the main structural
elements in the classical Lα (Lαh) lamellar phases. The
focal conic domains of the second type (FCD-II) with a
positive Gaussian curvature are characteristic of the Lα1
(Lα) phases [23, 25]. The textures of lamellar the Lα1
(onion) phase show the characteristic Maltese crosses
[22, 26]. For the first time, spherical domains were
observed in the Gomati lamellar phases [24]. Some-
times, the lamellar phases are subdivided into classical

Lα and swollen  phases [12, 26–28].

The study of lamellar phases in multicomponent
lyotropic molecular systems broadens our knowledge
of the variety of the phases and their transformations in
lyotropic liquid crystals (LC). The mixture of C12, C14,
C16-alkyltrimethylammonium bromides, NaBr, n-decyl
alcohol, and D2O is known to form lamellar, nematic
and other phases forming different textures, including
schlieren [6, 7] and marble textures. The identification
and study of the textures in this system is hindered
because of the possible phase transformation of the
classical Lαh lamellar phase under the effect of the
steady shear flow with the formation of the multilamel-
lar vesicular Lα1 phase [29]. The lamellar phases with

Lα
H
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bilayer structural elements can display different flow-
induced orientational effects [30]. The orientation of
the bilayer can give rise to the formation of the multil-
amellar onion phase. Thus, the identification of the
lamellar phases in synthetic lyotropic systems is an
important step in the studies of LC systems. We ana-
lyzed these phases using NMR spectroscopy and opti-
cal polarizing microscopy.

EXPERIMENTAL

Multicomponent cetyltrimethylammonium bromide
(CTAB)–n-decanol–NaBr–D2O mixtures were pre-
pared within the concentration ranges corresponding to
nematic phases [4]. 13C NMR analysis showed that
CTAB from Serva was really a mixture of dodecyl-
(25 mol %), tetradecyl- (65 mol %), and hexadecyltri-
methylammonium (10 mol %) bromides. This mixture
is also of interest from the theoretical standpoint,
because it was established that different lengths of the
alkyl chain in the detergent molecules influence the for-
mation, structure, and properties of the phases formed
[31]. The reference detergent was cetyltrimethylammo-
nium bromide (CTAB) (100 mol %) from Merck,
because NaBr and n-decanol (chemically pure, Rea-
khim, USSR) could be used without any additional
purification. Water contained more than 99.8% of D2O
(Izotop, USSR). The ingredients were mixed in several
cycles of centrifugation in sealed glass ampoules 9 mm
in diameter with a narrow 2–3 mm neck until the for-
mation of a homogeneous mixture. The samples with a
low n-decanol concentration were heated up to 60–
70°C. The use of the mixed alkyltrimethylammonium
bromide-based detergent (Serva) resulted in the faster
formation of homogeneous mixtures. Samples with the
ampoules were placed into standard 10-mm-long NMR
sample tubes. The 1H, 2H, and 13C NMR spectra were
measured on a Bruker AMX-500 instrument at frequen-
cies of 500.1, 76.8, and 125.8 MHz in a polarizing mag-
netic field of 11.7 T without sample rotation. The tem-
perature was controlled by a B-VT-1000 unit (Bruker).
C

The 1H, 2H, and 13C NMR measurements were made
using a lock resonance circuit and without change of
the measuring head, which provided fast switching of
the NMR spectrometer to all three nuclei under obser-
vation. The quadrupole splitting of the water signal in
the 2H NMR spectrum indicated the formation of lyo-
mesophase in the mixture. The temperature dependence
of this spectrum gave information about the phase
transformations in the samples. The simultaneous pres-
ence of two phases in the sample was indicated by the
formation of doublets with different ∆νD values in the
2H NMR spectra. The 13C NMR spectra were useful for
establishing long-range interactions and atom mobility
in the detergent molecules of the lyomesophases. The
prepared mesophases were characterized with the aid
of polarization microscopy on POLAM L-311 and
MIN-8 instruments.

RESULTS

Studying aggregation in lyotropic amphiphilic sys-
tems, we took into account the possible formation of
isotropic solutions, micelles, and various LC and solid
phases. These aggregational effects are reflected in the
NMR spectra. Figure 1 shows the NMR spectra of dif-
ferent phases of a multicomponent CTAB–n-decanol–
NaBr–D2O system obtained at temperatures close to
room temperature. The NMR spectrum of the deutero-
chloroform solution of CTAB–n-decanol mixture (a) is
compared with the NMR spectra of the micellar solu-
tion (b), NC phase with the marble texture (c), and the
solid phase (d). The NMR spectra of the latter three
states were obtained from sample 1 of the composition
given in the table. The real solution provided the forma-
tion of sharp signals. The existence of two types of
organic molecules in the 1H spectrum can be deter-
mined only from the analysis of the integrated intensi-
ties of different absorption bands (Fig. 1, Ia). At the
same time, the 13C NMR spectrum provided the resolu-
tion of the signals from almost all the atoms of CTAB
Identification of the lyomesophases and types of their textures using the data of optical-polarizing microscopy and the com-
positions of the mixtures and the characteristic split of the NMR signal from 2H nuclei of water in the samples studied

Sample Phase
Texture 

type
(Fig. 2)

T, K ∆ν, Hz

Mixture composition, wt %

detergent 
CTAB
(Serva)

detergent 
CTAB 

(Merck)
NaBr n-decanol D2O

1 Micellar 297 32.36 3.06 3.88 60.70

1 NC c 286 14 32.36 3.06 3.88 60.70

2 Lαh (FCD-I) a 297 43 32.84 4.95 6.38 55.83

3 Lα1 (FCD-II) b 297 68 32.90 9.25 5.54 52.31

4 Lα1-h d, e 297 42 26.85 7.04 5.08 61.03

5 HI b 297 26 34.99 65.01

6 Micellar 297 35.00 65.00
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Fig. 1. (I) The 1H and 2H and (II) 13C NMR spectra of different aggregate states of the CTAB–n-decanol–NaBr–D2O system (sam-
ple 1). (a) Isotropic solution in CDCl3; (b) micellar phase; (c) LC NC  phase with the marble texture; (d) solid-state phase. Here, α,
β, and γ are the signals of the 13C NMR spectrum of the atoms in the α- , β-, and γ-positions of the functional group (–OH, –NMe3)
and ω, ω – 1, and ω – 2 are the signals in the α- , β-, and γ-positions of the end atoms of the alkyl chains of the molecules.

ppm
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and n-decanol (Fig. 1, IIa; signals from n-decanol are
marked with asterisks). The lines due to all the central
atoms from the alkyl chains were difficult to identify
because of their overlap. However, different chemical
shifts of the end atoms of the alkyl chain (∆δω =
0.01 ppm, ∆δω – 1 = 0.01 ppm, and ∆δω – 2 = 0.02 ppm)
show the sensitivity of the 13C NMR shielding to the
long-range effects (Fig. 1, IIa). 

(a)

(b) (c)

(d) (e)

50 µm

10 µm 50 µm

50 µm 50 µm

Fig. 2. Lyomesophase textures in the CTAB–n-decanol–
NaBr–D2O system: (a) homeotropic texture with oily
streaks of the Lαh phase (sample 2), ×45; (b) texture of the
Lα1 phase (sample 3); (c) marble texture (sample 1), ×45;
(d) smectic-like texture with focal conics of the lamellar
Lαh-1 phase (sample 4), ×60; (e) oriented confocals of the
Lαh-1 phase in a capillary (sample 4), ×60.
C

The 1H NMR spectrum of the micellar phase (Fig. 1,
Ib) results in the strong broadening of the signals and,
therefore, only three broad bands are seen—those of α
protons from the hydrophilic end groups, end protons
of methyl group, and other protons of the alkyl groups
of molecules (Fig. 1, Ib). A relatively narrow signal at
4.8 ppm is attributed to water. The 2H NMR spectrum
of micellar solution showed no quadrupolar splitting.
The 13C NMR spectrum of the micellar phase has also
broadened signals, but the presence of two types of
organic molecules is still clearly seen (Fig. 1, Ib*). The
most pronounced broadening is observed for α carbons
of heteroatoms. The formation of micelles induces
important selective effects in chemical shifts of carbon
atoms 13C. We observed the shifts of N-methyl and
alkyl chains and the middle carbon atoms of the alkyl
chains toward lower fields, which is characteristic of
micelle formation (this was established by the NMR
studies of various micellar solutions) (our unpublished
data). This seems to be explained by the presence of
trans alkyl conformers in the middle carbon atoms of
alkyl chains.

The formation of a LC phase is clearly seen from the
NMR spectra of both hydrogen isotopes: in the 1H spec-
trum, in addition to a relatively narrow water signal,
there is also an unstructured broad absorption band. In
the 2H spectrum, quadrupole splitting with strong tem-
perature dependence is observed (Fig. 1, Ic, Ic*). The
changes observed in the 13C NMR spectrum are less
dramatic and are associated with a further broadening
of the signals and further shifts of the middle carbon
atoms of alkyl chains toward low fields and the shift of
the signals of carbon atoms of N-methyl toward high
fields. At lower temperatures, the solid phase is formed,
the quadrupole splitting of the D2O 2H NMR signal is
no longer observed, and the 1H spectrum resembles that
of the micellar phase (Fig. 1, Ic*). The 13C NMR spec-
trum still has broadened signals that are especially well
pronounced for the α-carbon atoms. Signals from the
central atoms of the alkyl chains and the carbons of
N-methyl groups are shifted in the opposite directions,
which is characteristic of the micellar phase (Fig. 1, IIc).

The compositions of the mixtures (see table) were
selected in such a way that they would include the nem-
atic region of the known phase diagram [4, 7]. The
nematic lyomesophases in this system were studied in
[4, 6, 7]. The composition of the lyotropic systems
forming the lamellar phases (27–33 wt % of detergent,
4–6 wt % of n-decanol, 4–9 wt % of NaBr, and 55–
65 wt % of D2O) is close to those of the nematic phases.
At the same time, the lamellar phases also exist at lower
temperatures than the nematic ones and are character-
ized by higher viscosity. The characteristic feature of
these phases are high values of quadrupole splitting of
∆νD in the 2H NMR spectra [6, 7].
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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(a)

(b)

(c)

(d)

70 65 60 55 50 45 40 35 30 25 20 15 ppm

Lαh

Lα1

Lα1

Lα1-h

Fig. 3. The 13C NMR spectra from the (a) Lαh, (b, c) Lα1, and (d) Lαh-1 phases. The spectrum of the Lα1 phase indicates the forma-
tion of two phases on cooling from the temperature of the isotropic state (360 K) to initial room temperature (295 K).
The identification of the LC phases was made by
polarization microscopy. The textures of different
lamellar phases prepared from the multicomponent lyo-
tropic mixtures are shown in Fig. 2. The texture of the
classical lamellar phase Lαh (table, sample 2) is shown
in Fig. 2a and is a typical pseudoisotropic texture with
oily streaks and focal conic domains of the first type
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      200
and negative Gaussian curvature (FCD-I). In the 13C
NMR spectra of the lamellar Lαh phase (Fig. 3a), the
lines are broadened much more than those observed in
the LC NC  phase from sample 1 (Fig. 1, IIc). The sig-
nals from α carbon atoms of the Lαh phase are so broad-
ened that they cannot be identified against the back-
ground noise of the zero line. The quadrupolar splitting
2
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 Hz 50 0 –50  Hz

50 0 –50  Hz

295 K
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315 K

335 K

345 K

355 K

Fig. 4. Temperature dependence of the 2H NMR spectrum of the lamellar Lα1 phase (sample 3) in the 11.7 T magnetic field in the
heating and cooling cycles.

T

of the line of the Lαh phase in the 2H spectrum (~43 Hz)
is more pronounced than that for nematic lyome-
sophases (~18–20 Hz) [4, 7, 32].

At lower c/s (cosurfactant/surfactant) ratios in the
lyotropic systems, one observes the formation of the
lamellar Lα1 phase with an FCD-II-type texture and
positive Gaussian curvature [23, 25]. The woven tex-
ture of the lamellar phase from sample 3 is shown in
Fig. 2b. The temperature dependence of the 2H NMR
spectrum of this phase was studied on heated and
cooled samples in a spectrometer (Fig. 4). The sample
C

at room temperature was heated up to the temperature
of the transition to the isotropic phase, Tc, and then was
cooled back to room temperature (2H NMR spectra in
Fig. 3). In this case, the memory effect by the LC phase
was observed. The quadrupole splitting ∆νD at the
given temperature depended (Fig. 4) on the history of
the sample; cooling the sample in a magnetic field of
the NMR spectrometer resulted in the formation of
some additional phases. This behavior is also reflected
in the 13C NMR spectra: cooling the sample in a mag-
netic field provides the formation of two absorption
bands from the main peak of alkyl chains and their
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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(ω − 1) atoms (cf. Figs. 3b, 3c). Thus, the Lα1 phase is
transformed from the isotropic state in a strong mag-
netic field back into the mixture of two LC phases. The
memory effect observed is of a complicated nature. The
ratio of the two phases formed depends on the cooling
conditions of the sample. The details of this process
need additional studies.

In Lα1-h phase (sample 4), the transformation of the
smectic phase with the focal conics into the texture
(Fig. 2d) with highly oriented confocals (Fig. 2e) was
observed. This may be associated with the orientation
of the lamellar phases at temperatures lower than <Tc.
Recently, the orientation of the lamellar phases in
strong magnetic fields was observed [33, 34]. The 13C
NMR spectrum of the Lα1-h phase show a slight broad-
ening of the lines in comparison with the lines of the Lαh

phase (Figs. 3a, 3d).

The viscosity of the samples prepared from the
detergent produced by Merck was higher than that of
the samples based on the detergent produced by Serva,
while the compositions of all the other components
were the same. The samples prepared from CTAB gave
the lamellar Lα1 phase (sample 3) and the hexagonal HI
phase (sample 5). Both phases have similar woven tex-
tures (Fig. 2b). The most viscous hexagonal HI phase is
very stiff; however, the 13C NMR spectra indicate that
the mobility of alkyl chains in the hexagonal phase is
higher than in the lamellar phases. Thus, the micromo-
bility determined from the NMR spectra is inconsistent
with the macromobility determined from the viscosity
measurements. The 13C NMR spectrum from sample 6
practically coincides with that of the NC  phases (Fig. 1,
Ic). This signifies that the mobilities of alkyl chains in
the micellar and nematic NC  phases have close values.

CONCLUSION

The data reported here show the complex nature of
the aggregational processes occurring in the lyotropic
amphiphilic systems based on alkyltrimethylammo-
nium bromide detergents. Different aggregational
states and their mutual transformations can be studied
with the aid of multinuclear NMR spectroscopy and
optical polarization microscopy. In the present study,
several lamellar phases, Lα1, Lα1-h, and Lαh, have been
identified and characterized. The alignment of the
lamellar phases in strong magnetic fields has also been
established.
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Abstract—The existence of the biaxial smectic phase SmAb has been proved in the model of the Landau poten-
tial with two (nematic and smectic) interacting order parameters. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The symmetry of liquid-crystal phases is character-
ized by the orientational and positional order in the
molecule arrangement [1, 2]. According to the Friedel
classification, the phases in liquid crystals with achiral
calamitic molecules are divided into two types—nem-
atics and smectics [2]. The isotropic liquid has the com-
plete orientational (O(3)) and translational (T(3)) sym-
metry of the group G = O(3) × T(3). At the transition to
the nematic (N) phase, the translational symmetry is
retained, while the rotational symmetry is violated,
which provides the formation of two types of nematic
phases—the uniaxial phase Nu (G = D∞h × T(3)) and the
biaxial phase Nb (G = D2h × T(3)). In nematics, the mol-
ecules are aligned along the director n. Smectic (Sm)
liquid-crystal phases exhibit a layered structure in
which the molecules are characterized not only by the
orientational but also by some positional order. The
simplest example of a smectic phase is the SmAu phase
with the symmetry G = D∞h × T(2) and the director per-
pendicular to the smectic layers. Within the layers, the
centers of gravity of the molecules are disordered as in
a conventional liquid. The violation of D∞h symmetry
leads to various smectic phases. For example, the direc-
tor tilt with respect to the smectic layers gives rise to the
formation of the SmC phase (G = C2h × T). Another
example is the SmAb phase (G = D∞h × T(2)), in which
the director of biaxial molecules is perpendicular to the
layers. The possibility of the existence of this phase was
first pointed out by McMillan [3, 4]. Within the context
of the phenomenological Landau theory, the possibility
of the direct transition from the isotropic to smectic
(SmA and SmC) phases was studied in [5]. However, the
transition to the SmAb phase has not yet been studied
theoretically. Below, we consider the simplest theoreti-
cal model of the Landau–de Gennes phase transitions,
which describes the transitions from the isotropic (I) to
the Nu, SmAu, and SmAb phases. Although the transition
from I to N phase was widely studied both theoretically
and experimentally [1], the direct transition from iso-
1063-7745/02/4705- $22.00 © 20856
tropic (I) to the SmA and SmAb phases (I–A transition)
was not observed experimentally until recently (see [6]
and references). A simple model of Landau thermody-
namic potential that allows one to describe the I–A tran-
sition was proposed in [6]. However, a number of errors
did not allow the authors [6] to study this model in more
detail. Below, we perform the detailed analysis of this
model.

THE MODEL OF LANDAU THERMODYNAMIC 
POTENTIAL

The order parameter that describes the transition to
the N phase is a traceless tensor [1]

(1)

where n, m, and l = n × m are the orthogonal eigenvec-
tors Qij corresponding to the eigenvalues

(2)

respectively. The quantities η1 and η2 define the uniax-
ial (η1 ≠ 0 and η2 = 0) and biaxial (η1 ≠ 0 and η2 ≠ 0)
order. The smectic order can be described by the imag-
inary order parameter

(3)

where q = 2π/d, and d is the layer thickness [1]. In the
simplest case of the SmA phase, the wave vector is par-
allel to the z-axis

(4)

Generally, the thermodynamic potential has the
form

(5)

where Φ1(Qik) is the thermodynamic potential of the
N phase, Φ2 is the thermodynamic potential of the SmA
phase, and Φ3 is the potential corresponding to the

Qik 1/2η1 3nin j δik–( ) 3/2η2 mim j lil j–( ),+=

η1 1/2 η1 3η2+( )– 1/2 η1 3η2–( ),–, ,

Ψ r( ) Ψ r( ) e
iqu r( )–

,=

Ψ z( ) Ψ e
iqz–

.=

Φ Φ1 Qik( ) Φ2 Ψ ∇Ψ,( ) Φ3 Qik Ψ ∇Ψ, ,( ),+ +=
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interaction between the order parameters. Retaining the
simplest invariants in Φ3, we obtain

(6)

Then, the simplest fourth-order potential with respect
to the order parameters has the form (in notation sug-
gested in [6])

(7)

The invariant Qik(∇ iΨ)(∇ kΨ) is the trace of the product
of two symmetric second-rank tensors that can simulta-
neously be reduced to the diagonal form (D∞h symme-
try). Here, the eigenvalues of the matrix (∇ iΨ)(∇ jΨ) are

ξ1, –1/2(ξ1 + ξ2), and –1/2(ξ1 – ξ2), where

(8)

Then, the invariant Qik(∇ iΨ)(∇ kΨ) is

(9)

From Eqs. (4) and (8), we obtain ξ1 = q2|Ψ|2 and ξ2 = 0.
According to [7],

(10)

and, hence, the thermodynamic potential is

(11)

If the model of potential (11) is to meet the condition of
the global minimality (the values of the order parame-
ters should be finite irrespective of the changes in the
parameters) [8], the parameters of the model before the
higher powers of the expansion in the order parameters
should satisfy certain relations. In [6], the sequence of
the relations was determined erroneously. Using the
method stated in [6], we obtain

(12)

Within model (11), the variable parameters are a1, b1,
α1, and λ1 , which depend on the external conditions,
e.g., the temperature and pressure. For the sake of sim-
plicity, we put b1 = const < 0. 

Φ3 Qik Ψ ∇Ψ, ,( )

=  γ1Qik ∇ iΨ( ) ∇ kΨ( ) γ2QikQik Ψ 2
.+
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1/4β Ψ 4

1/4δ Ψ 2
QikQik+ +

+ 1/2b1 ∇ iΨ( )2
1/4b2 ∆Ψ( )2
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ANALYSIS OF THE SYSTEM 
OF THE EQUATIONS OF STATE 

FOR THE MODEL OF THE THERMODYNAMIC 
POTENTIAL

The system of the equations of state for thermody-
namic potential (11) has the form

(13)

The solutions of this system correspond to four
phases:

(14)

It is important that only the first three phases were
considered in [6]. The fourth-order potential with
respect to Qik includes no biaxial phase Nb; in order to
describe this phase, one has to take into account the
sixth-order term. However, because of the interaction
with the smectic parameter (γ1η1|Ψ|2q2), system of
equations (13) admits of the following solution with
η2 ≠ 0 at |Ψ| ≠ 0 and q ≠ 0:

(15)

If γ1 = 0 (or |Ψ| = 0 and q = 0), the solutions  – 3  =
0 correspond to the domains of the Nu phase. The anal-
ysis of the phase stability in the space of the variable
parameters R3 = (a1, α1, λ1), (b1 = const < 0) involves the
determination of the degeneracy conditions for the
matrix of the second derivatives

(16)

where gi ∈  {η1, η2, |Ψ|, q} and i, j = 1, …, 4.

The derivatives in Eq. (16) are found by substituting
the solutions of Eq. (13) for each phase. For phase I, the
stability conditions are

(17)
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The determinant ||Hik || in the phase Nu has the form

(18)

As follows from Eq. (18), in model (13) we have

(19)

and if b1 < 0, then η1 > 0.

Two other degeneracy conditions for ||Hik || are given
by the equations in R3

(20)

(21)

Condition (21) specifies the coexistence region of the I
and Nu phases, in which the I–Nu first-order transition
occurs at

(22)

Curves (20) and (21) in the space R2 = (a1, α1) are tan-

gential to one another at the point (α1 = –γ2 9 /64 ,

a1 = 9 /32a2). For the SmAu phase, the degeneracy
condition for ||Hik || has the form

(23)

where ∆1 = 4α2a2 – . The condition

(24)

differs from Eq. (19) for the Nu phase and specifies a
curve in the plane R2 = {a1, α1}. This condition deter-
mines the stability of the SmAu phase in relation to the
formation of the SmAb phase. Condition (23) also spec-
ifies the region of the real solutions for the SmAu phase.
In this case, there is a region where the I, SmAu, and Nu

phases coexist. In this region, the first-order I–SmAu,
I−N, and SmAu–Nu phase transitions take place, which
converge to a triple point.

The degeneracy conditions for Hik in the SmAb phase
with the lowest symmetry have the form

(25)
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q

2η2
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2

3α2b1+( ) )η1

+ 2λ2 3b1η2
2 γ1Ψ

2
q

2
–( )∆1 ] 0.=
C

The analysis of conditions (23) and (25) showed that
both second-order transitions along curve η2 = 0
[Eq. (24)] and first-order transitions between the SmAu

and SmAb phases are possible. In addition, the direct
first-order transition from the I to the Ab phase is also
possible.

CONCLUSIONS

Thus, we have analyzed the simplest model of ther-
modynamic potential (11). The study of the solutions of
system of equations (14) and their stability showed that
the model describes four phases, I, Nu, SmAu, and SmAb.
The SmAb phase is optically biaxial; one of the axes
coincides with the normal to the smectic layers z, while
the other two axes ξ and η, lying in (x, y) plane, are not
equivalent:

(26)

The effective potential described by (13) was studied in
[6] at η2  = 0; it was assumed that conditions (19) are
satisfied. In this case, the phase diagram has a region of
parameter values such that no solutions of the equations
of state can exist, which shows that this approach is
erroneous.
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Abstract—The generation of a dislocation spiral and fluctuations in the step velocity on the (101) face of mon-
oclinic lysozyme crystals have been studied by in situ atomic force microscopy (AFM). It is shown that the
(101) face grows by the dislocation mechanism and that the steps move via the formation of one-dimensional
nuclei. The velocity of a part of the step fluctuates, with the fluctuations increasing proportionally to the fourth-
order root of time. In the process of spiral generation, a segment of the step attains a certain critical length and
then moves with a constant velocity. Even under constant supersaturation, the fluctuations can give rise to
changes in the segment length. The interstep distance in the step echelon also varies. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Studying the processes of crystallization of the
orthorhombic lysozyme modification, we have estab-
lished that the kink density on the steps of this crystal is
rather low and that the steps move via the formation of
one-dimensional nuclei [1, 2]. We also studied the fluc-
tuations in the step velocity [3] and established that the
velocity is independent of the step length. This phe-
nomenon is of special interest because it is inconsistent
with the thermodynamic Gibbs–Thomson equation.
Obviously, this phenomenon can be associated with the
kinetics of the process [4]. It was expedient to verify
whether the step velocity is really independent of the
step length also on some other crystals.

Lysozyme, like other proteins, has a propensity to
polymorphism and forms several modifications crystal-
lizing under different chemical conditions within a nar-
row temperature range. Growth of the tetragonal and
orthorhombic modifications has been studied in suffi-
cient detail, whereas the mechanism and kinetics of
crystallization of the monoclinic phase have not been
studied as yet and, therefore, we selected this modifica-
tion as the object of our study.

EXPERIMENTAL METHOD

The crystals were obtained from sixfold recrystal-
lized lysozyme (Seikagaku, Japan) by the method
described in detail in [5].

The approximately 1-mm-long crystals were well
faceted (Fig. 1). According to [5], the unit-cell parame-
ters of the crystals are a = 2.80 nm, b = 6.25 nm, c =
1063-7745/02/4705- $22.00 © 200859
6.09 nm, β = 90.8°, z = 4, space group P21. The twofold
axis coincides with the b-axis of the crystals.

The experiments were performed in a liquid cell of
a Nanoscope-3 atomic-force microscope (Digital
Instruments) in the contact mode using Si3O4 tips in the
shape of tetrahedral pyramids with the angle at the ver-
tex equal to 70°. The cantilever in the shape of an
100-µm-high isosceles triangle had a rigidity of
0.12 N/m. In order to obtain adequate images, we had
to maintain a constant force applied to the tip (at a level
of about 10–10 N). The temperature of the experiment
was about 25°C. Because of a slight variation in the
solution composition (in comparison with the composi-
tion recommended in [5]), the solubility curve sug-
gested in [5] cannot be used, and, thus, we could not
determine the supersaturation, but it remained constant
during the whole experiment, which was confirmed by
the constant average step velocity.

EXPERIMENTAL RESULTS

Morphology of a Growing Surface

It was rather easy to reveal the growth sources in the
form of single and double spirals and also the Frank–
Read sources on the (010) face (Fig. 2). In most of the
cases, the step rise had an elementary height of 2.5 nm
corresponding to the interplanar spacing d101. The spi-
rals had an almost rectangular shape, but the average
distances between the spiral turns were different along
four directions. Along one of the directions, the steps
perpendicular to the b-axis were essentially rough. In
02 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Photograph of a monoclinic lysozyme crystal in a liquid cell of an AFM; (b) crystal habit according to [5].

1 µm 1 µm

[010]

[101]

(a) (b)

Fig. 2. AFM images of (a) a single spiral and (b) a Frank–Read source. The step shape in the second image is slightly distorted
because of the smaller difference between the velocities of a step and a tip.
accordance with [5], this direction was taken to be the
negative direction of the b-axis.

The image of a step parallel to the b-axis at a larger
magnification is shown in Fig. 3. One can distinctly see
the kinks whose depth (6.7 nm) corresponds to the unit-
cell dimension along the [101] direction. Unlike the
case of an orthorhombic crystal, there were almost no
kinks of multiple or half depth. The number of the kinks
is rather small and they are distributed nonuniformly.
This pattern is typical of the step motion via the forma-
tion of one-dimensional nuclei [1, 6].

At a larger magnification, one can also see the
molecular structure of the face (Fig. 4). The character-
istic dimensions between the rows of the unit cells are
consistent with the corresponding X-ray data. No sur-
face reconstruction was revealed, although it cannot be
C

excluded that the neighboring rows of the cells are
somewhat shifted along the b axis.

Fluctuations in Step Velocity

Figure 5 shows the atomic-force microscopy image
of two steps obtained in the mode of one-line scanning.
In this mode, the slow motion of the AFM scanner is
switched off, so that one can observe the changes in the
position of a small (in our case, ~0.3-nm-long) step seg-
ment. Thus, it is possible to measure the time upon
which the step starts moving forward or backward
along the normal to itself (for one lattice parameter).
Using a successive series of similar images, we
recorded 150 attachment (86) and detachment (64)
events. As a result of each event, the step moved for-
ward or backward for one lattice parameter (6.7 nm).
The step displacement x as a function of time t is shown
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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in Fig. 6 with the indication of the experimental values
of step positions at different moments of time. The
average slope of x(t) is the average step velocity, v st =
0.23 nm/s. In addition to the total increase of x with
time, one can also see three plateaux in x(t) with the
centers at t ≈ 150, 300, and 500 s (Fig. 6), which may
correspond to the fluctuations of a kink in the vicinity
of the scanning site. Then the average local slopes in the
transition from one plateau to the following one would
correspond to the kink velocity.

The average time interval between the kink arrival
was 4.42 s. It should be noted that the average time of
the appearance of a new unit cell upon its detachment
was five times shorter than the average time of the
remaining events (1.3 and 6.5 s, respectively). The for-
ward motion of a step signifies the arrival of a new kink
to the scanning site (line). Then, the fluctuation
“retreat” of the kink immediately upon this “attack”
would be immediately recorded. Each next attack is
associated with the arrival of a new kink, which takes a
longer time (of the order of the time necessary for a
kink to pass the distance equal to the interkink distance
on a step). This pattern seems to be formed only under
noticeable supersaturations, because, in this case, the
kink attack is more probable than its retreat.

The distribution function of the time of the new kink
arrival (τ) follows from the lengths of the horizontal
steps of the staircase (Fig. 6). It should characterize the
distribution of the distances between the neighboring
kinks (x) because τ = x/v, where v  is the kink velocity
assumed to be constant. At a random kink distribution
on a step, the probability P(x) that a kink would be

50 nm

[010]

Fig. 3. The portion of a step of elementary height. The step
moves slowly from left to right via the attachment of build-
ing blocks to the kinks and the formation and growth of one-
dimensional nuclei. The arrows show a new row of the ele-
mentary cells of the step.
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      200
20 nm

6.7 nm

[010]

[101]

Fig. 4. The structure of the face at a high resolution. Below,
a portion of the upper image filtered from noise by the Fou-
rier method is shown; 512 scans, 30.5 Hz.

25

550
x, nm

t, s

440 330 220 110 0

20

15

10

5

0

Fig. 5. The image of two steps parallel to the b-axis
obtained in the one-row scanning mode. Kink depth 6.7 nm,
512 scans, 20.3 Hz.
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encountered in the vicinity of its neighbor at a distance
ranging from x to x + dx has the density

dP/d(x/〈x〉) = exp(–x/〈x〉),

where 〈x〉  is the average interkink distance. The calcu-
lated probability density dP/d(τ/〈τ〉 ) as a function of
τ/〈τ〉 is shown in Fig. 7. It considerably differs from the
exponential dependence, especially at high τ/〈τ〉  values.
This can be associated with both nonrandom kink dis-
tribution on the step and the dependence of the kink
velocity on the distance from one kink to the neighbor-
ing one. Both factors could have been caused by impu-
rities; however, we revealed no signs of impurity pres-
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160

200 300 400 500 600 700
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24
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Fig. 6. The change in the position of the portion of a step
with time. The origin of the coordinates system corresponds
to the first attachment of a building block.
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Fig. 7. The distribution function of the time of the kink
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In the inset: the range of small dP/d(τ/〈τ〉 ) = n/N∆ values.
Here n is the number of points in the corresponding range
of τ/〈τ〉 values (∆ = 1); N = 150, 〈τ〉 = 4.42 s.
C

ence, which is also confirmed by the constant depth of
all the kinks.

To analyze the fluctuations in the position of the step
segment, we assumed, in the first approximation, that
the step velocity was constant, v st = 0.23 nm/s. The fluc-
tuation-induced deviation of the step position from its
average value δx depending on time t was calculated as
the difference between the real step position at the
moment t and the coordinate of the corresponding point
on the line approximating the whole staircase (Fig. 6).
Then, it became possible to construct the autocorrela-
tion function of the dependence of 〈(δx)2〉  on time in the
form

(1)

Averaging was made over all the t values at the constant
∆t. The data in Fig. 6 were approximated by the linear
dependence insufficiently well, and, therefore, we lim-
ited the consideration to the maximum ∆t value, ∆t = 8 s.
Expression (1) characterizes the change in the squared
fluctuation amplitude of the step position for the time
∆t. This dependence is shown on the double logarith-
mic scale in Fig. 8 and is described sufficiently well by
a straight line whose slope calculated by the LS method
equals 0.47 ± 0.01, i.e., is close to 0.5. Therefore, it was
assumed that 〈(δx)2〉  increases proportionally to the
square root of time

(2)

The proportionality coefficient was determined as
χ = 35.7 nm4/s = 3.57 × 10−27 cm4/s. The proportionality
of δx to the fourth-order root of time was predicted by
Voronkov long ago [7] and was experimentally
observed in KDP, the orthorhombic modification of
lysozyme [3], and potassium hydrogen phthalate
(KAP) [8]. Voronkov’s theory allows one to determine
a number of the fundamental parameters of crystalliza-
tion from the χ value. We do not make these calcula-
tions here because it is still unclear what a building is
block and what sizes it has, which is necessary for per-
forming these calculations.

Formation of a Dislocation Spiral

To consider the formation of a perfect turn of the
spiral in detail, it is necessary to obtain the largest pos-
sible number of images within the time necessary for
the formation of one turn. This problem is far from sim-
ple, because the typical time necessary for taking one
AFM image ranges from 30 to 50 s, whereas the time
necessary for the formation of one spiral turn, even at
low supersaturations, is of the order of 100 s [which
corresponds to the rate of face growth of about 1 µm
/day (24 h)]. At shorter times of image recording, the
image quality and, thus, the measurement accuracy, are
much lower. We obtained about 70 images reflecting
the development of two turns of a spiral. The recording
conditions were as follows. The frame dimensions were

δx( )2〈 〉 δ x t( ) δx t ∆t+( )–[ ] 2〈 〉 .=

δx( )2〈 〉 χ t( )1/2
.=
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3.67 × 3.67 µm, the scanning frequency was 20.34 Hz,
and the number of scans was 128 (we recorded only
half of the frame). As a result, the total time necessary
for recording one image was 3.147 s, and the accuracy
of measuring the distances (a recording step) was
28.7 nm. Although the velocity of a measuring tip was
100 times higher than the step velocity, we observed a
slight change (<5°) in their orientations in the upward
or downward scanning, and, therefore, only half of all
the images scanned along one direction were measured.
Figure 9 shows nine frames characterizing the forma-

10

1

〈(δx)2〉 , nm2

∆t, s

Fig. 8. Autocorrelation function (1) of the dependence of
the mean squared fluctuations on time on a double logarith-
mic scale.
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tion of one turn of a spiral. The step and all its segments
shown in this figure are of the same height. One of the
frames in Fig. 9 shows the numbering of the step seg-
ments.

Considering Fig. 9, one has to pay attention to the
following facts. The distances between the turns are not
the same, which is clearly seen from the positions of the
first segments of different turns. The segments of the
first and third orientations are not rigorously rectilinear,
and large kinks on these segments in different frames
are located in different sites. The segments of the sec-
ond orientation are extremely curved. One can see the
extended protrusions and hollows on these segments.
As a rule, the angles formed by the adjacent segments
are rounded off. In the vicinity of the dislocation out-
crop, where the segment lengths are rather small, this
results in the fact that the length of the rectilinear por-
tion of the segment is considerably less than the length
of the segment itself.

More details on the formation of a new spiral turn
can be obtained from Fig. 10. To construct this figure,
we measured the lengths of all the segments during the
time necessary for the formation of two spiral turns.
This is only a scheme, because it does not reflect the
deviations of the segments from the rectilinear shape
clearly seen in Fig. 9. Each newly formed step segment
first increases in length due to the motion of the neigh-
boring segment, but it is not displaced as a whole along
the normal to itself. Only upon the attainment of a cer-
tain critical length does the new segment start moving
itself. This is the moment of the beginning of the forma-
500 nm

1 2 3

4 5 6

7 8 9

1
2

3
4

[101]

[010]

Fig. 9. The successive AFM images illustrating the formation of a new turn of a spiral. The time between the frames is 12.6 s. Light
and dark squares at the step ends reflect the discreteness of image recording. The first segment appears in the time interval between
frames 2 and 3; the second, between frames 6 and 7; the third, between frames 7 and 8; and the forth, between frames 1 and 9.
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tion of another segment. When the latter attains its crit-
ical value and starts moving, the velocity of the length-
ening of the first segment also increases, because now
it is determined by the displacements of two neighbor-
ing segments. This process can be described in the fol-
lowing way. Denote the length of the segments and
their average velocity as li and v i, respectively, where
i = 1, 2, 3, 4, in full accordance with the segment enu-
meration in Fig. 9, lc, i is the critical length, and t is the
time. Then, we have li – 1 < lc, i – 1, li = dli /dt = 0; at li + 1 <
lc, i + 1     dli /dt = v i – 1; at li + 1 > lc, i + 1 dli /dt = v i – 1 +
v i + 1; at li + 1 = 0 li = lc, i.

The subscript i – 1 at i = 1 corresponds to segment 4
of the previous turn, and the subscript i + 1 at i = 4, to
segment 1 of the following turn.

Using this characteristic fact, we measured the val-
ues of lc, i and v i for two successive turns of the spiral

38

20

24

28

32

36
200 nm

4

8

12

16

(a)

(b)

Fig. 10. The step motion during the formation of (a) the first
and (b) the second turns of the spiral. The time interval
between the neighboring step positions is 6.29 s. The figure
is drawn by using the segment length measured with an
accuracy of  ±20 nm from 39 successive images of the spi-
ral. Position 17 relates to the second turn, positions 37–39,
to the third. The numbers of nine frames in Fig. 9 corre-
spond to odd numbers from 3 to 19.
C

from the images shown in Figs. 10a and 10b.

As we can see, the critical length of the first segment
became considerably larger at the second turn, with the
critical lengths of the remaining segments being con-
stant within the accuracy of our measurements. The
velocity is changed only slightly and in an irregular
way: it increases for segments 2 and 3 and remains
practically constant for segments 1 and 4. It should be
indicated that the first turn was formed for 94.5 ± 1.5 s,
the second one, for 135 ± 1.5 s. Such a pronounced
increase in the growth time of one spiral turn is associ-
ated mainly with an increase in the critical length of the
first segment and, thus, requires more time for its for-
mation. The turn started growing with the appearance
of segment 4. Measuring the time from the appearance
of another segment, we obtain different values: from
the appearance of the first one, 104 s; from the appear-
ance of the third, 142 s. This result is explained by the
occurrence of fluctuations in lc, i and v i , and, therefore,
the time necessary for the formation of the same seg-
ment of the critical length is different for different spiral
turns.

Considering Fig. 10, one can notice that the first
range of the distances between the successive positions
of mutually parallel segments is not less than the others.
This signifies that even at a slight increase in the seg-
ment length above its critical value, its velocity is not
less than at the pronounced segment length. In other
words, the segment velocity is independent of its
length. This conclusion is confirmed by a simple calcu-
lation. If the segment acquires a constant velocity
immediately upon the attainment of the critical length,
the spiral turn is formed for the time

T = lc4/v 3 + lc1/v 4 + lc2/v 1 + lc3/v 2.

Substituting the values obtained for the first turn
into the above expression, we obtain T = 97.2 s, i.e., the
time which practically coincides with the real time of
the formation of this turn. This time would have been
considerably longer if, with an increase in l/lc, the
velocity had gradually increased from zero to a certain
constant value in accordance with the thermodynamic
Gibbs–Thomson equation.

DISCUSSION
The ideas about the formation of a polygonal dislo-

cation spiral at low kink density that were developed in
[9] were based on the fact that a segment whose length

Segment, i 4 1 2 3

First turn

lc, i, nm 60 300 70 75

v i, nm/s 7.8 2.4 3.4 6.4

Second turn

lc, i, nm 75 505 75 75

v i, nm/s 7.6 2.4 5.4 7.6
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equals the length of the side of a two-dimensional crit-
ical nucleus has only a small rectilinear portion,
because the angles of the critical nucleus should be
rounded off. If the length of this portion is comparable
with the average interkink distance, it may have no
kinks at all for quite a long time. With an increase in the
length of such a segment, it is the rectilinear portion
that starts determining its velocity. It was shown [9]
that, in this case, even a slight increase in l above lc can
drastically increase both the length and velocity of the
rectilinear portion.

However, the analysis performed in [7, 9] is essen-
tially based on the assumption that there is dynamic
equilibrium between the rectilinear portion of the step
and its environment. Meanwhile, the attainment of such
an equilibrium requires sufficient time for the diffusion
exchange of the kinks between the opposite ends of the
rectilinear portion. This is the only mechanism which
can let one end of a finite segment know about the exist-
ence of another, in other words, the mechanism relating
the segment velocity with its length.

The exchange of the kinks between the segment
ends requires that the kink that was detached from one
segment end diffuse along the segment either to reach
the other end or to encounter somewhere a kink of the
opposite sign detached from the opposite end. The
annihilation of these kinks provides the gain in the lin-
ear energy during dissolution of a short step in the solu-
tion with concentration equilibrium with respect to the
kink (infinitely large crystal), because the time for kink
diffusion along the rectilinear segment in equilibrium is
unlimited. In a supersaturated solution, the situation is
different. The segment ends “communicate” via kink
annihilation only if the segment length is less than the
length of a one-dimensional nucleus (the fluctuation
length of the kink [6]) l < 2b/s. Here, b = 6.25 nm is the
distance between the building blocks and s is the super-
saturation. Thus, this situation is possible only under
low supersaturations s < 2b/l (≈10% for l of the order
of 100 nm). The supersaturation in the experiments
described above was unknown, but, using the analogy
with orthorhombic lysozyme, where at a step velocity
of about 2 nm/s s = 170% [4], the supersaturation would
be considerably higher than 10%. In this situation, the
Gibbs–Thomson equation is hardly applicable. There-
fore, we believe that the critical segment length with a
low kink density is determined not by the thermody-
namics but rather by the kinetics of the attainment of
the steady-state kink density.

It can be seen from Fig. 9 that, unlike other seg-
ments, the first one acquires a rather extended rectilin-
ear portion upon the attainment of the critical length.
The critical length of the first segment seems to be so
large because it has no kinks at all. The pronounced
fluctuations in the kink number on the first segment
considered above should inevitably follow from the
random changes in its critical length during the forma-
tion of the successive turns of the spiral. Therefore,
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      200
even under a constant supersaturation (and constant v i),
the time necessary for the formation of a spiral turn
would vary and change the distance between the turns
equal to Tv i, which was confirmed experimentally.

The fast attainment of a constant velocity under a
small excess of the critical length of the segments is
explained by the fast attainment of the steady-state
(although fluctuating) kink density. Unfortunately, the
calculations of the duration of the period of nonstation-
arity as a function of the length of one end of the seg-
ment fixed at the point of the dislocation outcrop, the
rate of the kink formation, and the velocity of their
motion have not yet been completed. The dependence
of the segment velocity on its length should exist in any
case, but its detailed study requires new experiments at
different known supersaturations. Moreover, one can-
not completely exclude the possibility that the end of a
growing step can have a structure that differs from the
structure of a step growing in the steady-state mode.

The experimentally observed fluctuations in the
velocity of segments and their shape could have been
explained by the effect of impurities, but, as has already
been indicated, the experiment gave no grounds for this
explanation. We assume that these phenomena are asso-
ciated rather with the low fluctuating kink density on
the steps.

CONCLUSION

Growth of the most developed (101) face of mono-
clinic lysozyme has been studied by the in situ AFM
method under a constant supersaturation. The morphol-
ogy of the face is described at both a high and low res-
olution. We observed fluctuations in the step velocity
also at the stage of formation of the dislocation spiral.
Two results seem to be important.

The portions of the steps move alternatively in the
backward and forward directions. Fluctuations increase
with time according to the law [〈(δx)2〉]1/2 ≈ (t)1/4. Along
with KDP, KAP, and orthorhombic lysozyme, this law
has already been established on the fourth (monoclinic
lysozyme) crystal. The law is common for both low-
and high-molecular compounds and is valid at a low
and high kink density on the steps.

In formation of a dislocation spiral, the critical
length of the segment with a low kink density, upon the
attainment of which the segment starts moving, is
determined not by the thermodynamics, but rather by
the kinetics of the attainment of the stationary kink den-
sity on the segment. The segment is immobile unless it
acquires kinks. Fluctuations in the kink densities result
in differences in the critical lengths, variations in the
time necessary for the formation of a spiral turn, and the
distance between its turns even under low supersatura-
tions.
2
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Abstract—The method for calculating the kinetics of crystal growth and epitaxy based on the two-dimensional
model of the mass crystallization in many atomic layers has been developed. The kinetics of crystal growth is
analyzed with due regard for the initial (critical) size of two-dimensional nuclei, the dependence of the growth
rate of two-dimensional nuclei on their size, and the non-steady-state frequency of the formation of two-dimen-
sional nuclei. The effect of characteristic parameters of crystallization on the kinetics of formation of epitaxial
films and structure is also studied. © 2002 MAIK “Nauka/Interperiodica”.
Two-dimensional nucleation is the major mecha-
nism of growth of atomically smooth crystal surfaces at
rather high relative supersaturations σ = ∆µ/kT (∆µ is
the difference between the chemical potentials of the
phases, k is the Boltzmann constant, and T is the tem-
perature). Under such conditions, the multiple forma-
tion and growth of two-dimensional nuclei in the grow-
ing atomic layers take place; in other words, two-
dimensional mass crystallization occurs almost in each
layer. The simplest and the most elegant solution of the
problem of three-dimensional crystallization was found
by Johnson and Mehl [1]. In the particular case of
spherical nuclei, this solution coincides with a more
accurate solution obtained by Kolmogorov [2, 3]. Epi-
taxial growth in microscopic areas can proceed by the
mechanism of two-dimensional nucleation even under
rather low supersaturations if these areas have no
defects providing the formation of steps. Liquid-phase
epitaxial growth proceeds at rather high supersatura-
tions [4]. The processes of epitaxial growth are quite
complicated, and, therefore, their theoretical study is
currently performed by modeling [5]. The approxima-
tions necessary for the analytical solution of this prob-
lem are considered in [3], where it is also indicated that,
in fact, one can readily take into account anchoring
when analyzing multilayer epitaxial growth.

Theoretical estimates of the growth rate for a crystal
growing by the mechanism of two-dimensional nucle-
ation were made only for very low or rather high super-
saturations. Under low supersaturations, we have [6]

(1)

where L2 is the face area, a is the crystal-lattice param-
eter, β is the kinetic coefficient for a straight step (Vst =

V I L
2
/a

3( )βσ1/2
aγ2

/σ( ),exp=
1063-7745/02/4705- $22.00 © 20867
βσ is the growth rate of a straight step), and γ is the free
energy of the step edge per atom in the kT units. At high
supersaturations, we have

(2)

Equation (1) corresponds to the kinetic mode of crystal
growth in which there is almost no nucleation and the
supersaturation is almost constant over the whole crys-
tal surface. In multiple nucleation, σ is the local surface
supersaturation. However, in the case of growth from
melt or vapor, the supersaturation above the crystal sur-
face can be more or less uniform. Equation (2) does not
take into account the competition between various
growth centers (the “multihead” growth [6]) and their
possible mergure.

To describe crystal growth, we invoked the Johnson
and Mehl idea [1] of the elimination of the fictitious
part of the increment of the crystalline phase. The two-
dimensional nuclei arise and grow in many atomic lay-
ers (Fig. 1). First, we assume that nucleation can occur
at any point of the given layer even if the corresponding
portion has already been crystallized. Calculating the
increment of the crystalline phase within the given time
interval, we eliminate the increments due to fictitious
nuclei and the regions where the non-fictitious centers
overlap (white regions in Fig. 1).

The number of two-dimensional centers of crystalli-
zation per unit area formed in the zth layer within the
time interval [tk – j∆t, tk – ( j – 1)∆t] is equal to Iz∆t
(tk is the current moment of time, 1 ≤ j ≤ k, ∆t is a small
time step such that its decrease produces almost no
effect on the calculated results). Here Iz = I0exp(–τ/t) is
the non-steady-state rate of two-dimensional nucle-
ation [7] (τ is the characteristic time of the non-steady-

V II βσ5/6
aγ2

/3σ( ).exp=
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Fig. 1. Schematic illustration of the Mehl–Johnson model of multilayer crystallization; a is a fictitious nucleus.
state process, t is the time passed from the onset of crys-
tallization in the given layer), and I0 = (1/a)3βσ1/2 ×
exp(–πγ2/σ) is the steady-state nucleation rate [4]. An
increase in the area of all crystallization centers in the
zth layer ∆Qz, k for the face area (L2 = 1) within the time
interval [tk – ∆t, tk] can be written as

(3)

where Qz, k is the fraction of the crystalline phase in the
zth layer at time moment tk, rk – j is the radius of the
crystallization center formed earlier within the time
interval ranging from tk – j – 1 to tk – j. To calculate the
dependence of the size of crystallization centers on
time, we used the relationship for the growth rate of a
curved step reported in [8]. The increments in their radii
were determined with due regard for the Gibbs–Thom-
son shift with respect to supersaturation as ∆ri = βσ(1 –
r*/ri – 1)∆t, where 1≤ i ≤ k, r* = aγ/σ. The initial size r0
of the crystallization center was assumed to be equal to
r0 = r* + δr, where δr = a(πσ)–1/2 is the addition that
reduces the free energy of nucleation by kT. The factor
(Qz – 1, k – 1 – Qz, k – 1) implies the elimination of the ficti-
tious increments in the areas of the crystallization cen-
ters (including fictitious nuclei). The factor Qz – 1, k – 1
takes into account the whole two-dimensional volume
assessable for crystallization. The increments in the
fraction of the crystalline phase, ∆Qz, k, in Eq. (3)
should be summed over all the time intervals [tk – ∆t, tk]
up to the moment of time under consideration. The sub-
sequent summation of all the obtained Qz values over
all the layers yields the total amount of the crystalline
phase Q as the conditional number of the fully occupied
atomic layers.

It is very difficult to take into account the rate of
non-steady-state nucleation for two-dimensional cen-
ters of crystallization. For the first layer, time t in the
formula of nucleation rate (see above) indicates the

∆Qz k, Qz 1– k 1–, Qz k 1–,–( )Qz 1– k 1–,=

× Iz t j( )∆t2πrk j– ∆rk j– ,
j 1=

k 1–

∑

C

time passed from the onset of crystallization. However,
clusters in the following layers can start forming only
upon the appearance of the crystalline phase in the
lower layer. To find the self-consistent solutions in the
mode of steady-state nucleation, we assumed that t is
half the average time tav of existence of each portion of
the surface uncovered with the next layer. This time was
chosen based on several solutions in such a way that the
desired solution would yield the same result tav = a/V
(V is the determined growth rate). The nonstationarity
time τ was determined as the time necessary for the
attainment of such a size distribution for clusters whose
average size nav = 〈n2〉1/2 would correspond to the equi-
librium nucleus-size distribution. Thus, we have τ ≅
〈n2〉/2B(nav/2), where B(nav/2) is the diffusion coeffi-
cient corresponding to random walks of nuclei in the
size space. With due regard for the analysis performed
in [9], we found that B(nav/2) = (πnav/2)1/2β/a. The ini-
tial stages of epitaxy were analyzed in the approxima-
tion of the steady-state rate of nucleation.

At constant nucleation, I = I0 , and growth rates V =
Vst (r0 = 0), our calculations for a single layer agree
quite well with the analytical solution of the two-
dimensional problem of mass crystallization obtained

by the Mehl–Johnson method, Q = 1 – exp(–t3/ ),
τm = (πV2I0/3)–1/3 (see curve 1 in Fig. 2). Curves 2 and
3 in Fig. 2 illustrate the time dependence of Q for an
infinite number of layers. Curve 2 was calculated for a
steady-state nucleation rate of two-dimensional nuclei
and a constant rate of their growth. Curve 3 was
obtained for nuclei with due regard for the dependence
of their growth rate on size. The parameters used in the
calculations, γ = 0.5 and β = 0.1 m/s, are typical of the
crystallization from melt. The curves are plotted versus
normalized time t/τm (τm = 1.7 × 10–6 s). The growth rate
can be determined from the curve slopes. If the growth
rate is constant, the structure of the interphase bound-
ary ceases to change; in other words, the continuous
crystalline film has already been formed. In our solu-
tions obtained at different parameters β and γ (β = 0.05

τm
3
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Fig. 2. Total amount of the crystallized phase versus nor-
malized time at γ = 0.5, β = 0.1 m/s, and σ = 0.08: (1) cal-
culations for a single layer; (2, 3) unlimited number of lay-
ers at (2) I = I0 and V = Vst and (3) I = I0 and V = Vst(1 –
r*/r).
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Fig. 3. Crystallization rate versus supersaturation.
(1) According to (1); (2) according to (2); (3, 4) numerical
results: (3—steady-state nucleation rate (I = I0), 4—I =
I0exp(–τ/t)).
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Fig. 4. (a) Relative filling of a layer with the crystalline phase as a function of layer number and (b) total amount of the crystallized
phase as a function of supersaturation: r homoepitaxy, Q1 = 0.99 and σ = 0.05; h epitaxy, Q1 = 0.99 and σ = 0.30; n epitaxy, Q1 =
0.90 and σ = 0.15; × epitaxy, Q1 = 0.67 and σ = 0.15; (1) homoepitaxy, Q1 = 0.99; (2) epitaxy, Q1 = 0.90; (3) epitaxy, Q1 = 0.67.
For homoepitaxy, γ1 = γ2 = 0.5, β1 = β2 = 10 cm/s; for epitaxy, γ1 = 0.6, γ2 = 0.5, β1 = 5 cm/s, and β2 = 10 cm/s.
and 0.10 m/s, γ = 0.5, 0.6, 0.8. and 1.0) and different
supersaturations σ (σ = 0.15–0.40), the constant rate
was observed at Q = 25–35.

The plots of growth rate versus supersaturation are
shown in Fig. 3 at β = 0.1 m/s and γ = 0.5. Curves 1 and
2 correspond to the analytical Eqs. (1) and (2). Curve 3
was obtained by our method at I = I0 and curve 4, with
allowance for the non-steady-state behavior of the rate
of two-dimensional nucleation. It can be seen that curve
3 (in the steady-state approximation) is located above
curve 2, because we took into account the initial size of
two-dimensional nuclei and the contribution from the
sideward growth of the crystallization centers (Eq. (2)
was derived in the approximation of a single growth
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
center). The additional allowance for the non-steady-
state processes considerably reduce the growth rate, so
that curve 4 approaches curve 2.

The variations in the kinetic coefficient do not affect
the Q(t/τm) curves because the increments ∆Qz in
Eq. (3) are proportional to β and τm ≈ 1/β. On the con-
ventional time scale, the growth rate is proportional to
β. An increase in the edge energy γ affects Q(t /τm)
curves in the same way as the lowering of supersatura-
tion.

In our calculations of epitaxy, we assumed that the
free edge energy of the steps in the first layer (γ1) is
slightly higher than that for the subsequent ones (γ2)
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and that the threshold supersaturation (below which no
growth is observed) is always overestimated. The
expectation time of the appearance of the crystalline
phase (the characteristic time τm for the first layer is
longer than for the subsequent layers) also increases.
The distributions of the fraction of the crystalline phase
(Qz) over atomic layers are quite different in epitaxy
and homoepitaxy (γ1 = γ2). In epitaxy, γ1 > γ2 and, at rel-
atively low supersaturations, the total amount of the
crystalline phase is practically proportional to the fill-
ing of the first layer for quite a long period of time. This
indicates the formation of three-dimensional crystals
and the absence of a continuous film.

Figure 4a shows several Qz–Q(z) curves for epitaxy
and homoepitaxy at the given filling of the first layer.
The total amount of the crystalline phase at moments
when the filling of the first layer attains the given value
(0.67, 0.90, 0.99) as a function of supersaturation is
shown in Fig. 4b. The number of atomic layers corre-
sponding to the most dramatic decrease in Qz is associ-
ated with the phase-boundary width, which is relatively
small (3–5 layers) and depends on supersaturation.
These data show that the formation of continuous films
in epitaxy takes more time so that such a film can be
formed only at considerable thicknesses of the coating.
At relatively low supersaturations, no continuous film
can be obtained at all (in growth by the mechanism of
two-dimensional nucleation).

The above approach to the description of crystal-
growth kinetics and epitaxy is advantageous because it
allows one to take into account all the characteristic
features of the growth mechanism and the substrate
properties. The method allows one to calculate the
growth kinetics at any supersaturations and at all the
C

values of the parameters β and γ related to the atomic
structure of the crystal surface. In epitaxy, one can also
calculate the structural parameters of the films depend-
ing on the crystallization conditions. The computer pro-
grams designed based on Delphi and Mathcad pack-
ages can also be used for mixed growth mechanisms by
taking into account the contribution made by disloca-
tion-like growth centers.
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Abstract—The crystallization conditions for the NaH2PO4, NaH2PO4 · H2O, and NaH2PO4 · 2H2O solid phases
have been established from the analysis of the phase diagram of solubility of the ternary Na2O–P2O5–H2O sys-
tem in the temperature range from 0 to 100°C. Based on these data, the methods for growing sodium dihydro-
genphosphate single crystals of the above compositions are developed. The initial components for preparing
mother solutions were H3PO4 and NaOH solutions taken in certain weight ratios. For the first time, NaDP,
NaDP · H2O, and NaDP · 2H2O single crystals were grown on a seed by the method of temperature decrease. The
habits of the NaDP and NaDP · H2O single crystals are determined. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The growth and study of the properties of potas-
sium, rubidium, cesium, and ammonium dihydrogen-
phosphates single crystals are considered in numerous
publications. These crystals, which possess valuable
physical properties, are widely used in laser technology
as elements for control of modulator beams and optical
shutters for generating giant light pulses in solid-state
lasers, orthogonal switchers of light polarization, dis-
crete light deflectors, and nonlinear frequency trans-
ducers (up to the fourth harmonic). However, there is
no published data on the growth of sodium dihydrogen-
phosphate single crystals of the compositions NaDP,
NaDP · H2O, and NaDP · 2H2O. The synthesis of these
crystals seems to be very interesting both for practice
and also for studying the characteristics of the varia-
tions of their properties in the homologous series of
alkali metal dihydrogenphosphates.

The present study was aimed at developing methods
of growing sodium dihydrogenphosphates crystals and
the synthesis of NaH2PO4, NaH2PO4 · H2O, and
NaH2PO4 · 2H2O single crystals in the dynamic mode.

Earlier [1], we developed a general approach to the
choice of crystallization conditions for growing single
crystals of complicated compounds of various chemical
classes. This approach was based on the preliminary
analysis of the phase diagrams of solubility of ternary
systems. The main characteristic of this approach is the
use of simple components for preparing mother solu-
tions of the required chemical composition, a feature
that is very important for crystallization along the pre-
1063-7745/02/4705- $22.00 © 20871
liminarily chosen optimum trajectory. In particular, this
approach was used to grow KH2PO4 [2] and, for the first
time, LiH2PO4 single crystals [3].

ANALYSIS OF THE PHASE DIAGRAM 
OF THE Na2O–P2O5–H2O SYSTEM 

AND SELECTION OF CONDITIONS 
FOR GROWTH OF NaDP, 

NaDP · H2O, AND NaDP · 2H2O SINGLE 
CRYSTALS

The growth of single crystals of complex composi-
tions from aqueous solutions is associated with certain
difficulties because of the specific characteristics of
their solubility (congruent or incongruent) and the sta-
bility of their existence only within certain temperature
ranges. An increase or decrease in the solution temper-
ature can change the chemical composition of these
solutions and the nature of solubility. Moreover, the
crystallization process in ternary systems with the par-
ticipation of a solvent (in particular, water) proceeds
mainly in the dynamic mode. The considerable amount
of the mother solution is consumed during the forma-
tion of a crystal either as a result of the solvent evapo-
ration or a decrease in the solution temperature. In turn,
this changes the component ratio in the solution,
whereas the composition of the solid phase formed in a
ternary system depends mainly on the solution compo-
sition.

Despite the nonequilibrium nature of crystal growth
(although very close to equilibrium), the appropriate
method and conditions necessary for the growth of sin-
002 MAIK “Nauka/Interperiodica”
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gle crystals can readily and successfully be determined
from the equilibrium solubility phase diagram of ter-
nary systems.

In a ternary system, to each solid phase there corre-
sponds its own crystallization region whose solubility
curve has nonvariant singular points (eutonics and tran-
sient points) at which two different solid phases are
simultaneously crystallized. Then, it follows that the
optimum composition of the solution for the crystalli-
zation of a solid phase should be located at the maxi-
mum distance from the points of nonvariant equilibria,
because, in this case, the probabilities of the cocrystal-
lization of the adjacent phases or a transition to the
crystallization region of another phase are lower. This
condition can be formulated more rigorously as fol-
lows:

(i) when growing single crystals of congruently or
incongruently dissolving solid phases by the methods
of temperature decrease or isothermal evaporation, one
has to use the saturated solutions of the compositions
located in the middle part of the solubility curve (i.e.,
lying at the maximum possible distance from the points
of nonvariant equilibria);

(ii) for congruently dissolving solid phases, one can
use the saturated solution of the compositions located at
the point of the intersection of the solubility curve and
the singular solid-phase–water secant under the condi-
tion that this secant passes far from the point of nonva-
riant equilibria.

The above approach is quite justified in complicated
systems possessing several crystallizing phases of dif-
ferent compositions in which either the crystallization
region of each phase is rather small or the composition
of the phase is temperature-dependent.

The compositions of the saturated solutions thus
determined usually provide the most favorable condi-
tions for growing single crystals of complicated com-
positions in ternary systems and, thus, can be consid-
ered as the optimum conditions. It was shown [1, 4, 5]
that the largest amount of a solid phase in the ternary
system is crystallized from the saturated solutions cor-
responding to the middle part of the solubility curve of
a complicated chemical compound. On the contrary,
the closer the compositions of the saturated solutions to
the compositions of the nonvariant points, the more
pronouncedly the component ratio of the solution dif-
fers from the stoichiometric component ratio in the
solid phase and the smaller the amount of solid phase
crystallized from the solution.

The developed approach essentially simplifies the
technology of crystal growth and is more economical
because no time is needed for the experimental selec-
tion of the mother solution, the determination of the
temperature limits of the crystallization, and the choice
of the growth method. Also, there is no need to synthe-
size an expensive initial complicated compound,
because the initial mother solution is prepared from
simple components of the system. Moreover, the exper-
C

imental study of the dependence of the composition and
quality of single crystals on the position of the points
corresponding to different compositions of saturated
solutions on the solubility curves of solid phases for a
number of systems [1–4] showed that the compositions
of the solution chosen by the suggested method provide
the best quality of the crystals grown.

The principle of determining the optimum composi-
tion and temperature of the mother solution from the
solubility diagrams of various ternary systems is of a
general character and can be applied to the seeded
growth of single crystals of complicated compounds of
various chemical classes [1, 3, 6–8]. In the present
study, we used this method for selecting growth condi-
tions for sodium dihydrogenphosphate single crystals.

The ternary Na2O–P2O5–H2O system was studied in
the temperature range from 25 to 100°C [9]. The num-
ber of the solid phases formed in the system and their
compositions are shown in Fig. 1.

There are three sodium dihydrogenphosphate-based
phases with different amounts of crystal water in the
unit cell.

The centrosymmetric monoclinic NaH2PO4 phase
has a pseudo-orthorhombic unit cell (sp. gr. P21/C)
with the lattice parameters a = 6.808 Å, b = 13.491 Å,
c = 7.331 Å, β = 92.88°, and Z = 8 [10]. Its crystal struc-
ture is characterized by strong asymmetric hydrogen
bonding.

The noncentrosymmetric orthorhombic NaH2PO4 ·
H2O phase (space group Pna21) has the lattice parame-
ters a = 7.616 Å, b = 7.899 Å, c = 7.382 Å, and Z = 4.
A water molecule forms two very weak hydrogen
bonds [11].

The noncentrosymmetric NaH2PO4 · 2H2O phase is
described by the space group P212121 and has the lattice
parameters a = 7.275 Å, b = 11.384 Å, c = 6.06 Å, and
Z = 4 [12].

Now, consider the physicochemical characteristics
of crystallization of NaH2PO4, NaH2PO4 · H2O, and
NaH2PO4 · 2H2O solid phases in the temperature range
from 25 to 100°C. The concentration and temperature
conditions of their stable crystallization are indicated in
Table 1. It follows from Fig. 1 and Table 1 that the
NaH2PO4 · 2H2O solid phase is dissolved congruently
at 25°C and, probably, also at 0°C. The branch of the
solubility curve is rather extended, lies in a wide region
of the Na2O and P2O5 concentrations, and has a singular
point.

The NaH2PO4 · H2O solid phase exists in the tem-
perature range from 40 to 25°C. The congruent solubil-
ity at 40°C becomes incongruent at 25°C. The extended
branch of the solubility curve at 40°C has a singular
point; at 25°C, a short curve of the incongruent solubil-
ity is formed. At 100 and 60°C, the NaH2PO4 solid
phase has a long branch of the congruent solubility
curve, especially in a wide range of P2O5 concentra-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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Fig. 1. Phase diagram of solubility Na2O–P2O5–H2O in the range 25–100°C. Notation: MSP = NaH2PO4, HSP = NaH3(PO4)2,
B = Na2HPO4 · NaH2PO4, C = Na2HPO4 · 2NaH2PO4 · H2O, d 25°C, j 40°C, m 60°C, × 100°C.
tions. At 40 and 25°C, the solubility branches become
shorter, and the transition to incongruent solubility is
observed.

To determine the optimum compositions of the
mother solutions for growing NaDP, NaDP · H2O, and
NaDP · 2H2O crystals, we represented the data for the
ternary Na2O–P2O5–H2O system (25–28°C) [9] as tri-
angular Gibbs diagrams (Figs. 2–4).

Figure 2 shows the solubility curves of NaH2PO4 at
100, 60, 40, and 25°C. Point 1 corresponds to the com-
position of the saturated solution at the maximum dis-
tance from the eutonics on the solubility branches of the
isotherms at 25 and 40°C. Point 2 corresponds to the
composition of the mother solution at the maximum
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
distance from the eutonics E1 and E2 at 60°C. Point 3
indicates the composition of the saturated solution at
the intersection of the NaH2PO4–H2O line with the sol-
ubility curve at 60°C.

Figure 3 shows the solubility curve of NaH2PO4 ·
H2O at 25 and 40°C. Point 4 corresponds to the compo-
sition of the saturated solution at the maximum distance
from the euthonics at 25°C. Point 5 is the composition
of the mother solution at the maximum distance from
the eutonics E1 and E2 at 40°C.

Point 6 in Fig. 4 corresponds to the composition of
the saturated solution at the point of intersection of the
NaH2PO4 · 2H2O–H2O line with the solubility curve at
Table 1.  Temperature and concentration conditions of the crystallization of sodium dihydrogenphosphates in the Na2O–P2O5–H2O
system

Solid phase T, °C
Composition of liquid phase, wt %

Solubility nature
Na2O P2O5 H2O

NaH2PO4 ⋅ 2H2O 0 9.36 21.43 69.21

25 17.28–11.41 31.20–40.51 51.52–48.08 Congruent

NaH2PO4 ⋅ H2O 25 11.33–11.31 40.95–44.85 47.72–43.84 Incongruent

40 20.44–12.53 35.90–42.27 43.66–45.20 Congruent

NaH2PO4 25 11.31–10.19 44.85–49.80 43.84–40.01 Incongruent

40 12.25–10.66 42.73–51.35 45.02–37.99 Incongruent

60 20.74–10.89 38.20–54.09 41.06–35.02 Congruent

100 22.40–13.14 13.31–9.25 64.29–76.97 Congruent
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Fig. 2. Solubility isotherms of NaH2PO4 in the Na2O–P2O5–H2O system. Notation: –×–×– 100°C, –d–d– 60°C, –s–s– 40°C,
–m–m– 25°C, E1 and E2 are eutonics, point 1 indicates the composition of the saturated solution at the maximum distance from the
eutonics at the solubility branches of the isotherms at 25 and 40°C; point 2 indicates the composition of the mother solution at the
maximum distance from eutonics E1 and E2 at 60°C; point 3 indicates the composition of the saturated solution at the intersection
of the straight line NaH2PO4–H2O with the solubility curve at 60°C.
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Fig. 3. Solubility isotherms of NaH2PO4 · H2O in the Na2O–P2O5–H2O system; –d–d– 25°C, –×–×– 40°C, E1 and E2 are eutonics,
point 4 is the composition of the saturated solution at the maximum distance from the eutonics at 25°C, point 5 is the composition
of the mother solution at the maximum distance from the eutonics E1 and E2 at 40°C.
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Fig. 4. Solubility isotherm of NaH2PO4 · 2H2O in the Na2O–P2O5–H2O system. –×–×– 25°C, E1 and E2 are eutonics, point 6 indi-
cates the composition of the saturated solution corresponding to the point of intersection of the straight line NaH2PO4 · 2H2O–H2O
with the solubility curve at 25°C; point 7 indicates the composition of the mother solution at 35°C.
25°C. Point 7 corresponds to the composition of the
mother solution at 35°C.

Table 2 lists the growth conditions for NaH2PO4,
NaH2PO4 · H2O, and NaH2PO4 · 2H2O crystals chosen
based on data obtained in the analysis of the physico-
chemical characteristics of crystallization under equi-
librium conditions for the NaDP, NaDP · H2O, and
NaDP · 2H2O phases in the ternary system with due
regard for the approach developed for growing crystals
in the dynamic mode.

GROWTH OF NaDP, NaDP · H2O, 
AND NaDP · 2H2O SINGLE CRYSTALS

The mother solutions were prepared from NaOH
and H3PO4 chemicals of special purity grade and dis-
tilled water. The compositions of the NaDP, NaDP–
H2O, and NaDP–2H2O solutions are indicated in Table 2.
To provide the necessary supersaturation of the mother
solutions, we used a sodium hydroxide powder instead
of a NaOH solution.

The technology of preparing mother solutions for
growing crystals of all the compositions was as follows.
Small portions of the NaOH powder were added to a
cooling H3PO4 solution in a vessel under constant stir-
ring. The reaction between the components was of an
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
exothermic nature and proceeded according to the
scheme

NaOH + H3PO4 + H2O  NaH2PO4 · nH2O + H2O

(n = 0, 1, 2).

The solution thus obtained was cooled, filtered
through Schott filter no. 2, and poured into a crystallizer
with a seed whose composition corresponded to the
composition of the crystal to be grown. The seeds were
prepared from the solutions used for the growth of
NaDP, NaDP · H2O, and NaDP · 2H2O crystals. The
solutions were poured into a crystallizer at the initial
temperature equal to the growth temperature. The tem-
perature modes used in growth are indicated in Table 2.
The prepared solutions had a pH ranging from 1 to 2.
All the mother solutions were rather viscous and pre-
served the set supersaturation for quite a long time. To
make the solution bulk homogeneous, the constant stir-
ring of the solution was started immediately upon its
pouring into the crystallizer.

Although the physicochemical nature of NaH2PO4,
NaH2PO4 · H2O, and NaH2PO4 · 2H2O crystallization
(associated with the change of their solubility from
congruent to incongruent with a lowering of the tem-
perature from 60 to 25°C and from 40 to 20°C, respec-
tively) and the range of existence of NaH2PO4 · 2H2O
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Table  2.  Optimum growth conditions for NaDP, NaDP ⋅ H2O, and  NaDP ⋅ 2H2O crystals grown from the solutions in the
Na2O–P2O5–H2O system in the temperature range 25–80°C

Crystal

Isotherm Mother solution
Growth 

tempera-
ture, °C

Figure
T, °C point

wt % V, ml

Na2O P2O5 H2O NaOH H3PO4

NaDP 40, 25 1 11.80 47.00 41.20 89.75 54.65 40, 25 2

d = 1.13 d = 1.46

60 2* 13.00 43.00 44.00 60

60 3 15.00 36.50 48.50 85.30 87.64 60

d = 1.17 d = 1.33

NaDP ⋅ H2O 25 4 10.93 42.70 46.37 25 3

40 5* 14.66 33.62 51.72 86.60 80.72 40

d = 1.16 d = 1.29

NaDP ⋅ 2H2O 25 6 12.00 27.60 60.40 25 4

35 7* 13.00 29.80 57.20 113.00 59.41 35

d = 1.12 d = 1.25

Note: Point 1, the composition of the saturated solution at the maximum distance from the eutonic, corresponds to the solubility branches of
isotherms at 40 and 25°C; point 2 indicates the composition of the mother solution at the maximum distance from the eutonic at 60°C;
point 3 indicates the composition of the saturated solution corresponding to the point of intersection of the line NaH2PO4–H2O with
the solubility curve at 60°C; point 4 indicates the composition of the saturated solution at the maximum distance from the eutonic at
25°C; point 5 indicates the composition of the saturated solution corresponding to the intersection of the straight line NaH2PO4 ⋅ H2O–
H2O with the solubility curve at 40°C; point 6 indicates the composition of the saturated solution corresponding to the intersection of the
straight line NaH2PO4 ⋅ 2H2O–H2O with the solubility curve at 25°C; and point 7 indicates the probable composition of the mother solution
NaDP–2H2O at 35°C; * indicates the compositions of the mother solutions used for crystal growth, and d is the solution density in g/cm3.
only from 25 to 0°C dictated the growth of the crystals
by the method of isothermal evaporation, the consider-
able viscosity and acidity of the mother solutions and
rather low initial growth temperature nevertheless
meant that no solvent evaporation was observed.

Thus, we had to use the method of temperature
decrease from 70, 47, and 35°C down to room temper-
ature to grow NaDP, NaDP · H2O, and NaDP · 2H2O
crystals, respectively. The initial rate of temperature
decrease was 0.01°C/day (24 h).

As a result, we obtained transparent colorless 25 ×
22 × 8 mm3 NaDP, 35 × 30 × 35 mm3 NaDP · H2O, and
35 × 30 × 18 mm3 NaDP · 2H2O crystals.

The NaDP crystals were stable stored in air, whereas
NaDP · H2O and NaDP · 2H2O crystals were unstable
and rapidly lost their transparency and became turbid.

We assume that these transformations are caused by
the reactions

NaH2PO4 · H2O + H2O  NaH2PO4 · 2H2O,

NaH2PO4 · 2H2O  NaH2PO4 · H2O + H2O;

in other words, the following reversible reaction takes
place:

NaH2PO4 · H2O + H2O  NaH2PO4 · 2H2O.

This transition associated with the absorption and
loss of water is confirmed by the data of the X-ray dif-
fraction study of the products of the reversible reaction
C

[11]. It is also shown that the packing density of the
crystalline NaH2PO4, NaH2PO4 · H2O, and NaH2PO4 ·
2H2O phases decreases with an increase in hydration.

The crystals grown are shown in Fig. 5. Because of
the pronounced instability of a NaH2PO4 · 2H2O crys-
tals (Fig. 5c) in air, the crystal changed its shape already
after several hours of being stored in air, which did not
allow us to determine its habit.

The habit of the NaDP crystal (Fig. 6a) determined
by goniometric measurements is described by the sym-
metry class 2/m and consists of the following simple
forms: two pinacoids ({010} and {001}) and two rhom-
bic prisms ({110} and {011}).

The habit of the NaDP · H2O crystal is shown in
Fig. 6b. It should be emphasized that it is inconsistent
with the sp. gr. Pna21 determined in [11]. Our measure-
ments showed that its symmetry class is m (monoclinic
system) and that the crystal has the following simple

forms: pinacoid {010}, seven domatic dihedra { },

{ }, { }, { }, { }, {124}, {421}, and five

monohedra {101}, {100}, { }, {001}, { }. The
monoclinicity angle formed by the (100) and (001)
faces equals β ≈ 93.5°. It should also be indicated that
the faces of the {110} dihedron and the (011) faces are
degenerate, probably because their growth essentially
depends on the growth conditions. The cause of the
inconsistency between the results obtained in our study

110

011 111 111 111

100 001
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1 cm

1 cm

1 cm

(a)

(b)

(c)

Fig. 5. Single crystals of (a) NaDP, (b) NaDP · H2O, and
(c) NaDP · 2H2O.
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and in [11] is still unclear. Among the possible causes
are the following. Possibly, the inconsistency is
explained by the different compositions of the phases
obtained in [11] and in our study (most probably, differ-
ent number of the molecules of crystal water). Another
reason is that, as was indicated above, the NaDP · H2O
crystals, being pronouncedly unstable, rapidly change
their composition in air. These facts can results in erro-
neous X-ray diffraction data because of the varying
number of molecules of crystal water in the sample dur-
ing the experiment. To remove this discrepancy, some
additional X-ray studies are necessary.

CONCLUSION
The analysis of the phase diagram of solubility of

the ternary Na2O–P2O5–H2O system in the temperature
range from 0 to 100°C allowed us to determine the
nature of solubility and establish the conditions of crys-
tallization for the NaH2PO4, NaH2PO4 · H2O, and
NaH2PO4 · 2H2O solid phases under equilibrium condi-
tions—the compositions of the saturated solutions and
the temperature limits of their stable crystallization.
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Fig. 6. Habit of (a) NaDP and (b) NaDP · H2O single crys-
tals.
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Based on the data obtained, we managed to grow on
seed transparent NaDP, NaDP · H2O, and NaDP · 2H2O
single crystals by the method of temperature decrease.
The NaDP crystals are stable and can be stored in air,
whereas the NaDP · H2O and NaDP · 2H2O crystals are
unstable, rapidly lose transparency, and become turbid.
This transition seems to be associated with the absorp-
tion of water by sodium dihydrogenphosphate monohy-
drate and the loss of water by sodium dihydrogenphos-
phate dihydrate. The habit of NaDP and NaDP · H2O
crystals is determined. The discrepancy is also revealed
between the symmetry class determined for a NaDP ·
H2O crystal and the space group determined for this
crystal earlier.
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Abstract—Plateletlike transparent (Na,Li)NbO3 (NLN) single crystals with up to 7 mol % LiNbO3 possessing
a perovskite structure are synthesized by the method of spontaneous crystallization from NaBO2 flux. Based on
the X-ray diffraction data and dielectric measurements of these single crystals, the phase x–T diagram of these
solid solutions is constructed in the vicinity of the NaNbO3 composition. It differs from the x–T diagrams estab-
lished for the Na1 – xLixNbO3 ceramic. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION
Na1 – xLixNbO3 (NLN) solid solutions of the antifer-

roelectric NaNbO3 (NN) with a perovskite structure
and the ferroelectric LiNbO3 with a pseudoilmenite
structure are widely used in the form of ceramics [1–3].
Sodium niobate undergoes six phase transitions [1, 4],
which considerably complicates the x–T phase diagram
of the NLN solid solutions. Since many phase transi-
tions in lithium niobate give rise to weak anomalies in
the structural, electrophysical, and optical parameters,
the data on the x–T diagram of NLN, which are based,
as a rule, on the studies of ceramic samples [3–13], are
rather contradictory. Since no data on the structure and
properties of perovskite NLN single crystals are pub-
lished (the only exception is the data at x ≈ 0.02–0.03
[5, 7]), the present study is aimed at the synthesis of
these solid solutions in the form of single crystals of a
quality appropriate for optical and electrical measure-
ments over a wide range of x values and the refinement
of the NLN phase x–T diagram in the concentration
range in the vicinity of NaNbO3.

SYNTHESIS OF CRYSTALS AND METHODS 
OF MEASUREMENTS

The NLN single crystals were synthesized by the
method of mass crystallization from flux. The solvent
was NaBO2 [8]. The initial charge consisting of the
mixture of high-purity grade Na2CO3, Li2CO3, Nb2O5,
and B2O3 was loaded into a platinum crucible and kept
there for two to three hours at 1060°C. Then, the mix-
ture was cooled down to 930–860°C at a rate of 6–
7 K/h, the melt was poured out, and the synthesized
crystals were washed with hot water. The crystals were
colorless transparent platelets with a thickness ranging
within 50–200 µm and an area of several square milli-
meters. Some crystals were isometric and had 2 mm-
1063-7745/02/4705- $22.00 © 20879
long edges. All the single crystals were faceted with
(001) planes of perovskite basis and were twinned at
room temperature.

The X-ray diffraction studies were performed on
powder samples obtained upon crystals crushing on a
DRON-3 diffractometer (FeKα radiation, Mn filter).
The dielectric constant was measured at frequencies
ranging within 1–100 kHz with the aid of a R5083 ac
bridge during continuous heating or cooling at a rate of
2–3 K/min. The Aquadag electrodes were applied onto
the natural (001) faces of the crystals.

EXPERIMENTAL RESULTS

Figure 1a shows the ε(T) dependences for an NN
single crystal and some of the synthesized NLN crys-
tals. The ceramic NN samples usually show only a
spread maximum ε(T) corresponding to the phase tran-
sition between two antiferromagnetic orthorhombic
phases, P and R (hereafter all the phases are indicated
in the Meroy notation [4]). The ε(T) dependence of NN
crystals showed two major anomalies—a step corre-
sponding to the phase transition between the low-tem-
perature ferroelectric rhombohedral phase N and the
antiferroelectric orthorhombic phase P, and the maxi-
mum in the range of the P  R phase transition. In
accordance with the data obtained earlier for the
ceramic [3, 9], the temperature Tm of the maximum of
ε(T) for NLN single crystals, first, decreases with an
increase in the LiNbO3 content and then increases with
it. The concentration dependences of the average unit-
cell parameter a* = V1/3 (where V is the unit-cell vol-
ume) of the ceramic NLN samples are nonmonotonic
[3, 9, 10]. Therefore, the use of the dependences a*(x)
and Tm(x) obtained on NLN ceramic samples for esti-
mating the composition of single crystals is far from
simple.
002 MAIK “Nauka/Interperiodica”
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Fig. 1. The change in the form of the ε(T) dependences for Na1 – xLixNbO3 crystals with an increase in the LiNbO3 content in the
melt (in molar fractions): (1) 0, (2) 0.05, (3) 0.2, (4) 0.45, and (5) 0.6. The measurement frequency is 100 kHz, and ε25 is the ε-value
at 25°C. The inset shows the concentration dependence of the N  P (x < 0.02) and N  Q (x > 0.02) transitions constructed
by the known data for the Na1 – xLixNbO3 crystals (filled circles) and ceramic (empty circles).
Figure 1b shows the anomalies in ε(T) for the syn-
thesized NLN crystals corresponding to the transition
between the N and P phases (at x < 0.02) or to the fer-
roelectric orthorhombic Q phase formed at x > 0.02
[1, 3, 9]. It can be seen from Fig. 1b that the tempera-
ture of the phase transition, both under heating and
cooling, monotonically increases with the LiNbO3 con-
tent in the melt. Therefore, in order to determine the
composition of the single crystals synthesized, we used
the concentration dependences for the N  P (x <
C

0.02) and N  Q (x > 0.02) transitions constructed by
the data obtained for NLN ceramics [7–13] (inset in
Fig. 1a).

Figure 2a shows the concentration dependence of a*
for the synthesized NLN crystals at room temperature.
It can be seen that a* is practically independent of x in
the range x ≤ 0.03 and has a jump in the range 0.03 ≤
x ≤ 0.04 . In the range 0.02 ≤ x ≤ 0.05 , the P and Q
phases coexist. As is seen from Fig. 2b, in this case, the
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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relative content of the phase P estimated from the rela-
tionship (I211 + I230/I102)/(I211 + I230/I102)P, where I211,
I230, and I102 are the experimental intensities of the
superstructural 211 and 230 reflections observed only
in the P phase and the 102 reflection observed in both
phases (the indices of the reflections are given in the
orthorhombic setting), drastically decreases with an
increase in x in the range 0.03 ≤ x ≤ 0.04 . The appear-
ance of the lines corresponding to the Q phase on the
X-ray diffraction patterns at x ≈ 0.02 correlates with the
appearance of the additional anomalies in ε(T) at 220
and 80°C (Figs. 3a, 4). The anomaly in ε(T) observed at
x ≈ 0.02 at temperatures in the region of 220°C has the
form of a step whose temperature monotonically
increases with an increase in x, whereas at x ≈ 0.06, it
merges with the maximum in ε (Figs. 1a, 3a). At x >
0.06, the X-ray diffraction patterns of the crystals
showed weak lines corresponding to the rhombohedral
phase, whereas the maximum in ε(T) became more dif-
fuse (Figs. 1a, 3a).

Earlier, many authors observed a weak anomaly in
ε(T) at temperatures in the region of 150°C both in NN
crystals and ceramics [17–20], however it was ignored
because of its very low value. As is seen from the com-
parison of Figs. 1a and 3b, this anomaly becomes
noticeable only on an appropriate scale. The NLN crys-
tals also show this anomaly at a temperature which
increases with an increase in x and attains the value of
~190°C at x ≈ 0.06 (Fig. 3b).
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Fig. 2. (a) Concentration dependences of the average
parameter of the perovskite unit cell and (b) the value of the
(I211 + I230 /I102)/(I211 + I230 /I102)P ratios for the 211,
230, and 102 diffraction reflections proportional to the con-
tent of the P phase for Na1 – xLixNbO3 single crystals at
room temperature.
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0
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DISCUSSION OF RESULTS

According to [4], in the temperature range from
−150 to 400°C, NN crystals undergo two phase transi-
tions to which the structural transformations N  P
and P  R correspond.

The maximum of ε(T) corresponding to the P  R
phase transition increases with an increase in x, which
correlates quite well with the stabilization of the ferro-
electric properties with an increase in the Li content [1].
The value of the temperature hysteresis of ε(T) is prac-
tically constant (Fig. 1); in other words, here we are
dealing with a first-order phase transition.
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Fig. 3. (a, b) The change of the form of the anomalies in
ε(T) in the Na1 – xLixNbO3 single crystals observed with an
increase in the lithium content in various temperature
ranges (ε100 is the ε value at 100°C). The measurements
were made in the heating mode at a frequency of 100 kHz.
x = (1) 0, (2) ~0.01, (3) ~0.02, (4) ~0.04, (5) ~0.05,
(6) ~0.06, and (7) ~0.07.
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As was indicated in [1, 4, 14], the difference in the
structural parameters of the N and P phases is quite pro-
nounced, and, therefore, the N  P phase transition is
characterized by an unusually high value of tempera-
ture hysteresis. As is seen from Fig. 1b, in real NN crys-
tals, this transition usually cannot occur simultaneously
in the whole volume, and the ε(T) dependence has
jumps corresponding to the phase transitions occurring
in different regions of the crystal. Such jumps are also
observed in the NLN crystals with a low Li content.
With an increase in x, the anomaly in ε(T) correspond-
ing to the N  P(Q) phase transition decreases and
becomes blurred, and the hysteresis temperature also
decreases, i.e., the difference in the parameters of the
high- and low-temperature phases becomes smoother.

Unlike other anomalies in ε(T) observed in all the
crystals studied, the anomaly at 80°C was observed
only in the crystals with 0.020 ≤ x ≤ 0.025 containing a
small amount of the Q phase (Fig. 4), with the temper-
ature of this anomaly being almost independent of x.
Earlier, the anomalies observed at temperatures of 75–
190°C in the temperature dependences of the unit-cell
parameter of NN crystals, which contained an impurity
of the Q phase in addition to the P phase, were attrib-
uted to the P  Q phase transition [16]. These phase
transformations were first-order transitions, which was
confirmed, in particular, by the high value of tempera-
ture hysteresis. It seems that the anomalies in ε in the
vicinity of 80°C observed in the NLN crystals with a
small amount of the Q phase (characterized by a high
value of temperature hysteresis (Fig. 4)) are also caused
by the P  Q phase transitions. This assumption is
supported by the fact that, unlike other anomalies in
ε(T), this anomaly is characterized by a decrease in ε
with an increase in the temperature T. Indeed, in the fer-
roelectric phase, the existence of pronounced internal
fields makes the dielectric susceptibility lower than in
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Fig. 5. The tentative x–T phase diagram for the
Na1 − xLixNbO3 solid solutions constructed by the data of
dielectric measurements on single crystals (solid lines). The
dashed and dashed–dotted lines show the lines of the phase
transitions corresponding to the maximum of ε(T) deter-
mined in [3] (curve 1) and [9] (curve 2) constructed by the
experimental data for ceramic samples.
C

the antiferroelectric phase, and one can expect a
decrease in ω in the P  Q transition, as is the case
of the P  N transition in NN (Fig. 1).

The anomaly observed on the ε(T) curve in the form
of a step for the NLN crystals with 0.02 ≤ x ≤ 0.06 in
the temperature range 220–330°C was not observed in
the corresponding ceramic [3, 9]. The existence of the
corresponding line of phase transitions on the phase
x−T diagram of NLN crystals could have been assumed
only based on the experimental data on the pyroelectric
effect and ε(T) [6, 7, 15] for Na1 – xLixNbO3 crystals
with x ≈ 0.02. It should be noted that, in the crystals
studied in [15], the step on the ε(T) dependence was
hardly seen, which seems to be associated with the
insufficiently high quality of these crystals. In the NLN
crystals synthesized in [15], the step on the ε(T) depen-
dence had a pronounced jump in ε and also a pro-
nounced temperature hysteresis (Fig. 1a); in other
words, in [15], a first-order phase transition was
observed. This is also confirmed by the results of the
studies of NLN crystals in polarized light. At tempera-
tures corresponding to the step of the ε(T) dependence,
a change in the domain structure, motion of the phase
fronts, and jumps in birefringence were observed [6, 7,
20]. At the same time, the X-ray diffraction studies of
NLN powders showed [7, 9, 20] the absence of any
changes in the symmetry of the perovskite unit cell in
the temperature range from 25 up to 330–350°C. At
temperatures corresponding to the step on ε(T), only
insignificant changes in the slope of the temperature
dependence of the a, b, and c parameters and the mon-
oclinicity angle β of the perovskite unit cell were
observed.

Similar relatively weak changes in the slope of the
temperature dependences of the perovskite unit-cell
parameters also correspond to a weak anomaly in ε(T)
observed in the vicinity of 150°C for NN crystals and
in the range 155–190°C for NLN crystals [7, 20, 21].
The absence of the temperature hysteresis of this anom-
aly on ε(T) indicates that it may be independent of the
P  Q phase transition mentioned above [16].
Despite the fact that the anomalies in ε(T) in the tem-
perature range 155–190°C are rather diffuse, their tem-
peratures are practically independent of the measuring-
field frequency in the range from 1 to 100 kHz. Along
with the absence of the phase-front motion and the
change of the extinction in the polarized light for the
crystals, these results allow one to assume that the
phase transitions observed in NLN crystals in the range
150–190°C are similar to second-order phase transi-
tions. This conclusion is consistent with the change in
the slope of the temperature dependence of birefrin-
gence in Na0.98Li0.02NbO3 crystals in the range 150–
170°C recorded in [7].

The study of the Raman spectra [22] brought the
authors to the conclusion that a second-order phase
transition exists between the antiferroelectric orthor-
hombic phases in the vicinity of 190°C in NN crystals.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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Taking into account the rather low accuracy of the
determination of the transition temperature from the
changes observed in the diffuse Raman spectra, one can
assume that the anomalies on the ε(T) dependence in
the vicinity of 150°C observed in our studies of NN
crystals correspond precisely to this transition.

Figure 5 shows the phase x–T diagram of the NLN
solid solutions in the region of low LiNbO3 content
constructed on the basis of the data of dielectric mea-
surements of single crystals in the temperature range
from –150 to 400°C. For comparison, the same figure
also shows the concentration dependences of the phase-
transition temperature corresponding to the maximum
of ε(T) constructed from the data obtained for the
ceramic NLN samples [3, 9]. The x–T diagrams
obtained differ from those reported in [1, 3, 6, 9] in that
they have a line of phase transitions corresponding to
the above anomalies in the electrophysical and struc-
tural parameters in the range 150–200°C. Moreover,
the studies of the single crystals provided the determi-
nation of the position of the phase-transition line on the
phase x–T diagram of NLN in the range from 220 to
330°C, which has never been recorded for ceramics.

The considerable difference between the phase x–T
diagram of the NLN solid solutions and the known x–T
diagrams constructed on the basis of the data for
ceramic samples [3, 6, 9] seems to be explained by the
repeatedly indicated strong dependence of the structure
and properties of the alkali metal-based niobates on the
conditions of their synthesis. In particular, in the
(Na, Li)NbO3 system, one of the causes of such a strong
influence may be the coexistence of the substitutional
and interstitial solid solutions over a wide range of x
values [10, 23].

A more detailed study of the phase transitions and
properties of single crystals of the NaNbO3-based solid
solutions is the subject of our further investigations.

CONCLUSION

Thus, both in the (Na,Li)NbO3 crystals and in the
corresponding ceramic, one observes the coexistence of
the antiferroelectric (P) and ferroelectric (Q) orthor-
hombic phases over a wide range of x values (morpho-
tropic region). The characteristic feature of two-phase
crystals is the existence of the anomalies in ε(T) with
the corresponding pronounced temperature hysteresis
in the vicinity of 80°C caused by the P  Q phase
transitions.

The results of the dielectric measurements made on
single crystals of Na1 – xLixNbO3 solid solutions indicate
that, in addition to the well-known six phase transitions
in NaNbO3, there exists one more transition that is sim-
ilar to a second-order phase transition which occurs at
about 150°C, presumably between the two antiferro-
electric orthorhombic phases. The temperature of the
latter transition increases with the Li content. More-
over, the appearance in the crystals with x ≥ 0.02 of the
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
ferroelectric phase Q is accompanied by the formation
of an additional anomaly in ε(T) in the form of a step in
the vicinity of 220°C. The temperature of the latter
anomaly in ε(T) monotonically increases with x and, at
x ≈ 0.06, this anomaly merges with the maximum of ε.

The occurrence of a phase transition in NaNbO3 and
its solid solutions in the range from 30 to 200°C (coin-
ciding with the working temperature interval of numer-
ous functional materials) can considerably influence
the temperature and time stability of their characteris-
tics. This should necessarily be taken into account
when designing new NaNbO3-materials for various
purposes.
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Abstract—The distribution of impurities in the growth of profiled sapphire crystals is simulated. The distribu-
tion of impurities was calculated with the use of the diffusion equation with convective terms. The melt flow
was found by solving the Navier–Stokes equation. The distributions of impurities over the melt meniscus are
obtained at different crystallization rates. The maximum concentration supersaturation in the meniscus is stud-
ied as a function of its geometric parameters. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Depending on the growth conditions, different types
of voids are formed in profiled sapphire crystals [1].
Most of the voids can be removed by appropriate tech-
nological procedures except for gaseous inclusions
formed by the Tiller mechanism [2]. In a profiled sap-
phire crystal, this type of inclusions has the form of
bubbles appearing in the melt saturated with a gaseous
impurity in the region of the elevated concentration
density at the crystallization front, which are trapped by
growing crystals. The formation of these defects with
sizes ranging from 1 to 15 µm is practically inevitable
if the growth rate exceeds a certain critical value [3–6].
In sapphire ribbons and tubes, these defects are located
at a distance 50–100 µm from the side surface of the
crystal [3–8]. The study of the structure of the decanted
front and the corresponding distribution of bubbles
showed that their trapping occurs within the reentrant
angles of the faceted cells at the crystallization front
[4, 7]. The cellular structure of the growth front is
formed at violations of the morphological stability of a
planar interface if the crystallization rate exceeds a cer-
tain critical value [9]. It was found [4, 10] that it is the
loss of stability of the plane crystallization front that
determines the critical rate of bubble trapping in pro-
filed sapphire crystals.

Because the cellular structure and, therefore, the
bubble trapping at growth rates of 0.5 to 3.0 mm/min
are observed on the local regions of the crystallization
front, one can assume that the impurity concentration in
the melt in the vicinity of these regions is higher than in
1063-7745/02/4705- $22.00 © 20885
the remaining volume. The supersaturation of the melt
with the gaseous impurity in these regions creates the
conditions for nucleation and the growth of bubbles.

The present study aims to simulate the impurity dis-
tribution in the growth of profiled crystals, determine
the regions of the meniscus with the maximum impu-
rity concentration, and compare the data obtained with
the experimentally observed distribution of gaseous
inclusions in crystals.

FORMULATION OF THE PROBLEM

A growing crystal is a planar ribbon with a pro-
nounced thickness-to-width ratio, which allows us to
consider the problem as two-dimensional. The region
for calculation is formed by the intersection of the
meniscus, the crystal, and the draw plate with the plane
orthogonal to the working surface of the draw plate and
the crystal sides (Fig. 1).

The impurity, together with the melt from the cruci-
ble, enters the meniscus through a capillary. The initial
concentration is C0 . In the course of melt crystalliza-
tion, the impurity is forced back by the crystallization
front and enriches the melt.

To find the impurity concentration at each point of
the meniscus, one has to solve the steady-state diffusion
equation with the convective terms

(1)

where U and V are the x and y components of the melt-
flow velocity, C is the impurity concentration, and D is
the diffusion coefficient.

U
∂C
∂x
------- V

∂C
∂y
-------+ D

∂2
C

∂x
2

--------- ∂2
C

∂y
2

---------+ 
  ,=
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To solve the diffusion equation, one has to deter-
mine the distribution of the flow velocities in the menis-
cus by solving the steady-state Navier–Stokes equation
for an incompressible viscous liquid

curl[VcurlV] + µ∆curlV = 0, (2)

ρdivV = 0, (3)

where ρ is the density and µ is the dynamic viscosity of
the melt.

To estimate the character of the melt flow in the
meniscus, we calculate the Reynolds number

(4)

where V0 is the pulling rate of the crystal (V0 = 1 ×
10−5 m/s), h is the meniscus height (h = 3 × 10–4 m), and
ν is the coefficient of kinematic viscosity (for sapphire,
ν = 1.8 × 10–5 m2/s [11]).

Now, evaluate the Marangoni and the Grashof num-
bers:

(5)

(6)

where ∂σ/∂T = 2 × 10–4 J/m2
 K is the temperature deriv-

ative of the surface tension, ∆T = 5 K is the maximum
temperature difference in the meniscus, L = h, ρ =
3.03 × 103 kg/m3 is the melt density, a = 4.8 × 10–7 m2/s
is the thermal diffusivity, and β = 3.56 × 10–4 1/K is the
thermal expansion coefficient [11].

Since the Marangoni and Grashof numbers are
small [12], we can ignore the contributions due to the
Marangoni and Grashof convections.

Moreover, since the Reynolds number is much less
than unity (Re ! 1), the Navier–Stokes equation can
essentially be simplified by ignoring the nonlinear term

(7)

Re
V0h
ν

--------- 1.667 10
4–
 ! 1,×≈=

Ma
∂σ
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------∂TL

ρνa
---------- 11.5 ! 10

2
,≈=

Gr
βgL

3∆T

ν2
-------------------- 1.46 10

3–×  ! 1,≈=

µ∆ ∂U
∂y
------- ∂V
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-------– 

  0.=
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Γ6ϕ h

2r
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Γ5 Γ4Γ3
Γ7 Γ8

Γ2

Fig. 1. Geometry of the calculational model: (1) crystal,
(2) meniscus, and (3) die.

Γ1
C

In the two-dimensional case, the continuity equation
for a liquid flow (3) allows one to introduce the stream
function ψ(x, y)

(8)

and reduce Eq. (7) to the form

(9)

The following boundary conditions are used to solve
the systems of equations for the concentration and the
velocity distribution (Fig. 1).

The boundary Γ1 corresponds to the left face of the
draw plate and is defined as a wall (impermeable to
melt and impurity), where the following condition of
the melt adhesion should be fulfilled:

(10)

The boundary Γ2 corresponds to the lower boundary
of the capillary. To solve the problem of convective dif-
fusion in the meniscus, the calculations should be per-
formed in a region with a small capillary section; how-
ever, it is not expedient to calculate the distribution of
the liquid flow velocity along the whole capillary.
Therefore, adding a small portion of the capillary to the
calculation region, we assume that the flow in the cap-
illary will obey the equation for a steady-state boundary
layer

(11)

where V0 is the rate of crystal pulling from the melt, r is
the capillary radius, b is the diameter of a growing crys-
tal, and A is the constant taking into account the balance
of the mass to be crystallized and the mass passed
through the capillary,

(12)

where f(x) is a function of the meniscus profile. For the
planar front, Eq. (12) is simplified,

(13)

∂ψ x y,( )
∂x

--------------------- ψx V ,–= =

∂ψ x y,( )
∂y

--------------------- ψy U= =

∆2ψ 0.=

∂ψ
∂n
------- 0, ψx 0, ψy 0,= = =

∂C
∂n
------- 0.=

Vy x( ) AV0 1
x
r
-- 

 
2

– , x 0 2r,[ ] ,∈=

A
3
4r
----- b f ' x( )2

xd

0

b

∫+ ,=

A
3
4r
-----b.=
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002



MATHEMATICAL MODELING OF IMPURITY DISTRIBUTION 887
Proceeding from Eq. (11) of the velocity distribution
over the capillary cross section, we arrive at the follow-
ing boundary conditions:

(14)

The boundary Γ3 corresponds to the right-hand face of
the draw plate and is defined as a wall impermeable to
melt and impurity.

(15)

The boundary Γ4 corresponds to the right-hand menis-
cus boundary. The boundary profile is assumed to be
planar, since h ∈  [0.1, 0.3] mm. At this boundary, the
normal component of the velocity equals zero. In addi-
tion, the boundary conditions at the points of conjunc-
tion of boundaries 3–4 and 4–5 should be continuous.
With this aim, we assume that the tangential velocity of
the melt flow varies linearly along the meniscus bound-
ary from V = 0 (at the junction with boundary 3) to V =
V0cosϕ (at the junction with the crystallization front).

(16)

The boundary Γ5 corresponds to the crystallization
front. Assuming the front to be planar, we obtain

(17)

The boundary Γ6 corresponds to the left-hand surface
of the meniscus. All the arguments used at boundary 4
hold true for boundary 6.

(18)
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The boundary Γ7 is the left-hand capillary wall imper-
meable to the impurity and melt.

(19)

The boundary Γ8 is the right-hand capillary wall imper-
meable to the impurity and melt.

(20)

Since the problem is symmetric, one only needs to
solve the diffusion equation within half the calculation
region. To do so, introduce a mirror boundary (where

the condition  = 0 is satisfied) in the middle of the

meniscus.

Thus, we determined the calculation region and the
boundary conditions. The systems of equations will be
solved numerically by the finite-difference method.
With this aim, we have to divide the calculation region
into subregions that have simple forms. We shall use a
rectangular grid. The finite-difference system obtained
for Eq. (1) will be solved by the iteration method; that
for Eq. (9), by the Gauss method. In calculations, we
used a 350 × 3 grid.

CALCULATION RESULTS

Figure 2 shows the isolines of the stream function
obtained by solving Eq. (9) with the parameters h = 0.2,
W = 3, b = 2.8, r = 0.3 mm, and V0 = 1 mm/min. The
impurity distribution was calculated for pulling rates
ranging from 0.2 to 3 mm/min (corresponding to the
usual pulling rates). For convenience, the data obtained
were normalized to the initial impurity concentration in
the melt, C0. Figure 3 shows the distribution of the C/C0
ratio over the meniscus volume. The diffusion coeffi-
cient of an impurity in a sapphire crystal was assumed
to be D = 2 × 10–9 m2/s; the impurity distribution coef-
ficient was taken to be K0 = 0.3.

Now, consider the behavior of the impurity distribu-
tion in the meniscus at a varying pulling rate (Fig. 3)
and compare it with the dependence of the maximum
C/C0 ratio on V0 (Fig. 4).

ψ 0, ψx 0, ψy 0,= = =

∂C
∂n
------- 0.=

ψ 4
3
---ArV0, ψx– 0, ψy 0,= = =

∂C
∂n
------- 0.=

∂C
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-------

Fig. 2. Isolines of the stream function.
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Fig. 3. Distributions of the C/C0 ratio over the meniscus volume at various pulling rates. Isolines are drawn with a step equal to
unity.
At low rates (up to 0.8 mm/min), the concentration
gradient is parallel to the crystallization front. The
region with the maximum concentration are located
close to the side meniscus boundaries. With an increase
in the pulling rate from 0.2 to 0.8 mm/min, the horizon-
tal “compaction” of the supersaturation region also
increases, which is accompanied by a substantial
increase in the C/C0 ratio (Fig. 4).

At pulling rates ranging from 0.8 to 1.8 mm/min, the
horizontal compaction is almost completed, and an
C

increase in the pulling rate leads to a slow vertical com-
paction in this region. This process is associated with a
slight increase in the C/C0 ratio, and the concentration
gradient turns from the horizontal direction to the direc-
tion normal to the crystallization front.

Finally, at pulling rates exceeding 2.4 mm/min, the
compaction of the impurity region is completed, and
one observes a dramatic increase in the impurity con-
centration. It should be indicated that at these pulling
rates the region of impurity supersaturation extends
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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Fig. 4. C/C0 ratio as a function of the pulling rate of the
crystal V.
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Fig. 7. C/C0 ratio as a function of capillary diameter d.
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over the whole meniscus width, which often results in
the formation of the bubbles and their being trapped
over the whole crystallization front (as described
in [13]).

Calculations showed that the impurity concentration
approaches its maximum value at the crystallization
front at a distance of 25–45 µm from the side boundary
of the meniscus, which is consistent with the experi-
mental data [3–8]. If a pulling rate increases from 0.2 to
3.0 mm/min, the concentration maximum is slightly
displaced from the crystal edge along the X-axis by a
distance from 45 to 25 µm.

The fact that the impurity concentration attains its
maximum at a certain distance from the side edge of the
crystal probably can be associated with the horizontal
counterflow of the melt near the side edge of the menis-
cus (Fig. 5).

We also calculated the maximum C/C0 ratio as a
function of the meniscus height and the capillary diam-
eter (see Figs. 6, 7).

CONCLUSIONS

It is shown that the impurity concentration attains its
maximum value at the crystallization front at a distance
of 25–45 µm from the side boundary of the meniscus.
The change in the pulling rate of the crystal from 0.2 to
3.0 mm/min leads to no noticeable shift of the concen-
tration maximum.

It is also established that the dependence of the max-
imum supersaturation on the pulling rate has a plateau.
The corresponding range of the growth rates can be rec-
ommended for growth processes.

It is worth noting that, at a certain critical pulling
rate dependent on the geometric parameters of the
meniscus, the supersaturation region extends over the
whole meniscus width.

It is evident from Figs. 6 and 7 that the supersatura-
tion can be considerably reduced by increasing either
the capillary diameter or the meniscus height at a con-
stant pulling rate.
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losing “its own Platos and Newtons.” Only the most
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Russian science and determine its face and reputation
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include Mikhail Grigor’evich Mil’vidsky, doctor of
technical sciences, professor, and academician of the
Russian Academy of Natural Sciences, who will cele-
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day. Perhaps, it was under the guidance of the Prophet
Elias, who holds sway over natural forces, that Mil’vid-
sky obtained his powerful intellect, intuition, and bright
temperament—qualities so important for a scientist.

Mil’vidsky’s life’s work was the study of semicon-
ductors. The results of his scientific activity are very
impressive—he is the author of 4 monographs, more
than 500 scientific articles, a major discovery, and more
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sequently used in a number of industrial enterprises of
the Russian Federation and the ex-Soviet republics.
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mental studies on the growth of gallium and indium ars-
enides and the epitaxial structures of solid solutions
based on these arsenides. The main laws of the behavior
of dopants and structural defects in these materials
were established. Original technologies for growing
gallium and indium arsenide single crystals and the epi-
taxial heterostructures based on the solid solution of the
A3B5 compounds were also developed.

Mil’vidsky studied the role of isovalent impurities
as a new class of dopants of semiconductors and their
behavior in gallium arsenide and silicon single crystals,
as well as in epitaxial structures. He gained important
information on the growth of semiconductor single
crystals under conditions of microgravity in space
flights.

Mil’vidsky is the creator of a famous scientific
school in the field of technology and the materials sci-
ence of semiconductors. The studies performed by
Mil’vidsky and his students and followers are well
known and recognized by the scientific community. He
was awarded the Major Prize of the International Aca-
demic Publishing Company Nauka/Interperiodica for
the best scientific publication in 1997.

The success of his publications lies not only in their
deep contents but also in his masterly command of lan-
guage, the clarity and brevity of his style. The concen-
trated energy of his voice and his skill of emphasizing
important points and singling out priorities make him a
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brilliant lecturer. All the subjects considered in his lec-
tures become visible and tangible.

Mil’vidsky has spent a lot of time on scientific–
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ences, as well as a member of the editorial boards of
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Mil’vidsky’s creative work has been crowned with
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Mil’vidsky has spent a lot of time on scientific–
organizational work. He is a member of the Scientific–
Technological Council and a number of scientific coun-
cils of several institutes of the Russian Academy of Sci-
ences, as well as a member of the editorial boards of
several journals. He has been an organizer of, and par-
ticipant in, numerous national and international confer-
ences and meetings.

Mil’vidsky’s creative work has been crowned with
state awards: he was awarded the Lenin Prize, two State
C

Prizes, the Order of the Sign of Honor, and several med-
als. He holds the titles of Honorary Scientist of the Rus-
sian Federation and Honorary Metallurgist of the Rus-
sian Federation.

The editorial board of Kristallografiya (Crystallog-
raphy Reports) and numerous colleagues and friends
congratulate Professor Mil’vidsky on his birthday and
wish him good health, happiness, many years of cre-
ative work, and new achievements in science. 

Translated by L. Man
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002



  

Crystallography Reports, Vol. 47, No. 5, 2002, pp. 893–894. Translated from Kristallografiya, Vol. 47, No. 5, 2002, pp. 957–958.
Original Russian Text Copyright © 2002 by the Editorial Board.

    

MEMORIAL
DATA

   
Nikolaœ Naumovich Sheftal
(on the 100th Anniversary of His Birth)
Nikolaœ Naumovich Sheftal, an outstanding Soviet
crystallographer, professor, and doctor of geology and
mineralogy, was born on December 2, 1902, in Mos-
cow into the family of a well-known engineer and
inventor.

The scientific activity of Sheftal was dedicated to
only one subject—crystal growth—which he knew in
every detail, from experiments to their interpretation
and generalization of the results, from teaching to sci-
entific–organizational work. Sheftal went from a
descriptive mineralogical view of crystal growth in his
early studies to the solution of the problem of the active
control of crystallization processes. He was one of the
first enthusiasts of the industrial growth of crystals.

Sheftal spent more than half a century working at
the Institute of Crystallography of the USSR Academy
of Sciences. He started his experimental work at the
Laboratory of Crystallography of the Lomonosov Insti-
tute, where, on the advice of A.V. Shubnikov, he was
1063-7745/02/4705- $22.00 © 0893
engaged in the synthesis of homogeneous saccharose
crystals in order to replace the deficit quartz crystals
with saccharose. In 1939, Sheftal managed to grow Sei-
gnette salt crystals on a large scale. This achievement
promoted the organization of a special plant that pro-
duced many tons of these crystals, which, in turn,
allowed one to manufacture several million piezoelec-
tric elements for the needs of defense. In the period
from 1945 to 1951, Sheftal performed the first succes-
sive experiments in the Soviet Union on the growth of
high-quality synthetic quartz appropriate for manufac-
turing piezoelectric elements.

The sphere of Sheftal’s research interests was very
large and included diverse materials, methods, and
applications. In addition to saccharose, Seignette salt,
and quartz crystals, he was also interested in the growth
of micas and various semiconductors, large bulky crys-
tals and epitaxial films, crystallization from solutions,
melts, and vapors, various crystallization mechanisms,
and problems of twinning and geometric crystallogra-
phy.

Against this background of his interests, two funda-
mental and somewhat related studies performed by
Sheftal are especially important—the growth of epitax-
ial semiconductor films (in the 1950s) and artificial epi-
taxy (in the 1970s).

In 1953, Sheftal and his colleagues were the first in
the world to grow epitaxial silicon and germanium
films by the method of chloride crystallization from the
vapor phase. These results were published in a scien-
tific journal. An analogous result was obtained in the
USA only in 1961 and paved the way for the use of epi-
taxial films in microelectronics.

The concept of artificial epitaxy was formulated by
Sheftal in the early 1960s and was implemented exper-
imentally in 1972. Similar works abroad were started
only several years later. Then, artificial epitaxy (or gra-
phoepitaxy) was developed as a new area of science and
technology. Recently, artificial epitaxy has proved to be
promising in connection with the problem of the
growth of biological crystalline films on inorganic sub-
strates.

Sheftal gave a lot of his time and energy to scien-
tific–organizational work associated with crystal
growth. In the period from 1955 to 1969, he was vice-
chairman of the Scientific Council on Crystal Forma-
tion of the USSR Academy of Sciences. He was also an
organizer of the first All-Union Meetings on crystal
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growth (in 1957, 1959, 1963, and 1966), which are still
held as conferences in our country (the last conference
took place in 2001).

Sheftal was an initiator of the publication of the
well-known collections of articles entitled Crystal
Growth. Sheftal founded this publication in 1959 and
was the editor of the first ten volumes. At present, there
are 21 volumes of this series altogether, and all of them
are also published in English abroad.

Sheftal was always surrounded by his students.
Many groups of people interested in crystal growth in
the Soviet Union were organized and developed under
his ideological influence. More than 20 of his students
defended their candidate’s dissertations, and some of
them also defended their doctoral dissertations. Sheftal
C

was for many years professor at Moscow State Univer-
sity and headed the Laboratory of Crystal Growth at the
Department of Crystallography and Crystal Chemistry
of the Faculty of Geology.

Sheftal was a very benevolent person and this cre-
ated around him an atmosphere favorable for scientific
work. His passion, purposefulness, and enthusiasm for
science were transmitted to all those around him. He
was devoted to science till the very last days of his life.

Sheftal passed away in 1987.
All those who knew Sheftal, a pioneer of the science

of crystal growth, will always remember him. 

Translated by L. Man
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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In Memory of Nikolaœ Mitrofanovich Melankholin
(on the 100th Anniversary of His Birth)
On April 11, 2002, Nikolaœ Mitrofanovich Melan-
kholin, an outstanding expert in the field of crystal
optics, author of numerous scientific publications and
inventions, a man of high culture, and a charming and
modest person, would have celebrated his 100th birth-
day.

Melankholin was born on March 29, 1902 (accord-
ing to the Old Style), in the village of Os’makovo in the
province of Voronezh into the large family of a priest.
After the premature death of his father, Melankholin
began studying in Voronezh theological school and then
in a Soviet labor school. He started earning his living at
the age of 17, working as a librarian and an accounts
clerk; he also gave private lessons. Upon graduating
from the school, he entered the Novokhopersk Peda-
gogical Training College, which was famous for its
broad educational program. There, the young man
strove for knowledge, read a lot, wrote verse, took pho-
tographs, edited a manuscript journal, and delivered
1063-7745/02/4705- $22.00 © 20895
lectures both to his peers in the college and also to peas-
ants. Melankholin earned the nickname “professor.”
Upon graduating from the college, Melankholin was
recommended to enter Voronezh University. His rec-
ommendation letter read, “Melankholin possesses out-
standing abilities and, being gifted in all disciplines,
has an obvious inclination to the physical–mathemati-
cal sciences. Under favorable conditions, citizen
Melankholin may become a prominent scientist.”

After one year of studying in Voronezh, Melankho-
lin arrived (or, to be precise, came on foot) to Moscow
University. As a son of a priest, he was accepted in the
Faculty of Physics and Mathematics only as an auditor.
However, circumstances turned out to be favorable for
him, and a year later Melankholin, by petition of
S.I. Vavilov, became a full-time student and studied in
Vavilov’s group of theoretical physics. Upon graduat-
ing from the university in 1930, Melankholin and other
students of Vavilov were recommended to work at the
optical laboratory of the Institute of Applied Mineral-
ogy. The situation continued to be very favorable; the
former students started their research on crystal optics
with great enthusiasm under the guidance of such
remarkable scientists as V.V. Arshinov and N.E. Vede-
neeva.

Vavilov continued to show interest in the work of his
students. In 1940, Melankholin defended his candi-
date’s dissertation dedicated to the measurement of
refractive indices under a microscope (immersion
method). Later, he published a book based on his dis-
sertation. The following year, he became a senior
research worker. Even in his dissertation, Melankholin
improved on known research methods, developed the
technique of fast precision measurements of dispersion
in the refractive indices of crystals, and designed new
apparatus. These designs and inventions and their fur-
ther development until they were mass produced,
together with consultations and the teaching of
researchers from various institutes, industrial laborato-
ries, and geological organizations became characteris-
tic of Melankholin’s activity.

Melankholin worked at the Institute of Applied
Mineralogy (later, the All-Union Institute of Mineral
Raw Material (VIMS)) until 1945, the time of the orga-
nization of the Laboratory of Crystal Optics at the Insti-
tute of Crystallography, where he started working
under the guidance of Vedeneeva. As he had done ear-
lier in VIMS, Melankholin continued his research work
in two main directions—the study of the optical prop-
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erties of crystals and the development of new optical
methods for studying crystals and designing the appro-
priate apparatus. Studying the absorption spectra of
some minerals and crystals of some dyes, Melankholin
established new characteristics in the absorption spec-
tra of absorbing crystals. In the crystals of various dyes,
he revealed, and for the first time studied quantitatively,
the dispersion of the indicatrix axes. He also performed
a number of fundamental works on the pigmentation
and dichroism of minerals; for example, he studied the
absorption spectra of impurities in micas and feldspars.
He also successfully applied the methods of crystal
optics to the studies of the quality of newly grown crys-
tals. With the advent of lasing crystals, Melankholin
used all his knowledge to establish and study their opti-
cal properties.

In 1954, Melankholin in coauthorship with
S.V. Grum-Grzhimaœlo published a book entitled Meth-
ods of Studying the Optical Properties of Crystals,
which since then has become a standard work of refer-
ence for all those studying crystals. Melankholin also
paid great attention to the improvement of the qualifi-
cations of research workers and helped people working
in various fields of research and industrial laboratories
to use new methods of crystal optics.

Melankholin was also engaged in the study of plas-
tic deformation and the fracture of crystals. He
obtained valuable results in his studies of liquid crystals
in the solutions of various dyes, whose study also
required the creation of new methods. In particular,
Melankholin established that substances with plane
molecules can also form liquid crystals (earlier, the for-
mation of liquid crystals was observed mainly for the
substances with elongated molecules). His work on liq-
uid crystals was highly regarded by the Scientific
Council of the Institute of Crystallography; a documen-
tary film made by Melankholin about the formation of
the liquid crystals of dyes was recommended to be
shown at the Anniversary Session of the Fedorov So-
ciety.

Melankholin had a golden touch. Any apparatus or
device designed by him was developed to perfection.
New devices designed by Melankholin were manufac-
C

tured on an industrial scale and were used in numerous
laboratories. Some of his devices and apparatuses are
still used in crystallo-optical and petrographic studies.
Some of these devices were reconstructed in 1980 by
B.N. Grechushnikov.

Melankholin was extremely consistent and purpose-
ful in his research. He combined the discipline of a sci-
entist with the perception of an artist. As an extremely
modest person, he surprised everybody with the power
of his observation, his clarity, and the depth of his
judgements.

Academician N.V. Belov wrote: “Melankholin is
one of our most prominent experts in crystal optics, in
particular, in applied optics.” Academician I.V. Obrei-
mov said: “Melankholin, a student of Vavilov, seems to
be the most outstanding expert in crystals optics. One
might say that he is a man not of this world. For him,
there exists nothing but science.” According to Acade-
mician A.V. Shubnikov, “Melankholin was really wor-
thy of being called a doctor of sciences despite the fact
that he did not write a doctoral dissertation. His 60 arti-
cles are equivalent to a doctoral dissertation.”

Melankholin was also an expert in art, in particular,
in engravings. He delivered a course of lectures on the
history of art for members of the Institute of Crystallog-
raphy and illustrated his lectures with slides and pieces
from his rich collection. These lectures are still remem-
bered by many people.

After a serious illness, Melankholin continued his
research work till the last years of his life. He also con-
tinued writing a book entitled Methods of Studying the
Optical Properties of Crystals. The preparation of the
second edition of this book was interrupted by his death
on October 21, 1967. The book, completed by his wife,
Nataliya Petrovna Smirnova, was published in 1970.

Melankholin’s scientific traditions are continued by
his son, a botanist, and his daughter, a geologist.

Numerous students and followers will always
remember Melankholin as a gifted scientist and an
extremely modest and benevolent man.

Translated by L. Man
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 5      2002
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