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Propagation of axions in a strongly magnetized medium
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The polarization operator of an axion in a degenerate gas of electrons occupying the ground-state
Landau level in superstrong magnetic fieldsH@H05me

2c3/e\54.4131013 G is investigated
in a model with a tree-level axion-electron coupling. It is shown that a dynamic axion mass, which
can fall within the allowed range of values 1025 eV &ma&1022 eV, is generated under the
conditions of strongly magnetized neutron stars. As a result, the dispersion relation for axions is
appreciably different from that in a vacuum. ©1999 American Institute of Physics.
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1. The a priori strong nonconservation ofCP parity in
the standard model can be eliminated in a natural manne
introducing axions — pseudo-Goldstone bosons associ
with the spontaneous breaking of the additional Pecc
Quinn global symmetryU(1)PQ .1,2 According to the experi-
mental data,3 the energy scaleva for the U(1)PQ symmetry
breaking is much greater than the electroweak scale —va

*1010 GeV, and the constants of the possible couplings
an axion to the standard particles (;1/va) are very small
~the ‘‘invisible’’ axion: see Ref. 4 for a review of variou
axion models!.

Axion effects can be appreciable under the astrophys
conditions of high matter densities, high temperatures,
strong magnetic fields~for example, in neutron stars5!. Axion
production processes, which result in additional ene
losses by stars, and the limits obtained by astrophys
methods on the parameters of axion models are examine
Ref. 4. In so doing, the influence of electromagnetic fie
were neglected.

The investigation of axion processes in strong magn
fields commenced comparatively recently. The Compton
Primakoff mechanisms of axion production on nonrelativ
tic electrons by thermal photons (g1e→e1a) in the pres-
ence of a magnetic field are studied in Ref. 6. The extens
to relativistic electrons in a constant external electromagn
field is given in Ref. 7~Primakoff effect! and Refs. 8 and 9
~Compton effect!, where7,9 estimates were also obtained f
the contributions of the indicated processes to the axion
minosity of a magnetized strongly degenerate relativis
electron gas under the conditions of the crust of a neu
star. A new axion production mechanism — synchrotr
emission of axions (e→e1a) by relativistic electrons —
was proposed in Ref. 10 and its contribution to the ene
losses by a neutron star was calculated. In Refs. 6–10 it
assumed that the external field intensityF!H05me

2c3/e\
.4.4131013 G. In Ref. 11, numerical methods were used
extend the results of Ref. 10 to superstrong magnetic fie
H*H0. It was found that the basic equation derived in R
10 for the axion synchrotron luminosity for the semiclassi
case of high electron energies («@mec

2) and fields
H!H0 agrees with the numerical calculations up toH/H0
11063-7761/99/88(1)/5/$15.00
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&20. The axion synchrotron luminosity of neutron stars a
white dwarfs was also investigated in Ref. 11.

In Refs. 8–11 a model with a derivative axion-electr
couplingeae, described by the interaction Lagrangian4

Lae5
gae

2me
~cgmg5c!]ma, ~1!

was used. Hereme is the electron mass andg5

52 ig0g1g2g3; the system of units such that\5c51 is
used; the signature of the metric is (1222); and

gae5ce

me

va
~2!

is a dimensionless coupling constant, where the numer
factorce depends on the choice of the specific axion mod4

In models where axions are coupled only with hea
fermions by a tree-level coupling there arises an effect
direct low-energy axion–photon interaction of the ty
gag.4 This interaction is the basis of the Primakoff axio
photoproduction mechanism employed in Refs. 6 and 7.
synchrotron processe→ea in the absence of a tree-leve
axion–electron coupling was considered recently in Ref.
This process is due to resonant conversion of a longitud
plasmon~a photon in a medium!, emitted by a relativistic
electron in a magnetic field, into an axion.

Decay of an axion in a strong magnetic field into a fe
mion pair (a→ f f̄ )13 and two photons (a→gg)14 are also of
interest for astrophysics and cosmology.

In the present paper the model~1! is used to calculate the
polarization operator of an axion moving in a strongly ma
netized degenerate electron gas and the change in the di
sion relation of an axion in a medium is investigated us
this operator.

2. Taking account of the contribution of the electro
only @see Eq.~1!# we obtain, using the real-time formalism
of the finite- temperature quantum field theory~see, for ex-
ample, Ref. 15!, the following momentum representation fo
the one-loop polarization operator of an axion:
© 1999 American Institute of Physics
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P~k,k8!52 iGa
2E d4x d4x8exp~ ikx2 ik8x8!

3Tr@ k̂g5G~x,x8!k̂8g5G~x8,x!#. ~3!

Here k (k8) is the final ~initial! 4-momentum of an axion
G(x,x8) is the time-dependent single-particle Green’s fun
tion of an ideal electron-positron gas in a constant magn
field;15 notations have also been introduced for the contr
tion â5gmam of a 4-vectoram with the Diracg matrices and
for the dimensional coupling constant

Ga5
gae

2me
. ~4!

On account of the translational invariance~constant externa
field, homogeneous isotropic medium! the polarization op-
erator~3! is diagonal in momentum space:

P~k,k8!5~2p!4d~4!~k2k8!P~k!. ~5!

HereP(k) determines the axion propagatorD(k) in the mo-
mentum representation according to the Dyson equation

D~k!5@k22ma
22P~k!#21, ~6!

wherema is the free-axion mass~in the absence of a field
and a medium!, which is generated by the chiral anomaly
QCD:2 ma;LQCD

2 /va . The renormalized valuePR(k) ~see
below! gives the dispersion relation

k25ma
21PR~k!. ~7!

3. We give the constant uniform magnetic fieldH i z in
terms of the 4-potentialAm in the gauge

Am5~0,0,xH,0!. ~8!

Then the Green’s functionG(x,x8) can be represented in th
following form after summing over the spin quantum num
ber and the sign of the energy in the general expression
G in the form of a series in quadratic combinations of t
eigenfunctions of the Dirac operator15:

G~x,x8!5@gm~ i ]m1eAm!1me#K~x,x8!,

K~x,x8!5
Ah

~2p!3 (
n50

` E
2`

`

dp0dpydpz

3exp@2 ip0~ t2t8!1 ipy~y2y8!1 ipz~z2z8!#

3un~h!un~h8!~Rn11S11RnS2!, ~9!

Rn5@p0
22pz

222hn2me
21 i0#21

12p id~p0
22pz

222hn2me
2!NF~p0!.

Here the electron charge2e,0, h5eH; n
50, 1,2, . . . is the principal quantum number~the number of
the Landau level!; py andpz are the eigenvalues of the pro
jection operators of the canonical momentum — the c
stants of motion in the gauge~8!; and un(h) is a Hermite
function of argument

h5Ah~x1py /h!, h85h~x→x8!,

S65~16S3!/2, S35 ig1g2.
-
ic
-

or

-

The first term inRn has poles at the pointsp056«
56@me

212hn1pz
2#1/2, determining the energy spectrum o

an electron in a magnetic field. The second term (}d(p0
2

2«2)) describes the effect of the electron-positron mediu
and

NF~p0!5u~p0!@exp@b~p02m!#11#211u~2p0!

3@exp@b~2p01m!#11#21 ~10!

is expressed in terms of the Fermi distribution function
electrons and positrons in a medium with temperat
T51/b and chemical potentialm, andu(6p0) is the Heavi-
side step function.

4. It is difficult to make a general analysis of the axio
polarization operator for arbitrary values of the paramet
H, T, andm. In the present paper we confine our attention
superstrong magnetic fields and comparatively low tempe
tures

H@H0 , T!m2me , ~11!

and we require the chemical potential to satisfy

m22me
2,2h. ~12!

It follows from Eqs.~11! and ~12! that in this case the con
tribution of positrons in Eq.~10! can be neglected~it is sup-
pressed by the factor exp@2b(m2me)#) and the medium is a
degenerate gas of electrons occupying the ground-state
dau level (n50):

NF~p0!5u~p0!u~m2p0!, p05Ame
21pz

2. ~13!

We also limit the range of the axion 4-momentum

uk0
22kz

2u!h. ~14!

Then the main contribution of virtual~vacuum! electrons and
positrons is likewise formed by states withn50. As a result,
retaining on the basis of Eqs.~11!, ~12!, and~14! terms with
n50 in the sum~9!, we obtain the following approximate
expression for the Green’s function in a superstrong m
netic field:

G~x,x8!.S h

p D 1/2E
2`

` dpy

2p
expF2

1

2
~h21h82!1 ipy~y

2y8!G E d2p

~2p!2
exp@2 ip0~ t2t8!

1 ipz~z2z8!#G~p!S2 . ~15!

Herep5(p0,0,0,pz) and

G~p!5~ p̂1me!@~p22me
21 i0!21

12p id~p22me
2!NF~p0!# ~16!

is the Fourier transform of the Green’s function in the tw
dimensional space~0, 3!. For NF50 ~no medium! the ex-
pression ~15! is the well-known, effectively two-
dimensional, electron propagator used in the theory of e
trodynamic processes in superstrong magnetic fields a
specifically, for investigation of the photon polarizatio
operator.16
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5. Let us substitute the expression~15! into Eq. ~3! and
integrate overt,t8,y,y8,z, andz8. This gives in the form of
a product of delta functions

)
n50,y,z

d~kn82kn!d~pn81kn2pn!,

the laws of conservation of energy and of the correspond
projections of the momentum. The subsequent calculatio
the Gaussian integrals overx, x8 and the trivial integral over
py gives d(kx82kx). As a result, as should be the case,
obtain a diagonal representation of the polarization oper
~5!, where

P~k!5
Ga

2

p
h expS 2

k'
2

2hD @F~ l !1M ~ l !#, ~17!

F~ l !52 i E d2p

~2p!2
T~ l ,p!@p22me

21 i0#21

3@~p2 l !22me
21 i0#21, ~18!

M ~ l !52pE d2p

~2p!2
d~p22me

2!NF~p0!

3F T~ l ,p!

~p2 l !22me
21 i0

1~ l→21!G . ~19!

Herep5(p0,0,0pz) and l 5(k0,0,0,kz) are two-dimensiona
vectors, and

T~ l ,p!5
1

2
Tr@ k̂g5~ p̂1me!S2k̂g5~ p̂2 l̂ 1me!S2#.

~20!

In Eq. ~17! the functionF corresponds to the purely fiel
contribution, andM describes the influence of the medium
We note thatM does not contain a term;NF(p0)NF(p0

2 l 0), since

d~p22me
2!d~~p2 l !22me

2!u~p0!u~p02 l 0!50.

Using the relations

@S2 ,p̂#50, @S2 ,g5#50,

gnS25S1gn ~n51,2!, S1S250

the trace of Eq.~18! reduces to a two-dimensional form an
can be easily calculated as

T~ l ,p!5
1

4
Tr@ l̂ ~ p̂1me! l̂ ~ p̂2 l̂ 2me!#

52~ lp !22 l 2~ lp1p21me
2!. ~21!

We calculate the Gaussian integrals overp0 and pz in
Eq. ~17! using the trace~21! and the well-known Fock–
Schwinger proper-time representation for propagators of
form

~D1 i0!2152 i E
0

`

dsexp@ is~D1 i0!#.
g
of

or

e

As a result, we find for the functionF( l ) the integral repre-
sentation

FR~ l 2!52 i
me

2t

4p E
0

1

dvE
0

`

dx$@11~12v2!t#

3exp@2 ix@12~12v2!t##2exp~2 ix !%, ~22!

t5 l 2/4me
2 .

Here renormalization is performed according to the we
known rule16

FR~ l 2!5F~ l 2!2F~ma
2!2~ l 22ma

2!F8~ma
2!.

In Eq. ~22! the small mass parameterda5ma
2/4me

2 is ne-
glected. Forma&1023 eV,9,12 we haveda&10218.

For t,0 we obtain from Eqs.~22! and ~17! the field
contribution

PR
~F !52

aa

p
me

2 H

H0
expS 2

k'
2

2hD F ~12j!2

j
1

12j

11j
ln jG

~23!

to the axion polarization operator. Hereaa5gae
2 /4p ~see Eq.

~4!!, and the standard variable17 j was introduced as

t52
~12j!2

4j
, ~24!

which is convenient for analytical continuation inl 2

54me
2t.

For t.1, a channel is open for axion decay into a
electron- positron pair (a→e2e1) in a magnetic field. Its
ratew for a real axion is related with the imaginary part
the polarization operator on the mass shell by the w
known relation

w52
1

v
Im PR

~F !5aa

me
2

v

H

H0

3expS 2
k'

2

2hD u~t21!S 12
1

t D 21/2

, ~25!

wherev is the axion energy.
This result, which follows from Eq. ~23! with

j5ujuexp(ip) ~see Eq.~24!!, is identical to the result ob-
tained in Ref. 13 on the basis of a calculation of the elas
scattering amplitude of an axion in a magnetic field. It c
also be found immediately, taking account of Eq.~17!, from
the representation~22!:

Im FR52
l 2

2E0

1

dv d@12~12v2!t#

52me
2u~t21!S 12

1

t D 21/2

. ~26!

Let us consider the contributionM ~19! of the medium to
the axion polarization operator. We note that it does
renormalize.15 Integrating overpz in Eq. ~19!, using the delta
function and taking account of Eqs.~13! and ~21!, gives
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M52
me

2

2p
l 2E

me

m d«

q
@D~ l ,p!1D~2 l ,p!

1D~ l ,p̃!1D~2 l ,p̃!#, ~27!

D~ l ,p!5@ l 222~ lp !1 i0#21.

Here « is the energy of electrons in the medium,q
5A«22me

2, and the two-dimensional scalar products a
lp5k0«2kzq and l p̃5k0«1kzq.

The imaginary part of the expression~27! is determined
using Sokhotski�’s formula

1

x1 i0
5P

1

x
2 ipd~x!, ~28!

where P signifies a principal value. From Eqs.~27! and~28!
we obtain on the mass shell

Im M5
me

2

2
u~t21!@u~m2«1!1u~m2«2!#, ~29!

«65
v

2
6

kz

2 S 12
1

t D 1/2

.

Here«6 are the roots of the equationsl 222v«62kzq50.
From Eqs.~17!, ~26!, and~29! we find, taking account of

the expression~25!, the rate

wM5
1

2
@u~«12m!1u~«22m!#w, ~30!

wherew is the decay rate~25! in the absence of a medium
for the axion decay into ane2e1 pair in the presence of a
magnetized degenerate electron gas. We underscore tha
imaginary part of the contribution~29! of the medium is
positive, and summed with the negative field contributi
~26! it gives a blocking Pauli factor 12u(x)5u(2x) in Eq.
~30!. It forbids electron production inside a filled Ferm
sphere~for «6,m).

Taking account of Eq.~28!, we obtain for the real part o
Eq. ~27! on the mass shell the representation

ReM52
me

2

p
t E

0

l

Á dxF 1

t2cosh2~x2c!

1
1

t2cosh2~x1c!
G . ~31!

Here the substitution of the variable«→x was used:
«5me coshx andq5me sinhx, and the parametersl andc
defined as

coshl5
m

me
, tanhc5

kz

v
. ~32!

were introduced. The integral~31! can be expressed in term
of elementary functions.

We shall confine our attention below to the limitin
cases that are of interest for astrophysical applications.

6. For an axion on the mass shell

l 254me
2t5v22kz

25ma
21k'

2 .0, ~33!
e

the

and the condition~14! gives k'
2 !h, so that exp(2k'

2/2h)
.1. We note that the imaginary part of the polarization o
erator is formed by the contribution of real electrons a
positrons, and the expression for it holds under the wea
condition k'

2 ,2h. Therefore the exponential factor can b
retained in Eq.~25!.

For t!1 ~substantially below the threshold of the dec
processa→e2e1), we find from Eqs.~22!, ~31!, and~17!

PR5PR
~F !1P~M !5

aa

p
me

2 H

H0
tH n11n21t

3Fn11n22
1

3
~n1

3 1n2
3 !2

4

3G J . ~34!

Here

n65tanh~l6c!5
nv6kz

v6nkz
,

n5tanhl5F12S me

m D 2G1/2

.

In this case the medium makes the main contribution (;t).
The purely field contribution is;t2. We note that if the
axion moves in the direction of the fieldH(k'50), then
according to Eqs.~33! and ~34! PR→0 in the limit of a
massless axion (ma→0).

At high energies (t@1) we obtain for the polarization
operator the asymptotic representation

PR5
aa

p
me

2 H

H0
F4t1 ln~4t!24 Arccosh

m

me
2 ip G , ~35!

and the field contribution predominates.
Let us write the dispersion relation~7! in the form

v25k'
2 1kz

21ma
21PR~k!. ~36!

It follows from Eqs.~34!–~36! that in a magnetized medium
a radiation shift of the axion mass is generated — a dynamic
mass, whose square, according to the definition in Ref. 15

dma
25RePR .

For t*1 we obtain the estimate

dma;gaemeS H

H0
t D 1/2

. ~37!

Assumingk'*me , we obtain

dma*106gaeS k'

1MeVD S H

1013 G
D 1/2

eV. ~38!

For gae;10213 ~Refs. 4 and 10! and H*1017 G ~such
fields18,19 and evenH;101821020 G ~Ref. 20! can exist in
the interior regions of neutron stars!, Eq. ~38! gives dma

*1025 eV.
The chemical potentialm of a degenerate gas of elec

trons occupying the ground-state Landau level (n50) in a
magnetic field is related with the electron densityne by the
well-known relation
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ne5
hpF

2p2
, ~39!

wherepF5Am22me
2 is the Fermi momentum. Writing Eq

~12! in the form

H

H0
.

1

2S pF

me
D 2

, ~40!

we obtain, taking account of Eq.~39!, an upper limit on the
density

ne,
|e

23

A2 p2 S H

H0
D 3/2

, ~41!

where |e51/me is the electron Compton wavelength. F
H5231017 G Eqs. ~40! and ~41! give pF,50 MeV and
ne,1036 cm23. Next, let T;1010 K ;1 MeV andk'*T.
Then the conditions~11!, ~12!, and~14! can be satisfied and
the estimate~38! can be justified.

In summary, under the conditions of strongly magn
tized neutron stars a dynamic axion mass, which can
within the existing limits on the axion mass3,4,12— 1025 eV
&ma&1022 eV — is generated. Thereforedma;ma and the
dispersion relation~36! differs appreciably from the vacuum
relation (k25ma

2). This must be taken into account, for e
ample, when investigating the resonant conversion of a p
mon into an axion (g→a) in a magnetic field as a result o
the crossing of the corresponding dispersion curves~as al-
ready noted above, this process in fieldsH!H0 and in the
absence of the direct coupling~1! was studied in Ref. 12!.
We also note that the rate~25! of the decaya→e2e1 in a
magnetic field has a square-root threshold singularity~as t
→110). This singularity can be removed by taking in
account accurately the dispersion law of an axion n
threshold, and the decay rate is found to be finite:13 w
;me(aaH/H0)2/3. A detailed analysis of the same thresho
singularity ~of cyclotron resonance! in a magnetic field and
its elimination for the photon decay process (g→e2e1) was
given earlier in Ref. 21, where, specifically, it is undersco
that the indicated singularity can be explained by the qu
tization of the phase space of charged particles in a magn
field.
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Owing to a funadmentally erroneous approach to calculations of the effective polaron mass
~calculations that use a model without spatial dispersion of the lattice polarizability!, the polaron
inertial mass has never before been distinguished from the mass as a measure of kinetic
energy. In this paper we derive an expression for the tensor of the inertial mass of a large polaron.
The tensor is found to be fully determined by two components: the longitudinal component,
corresponding to the case where the force acting on the polaron is parallel to the polaron velocity,
and the transverse component, corresponding to the case where the acceleration is
perpendicular to the polaron velocity. The components of the polaron inertial mass tensor depend
quasirelativistically on the polaron velocity due to the quasirelativistic compression of the
polarization field in the direction of motion, which constitutes the effect of spatial dispersion of
the lattice polarizability. We derive a formula that approximates the dependence of the
components of the polaron mass tensor on all the parameters: the frequency and dispersion of the
phonons, the polaron velocity, and the effective dielectric constant. ©1999 American
Institute of Physics.@S1063-7761~99!01601-7#
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1. INTRODUCTION

The investigation of the problem of the effective mass
an autolocalized charge carrier~a large polaron! began when
it was first demonstrated that such carriers can exist1 and still
continues.2–7. The problem is interesting both from th
standpoint of experimentally observing polaron-related
fects and because of the potential of polaron electronics
in connection with the possibility of realizing high-Tc bipo-
laron superconductivity. Recently we derived expressions
the ‘‘energy’’ effective polaron mass~commonly known as
the effective polaron mass!6 and the polaron longitudinal in
ertial mass7 in a model with spatial dispersion of the lattic
polarizability. As shown in Ref. 8, only in such a model
the polaron mobile, i.e., not destroyed in its motion throu
the crystal, if its velocityv is less than the minimum phas
velocity u of the phonons responsible for carrier autoloc
ization ~there is no autolocalized state whenv.u). The re-
sults of earlier studies that ignored the spatial dispersion
lattice polarizability2–4 suggest that the polaron inertial an
energy masses coincide and depend neither on the po
velocity nor on the dispersion of the phonons participating
the formation of the polaron. Only in Ref. 5 was an appro
mate expression for the polaron energy mass derived for
case of weak dispersion of the phonon branch~small u).

The research done in Refs. 6 and 7 demonstrated th
contrast to ordinary ideas, the polaron inertial and ene
masses differ when the polaron velocityv is finite ~the dif-
ference is the greater the higher the values ofv andu) and
strongly depend on the polaron velocityv and the value of
the minimum phase velocityu of the photons participating in
polaron formation.

However, contrary to what was assumed in Ref. 7,
force acting on a polaron moving in a medium is not alwa
1011063-7761/99/88(1)/4/$15.00
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longitudinal. An example is the Hall effect. To solve th
problems of polaron electronics we must generally know
polaron inertial mass tensor. In other words, the results
Ref. 7 must be augmented by a ‘‘transverse’’ effective p
laron mass. Indeed, even in Ref. 9, where the necessit
allowing for the spatial dispersion of the lattice polarizabili
in describing the motion of the cloud of polarization char
together with the charged particle generating this charge
demonstrated for the first time, it was shown that the po
ization field of a moving point charge undergoes quasire
tivistic compression and resembles a disk. When the pola
is in motion, such compression leads to effects similar
relativistic effects: the velocity dependence of the energy
laron mass6 and the inertial polaron mass7 due to a change in
the degree of compression of the polarization force in
direction of motion. If there is also a nonlongitudinal fie
acting on the polaron, the disk rotates. This effect diffe
from the result of action of a longitudinal force, so that it
natural to expect that the inertial polaron mass differs fr
the longitudinal polaron mass. The present paper studies
dependence on the polaron velocity of the transverse ine
mass. On the basis of this study we construct the pola
inertial mass tensor in an isotropic medium.

2. THE POLARON TRANSVERSE INERTIAL MASS

The polaron inertial mass can be obtained from the ti
derivative of the polaron momentumP, assuming that the
velocity is time-dependent,v5v(t). If the z axis is directed
parallel to the polaron velocity, the componentmzz of the
effective mass tensor can be obtained by assuming tha
force acting on the polaron is directed along the samez axis:
© 1999 American Institute of Physics
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mzz** 5
dP

dt S dv
dt D

21

. ~1!

An expression for this~arbitrary! component of the polaron
inertial mass tensor was derived in Ref. 7. In the local sys
of coordinates tied to the instantaneous directions of the
locity and acceleration the polaron inertial mass tenso
always diagonal. Its componentsmxx5myy ~the purely trans-
verse inertial mass! can be calculated by assuming that t
force is directed along thex ~or y) axis, with thez axis
directed along the polaron velocity.

As noted in Ref. 7, the total polaron momentum can
written as the sum of the average value of the charge-ca
momentum, which can be assumed equal tom* v ~wherem*
is the effective mass of the charge carrier in the crystal!, and
the average momentum of the phonon participating in
formation of the polaron. According to Ref. 7, the seco
term can be written as follows:

pph5E \kFV~k!b

2\
Pk–P2k1

1

2\V~k!b
Tk–T2k

1
i

2\
Pk–T2k2

i

2\
P2k–TkG dk

~2p!3
, ~2!

wherePk is the Fourier transform of the polarization vecto
Tk5bPk , b54p«* /V2, V is the frequency of longitudina
optical vibrations at the center of the Brillouin zone,V(k) is
the law of dispersion of such vibrations, and 1/«* 51/«`

21/«0 is the reciprocal effective dielectric constant.2

We assume that the force acting on the polaron is p
pendicular to the polaron velocity and is such that the rad
of the curvature of the polaron’s path is much larger than
polaron radius, so that the polaron trajectory can be con
ered a straight line if we examine sections of the path
order the polaron radius. ThenTk5 i (k–v)bPk . If we also
allow for the fact thatP2k52Pk , we can write an expres
sion for the average phonon momentum:

pph5E dk

~2p!3

kbV~k!

2
Pk

2F2122
k–v

V~k!
2S k–v

V~k! D
2G .

~3!

The Fourier transform of the vector of the polarization ge
erated by a charge carrier moving in a straight line with
velocity v smaller than the minimum phase velocityv of the
phonons participating in the formation of the polaron~only
in this case will the carrier wave functionc(r ,t) be localized
in space! has the form7

Pk5
e

«*
V2

ik

uku2
1

~k•v!21V2~k!
ck

2 , ~4!

whereck
2 is the Fourier transform of the square of the wa

function of the charge carrier in the polaron. The wave fu
tion c(r ,t) of the charge carrier in the polaron can be o
tained by minimizing the carrier energy functional, in whic
the polarization charge densityr(r ,t) is expressed in term
of c(r ,t) as follows:8
m
e-
is

e
er

e

r-
s
e
d-
f

-
a

-
-

r~r ,t !5
e

«*
V2E G~r2r 8,t !c2~r 8! d3r 8, ~5!

whereG(r ,t) is the Green’s function of the equation of mo
tion for the density of the polarization charge in the pola
iton. Equation~5! shows that the physical meaning of th
function G(r ,t) is that this function is the density of th
polarization charge generated by a charged point part
moving with a velocityv ~this is how this density was ob
tained in Ref. 9!. When the dispersion law of the phono
branch has the formV2(k)5V21u2k2 in a cylindrical sys-
tem of coordinates whosex axis is directed along the particl
velocity, the functionG(r ,t) has the form9

G(r ,t)5

¦

exp$2V[(z2vt)2/b1
21r 2] 1/2/u%

4pu2b1[(z2vt)2/b1
21r 2] 1/2

,

v,u, b1
2512

v2

u2
;

cos$V[(z2vt)2/b2
22r 2] 1/2/u%

2pu2b2[(z2vt)2/b2
22r 2] 1/2

,

v.u,
z2vt,0,
r ,uz2vtu/b2;

0, v.u,
z2vt,0,
r .uz2vtu/b2,

z2vt.0, b2
25

v2

u2
21

. ~6!

The physical meaning ofu is that u is the minimum
phase velocity of the phonons participating in polaron f
mation. Equation~6! shows that only whenv,u holds will
the polarization charge generated by a moving charged p
particle be localized, with the characteristic size of the loc
ization region equal toAu22v2/V in the direction of motion
andu/V in the perpendicular direction. The typical values
u/V are much smaller than the polaron radius in the abse
of spatial dispersion~e.g., at V5100 cm21 and u52
3105 cm s21 the ratiou/V is smaller than one a˚ngström!,
i.e., the ‘‘smearing’’ of the carrier wave function in the po
laron due to spatial dispersion is much smaller than
smearing due to the wave properties of the carrier. Hence
simplify the calculations of the polaron mass, we found
appropriate to ignore the variation of the carrier wave fun
tion in the polaron due to spatial dispersion and allowed o
for the effect of this factor on the polarization charge and
use in ~4! the expression for the Fourier transform of th
Pekar wave function given in Ref. 7. Substituting~4! in ~3!
and differentiatingpph with respect to time, we arrive at

dpph

dt
5

e2V4b

«* 2~2p!3E k dk

uku2

V~k!~ck
2!2

@V2~k!2~k–v!2#3

d~k–v!

dt

3Fk–vS 31
~k–v!2

V2~k!
D 1V~k!S 113

~k–v!2

V2~k!
D G .

~7!
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In accordance with what has been said earlier, we se
a system of coordinates in such a way that thez axis is
directed along the polaron velocity and thex axis, along the
force acting on the polaron. Then

k–v5kzv,
d~k–v!

dt
5kxv

ds

dt
, ~8!

whereds/dt is the derivative of the unit vector determinin
the velocity’s direction. According to~1!, the transverse ef
fective mass can be obtained by the formula

mxx5
dP

dt S v
ds

dt D
21

. ~9!

Plugging ~9! into the expression~7! for dpph/dt, allowing
for ~8!, and bearing in mind that the first term in~7! is odd in
kz and thus vanishes under integration, we arrive at an
pression for the polaron transverse inertial mass:

mxx** 5m* 1
4e2V2

«* p2u4E0

`kx
2 dkx dky dkz

kx
21ky

21kz
2

3
kz

2~113v2/u2!1kx
21ky

21V2/u2

~kz
2~12v2/u2!1kx

21ky
21V2/u2!3

~ck
2!2, ~10!

where the dispersion law of the phonon branch has b
taken in the formV2(k)5V21u2k2. The expression for the
polaron’s longitudinal inertial mass derived in Ref. 7 diffe
somewhat from~10!:

mzz** 5m* 1
4e2V2

«* p2u4E0

`dkx dky kz
2 dkz

kx
21ky

21kz
2

3
kz

2~113v2/u2!1kx
21ky

21V2/u2

~kz
2~12v2/u2!1kx

21ky
21V2/u2!3

~ck
2!2. ~11!

As noted earlier,mxx5myy andmzz are the only finite com-
ponents of the tensor of the effective polaron inertial mas
the local system of coordinates linked to the instantane
directions of the velocity and acceleration, so that Eqs.~10!
and ~11! fully determine the tensor of the polaron effectiv
inertial mass.

3. DISCUSSION

Figure 1 shows the dependence of the polaron longitu
nal inertial massmzz** ~curves1, 18, and 19), the polaron
energy mass6 men** ~curves2, 28, and 29), and the polaron
transverse inertial massmxx** 5myy** ~curves3, 38, and39) on
the polaron velocity for three values of the minimum pha
velocity u of the phonons participating in the formation
the polaron. Curves1, 2, and 3 correspond tou55
3105 cm s21, curves18, 28, and 38 to u5106 cm s21, and
curves19, 29, and39 to u523106 cm s21. The values of the
other parameters of the medium for the case shown in Fi
are 1/«* 50.27, V56.7831013,s21, andm* 5me . We see
that the longitudinal inertial mass increases with polaron
locity much faster than the energy mass and the transv
inertial mass, as also happens in the relativistic case.
transverse inertial mass coincides almost perfectly with
ct

x-
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in
s
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e

1

-
se
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e

energy mass, but the masses are not equal, in contrast t
relativistic case, where they coincide perfectly. What a
sets the polaron mass apart from the mass of a relativ
particle is that the polaron mass increases to a finite valu
v→u rather than to infinity~this finite value depends onu).

The behavior of the polaron longitudinal, transverse, a
energy masses can easily be understood if we examine
mula ~6! for the Green’s functionG(r ,t) of the equation of
motion for the polarization charge density in the polaron.
noted earlier,G(r ,t) is the density of the polarization charg
generated by a charged point particle moving with a veloc
v. For v,u the polarization charge, as Eq.~6! implies, is
localized within a region whose size in the direction of m
tion is of orderAu22v2/V and perpendicular to that direc
tion, of orderu/V. Thus, as the polaron velocity approach
its critical value (v5u), the polarization charge generate
by each point section of the charge carrier distribution in
polaron undergoes a quasirelativistic compression in the
rection of motion. As a result all polaron masses increas
the limit v→u as,obviously, negative powers of the diffe
ence 12v2/u2, which can be interpreted as the ratio of th
squares of the smearing of the polarization charge para
and perpendicular to that direction due to spatial dispersi

12
v2

u2
5

u22v2

u2
5

u22v2

V2

V2

u2
. ~12!

The smearing parameter in the direction of motion tends
zero asv→u. However, in the limitv→u, the polaron mass
tends to a finite value, since in addition to smearing rela
to spatial dispersion the polaron has smearingR related to
the wave properties of the carrier. If we introduce this p

FIG. 1. Dependence of the polaron longitudinal inertial massmzz** ~curves
1, 18, and19), the polaron energy massmen** ~curves2, 28, and29), and the
polaron transverse inertial massmxx** 5myy** ~curves3, 38, and 39) on the
polaron velocity for three values of the minimum phase velocityu of the
phonons participating in the formation of the polaron. Curves1, 2, and 3
correspond tou553105 cm s21, curves18, 28, and 38 to u5106 cm s21,
and curves19, 29, and 39 to u523106 cm s21. The values of the other
parameters are 1/«* 50.27, V56.7831013 s21, andm* 5me .
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rameterR, which characterizes the polaron size in the a
sence of spatial dispersion, into the numerator and deno
nator of ~12!, we arrive at the expression

u22v21R2V2

V2

V2

u21R2V2
512

v2

u21R2V2
, ~13!

which leads to a finite value for the polaron mass atv5u,
while at v50 the right-hand side of Eq.~13! is unity. Cal-
culations have shown that the velocity dependence of
polaron mass can be approximated by the following form
las:

mzz5m0~u!S 12
v2

u21R2V2D 23/2

,

mxx5m0~u!S 12
v2

u21R2V2D 21/2

, ~14!

men5m0~u!S 12
v2

u21R2V2D 21.3/2

,

whereR is a parameter dependent on the effective dielec
constant«* . By comparing the values of mass calculated
~14!, by ~10! and ~11!, and in Ref. 6 we can defineR as
R50.751/b, whereb5m* e2/2\2«* is the value of the pa-
rameter from Ref. 2 at which the energy functional of
polaron with the trial wave function of the form

c~r !5
b2/3

A7p
~11br !e2br ~15!

attains its minimum.
Obviously, the dependence of the polaron mass on

minimum phonon phase velocityu must contain the ratio o
u to the one velocity parameterRV remaining atv50, i.e.,
m0(u) must depend onu/RV. Calculations yield

mzz** 5
m*

192«* 4S m* c2

hV D 2S e2

\cD 4S 11F u

RV G2D 21

3S 12
v2

u21R2V2D 23/2

,

-
i-

e
-
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e

mxx** 5
m*

192«* 4S m* c2

hV D 2S e2

\cD 4S 11F u

RV G2D ! 21

3S 12
v2

u21R2V2D 21/2

,

men** 5
m*

192«* 4S m* c2

hV D 2S e2

\cD 4S 11F u

RV G2D 21

3S 12
v2

u21R2V2D 21.3/2

,

where the numerator is the Pekar polaron mass.2,4. These
expressions approximate the values of the corresponding
laron masses to within 10%.

Thus, the velocity dependence of the polaron mass
be described by relativistic formulas if we allow for the fa
that the polaron size in the direction of motion tends
v→u, not to zero but to a finite value, which we character
by the parameterR. The ratio of the smearingu/V due to
spatial dispersion to the quantum smearing parameterR dis-
tinguishes between the polaron mass forv→0 and the Pekar
mass: as this ratio increases the polaron mass decreases
v→0.
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Energy splittingDEres in double magnetopolaron energy spectrum in rectangular quantum wells
as functions of the well widthd have been calculated. We have considered in the capacity
of interaction leading to resonant coupling between electrons and phonons the interaction with
confined phonons and~for comparison! with bulk LO phonons. We have obtained the
conditions when the interaction with bulk phonons yields correct results. Calculations for
AlAs/GaAs/AlAs and AlSb/InSb/AlSb structures have been performed. Alongside the parameter
DEres for a polaron, whose resonant magnetic field is determined by the conditionV5vL1,
whereV is the cyclotron frequency andvL1 is the LO phonon frequency in the quantum well~A-
polaron!, we have calculatedDEres for D- (V52vL1) andF-polarons (V53vL1), which is
a factor ofA2 andA3, respectively, smaller thanDEres for the A-polaron. Since the splittingDEres

for the A-polaron is very large~up to 0.2\vL1), it is more convenient to study in experiments
D- and F-polarons since their resonant magnetic fields are lower. We have predicted
existence of ‘‘weak’’ magnetopolarons, in which the splitting is proportional to a higher power
of Frölich’s coupling constanta thana1/2. © 1999 American Institute of Physics.
@S1063-7761~99!01701-1#
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1. INTRODUCTION

When a polaron state is formed in magnetic field, t
contribution of electron–phonon coupling increases con
erably when the resonant condition is satisfied, i.e., when
phonon frequencyvL1 and electron~hole! cyclotron fre-
quencyV are related by the formula

vL15 j V, j 51,2,3, . . . ~1!

In this case, resonant coupling between electron levels ta
place. Condition~1! determines the crossing points betwe
the energy levels of the electron–phonon system as funct
of magnetic field~Fig. 1!. Inclusion of magnetopolaron ef
fects leads to anticrossing of energy levels. Anticrossing
fects were detected in the interband magnetoabsorption s
tra of InSb.1–3

Formation of polaron states takes place in both thr
dimensional~3D! and quasi-two-dimensional~2D! systems.
In both systems, these states have considerable effec
spectra of various magneto-optical processes, such as i
band light absorption, cyclotron resonance, and Raman s
tering ~see, for example, the reviews4–6!. The main differ-
ence between the two systems is in the electron~hole!
spectrum. In 3D systems these are one-dimensional Lan
bands, whereas in 2D structures these are discrete en
levels. As a result, the splitting between levels of t
electron–phonon system due to anticrossing can vary: in
3D case it is proportional toa2/3,7 whereas in 2D structure
the splitting is proportional toa1/2,8–19 wherea is Frölich’s
dimensionless electron–LO-phonon coupling constant.
1051063-7761/99/88(1)/9/$15.00
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Below we consider a single quantum well as a 2D s
tem. Instead of bulk LO phonons, such systems h
phonons of three types.20–24 First, these are so-called hal
space phonons, which are vibrations of the barrier mate
which do not penetrate into the quantum well. Second, th
are interface phonons, which decay fast with the separa
from the quantum well interfaces. Third, there are phono
confined within the quantum well. These vibrations do n
penetrate into the barrier, and their amplitudes go to zero
the interfaces. Interaction between electrons and holes
one side, and three types of phonons on the other has
studied previously.25–27 Das Sarma and Madhukar10 calcu-
lated the spectrum of theA-magnetopolaron~Fig. 1! taking
into account interaction of electrons with confined and int
face phonons in an AlAs/GaAs/AlAs structure at three valu
of the well width~20 Å, 100 Å, and 200 Å!. They came to a
conclusion that the magnetopolaron spectrum in narr
quantum wells is controlled by interaction with interfac
phonons.

Many calculations of magnetopolaron spectra in a qu
tum well took into account only interaction with Fro¨lich’s
bulk LO phonons. In other words, they took into account t
effect of size-quantization in a quantum well on the electr
~hole! spectrum, whereas the phonon spectrum was the s
as in a homogeneous medium, as if the entire space w
filled with the quantum well material. Strictly speaking, th
approach is inconsistent and can yield only an approxim
description of the magnetopolaron spectrum.

In the reported work we have investigated the conditio
when Frölich’s interaction with LO phonons can be used
© 1999 American Institute of Physics
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calculations of magnetopolaron spectra in quantum we
With this end in view, we calculated the splitting o
electron–phonon energy levels as functions of the well wi
d and numberj . The j-dependence is interesting because
j .1 the resonant magnetic field is, in accordance with
~1!, a factor ofj lower, which is easier to realize in an ex
periment. Since the electron and hole effective masses
different, the resonant coupling can involve either electro
or holes. Below we will consider for definiteness magne
polarons including electrons, and spectra of hole magneto
larons must be similar.

The paper is organized as follows. In Sec. 2 magneto
larons are classified. Section 3 contains general express
for the mass operator, which is included in the Dyson eq
tion that determines the magnetopolaron spectrum. Inte
tions with both confined and bulk LO phonons will be co
sidered. Section 4 is devoted to calculations
magnetopolaron spectra. Section 5 describes magnetopo
spectra in the limiting case of wide quantum wells. In Sec
we will discuss the results and draw conclusions.

2. CLASSIFICATION OF MAGNETOPOLARONS

Figure 1 shows energy levels of the electron–phon
system in a quantum well at a fixed size-quantization num
m. The limiting frequencies of the confined and bulk L

FIG. 1. Energy levels of an electron–phonon system in a quantum well
strong magnetic field:V is the cyclotron frequency,vL1 is the frequency of
LO phonons in the well material,E is the electron energy, and«m is the
size-quantized energy. Full circles mark double polarons, open circles
note weak polarons, triangles mark triple and squares four-fold polaron
s.
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phonons are assumed to be equal atvL1 , and their disper-
sion is neglected. The abscissa is the ratioV/vL151/j ,
where

V5ueuH/mec, ~2!

e is the electron charge,H is the magnetic field strength,c is
the speed of light in vacuum, andme is the electron effective
mass. The ordinate is the dimensionless energyE ~in units of
\vL1) of an electron measured with respect to«m , which is
the mth level of size-quantization. The crossing points
these levels correspond to polaron states. Full circles m
double polarons, corresponding to crossing of only two le
els. Letn be the number of the Landau level passing throu
a given crossing point when the number of phonons
N50. Then the conditions for the existence of a double p
laron are

2 j .n, n> j . ~3!

It is clear thatj 51 corresponds to one double polaron d
noted byA. The valuej 52, i.e.,V/vL151/2, corresponds to
two double polarons,D and E, the number j 53, i.e.,
VvL151/3, to three double polarons,F, K, andL, and so on.
The polarons that have the parameterV/vL1 below 1/3 are
not marked in Fig. 1. Above the double polarons, there
triple polarons corresponding to crossings of three ene
levels, in the range of higher energies there are four-f
polarons, etc. The number of polarons of each sort at givj
is j . The triple polarons in bulk crystals were first consider
in Ref. 28 and in quantum wells in Ref. 19.

All the polarons mentioned above correspond to inte
j . In addition, there are more crossing points in Fig.
marked by open circles. They correspond to fractionalj .
Since the levels crossing at these points have the differe
between their numbersDN>2, one-phonon transitions be
tween them are forbidden. Let us term these polarons w
Since the levels cross at certain points, their splitting is
evitable, but the resulting splitting should be calculated t
ing into account virtual transitions via intermediate states.
a result, the energy splitting due to weak polarons is
higher order ina thana1/2.

If two or more values of the size-quantization numberm
are taken into account, the pattern of level crossing is co
plicated considerably. Previously we analyzed combin
magnetopolarons in which two electron levels with differe
Landau numbersn and differentm, or with differentm and
equal n are coupled by the electron–phonon interaction18

This paper is not concerned with combined polarons,18 but
considers only double polarons marked by full circles in F
1. The polarons of the new types can be considered s
rately and, moreover, the pattern of energy levels in Fig
can be used under the condition that the energy split
between neighboring size-quantized levels are wider than
splitting DEres due to the polaron effect. Since the sepa
tions between the size-quantized energy levels are small
larger well widthsd, there is an upper limit ford ~see Sec.
6!. Our theory applies to all numbersn and j that satisfy
condition ~3!. Numerical calculations have been perform
for A, D, andF polarons. ForE, K, andL polarons, approxi-
mate values of the splitting are given. The lettersB andC in
Fig. 1 mark the three- and four-fold polarons, respectively

a

e-
j 51. The
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pattern shown in Fig. 1 is based on the assumptions tha
Landau levels are equidistant and excitonic effects can
neglected.

3. MODEL AND BASIC RELATIONS

We are considering a type I quantum well with a ba
gap Eg and a heightDEe of the electron barrier. The mag
netic field H is perpendicular to the quantum well plan
~aligned with thez-axis!, and its vector potentialA0 is ex-
pressed in the Landau gauge:

A05~2yH,0,0!. ~4!

The wave function of an electron not coupled to phonons
the form

Cm,n,k~x,y,z!5
1

ALx

eikxwn~y2yk!xm~z!, ~5!

where

wn~y2yk!5
1

A2nn!ApR0

expF2
~y2yk!

2

2R0
2 GHnS y2yk

R0
D ,

~6!

R0
25

c\

ueuH
, yk52

c\k

eH
, ~7!

k is the electron wave vector projection on thex-axis,Hn(y)
is a Hermite polynomial,Lx is the length to which the wave
functions are normalized. In a rectangular quantum well o
finite depth, the functionxm(z) has the form

xm~z!5Cm~21!~m21!/2

3H cos~kmd/2!exp~kmz!, z<0,

cos@km~z2d/2!#, 0<z<d,

cos~kmd/2!exp@2km~z2d!#, z>d

~8!

for m51,3,5, . . . and

xm~z!5Cm~21!m/2

3H 2sin~kmd/2!exp~kmz!, z<0,

sin@km~z2d/2!#, 0<z<d,

sin~kmd/2!exp@2km~z2d!#, z>d

~9!

for m52,4,6, . . . ,whered is the quantum well width, so tha
0<z<d,

Cm5A 2km

11kmd6cos~kmd!6~km /km!sin~kmd!
~10!

is the normalization constant, the upper signs are taken w
m is odd and the lower signs whenm is even. The paramete
km , hence the energy«m

e of a level in the quantum well, is
determined by the equations

cott5t/Abe
22t2, m51,3,5, . . . , ~11!

tant52t/Abe
22t2, m52,4,6, . . . , ~12!
he
e

s

a

en

t5kmd/2, be5Qed/2, Qe5A2meDEe /\2,

km5AQe
22km

2 , km5A2me«m /\2. ~13!

The electron energy measured with respect to the quan
well bottom is

Em,n5«m1~n11/2!\V. ~14!

In an infinitely deep quantum well (DEe→`)

«m5
\2p2m2

2med
2 . ~15!

The magnetopolaron energy spectrum is determined by p
of the one-particle electron Green’s function7:

«2Em,n2S~m,n,«!50, ~16!

whereS(m,n,«) is the mass operator.
The Hamiltonian of interaction between electrons a

confined phonons has the form26

HC5(
q

H (
p51,3, . . .

Cq,pcosFpp

d S z2
d

2D G~aq,p1a2q,p
1 !

1 (
p52,4, . . .

Cq,psinFpp

d S z2
d

2D G~aq,p1a2q,p
1 !J eiqr

~17!

for 0<z<d andHC50 for z,0 andz.d. The factorCq,p

is expressed as

Cq,p52\vL1A 8pa l

S0d@q21~pp/d!2#
, ~18!

where the dimensionless constant of coupling with confin
phonons is

a5
e2

2\vL1l S 1

«`1
2

1

«01
D , l 5A \

2mevL1
, ~19!

vL1 is the confined phonon frequency~its dispersion is ne-
glected!, «01 («`1) is the static~high-frequency! permittivity
of the quantum well material,r5(x,y) andq5(qx ,qy) are
the two-dimensional radius vector of the electron and
two-dimensional phonon wave vector, respectively,aq,p

1

(aq,p) is the creation~annihilation! operator of a confined
phonon with wave vectorq and quantum numberp, which is
a substitute for the wave vector projectionqz in the 3D case,
andS0 is the normalization area.

If two energy levels of the electron–phonon syste
cross, it suffices to take into account the simplest diagr
~two vertices connected by electron and phonon lines! in the
mass operatorS(m,n,«). The contributions of diagrams
with more vertices are smaller owing to the small coupli
constanta. Using standard techniques for calculation
Feynman diagram contributions to the mass operator, we
tain the following expression:
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S~m,n,«!5 (
m1 ,n1

(
q,p51,3, . . .

Cq,p
2 FMm,m1

~1!

3~p!
11~21!p11

2
1Mm,m1

~2!

3~p!
12~21!p

2 G2 uI n,n1
~q!u2

«2Em1 ,n1
2\vL11 id

,

d→0. ~20!

The numerator of the last factor in the right-hand side of E
~20! is the squared absolute value of the matrix elemen
Hamiltonian ~17! calculated using wave functions~5!, and
the denominator is determined by the zero-order Gree
functions of the electron and phonon. The temperature
assumed to be low, so that no phonons are present, an
electron–phonon interaction leads only to emission
phonons. Equation~20! uses the following notation:

Mm,m1

~1! ~p!5E
0

d

dzxm~z!xm1
~z!cosFpp

d S z2
d

2D G ,
p51,3,5, . . . , ~21!

Mm,m1

~2! ~p!5E
0

d

dzxm~z!xm1
~z!sinFpp

d S z2
d

2D G ,
p52,4,6, . . . ,

I n,n1
~q!5

1

Lx
E d2r exp$ i ~k2k1!x1 iqr%

3wn~y2yk!wn1
~y2yk1

!. ~22!

Although the functionsxm(z) are nonvanishing outsid
the quantum well, integration in Eq.~21! is performed over
the interval 0<z<d, becauseHC50 outside the quantum
well. As follows from the expressions forxm(z), the inte-
grands are products of sines and cosines. One can e
prove that the integral of the product of three sines or o
sine and two cosines is zero, therefore, the numbersm and
m1 in Mm,m1

(1) (p) should be of the same parity, and

Mm,m1

(2) (p) they should have different parities. Since only t

casem5m1 will be discussed in what follows, only th
terms withMm,m

(1) (p) are retained in Eq.~20!. The following
notation is introduced:

Mm
~p!5Mm,m

~1! ~p!, p51,3,5, . . . ~23!

After performing integration overz in Eq. ~21! in a quantum
well of a finite depth, we have

Mm~p!5~21!~p21!/2Cm
2 dppF 1

p2p2
6

cos~kmd!

p2p224km
2 d2G ,

~24!

where plus is taken in the case of oddm, and minus in the
case of evenm. After calculating the integral in Eq.~22!, we
obtain
.
f

’s
is
the
f

ily
e

uI n,n1
~q!u25

min~n!,n1! !

max~n!,n1! !
uun2n1ue2u@Lmin~n,n1!

un2n1u
~u!#2,

~25!

where

u5 l H
2 q2, l H

2 5
c\

2ueuH
5

R0
2

2
,

Ln
s is an associated Laguerre polynomial. After replaci

summation overq with integration in Eq.~20!, taking into
account Eqs.~18!, ~19!, ~21!, and ~22!, and neglecting the
dispersion of confined phonons, we obtain the following e
pression for the mass operator:

S~m,n,«![SC~m,n,«!5(
n1

wC~m,n,n1!

«2Em,n1
2\vL11 id

,

~26!

where

wC~m,n,n1!5~\vL1!2
a l

2l H

min~n!,n1! !

max~n!,n1! !

3E
0

`

duuun2n1u21/2e2u

3@Lmin~n,n1!

un2n1u
~u!#2F m

C~b0Au !. ~27!

The functionF n
C(x) for confined phonons is given by

F m
C~x!54x (

p51,3, . . .

p2p2

x21p2p2

3F 1

p2p2 6
cos~kmd!

p2p224km
2 d2G2

. ~28!

Equation~27! uses the notation

b05d/ l H5dA2ueuH/c\; l / l H5AV/vL1. ~29!

Alongside the interaction with confined phonons, let
consider Fro¨lich’s interaction, in which the phonon spectru
is determined for a homogeneous material. In calculat
Frölich’s interaction, one should select a limiting LO phono
frequency: either frequencyvL1 in the quantum well mate-
rial, assuming that it occupies the entire space, orvL2 of the
barrier material. In the case under discussion, it is reason
to choosevL1 , since the electrons interact with LO phono
mostly within the quantum well. Fro¨lich’s interaction is de-
scribed by the formula

HF5(
q,qz

Cq,qz
exp$ i ~qr1qzz!%bq,qz

1H.c., ~30!

Cq,qz
52 i\vLOS 4pa l

V0
D 1/2 1

q
, ~31!

wherebq,qz

1 (bq,qz
) is the creation~annihilation! operator of a

bulk optical phonon, andV0 is the normalization volume
Using Eq.~30!, we obtain the following expression for th
mass operator:
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SF~m,n,«!5(
n1

(
q,qz

uCq,qz
u2uRm~qz!u2uI n,n1

~q!u2

«2Em,n1
2\vL11 id

, ~32!

where

Rm~qz!5E
2`

`

dz@xm~z!#2exp~ iqzz!. ~33!

In contrast to Eq.~21!, here integration is performed over th
entirez-axis, since, at a finite quantum well depth, the ele
tron wave function penetrates into the barrier, where
electron interacts with phonons. After integration overqz ,
the mass operatorSF(m,n,«) is reduced to a form similar to
Eqs. ~26! and ~27!. The difference is in functionF m

F (x),
which should be substituted forF m

C(x) in Eq. ~27! and can
be expressed as

F m
F ~x!5Cm

4 d2@DQW~x!1DB~x!#. ~34!

The functionDQW(x) is due to the electron–phonon intera
tion in the quantum well and has the form

DQW~x!5
1

2xS 16
sinjm

jm
D1

x

4~x214jm
2 !

3S 16
2 sinjm

jm
1

sin 2jm

2jm
D2e2x/2

3S 1

x
6

x cosjm22jm sinjm

x214jm
2 D Fsinh~x/2!

x

6
1

x214jm
2 S x sinh

x

2
cosjm12jm cosh

x

2
sinjmD G .

~35!

The electron–phonon interaction in the barriers is descri
by functionDB(x):

DB~x!5
P4

zm~2zm1x!
1

2P4e2x

~2zm1x!2
1

4P2e2x/2

2zm1x F1

x
sinh

x

2

6
2jm sinjm cosh~x/2!1x cosjm sinh~x/2!

x214jm
2 G . ~36!

Equations~35! and ~36! uses the notation

jm5kmd, zm5kmd, x5qd5b0Au. ~37!

The function P5cos(jm/2) and plus are used whe
m51,3,5, . . . , whereas P5sin(jm/2) and minus when
m52,4,6, . . . . In thelimiting case of an infinitely deep well
DEe→`, we derive from Eqs.~8!–~12!

kmd→mp, Qe→`,

km→`, «m→~\pm!2/2med
2,

xm→A2/d sin~mpz/d!, 0<z<d,

x→0, z<0, z>d

for both odd and evenm. The formulas forF m
C andF m

F are
simplified, accordingly:
-
e

d

F m
C→S 16

p D 2

b0Au

3 (
p51,3, . . .

m4

p2~b0
2u1p2p2!~4m22p2!2 , ~38!

F m
F→

8

b0
2u14p2m2F3b0Au

8
1

p2m2

b0Au

2
4p4m4~12exp~2b0Au!!

b0
2u~b0

2u14p2m2! G . ~39!

These equations show that the difference between inte
tions with confined and bulk LO phonons is in functionsF m

C

andF m
F , which act as form factors in this case.

4. ENERGY SPECTRUM OF A DOUBLE MAGNETOPOLARON

The mass operator is a sum over Landau quantum n
bersn1. If there is resonant coupling between Landau lev
n andn1,

j 5n2n1 ~40!

and condition~3! is satisfied, the sum overn1 contains one
large term where the denominator is small, and the rest of
terms are small since they are proportional toa!1, so they
all can be neglected. Suppose that the larger term co
sponds ton1 ~this is the final state where an electron tran
fers by emitting a phonon!. Then we derive from Eq.~16! a
quadratic equation which determines the double magneto
laron spectrum:

«2Em,n2
w~m,n,n1!

«2«m,n1l
50, ~41!

l5~n2n1!\V2\vL1 . ~42!

Parameterl is a deviation of magnetic field from the cond
tion ~1!. Equation~41! determines two branches of the ma
netopolaron spectrum with the separation between them

DE~l!5Al214wC~m,n,n1!. ~43!

At the resonance, wherel50,

DEres52Aw~m,n,n1!. ~44!

It follows from Eq. ~27! or the similar formula for Fro¨lich’s
interaction with bulk LO phonons, where indexC is replaced
by F, that

DEres}a1/2. ~45!

Equation~43! is valid if l<2Aw. If l@2Aw, terms with all
Landau numbers should be included. Langet al.16 deter-
mined the energy splitting for polarons in a different mann
The result was presented as a sum over all types of phon
in a quantum well@Eqs. ~30! and ~20! in Ref. 16# with fre-
quency vL1 without dispersion. The form of electron
phonon interaction was not specified. After substituting e
pression~17! describing interaction with confined phonons
Eqs. ~30! and ~20! from Ref. 16, one obtains Eq.~44! for
n– 1, n150, i.e., for theA polaron.
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FIG. 2. Energy splitting between branches in magne
polaron spectraDEresF ~Frölich’s interaction! and
DEresC ~interaction with confined phonons! as func-
tions of the quantum well width in
Al0.32Ga0.68/GaAs/Al0.32Ga0.68As at ~a! m51 and ~b!
m52. Curves 1–3 show DEresF , curves 18–38
DEresC ; curves1 and18 plot energy splitting due to the
A-polaron,2 and 28 refer to the D-polaron, and3, 38 to
the F-polaron. The calculation parameters are listed
the text. The dashed curve in Fig. 2a plotsDEresF for
an infinitely deep well, the dash-dotted line shows t
separation betweenm51 andm52 levels in an infi-
nitely deep well in the case of Fro¨lich’s interaction. The
dotted lines in Fig. 2b plotDEres calculated by the
asymptotic formula~56!.
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Solid lines in Figs. 2 and 3 showDEresC and DEresF

versus the quantum well widthd calculated by Eqs.~27!,
~28!, ~34!–~36!, and~44!. The dashed line in Fig. 2a show
DEresF for theA-polaron in an infinitely deep quantum wel
The curves in Fig. 2 are plotted for th
Al0.32Ga0.68As/GaAs/Al0.32Ga0.68As structure with param-
eters DEe50.35 eV,29 me /m050.067, \vL150.036 eV,

FIG. 3. The same as in Fig. 2a for the AlSb/InAs/AlSb structure.
\vL250.047 eV,30 and a50.06. Figure 2a corresponds t
the size-quantization quantum numberm51, curves1 and18
show DEresF and DEresC for the A-polaron, curves labeled
by 2 and 28 show similar curves for theD-polaron, and
curves3 and38 for theF-polaron. Figure 2b is similar to 2a
but for m52. Figure 3 corresponds to the case ofm51 in
the AlSb/InAs/AlSb structure, whereDEe51.8 eV, me /m0

50.023,\vL150.030 eV,\vL250.042 eV, anda50.042.
The labels at curves in Fig. 3 are similar to those in Fig.
Figures 2 and 3 clearly show that the curves ofDEresF(d)
andDEresC(d) converge asd increases. This means that th
effect of interaction with confined phonons is the same
with bulk LO phonons. Section 5 will give an explanation
this fact and determine the conditions when an interpreta
based on interaction with bulk phonons is admissible.

5. ENERGY SPLITTING DUE TO MAGNETOPOLARONS IN
WIDE QUANTUM WELLS

Let us investigate what approximate expression can
substituted for exact formulas given above at larged. To this
end, let us reconsider Eq.~27! for function wC(m,n,n1),
which occurs in Eq.~44!, and move one step back. Befo
integration overz we have

wC~m,n,n1!5\vL1

e2

d
~«`

212«0
21!E

0

`

du fn,n1
~u!

3 (
p51,3, . . .

H E
0

1

dy cosFppS y

2
1

2D Gcm
2 ~y!J 2 1

u1~pp/b0!2
, ~46!

wherey5z/d, function ~22! for n.n1 can be replaced by
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f n,n1
~u!5

n1!

n!
e2uun2n1@Ln1

n2n1~u!#2, ~47!

cm~y!5Adxm~yd!. ~48!

Similarly, by introducing the integration variablet5qzd for
interaction with bulk phonons, we obtain

wF~m,n,n1!5
\vL1

4p

e2

d
~«`

212«0
21!

3E
0

`

du fn,n1
~u!E

2`

`

dt

3U E
2`

`

dyeiytcm
2 ~y!U2 1

u1~ t/b0!2
. ~49!

Let parameterb0 in Eqs.~46! and~49! go to infinity and let
us discard (pp/b0)2 and (t/b0)2 in the two respective de
nominators. By performing the sum overp in Eq. ~46! and
integration overt in Eq. ~49!, we obtain

wC~b0→`!5
\vL1

2 j

e2

d
~«`

212«0
21!E

0

1

dycm
4 ~y!, ~50!

wF~b0→`!5
\vL1

2 j

e2

d
~«`

212«0
21!E

2`

`

dycm
4 ~y!. ~51!

In these calculations we have used the formula

n1!

n! E0

`

due2uun2n121@Ln1

n2n1~u!#25
1

n2n1
5

1

j
. ~52!

Thus, it turns out that in the limitb→`, the difference be-
tween the formulas forDEres based on interaction with con
fined and bulk phonons is only in the limits of integratio
over y5z/d. This difference between integration limits
significant only in the case when the exact electron w
functions~8! and ~9! differ from those in an infinitely deep
quantum well, since in the latter case they equal zero out
the quantum well. But in wide quantum wells penetration
electrons into the barrier should be insignificant~the criterion
will be specified below!, therefore, we can use wave fun
tions for quantum wells of infinite depth in the limitd→`
and set

cm~y!.cm`5A2 sin~mpy!, 0<y<1,
~53!

cm~y!50, y>1, y<0.

For all quantum numbersm

4E
0

1

dy sin4~mpy!5
3

2
, ~54!

and we obtain very simple asymptotic expressions:

wC~d→`!5wF~d→`!5
3

4 j
\vL1

e2

d
~«`

212«0
21!,

~55!
e

de
f

DEres~d→`!5A3

j
\vL1

e2

d
~«`

212«0
21!. ~56!

Note that the latter two equations could be also derived fr
Eqs.~27!, ~38!, and~39! since in the limitd→`

F m
F~C!~b0→`!5

3

b0Au
. ~57!

Certainly, this description of the transition to limitd→` is
far from accurate. At larged one should obtain results for
conventional bulk crystal. The concept of a magnetopola
with fixed m makes no sense when the separation betw
size-quantization levels is comparable to or less than
splitting DEres ~the criterion will be discussed in Sec. 6!. The
dotted lines in Fig. 2b show calculations ofDEres(d) by Eq.
~56!. It is clear that the error of Eq.~56! is considerable even
in the range ofd where the calculations ofDEres labeled by
C andF are very close. Calculations indicate that Eq.~56! is
fairly accurate whend>2000 Å. The cause of the large erro
of Eq. ~56! can be understood by analyzing Eq.~39!. In order
to obtain the limiting formula~57! from this equation, one
must satisfy the condition

b0
2un,n1

@4p2m2, ~58!

where un,n1
is the characteristic value of variableu as a

function of n and n1. Condition ~58! is a more stringent
condition than equality ofDEresC and DEresF . In order to
show this, let us reconsider Eqs.~46! and~49!. Exact calcu-
lation of the sum in Eq.~46! yields

wC~m,n,n1!

5
1

4
\vL1

e2

d
~«`

212«0
21!b0E

0

`

du
f n,n1

~u!

Au

3E
0

1

dyE
0

1

dy8cm
2 ~y!cm

2 ~y8!

3
exp~2uy2y8ub0Au!2exp@2~ uy2y8u21!b0Au#

11exp~2b0Au!
.

~59!

Integration overt in Eq. ~49! leads to the exact formula

wC~m,n,n1!5
1

4
\vL1

e2

d
~«`

212«0
21!b0E

0

`

du
f n,n1

~u!

Au

3E
2`

`

dyE
2`

`

dy8cm
2 ~y!cm

2 ~y8!

3exp~2uy2y8ub0Au!. ~60!

In the limit b0→` Eqs. ~59! and ~60! are identical to~50!
and ~51!, respectively.

Given that

b0Aun,n1
@1, ~61!

we derive from Eq.~59! the following expression:
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wC~m,n,n1!.
1

4
\vL1

e2

d
~«`

212«0
21!b0E

0

`

du
f n,n1

~u!

Au

3E
0

1

dyE
0

1

dy8cm`
2 ~y!cm`

2 ~y8!

3exp~2uy2y8ub0Au!, ~62!

which differs from Eq.~60! in the limits of integration overy
andy8. If the penetration of electrons into the barrier is ne
ligible, functions cm(y) in Eqs. ~60! and ~62! can be re-
placed by functions~53!, then we have

wC~m,n,n1!.wF~m,n,n1!.
1

4
\vL1

e2

d

3~«`
212«0

21!b0E
0

`

du
f n,n1

~u!

Au

3E
0

1

dyE
0

1

dy8cm`
2 ~y!cm`

2 ~y8!

3exp~2uy2y8ub0Au!. ~63!

By substituting Eq.~63! in ~44!, we obtain a formula describ
ing curves ofDEres(d) in Figs. 2 and 3 in the ranges ofd
where curves labeled byC andF are very close.

Functionscm(y) can be substituted bycm`(y) in the
case of infinitely deep wells, provided that

d@dp , dp5
\

A2me~DEe2Em!
, ~64!

wheredp is the electron penetration range inside the barr
For deep levels,«m!DEe , dp tends to the limit

dp0
5

\

A2meDEe

. ~65!

6. DISCUSSION

Thus, if conditions~61! and ~64! are satisfied, interac
tions with confined and bulk LO phonons yield identical fo
mulas~44! and~63! for the energy splitting due to magneto
polaron effects. Let us give a qualitative interpretation of t
fact. The formulas obtained by Mori and Ando26 for interac-
tion between electrons and phonons of three types, nam
half-space, interface, and confined phonons, contain freq
ciesvL1 andvL2 , and permittivities«`1, «`2, «01, and«02.
The subscript 1~2! corresponds to the material of the qua
tum well ~barrier!. Assuming

vL15vL2 , «`15«`2 , «015«02 ~66!

and taking into account all three types of phonons in cal
lations of the energy splitting, one obtains forDEres(d) the
same formula as with interaction~30! involving bulk LO
phonons of frequencyvL1 , i.e., Eq.~44! after substitution of
Eq. ~27! and ~34!, or ~60!, which is equivalent. In othe
words, all these equations take into account all three type
phonons, but only if condition~66! holds. Since Eq.~66!
does not hold, the quantities with indexF calculated in the
-

r.

s

ly,
n-

-

of

previous sections contain, in addition to the correct term d
to confined phonons, incorrectly calculated contributions
half-space and interface phonons. On the other hand, the
pressions with indexC contain only the contribution of con
fined phonons. Should correct contributions of half-spa
and interface phonons be added? As a matter of fact,26 the
frequencyvL2 of half-space phonons is far fromvL1 , there-
fore these phonons do not take part in formation of mag
topolarons. The case of interface phonons is more com
cated. Figure 2 in Ref. 26 shows various branches of
interface phonon frequency plotted againstq. On the lower
branch, their frequencies are close tovL1 , on the upper to
vL2 , so the interface phonons, generally speaking, cont
ute to the magnetopolarons. In this paper the contribution
the interface phonons has not been taken into account, th
fore the results are correct only for such quantum well wid
d at which this contribution is small. Note that in calculatin
exactly the contribution of interface phonons, one sho
have taken into account their dispersion, which would co
plicate the problem considerably. The criterion for sm
contribution of interface phonons is identical to Eq.~61!.
Really, the range of interface phonons in the quantum we
of order ofq21 ~see Table IV in Ref. 26!, and since the mean
value q̄l H;Aun,n1

@see the notation in Eq.~25!#, the condi-

tion q̄21!d again yields Eq.~61!.
Thus, if condition~61! holds, the contribution of inter-

face phonons can be neglected, alongside the ‘‘incorre
contribution of interface phonons to quantities with indexF.
If condition ~61! is satisfied, we have Eq.~60! for quantities
labeled byC and Eq.~62! with indexF. As was noted above
the only difference between them is in the limits of integr
tion over y and y8. The cause is that Eq.~62! contains the
spurious contribution of half-space phonons. This spurio
contribution, however, is negligible if condition~64! holds,
and under this condition the expressions with indicesC and
F become identical, which leads to Eq.~61!. If dp

@ l H /Aun,n1
, condition ~61! may be satisfied, whereas con

dition ~64! may fail. This is possible, in principle, at larg
dp , which, according to Eq.~64!, are the larger, the highe
the levelm in the quantum well. In this case, one must u
Eq. ~62! @or Eq.~27! with substitution~28!#, which yields the
correct contribution of confined phonons. The latter ca
however, is unrealistic in quantum wells discussed here
m51,2 since condition~64! is satisfied at smallerd than
those determined by condition~61! ~see the dashed curve i
Fig. 2a!. Note that under resonant conditions

l H5 lAj , ~67!

so condition~61! transforms to

d@
lAj

Aun,n1

. ~68!

Sincel is inversely proportional to (vL1me)
1/2, in InAs l

is larger than in GaAs, as a result, the curves ofDEresC(d)
andDEresF(d) in Fig. 3 converge at largerd than in Fig. 2a.
Figures 2 and 3 also show that the largerj , the smallerd at
which the curves ofDEresC(d) and DEresF(d) converge.
This probably means that the left-hand side of Eq.~68! drops
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with j , i.e., un,n1

1/2 grows with j faster thanj 1/2. The param-

etersl anddp0
of the quantum wells discussed above are

follows:

l 540 Å, dp0
512.3 Å ~GaAs!,

l 574.5 Å, dp0
59.6 Å ~ InAs!.

The dash-dotted curves in Figs. 2a and 3 show the separ
D«5«22«1 between size-quantized levelsm51 andm52
as functions of the quantum well widthd. Our results apply
only when the condition

DEres~d!,D«~d! ~69!

is satisfied. In calculations of the double magnetopola
spectrum, we have assumed the conduction band to be p
bolic and neglected excitonic effects. The nonparabolic
and excitonic effects, however, cannot radically change
calculated spectra because only two electronic levels
coupled in the magnetopolaron. These effects can o
slightly change the resonant magnetic field defined by c
dition ~1!.

Now let us summarize our results. When conditions~61!
and ~64! are satisfied, i.e., the quantum well is sufficien
wide, one can determine the energy splitting due to mag
topolaron effect in terms of interaction with bulk phonons.
condition ~61! does not hold, the interaction between ele
trons and interface phonons is significant. Figures 2 an
show thatDEres may be fairly large, about 1/5 of the phono
frequencyvL1 for A polarons. It follows from the asymptoti
expression~56! that

DEres;
1

Ajd
,

where j is the factor in Eq.~1!, which equals unity for the
A-polaron, 2 for theD- andE-polarons, and so on. The lim
iting value is independent of the level numberm. Since
DEres weakly depends onj , it will be more convenient to
experiment with polarons atj .1, since the resonant field
corresponding to these polarons are a factor ofj lower than
for theA polaron. The parameterDErescan be determined by
measurements of light absorption, reflection, and Ram
scattering in quantum wells.

This work was supported by the Russian Fund for F
damental Research~Grant Nos. 96-02-17115a and 97-0
16495a! and the Physics of Solid-State Nanostructures p
gram ~Grant 97-1049!.
s

ion

n
ra-
y
e
re
ly
-

e-

-
3

n

-

-

* ! E-mail: pavlov@sci.lpi.ac.ru

1D. M. Larsen and E. J. Johnson, inProc. of 8th Intern. Conf. on Physics o
Semiconductors, Kyoto, 1966@J. Phys. Soc. Japan, Suppl.21, 443~1966!#.

2E. J. Johnson and D. M. Larsen, Phys. Rev. Lett.16, 655 ~1966!.
3D. M. Larsen, inProc. of X Intern. Conf. on the Physics of Semicondu
tors, Cambridge, Mass., 1970, S. P. Keller, J. C. Hensel~Eds.!, and
F. Stern, U. S. AEC, Oak Ridge~1970!.

4A. Petron and B. D. McComb, inLandau Level Spectroscopy, G. Landwer
and E. I. Rashba~Eds.!, Modern Problems in Condensed Matter Scienc,
Vol. 27.2 ~1988!.

5R. J. Nicholas, D. J. Barnes, D. R. Seadley, C. J. Langerak, J. Single
P. J. van der Wel, J. A. A. J. Perenboom, J. J. Harris, and C. T. Foxo
Spectroscopy of Semiconductor Microstructures, vol. 206 of NATO Ad-
vanced Study Institute, Series B: Physics, G. Fasol, A. Fasolino,
P. Lugli ~Eds.!, Plenum, New York~1980!, p. 451.

6R. J. Nicholas, inHandbook of Semiconductors, M. Balkanski ~Ed.!,
North Holland, Amsterdam~1994!, Vol. 2.

7L. I. Korovin and S. T. Pavlov, Zh. E´ ksp. Teor. Fiz.53, 1708 ~1967!
@Sov. Phys. JETP26, 979 ~1967!#; JETP Lett.6, 50 ~1967!.

8L. I. Korovin, S. T. Pavlov, and B. E´ . Éshpulatov, Fiz. Tverd. Tela~Len-
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Quantum de Haas–van Alphen oscillations and semiclassical angular magnetoresistance
oscillations are observed in the quasi-two-dimensional organic metalk-(BETS)2GaCl4 . The
behavior of these oscillations attests to the existence of two cylindrical Fermi surface sheets with
axes perpendicular to the conducting plane. The cross-sectional areas of these cylinders in
the conducting plane are equal to about 20 and 100% of the corresponding cross section of the
Brillouin zone. It is shown that the many-particle interaction can be suppressed
significantly in this compound. ©1999 American Institute of Physics.@S1063-7761~99!01801-6#
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All the known quasi-two-dimensional organic condu
tors that have been synthesized from the organic molecu
bis~ethylenedithio!tetrathiafulvalene~ET! are organized in
the same manner: the ET molecules form conducting cat
radical layers, which are separated from one another by n
conducting anion layers, so that the conductivity along
ET layers is several orders of magnitude higher than
conductivity between them.1 The ET molecules can b
packed in the conducting layers in different ways, one
which isk-type packing.1 Organic metals of thek type have
been known for more than a decade and have aroused sp
attention, particularly because superconductors with
highest known critical temperatures have been discove
among them.2 Although k-type metals differ from one an
other with respect to the chemical composition of the ani
and are not always isostructural, the Fermi surfaces in th
are always similar~Fig. 1!.1,3

According to theoretical calculations, the original Fer
surface in anyk-type metal is a cylinder, whose axis is pe
pendicular to the conducting plane and whose cross sec
in that plane has the form of an ellipse. The area of
ellipse is equal to about 100% of the corresponding cr
1141063-7761/99/88(1)/4/$15.00
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section of the Brillouin zone, regardless of the composit
of the k-type metal. Consequently, the original ellipse inte
sects the Brillouin-zone boundary between theM and Z
points~Fig. 1!, and new Fermi surfaces form: one in the for
of a cylinder with a cross-sectional area in the conduct
plane equal to about 20% of the area of the Brillouin zo
and a second in the form of parallel rippled planes. Only t
possible modifications of the Fermi surface are prese
known in k-type metals.

The first modification is exhibited in, for example, th
salt k-(ET)2Cu~NCS!2 , which does not have an inversio
center.4 In such salts an energy gap forms between the sm
closed Fermi surface and the quasiplanes at the point o
tersection on the Brillouin-zone boundary~Fig. 1a!. In this
case electrons can move in weak magnetic fields in the
responding closed orbit, which is termed thea orbit, as well
as in the open quasiplanes.

In crystals likek-(ET)2I3 with an inversion center5 the
gap is essentially absent, and electrons can move in a m
netic field in open orbits, in thea orbit, and in the large
closed orbit corresponding to the original ellipse, which h
been termed theb orbit. This statement has been confirm
© 1999 American Institute of Physics
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FIG. 1. Calculated energy band structure and Fer
surface ink-type metals: a —k-(ET)2Cu~NCS!2 ~Ref.
4!; b — k-(ET)2I3 ~Ref. 5!.
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experimentally. Quantum oscillations with frequenci
corresponding only to thea orbit are observed in
k-(ET)2Cu~NCS!2 in fields up to 15 T. In stronger field
frequencies associated with theb orbit appear due to mag
netic breakdown.6 Since there is no gap ink-(ET)2I3 , mag-
netic breakdown is not required for motion in theb orbit,
and frequencies corresponding to thea andb orbits coexist
even in weak fields.7

Many k-type organic metals have been synthesized fr
bis~ethylenedithio!tetraselenafulvalene~BETS!, which is
a close analog of ET. One particular example
k-(BETS)2GaCl4 .8 This compound has an orthorhombic la
tice with an inversion center, and BETS layers lie in thebc
plane and alternate along thea axis.9 The Fermi surface
qualitatively resembles the surface shown in Fig. 1b, an
can, therefore, be expected that the galvanomagnetic pro
ties are similar to those observed ink-(ET)2I3 . For this
reason, the report of the discovery of only one frequency
de Haas–van Alphen oscillations corresponding to theb or-
bit in k-(BETS)2GaCl4 in Ref. 9 is unexpected.
it
er-

f

This paper presents the result of an investigation
quantum de Haas–van Alphen oscillations and semiclass
angular magnetoresistance oscillations ink-(BETS)2GaCl4 .
It is shown that these effects contain contributions from
motion of electrons in both theb anda orbits.

The crystals measured had the form of parallelepip
with mean dimensions 23230.05 mm3, in which the small-
est dimension of the samples corresponded to thea axis. The
resistance measurements were performed by the ordi
four-point method with the measuring current flowing pe
pendicularly to the conducting layers, i.e., along thea axis.
The de Haas–van Alphen oscillations were detected in
variation of the rotational moment in a magnetic field.10 All
the measurements were performed in fields up to 15 T an
the temperature range 0.45–4.2 K.

Figure 2 depicts the de Haas–van Alphen oscillations
k-(BETS)2GaCl4 . The results of Fourier transformation o
such oscillations, which are presented in the inset in the
ure, exhibit two frequencies, the smaller of which corr
sponds to thea orbit in the field direction under consider
FIG. 2. de Haas–van Alphen oscillations;u512°, T
50.45 K. Inset: fast Fourier transformation~FFT! of
these oscillations.
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FIG. 3. Angular magnetoresistance oscillations;H
515 T, T51.45 K. Inset: Dependence of the numb
of the magnetoresistance maximum on the tangent
corresponding angleu.
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ation, while the larger frequency corresponds to theb orbit.
It should be noted that the two frequencies coexist in fie
stronger than about 10 T. The dependences of these freq
cies on the angleu (u is the angle between the field directio
and the a axis!, as would be expected for quasi-two
dimensional metals, are described by the relations

Fa'
850 T

cosu
, Fb'

4400 T

cosu
.

Such relations describe two cylindrical Fermi surfaces w
axes along thea axis. The cross-sectional areas of these c
inders in the conductingbc plane are equal to roughly 20%
s
en-

h
l-

and 100% of the area of the corresponding cross sectio
the Brillouin zone, in good agreement with the theoretic
calculations in Ref. 9.

Figure 3 presents the angular dependence of the ma
toresistance ofk-(BETS)2GaCl4 with clearly expressed an
gular oscillations, whose characteristic points are magnet
sistance maxima. These maxima are periodic with respec
the tangent ofu, as can be seen in the inset in Fig. 3. Th
inset clearly shows that the angular magnetoresistance o
lations contain two sets of oscillations with different perio
having a ratioD1 /D2'2.25. Such behavior corresponds
the motion of electrons on two cylindrical Fermi surfa
e
FIG. 4. Angular dependence of the amplitude of d
Haas–van Alphen oscillations: a —a oscillations;
b — b oscillations.
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sheets, which are weakly rippled along their axes.11 If it is
assumed that the cross sections of these cylinders in thbc
plane are circular, their radiir 1,2 are specified by the simpl
relation

D1,25p/dr1,2,

where d is the distance between the conducting planes
this case the ratio between the areas of the cylindersS2 :S1

;5:1, i.e., it can be assumed in a rough approximation
the periods of the angular magnetoresistance oscillations
determined by the sizes of the cylinders in whose bases tha
and b orbits lie. Thus, both the quantum and semiclass
oscillations provide evidence that electrons moving in b
of these orbits contribute to these effects.

It possible that Tajimaet al.9 did not observea oscilla-
tions because the field direction in their experiment accid
tally coincided with a direction in which the amplitude of th
a oscillations tends to zero. Such directions do, in fact, ex
and they can be seen in Fig. 4a. The amplitude minima
621°, 243°, and253° correspond to the so-called sp
zeros associated with splitting of the Landau levels in a m
netic field.12 The condition for the existence of spin zeros

cos~ppmg/2!50,

where p is the number of the harmonic,m is the relative
effective mass, andg is theg factor. Settingp51 and taking
the ordinary angular dependence of the effective mass f
cylindrical Fermi surface, i.e.,m(u)5m(0)/cosu, we can
determine the splitting factorSa for electrons in thea cyl-
inder:

Sa5ma~0!g5~2n11!cosu'6.6, ~1!

for the angles indicated above andn53, 4, and 5, respec
tively. The expression for the splitting factor contains t
effective mass and theg factor with corrections for the
electron–electron interaction:12

Sa5ma~0!g5gsmca~11g!/m0~11g8!,

wheregs is theg factor from ESR measurements~as a rule,
gs52 in organic metals3!, mca is the band mass for thea
orbit, andg andg8 are the corrections to the mass and theg
factor, respectively, for the electron–electron interaction
the electron–electron interaction is neglected, we ob
mca'3.3m0 for the band mass, which is very close to t
value of the effective massma* '3.27m0 obtained from tem-
perature dependences of the amplitude of thea oscillations.
However, the effective mass determined in this way usu
includes corrections for the electron–electron and electr
phonon interactions:12

ma* 5mca~11g!~11l!,

where l is the correction to the mass for the electron
phonon interaction. One of the reasons for such agreem
n

at
re

l
h

-

t,
at

-

a

f
in

ly
–

nt

betweenma* and mca may be the significant weakening o
the many-particle interactions for electrons in thea cylinder.
Taking into account the way in which the Fermi surface
formed ink-(BETS)2GaCl4 , in which thea andb electrons
essentially belong to a single system, we can assume tha
weakening is also characteristic of electrons in theb cylinder
and should be manifested in the behavior of their osci
tions.

Taking into account the value of the effective mass
the b electrons determined from the temperature dep
dences of the oscillation amplitude of theb electrons,mb*
'5.3m0 , and setting it equal to the band mass, we can e
mate the splitting factor for theb electrons asSb'10.6. It
follows from this value and the relation~1! that spin zeros
should be observed for the oscillations of theb electrons at
angles equal to615°, 635°, etc. In fact, minima of the
amplitude of the quantum oscillations associated with theb
cylinder are observed at these angles~Fig. 4b!. Thus, the
assumption that the many-particle interactions are s
pressed ink-(BETS)2GaCl4 is justified. It should be noted
that the nature of the remaining extrema~Fig. 4b! is unclear
and calls for further research.
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Tunneling through discrete levels in the continuum
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We study the ballistic transport in quantum channels containing attractive impurities. We show
that coherent interaction between asymptotic resonances may cause resonances to disappear
and discrete levels to appear in the continuum at certain~critical! values of the parameters of the
system. For the first time the tunneling of an electron through discrete levels is investigated.
We find that the transmissivity changes dramatically when the scattered electrons at infinity have
an energy coinciding with that of the discrete levels. It is found that a new type of degeneracy
may arise in the system at critical values of the parameters, a degeneracy in which one state is
described by a localized wave function and the other, by a propagating wave function. We
calculate the critical values of the parameters of the structure and discuss ways of experimentally
implementing this effect in two-dimensional channels. ©1999 American Institute of
Physics.@S1063-7761~99!01901-0#
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1. INTRODUCTION

After the discovery of quantization of conductance, tw
dimensional nanostructures can be regarded as a te
ground for demonstrating new quantum coherent effec1

The conductance of a nanostructure can be expresse
terms of the transmissivity~transparency! of the channel2,3

and is determined by electron diffraction in the quantu
structure and the interference of the wave in the scattering
impurities. Resonances and dips in transmissivity~or the
problem of quantum erosion of conductance! have been stud
ied very thoroughly be experimenters4–6 and theore-
ticians.7–19 In particular, in Refs. 8–17 it was shown that
single attractive impurity in the channel gives rise to
asymmetric resonance in transmissivity, a Fano resonan20

When the channel contains two attractive impurities, t
types of resonance can be specified: ordinary Breit–Wig
resonances and resonances due to ‘‘quasidonor’’ le
formed by virtual potential wells below each of the high
subbands, Fano resonances. As is well known, the width
Breit–Wigner resonance can vanish only if the quasibou
state is separated from the propagating states by infinitely
walls. The works we have just cited discuss only the sit
tion where the resonance levels have a finite width. Ho
ever, for Fano resonances there is a new possibility for t
widths to vanish.

The present paper examines the coherent effects tha
company the interaction of Fano resonances.

First we show that there are situations in which t
widths of asymmetric resonances vanish. As a result, disc
levels appear in the continuum, The possibility that su
states exist in quantum theory was discussed in 1929 by
Neumann and Wigner,21 who used a model potential in the
investigation. Similar states have been detected in ato
systems22–24 ~see also the Appendix in Ref. 25!. We show
1181063-7761/99/88(1)/10/$15.00
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that discrete levels may appear in quantum channels at
istic values of the parameters of the system. We also de
the wave function of the discrete levels in explicit form.

Next, we study the tunneling through discrete levels a
obtain the transmission amplitude for the case where the
ergy of the tunneling electron coincides with that of the d
crete levels. We also demonstrate that nontrivial degene
of the states from the discrete and continuous spectra is
sible and that states of different types can be prepared
different selection of the boundary conditions.

Finally, we estimate the parameters of the nanostruc
and impurity and discuss the conditions needed for disc
levels to appear in quantum channels and consequence
the problem of impurity erosion.

The plan of the paper is as follows. In Sec. 2 we give
overview of the general approach to describing quant
states in channels. In Sec. 3 we study both analytically
numerically the resonance structure of the scattering ma
in the case of a single impurity. The matrix elements of t
impurity potential are calculated in the Appendix. Section
is devoted to the study of the coherent interaction of Fa
resonances in the case of two attractive impurities. In Se
we show how discrete levels can appear in the continu
Section 6 contains a discussion of the structure of the s
tering amplitude at critical values of the parameters of
system. Section 7 generalizes the results to the case of le
that are below the higher bands. Finally, in Sec. 8 we sum
the results and discuss the possible applications of the
coherent effects.

2. MODEL AND EQUATIONS

We examine a two-dimensional quantum channel
quantum waveguide aligned with thex axis. Suppose that the
confinement potential acting in the transverse direction
© 1999 American Institute of Physics
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described by a functionVc(y); this can be e.g., a parabolic o
rectangular well. We assume that the waveguide is long
thex direction and is attached to ohmic contacts far from
origin of coordinates. We describe the impurity potential
a functionV(x,y). The wave function of the electrons in th
waveguide is found by solving the Schro¨dinger equation

2
\2

2mS ]2

]x2
1

]2

]y2D C~x,y!1Vc~y!C~x,y!

1V~x,y!C~x,y!5EC~x,y!. ~1!

For a channel without impurities we haveV(x,y)50, and
the wave function and energy in this case are

cn,k
~0!~x,y!5exp~ ikx! wn~y!, ~2!

Enk5
\2k2

2m
1En , ~3!

wherewn(y) andEn are the solutions of the equation

H 2
\2

2m

]2

]y2
1Vc~y!J wn~y!5Enwn~y!. ~4!

It is convenient to decompose the wave functionC(x,y) in
the complete set of base functions generated by the solu
of Eq. ~4!:

C~x,y!5 (
n51

`

cn~x!wn~y!. ~5!

Substituting~5! in ~1!, we arrive at an equation forcn(x):

2
\2

2m

]2cn~x!

]x2
1 (

n851

`

Vn,n8~x!cn8~x!5~E2En!cn~x!, ~6!

where the

Vn,n8~x!5E wn~y!V~x,y!wn8~y! dy ~7!

are the matrix elements of the impurity potential.
Here we are interested in the transmission and reflec

amplitudes,tn,n8 and r n,n8 , which describe the scattering o
electrons from a channel with indexn8 into a channel with
index n. The transmission amplitudestn,n8(E), examined as
functions of the energyE, contain a lot of information abou
the system. First, the poles of the amplitudes in the comp
E plane correspond to levels or resonances. Second, the
plitude determines the conductanceG of the structure. In
particular, the conductance measured by the two-pr
method is determined by the Bu¨ttiker–Landauer formula2,3

G5
2e2

h (
n,n8

Tn,n8 ~8!

in terms of the transmission coefficientsTn,n8 of the system,
wheren andn8 stand for the labels of the incident and sc
tered waves. The coefficientsTn,n8 are given by the formula

Tn,n85
kn

kn8

utn,n8u
2. ~9!
in
e

ns

n

x
m-

e

-

The sum in~8! is over all the waves that propagate in th
quantum waveguide for a given energyE.

3. SCATTERING BY A SINGLE IMPURITY AND FANO
RESONANCES

We model the impurity by a short-range well~in the
direction of electron motion! whose center is at the poin
(Xs ,Ys). Such a potential is specified by matrix elements
the form

Vn,n8~x!52
\2

m
vn,n8d~x2Xs!, ~10!

where vn,n8[vn,n8(Ys) and vn.n8.0. To do estimates and
numerical calculations, we use the impurity model propos
in Ref. 18. The parameters of the well and the matrix e
ments are given in the Appendix.

Equations~6! and~10! imply that a short-range potentia
is equivalent to the following boundary conditions impos
on the multicomponent functions (Xs50):

cn~01!2cn~02!50,

cn8~01!2cn8~02!522 (
n851

`

vn,n,8cn8 . ~11!

Now we discuss the approximation concerning the ma
elements of the potential, which is used to obtain analyti
results. We assume that

\2

2m
vn,n8

2
!uEn2En8u, nÞn8, ~12!

where uEn2En8u is the distance between the size quantiz
tion levels@in the potentialVc(y)]. In this case we can ex
amine the off-diagonal matrix elementsVn,n8 in ~6! by
perturbation-theory techniques. If we keep only the diago
elementsvn,n , the solution of Eq.~6! can be written

cn~x!5Avn,nexp~2vn,nuxu!, ~13!

en5En2
\2vn,n

2

2m
. ~14!

Equation~14! shows that in this case levels split away fro
each size-quantization subband. The corrections to the l
e1 can be found by ordinary perturbation techniques. A
cording to~12!, such corrections are small. The states of
higher subbands occupy positions in the continuum of
lowest subbands. To calculate the corrections toen for
n>2, we must use the variant of perturbation theory
degenerate levels.26 Since we are dealing with propagatin
states, it is convenient to study the poles of the scatte
matrix. To find the scattering matrix for a single impurit
we solve Eq.~6! in the regions where the impurity potentia
is zero:

cn5H Anexp~ iknx!1Bnexp~2 iknx!, x,0,

Cnexp~ iknx!, x.0,
~15!
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wherekn5A2m(E2En)/\. Note that solutions withkn real
belong to propagating states, while states withkn5 i uknu ~i.e.,
purely imaginarykn) represent nonuniform waves. Substitu
ing ~15! in ~11! yields

A1B5C, l C5 ikA , ~16!

where we have used the matrix notation

~l !n,n85 ikndn,n81vn,n8 , ~k!n,n85kndn,n8 , ~17!

and the wave amplitudes are considered infinite vect
(A)n5An , etc. We introduce the transmission and reflect
matrices; accordingly,C5tA and B5rA . Combining these
definitions with~16!, we get

t5 i l 21k, r5 i l 21k21. ~18!

When the particle energy is close to the bottom of
first band, the one-channel approximation is applicable.
matrix t has one element for the open channel:t11(E)
5 ik1( ik11v11)

21. A pole of the functiont11(E) in the com-
plex energy plane occurs atk152 iv11, or atE5e1, where
e1 has been defined in~14!. If the energyE obeys the in-
equality E1,R,E2 and is neare2, we must examine the
two-channel approximation exactly, since in this case
two states have close energies. For instance, the transmi
amplitude in the open channel is

t11~E!5
ik1~ ik21v22!

~ ik11v11!~ ik21v22!2v12
2

. ~19!

This amplitude has a pole when

Ẽ5E22
\2

2mS v222
v12

2

ik11v11
D 2

. ~20!

We can write~20! approximately as

Ẽ5Ep2 iG, G.
\2k1v12

2 v22

2m~k1
21v11

2 !
.

Ep.E22
\2v22

2m S v222
2v11v12

2

k1
21v11

2 D . ~21!

Comparing this result with~14!, we see that the renormaliza
tion of the position of the level and the fact that the lev
acquires a width are due to the resonance interaction of
level and the continuous spectrum of the states belongin
the continuum of band withn51. What is important is tha
the amplitudet11(E) has a zero foruk2u5v22, or for the
energy

E05E22
\2v22

2

2m
. ~22!

From ~21! and ~22! we see that the energies at the pole (Ẽ)
and the zero (E0) are close to each other in the compl
energy plane, since

uẼ2E0u;
\2v12

2

2m

v22

Ak1
21v11

2
!Ep;E0 . ~23!
s:
n

e
e

e
ion

l
he
to

We conclude that near the zero or pole the amplitude can
written

t11~E!;
E2E0

E2Ẽ1 iG
, ~24!

where E0, Ep , and G are the parameters of a Fan
resonance.20

The probability of transmission through a channel w
an attractive impurity is depicted in Fig. 1 as a function
AE/E1 (E15p2\2/2mW2, with W the channel width! in the
case where the impurity parametersv1151.261,v2250.785,
andv12520.218~the matrix elements are given in units o
p/W) were calculated according to Eq.~87! in the Appen-
dix. The expressions for the other impurity parameters
also given in the Appendix. We see that the transmissiv
has the structure of a resonance–antiresonance pair. The
ted curve in Fig. 1 depicts a function monotonically increa
ing with energy, the transmissivity in the one-channel a
proximation.

Thus, when an electron is scattered by an attractive
purity, the scattering amplitude has the shape of a Fano r
nance. If the energyE0 is real, the transmission coefficien
vanishes atE5E0, but nearE0 there is a peak of widthG. At
E5E0 we see thatt1150 andr 11521, and the electron is
totally reflected from the impurity. Note that for energies th
are close to the upper bands, the amplitude can also be
resented by a Fano resonance, but generallyE0 is complex-
valued, and reflection from the impurity is not total. To
lustrate, we examine the case where the energy obeys
inequalitiesE2,E,E3. We study in greater detail the am
plitude t11 found by inversion ofl in the three-channel ap
proximation. The energy at which transmission is zero
given by the expression

E05E32
\2

2mS v332
v23

2

ik21v22
D 2

. ~25!

If we have the small parameter~12!, we can expand~25! in a
perturbation series. Equation~25! implies that the right-hand
side for the zero is real forE1,E,E2, since in this case

FIG. 1. Transmission coefficient through a waveguide with a single im
rity for the energy intervalE1,E,E2, whereE is measured in units of
E15p2\2/2mW2. The solid curve describes the behavior of the transm
sion coefficientT11(E) that follows from Eq.~19!, and the dotted curve
determines the transmissivity in the one-channel approximation.
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FIG. 2. Transmission coefficient through a wav
guide with a single impurity for the energy interva
E1,E,E3, where E is measured in units ofE1

5p2\2/2mW2: ~a! the impurity is at the center of
the channel,Ys50; and ~b! for Ys50.15W. The
solid curves describe the behavior of the total tran
mission coefficient~or conductance in units of
2e2/h), the dotted curves describe the behavior
T11(E) calculated by~19!, and the dashed curve
describe the behavior ofT22(E).
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ik252uk2u holds. Here the transmission amplitude has
shape of the Fano resonance~24! and reflection from the
impurity may be total. When the particle energy satisfi
E2,E,E3, the amplitudet11 also has a zero, but the energ
at which transmission is zero shifts into the complexE plane:

Ẽ05E02 ig, g.
\2k2v23

2 v33

m~k2
21v22

2 !
,

E0.E32
\2v33

2m S v332
2v23

2 v22

k2
21v22

2 D , ~26!

where we have also requiredv23!v33, so that the results ar
manageable. From this reasoning we conclude that tota
flection is present when the energyE obeys the inequalities
E1,E,E2. From ~21! it follows that the zero-transmissio
energy is a real quantity if the impurity is in the middle
the waveguide. In this casev2350 holds and reflection is
total.

To demonstrate the nature of the Fano resonance
relation to the position occupied by the impurity in the cha
nel, we solved Eq.~16! numerically. Figure 2 depicts theT11

vs. E curves for two different positionsYs of the impurity
center,Ys50 andYs50.15W. The impurity parameters wer
calculated according to formula~87! in the Appendix.

4. COHERENT INTERACTION OF FANO RESONANCES

As noted earlier, an electron is strongly reflected from
impurity if the electron energy is close to the energyE0 of a
Fano-resonance zero. Now we take two impurities separ
by a distanceL, and study the interaction of Fano res
nances. It is convenient to turn to the generalized Fab
Perot scheme and use the well-known decomposi
method. According to this method, the scattering matrix
two impurities can be written

t5t2S 1

12r1r2
D t1 , ~27!

wheret1 ,r1 and t2 ,r2 are the amplitude matrices of the fir
and second impurities, respectively. The right-hand side
Eq. ~27! takes into account all processes of transmissi
reflection, and transformation of waves in the scattering
two impurities. We base our analysis of the passage o
electron through a structure with impurities on Eq.~27!.

The scattering matrix for each impurity can be obtain
in the same way as in Sec. 3. However, one must allow
e

s
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ed

–
n
r

f
,
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n

d
r

the fact that the impurities are shifted in relation to the orig
by x56L/2, so that the phases oft and r differ from those
in ~18!:

t15 idl 1
21kd21, r15d~ i l 1

21k21!d, ~28!

t25 id21l 2
21kd, r25d~ i l 2

21k21!d. ~29!

Here the matricesl 1 andl 2 depend on the impurity param
eters and can be found from~17!, anddn,n85exp(iun) dn,n8 ,
with un5knL/2 ~the reader will recall thatL is the distance
between the impurities!.

To simplify the calculations, we transform Eq.~27! to a
more convenient form. Substituting~28! and~29! in ~27!, we
find that

t5M21k, ~30!

where

M5M1k21M21 i ~l 12l 2!, ~31!

M15l 1~d1d21!2 ikd,
~32!

M25~d2d21!l 22 ikd.

Equation ~27! implies that the nontrivial properties of th
energy dependence of the transmission amplitude are d
mined by the properties of the matrixM . The case of iden-
tical impurities is the easiest:l 15l 2 andM can be factor-
ized, or M5M1k21M2. The physical reason for suc
factorization lies in the symmetry of the system. Since
Hamiltonian is invariant under the transformationx→2x,
the solutions of the Schro¨dinger equation can be chosen
having a definite parity. Then we can easily show that
matrix M s[M1 is responsible for symmetric states in th
virtual channels; in the same way the matrixMa[M2 is
responsible for antisymmetric states. The matrix element
M s andMa can be found from~32!:

~M s!n,n852l n,n8 cosun82 ikn exp~ iun!dn,n8 , ~33!

~Ma!n,n852i l n,n8 sinun2 ikn exp~ iun!dn,n8 . ~34!

To establish the poles and zeros of the matrixt, we write
~30! as

t5
M c

detM
k, ~35!

where M c is the adjoint ofM ~see Ref. 27!. From ~35! it
follows that the poles ofM are given by the equation

detM50, ~36!
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and the zeros by equation of the form

M c50. ~37!

In view of the fact that M can be factorized, orM
5M sk

21Ma , we can write Eq.~36! for symmetric and an-
tisymmetric states independently:

detM s5det@l ~d1d21!2 ikd#50, ~38!

and

detMa5det@~d2d21!l 2 ikd!] 50, ~39!

respectively. Note that in contrast to the general equa
~36!, Eqs.~38! and~39! contain the matrixl , so there is no
need to invert matrices when we analyze poles.

Now we determine the matrices for the energy inter
E1,E,E2 and examine the case where the electron ene
is near the unrenormalized level that has split away fromE2.
Here the interaction of the wave resonances in the two ch
nels may be strong, so that we must account for it exac
Below we discuss in detail only the case of symmetric sta
Using ~38! and ~33!, we establish the equation for the pol

2~v222uk2u!coshuu2u1uk2uexp~2uu2u!

54v12
2 coshuu2ucosu1

2~ ik11v11!cosu12 ik1exp~ iu1!
. ~40!

We are interested in the solutions of Eq.~40! that are
coupled with Fano resonances and are close to the rea
ergy axis. We solve Eq.~40! by expansion in powers of a
small parameter, when inequality~12! holds. Suppose tha
E0s is the solution of the equation

2~v222uk2u!coshuu2u1uk2uexp~2uu2u!50. ~41!

In other words,E0s gives the unperturbed position of th
pole. The correction can be derived from Eq.~40!:

Ẽp
s5Ep

s2 iGs, ~42!

where

Ep
s5E0s2

2\2v12
2 v11

m

3
~2k1 sinu112v11cosu1!cosu1

k1
21411

2 cos2 u114v11k1 sinu1 cosu1

, ~43!

Gs5
2\2v12

2

m

k1v11cos2 u1

k1
214v11

2 cos2 u114v11k1 sinu1 cosu1

. ~44!

Now we wish to find the energy at which transmission
zero. The zeros of the amplitudet can be found from~37!.
We study the zeros (M c)1150, which are determined by th
expression

@2~v222uk2u!coshuu2u1uk2uexp~2uu2u!#

3@2~v222uk2u!sinhuu2u2uk2uexp~2uu2u!#

54v12
2 sinu1 cosu1 . ~45!

The initial position of a zero follows from~45! with v12

50. For the symmetric case this equation coincides w
n

l
y

n-
y.
s.

n-

h

~41!. What is important is that the unrenormalized values
the energies of a zero and pole coincide. The correction
the position of the zero can be found from~45!:

E05E0
022

\2v12
2 v11

mk1
sinu1 cosu1 . ~46!

Note that the wave functions and phases on the right-h
side of Eq.~43!, ~44!, and ~46! depend on the unrenorma
ized energies of the pole~or zero!.

The transmission coefficientT calculated numerically is
depicted in Fig. 3 as a function ofAE/E1 when the distance
L between the impurities equals 1.8v22

21. The dotted curve in
Fig. 3 indicates the contribution to transmission from t
second band. The energy intervalE1,E,E2 clearly con-
tains a Breit–Wigner resonance atẼ152.120 with a width
G150.322 and a pair of Fano resonances with parame
Ep

s53.382, Gs50.092, E0
s53.290, and Ep

a53.486, Ga

50.0045,E0
a53.495~for the energy unit we have takenE1).

For the energy intervalE2,E,E3 with the given param-
eters, there are only Breit–Wigner resonances.

We sum up the results and conclusions of our investi
tion. Analysis shows that the interaction of resonances gi
rise to resonance–antiresonance pairs: the zeros are o
real axis and the poles are in the complex plane. Near
energies related to the symmetric and antisymmetric p
the amplitude resembles a Fano resonance and can be
proximately described by Eq.~24!; see Fig. 1. The structure
of the ‘‘resonance’’ is related to the virtual states in a ‘‘mo
ecule’’ in which the coupling and anticoupling levels lie
the continuum and have a finite width. This conclusi
agrees with the numerical results of Kumar and Bagwe10

but not perfectly. Qualitatively, the difference arises beca
in the impurity model used in Ref. 10 the resonance is ‘‘co
ered’’ by the zero and cannot be seen in the transmiss
range.

5. DISCRETE LEVELS IN THE CONTINUUM

We wish to show that at certain values of the parame
of the system the width of the resonances vanishes. Equa
~42! implies thatGs vanishes for

FIG. 3. Transmission coefficient through a symmetric two-impurity syst
for the energy intervalE1,E,E3. The distance between the impurities
L51.8v22

21. The dotted cure represents the contribution to transmissi
from the second subband.
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cosu150. ~47!

For this to be true, Eqs.~41! and ~47! must have a common
solution. Thus, we can formulate a two-parameter spec
problem. For instance, if we select the particle energyE and
the distanceL between the impurities as the parameters, th
can be found from Eqs.~42! and~47!. First we write~42! and
~47! in the form

tanhuu2u5
v22L

uu2u
21, cosu150. ~48!

The first expression is exactly the equation that determ
the levels in two wells corresponding to short-range pot
tials. But the binding energy in a quantum waveguide
higher byE2 than in free space. If we examine the asym
totesuu2u;v22L/2 for v22L@1 anduu2u;v22L for v22L!1,
we establish that the solutionE lies in the intervalE2

24\2v22
2 /2m,E,E22\2v22

2 /2m.
Correspondingly, the quasibound states are above the

ergy of the Fano-resonance zero of a single well@Eq. ~22!#.
The second condition in~48! can be written

E5E11
\2p2~2 j 11!2

2nL2
, j 50,1,2, . . . . ~49!

Thus, Eqs.~48! and ~49! determine the spectral character
tics E( j ) and L( j ). The solution of Eq.~48! can easily be
found numerically. A similar analysis was carried for an
symmetric states, but in this case the solution exists only
v22L.1. Figure 4 depicts the graphical solution of the equ
tions for the two-parameter problem, wherev2250.785 and
v1250.218 ~the quantityp/W is again chosen as a unit o
measurement!. According to Eq.~48!, the intersection of
solid curves makes it possible to determine the discrete
els and the critical distances@E( j ),L( j )# for symmetric
states. Similarly, the intersection of a dotted curve an
solid curve yields the critical parameters of the antisymm
ric states of the system. The values of a few critical para
eters are listed in Table I. Note that it may prove more c
venient to choose another parameter instead of the dist
L, say the widthW of the quantum channel.

FIG. 4. Two-parameter spectral problem. The solutions (E( j ),L( j )) are
found graphically, whereE and L are measured in units ofE1

5p2\2/2mW2 andv22
21 , respectively. The points of intersection of the so

curves determine symmetric bound states, and the points at which a d
curve intersects a solid curve determine antisymmetric states.
al

y

s
-

s
-

n-

r
-

v-

a
t-
-
-
ce

Using Eq. ~6!, we can find the wave function for th
discrete levels in explicit form. The wave function of th
discrete levels is normalized by the condition

(
n51

` E ucn~x!u2 dx51. ~50!

Solving Eq.~6! in the two-channel approximation~as in Sec.
3!, we find that

c1~x!5H a1 cosk1x, uxu,L/2,

0, uxu.L/2,
~51!

c2~x!5H a1 coshuk2ux, uxu,L/2,

c2 exp~2uk2uuxu!, uxu.L/2,
~52!

wherea1, a2, andc2 are constants determined by the boun
ary conditions and normalization. The solutionc1 is a stand-
ing wave in the open channel, andc2 is a localized state in
the closed channel. We see that the standing wavec1 is
trapped because of reflection from Fano ‘‘mirrors.’’ Th
wave function for the critical parameters@L(0),E(0)# is de-
picted in Fig. 5.

Thus, at certain valuesE( j ),L( j ) of the parameters
which we call critical, the pole of the transmission matr
‘‘reaches’’ the real energy axis. This means that discrete l
els appear in the continuum. What will happen in this ev
with the energy at which the scattering amplitudet11 is zero?
According to~46!, for critical parameters the corrections
the position of the zero also disappear, i.e., for the criti
parameters@E( j ),L( j )# the energies of the zero and po
coincide. In other words, the transmission amplitude disca
its zero and pole at the same values of the parameters. G
erally this means that in the corresponding channels the
ments of the adjoint matrixM c and the determinant ofM
must vanish,

M c50, detM50, ~53!

when the parameter are critical.
We decomposeM c and detM at the critical distance

L5L( j ) and at an energy close to the critical valu
E5E( j )1«, u«u<E( j ). Since for critical parameter we
have~53!, we can write

M c5«M c8 , detM5« detM 8, ~54!

ted

TABLE I. Spectral values of discrete levels and critical distanc
(E( j ),L( j )).

j E( j )/E1 L( j )v11

Symmetric states
0 3.1878 0.1613@11# a

1 3.3734 0.4795@11#
2 3.3828 0.7991@11#
3 3.3832 0.1129@12#

Antisymmetric states
1 3.3853 0.3195@11#
2 3.3831 0.6393@11#
3 3.3832 0.9590@11#

a@1n#[10n.
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FIG. 5. Square of the absolute value of the wave function of
critical states withEc53.1878E1 andLc51.613v22

21 .
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wheref 8[] f (E)/]E, with E5E( j ). We see that in this cas
the amplitude must be finite:

t;
M c8

detM 8
k. ~55!

Thus, as Eqs.~35! and~55! imply, the transmission am
plitude changes dramatically atE5E( j ). We study the
modification of the transmission amplitude more thoroug
in Sec. 6.

6. TUNNELING

To examine the features of tunneling in the critical r
gime, we study the structure of the scattering matrix for
case where the energy of a tunneling electron coincides
that of a localized state in the channel. But first let us exa
ine the general situation, where for the electron travelling
the channel withn51 the energy is in the intervalE1,E
,E2. The solution of the Schro¨dinger equation~6! for x,
2L/2 is

C15A1 expF ik1S x1
L

2D G1B1 expF2 ik1S x1
L

2D G ,
c25B2 expF uk2uS x1

L

2D G . ~56!

In the region between the impurities,2L/2,x,L/2, the so-
lution is

c15a1 exp~ ik1x!1b1 exp~2 ik1x!,

c25a2 exp~2uk2ux!1b2 exp~2uk2ux!, ~57!

and forL/2,x we write the solution as

c15C1 expF ik1S x2
L

2D G ,
c25C2 expF2uk2uS x2

L

2D G . ~58!

~To simplify the notation we redefine the phases of the in
dent and scattered waves in the formulas that follow.! After
y

-
e
th
-

n

i-

substituting the solutions~56!–~58! into the boundary condi-
tions, we arrive at the following equations for the amp
tudes:

~ ik11v11!exp~2 iu1! a11v11exp~ iu1! b1

1v12@exp~ uu2u! a21exp~2uu2u! b2#5 ik1A1 , ~59!

~2uk2u1v22!exp~ uu2u! a21v22exp~2uu2u! b2

1v12@exp~2 iu1! a11exp~ iu1! b1#50, ~60!

ik1exp~ iu1! a12~ ik11v11!C12v12C250, ~61!

uk2uexp~2uu2u! a21~2uk2u1v22!C21v12C150, ~62!

ik1 exp~2 iu1! b11v11C11v12C250, ~63!

2uk2uexp~ uu2u! b21v12C11v22C250, ~64!

whereu15k1L/2, andu25k2L/2. Now we turn to the situa-
tion in which the localization conditions are met. Below w
discuss in detail only the symmetric case. As shown ear
the critical parameters@E( j ),L( j )# can be found from the
formulas

exp~ iu1!1exp~2 iu1!50,

~2uk2u1v22!@expuu2u1exp~2uu2u!#

1uk2uexpuu2u50. ~65!

By substituting~65! into ~59! and~60! and taking~61!–~64!
into account we can easily verify that Eq.~60! is satisfied
identically. Under these conditions Eq.~59! yields

2~ ik11v11!C11v12C22v11C12v12C2

1
2v12

2

uk2u
sinh~ uu2u! C152F ik112v112v22

1
2v12

2

uk2u
sinhuu2uGC15 ik1A1 . ~66!

What is important is that Eq.~66! does not containC2. Thus,
the amplitudet11 can be written



125JETP 88 (1), January 1999 C. S. Kim and A. M. Satanin
FIG. 6. Transmission coefficientT11 as a function
of the energyE ~in units ofE1) for different values
of L ~in units of v22

21): ~a! L51.26, ~b! L51.41,
~c! L51.613, and~d! L51.73.
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t11~E~ j !!5
2 ik1

ik112v112~2v12
2 /uk2u!sinhuu2u

. ~67!

Here the incident waveA1exp@ik1(E(j))x# with an energy co-
inciding with the energyE( j ) of a localized state in the
waveguide has a finite amplitude and a finite probability
passing through the structure, and the transmissivity of
quantum waveguide undergoes a drastic change, since
zero and the resonance disappear.

Now let us show that for the same energyE( j ) another
solution of Eqs.~59!–~64! can be found. If we putA150 in
~59!–~64!, Eq. ~66! impliesC150. Then from~61!–~64! we
find a15b1 and a25b2. This solution coincides perfectly
with the symmetric localized state~51!. Thus, we have
shown that Eqs.~59!–~64! yield two types of solution for the
critical parameters:~a! waves propagating through the sy
tem, and~b! localized states inside the system. Formally t
phenomenon is related to the fact that the system of eq
tions for the amplitudes becomes degenerate at critical
rameters. It is significant that the wave functions of the
f
e

the

s
a-
a-
-

generate states belong to different types of state, local
and propagating. As is well known, electron states in a re
istic potential field belong either to discrete levels with
square-integrable wave function or to levels in the co
tinuum, for which the wave functions cannot be normalize
Usually these states are separated by a definite energy
mobility edge. In the system considered here, the disc
and propagating states have the same energy, i.e., state
longing to different classes of functions become degener

To illustrate the effect of disappearance of resonanc
we show in Fig. 6 the transmission coefficientT11 as a func-
tion of energy for various distancesL51.26, 1.41, 1.613,
and 1.73~for the unit of length we usedv22

21), where the
distanceL(0)51.613 is related to the minimum critical dis
tances. The evolution of a pair of resonances can be see
Figs. 4a and 4b. WhenL reachesL(0) the Fano resonanc
disappears. The transmission coefficient has a finite valu
0.2098 at the energyE(0)53.1878. Figure 4d shows tha
resonance appear again when the distance exceeds the
cal value.
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7. MULTICHANNEL APPROXIMATION

Let us first study the passage of the electron through
impurities in the channel. We assume that the electron
ergyE satisfiesE1,E,E2. For the symmetric case the ma
trix M s is determined by~33!. We also assume that the p
rameters of the system are such that there is a standing w
in the channeln51. This means that the impurities are at
critical distance from each other and the condition for
level width to vanish is cosu150. The structure ofM s sug-
gests that detM s vanishes if

cosu150, D2,̀ 50, ~68!

whereD2,̀ is the determinant of a matrix obtained fromM s

by striking out the first column and the first row. The form
M s suggests that all the elements determiningD2,̀ are real,
i.e., Eqs.~68! may have real solutions.

Let us prove this in the three-channel approximatio
From ~68! we find that

cosu150,

2~v222uk2u!coshuu2u1uk2uexp~2uu2u!

54v23
2 coshuu2ucoshuu3u

2~v332uk3u!coshuu3u1uk3uexp~2uu3u!
. ~69!

If we now use perturbation-theory techniques, in the zer
approximation we have

2~v222uk2u!coshuu2u1uk2uexp~2uu2u!50. ~70!

Let E0
0 be a solution of Eq.~70!. The correction to this solu

tion can be found from~69! and has the formE05E0
01dE,

where

dE5
2\2v23

2

m

v22coshuu3u
2~v332uk3u!coshuu3u1uk3uexp~2uu3u!

. ~71!

Calculations that use the higher bands yield real terms on
right-hand side ofD2,̀ in a series expansion. Since all th
terms in this expansion are real, the levels may shift o
along the real axis. We see that in the caseE1,E,E2 we
can always find a set of parameters at which discrete le
exist.

Qualitative discrepancies should be observed when
energy is close to the boundaries of the higher bands. In
3 we found that for the higher bands there is usually no to
reflection. For the two-impurity problem it also occurs that
the perturbation-theory setting the expansion of detM s con-
tains complex-valued terms, which shift the levels into t
complex energy plane. By way of an example we take
interval E2,E,E3. Keeping the contributions;vn,n8

2 , we
expand detM s in perturbation series and write detM s50 as

2~v332uk3u!coshuu3u1uk3uexp~2uu3u!

54v13
2 cosu1coshuu3u

2~v111 ik1!cosu12 ik1 exp~ iu1!

14v23
2 cosu2coshuu3u

2~v221 ik2!cosu22 ik2 exp~ iu2!
. ~72!
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Analysis of the right-hand side of Eq.~72! shows that a
solution with a real energy is possible if

k1v13
2 cos2 u11k2v23

2 cos2 u250. ~73!

This may happen only if either cos2 u150 or cos2 u250. Let
cos2 u150. Then Eq.~72! yields a complex-valued solution
in the formE5E01dE2 iG, which E0 can be found from

2~v332uk3u!coshuu3u1uk3uexp~2uu3u!50, ~74!

and the level widthG can be written

G5
2\2v23

2

m

k2v22cos2 u2

k2
214v22

2 cos2 u214v22k2 sinu2 cosu2

. ~75!

Note that the correctiondE has the same structure. Thus, w
have a resonance state in the subbandn53, which decays
into the subbandn52. Under these conditions, there is
standing wave in the subbandn51. A similar analysis can
be done near higher bands, and the characteristics of
corresponding resonances can be obtained.

8. DISCUSSION

We have studied new coherent effects in a quant
waveguide with two attractive impurities. For a pair of im
purities we found that the interaction of Fano resonan
may change the transmission amplitude dramatically. O
consequence of this interaction may be the appearanc
discrete levels in the continuum. We have formulated a
solved a two-parameter spectral problem to determine
values of the parameters of the system at which resona
disappear and discrete levels appear. We have studied
tunneling through discrete levels and found that the proba
ity of an electron traveling through the waveguide is fin
when the electron energy is equal to the energy of the
crete level. We have found that this phenomenon is a con
quence of the system of equations that determine the am
tudes of scattering in a multichannel system at critical val
of the parameters becoming degenerate. Two types of w
function for the critical parameters are possible here, loc
ized and propagating. The explanation is that two differ
types of state with the same energy can be prepared by
ferent selection of the boundary conditions.

Modern nanotechnology has shown that artific
impurities28,29 with fixed parameters can be created in qua
tum channels. Using the data from Table I, we can ea
estimate the smallest values of the critical parameters o
channel of width W: E(0)53.18E1 and L(0)50.41W,
where E15p2\2/2mW2. For instance, if we take a
GaAs/AlxGa12xAs-based two-dimensional channel of wid
W5300 nm, for such a structure the minimum critical di
tanceL(0) between the impurities is estimated at rough
120 nm and the minimum critical distanceE(0) at roughly
16 meV.

The authors are grateful to Yong S. Joe for fruitful di
cussions. The work was supported by grants from the R
sian Fund for Fundamental Research~Grant No. 97-02-
16923a! and from KOSED, the CNU Reseach Fund, and
Ministry of Education of Korea~Grant No. BSRI-97-2431!.
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APPENDIX

Here we calculate the matrix elementsVn,n8 and the pa-
rametersvn,n8 of an impurity in a quantum channel. To de
scribe the impurity we used the model proposed by Joe
Cosby.18,19 We assume that the impurity potential is

V~x2Xs ,y2Ys!52Vatt f ~x2Xs!g~y2Ys!, ~76!

where the functionsf (x) andg(y) are defined as

f ~x!51, uxu<La , f ~x!50, uxu.La ,

g~y!51, uyu<Wa , g~y!50, uyu.Wa , ~77!

Xs and Ys are the coordinates of the center of the impur
potential,La andWa are the dimensions of the well, andVatt

is the well depth. For numerical calculations and estima
we took the model of an infinitely deep well as the confin
ment potential. In this case the solution of Eq.~4! is

wn~y!5A 2

W
sinFpnS y

W
1

1

2D G , En5
\2p2n2

2mW2
, ~78!

where W is the width of the waveguide. Using the wav
functions of~78!, we can easily calculate the matrix elemen
of the impurity potential~76!:

Vn,n8~x2Xs!522Vatt f ~x2Xs!gn,n8~w,ys!, ~79!

where the diagonal elements are

gn,n5
1

2p Fw2
1

n
sinnw cos 2nysG , ~80!

and the off-diagonal elements (nÞn8) have the following
form:

gn,n85
1

p~n2n8!
sin

~n2n8!w

2
cos@~n2n8!ys#

2
1

p~n1n8!
sin

~n1n8!w

2
cos@~n1n8!ys#, ~81!

with

w5p
Wa

W
, ys5pS Ys

W
1

1

2D . ~82!

Note that the matrix elements~79! rapidly decrease as func
tions of un2n8u, while in the model discussed in Ref. 8 the
are constant.

If the electron wavelengthln in an open channeln is
much longer thanLa , i.e.,

ln5
2p

kn
@La , ~83!

the short-range potential model can be used to describe
propagation of a wave along the waveguide. Then forf (x)
we have

f ~x!'Lad~x!. ~84!

From ~83! we see that the approximation~84! is meaningful
if
d

s
-

he

uE2Enu!
\2p2

mLa
2

. ~85!

Now we can write the matrix elements as

Vn,n8~x2Xs!52VattLad~x2Xs!gn,n8~w,ys!. ~86!

Using the notation

vn,n85
2m

\2
VattLagn,n8~w,ys!, ~87!

we write ~86! in the form~10!. For numerical simulations we
used the dimensionless parameters

V̄att5
Vatt

E1
, v̄n.n85

W

p
vn,n8 ,

g5p
La

W
, v̄n,n85gV̄attgn,n8 , ~88!

the impurity parameters

La50.5W, Wa50.5W, Vatt55E1 ,

andE15\2k1
2/2m as the energy unit.
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1. INTRODUCTION

One characteristic feature of modern experiments on
interaction of laser radiation with solids using ultrashort la
pulses is violation of the equilibrium between the electro
and ionic subsystems of the solid.1–4 The temperature of the
radiation-absorbing electrons can be several orders of m
nitude higher than the lattice temperature, since the p
duration (;10214210213 s) and the thermalization time o
the electronic subsystem (;10215210214 s) are much
shorter than the characteristic time for the exchange of
ergy between the electrons and the lattice (;10211 s).5,6

This raises the question of the influence of such a high e
tron temperature on the phonon spectrum of a solid.7,8

The behavior of the elastic constants of crystals with
gap in the electron excitation spectrum, i.e., crystals hav
diamond-like C, Si, and Ge lattices, as a function of t
density of electrons excited into the conduction band w
investigated in Refs. 9–11. Dramatic softening of the sp
trum of transverse acoustic phonons with increasing den
of the electron-hole plasma was obtained. In addition,
presence of a gap in the electron excitation spectrum, e
cially a large gap, as in the case of carbon, causes any
crease in the energy imparted to the crystal to be accom
nied by an increase in the number of excited electr
without significant alteration of their temperature. Co
versely, in metals, where there is no gap in the spectrum
increase in the intensity of the laser pulse leads to a dram
rise in the electron temperature, while the temperature of
phonon subsystem is lower. Here we shall examine the
pendence of the phonon characteristics of metals on the e
tron temperatureTe , assuming that the short thermalizatio
time of the electrons (;10215210214 s under normal con-
ditions! allows us to treat their subsystem as a quasiequ
rium system with that temperature.

Within the adiabatic approximation the potential ener
for ions is the electron energyEe , which depends parametr
cally on the ion coordinates$R( l)% (Ee includes the direct
1281063-7761/99/88(1)/7/$15.00
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Coulomb interaction of the ions!. The equation of motion of
an ion of massM in the equilibrium position at lattice poin
l with the radius vectorR0( l) can be written in the form

M R̈~ l!52
]Ee

]R~ l!
. ~1!

HereR( l) is the radius vector of an ion displaced as a res
of vibrations. The bar denotes thermodynamic averag
over the electronic state. According to Ref. 12,

]Ee

]R~ l!
5S ]Fe

]R~ l! D
Te ,V

, ~2!

therefore, the equation of motion of an ion can be written
the form

M R̈~ l!52
]Fe

]R~ l!
~Te ,V!, ~3!

i.e., the potential energy for ions at an assigned crystal v
ume V and an assigned temperature of the electronic s
systemTe is the Helmholtz free energyFe(Te ,V) of the
electrons.

2. HELMHOLTZ FREE ENERGY OF A CRYSTAL AT HIGH
PRESSURES

We consider the dynamics of the lattice of a compres
crystal and accordingly take the Helmholtz free energy of
electrons in the Thomas–Fermi approximation. Followi
Ref. 13, we write the energy of the electrons~in atomic
units! in the cell of phase space at the point with the coor
nater j in the form

ee~r j !5(
p,s

n~r j ,P,s!@e~p!2w~r j !#, ~4!

where the occupation numbers of the states with the mom
tum p, the kinetic energye(p), and the spin projections,
which are denoted byn(r j ,p,s), for the electrons are equa
© 1999 American Institute of Physics
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to zero or unity, andw(r j ) is the electrostatic potential at th
point r j . The total energy ofNe5NZ electrons (N is the
number of atoms,Z is their atomic number! equals

Ee5(
j

ee~r j !2Uee1Uii . ~5!

Here we took into account that in the summation ofe(r j ) the
energy of the electron–electron interactionUee is taken into
account twice, and we added the direct Coulomb interac
of the nucleiUii . The expression for the partition function o
the electronic system has the form

Qe5(
$n%

expS 2
Ee

Te
D5(

$n%
expH 1

Te
FUee2Uii 2mNe

2 (
j ,p,s

n~r j ,p,s!~e~p!2w~r j !2m!G J , ~6!

wherem is the chemical potential, which takes into accou
the electrostatic interaction. In the Thomas–Fermi appro
mation it is related to the chemical potential of a free, inh
mogeneously distributed electron gas,m0(r ), by the expres-
sion

m5m0~r !2w~r !. ~7!

The summation in~6! is carried out over all the electroni
occupation numbers. Considering them, as in Ref. 13, in
pendent and assuming thatUee is determined only by the
thermodynamic equilibrium~for the electronic subsystem!
electron density, we obtain the partition function in the fo

Qe5expS Uee2Uii 2mNe

Te
D )

j ,p,s
F11expS m0~r j !2e~p!

Te
D G .

~8!

Then, from~8! we obtain the electron Helmholtz free energ

Fe52Te ln Qe5E m0~r !n~r ! dr

2E w~r !n~r ! dr2Uee1Uii 1V0 . ~9!

Here the thermodynamic potentialV0 of an inhomogeneous
distribution of noninteracting electrons with a densityn(r )
equals

V052Te ln )
j ,p,s

F11expS m0~r j !2e~p!

Te
D G . ~10!

Usingw i(r ) andwe(r ) to denote the potentials created at t
point r by the ions and electrons, we write the electr
Helmholtz free energy in the form

Fe5F02E we~r !n~r !dr2E w i~r !n~r !dr2Uee1Uii 1V0

5F01Uei1Uee1Uii . ~11!

Here Uei and Uee are, respectively, the energies of th
electron–ion and electron–electron interactions,F0 and F0

5F01V0 are the Gibbs free energy and the Helmholtz fr
energy of an inhomogeneous distribution of noninteract
electrons:
n

t
i-
-

e-

e
g

F05E m0~r !n~r ! dr . ~12!

Going from summation overj andp to integration overr and
p, for F0 we obtain

F05E f 0~r ! dr , ~13!

where

f 0~r !5
A2

p2
Te

5/2FjI 1/2~j!2
2

3
I 3/2~j!G . ~14!

Herej(r )5m0(r )/Te , andI s(j) is the Fermi integral:

I s~j!5E
0

` xs dx

ex2j11
. ~15!

Thus, we obtain the Helmholtz free energy of th
electron-nuclear system for the fixed positions of the nuc
$R( l)% as a functional of the electron density for an assign
specific volume per atomv and an assigned electron tem
peratureTe , which depends parametrically on$R( l)%:

Fe5E f 0~r !dr2Z(
l
E n~r !

ur2R~ l!u
dr

1
1

2E E n~r !n~r 8!

ur2r 8u
dr dr 81

1

2(ll8
Z2

uR~ l!2R~ l8!u
.

~16!

Herej(r ) is determined from the condition

n~r !5
A2

p2
Te

3/2I 1/2~j!, ~17!

whose solution relative toj gives

j~r !5I 1/2
21S p2

A2

n~r !

Te
3/2 D . ~18!

Here I s
21(x) is the inverse ofI s(x), so thatI s(I s

21(x))5x.
We seek the electron densityn(r ) by a variational method in
the form

n~r ,$R~ l!%!5(
l

Z
g3

p3/2
exp@2g2~r2R~ l!!2# ~19!

with the variational parameterg, which we determine from
the condition that the functional~16! has a minimum at the
equilibrium positions of the nuclei$R0( l)%, which we denote
by Fe

0 . The expression~19! is normalized according to the
condition

E n~r ! dr5NZ, ~20!

and explicitly takes into account the screening of the nucl
charges, ensuring the correct acoustic behavior of the bo
centered cubic~bcc! crystal which we selected as a high
pressure phase in the long-wavelength limit of phonon f
quencies.
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In the approximation under consideration it is conv
nient to introduce the following reduced quantities:r̄ for the
coordinates, which is defined by the relationr 5 r̄ Z21/3, n̄ for
the electron density (n5n̄Z2), and T̄e for the electron tem-
perature (Te5T̄eZ

4/3). Then~16! takes the form

Fe5Z7/3F̄e , ~21!

where the reduced Helmholtz free energy, which depe
parametrically on the reduced coordinates of the nuc
equals

F̄e5E f̄ 0~ r̄ ! d r̄2(
l
E n̄~ r̄ ! d r̄

u r̄2R̄~ l!u

1
1

2E E n̄~ r̄ !n̄~ r̄ 8!

u r̄2 r̄ 8u
dr̄ dr̄ 81

1

2(ll8
1

uR̄~ l!2R̄~ l8!u
.

~22!

Here

f̄ 0~ r̄ !5
A2

p2
T̄e

5/2F j̄I 1/2~ j̄ !2
2

3
I 3/2~ j̄ !G , ~23!

and j̄ is determined from the relation

j̄~ r̄ !5I 1/2
21S p2

A2

n̄~ r̄ !

T̄e
3/2 D . ~24!

In this relation

n̄~ r̄ !5
ḡ3

p3/2(l
exp$2ḡ2@ r̄2R̄~ l!#2% ~25!

with the reduced parameterḡ, which can be defined by th
relationg5ḡZ1/3.

For each value of the reduced electron temperatureT̄e

and the reduced specific volumev̄ (v5 v̄Z21) we can find
the value ofḡ which minimizes the functionalF̄e

0 obtained
from ~22! for the equilibrium positions of the nuclei in th
bcc lattice that we selected. The expression forF̄e

0 per atom
can be written in the form

F̄e
05

v̄T̄e
5/2

p2 E
0

1E
0

1E
0

1F j̄I 1/2~ j̄ !2
2

3
I 3/2~ j̄ !G dz1 dz2 dz3

1
1

21/3v̄
F(

l

2 erfc~q~ l !!2erfc~q~ l !/A2!

l

2
2l

Ap
S 12

1

2A2
D G . ~26!

In Eq. ~26!

erfc~z!5
2

Ap
E

z

`

exp~2x2! dx, ~27!

and whenj̄ is calculated from~24!, the reduced electron
density can be taken in the form
-

s
i,

n̄~z1 ,z2 ,z3!5
l3

2p3/2v̄
(

l
expH 2

l2

4
@3~ t1

21t2
21t3

2!

22~ t1t21t1t31t2t3!#J , ~28!

where t i5z i2 l i ( i 51,2,3), andl i are the integral compo
nents of the vectorR0( l) in the basis seta1 , a2 , a3 of a bcc
lattice with the edgea of the cubic unit cell:

R0~ l!5(
i 51

3

l iai , ~29!

a15
a

2
~21,1,1!, ~30!

a25
a

2
~1,21,1!, ~31!

a35
a

2
~1,1,21!. ~32!

In ~26! v̄5ā3/2, whereā5aZ1/3; ḡ has been replaced b
another~dimensionless! variational parameterl5ḡā;

l 5A3~ l 1
21 l 2

21 l 3
2!22~ l 1l 21 l 1l 31 l 2l 3!, ~33!

q~ l !5l l /2. ~34!

The expression~26! defines the reduced static Helmholtz fre
energy of a bcc crystal for assigned values of the redu
specific volumev̄ and the reduced electron temperatureT̄e .
The static Helmholtz free energy of a crystal consisting
atoms with an atomic numberZ for a specific volumev and
an electron temperatureTe can be found from the scaling
relation

F0~T,v !5Z7/3F̄e
0~ T̄,v̄ !5Z7/3F̄e

0~Z24/3Te ,Zv !. ~35!

3. LATTICE DYNAMICS

To consider the lattice dynamics, we expand the elect
Helmholtz free energy~16! in powers of the deviation of the
ions from their positions in an ideal bcc lattice,u( l)5R( l)
2R0( l), confining ourselves to the quadratic terms. The
sultant force constant matrixBab( l) (a,b51,2,3) is ex-
pressed in terms of the corresponding reduced matrixB̄ab( l)
by the scaling relation

Bab~ l!5Z3B̄ab~ l!. ~36!

Here the reduced force constant matrix is

B̄ab~ l!5
]2F̄e

]R̄a~0!]R̄b~ l!
U

$R0~ l!%

~37!

and can be represented in the form

B̄ab~ l!5B̄ab
k ~ l!1B̄ab

p ~ l!, ~38!

where
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B̄ab
k ~ l!5

l5

25/3p v̄5/3T̄e
1/2

expS 2
q2~ l !

2 D E
2`

`

exp~2r1
2! dr1

3E
2`

`

exp~2r2
2! dr2E

2`

`

exp~2r3
2!

3S ra1
l

2A2
wa~ l!D S rb2

l

2A2
wb~ l!D

3
dr3

I 21/2~ j̄~ r̄ !!
. ~39!

In Eq. ~39!

r5gA2F r2
R0~ l!

2 G , ~40!

w1~ l!52 l 11 l 21 l 3 , ~41!

w2~ l!5 l 12 l 21 l 3 , ~42!

w3~ l!5 l 11 l 22 l 3 . ~43!

The second term in~38! can be represented in the form

B̄ab
p ~ l!5

l3

2v̄
H nanbFG2~q~ l !/A2!24G2~q~ l !!

2q~ l !

2
3@G1~q~ l !/A2!22A2G1~q~ l !!#

A2q2~ l !

1
3@erfc~q~ l !/A2!22 erfc~q~ l !!#

q3~ l !
G

1dabFG1~q~ l !/A2!22A2G1~q~ l !!

A2q2~ l !

2
erfc~q~ l !/A2!22 erfc~q~ l !!

q3~ l !
G J . ~44!

Here

G1~z!5
d

dz
erfc~z!52

2

Ap
exp~2z2!, ~45!

G2~z!5
d2

dz2
erfc~z!5

4

Ap
z exp~2z2!, ~46!

andn is a unit vector:

n5~n1 ,n2 ,n3!5R0~ l!/R0~ l!. ~47!

The reduced force constant matrix~38! can be used to
define the reduced dynamic matrix:

D̄ab~ k̄!5
1

M0
(

l
B̄ab~ l!exp@ i k̄R̄0~ l!#, ~48!

which permits finding the reduced phonon frequencies a
function of the reduced wave vectork̄ from the characteristic
equation
a

det@D̄ab~ k̄!2v̄s
2~ k̄!dab#50. ~49!

In ~48! M0 is the atomic mass unit:M051823. The phonon
spectrumvs(k) (s51,2,3) of a polyatomic bcc crystal con
sisting of atoms with an atomic numberZ and a mass numbe
A can then be found as a function of electron temperat
and specific volume from the universal functionv̄s(T̄e ,v̄,k̄)
using scaling:

vs~Te ,v,k!5Z3/2A21/2v̄s~ T̄e ,v̄,k̄!

5Z3/2A21/2v̄s~Z24/3Te ,Zv,Z21/3k!. ~50!

For not excessively heavy elements the isotopes which
stable againstb decay haveA'2Z. In this case we obtain a
scaling relation for the frequencies which depends only
the single parameterZ:

vs~Te ,v,k!5
Z

A2
v̄s~ T̄e ,v̄,k̄!

5
Z

A2
v̄s~Z24/3Te ,Zv,Z21/3k!. ~51!

Universal plots of the reduced phonon spectrum of a
lattice for the high-symmetry directions in the Brilloui
zone, viz.,GP, GN, and GH, and various values of the
reduced specific volume and the reduced electron temp
ture are presented in Figs. 1 and 2. The reduced lattice
stant isā51.6 for Fig. 1 andā52.0 for Fig. 2. The reduced
electron temperature is indicated near the curves in Fig
and 2 and has values equal to 0.1, 4, 20, and 50 au.
phonon frequencies of crystals with assignedZ and A are
obtained from the curves in Figs. 1 and 2 using Eq.~50! or,
for not excessively heavy elements,~51!. An increase in the
electron temperature leads to an increase in the phonon
quencies for all directions in the Brillouin zone.

Analysis of the reduced phonon spectrum reveals t
the hardest of the phonon modes, which are longitudin
undergo the greatest changes as the reduced electron
perature is varied in the broad range investigated from 0.
50 au. The height of the maximum in the spectrum for t
GH direction increases by more than three fold. At the sa
time, the softer transverse modes of the phonon spect
vary to a lesser degree in response to significant variatio
the electron temperature, especially in the long-wavelen
region. When the specific volume is increased, the rela
changes in the phonon frequencies increase at a fixed e
tron temperature.

4. THERMODYNAMIC FUNCTIONS OF THE PHONON
SPECTRUM

The reduced phonon spectrum obtained from the so
tion of Eq. ~49! permits calculation of the thermodynam
functions associated with lattice vibrations as a function
the specific volume of the crystal and the lattice temperat
TiÞTe . These functions include the isochoric specific he
cV5(Ti]s/]Ti)Te ,v . Calculated per atom, it equals
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FIG. 1. Reduced phonon frequenciesv̄
of a bcc crystal with the lattice param

eter ā51.6 in theGH ~@100#! ~a!, GN
~@110#! ~b!, andGP ~@111#! ~c! directions
for various values of the reduced elec

tron temperatureT̄e , which are indicated
~in atomic units! near the curves. The
phonon frequencies of a crystal with
specifiedZ andA are found from the val-

ues ofv̄ using the scaling relations~50!
and ~51!.
.

te

-
-

cV5(
s
E

BZ
Fvs~k!

Ti
G2 exp@vs~k!/Ti #

$exp@vs~k!/Ti #21%2

v d3k

~2p!3
.

~52!

The integration in~52! is carried out over the Brillouin zone
In the low-temperature limit with respect toTi

cV5
pv
30

Ti
3(

s
E

0

2p

dwE
0

p sinu du

cs
3~u,w!

, ~53!

where u and w are the angles in the spherical coordina
system fork, and the velocity of soundcs(u,w) for long
waves equals
cs~u,w!5
vs~k!

k
5

vs~k,u,w!

k
. ~54!

The expression~53! permits finding the Debye tempera
ture QD(Te ,v), which can be determined from the low
temperature specific heat. It obeys the scaling relation

QD~Te ,v !5Z3/2A21/2Q̄D~ T̄e ,v̄ !

5Z3/2A21/2Q̄D~Z24/3Te ,Zv ! ~55!

with the reduced Debye temperature
FIG. 2. Same as in Fig. 1 forā52.0.
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FIG. 3. Reduced Debye temperatureQ̄D ~a!

and melting pointT̄m ~b! of a bcc crystal as
a function of reduced electron temperatu
for various values of the reduced lattice con

stantā ~which are indicated on the curves!.
The Debye temperature and the meltin
point of a crystal with specifiedZ andA are
found from the respective quantities usin
the relations~55! and ~61!.
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Q̄D~ T̄e ,v̄ !52•32/3pS v̄(
s
E

0

2p

dwE
0

p sinu du

c̄s
3~u,w!

D 21/3

.

~56!

The reduced Debye temperature is shown in Fig. 3a a
function of the reduced electron temperature for the value
the reduced lattice constantā51.2, 1.6, and 2.0. The valu

of Q̄D(T̄e ,v̄) is determined by integrating the phonon sp
cific heat, which is low-temperature with respect toTi and
proportional toTi

3 , over the Brillouin zone. The variation o

Q̄D is less than 30% over the entire range ofT̄e considered,
i.e., the dependence of the Debye temperature on elec
temperature is weak over a broad range of values ofT̄e . This
is because the phonon modes which increase most stro
with electron temperature make the smallest contribution
the Debye temperature when it is determined in this man

In accordance with the stronger variation of the spectr
at larger values of the lattice constant, the variation of
Debye temperature is more significant at largerā. Being a
function of electron temperature, the reduced Debye te

peratureQ̄D has a maximum, which shifts toward high
temperatures as the lattice constant is diminished, i.e., as
Fermi energy is increased. Since the hardest branches of

non frequencies make a small contribution toQ̄D as the elec-
tron temperatureT̄e increases when the Debye temperature
determined in this manner, the energy of the zero-point
brations, which is determined mainly by the hardest mo

and is equal to 9Q̄D/8 per atom in the Debye approximatio
is poorly described by the Debye approximation as the e
a
of
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on
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tron temperature increases. This also applies to the pres
of the zero-point vibrations.

We can use the phonon spectrum obtained to determ
the dependence of the melting point of a crystal on elect
temperature~we recall that we are dealing with a situation
which there is a lack of equilibrium between the electron
subsystem and the lattice and their temperaturesTe and Ti

can differ significantly!. Introducing the radiusRs of a
sphere with a volume equal to the specific volume per at
v, so that

4

3
pRs

35v5
a3

2
,

we determine the relative mean-square displacement of
nuclei from their positions in an ideal lattice:

z5^u2&/Rs
2 . ~57!

Here the mean-square displacement^u2& is found by integra-
tion over the Brillouin zone:

^u2&5(
s
E

BZ

1

Mvs~k!H 1

exp@vs~k!/Ti #21
1

1

2J vd3k

~2p!3
.

~58!

At large values ofTi near the melting pointTm the expres-
sion ~58! can be written in the form

^u2&5(
s
E

BZ

Ti

Mvs
2~k!

vd3k

~2p!3
. ~59!

Taking into account the scaling relation~50!, we obtain
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Mvs
2~k!5Z3M0v̄s

2~ k̄!. ~60!

We determine the melting pointTm , according to the Linde-
mann criterion, from the critical value of the mean-squa
displacementzm , which, following Ref. 14, we set equal t
zm50.076. This gives the following expression for the me
ing point:

Tm~Te ,v !5Z7/3T̄m~ T̄e ,v̄ !5Z7/3T̄m~Z24/3Te ,Zv !, ~61!

where the reduced melting pointT̄m equals

T̄m~ T̄e ,v̄ !5zmS 3v̄
4p

D 2/3F(
s
E

BZ

v̄d3k̄

~2p!3M0v̄s
2~ k̄!

G21

.

~62!

The variation of the reduced melting point of a crystal
a function of T̄e over the broad range of variation ofT̄e

considered is shown in Fig. 3b. As in the case of the De
temperature, this variation is fairly small, not exceeding 4
in the specific volume range considered. In the express
~62!, as in ~54!, the phonon branches, whose frequenc
increase most strongly with increasing electron tempera
make the smallest contribution to the integral over the B
louin zone, while, as follows from the phonon spectra
Figs. 1 and 2, the softer modes, which make the main c
tribution to this integral, depend weakly on the temperat
of the electronic subsystem. This determines the gen
variation of the melting point of the lattice as the electr
temperature increases, which is not as significant as tha
the hard branches of the phonon spectrum. Thus, a sig
cant increase in the electron temperature, which can d
from the lattice temperature by several orders of magnitu
e

s

e

n
s
re
-

n-
e
al

or
fi-
er
e,

causes an increase in the phonon frequencies of a m
primarily of the hardest modes in the spectrum. At the sa
time, thermodynamic characteristics associated with the p
non spectrum, such as the Debye temperature and the m
ing point, vary to a significantly smaller extent with electro
temperature.
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The first experimental and theoretical investigation of the difference in the temperature behavior
of the linear expansion coefficients of single crystals grown from isotopically highly
enriched and natural germanium is reported. A comparison of the data for70Ge andnatGe
crystals reveals the significant influence of isotopic composition over a wide range of temperatures
30–230 K. © 1999 American Institute of Physics.@S1063-7761~99!02101-0#
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Many problems in the theory of the thermal expansion
crystal lattice have been thoroughly studied~see, e.g., Ref.
1!. To the best of our knowledge, however, the thermal
pansion coefficienta for crystals differing solely in their
isotopic composition has not investigated. In this paper
report the first experimental and theoretical study of the
havior of the coefficienta as a function of the isotopic com
position over a wide range of temperatures. We are spe
cally concerned with natural germanium (natGe) and highly
enriched~99.99%! germanium (70Ge) samples.

The dependence of the thermal expansion coefficiena
on the temperatureT is dictated by the temperature behavi
of the heat capacity in many cases. This is because the
Grüneisen factorg ~which is sensitive to the anharmon
interatomic force parameters! usually exhibits a weak depen
dence onT. For germanium, on the other hand, the dep
dence ofg on T is very strong. Here, sinceg(T) is a sign-
indefinite function, the behavior ofa(T) for Ge is quali-
tatively determined primarily by the Gru¨neisen factor and
not by the heat capacity.1

In regard to kinetic phenomena two types of isotope
fects are possible, which differ in that one depends linea
and the other quadratically on the difference in the masse
the isotopes. Linear effects are governed by the variation
the phonon spectrum as the isotopic composition chan
Quadratic effects are associated with the irregular distri
tion of the isotopes and induce an additional relaxat
mechanism of phonon~and electron! scattering. Their role
has been investigated in application to the thermal cond
tivity of germanium in, for example, Refs. 2 and 3. As f
thermal expansion, on the other hand, both the linear and
quadratic dependences on the isotopic mass are entirely
result of the variation of the phonon spectrum.
1351063-7761/99/88(1)/3/$15.00
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EXPERIMENTAL OBSERVATION OF THE ISOTOPE EFFECT
IN THE THERMAL EXPANSION OF GERMANIUM

We have performed for the first time measurements
the temperature dependence of the difference in the lin
expansion coefficients of chemically pure and structura
perfect germanium70Ge andnatGe single crystals over a wid
temperature range 30–230 K. According to mass-spec
meter measurements, the content of the primary isotop
70Ge single crystals is at least 99.99%. In this connectio
measurement of the Hall conductivity in it has shown th
the total concentration of electrically active impurities do
not exceed 231012cm23 ~Ref. 2!. ThenatGe single crystal is
a mixture of five isotopes having an average mass of 72

The thermal expansion of the samples was investiga
by means of a strain-gauge dilatometer. The recording
of the instrument was a bridge circuit. The customary a
proach in this method is to place the investigated sample
a standard sample on the instrument mounting, with ident
standard resistance gauges~Ni–Cu–Cr wire of diameter
30mm, R5100V) attached to them. As the temperature
varied, the deformation of the gauges differs because
samples expand differently, producing different variations
their resistances and thus creating a bridge unbalance.
method has a sensitivity of 531027 cm. The temperature
dependence of the thermal expansion was measured with
samples heated at a rate not greater than 0.3 K/min. The
perature sensor was a copper–iron (Cu10.05%Fe) –copper
thermocouple. The mounting of the samples is shown in F
1. In principle, the experimental error can depend on
gauge bonding technology and on the temperature interva
which the measurements are performed. Additional meas
ments have shown that the error is less than 5%.

The quality of the measurement system was tested u
a standard sample of pure copper, for which the values of
© 1999 American Institute of Physics
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thermal expansion coefficient are well known. Our data
copper~in measurement relative to quartz! differ by at most
5% from established data at temperatures of 20–80 K~Ref.
1!.

To improve the reliability of the results in the prese
study, we performed direct measurements of the differe
in the thermal expansion coefficients of chemically pu
natGe and70Ge single crystals. The samples of natural a
isotopically pure germanium were mounted in two arms
the measurement bridge. The measured bridge unbalan
this case is proportional to the difference in the thermal
pansions of the two samples,natGe and70Ge.

The samples were cut from germanium single crystal
the shape of 53432-mm parallelepipeds with their longe
edges parallel to the@100# axis of the crystal.

This setup was used to measure the relative ther
elongationD l / l of the sample. Our object of interest, th
thermal expansion coefficienta5(1/l )(dl/dT), was calcu-
lated by numerical differentiation of the graph ofD l / l as a
function of T.

The results of measurements of the differenceDa in the
thermal expansion coefficients of the two single crystals
shown in Fig. 2. The scatter of the values ofDa as a func-
tion of T was found to be;20% after differentiation of the
experimental data with respect toT. The scatter ofDa(T) is
large because the measured quantity is the temperature
pendence of the small difference between the thermal ex
sionsD l / l of the two single crystals (natGe and70Ge). The
Da(T) curve in Fig. 2 is smoothed by a polynomial. Th
absolute rms error of the values so obtained forDa(T) is
;20% in the temperature range 60–200 K and;30240%
in the low-temperature range. Errors can also be attribute

FIG. 1. Schematic view of the sample mounting.~1 ! Sample and standard
~2 ! resistance gauges;~3 ! thermocouple;~4 ! quartz rod, to which the block
with the samples is attached by thin nylon thread.
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limited capabilities for regulating the temperature regime
the experimental setup, for example, an insufficiently sl
temperature scanning rate in measuring the temperature
pendence of the relative thermal expansion of germanium

THEORETICAL ANALYSIS OF THERMAL EXPANSION TO
FIRST ORDER IN THE DIFFERENCE IN ISOTOPIC
MASSES

In the quasiharmonic approach to the linear isoto
mass-difference approximation for cubic crystals the lin
expansion coefficienta is given by the relations4

a~T!5
1

3V0B0
s~T!, ~1!

s~T!5(
l

g~ l !Cl~T!, Cl~T!5
1

T2 v2~ l !n~v~ l !!

3@n~v~ l !!11#. ~2!

Here v( l ) is the phonon frequency of thelth mode with
quasimomentumf and polarizationj, i.e., l 5$f, j %, n(v) is
the Planck distribution,g( l ) is the partial~mode! Grüneisen
factor, i.e., by definition

g~ l !52
] ln v~ l !

] ln V U
V5V0

, ~3!

Cl denotes the heat capacity of thelth mode,V0 is the equi-
librium unit cell volume of the lattice, andB0 is the hydro-
static compression modulus atT50. The Boltzmann and
Planck constants are set equal to unity.

Equation~1! can be written in the form

a~T!5
1

3V0B0
g~T!CL~T!, ~18!

where g(T) is the total Gru¨neisen factor, andCL(T)
5( lCl(T) is the lattice heat capacity.

Note the following relation, which holds for any isotop
composition in any mode:

Mcv
2~ l !5w~ l !, ~4!

where the effective force parameterw( l ) does not depend on
the average massMc . By definition,

FIG. 2. Temperature dependence of the factorDa5ac(Mc1)2ac(Mc2),
whereMc1572.59 andMc2570, theoretical~solid curve! and experimental
~dots!.
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Mc5(
i

ciM i ,

whereci is the concentration andMi is the mass of isotope
of the ith species.

We now fix a specific isotopic composition by the ind
c0 . Making use of Eqs.~1! and~4!, we then have a universa
relation for an arbitrary isotopic composition, which we lab
with the indexc:

ac~T!5ac0
~T8!, T85TAMc /Mc0

. ~5!

We close this section with a few words about the gene
case of an anharmonic crystal lattice. In such a lattice
mode frequencyṽ( l ) consists of the sum of the harmon
and anharmonic contributions:

ṽ~ l , T!5v~ l , V!1D~a!~ l , V!. ~6!

The incrementD (a) is determined by standard third- an
fourth-order anharmonic processes.5,6 The expression for the
anharmonic correction to the Gru¨neisen factorg( l ) now has
the form

Dg~a!~ l , T!'DV~T!
]g~ l !

]V0
2

]$D~a!~ l !/v~ l !%

]V0
. ~7!

HereV(T)5DV(T)1V0 is the unit cell volume.
Second-order effects with respect to the difference in

isotopic masses are not discussed in this paper, becaus
estimate shows that their role is of little consequence in
plication to germanium.

COMPARISON OF THEORY WITH EXPERIMENT

Using relations~1!–~3! and ~5!, we calculate the coeffi-
cientsa(T) for germanium crystals with average masses
72.59 and 70. Here we determine the frequencies of the p
non modesv( l ) from the Born–von Ka´rmán theory. We use
the force parameters obtained previously7 by the fitting of
experimental inelastic neutron scattering data. We also
the partial Gru¨neisen factorsg l determined in Ref. 8 in the
microscopic bond-charge model. In addition, we assign
following values to the lattice constanta0 and the compres
sion modulusB0 : a055.658 Å; B050.77231012dyn/cm2

~Ref. 9!.
The results of the calculations are shown in the sa

figure as the experimental data~Fig. 2!. The difference
curves Da5a(Mc1)2a(Mc2) are shown for germanium
crystals with massesMc1572.59 andMc2570, respectively.
It is evident at once that theory and experiment are in r
sonably good agreement in the temperature range;30
2100 K. The agreement is unsatisfactory at higher temp
tures.

In our work we have observed that the isotope effec
large in the thermal expansion of germanium. In the te
perature interval from 75 K to 125 K the relative differen
Da/a reaches 10%. The data fora in natGe are borrowed
from Ref. 1. According to the above calculations,Da should
not be more than a few percent at higher temperatures.

We also estimate the anharmonic corrections to the
tial Grüneisen factors in the model of Ref. 8 on the basis
l

l
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a-

s
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Eqs.~6! and~7!. We note that for the majority of the mode
the parametersg (a)( l )5g( l )1Dg (a)( l ) increase with the
temperature. The anharmonicity-induced renormalizatio
for example, atT'150 K, are approximately 4%. On th
other hand, a nonstandard situation is encountered for
transverse modes. The corresponding values ofg (a) are ap-
proximately 1.3 times smaller in absolute value as a resul
anharmonicity at the same temperature of 150 K. Here
calculations yield Da5ac(Mc1)2ac(Mc2)50.142
31026 K21 instead of the value of 0.12131026 K21 ob-
tained in the quasiharmonic approach. Consequently, w
anharmonicity is taken into account, the quantitative desc
tion of the experimental data improves, but the discrepa
is still substantial.

We note that the theoretical calculations give results
low in comparison with the experimental data. The dispar
could stem from the small difference in the chemical pur
of the germaniumnatGe and70Ge single crystals. According
to Ref. 10, the thermal expansion coefficient for Ge can d
fer for samples having different impurity concentration
Moreover, the model in Ref. 8 is also in need of furth
development and refinement.

To summarize, for the first time we have measured
temperature dependence of the difference in the linear ex
sion coefficients of chemically pure germaniumnatGe and
70Ge single crystals. We have found that theory and exp
ment concur reasonably well in the temperature range;30
2100 K. The agreement falls short at higher temperatu
Allowance for the anharmonicity of interaction between ph
non modes brings theory and experiment somewhat clo
together.

The authors are grateful to E. A. Chistotina for ass
tance in processing the experimental results.

This work has received financial support from the IN
TAS Foundation~Project 96-0546! and from the Russian
Fund for Fundamental Research~Project 96-15-96738!.

* !E-mail: ozhogin@imp.kiae.ru

1S. I. Novikova,Thermal Expansion of Solids@in Russian#, Nauka, Mos-
cow ~1974!.

2V. I. Ozhogin, A. V. Inyushkin, A. N. Taldenkovet al., JETP Lett.63,
490 ~1996!.

3M. Asen-Palmer, K. Bartkowski, E. Gmelinet al., Phys. Rev. B56, 9431
~1997!.

4G. Leibfried, ‘‘Gittertheorie der mechanischen und thermischen Eig
schaften der Kristalle~Lattice theory of the mechanical and thermal pro
erties of crystals!,’’ in Handbuch der Physik, S. Flügge~Ed.!, Vol. 7, Part
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A method is proposed for constructing an exact ground-state wave function of a two-dimensional
model with spin 1/2. The basis of the method is to represent the wave function by a
product of fourth-rank spinors associated with the nodes of a lattice and the metric spinors
corresponding to bonds between nearest neighbor nodes. The function so constructed is an exact
wave function of a 14-parameter model. The special case of this model depending on one
parameter is analyzed in detail. The ground state is always a nondegenerate singlet, and the spin
correlation functions decay exponentially with distance. The method can be generalized for
models with spin 1/2 to other types of lattices. ©1999 American Institute of Physics.
@S1063-7761~99!02201-5#
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1. INTRODUCTION

There has been growing interest lately in quantum s
systems with frustrated interactions.1–10 Of special impor-
tance are models in this category for which it is possible
construct an exact ground state. The first example of su
representation was the well-known Majumdar–Gho
model.11 It comprises a chain of spins 1/2 with antiferroma
netic interactionsJ1 and J2 of nearest neighbor and nex
nearest neighbor spins, whereJ25J1/2. The ground state o
this model is doubly degenerate and consists of dimeri
singlets; moreover, there is a gap in the spectrum of exc
tions. Another example of an exactly solvable model is
one-dimensional model with bilinear and biquadratic inter
tions and spin 1, investigated by Affleck, Kennedy, Lieb, a
Tasaki12 ~the AKLT model!. Its ground state has a structu
of the type where each neighboring pair of spins has vale
bonds. It is not degenerate, the spin correlation function
the ground state decrease exponentially with distance,
there is a gap in the spectrum of excitations. This mo
therefore has properties predicted by Haldane13 for the one-
dimensional Heisenberg antiferromagnetic model with s
1. The valence-bond ground state is also exact for syst
with many dimensions, but with spind/2 ~d is the coordina-
tion number of the lattice!.14 The one-dimensional AKLT
model has subsequently been generalized and investigat
a number of papers,15 where it has also been shown that t
wave function of the ground state can be represented by
trace of the product of matrices describing the spin state
nodes of a chain~the ‘‘matrix’’ form !. These two examples
are characterized by the fact that the total Hamiltonian of
model is written as a sum of cell Hamiltonians~which are
not mutually commuting!, and the exact ground-state wav
function of the total system is the eigenfunction having
lowest energy of each cell Hamiltonian.

We have previously16 investigated an exactly solvable
one-dimensional, frustrated model with spin 1/2, who
properties by and large are similar to those of the AK
model. The ground-state wave function has a special re
1381063-7761/99/88(1)/10/$15.00
n

o
a

h

d
a-
e
-
d

ce
in
nd
l

n
s

in

he
of

e

e

e

r-

sion formula, and we have shown that it can be reduced
matrix form. Note, however, that both the recursive form a
the matrix form are essentially one-dimensional constr
tions and cannot be extended directly to higher-dimensio
systems. We cite Ref. 17 in this regard, where a method
been proposed for constructing an exact wave function of
ground state for models with spin 3/2 on a hexagonal latt
The same method is applicable to other systems with s
d/2.

In this paper we consider a class of models with spin
for which the exact wave function of the ground state can
represented in an alternative form. In the one-dimensio
case this wave function reduces to a wave function that
have found previously,16 but it admits generalization to
higher-dimensional systems. The present study is devo
primarily to an analysis of the two-dimensional model.

The article is organized as follows. In Sec. 2 we discu
the method of constructing the exact wave function for
one-dimensional model withs51/2. In Sec. 3 we formulate
an exactly solvable two-dimensional model. In Sec. 4
investigate the properties of this model with the aid of n
merical calculations. In Sec. 5 we discuss the possibility
generalizing our treatment to other types of lattices. The A
pendix gives a proof of the nondegeneracy of the grou
state of the two-dimensional model in the presence of cy
boundary conditions.

2. ONE-DIMENSIONAL MODEL

We have previously16 investigated a one-dimensiona
one-parameter model containing two spins 1/2 in the unit
and admitting exchange interactions between nearest ne
bor spins and spins separated by two nodes of the lattice.
exact ground-state wave function of the cyclic chain can
written in the form

C05Tr @A~1, 2! A~3, 4! . . . A~N21,N!#, ~1!

whereA(2i 21, 2i ) is a 232 matrix associated with theith
unit cell.
© 1999 American Institute of Physics
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Below we write the wave functionC0 in a form more
suitable for subsequent generalization to other types of
tices and give the general form of the Hamiltonian for whi
C0 is an exact wave function of the ground state.

We consider a chain ofN52M spins 1/2. The wave
function of this system is described by theNth-rank spinor

C5Clmn . . . t, ~2!

where the indicesl, m, n, . . . ,t51, 2 correspond to differ-
ent projections of the spin 1/2.

We partition the system into pairs of nearest neigh
spins. The wave function can then be written as the prod
of M second-rank spinors

C5Clm~1!Cnr~2! . . . Cst~M !. ~3!

We now form a scalar from Eq.~3!, simplifying the latter
with respect to index pairs:

Cs5Cn
l~1!Ck

n~2! . . . Cl
s~M !. ~4!

Here subscripts correspond to the covariant component
the spinor, which are related to the contravariant compon
~superscripts! through the metric spinor

glm5glm5S 0 1

21 0D . ~5!

Cl5glmCm, Cl5gmlCm . ~6!

The scalar function~4! can thus be written in the form

Cs5Clm~1!gmnCnr~2!grk . . . Cst~M !gtl . ~7!

The scalar functionCs does not depend on the angle
rotation of the coordinate system and therefore correspo
to the singlet state.

The second-rank spinor describing the pair of spins
can be written in the form

Clm5ctC t
lm1csCs

lm , ~8!

where C t
lm and Cs

lm are symmetric and antisymmetr
second-rank spinors, respectively, andct andcs are arbitrary
constants. We know that the symmetric second-rank sp
describes a system with spin 1, so that the pair of spins 1/
this case forms a triplet. IfClm is an antisymmetric second
rank spinor reducible to a scalar multiplied byglm , the spin
pair exists in the singlet state. Consequently, the ratio of
constantsct and cs determines the relative weights of th
triplet and singlet components on the pair of spinss51/2 and
is a parameter of the model. In particular, forcs50 the wave
function ~8! contains only a triplet component, and fo
ct50 it contains only a singlet component.

In general, we can make the ratio of the constantscs/ct

different in different pairs, but to preserve translational sy
metry, we confine the discussion to the case in which
ratio is the same in every pair.

We note that the wave function~4! has the matrix form
~1!, the matricesA(2i 21, 2i ) representing a mixed second
rank tensor:
t-

r
ct

of
ts

ds

2

or
in

e

-
is

Aln~1, 2!5Cn
l~1!

5ctS 1

2
~a1b21b1a2! b1b2

2a1a2 2
1

2
~a1b21b1a2!

D
2 cs

1

2
~a1b22b1a2! I , ~9!

wherea i andb i denote the up and down projections of th
spin si , respectively, andI is the unit matrix.

We now choose a HamiltonianH for which the wave
function ~7! is an exact ground-state wave function. To
so, we consider the part of the system~cell! consisting of two
nearest neighbor spin pairs. In the wave function~7! the
factor corresponding to the two spin pairs is a second-r
spinor:

Clm~ i !gmnCnr~ i 11!. ~10!

In the general case, therefore, only two of the six multipl
forming two pairs of spin 1/2—one singlet and one triplet
are present in the wave function~10!. Inasmuch as four spins
1/2 form two singlets and three triplets, the specific form
the singlet and triplet components present in the wave fu
tion ~10! depends on the ratiocs /ct . The cell Hamiltonian
acting in the spin space of nearest neighbor spin pairs ca
written as the sum of the projectors onto the four miss
multiplets with arbitrary positive coefficientsl1 , l2 , l3 , l4:

Hi ,i 115 (
k51

4

lkPk
i ,i 11 , ~11!

wherePk
i ,i 11 is the projector onto the missing multiplets

the corresponding cell Hamiltonian.
The wave function~7! is now an exact wave function o

the ground state of the cell HamiltonianHi ,i 11 with zero
energy, because

Hi ,i 11uCs&50, ~12!

and l1 , l2 , l3 , l4 are the excitation energies of the corr
sponding multiplets.

The total Hamiltonian of the entire system can be writt
as the sum of mutually noncommuting cell Hamiltonians:

H5(
i 51

N

Hi ,i 11 , ~13!

and since each termHi ,i 11 in ~13! yields zero in its action on
Cs , we have

HuCs&50. ~14!

The nondegeneracy of the ground state of this Hamilton
has been rigorously proved.16

Since the specific form of the existing and missing m
tiplets in the wave function~7! on every two nearest neigh
bor spin pairs depends on the model parametercs /ct , the
projectors in~11! also depend oncs /ct . Each projector can
be written in the form
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Pk
1,25J12

~k!~s1•s21s3•s4!1J13
~k!~s1•s31s2•s4!

1J14
~k!s1•s41J23

~k!s2•s31J1
~k!~s1•s2!~s3•s4!

1J2
~k!~s1•s3!~s2•s4!1J3

~k!~s1•s4!~s2•s3!1C~k!,

~15!

and this representation is unique for a fixed value of
parametercs /ct .

Substituting the above expressions for the projectors
Eq. ~11!, we obtain the general form of the cell Hamiltonia
Hi ,i 11. Inasmuch as the HamiltoniansHi ,i 11 have exactly
the same form for anyi, it suffices here to give the expres
sion for H1,2:

H1,25J12~s1•s21s3•s4!1J13~s1•s31s2•s4!1J14s1•s4

1J23s2•s31J1~s1•s2!~s3•s4!1J2~s1•s3!~s2•s4!

1J3~s1•s4!~s2•s3!1C, ~16!

where all volume integrals depend on the model param
and the spectrum of excited states Ji

5Ji(cs /ct , l1 , l2 , l3 , l4). In particular, forcs50, choos-
ing l25l35l4 andl1 /l253, we obtain an expression fo
H1,2 in the form

H1,25L1•L21
1

3
~L1•L2!21

2

3
, ~17!

whereL15s11s2 andL25s31s4.
The Hamiltonian~17! has the form of the AKLT Hamil-

tonian, a result that is not too surprising, because forcs50
two spins 1/2 in a pair effectively form spin 1. Note, how
ever, that forcs50 a set of different forms of the Hamil
tonianH1,2 exists, corresponding to a different choice of c
efficientslk .

In general, the Hamiltonian~16! contains both bilinear
and four-spin interactions. The latter can be excluded by
ting J15J25J350 and solving these equations fo
l1 , l2 , l3 , l4. However, since the condition
l1 , l2 , l3 , l4.0, generally speaking, is not satisfied ov
the entire range of the parametercs /ct , the simplified
Hamiltonian will also have a ground state described by
wave function~7! only in the region wherel1 , l2 , l3 , l4

are positive. The nonzero exchange integr
J12, J13, J14, J23 and the constantC depend only on the pa
rametercs /ct . The explicit form of this dependence is give
in Ref. 16, in which we have also calculated the ground-s
spin correlation function̂si•sj&, which decays exponentially
with correlation length;1.

We emphasize that the spin correlation functions^si

•sj& do not depend on the choice ofl1 , l2 , l3 , l4 for a
fixed parametercs /ct , because the ground-state wave fun
tion of the four-parameter set of Hamiltonians is the sam

3. TWO-DIMENSIONAL MODEL

We consider anM3M -node square lattice with cyclic
boundary conditions. We replace each node of the lattice
a square~Fig. 1! with spinss51/2 at its corners, making th
total number of spins equal to 4M2. To avoid misunder-
standing, however, from now on we continue to refer
e

to

er

-

t-

e

s

te

-
.

y

these squares as nodes. The wave function of the syste
described by the product of fourth-rank spinors

C5)
n

Clnmnnnrn~n!. ~18!

By analogy with~7!, from Eq. ~18! we form the scalar

Cs5)
n

Clnmnnnrn~n!gnnln1a
grnmn1b

. ~19!

wherea andb are unit vectors in thex andy directions.
The singlet wave function~19! is conveniently identified

graphically with a square lattice, each node correspondin
a fourth-rank spinorClmnr ~whose form is identical for all
nodes!, and each segment linking nodes corresponds t
metric spinorglm ~Fig. 2!.

To completely define the wave function~19!, it is nec-
essary to know the form of the node spinorClmnr. For this
purpose we classify an arbitrary fourth-rank spinor, simp
fying and symmetrizing it with respect to different pairs
indices. We have the following types of spinors as a resu

1! a fourth-rank spinorQlmnr symmetric with respect to
all indices;

2! three linearly independent products of a symmet
and an antisymmetric second-rank spinor:wlmgnr , wlngmr ,
andwlrgmn ;

FIG. 1. Two-dimensional lattice on which the spin model is defined.

FIG. 2. Graphical correspondence of the model wave function. The ind
of the node spinors depend on the node index~not shown in the figure!.
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3! two linearly independent products of two metr
spinors and a scalar function:glmgnrx andglngmrx.

According to this classification, any fourth-rank spin
can be written in the form

Clmnr5c1Qlmnr1c2w1
lmgnr1c3w2

lngmr1c4w3
lrgmn

1c5glmgnrx11c6glngmrx2 . ~20!

We note, however, that because the system of four spins
contains one quintet, three triplets, and two singlets, Eq.~20!
still does not completely determine the form ofClmnr, and it
is necessary to determine the specific form of the spin
w1

lm , w2
ln , andw3

lr and the scalar functionsx1 andx2.
Each symmetric second-rank spinorwlm describes a trip-

let state of the system, representing a linear combinatio
the three basis triplet functionsw t1

lm , w t2
lm , andw t3

lm . We can
now specify nine linearly independent spinors describ
triplet states of four spinss51/2:

w t1
lmgnr , w t2

lmgnr , w t3
lmgnr ,

w t1
lngmr , w t2

lngmr , w t3
lngmr , ~21!

w t1
lrgmn , w t2

lrgmn , w t3
lrgmn .

The products of two metric spinors and a scalar funct
glmgnrx1 andglngmrx2 describe singlets states of four spi
s51/2. Since there are two independent singlet functionsxs1

and xs2, we have four linearly independent scalars desc
ing singlet states of four spinss51/2:

glmgnrxs1 , glmgnrxs2 ,

glngmrxs1 , glngmrxs2 . ~22!

As a result, the specific form of the fourth-rank spin
Clmnr @and, hence, the wave function~19!# describing the
system of four spinss51/2 is governed by 11914514
quantities, which are parameters of the model.

We now choose a HamiltonianH for which the wave
function ~19! is an exact ground-state wave function. As
the one-dimensional case, we seek the required Hamilto
in the form of a sum of cell Hamiltonians acting in the spa
of two nearest neighbor spin quartets:

H5(
n

Hn,n1a1(
n

Hn,n1b . ~23!

The first term in Eq.~23! is the sum of the cell Hamil-
tonians in the horizontal direction, and the second term is
same for the vertical. The cell Hamiltonians along each
rection have the same form, but the ‘‘horizontal’’ and ‘‘ve
tical’’ Hamiltonians differ in general. In the ensuing discu
sion, therefore, we consider only the HamiltoniansH1,2 and
H1,3 ~Fig. 3!, which describe interactions of ‘‘nodes’’ in th
x andy directions, respectively.

For the wave function~19! to be an exact eigenfunctio
of the HamiltonianH, it is sufficient that the sixth-rank
spinors

Cl1m1n1r1~1!Cl2m2n2r2~2!gn1l2
, ~24!

Cl1m1n1r1~1!Cl3m3n3r3~3!gr1m3
, ~25!
/2

rs

of

g

n

-

an

e
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be eigenfunctions of the corresponding cell Hamiltonia
H1,2 andH1,3.

In general, when the node spinorClmnr is not symmet-
ric with respect to any indices, the possible states of t
quartets of spinss51/2 consist of 70 multiplets. A wave
function represented by a sixth-rank spinor contains only
of them. Accordingly, the cell HamiltoniansH1,2 and H1,3

can be represented by the sum of projectors onto the
missing multiplets:

H1,25 (
k51

50

lkPk
1,2, H1,35 (

k51

50

mkPk
1,3, ~26!

where the positive constantslk and mk are the excitation
energies ofH1,2 andH1,3, and the specific form of the pro
jectors depends on 14 model parameters.

Inasmuch as

Hn,n1auCs&50, Hn,n1buCs&50, ~27!

for the total Hamiltonian~23! we have the expression

HuCs&50. ~28!

Consequently,Cs is the ground-state wave function o
the total HamiltonianH, because it is a sum of nonnegativ
definite cell Hamiltonians. Also, it can be rigorously prove
~see the Appendix! that the ground state ofH is nondegen-
erate.

As mentioned above, the specific form of the projecto
depends on 14 model parameters, and in general the
Hamiltonians~26!, expressed in terms of scalar products
the typesi•sj , (si•sj )(sk•sl), etc., have an extremely cum
bersome form. We therefore consider a few special case

When the node spinorClmnr is a symmetric fourth-rank
spinorQlmnr ~corresponding to the two-dimensional AKL
model12!, only the quintet component out of the six multip
lets on each spin quartet is present in the wave function~19!.
The sixth-rank spinors~24! and ~25! are symmetric with re-
spect to two triplets of indices and, hence, contain four m
tiplets with S50, 1, 2, 3 formed from two quintets. Conse
quently, the cell Hamiltonian (H1,2 andH1,3 coincide in this
case! has the form

H1,25 (
k51

66

lkPk
1,2. ~29!

FIG. 3. Lattice nodes associated with interactionsH1,2 andH1,3.
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If we setlk51 (k51, 66), we can write Eq.~29! in the form

H1,25P4~S11S2!1@12P2~S1!P2~S2!#, ~30!

whereSi is the total spin of the quartet of spinss51/2 on the
ith node, Si5s1( i )1s2( i )1s3( i )1s4( i ), and Pl(S) is the
projector onto the state with spinS5 l .

If the four spinss51/2 at each node are replaced by
single spinS52 and if the wave function~19! is treated as a
wave function describing a system ofM2 spins S52, the
second term in the Hamiltonian~30! vanishes, and we arrive
at the Hamiltonian of the two-dimensional AKLT model:

H1,25P4~S11S2!5
1

28
S1•S2

1
1

40
~S1•S2!21

1

180
~S1•S2!31

1

2520
~S1•S2!4.

~31!

Another interesting special case is encountered when
system decomposes into independent one-dimensi
chains. This happens if the node spinorClmnr reduces to a
product of two second-rank spinors, each describing
spins 1/2. For example,

Clmnr~s1 , s2 , s3 , s4!5wln~s1 , s3!wmr~s2 , s4!. ~32!

In this case the HamiltoniansH1,2 andH1,3 contain interac-
tions of four rather than eight spins 1/2 and have the fo
~16!.

The simplest case is when the node spinorClmnr is a
product of four first-rank spinors:

Clmnr~s1 , s2 , s3 , s4!5wl~s1!wm~s2!wn~s3!wr~s4!.
~33!

Now the system decomposes into independent singlet p
~Fig. 4!, and the total Hamiltonian of the system has the fo

H5(
i , j

S si•sj1
3

4D , ~34!

wheresi andsj are the spins forming the singlet pairs.

FIG. 4. Pattern of independent singlet pairs~double lines!.
he
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o

irs

4. SPIN CORRELATION FUNCTIONS IN THE GROUND
STATE

We now look at the problem of calculating the norm a
the correlation function of the model described by the wa
function ~19!. The expression for the norm of the wave fun
tion G5^CsuCs& has the form

G5)
n

^Cln8mn8nn8rn8~n!uClnmnnnrn~n!&

3gnnln1a
grnmn1b

gnn8ln1a8 grn8mn1b8

5)
n

R
lnmnln1amn1b

ln8mn8ln1a8 mn1b8
5)

n
Ranbnan1abn1b

,

a i ,b i5$1, 2, 3, 4%, ~35!

whereRanbnan1abn1b
is a 4343434 matrix.

According to the selection rules for the projection of t
total spinSz, only 70 of the 256 elements in the expressi

^Cln8mn8nn8rn8(n)uClnmnnnrn(n)& are nonvanishing. Conse
quently, the matrixR also contains at most 70 elements.
we regard the elements ofR as Boltzmann vertex weights
the problem of calculating the norm reduces to the class
70-vertex model.

Since the exact solution for the 70-vertex model is u
known, numerical methods must be used to calculate
norm and the expected values.

To calculate the above-indicated expected values,
carry out Monte Carlo calculations on 20320-node lattices.
As mentioned, the ground-state wave function of the mo
depends on 14 parameters and, of course, cannot possib
analyzed completely. We confine the numerical calculatio
to the case in which the spinorClmnr depends on one pa
rametera:

Clmnr5cosa•Qlmnr1sina•~Almnr2Qlmnr!, ~36!

whereaP@2p/2; p/2#, the spinorQlmnr is symmetric with
respect to all indices, and

Almnr5wl~s1!wm~s2!wn~s3!wr~s4!. ~37!

In this case we have a one-parameter model with t
well-known limiting cases. One corresponds toa5p/4, for
which Clmnr5Almnr, and the system decomposes into ind
pendent singlet pairs~Fig. 4!; the other limiting case corre
sponds toa50 ~our model reduces to the two-dimension
AKLT model in this case, the spins at each node forming
quintet!.

In the given model there are four spinss51/2 at each
node, and the enumeration of each spin is determined by
order number of the lattice node to which it belongs and
its own number at this node. The spin correlation functi
therefore has the form

f i j ~r !5^si~n!•sj~n1r !&. ~38!

In determining the spin structure of the ground sta
however, it is more practical to consider the more straig
forward quantityF(r ):
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F~r !5 (
i , j 51

4

^si~n!•sj~n1r !&5^S~n!•S~n1r !&. ~39!

The functionF(r ) is left unchanged by a change of sig
of a. This invariance is attributable to the fact that the spin
(Almnr2Qlmnr does not contain a quintet component,
that all the functions of this spinor are orthogonal to all fun
tions of the symmetric spinor

^Ql8m8n8r8u~Almnr2Qlmnr!&50 ~40!

for all l, m, n, r andl8, m8, n8, r8.
In addition, since the total spin operatorS at a node

commutes withS25( i , j 51
4 si•sj , we then have

^Ql8m8n8r8u(
i 51

4

si u~Almnr2Qlmnr!&50. ~41!

It follows from Eqs.~35!, ~40!, and ~41! that sina and
cosa enter into the norm and into the expected va
^CuS(n)•S(n1r )uC& only in even powers, so thatF(r ) is
invariant under a change of sign ofa. We note, however,
that only the total correlation function, and notf i j (r ), pos-
sesses symmetry under a change of sign ofa. This assertion
is evident, for example, in Fig. 5, which shows the dep
dence off 31(a) on a as an illustration.

Figure 6 shows plots ofF(r ) for certain values of the
parametera. In every case it is found that the correlatio
function decays exponentially asr increases, differing from
the one-dimensional model in that the preexponential fa
also depends onr . Figure 7 shows the dependence of t

FIG. 5. Dependence of the spin correlation function^s3(1)s1(2)& on the
parametera.

FIG. 6. Dependence of the spin correlation functionF(r z) on the distance
along thex axis for various values of the parametera: (L) a50; (d) a
5p/10; (s) a56p/2.
r

-

-

r

correlation lengthr c on the parametera. The correlation
length is a maximum at the pointa50 ~two-dimensional
AKLT model!, decreases asa increases, and ata5p/4,
when the system decomposes into independent singlet p
~Fig. 4!, it is equal to zero. With a further increase ina the
correlation length increases and attains a second maximu
a5p/2. Like the correlation functionF(r ), the function
r c(a) is symmetric with respect toa. It is evident from Fig.
7 that the parametera has two rangess corresponding
states with different symmetries. In the rangeuau,p/4 the
correlation functionF(r ) exhibits antiferromagnetic behav
ior:

F~r !}~21!r x1r ye2ur u/r c, ~42!

whereas the spins at one node are coupled ferromagnetic
^si(n)•sj (n)&.0. On the other hand, in the rangep/4,uau
,p/2 the correlation functionF(r ) is always negative:

F~r !}2e2ur u/r c ~43!

and all the correlation functions at one node are also nega
~Fig. 8!.

These ranges have two end points in comm
a56p/4, wherer c50. Whereasa5p/4 corresponds to the
trivial partition of the system into independent singlet pai
the casea52p/4 is more interesting.

In this case we have

Clmnr52Qlmnr2Almnr, ~44!

and the matrix^Cl8m8n8r8uClmnr&, which enters into the
equation for the norm~35! and the expected values, is tran
formed into

FIG. 7. Dependence of the correlation length on the parametera.

FIG. 8. Dependence of the spin correlation function at one node on
parametera.
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^Cl8m8n8r8uClmnr&54^Ql8m8n8r8uQlmnr&

22^Al8m8n8r8uQlmnr&

22^Ql8m8n8r8uAlmnr&

1^Al8m8n8r8uAlmnr&. ~45!

The symmetry of the spinorQlmnr with respect to all the
indices leads to the relation

^Ql8m8n8r8uQlmnr&5^Al8m8n8r8uQlmnr&

5^Ql8m8n8r8uAlmnr&. ~46!

Equation~45! therefore acquires the form

^Cl8m8n8r8uClmnr&5^Al8m8n8r8uAlmnr&

5dll8dmm8dnn8drr8 . ~47!

From the equation for the norm~35! we then have

G5)
n

^Cln8mn8nn8rn8~n!uClnmnnnrn~n!&

3gnnln1a
grnmn1b

gnn8ln1a8 grn8mn1b8

5)
n

dlnln8
dmnmn8

dln1aln1a8 dmn1bmn1b8 522M2
. ~48!

The latter equation has been derived with allowance for
relationdnn8gnlgn8l85dll8 .

We now calculate the expected value^Cusi(n)•sj (n
1r )uC&. If nodes n and n1r are not nearest neighbor
^Cusi(n)•sj (n1r )uC& decomposes into the product of th
expected values

^Cusi~n!•sj~n1r !uC&

522M228^Cl8m8n8r8~n!usi~n!uClmnr~n!&

3^Cl-m-n-r-~n1r !usj~n1r !uCl9m9n9r9~n1r !&

3dll8dmm8dnn8drr8dl9l-dm9m-dn9n-dr9r-50. ~49!

Consequently, fora52p/4 all the correlation functions a
non-nearest neighbor nodes are equal to zero. But if nodn
and n1r are nearest neighbors, the corresponding corr
tion function assumes the form

^Cusi~1!•sj~2!uC&

522M227^Cl8m8n8r8~1!usi~1!uClmnr~1!&

3^Cl-m-n-r-~2!usj~2!uCl9m9n9r9~2!&

3gnl9gn8l-dll8dmm8drr8dm9m-dn9n-dr9r- . ~50!

The exact calculation of the latter expression yields the
lowing results~Fig. 3!:

^si~1!•sj~2!&52
25

768
, i 51, 2, 4, j 52, 3, 4,

^si~1!•s1~2!&5^s3~1!•sj~2!&52
15

256
, ~51!
e

a-

l-

^s3~1!•s1~2!&52
27

256
.

It follows from Eqs.~51! that

(
i , j 51

4

^si~1!•sj~2!&52
3

4
,

as in the case of independent singlets (a5p/4). It can also
be shown that all the correlations functions at one node
equal to zero.

In order to write the cell HamiltonianH1,2 in explicit
form for a52p/4, we introduce the notation

H l15s1~1!1s2~1!1s4~1!,

l25s2~2!1s3~2!1s4~2!, H s15s3~1!,

s25s1~2!,
~52!H h15 l1•s11 l2•s2 ,

h25 l1•s21 l2•s1 .

Accordingly, choosinglk51 (k51, 50), we can write
the cell HamiltonianH1,2 in Eq. ~26! in the form

H1,25P1/2~ l1!P1/2~ l2!P1~s11s2!1P3/2~ l1!P3/2~ l2!h3

1P3/2~ l1!P1/2~ l2!h41P1/2~ l1!P3/2~ l2!h5 , ~53!

where

h35
207

256
1

49

64
s1•s21

3

64
l1• l21

1

16
~s1•s2!~ l1• l2!

2
15

64
h22

1

32
h2

21
1

64
@6h1~ l1• l2!14h1

2~ l1• l2!

214h1
2~ l1• l2!21h.c.#,

h45
3

4
2

7

8
s1•s21

1

4
l1•s21

1

4
@~ l1•s1!~ l1•s2!1h.c.#,

h55
3

4
2

7

8
s1•s21

1

4F l2•s11
1

4
~ l2•s2!~ l2•s1!1h.c.G .

~54!

The cell HamiltonianH1,3 has the same form~53! but
with a change of notation according to Fig. 3:

H l15s1~1!1s2~1!1s3~1!,

l25s1~3!1s3~3!1s4~3!, H s15s4~1!,

s25s2~3!.
~55!

Of special interest is the case corresponding
a56p/2. Unfortunately, exact expressions for the corre
tion function cannot be obtained in this case, but the Ham
tonian can be written in explicit form. Since the node spin
Clmnr does not contain a quintet component fora56p/2,
the wave function of two nearest neighbor nodes~24! and
~25! will lack a component withS53. A more detailed
analysis shows that 19 multiplets are present in the w
function of two nearest neighbor nodes. In this case, the
fore, the cell Hamiltonian has the general form

H1,25 (
k51

51

lkPk
1,2. ~56!
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For a definite choice oflk in Eq. ~56! the cell Hamil-
tonian assumes the form

H125P2~ l11s1!1P2~ l21s2!1P1/2~ l1!P1/2~ l2!P1

3~s11s2!1P3/2~ l1!P1/2~ l2!P1/2~ l11s11s2!

1P3/2~ l2!P1/2~ l1!P1/2~ l21s21s1!, ~57!

where the notations~52! and~55! are used for nearest neigh
bor nodes along the horizontal and along the vertical, resp
tively.

Our results suggest that the spin correlation functio
decay exponentially with a correlation length;1 for an ar-
bitrary parametera. We also assume that the decay of t
correlation function is of the exponential type for the 1
parameter model as well, i.e., for any choice of node spi
Clmnr. This assumption is supported in special cases: 1! the
partition of the system into one-dimensional chains with
actly known exponentially decaying correlation functions;!
the two-dimensional AKLT model, for which the expone
tial character of the decay of the correlation function h
been rigorously proved.14 Further evidence of the stated a
sumption lies in the numerical results obtained for vario
values of the parameter in the one-parameter model.

5. GENERALIZATION OF THE MODEL TO OTHER TYPES OF
LATTICES

The wave function~7!, ~19! can be generalized to an
type of lattice. The general principle of wave function co
struction for a system of spins 1/2 entails the following:

1! Each bond on a given lattice has associated with
two indices running through the values 1 and 2, one at e
end of the bond.

2! Each bond has associated with it a metric spinorglm

with the indices of the ends of this bond.
3! Each node of the lattice~a node being interprete

here, of course, in the same sense as in Sec. 3! with m out-
going bonds has associated with it anmth-rank spinor with
the indices of the bonds adjacent to the node.

4! The wave function is the product of all spinors
nodes of the lattice and all metric spinors.

It is obvious that each index in the formulated wa
function is encountered twice, so that the wave function
scalar and, hence, singlet.

The wave function so constructed describes a system
which each lattice node contains as many spinss51/2 as the
number of bonds emanating from it.

To completely define the wave function, it is necess
to determine the specific form of all node spinors. The co
ficients that determine their form are then parameters of
model.

The Hamiltonian of such a model is the sum of the c
Hamiltonians acting in the spin space of the subsys
formed by the spins at two mutually coupled nodes:

H5(̂
i j &

Hi j . ~58!
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Each cell Hamiltonian is the sum of the projectors w
arbitrary positive coefficients onto all multiplets possible
the corresponding two-node subsystem except those pre
in the constructed wave function:

Hi , j5(
k

lkPk
i , j . ~59!

Then we haveHi , j uCs&50 and, accordingly,HuCs&50.
Consequently,Cs is an exact ground-state wave fun

tion.
We note that any two lattice nodes can be joined by tw

three, or more bonds, because this does not contradict
principle according to which the wave function is co
structed. Moreover, the general construction principle of
wave function is valid not only for translationally symmetr
lattices, but for any graph in general. As an example, let
consider the system shown in Fig. 9. The wave function
this system has the form

Cs5Cl1~1!Cl2m1n1r1~2!Cr2n2t1~3!Cm2t2~4!

3gl1l2
gm1m2

gn1n2
gr1r2

gt1t2
~60!

and describes a system containing ten spins 1/2.
If the given lattice has dangling bonds~as occurs for

systems with open boundary conditions!, the resulting wave
function represents a spinor of rank equal to the numbe
loose ends. The ground state of this kind of system is the
fore 2l-fold degenerate~wherel is the number of loose ends!.
For an open one-dimensional chain, for example, the gro
state corresponds to four functions—one singlet and th
triplet components. For higher-dimensional lattices this
generacy depends on the size of the lattice and incre
exponentially as its boundaries grow.

6. CONCLUSION

We have proposed a method for the construction of
exact wave function for a class of two-dimensional sp
models. In general this model depends on 14 parameters
its Hamiltonian is written as the sum of the Hamiltonians
nearest neighbor spin quartets. The exact ground-state w
function of the total system is also the exact wave function
each cell Hamiltonian. Since 20 of the 70 multiplets of tw
nearest neighbor quartets are present in the exact wave f
tion, the cell Hamiltonians are the sums of the project
with positive coefficients onto the other 50 multiplets. The
coefficients are the excitation energies of the correspond
multiplets. Different values of the coefficients correspond
different Hamiltonians. In this case, however, the groun

FIG. 9. Example of a graph corresponding to the wave function~60!.
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state wave function itself and the spin correlation functio
in the ground state are identical for all Hamiltonians. Th
means that the ground-state wave function, as defined
Shastry and Sutherland,18 is superstable.

We have carried out Monte Carlo calculations of t
spin correlation functions in the ground state for the spe
case of a model that depends on one parameter. For all
ues of the parameter the spin correlation functions de
exponentially with distance despite the complicated dep
dence of the correlation functions of nearest neighbor sp
on the model parameter. It is justifiable to expect the s
correlations to decay exponentially in the general 1
parameter model as well.

In closing, we are pleased to acknowledge Prof. M. Y
Ovchinnikov for helpful discussions of the problems trea
in the article. This work has received financial support fro
the Russian Fund for Fundamental Research~Grants No. 96-
03-32186 and No. 97-03-33727! and from the Program fo
Support of Leading Scientific Schools~Grant No. 96-15-
97492!.

APPENDIX

In Sec. 3 we have constructed the singlet wave funct

Cs5)
n

Clnmnnnrn~n!gnnln1a
grnmn1b

~A1!

for a system of 4M2 spinss51/2 on a square lattice. Th
following Hamiltonian was specially chosen for the resulti
wave function:

H5(
n

Hn,n1a1(
n

Hn,n1b , ~A2!

for which the wave function~A1! is the zero-energy groun
state:

HuCs&50. ~A3!

We now show that the ground state of the system
nondegenerate, i.e., the wave function satisfying Eq.~A3! is
unique.

Inasmuch as the Hamiltonian~A2! is a sum of nonnega
tive definite cell Hamiltonians, any function satisfying E
~A3! must satisfy all the cell equations

Hi , j uC&50. ~A4!

This means that Eqs.~A3! and ~A4! are equivalent.
We prove the nondegeneracy of the ground state of

Hamiltonian~A2! as follows. We first write the general form
of the wave function for the system in question. We th
determine the general form of the wave function satisfy
one of the cell equations~A4!. Making note of the conditions
imposed on the general form of the wave function by ea
cell equation and, at the same time, simultaneously satisf
these conditions for all the cell equations, we obtain the g
eral form of the wave function satisfying all the equatio
~A4! and, hence, satisfying the total Hamiltonian~A2!.

Any wave function of the given system can be written
the form
s

by

l
al-
y

n-
s

n
-

.
d

n

s

e

n
g

h
g

n-

C5 (
lmnr

c~lmnr!•)
j

Fl jm jn jr j~ j !, ~A5!

where the summation is over the 4M2 indicesl i , m i , n i , r i ,
c(lmnr) denotes coefficients that depend on these indic
and Fl jm jn jr j( j ) are arbitrary fourth-rank node spinors~in
general, spinors at different nodes can differ!.

We require that the wave function~A5! obey the cell
equation

Hn,n1auC&50. ~A6!

By the construction of the singlet wave function~A1!,
which is matched by the cell HamiltonianHn,n1a , any wave
function at nodesn andn1a that satisfies condition~A6! is
a linear combination of the 64 functions contained in t
expression

Clnmnnnrn~n!Cln1amn1ann1arn1a~n1a!gnnln1a
, ~A7!

because the cell HamiltonianHn,n1a by definition is the sum
of the projectors onto all multiplets@Clnmnnnrn(n) and
Cln1amn1ann1arn1a(n1a) are definite node spinors occurrin
in the wave function~A1!#. We note that these 64 function
can be linearly dependent~as is the case, for example, for th
two-dimensional AKLT model!.

Thus, the general form of the wave function satisfyi
Eq. ~A6! can be written

C5 (
lmnr

c~lmnrunnln1a!gnnln1a
Clnmnnnrn~n!

3Cln1amn1ann1arn1a~n1a! )
jÞn,n1a

Fl jm jn jr j~ j !,

~A8!

wherec(lmnrunnln1a) are coefficients that depend on th
indicesl i , m i , n i , r i exclusive of the indicesnn andln1a ,
andFl jm jn jr j( j ) are arbitrary node spinors.

Comparing the functions~A5! and ~A8!, we deduce the
following conditions that must be met by the function~A5!
to obtain the general form of the wave function satisfyi
Eq. ~A6!:

1. The spinors at nodesn andn1a must coincide with
the node spinors of the wave function~A1!:

Flnmnnnrn~n!5Clnmnnnrn~n!,

Fln1amn1ann1arn1a~n1a!5Cln1amn1ann1arn1a~n1a!.
~A9!

2. The coefficientsc(lmnr) have the form

c~lmnr!5c~lmnrunnln1a!gnnln1a
. ~A10!

From the equation

Hn,n1buC&50 ~A11!

we deduce analogous conditions on the general form of
wave function~A5!:

Flnmnnnrn~n!5Clnmnnnrn~n!,

Fln1bmn1bnn1brn1b~n1b!5Cln1bmn1bnn1brn1b~n1b!,
~A12!
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c~lmnr!5c~lmnrurnmn1b!grnln1b
.

The simultaneous satisfaction of all the cell equatio
~A4! requires consolidation of the conditions imposed
these equations on the general form of the wave func
~A5!. Combining these conditions in succession, in each s
we obtain the general form of a wave function satisfying
equations corresponding to these conditions. Upon satisf
all the conditions, we obtain the general form of the wa
function satisfying all the cell equations~A4! and, hence,
satisfying Eq.~A3!:

Cs5 (
lmnr

c~lmnrulmnr!

3)
j

Cl jm jn jr j~ j !gn jl j1a
gr jm j1b

, ~A13!

wherec(lmnrulmnr)5c is a constant.
Comparing the wave functions~A1! and ~A13!, we

readily perceive that, to within an arbitrary factor, the ge
eral form of the wave function satisfying Eq.~A3! coincides
with the wave functionCs . Consequently,Cs is the nonde-
generate ground-state wave function of the Hamilton
~A2!.
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Resistive transition and upper critical field in underdoped YBa 2Cu3O61x single crystals
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A superconducting transition in the temperature dependence of theab-plane resistivity of
underdoped YBa2Cu3O61x crystals in the rangeTc&30 K has been investigated. Unlike the case
of samples with the optimal level of doping, the transition width increased insignificantly
with magnetic field, and in the rangeT&13 K it decreased with increasing magnetic field. The
transition pointTc(B) was determined by analyzing the fluctuation conductivity. The
curves ofBc2(T) measured in the regionT/Tc*0.1 did not show a tendency to saturation and
had a positive second derivative everywhere, including the immediate neighborhood of
Tc . The only difference among the curves ofBc2(T) for different crystal states is the scales ofT
andB, so they can be described in terms of a universal function, which fairly closely
follows Alexandrov’s model of boson superconductivity. ©1999 American Institute of Physics.
@S1063-7761~99!02301-X#
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1. INTRODUCTION

The nature of high-temperature superconductivity
presently one of the most interesting subjects of the s
state physics. An important topic of research in this field
the temperature dependence of the upper critical fieldBc2 .
In conventional~low-temperature! superconductors, in ac
cordance with the BCS theory, the curveBc2(T) is described
by a universal functionbBCS(t) in terms of reduced vari-
ables: the temperature is scaled by the zero-field trans
temperature,t5T/Tc , and the magnetic field is scaled by th
product of Tc and the derivative ofBc2(T) at Tc : b
5B/@Tc(2dBc2 /dT)T5Tc

#.1 The functionbBCS(t) is linear

in the neighborhood ofTc and saturates tob.0.7 att50. In
high-temperature superconductors~HTSC! the behavior of
Bc2(T) is radically different. In Tl2Ba2CuO6

2 and
Bi2Sr2CuOy

3 films, and in K0.4Ba0.6BiO3 single crystals,4,5 a
positive second derivative and a sharp increase inBc2(T) at
low temperature have been detected. Similar propertie
functionBc2(T) have been observed in other HTSC system
namely, in YBa2(Cu12yZny)3O61x with a critical tempera-
ture lowered by the strong scattering6 and
Sm1.85Ce0.15CuO42y with n-type conductivity.7

HTSC is not the only class of materials where the up
critical field does not follow the BCS universal functio
bBCS(t). But, as concerns HTSC, such deviations are pr
ably present in all materials of the family, and magnitudes
these deviations are enormous.2,3 Therefore, there is every
reason to seek fundamental causes of these deviations, w
are general for all HTSC.

Several models have been suggested. Ovchinnikov
Kresin8 focused attention on magnetic impurities, which,
1481063-7761/99/88(1)/9/$15.00
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they assumed, cause pair breaking and effectively supp
superconductivity nearTc . The tendency to magnetic orde
ing at lower temperatures results in a lower spin-flip scat
ing amplitude, thus enhancing superconductivity. The pr
ence of magnetic impurities is a common feature of HTS
since current carriers in most of them are due to dopi
which generates magnetic defects at the same time.

Spivak and Zhou9 studied the role of Landau quantiza
tion combined with a random potential. The quantizati
leads to a higher density of states on Landau levels, whe
the random potential brings to the Fermi level Landau s
levels with opposite spins at points close to one anothe
space. In this case, the random potential must satisfy
opposite conditions: its variation over the coherence lengtj
should be larger than the Zeeman splitting, on the ot
hand, scattering by this potential should not wipe away pe
in the density of states. The HTSC structure favors b
these conditions: fluctuations in the concentration of dopa
which are at the same time scattering centers, should o
even in high-quality crystals, but these scatterers and cur
carriers are separated in space.

It is possible that there are more fundamental cause
the peculiar shape ofBc2(T) curves that can be put down t
an exotic nature of superconductivity in HTSC. One exam
is the ‘‘bipolaron’’ or, in a more general approach, the ‘‘b
son’’ model of superconductivity suggested by Alexandr
and Mott.10 The model assumes that pairs~charged bosons
e.g., bipolarons! are preformed, and the superconducti
transition consists in Bose-condensation of these pairs. In
presence of a random potential, the curve ofBc2(T) has a
positive curvature. The conventional superconductivity in
Fermi liquid can transform to the boson superconductivity
© 1999 American Institute of Physics
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the electron–phonon coupling is strong and the carrier d
sity is low. Again, HTSC materials are good candidates
realization of such a scenario. Their carrier concentratio
lower than in conventional metals and drops further w
decreasing doping level, whereas the coupling cons
l*1.

Abrikosov suggested for HTSC a model whose cen
component is a saddle-like singularity in the electron sp
trum. This model predicts, in particular, a positive curvatu
of the Bc2(T) curve11 because the problem becomes effe
tively one-dimensional due to the saddle point; as a res
the magnetic field’s capability of destroying superconduc
ity is limited considerably. In the absence of the param
netic limit, the model yields the divergent functionBc2(T),
but if the paramagnetic limit is taken into account, the cr
cal field is limited to a finite value.

The experimental data accumulated over recent years
insufficient for making an ultimate choice of one of the
model. Further research is needed, and the present pape
step in this direction. We present an investigation of the
fect of a magnetic field on the resistivity of YBa2Cu3O61x

single crystals at doping levels below the optimal one. T
aim of this work was to measure the temperature depend
of Bc2 in this material atx such thatTc,30 K and derive
from these data changes in parameters that controlBc2 when
Tc→0.

The paper is organized as follows. Section 2 prese
basic theoretical concepts concerning the supercondu
phase diagram in a magnetic field and the behavior of c
ductivity around the superconducting transition point; th
are essential in the analysis of experimental data. Sectio
describes sample fabrication techniques and experime
procedures, Sec. 4 reports on experimental results.
curves r(T) and their evolution induced by the magne
field are discussed in Sec. 4.1. The derivation ofBc2(T)
from resistance-versus-temperature data for HTSC has
mained a controversial issue,12,13 therefore this topic is given
special treatment in Sec. 4.2. Since the transition broade
induced by magnetic field is insignificant, qualitative conc
sions concerning the behavior ofBc2(T) are not affected by
the specific routine employed in determination of the sup
conducting transition point. Nonetheless, in determin
Bc2(T) quantitatively, we analyzed the fluctuation condu
tivity in the normal state as a function of temperature. S
tion 4.3. discussesBc2(T) derived from experimental data
the curvature ofBc2(T) curves proved to be positiv
throughout the available temperature range, including
close neighborhood ofTc ; no signs of saturation in the low
temperature range have been detected; the experimenta
are compared with existing models.

2. BASIC THEORETICAL CONCEPTS

2.1. Phase diagram

The phase diagram of a type-II superconductor in
B2T plane in the mean-field approximation contains
Meissner region, where magnetic field is fully ejected from
sample, a mixed state region, where a lattice of Abrikoso
flux lines exists, and a normal metal region. These regi
n-
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are separated by lines of second-order phase transiti
Bc1(T) between the Meissner and mixed phases andBc2(T)
between the mixed state and normal metal.

Beyond the mean-field approximation, thermal fluctu
tions of the order parameter slightly change the phase
gram configuration. Now, it contains a region of ‘‘vorte
liquid,’’ where fluctuations change largely the order para
eter phase~which can be interpreted in terms of free motio
of Abrikosov’s flux lines!, and a region of critical fluctua-
tions close toBc2(T), where the order parameter amplitud
fluctuates and its mean value changes rapidly with the t
perature or magnetic field intensity. There are supercond
ing fluctuations aboveBc2(T) also, but their amplitude is
small and decreases away from the line ofBc2(T). The phase
transition to the superconducting state with a long-range
der established occurs on the boundary between the vo
liquid and vortex lattice@melting line Bm(T)#, whereas the
curve ofBc2(T) determined in the mean-field approximatio
defines the line of a crossover from the normal metal, wh
the order parameter fluctuation amplitude is low, to the v
tex liquid, where the magnitude of the order parameter
almost unity.14–16

In conventional superconductors, the regions of criti
fluctuations and vortex liquid are quite narrow and ess
tially unobservable. The melting lineBm(T) coincides with
Bc2(T), therefore, the mean-field approximation adequat
describes the phase diagram. In HTSC the situation is dif
ent. Owning to the high critical temperature, small cohere
length, and high anisotropy, fluctuations play a more imp
tant part, and the vortex liquid phase occupies a consider
region of the phase diagram, soBm and Bc2 are separated
Since fluctuations broaden features of field dependencie
transport and thermodynamic properties at pointBc2 , it is
most difficult to determine this point in experiment. Non
theless, the value ofBc2(T) is still very important since this
is the parameter that controls the behavior of thermodyna
quantities in the region far from the line of transition, whe
the mean-field approximation is valid.

In materials with strong pinning, the phase diagram
further modified: the pinning destroys the order in the vor
lattice and transforms it to a vortex glass. The melting line
replaced by the ‘‘irreversibility line’’B* (T), above which
vortices are depinned by thermal fluctuations and mo
freely even at very low current densities, which results in
finite resistivity and reversible dc magnetization. Belo
B* (T) vortices are pinned in the low-current limit, and th
magnetization curve shows a hysteresis.

2.2. Resistive transition

In high-temperature superconductors with optimal do
ing, curves ofr(T)uB form a fan with a common transition
onset point, so the positions of the transition onset are alm
independent of the magnetic field.14,17 The drop in the resis-
tivity around the transition onset is controlled by the cont
bution of superconductive fluctuations to the conductivi
The characteristic field of fluctuation suppression isBc2 ,
hence the shift of the transition onset should follow the fun
tion Bc2(T). On the low-temperature side, the resistivi
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should vanish when the vortex motion is frozen. Quali
tively, the line on theB2T phase diagram where the vorte
mobility becomes significant is the ‘‘irreversibility line’
B* (T). Thus, the resistive transition is confined by the lin
Bc2(T) and B* (T) and is associated with the vortex liqu
region on the phase diagram so that the fan-like appear
of resistivity curves is due to broadening of this region w
the magnetic field while the line ofBc2(T) is almost vertical.

The breadth of the vortex liquid region, hence the tra
sition width, is determined by the relation between pinni
and fluctuations. The vortex depinning is favored by t
small coherence lengthj, high temperatures, and weak co
pling between neighboring superconducting layers of Cu2,
i.e., by the high anisotropy. Variations in the doping lev
~carrier densityn) to both sides from the optimal dopingnopt

lead to lowerTc and largerj. On the other hand, the aniso
ropy is stronger at lower doping and weaker at higher dop
levels. The resistivity curves of overdoped HTSC samp
with high carrier densities and low anisotropy are similar
those of conventional superconductors with stro
pinning.2,18

The difference between over- and underdoped states
demonstrated by comparing La22xSrxCuO4 samples with
differentx.18 Whereas a magnetic field ofB58 T broadened
by 15–20 K the resistive transition in an underdoped sam
with x50.08 andTc'30 K, the transition curve in an over
doped sample withx50.20 and approximately the sameTc

was shifted by magnetic field without changing its shape18

This observation was confirmed by other researchers,19,20

who also reported that decreasing the oxygen conten
YBa2Cu3O61x thin films and single crystals considerably e
hances effects originated from vortex motion, in particul
increases transition broadening in the magnetic field.
these experiments, however, used samples withTc*40 K,
and it remained unclear whether this tendency should pe
in the range of lowTc .

There is an alternative interpretation of the resistive tr
sition in cuprates, which attributes most of the change in
resistivity to a phase transition between the vortex liquid a
vortex lattice~vortex glass! at Bm(T).14,21,22In this case, the
resistive transition is decomposed into a resistivity jump
the Bm(T) line @well below Bc2(T)# and a crossover on line
Bc2(T),21 which can produce only slight changes in resist
ity.

The high conductivity in the normal state of overdop
cuprates might in fact mask the transition from the norma
vortex liquid state.2 But changes in transport characteristi
aroundBc2 are evident even in high-quality YBa2Cu3O61x

crystals with optimal doping and very weak pinning.23 They
should be the much more notable in underdoped samp
whose conductivity in the normal state is essentially lowe

3. EXPERIMENTAL

YBa2Cu3O61x single crystals were grown by slow coo
ing the melt containing 10.0 to 11.4 wt.% of YBa2Cu3O61x

and eutectic mixture of 0.28 BaO and 0.72 CuO as a solv
with subsequent decanting of the residual flux. For our
periments, we selected single crystals without visible si
-
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of block structure and shaped as plates 20 to 40mm thick
with areas of several square millimeters. After oxygenat
at 500 °C, they hadTc'90–92 K and fairly narrow resistive
superconducting transitions withDT,1 K.

In YBa2C3O61x , current carriers~holes! are generated
in CuO2 planes as a result of capturing electrons in layers
CuOx chains. The hole density depends on the oxygen c
tent x and configuration of oxygen atoms in chains in Cux

layers. Consequently, the carrier density in YBa2Cu3O61x

~along with the superconducting transition temperature! can
be varied by two methods: changing the oxygen content
varying its ordering in CuOx layers.

The technique for changing the oxygen content is
high-temperature annealing, and it allows one to produce
whole range of states from antiferromagnetic insulator to
timally doped superconductor. The annealing temperatur
a given partial pressure of oxygen controls the oxygen c
tent in a crystal and is a convenient technological param
in processing superconducting samples.24 In order to reduce
the oxygen content tox50.37–0.47, we annealed crystals
air at 700–800 °C and then quenched them in liquid nitrog
to prevent exchange of oxygen with the atmosphere du
cooling.

The second technique allows us to vary the carrier d
sity over a relatively narrow interval by changing the avera
length of oxygen chains at constantx.25,26 In chains of finite
lengths, there areq oxygen atoms perq11 copper atoms,
hence, one has (q11)/q electrons per oxygen atom. For th
reason, oxygen atoms in shorter chains are less efficien
capturing electrons from CuO2 planes. The average chai
length can change owing to the high diffusion mobility
oxygen in CuOx layers at the room temperature and abo
Longer chains have lower energy, but they contribute les
the entropy, which makes them less preferable at high t
peratures. The balance between these two factors determ
the average chain length in equilibrium~hence, the numbe
of holes! as a function of temperature. The relaxation tim
strongly depends on temperature, so rapid cooling freezes
oxygen configuration, thus fixing the carrier density. In re
experiments, we heated crystals to 120–140 °C and t
quenched them in liquid nitrogen. This procedure nota
reduced the number of holes in the sample, hence lowe
Tc . After that samples could be stored in liquid nitrogen f
indefinitely long times without any changes whatsoever. I
sample was exposed to the room temperature, the ca
concentration increased gradually owing to oxygen coag
tion in longer chains. This aging process could be monito
continuously by measuring the sample resistance at a
stant temperature and interrupted at any moment by coo
the sample, thus we could obtain any intermediate value
Tc . The aging of a sample at the room temperature for s
eral days returns it to its initial equilibrium state. Since
restructuring processes in the oxygen subsystem procee
relatively low temperatures, this method allows one to obt
a sequence of sample states with minimal differences in c
figurations of defects and pinning centers.

All in all, we have studied three crystals at several c
rier densities in each. The sample parameters are liste
Table I. The different crystals are numbered 1 to 3, th
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states with different oxygen contents are labeled a and b,
the quenching states are referred to as itquenched, itinte
diate, and itaged. The ratio between resistances at the r
temperature and 50 K, when the free path is largely c
trolled by defect scattering, is a characteristic of crystal
rity. This parameter of sample 2 is a factor of about th
higher than in samples 1 and 3. ParameterBsc will be dis-
cussed in Sec. 4.3.

We measured the resistance in theab plane using a four-
terminal circuit. Since YBa2Cu3O61x crystals with low oxy-
gen contents are highly anisotropic, it is very important t
the current be uniformly distributed over the sample thic
ness, so that only one component of the resistivity tenso
measured. To this end, the current contacts were fabric
over the entire surfaces of two opposite crystal faces.
contacts were made by a silver paste and fixed by annea
before all thermal manipulations designed to vary the h
concentration. The resistance was measured by the stan
technique using a nanovolt-range lock-in amplifier at 23 H
The probe current was weak enough to ensure the lin
regime and avoid overheating even at the lowest temp
tures. The uncertainty in the geometrical factor restricted
accuracy of absolute measurements of conductivity to 1
20%, nonetheless, note that the geometrical factor of e
sample was the same in all conducting states.

Most of experiments were performed in a cryostat with
3He pumping system, which allowed us to vary the tempe
ture between 0.3–300 K.27 At temperatures of 0.3–1.2 K th
sample was immersed in liquid3He, at higher temperatures
was in the3He atmosphere at a pressure of several torr s
ing as a heat-exchange gas. The temperature was mea
by a carbon resistance thermometer calibrated by a refer
platinum thermometer,4He vapor pressure, and cerium
magnesium nitrate in appropriate temperature ranges.
magnetic field of up to 8.25 T was applied along thec-axis.

Sample 3b in the aged state with lowTc was tested in a
dilution refrigerator at temperatures down to 30 mK a
magnetic fields of up to 14 T.

4. RESULTS

4.1. Temperature dependence of resistivity

In our experiments on samples withTc>30–35 K
~samples 2b quenched and aged!, we record fans ofr(T)uB

curves similar to those reported by other authors.19,20 In

TABLE I.

Samples
Sample r room/r50 K x Degree of quenching Tc , K Bsc , T

quenched 16.5 3.0
1a 3 0.43 intermediate 20.5 3.8

aged 25.5 8.9
2a 8 0.41 aged 19 2.8
2b 10 0.47 quenched 38.5 120

aged 44.5 240
3a 3 '0.37 quenched 0 2

aged 6.3 0.61
3b 3 '0.37 aged '3 2
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samples with lowerTc , the effect of magnetic field on the
resistive transition is radically different, and in this public
tion we concentrate on these effects, namely, the behavio
YBa2Cu3O61x samples in states withTc<30 K ~samples 1a,
2a, 3a, and 3b in all quenching states!. In these samples
magnetic field shifts the transition without a notable broa
ening ~Fig. 1!, which indicates that the effect of vortex mo
tion on the shape of transition curve no longer dominat
Nonetheless, the shape of the transition curve is affected
the magnetic field, and one can see on curves of tempera
derivatives]r/]T plotted on the right of Fig. 1 that thes
changes are nonmonotonic. Since the normal state resist
is almost constant with temperature, the peak amplitude
the derivative curve is inversely proportional to the resist
transition width. These graphs clearly show that, irrespec
of Tc (<30 K!, the transition width is maximum at abou
13–14 K. If the zero-fieldTc is higher, the transition first
shifts to lower temperatures with magnetic field and bro
ens ~Fig. 1a!. Then, below 13–14 K, the transition narrow
concurrently with its shift to lower temperatures. IfTc is
initially lower than 13–14 K~Fig. 1b and 1c!, the transition
is narrowed by magnetic field concurrently with its shift
lower temperatures from the start, and the slope of the tr
sition curve in magnetic field becomes steeper than at z
field.

The comparison between samples 1a and 2a dem
strates that the nonmonotonic change in the transition w
with magnetic field is a reproducible property and is litt
affected by the sample quality. The superconducting tra
tion temperatures of these two samples were driven to
value by annealing~Fig. 1b and 1c!, but their parameters in
the normal state were notably different. Sample 2a contai
less impurities and structural defects, as a result, its resis
ity aroundTc was twice as small~Fig. 1!, it dropped more
rapidly in the process of cooling from the room temperatu
to 50 K ~Table I! and showed a smaller increase in the ran
of lower temperatures. Nonetheless, irrespective of all th
differences, both the transition shift rate in magnetic fie
and the evolution of transition curves of these samples
similar. Narrowing of the resistive transition in an unde
doped YBa2Cu3O61x with increasing magnetic field in this
temperature range was detected by Seidleret al.,25 but, since
their measurements were presented in a different form,
difficult to compare them directly with our results.

Such a behavior of transition curves is observed for
samples withTc>6 K. In states with lower transition tem
peratures, we were not able to achieve sufficiently narr
transitions at zero magnetic field to measureTc and transi-
tion width. Therefore, the measurement data for sample
will be given and discussed separately in Sec. 4.3.

4.2. Derivation of B c2„T… from resistance measurements

The absence of the notable transition broadening in m
netic field in YBa2Cu3O61x samples with lowTc indicates
that, unlike samples withTc>30–35 K, they have a nar
rower region of the ‘‘vortex liquid’’ on the phase diagram
The transition width, however, is not so small that it could
neglected in determiningBc2(T). Since the pointBc2 is not
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FIG. 1. Conductivityrab ~on the left! and its de-
rivative ~on the right! at various magnetic fields
aligned with thec-axis. ~a! Sample 1a in the aged
state; applied fields~from right to left!: 0, 0.06,
0.12, 0.23, 0.35, 0.6, 0.8, 1.2, 1.6, 2.2, 3.0, 3.8, 4
5.5, 6.7, and 8.2 T.~b! Sample 1a in the intermedi-
ate state; applied fields: 0, 0.06, 0.12, 0.23, 0.3
0.6, 0.8, 1.2, 1.6, 2.2, 3.0, 3.8, 4.6, 5.5, 6.7, and 8
T. ~c! Sample 2a in the aged state; applied field
0.12, 0.23, 0.5, 0.8, 1.2, 1.6, 2.2, 3.0, 3.8, 5.5, 6
and 8.2 T.
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marked by a sharp feature on curves ofr(T), there is a good
reason to determine this point by fitting a theoretical cu
describing the crossover between the normal metal and
tex liquid to the experimental data. In developing this a
proach, let us consider the sample conductivity as a sum
the normal and fluctuation components:s(T)5sn(T)
1s f l(T).

The fluctuation conductivity s f l in quasi-two-
dimensional systems in zero field is usually described by
Lawrence–Doniach formula:

s f l5
1

16

e2

\de F11S 2jc~0!

d D 2 1

e G21/2

, e[ ln
T

Tc
, ~1!

whered is the interplane separation. Friedmanet al.28 show
that, even in analyzing optimally doped YBa2Cu3O61x crys-
tals with the resistivity anisotropy no higher than 30–10
one can neglect the factor in brackets which takes into
count effects of the third dimension and use Aslamazo
Larkin’s expression for two dimensions:
e
r-
-
of

e

,
c-
–

s f l5
1

16

e2

\d
e21. ~2!

In oxygen deficient crystals, the anisotropy is up
(5 – 10)3103,24 therefore Eq.~2! is a fortiori valid through-
out the temperature range in question, except the neigh
hood ofTc .

There is no consistent theoretical description
s f l(T,B) in nonzero magnetic field for arbitraryBc2(T). Ul-
lah and Dorsey16 analyzeds f l in a system with strong fluc-
tuations in magnetic field and suggested a scaling expres
for the fluctuation conductivity, which is often used in d
scribing the resistive transition and determiningBc2(T) of
cuprate superconductors.29–31 Since their approach is base
on the mean-field approximation and assumes a linear de
denceBc2(T) near Tc , it does not apply whenBc2(T) is
strongly nonlinear.~It will be shown below that this is the
case in our samples.! Nonetheless, in the region well abov
Tc(B) (eB*0.1), where Gaussian fluctuations dominate
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FIG. 2. Characteristic points of the superconduc
ing transition in sample 2a plotted in~a! B2T and
~b! r2T planes~the resistivity is normalized to
function rn(T) in Eq. ~4!, which was used in de-
termination of the fluctuation conductivity!: ~open
circles! ‘‘irreversibility line,’’ r55mV•cm;
~squares! peak of derivative]r/]T; ~full circles!
Bc2(T); ~triangles! ‘‘transition onset,’’ ]s f l /]T
5102 (V•cm)21/K.
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formula similar to that suggested by Aslamazov and Lar
can be used:

s f l}
1

eB
, where eB5 ln

T

Tc~B!
, ~3!

in both zero and finite magnetic fields~see Ref. 16 and ref
erences therein!. Here Tc(B) is the functional inverse o
Bc2(T). This formula also assumes, generally speaking
linear dependenceBc2(T), but a possible change in the e
ponent of this function should lead only to a small systema
shift of the resulting curveTc(B).

In contrast to the case of optimal doping, the norm
conductivity in our samples is low, of order ofe2/\d ~Fig.
1!, if d is assumed to be of order of the lattice consta
11.7 Å. Simple estimates based on the Aslamazov–La
formula ~2! with a reasonable value ofd indicate that the
contribution of fluctuations,s f l , should be several percen
of sn even ateB*0.5. This makes determination ofsn(T)
more difficult. The difficulties are exacerbated by the fa
that the normal state resistivity has a minimum in the reg
of 30–40 K and increases at lower temperatures. Theref
we decide to selecta priori the functionsn(T) with several
fitting parameters. The fitting to experimental data is p
formed by varying all parameters in boths f l(T) and
sn(T).29 This procedure could hardly produce sensible
sults if each curver(T) were described by a different set o
parameters. Fortunately, the magnetoresistance
YBa2Cu3O61x crystals in the discussed region of fields a
temperatures is negligible in the normal state, i.e., the sh
of sn(T) is constant with the magnetic field.

Our previous investigations of YBa2Cu3O61x single
crystals near the boundary of the superconducting regio
the phase diagram32 revealed that the normal resistivity o
such samples atT,20 K is well described by a logarithmi
function. In a broader temperature range (0.5 K,T,150 K!
the conductivity is very closely described by the empiric
function

sn~T!5rn
215@a2b logT1gT#21. ~4!
n
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This function with three fitting parameters is used in proce
ing our experimental data.

By approximating the conductivity in zero magnet
field by a sum ofsn from Eq. ~4! ands f l from Eq. ~2!, Tc

and d being fitting parameters, along witha, b, andg, we
obtain reasonable valuesd58 –15 Å, which are in fair agree
ment with the YBa2Cu3O61x lattice constant along the
c-axis. This indicates that the Aslamazov–Larkin formu
yields a correct estimate of the fluctuation conductivity
CuO2 layers and its application is justified. The normal co
ductivity is fitted so as to obtain the best approximation
the fluctuation conductivity throughout the range of magne
field. Nonetheless, the uncertainty in the normal resistiv
was quite considerable. It turned out, however, that calcu
tions of the transition temperature are little affected by a
missible variations insn(T). The resulting uncertainties in
the transition temperature are shown in Fig. 2.

This procedure enable us to deriveBc2(T) in the mean-
field approximation from our measurements. Since the
sulting curve ofBc2(T) is nonlinear and it casts doubt on th
applicability of Eq.~3!, we deem it necessary to demonstra
that, on the qualitative level, the shape of theBc2(T) curve is
not affected by subtleties of the data processing, owing to
absence of considerable transition broadening. Figure
shows the curve ofBc2(T) for sample 2a, along with its
other characteristic fields, namely, the ‘‘irreversibility line
determined atr55 mV•cm, positions of the peak of deriva
tive ]r/]T, and the line of ‘‘transition onset,’’ which was
defined as a point were]s f l /]T5102 (V•cm)21/K. These
lines are plotted in theB2T diagram in Fig. 2a, and Fig. 2b
shows positions of these points on the transition curves.~It is
noteworthy that the values ofBc2 are fairly close to those
which would be obtained by defining the transition point a
constant resistivity levelr/rn50.8.! Figure 2a clearly shows
that all curves in theB2T plane have positive curvatur
throughout the range of studied magnetic fields, includ
the region of low fields. This leads us to a conclusion th
even if the data processing procedure yields erroneous va
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of Bc2 , the temperature dependence of this paramete
qualitatively correct. Our further analysis, however, will b
based on the values derived from measurement data fo
fluctuation conductivity.

4.3. Universal temperature dependence of the upper critical
field

Measurements ofBc2(T) in three samples and five dif
ferent states~all the states of samples 1a and 2a and the a
state of sample 3a! are given in Fig. 3. It turned out that th
curves for all the states can be brought to coincidence
varying the scales of the magnetic field and temperature,

Bc25Bscbsc~ t !, t5T/Tc , ~5!

whereBsc is the parameter characterizing the state andbsc(t)
is a universal function~Fig. 4!. Functionbsc(t) contains an
arbitrary numerical factor. In Fig. 4 parameterBsc is defined
as Bc2 at a specific reduced temperature equal for
samples, namely,Tc/2, i.e., the curves ofBc2(T) were
brought to coincidence at two points, namely, att51 and
t50.5. The values ofBsc for different states are listed in
Table 1 and plotted in the inset to Fig. 4 as a function of
zero-field transition temperature. These points lie on o
smooth curve, even though they are derived from meas
ments of the three different samples. The characteristic s
of magnetic field decreases~accordingly, the coherenc
length increases! with decreasing doping level more rapid
thanTc , i.e., Bsc is a superlinear function ofTc . This may
be the main cause of the narrowing of the vortex-liquid
gion in theB2T phase diagram. As a result, YBa2Cu3O61x

crystals with a high degree of underdoping withTc&30 K do
not display notable broadening of the resistive transition
to magnetic field.

The functionBc2(T) was measured on sample 2b in
very narrow temperature range,T/Tc*0.9, owing to the
limit on available magnetic fields. Its second derivative

FIG. 3. Temperature dependenceBc2(T) in different states. Data for sampl
1a in ~empty triangles! quenched,~open circles! intermediate, and~squares!
aged states; aged states of~crosses! sample 2a and~full inverted triangles!
sample 3a.
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this interval is also positive and all measurements ofBc2(T)
can be fitted to function~5!. But, since no data for lowe
temperatures are available and the expected critical fields
very high, the measurements of sample 2b have not b
analyzed in this context.

Functionbsc(t) is much different frombBCS(t). First, it
has no linear section neart51. This statement relies on Eq
~5!, since for eachBc2(T) curve the limited precision allows
one to draw a straight line of a small slope in the regi
within 1–2 K nearTc , but if we consider the samples wit
higherTc , this linear region would be more narrow, and t
slope of functionbsc(t) at t51 is smaller, which leads us to
a conclusion that the universal curve has no linear sec
neart51.

Second,bsc continues to rise ast→0. Figure 4 shows
this tendency in the region down tot50.1. In order to test
the range of lowert, we investigated sample 3b wit
Tc'3 K at millikelvin temperatures. Its transition curve
too wide to determine quantitativelyTc and Bc2(T). None-
theless, the measurements yield important qualitative in
mation. Figure 5 shows the sample resistance versus m
netic field obtained at temperatures of 50 and 36 m
normalized to the resistance at a magnetic field of 14 T. I
clear that a drop in temperature shifts the magnetoresista
curve to lower fields, i.e.,Bc2(T) still grows with decreasing
temperature even atT/Tc;0.01. We can obtain the follow
ing estimate: on the levelr/rn50.8, which approximately
corresponds toBc2(T) according to Fig. 2b, the magneti
field increases by 0.6 T; this yields a derivative of 40 T/
Unfortunately, we cannot plot these points in Fig. 4 for t
lack of Tc andBsc .

FIG. 4. DependenciesBc2(T) for different samples reduced to the univers
functionbsc(t) using variables~5!. The notation is the same as in Fig. 3. Th
inset plots the parametersBsc ~left-hand axis! and correlation lengthj0

calculated by Eq.~6! ~right-hand axis!.
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This observation ofBc2(T) increasing even at very low
temperatures is in accord with measurements of other m
rials, e.g., Tl2Ba2CuO6,2 where the upper critical field con
tinues to grow at temperatures down toT/Tc50.001.

Our data indicate that functionBc2(T) in underdoped
YBa2Cu3O61x is nonlinear in the neighborhood ofTc , and
(]Bc2 /]T)Tc

50. This conclusion contradicts most theore
cal models based on the BCS model or the Ginzbu
Landau functional, which either predict a linear behavior
this curve nearTc or assume its existencea priori. This issue
was not discussed in previous publications of experime
investigations,2–7 but they all reported very low, if not zero
values of]Bc2 /]T at Tc .

The increase in the critical field owing to weakening
the spin-flip scattering predicted by Ovchinnikov and Kres8

should occur in the range of low temperatures, so it lea
the linearity ofBc2(T) nearTc essentially unaffected. Th
mechanism suggested by Spivak and Zhou9 is effective only
in high magnetic fields, where Landau quantization is sign
cant, i.e., it also should not affectBc2(T) near Tc .
Abrikosov11 derived Bc2(T) from the Ginzburg–Landau

FIG. 5. Reduced resistivity of sample 3b in the aged state at temperatur
50 and 36 mK as a function of magnetic field. The arrows indicate
difference between magnetic fields at which the curves cross the
r/r14T50.8.
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functional based on his model, which leads, naturally, to
linear dependence ofBc2 in the first order in 12t.

The nonlinearity ofBc2(T) near Tc follows at present
only from the model of bipolaron superconductivity10,33

which yields positive curvature ofBc2(T) for a charged
Bose-liquid in a localizing potential, this throughout the e
tire temperature range. At temperatures that are not ov
low, the model predicts33

Bc2~T!5Bd* S Tc

T D 3/2F12S T

Tc
D 3/2G3/2

,

Bd* 5
F0

2pj0
2S 12

nL

2nD 1/2

. ~6!

Herej0 is the correlation length andnL/2n characterizes
the random potential. Equation~6! defines a universal func
tion in reduced variables without free parameters. The o
normalization parameterBd* corresponds to parameterBsc

introduced in Eq.~5!. It follows from Eq. ~6! that Bd*
50.68Bsc . Comparison between our data and calculatio
by Eq. ~6! ~Fig. 6a! shows excellent agreement in the regi
T/Tc.0.3. At lower reduced temperatures experimen
points deviate from the theoretical curve, but note that in t
range we have only measurements of one state~sample 3a
aged!.

The factor (12nL/2n)1/2 in Eq. ~6! is unknown, but,
since neither in state 3a nor in state 3b have we detect
re-entrant behavior ofBc2(T) predicted by Alexandrov,33 it
should be rather close to unity. Assuming this, we can de
from Eq.~6! the correlation lengthj0 ~Fig. 4, right-hand axis
in the inset!. The lengthj0 varies between 70 and 300 Å. Th
notable increase in the correlation length may be the m
cause of the narrowing of the vortex-liquid region on t
B2T diagram.

In the low-temperature region 0.1,t,0.6 the function
bsc(t) can be empirically described by the exponential

bsc5b0 exp~2t/t0!, ~7!

with parametersb0515 and t055.4 ~Fig. 6b!. Such an

of
e
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s

FIG. 6. Functionbsc(t) plotted in different coordi-
nates:~a! the coordinates are selected in accordan
with the boson model, Eq.~6!; the inset shows the
section close tot5T/Tc51 on the extended scale;~b!
semilogarithmic coordinates; the dashed line follow
Eq. ~6!.
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unusual temperature dependence in the region of low t
peratures was detected previously25,34 in measurements o
the irreversibility lineB* (T). We suppose that the region o
vortex liquid in phase diagrams of samples with lowTc is a
very narrow strip betweenB* and Bc2 , henceB* closely
follows Bc2(T), especially at low temperatures.

5. CONCLUSIONS

Our investigation has supplemented the list of mater
displaying anomalous temperature dependence of the u
critical field Bc2(T) with underdoped cuprate
YBa2Cu3O61x . We have studied samples with different ca
rier concentrations andTc ranging between 6 and 30 K
Throughout the studied temperature range, the curve
Bc2(T) for these samples have positive curvature and d
not saturate at low temperatures. The curves for states
different Tc can be brought to coincidence in reduced co
dinatesT/Tc and B/Bsc(Tc). A fundamental feature of the
universal functionbsc(t) obtained in this manner is the ten
dency of its first derivative]Bc2 /]T to zero asT→Tc . Such
a behavior can be interpreted at present only in terms of
model10,33 treating the superconducting transition as Bo
condensation of preformed pairs. Other models designe
interpret the anomalous shape of theBc2(T) curve predict a
linear temperature dependence ofBc2 nearTc .

In the low-temperature rangeT/Tc,0.3, experimental
points deviate from function~6!. On the other hand, mea
surements in the temperature interval between the lowes
cessible values andt'0.6 follow function~7!. The combina-
tion of Eqs.~6! and~7! analytically describes functionbsc(t).

However, the ‘‘universality’’ of functionbsc(t) is lim-
ited. We tested this function on our measurements
K0.4Ba0.6BiO3,5 and the experimental curve after renorm
ization of variables according to Eq.~5! was different from
function bsc(t) plotted in Fig. 4.

We are indebted to V. T. Dolgopolov and A. A
Shashkin for the opportunity to conduct low-temperatu
measurements in the dilution refrigerator.
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This paper describes experimental and theoretical studies of the tails of the dipole-broadened
nuclear magnetic resonance~NMR! absorption spectra of19F in isomorphic single
crystals of BaF2 and CaF2 with the magnetic field directed along three crystallographic axes. The
results obtained by directly measuring the derivative of the tail of the NMR absorption
spectrum and the falloffs of the Engelsberg–Lowe free precession after Fourier transformation
qualitatively agree. It is shown that the shape of the tail is well described by an exponential
function in which the orientational dependence of the exponent does not reduce to variation of
the second moment. The observed shape of the tail and the orientational dependence of
its parameters are explained on the basis of a self-consistent fluctuating-local-field theory.
Nonlinear integral equations are derived for the correlation functions, taking into account the
changes of the actual number of nearest neighbors caused by the anisotropy of the
dipole–dipole interaction and the contribution of lattice sums with loops. The equations are
solved numerically. Good agreement is obtained for the computed dropoffs of the free precession,
the NMR spectra, and the cross-polarization rates with the experimental results. ©1999
American Institute of Physics.@S1063-7761~99!02401-4#
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1. INTRODUCTION

The continued interest in the problem of the absorpt
line shape and the spectra of other correlation functions m
sured by nuclear magnetic resonance~NMR! in the solid
state has two causes: first, the important applied significa
of NMR for studying the properties of solids at the m
crolevel, and second, as a typical many-body problem.
indisputable advantage of model crystals such as CaF2 or
BaF2 is the simplicity of the known laws governing the in
teractions in their nuclear magnetic subsystems~the main
one of which is the dipole–dipole subsystem! and the possi-
bility of experimentally verifying the theoretical derivation
The central part of the spectrum is ordinarily used in appl
problems in this case, whereas information concerning
fundamental multiparticle dynamic properties of the syst
is included in the tails of the spectrum. This is because,
homogeneous regular system, a response to an effect w
frequency many times as great as the rms precessiona
quency in a local field is impossible unless a large numbe
spins participate. The distant region of the spectrum~the tail!
is of the greatest practical interest when one is studying p
cesses involving the establishment of equilibrium in a s
system consisting of strongly differing resonance frequen
of the subsystems~the reservoirs!—cross-relaxation pro-
cesses. This is shown by the large number of experime
1571063-7761/99/88(1)/11/$15.00
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papers on measuring the rates of these processes~see the
citations and their analyses in Ref. 1!. The study of such
processes in turn is closely associated with the general p
lem of mixing in nonlinear mechanics.

Because of this multifrequency behavior, calculation
the tails of the spectra of the correlation functions impo
requirements on the theory unlike those of the calculation
the central part. It is very difficult to experimentally measu
the tails, because they are small and are therefore stro
affected by noise, nonideal properties of the apparatus,
For these reasons, the tails of the spectra have been ins
ciently studied both theoretically and experimentally. This
also very true for the tails of the NMR absorption line. Th
experimental papers we are aware of measured either
central part or the Fourier transform—the falloff of the fre
precession. The former relates to the work of Bruce,2 and the
latter to that of Engelsberg and Lowe,3 which is of tremen-
dous interest among theoreticians because of the oscillat
of the falloff of the free precession in CaF2 , measured with
high accuracy. In fact, it became the cornerstone of theo
concerning the NMR line shape~see, for example, Refs
4–10!.

The exponential form of the tail of the NMR spectru
follows from the results of Ref. 3~see Appendix A!, and this
agrees with the results of a number of experiments1,11–14and
© 1999 American Institute of Physics



158 JETP 88 (1), January 1999 Zobov et al.
TABLE I. Parameters of the NMR spectrum of19F in BaF2 for three directions of the magnetic field.

Field direction M2
theor, Oe2 M 2

exp, Oe2 2Hm , Oe Ns S3 /S1
2 K6 K8

@111# 1.055 1.219 0.4 25 0.12 0.10 0.4
@110# 2.284 2.324 0.5 20 0.17 0.18 0.5
@100# 5.966 5.798 0.6 12 0.09 0.05 0
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of the theory constructed in the approximation of a se
consistent fluctuating field.15–19 Other papers on the theor
of the line shape did not pay proper attention to the t
Thus, for example, it falls off more quickly in the constan
local-field approximation4,5 than for a Gaussian function
whereas, when the field fluctuations are specified by a
dom Markov process,7,10 the tail becomes a power function
In the theory that we developed,16–18 in which the approxi-
mation of a self-consistent fluctuating field is chosen, cor
sponding to the limit of systems of large dimensionality,
the parameters are expressed in terms of one scale param
the second moment. However, the variations of the par
eters of the tails of the spectra of the experimental falloffs
the free precession in Ref. 3 are not described by the va
tion of only the second moment when the magnetic field
directed along the crystallographic axes@100#, @110#, and
@111#.

This paper derives nonlinear integral equations for
correlation functions in the self-consistent fluctuating-loc
field approximation,1,16–19taking into account the characte
istics of actual lattices, which, as a consequence of the
isotropy of the dipole–dipole interaction, depend on t
magnetic-field orientation. At the same time, this paper
ports the direct measurement of the tail of the NMR abso
tion line of 19F in a BaF2 crystal isomorphous with CaF2 ,
with the same magnetic-field directions. Such an experim
seems important to us, since the fraction of high frequen
in the spectrum is exponentially small, and they can easily
distorted during observation in the dropoff of the free p
cession in a mixture with the central part of the spectru
The orientational dependences of the parameters of the
measured by two methods, are in qualitative agreem
These results are explained from the position of the the
that we developed.

2. EXPERIMENT

The single crystal of BaF2 studied here was grown at th
Crystallography Institute, Russian Academy of Sciences
the Bridgman method. The quality of the crystal was mo
tored by x-ray phase analysis and by NMR. The long sp
lattice relaxation time is evidence that the concentration
paramagnetic impurities in the test sample is low. The sin
crystal was oriented on an x-ray diffractometer. The latt
parameter of 6.2001 Å in BaF2 ~Ref. 20! is a factor of 1.14
greater than in CaF2 . The experiment was run on a modifie
RYa-2310 spectrometer with an autodyne sensor in a 12-
field at room temperature. The first derivative of the NM
absorption line was digitally measured by a microproces
device with field scanning of the spectrum. The long-te
stability of the spectrometer parameters was monitored
-
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simultaneously measuring the signal from a mark placed
part of the coil of the NMR sensor separately from t
sample. Particular attention was paid to choosing the o
mum rf field so that the saturation effect was below the no
level. The SNR was substantial increased by accumula
the NMR signal by multiple scanning of the spectrum~the
numberNs of scans is shown in Table I!. The time for one
scan was 20 min.

The NMR lines were measured with a constant magn
field oriented along the crystallographic axes. Because
spectra are symmetric, Fig. 1a shows only half of them. F
ure 1b shows the tails of these derivatives on a semi-log p
The curves in the figures are normalized to unit area of
absorption line. The deviation of the field from the center
the spectrum in each orientation is expressed in units
M2

1/2, whereM2 is the second moment of the spectrum. Th
eliminates the difference of the scales of the spectra
allows their shapes to be compared.

The experimental values ofM2 were calculated by ex-
trapolating the ratio of the integrals of the product of t
measured first derivatives of the spectrum and the cube o
detuning and the triple detuning to larger values of the up
limit of integration.21 Table I also shows the theoretical va
ues of the second moments for BaF2 . The latter were calcu-
lated using lattice sums from Refs. 12 and 22, taking i
account the small contribution of the magnetic isotopes135Ba
and137Ba, whose maximum is reached in the@111# orienta-
tion and equals 3% of the contribution of the19F nuclei.
Moreover, because the NMR line is broadened by modu
ing the constant magnetic field with an amplitude ofHm ~see
Table I!, Hm

2 /4 should be added to these values of the sec
moment.23 The remaining differences of the theoretical a
experimental values of the moments are associated with
precision in the orientation of the crystal in the magne
field. Since we consider spectra normalized toM2 , a slight
discrepancy of the moments does not prevent the shape
the spectra from being compared. Therefore, we shall pay
attention to these differences in what follows, nor to the co
tribution of the Ba nuclei and the field modulation to th
broadening. According to our estimates, the possible sh
distortions of the tail are below the experimental accurac

Figures 1a and 1b also show the derivatives of the sp
tra obtained by Fourier-transforming the function

f ~ t !5exp$C@A2~A21t2!1/2#%)
n51

61

~12an
2t2!, ~1!

which Engelberg and Lowe3 used to accurately describe the
experimental dropoffs of the free precession in CaF2 . They
determined the parameters which determine this function
the same three magnetic field orientations. When the cu
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FIG. 1. Derivatives of the NMR absorption spectra of19F in BaF2 @~a!
central part,~b! tail# as a function of the detuning from the center of t
spectrum, with the magnetic field directions along the crystallographic a
@100# ~triangles!, @110# ~closed circles!, and @111# ~open circles!. The dot-
dashed, dashed, and solid curves show the derivatives of the Fourier sp
of the Engelsberg–Lowe function, Eq.~1!, in the corresponding orienta
tions. A thin line segment is drawn in~b! according to the asymptotic for
mula, Eq.~2!. All the curves are normalized to unit area of the absorpt
spectrum and unit second moment.
in the figure were calculated, these parameters were
pressed in units of the experimental values of the sec
moments for CaF2 given in this paper. It can be seen fro
the figure that the Fourier transform of the function given
Eq. ~1! generally describes our experimental NMR abso
tion spectrum. The small differences can be associated
the noncoincidence of the orientations of the crystals and
instrumental functions of the two methods.24,25 together with
the replacement of the actual falloffs of the free precessio
Ref.3 by the simple function given by Eq.~1!. We shall
return to this question below.

We proceed to an analysis of the shape of the tail of
NMR spectrum. To describe it, we turn to the theory that
developed,1,16–19 based on the self-consistent fluctuatin
local-field approximation, by means of which, in the lim
H@M2

1/2 ~the H field is measured from the center of th
spectrum!, the desired tail is determined from

g~H !.c0uHux exp~2uHut0!, ~2!

wheret0 is the coordinate of the closest two singular poin
symmetrically placed relative to the coordinate origin on t
imaginary time axis, andc0 andx are characteristics of the
singular points. In the limit of a large number of neare
neighbors,16,17

t053.72/M2
1/2, c0'29.3M2 , x51. ~3!

A section of the curve corresponding to the derivative of E
~2! is shown in Fig. 1b. It passes fairly close to the expe
mental tail in the@111# orientation. In the other two orienta
tions, the tails of the experimental spectra fall more stee

We now turn to the Engelsberg–Lowe function given
Eq. ~1!. As can be seen from Fig. 1b, its spectrum decrea
more quickly in all three orientations. The asymptotic e
pression for the tail of the spectrum of this function, obtain
in Appendix A, has the form of Eq.~2! with x521/2 and
t05A. An unexpected orientational dependence is detec
in the exponential in this case:A is larger in the@110# orien-
tation than in the@100# orientation.

Our analysis of the curves in Fig. 1b thus shows th
first, the shape of the spectrum at the tail is close to ex
nential, given by a straight line in the semi-log coordina
chosen in the figure. Second, the slope of the correspon
straight lines depends on the orientation of the crystal in
magnetic field. Since the change in the width of the spectr
with orientation is already taken into account in Fig. 1b af
transforming to dimensionless fields measured in units
M2

1/2, the remaining change of the slope of the straight lin
is evidence of an additional orientational dependence of
argument of the exponential.

3. THEORY

To explain the observed orientational dependence of
tail of the NMR spectrum, let us consider the system of sp
(I 51/2) of the19F nuclei of the fluorite crystal, which form
a simple cubic lattice. We write the Hamiltonian of the sec
lar part of the dipole–dipole interaction in a strong const
magnetic field25 as

s

ctra
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Hd5(
iÞ j

bi j @ I i
zI j

z2j~ I i
xI j

x1I i
yI j

y!#, ~4!

wherebi j 5g2\@123 cos2uij#/2r i j
3 , u i j is the angle made by

the internuclear vectorr i j with the constant magnetic fiel
H0 , andj51/2 is a parameter that we introduced for conv
nience in the theoretical analysis. We shall describe the
namics of the spin system by the correlation functions

Gp~ t !5Tr$exp~ i Hdt !I p exp~2 i Hdt !I p%/Tr$~ I p!2%, ~5!

where the subscriptp51,2,3 indicates the three correlatio
functions:G1(t)5Mx(t) is the correlation function of thex
projection of the total spin of the system or the transve
component of the magnetization, coinciding with the fallo
of the free precession;G2(t)5Gx(t) and G3(t)5Gz(t) are
the autocorrelation functions of thex andz components of an
individual spin of the system, respectively.

In the self-consistent fluctuating-local-field approxim
tion, corresponding to the limitd→`, the system of equa
tions for the correlation functions~4! is obtained in the
form16–18

d

dt
Gp~ t !52E

0

t

Gp~ t2t8!Gp~ t8!dt8. ~6!

The kernelsGp(t) of the integral equations~the memory
functions! can be represented as a series over irreduc
dressed skeletal diagrams, each term of which is expre
via a multiple time integral of the products of the functio
Gx(t8) andGz(t9). As shown in Refs. 16 and 17, the equ
tions for the autocorrelation functions are the equations
the precession of the magnetic moment in a thr
dimensional Gaussian random local field. These equat
have a complex form because the rotations around the t
varying instantaneous field directions are noncommutat
In this approximation, all the coefficients inGp(t) are ex-
pressed in terms ofM2 , and therefore, in the solutions of th
equations, the orientational dependence repeats the de
dence ofM2 and reduces to a variation of the time scale
Eqs.~5!.

For three-dimensional lattices, Refs. 15, 26, and 27 p
posed to introduce correction terms in the kernelGp(t), the
number of which rapidly increases as the number of verti
on the diagrams increases. Such an equation is hard to u
practice. It is necessary to regroup the series for the kerne
that its first several terms are sufficient to describe the
periments.

To do this, we separate out from the dipole–dipole
teraction of Eq.~4! the longitudinal part, consisting of th
spin components parallel to the external constant magn
field.1,4–6,8,10,18,27Although the coefficients of the two part
in Eq. ~4! differ by only a factor of two, the longitudinal par
is distinguished by the axial symmetry of the Hamiltonia
which causes the projection of the total spin onto thez axis
to be conserved in time. It is also important that forj50 the
autocorrelation function given by Eq.~5! for thex projection
of spin i is easy to compute:4,25

G0~ t !5)
j

cos~bi j t !, ~7!
-
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and describes the independent precession of one of the s
of the system in its constant longitudinal local fiel
2( jbi j I j

z .
The transverse part of the interaction given by Eq.~4!,

consisting of the spin components perpendicular to the ex
nal constant magnetic field, as is well known,25 plays an
important role in transporting polarization from node to no
~spin diffusion!. Taking into account the transport of th
transverse polarization, Refs. 4 and 5 derived an equatio
first order in the transverse interaction:

Mx~ t !5Gl~ t !1KE
0

tdGl~ t8!

dt8
Mx~ t2t8!dt8, ~8!

where

K59/4l221, ~9!

and Gl(t) is the correlation function given by Eq.~7! with
coefficientbi j increased by factor ofl. This equation, which
we shall call the basic approximate equation, gave a g
description of the falloff of the free precession in CaF2 for
l51.225 ~Ref. 4! and l51.19.5 Note that the factorl in
Refs. 4–6 and 16 has a different physical basis. We s
regard it as a renormalization parameter of the longitudi
local field, defined in terms of the moment of the spectru

The success of Eq.~8! in describing the falloff of the
free precession suggests that, after the terms in Eq.~6! cor-
responding to Eq.~8! are singled out, the rest of the series f
the kernel will play the role of a small correction. We car
out the indicated transformation by the following formal pr
cedure. We representGl(t) as the solution of an integra
equation of the form~6! with kernel Q(t), which can be
given by seriesG2(t) if the terms with vertices correspond
ing to interaction between transverse spin projections are
carded from it. By combining the Laplace transforms of th
equation and Eqs.~6! and ~8!, we find

Mx~ t !5Gl~ t !1KE
0

t dGl~ t8!

dt8
Mx~ t2t8!dt8

2E
0

t

F~ t2t8!Mx~ t8!dt8, ~10!

where

F~ t !5E
0

t

Gl~ t2t8!$G1~ t8!2~11K !Q~ t8!%dt8.

The resulting equation makes it possible to find the neces
correction terms, since it is formally exact when the co
plete series forG1(t) andQ(t) are retained.

Another important consequence of the transverse in
action is the time variation of the spin orientation, whic
causesI j

z to be replaced byI j
z(t) in the expression for the

longitudinal local field. The basic approximate Eq.~8! does
not reflect such fluctuations, whose presence follows
only from theory but also from experiments, for examp
from the cross-polarization of the rare nuclei43Ca,11 in
which the spectrum of these fluctuations is measured. Th
fore, although the falloff of the free precession is succe
fully described by this equation at short times, discrepanc



at
io

a
re

l

e-

in

of

e
a-

-
he
n

ds
on
r

re

t i

l

is

in
e

f
n
f
a

pan-
the

ned
val
ct-

e is

e
x-
ees

ent

nto

gh

q.
he
of

tion
ugh

-

a

f
on-
he

161JETP 88 (1), January 1999 Zobov et al.
with experiment appear at long times. In particular, be
appear in the oscillations of the falloff of the free precess
and are especially appreciable in the@100# orientation in the
region of the 5–7th zeros.4 The tails of the Fourier spectr
decrease more rapidly in the calculated falloffs of the f
precession than with Gaussian functions.

We will include fluctuations of the longitudinal loca
field in the basic approximate equation~8!, having replaced
Gl(t) with a new autocorrelation functionP(t). The proce-
dure for deriving Eq.~10! allows us to make such a replac
ment in this equation. To determineP(t), we consider the
correlation function of the longitudinal local field at sp
i ,16,17

2l(
j

bi j I j
z~ t !.

Interaction with this spin is excluded in the time evolution
its neighboring spins:

^v i~ t !v i&5l2(
j

bi j
2 Gz j/ i~ t !1l2(

j ,k
bi j bikGz jk/ i~ t !.

~11!

The first term contains the autocorrelation function of thz
projection of spinj . The second term is the overlap correl
tion function of the two spinsj and k. The slash indicates
that interaction with the selected spini is excluded, as men
tioned above. The contributions to the local field from t
different spins of the neighborhood are not independe
Such independence appears only in the limitd→`.1,16,17 In
fact, in this limit, lattice sums with loops composed of bon
become negligible by comparison with lattice sums that c
tain no loops and that are expressed in terms of the powe
the second moment. Other model systems where there a
loops are systems on Bethe lattices.19 The contributions of
adjacent spins to the local field will also be independen
these systems, since interaction with spini is excluded in
them. Bethe lattices have an advantage over hypercubic
tices of infinite dimensionality in that the numberZ of neigh-
bors in them can be arbitrary.

The contribution of the second term in Eq.~11! is com-
paratively small for a cubic lattice, although it does not d
appear. To estimate it, we expand Eq.~11! in powers of time:

^v i~ t !v i&5l2S112j2l4S1
2~12S2 /S1

22S3 /S1
2!t21O~ t4!,

~12!

where

S15(
j

bi j
2 , S25(

j
bi j

4 , S35(
j ,k

bi j bikbjk
2 ~13!

are known lattice sums.12,22 The term withS2 in Eq. ~12!
results from excluding interaction with the selected sp
while the term withS3 characterizes the correlation of th
contributions. The ratioS3 /S1

2 in a cubic lattice varies from
0.17 in a@110# orientation to 0.09 in a@100# orientation.

It follows from Eq.~12! that correlation in the motion o
the spins that create the local field weakens its fluctuatio
The same conclusion can be drawn from the expression
the correlation function of the local field of a heteronucle
s
n

e
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-
of
no

n

at-

-

,

s.
or
r

system proposed in Ref. 28. This paper, besides the ex
sion for short times, treated the diffusion asymptotics of
autocorrelation function of the field ast→`. We do not do
this, because the spectral tail of interest to us is determi
by the singular points on a comparatively small time inter
from the beginning, and diffusion can not develop. Negle
ing diffusion tails allows us to write for Eq.~11! the follow-
ing expression, which is simpler than that in Ref. 28:

^v i~ t !v i&5l2(
j

bi j
2 Gz j/ i

n ~ t !, ~14!

where the attenuation of the fluctuations indicated abov
introduced via the exponentn,1. In particular, when

n5n0[12S3 /S1
2 ,

the first two terms of the time expansion of Eq.~14! coincide
with Eq. ~12!. At long times, additional attenuation of th
fluctuations from more complicated loops should be e
pected, as well as bulk interaction of the branches of the tr
formed by thebi j bonds.19 An estimate of the latter for the
Heisenberg model by numerical modelling of the placem
of the trees on a cubic lattice gaven5n8'2/3.19 If this
value of n8 is used and both these effects are taken i
account, the indexn5n8n0 changes from 0.55 to 0.61 in
different orientations. Bearing in mind that this is a rou
estimate, we shall setn51/2 in subsequent calculations.

The main advantage of the approximation given by E
~14! is that it keeps the contributions of different spins to t
longitudinal local field independent when the fluctuations
the latter are taken into account. Such an approxima
makes it possible to obtain equations that are simple eno
to be used in practice. As a result,

Gxi~ t !'K expF2il(
j

bi j E
0

t

I j
z~ t8!dt8G L

5)
j

K expF2ilbi j E
0

t

I j
z~ t8!dt8G L ,

and the product of cosines in Eq.~7! is replaced by the prod
uct

Pi~ t !5)
j

Fi j ~ t ! ~15!

of functions that satisfy the equations

d

dt
Fi j ~ t !52E

0

t

GFi j ~ t8!Fi j ~ t2t8!dt8. ~16!

The memory function in Eq.~16! can be determined as
series, as was done in Eq.~6!. The first term of this series,

GFi j
~1!~ t !5l2bi j

2 Gz j/ i
n ~ t ! ~17!

is the contribution to Eq.~14! from spin j . The appearance o
the remaining terms of the series is associated with the n
coincidence of the correlation function of the product of t
operators

)
p51

2n

I j
z~ tp!



he
fir

n

t
b-
el

its
is

te

im
gh
he
d
e

ch
bo

c

he

io

er-
e
fs.

nc-

ia-
q.

162 JETP 88 (1), January 1999 Zobov et al.
with the product of the two-spin correlation functions. In t
basic approximate equation, we restrict ourselves to the
term of this series, Eq.~17!. Its remaining part is implied in
the correction given by Eq.~10!. As is to be expected, whe
the fluctuations are neglected@for Gz j/ i(t)51], Eq. ~15!
gives a product of cosines, Eq.~7!, whereas, in the limit of a
large number of neighbors, Eqs.~15!–~17! transform into an
expression forGxi(t) with a Gaussian random field.15–19,25,29

An autocorrelation functionP(t) that takes into accoun
the fluctuations of the longitudinal local field is thereby o
tained. We next need to derive an equation for autocorr
tion functionGz j/ i(t). We take Eq.~6! for the corresponding
function, while keeping only the first term in the series for
kernel1,16,17,26,27@we recall that the remaining part of th
series is meant to be treated as correction terms of Eq.~10!#:

d

dt
Gz j~ t !522j2(

k
bjk

2 E
0

t

Gx j~ t8!Gxk~ t8!Gz j~ t2t8!dt8.

~18!

To clarify the subsequent transformations, we have writ
out the nodal indices of the interacting spins in Eq.~18!. As
pointed out above, the equation has such a form in the l
of a large number of neighbors. When the number of nei
bors is limited, it becomes important to exclude from t
autocorrelation functions the interaction with spins alrea
explicitly included viabjk

2 . Carrying out such a procedur
and replacingGx j(t) with Pj (t), we obtain

d

dt
Gz j/ i~ t !522j2 (

k~Þ i !
bjk

2 E
0

t

Pj / ik~ t8!

3Pk/ i j ~ t8!Gz j/ i~ t2t8!dt8, ~19!

where we recall that the indices of the spins with whi
interaction is excluded are shown after a slash in the sym
of the functions.

The system of Eqs.~15!–~17! and ~19! determines the
desired autocorrelation functions self-consistently. If fun
tion P(t) is then substituted into Eq.~8! in place ofGl(t),
we get the basic approximate equation forMx(t), taking into
account the fluctuations of the longitudinal fields. For t
first two moments of the NMR spectrum@the coefficients of
the expansion ofMx(t) in powers of time#, we get from
these equations

M25~11K !l2S1 ,

M4

M2
2

511
2

11KS 11
nj2

l2 D 22S 11
nj2

l2 D S2

~11K !S1
2

.

~20!

This result should be compared with the exact express
for the moments:25,30

M25~11j!2S1 ,

M4

M2
2

532B2
~22B!S2

S1
2

1
BS3

S1
2

, ~21!

B5
4j

11j
2

6j2

~11j!2
.

st
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-
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-
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Comparing the expressions forM2 , we find that

K5~11j!2/l221,

which transforms into Eq.~9! when j51/2. Equating the
coefficients in front of the lattice sums forM4 in Eqs.~20!,
we find

n5~112j22l2!/j2. ~22!

In particular, the valuesn51/2 andj51/2 correspond to
l2511/8.

To restore the missing contribution fromS3 in Eqs.~20!
for M4 , we go overfrom Eq.~8! to Eq.~10!, replaceGl(t) in
it by P(t), and write correctionF(t) in the form

F4~ t !5
3BS3M2

4S1
2l2 E

0

t

w~ t2t8!Gz
n~ t8!$Ṗ~ t2t8!

3P~ t8!1P~ t2t8!Ṗ~ t8!%dt8, ~23!

where

w~ t !5E
0

t

Gz
n~ t8!dt8, Ṗ~ t !5

dP~ t !

dt
,

while the correlation functions under the integral are det
mined without limitations on the interaction. For clarity, w
show this correction in the diagram representation of Re
16–18:

~24!

where 3 indicates a transverse vertex ands indicates a
longitudinal one, and the lines show the autocorrelation fu
tions of spinsi , j andk ~thex projections are shown by solid
curves, and thez projections by dotted curves!. Let us turn
our attention to the approximate replacementGz

n(t9)
'Gz

n(t92t8)Gz
n(t8), made when we go from Eq.~24! to Eq.

~23! to simplify the calculations. The two successive d
grams with two vertices already taken into account in E
~8!,

~25!
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differ from F4(t) in Eq. ~24! in the placement of the verti
ces. The physical meaning of Eq.~24! is that the polarization
can be transferred from spini to spin k not only via the
two-spin correlations given by Eq.~25! but also via three-
spin correlations that have the form of a loop composed
bonds and therefore do not reduce to the square of the
spin correlations. FunctionF(t) also contains diagrams wit
another placement of four vertices. To simplify the equ
tions, we do not exhibit all of them, since they have the sa
qualitative effect as those already shown, and their contr
tion was taken into account by the choice of the coefficien
Eq. ~23!.

Besides four-vertex corrections,F(t) contains correc-
tions with a larger number of vertices. Since they have
weaker role, to simplify the calculations we take them
simpler form than inF4(t):

F2n~ t !5K2nDn~ t !, ~26!

Dn~ t !5E
0

t

dt1Ṗ~ t2t1!Gz
n~ t1!Dn21~ t1!, D1~ t !5 Ṗ~ t !.

~27!

We choose the coefficientsK2n for n.2 by fitting Mx(t) to
the experimental dropoffs of the free precession.

4. CALCULATION AND DISCUSSION

The system of Eqs.~15!–~17! and ~19! consists of an
enormous number of nonlinear equations, which make
hard to solve. Fortunately, the main contribution to the
termination of the form of the spectrum comes from the
teraction with a comparatively small numberZ of nearest
neighbors.6,9 Thus, in the case of CaF2 and BaF2 , we choose
Z520 when a strong constant magnetic field is along
@111# crystallographic axis,Z58 when it is along@110#, and
Z56 when it is along@100#. This variation ofZ results from
the strong anisotropy of the dipole interaction constants
the magnetic moments of the fluorine nuclei.6,9 Because of
the symmetry of the field orientations considered here,
interaction constants with theZ chosen neighbors take n
more than three values. We denote the three correspon
coefficientsbi j

2 in Eqs. ~17! and ~19! as bq (q51,2,3) and
express them in units ofM2 . We denote the number o
neighbors with interaction coefficientbq asnq . For the@100#
orientation we get

b15dc/27, b254b1 ,

n154, n252, dc50.898,

for the @110# orientation we get

b15dc/36, b254b1 , b352b1 ,

n154, n25n352, dc50.791,

and for the@111# orientation we get

b154m/9, b254m, b3527m/8,

n156, n252, n3512, m58dc/921, dc50.825.
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The ratio of the contribution from the remainingZ neighbors
to the total second moment—the constantdc—was deter-
mined by means of the lattice sums from Ref. 12.

Keeping only these interactions in Eqs.~15!–~17! and
~19! and takingj51/2, we get the following system of non
linear equations for the autocorrelation functions:

d

dt
Fq~ t !52l2bqE

0

t

Gz/q
n ~ t2t8!Fq~ t8!dt8, ~28!

d

dt
Gz/q~ t !52

1

2E0

t

Gz/q~ t2t8!H b1n1

F1
2~ t8!

1
b2n2

F2
2~ t8!

1
b3n3

F3
2~ t8!

2
bq

Fq
2~ t8!

J Rc
2~ t8!dt8

Fq~ t8!
, ~29!

where

Rc~ t !5F1
n1~ t !F2

n2~ t !F3
n3~ t !. ~30!

At the same time, Eq.~10! for the correlation function of
the x projection of the total spin takes the form

Mx~ t !5P~ t !1KE
0

t dP~ t8!

dt8
Mx~ t2t8!dt8

2E
0

t

F~ t2t8!Mx~ t8!dt8, ~31!

where

F~ t !5 (
n52

F2n~ t !, ~32!

P~ t !5Rc~ t !Rf~ t !. ~33!

In Eq. ~33!, we have combined the contribution of a larg
number of distant spins in the form of the autocorrelati
function of the spin in a random Gaussian field:

Rf~ t !5expH 2
4

9
l2~12dc!E

0

t

~ t2t8!Gz
n~ t8!dt8J , ~34!

whereGz(t) is determined from an equation that differs fro
Eq. ~29! in having A kernel does not contain the diviso
Fq(t) and the subtrahendbq /Fq

2(t). Finally, in Eq.~32! we
determineF4(t) from Eq. ~23!, andF2n(t) with n.2 from
Eq. ~26!.

Applying to the system of nonlinear equations~28! and
~29! the same analysis methods as in Refs. 1 and 16–1
can be shown that its solution has singular points on
imaginary time axis~see Appendix B!. Consequently, the
Fourier spectrum of this solution has exponential hig
frequency asymptotics determined by the nearest sing
points. Since the detunings achieved in experiment are
large enough for us to limit ourselves to the first term of t
asymptotic series, we shall not dwell on an analysis of
singular points but immediately proceed to a numerical
lution of the resulting equations.

The system of Eqs.~28!–~31! was solved by the method
of finite differences. The falloffs of the free precession we
accurately calculated on the time interval fromt50 to
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t520Mz
21/2, broken up into 2000 points. The results a

shown in Fig. 2, while the derivatives of their Fourier spec
are shown in Fig. 3. The calculation usesl2511/8, n
51/2, and the values of the orientation-dependent par
eters shown in Table I. A numerical analysis showed that
basic approximate equation without corrections gives os
lating falloffs of the free precession with an oscillation fr
quency less than the experimental value. The addition
F4(t) increases the oscillation frequency, but excessiv
raises the amplitude of the first maximum~between the sec
ond and the third zeros!. The correctionF6(t) made it pos-
sible to correct this distortion. The correctionF8(t) was also
included in the@110# and@111# orientations, since the role o
the complex correlations in the transfer of polarization
large in these orientations. This is reflected on the exp
mental falloffs of the free precession, in particular, in t
inequivalence of the zeros~their approximation!. One basic
approximate equation gives the falloff of the free precess
with equidistant zeros and a rapidly damped amplitu
Agreement with experiment can be achieved only by add
correction terms. In particular, the difference remaining

FIG. 2. Falloffs of the free precessionMx(t) with the magnetic field direc-
tions along the crystallographic axes@100# ~a!, @110# ~b!, and @111# ~c!,
increased at long times by factors of 10 and 100. The solid curves are
theoretical results, and the dashed curves are the Engelsberg–Lowe
tions, Eq.~1!.
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long times in Fig. 2b can be eliminated by addingF10(t).
Since the authors of Refs. 4–6 and 10 neglected polariza
transfer via complex correlations and restricted themselve
the basic approximate equation, the calculated falloffs of
free precession that they obtained shows significantly wo
agreement with experiment in these orientations.

Let us proceed to the results for the tail of the NM
spectrum. As can be seen from Fig. 3, the approximat
chosen to describe the local-field fluctuations and expres
in Eqs.~28! and~29! correctly describes the shape of the t
and its orientational dependence. It follows from this that
damping of the tail speeds up as one goes from field or
tation @111# to @110# and then to@100# mainly because the
number Z of neighbors decreases. This can be explain
qualitatively by noting that the field is created byZ neigh-
bors, but it varies because of the interaction with theZ21
spins. In the self-consistent approach this occurs each
more new spins are involved in the interaction with the pa
ing of time. Consequently, the ratio for the higher-order m
ments can be expected to be

M2n~Z!/@M2~Z!#n;M2n~`!/@M2~`!#n@~Z21!/Z#n.

From this, the parameter in the exponential for the tail sho
be estimated as

t0~Z!;t0~`!@Z/~Z21!#1/2.

he
nc-

FIG. 3. Tails of the derivatives of the Fourier spectra of the theoret
curves shown in Fig. 2, in comparison with the experimental tails of
NMR absorption spectra of19F in BaF2 shown in Fig. 1. The theoretica
curves are solid for the@111# orientation, dashed for@110#, and dot–dashed
for @100#.
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Figure 3 shows that the calculated tail decreases so
what more steeply than the experimental one. This can s
that the fluctuations of the longitudinal field in fact are a
tenuated to a smaller degree than in our calculation when
parametern51/2 is chosen, or rather that more neighbo
should be included in the system of nonlinear equations
the same time, we should point out that the correction te
added to Eq.~31!, as shown by calculation, change the cen
of the spectrum, in particular the position of the maxima
the derivative, but have virtually no effect on the tail of th
spectrum.

The resulting equations for the spin-system dynam
make it possible to describe other experiments as well as
NMR absorption spectra. As an example consider the exp
ment noted above, in which the rate of cross-polarization
an impurity of the rare isotope43Ca from the dipole–dipole
reservoir of19F nuclei in a CaF2 crystal is measured.11 The
dependence of the rate of this process on the rf field am
tudeH1 is determined by11,31

1/TIS5M2ISg~H1!/p,

where M2IS is the second moment at the impurity nucle
from the dipole interaction with the fluorine nuclei, an
g(H1) is the spectrum of the correlation function of the lo
gitudinal local field of Eq.~11! at the43Ca nucleus from the
fluorine nuclei, normalized to unit area. As can be conclud
from the values of the lattice sums,12,31 the contribution with
loops is even smaller in the@111# and @110# experimental
field orientations than it was in the field at the19F nucleus.
Therefore,g(H1) coincides with the spectrum of the corr
lation functionGz(t) with high accuracy. The equation fo
calculating this function with the total second moment can
obtained from Eq.~29! after eliminating the division by
Fq(t8) and adding in the brackets, in place of the subtract
term bq /Fq

2(t8), the contribution 4(12dc)/9 from distant
spins. The functionsFq(t) in this equation are calculate
from the previous nonlinear equations. Because of the s
damping ofGz(t), the time interval was increased to 40/M2

1/2

and broken up into 64 000 points. The results of the calcu
tion of the spectra are shown in Fig. 4 along with the expe
mental data. A comparison shows that Eqs.~28! and ~29!
gave a good description of the cross-polarization and, co
quently, of the fluctuations of the longitudinal local field. T
be fair, it must be said that an equation with a Gauss
memory function31 gave even better agreement. The reas
is that the central part of theGz(t) spectrum, strongly nar
rowed by fluctuations, was in fact experimentally observ
as is evidenced by the large ratio of its moments,M4z /M2z

2 .
Therefore a self-consistent description of the fluctuations
no advantage over describing them by a Gaussian func
while a decrease appeared inM4z because the interactio
with distant spins was neglected in the nonlinear Eqs.~28!–
~30!.

We have thus convinced ourselves that the equations
tained here correctly describe the experiment in terms
cross-polarization and the tail of the NMR absorption lin
measured by a continuous method. If we turn to the result
Fig. 1, obtained after Fourier-transforming the Engelsbe
Lowe formula, Eq.~1!, for the falloffs of the free precession
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we can conclude that this function gives a fairly good d
scription of the tails of the spectra in the@100# and @111#
orientations, but makes the decreasing tail in the@110# ori-
entation appreciably steeper.

Let us now analyze the shape of the tail that follow
from the theories cited above. The authors of Refs. 4 and
general failed to take into account the fluctuations of
longitudinal local field, and therefore the tail of the NM
spectrum falls off even more steeply in their theory than d
the tail of a Gaussian function. Reference 6 introduce
substantial improvement: Instead of considering the en
longitudinal local field to be unchanged, they considered
contribution to it from the close-lying spins~the spins of the
cell! to be unchanged, while the field of the distant spins
described by a Gauss–Gauss random process. These ch
brought the tail of the theoretical NMR spectrum closer
the experimental spectrum, but the description of the ce
of the spectrum became even worse. The approach in w
a cell was distinguished was developed further in Ref.
However, since the contribution of the distant spins is int
duced into the falloff of the free procession by multiplyin
by the exponential multiplier from the Engelsberg–Low
function, Eq.~1!, the same tail is obtained as in the spectru
of that function. Finally, Ref. 10 assumed that the longitu
nal local field from all the spins fluctuated. A discontinuo
Markov process is used to specify the field variations
time; this should work well for describing the changes of t
NMR spectra, because of the mobility of the atoms a
molecules.25,32 This is by no means a successful approxim
tion of the actual local-field fluctuations in a rigid lattice
since it gives a Lorentzian tail for the spectrum and con
quently an infinite value for all the spectral momen
whereas they should have finite values in a rigid lattice.25

Another approach that does not use the concept of
gitudinal local field was given in Ref. 8. In that paper, th

FIG. 4. Cross-polarization spectra for43Ca–19F in CaF2 for two magnetic
field orientations. The experimental data of McArthur, Hahn, and Walste11

are shown by the circles~open forH0i@111# and closed forH0i@110#). The
Fourier spectra of the correlation functionsGz(t) are shown by a solid curve
for H0i@111# and by a dashed curve forH0i@110#.
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effect of the dipole–dipole interaction between the proj
tions of the spins on the external magnetic field was ma
taken into account in a continued-fraction formalism. It w
shown that, when the interaction between the transverse
components is truncated in the dipole–dipole Hamiltoni
the coefficients in the continued fraction increase linearly
the number increases. When the truncated interaction is
cluded, the increase of the coefficients accelerates. To ob
a closed expression that could be used for a calculation,
authors had to make an assumption concerning the form
this dependence. It was proposed to extrapolate the quad
dependence on the number, established from the exact va
of the first four coefficients. A similar dependence was d
tected earlier in the anisotropic Heisenberg model.33 The un-
usual properties of continued fractions with such coefficie
were discussed in Refs. 33 and 34. It is interesting for us
the tail of the spectrum is obtained as an exponential for s
an approximation, in agreement with the result of our the
of a self-consistent fluctuating field. The formal transition
the continued fractions from a linear to a quadratic dep
dence of the coefficients on the number thereby obtaine
physical explanation in our theory as a transition from co
stant local fields to fluctuating fields. To simplify the calc
lations, instead of a quadratic dependence, the same p8

later postulates that the coefficients, beginning with the
teenth, are constant. In this case, a spectrum is obtained
truncated tails. The truncations, it is true, are rather far fr
the center.

This review of the work shows that the main advanta
of the proposed theory over other theories is that, when
correlation functions are computed from self-consist
equations, it becomes unnecessary to postulate their sha
the shape of the memory function in the equations for the
Other advantages that made it possible to achieve b
agreement with experiment are that the theory takes into
count the finiteness of the number of nearest neighbors
polarization transfer via complex correlations. At the sa
time, the estimate of the attenuation of the field fluctuatio
still needs to be refined in order to more consistently ta
into account the contribution of the distant spins, as well
the contribution of complex loops.

5. CONCLUSION

Thus, both pulsed and continuous NMR studies ha
revealed that the tails of the spectrum have an expone
dependence. Varying the parameters of this dependenc
changing the orientation of the crystal in a magnetic fi
does not alter the second moment of the spectrum. We
plain this fact by means of nonlinear equations for the c
relation functions, derived in the approximation of a se
consistent fluctuating field, taking into account the proper
of the actual lattice. It has been shown that a tail of ex
nential shape results from self-consistent local-field fluct
tions. The number of nearest neighbors and the contribu
of the complex correlations change with orientation beca
of the anisotropy of the dipole–dipole interaction, and t
changes the intensity of the local-field fluctuations a
causes a dependence of the parameters of the tail in add
-
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to that involving the second moment. On the other hand
one restricts oneself to the approximation of constant lo
fields, one can arrive at the erroneous conclusion, drawn
example, by Waugh,35 that the spectrum will have a limit; if
the rf field is detuned beyond this limit, the field ceases
heat the spin system. As shown above, this is not so.
spectrum, although exponentially weak, extends to virtua
infinite frequencies. This conclusion is important for th
theory of the establishment of equilibrium in spin system
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rov, and A. A. Lundin for discussing the results of the wor

This work was carried out with the financial support
the Krasnoyarsk Regional Science Fund~Grant 5F0068!.

APPENDIX A

From the theory for computing the asymptotic forms
integrals,36 the Fourier transform of the Engelsberg–Low
function, Eq.~1!, is determined for sufficiently large frequen
cies by its behavior on the imaginary time axis close to
branch pointt5 iA. In this region, we substitute the variab
t5 i t and rewrite the product in the function in Eq.~1! in a
new form:

)
n51

~11an
2t2!5

sinh~bt!

bt )
n51

11an
2t2

11t2/~nt8!2
, ~A1!

where the factors with the first nonequidistant zeros of
falloff of the free precession have been retained in the pr
uct, while the infinite product with equidistant zeros (tn

5nt8, a prime that was absent in Ref. 3 is added to prev
it from being confused with imaginary time! is collected into
the function sin(bt)/bt ~Ref. 3! with parameterb5p/t8. The
product on the right-hand side of Eq.~A1! varies insignifi-
cantly on the interval (iA,i`) of the imaginary axis of inter-
est to us, and therefore we substitute into Eq.~A1! its value
D at point t5 iA (t5A), which has the following values in
the three orientations: 0.883 in@100#, 0.514 in @110# and
0.690 in@111#. After this, the desired derivative of the spe
trum is expressed in terms of the modified Bessel function
the second kind. Limiting ourselves to the first terms of t
asymptotic series of this function, we get

d

dv
g~v!'

DC

2b S A

2p D 1/2

V23/2exp$A~C2V!%, ~A2!

where

V5@~v2b!21C2#1/2.

For v52M2
1/2, the value of Eq.~A2! is 15% less than the

calculated spectrum of the function in Eq.~1!, whereas, be-
ginning with 2.5M2

1/2 it virtually coincides with it.

APPENDIX B

Let us determine the principal part of the solution of t
system of Eqs.~28! and ~29! in the neighborhood of the
singular point with coordinatet0 , using a method analogou
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to the Painleve´ analysis of the movable singularities of no
linear ordinary differential equations. In order to do this, w
write it in the form

Fq~ t !'cq~ i t 1t0!2dq, Gz/q~ t !'aq~ i t 1t0!2zq, ~B1!

substitute in Eqs.~28! and ~29!, and keep only the principa
terms on the right-hand sides. From the condition of
equality of the left- and right-hand sides of the resulti
equations, we find for the singularity indices

d15d25d352~11n!/@n~2Z23!21#,

z15z25z35~21d1!/n5d1~2Z23!22,
~B2!

while we get for the amplitudes a system of algebraic eq
tions:

aqz1~11z1!5
1

2

c2

cq
S n1b1

c1
2

1
n2b2

c2
2

1
n3b3

c3
2

2
bq

cq
2D ,

l2bqaq
n5cqd1~11d1!, c5c1

n1c2
n2c3

n3 .

In the same way, for the characteristics of the functio

Gz~ t !'a~ i t 1t0!2z ~B3!

we find

z5z11d152~2Z211n!/@n~2Z23!21#,

az~11z!5
c2

2 S n1b1

c1
2

1
n2b2

c2
2

1
n3b3

c3
2 D .

~B4!

Finally, if we substitute Eq.~B3! into Eq. ~34!, we find
that the singularity in functionRf(t) is stronger than in the
other functions. To correct this disagreement, the powen
should be replaced by the smallerb, determined by the con
dition bz52. The reason is that changing the orientations
the spins far from the selected spin produces a sma
change of the local field than does the reorientation of
neighboring spins. In exactly the same way,n should be
replaced byb in the correction termsF2n(t). We did not
make these replacements in the text above, since they do
appreciably change the calculated curves in the regions u
consideration.
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Two-photon interaction of coherent radiation with a thin film of resonant atoms
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The problem of the interaction of an ultrashort optical pulse and a thin film of resonant atoms
under the conditions of two-photon absorption, third-harmonic generation, and the inverse
effect of the latter on the pump pulse via Raman scattering is studied. The fact that the field acting
on an atom differs from the macroscopic field in the film is also taken into consideration. It
is shown that the polarization of the film undergoes dynamic relaxation even in the absence of
irreversible relaxation, suppressing Rabi oscillations and establishing stationary values of
the populations of the resonant energy levels and of the polarization of the film at the pump and
the third-harmonic frequencies. ©1999 American Institute of Physics.@S1063-7761~99!00301-7#
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1. INTRODUCTION

Low-dimensional systems have been attracting a g
deal of attention for many years. A simple example of suc
system is a thin film, whose thickness is less than the wa
length of optical radiation, on the interface between two
electric media. The first investigations of nonlinear pheno
ena in this system indicated the possibility of coher
propagation of an optical pulse of a surface wave along
interface, containing a thin film of two-level atoms, betwe
dielectrics1 and established the conditions of reflection a
refraction of a plane wave passing through such
interface.2–4 However, the models considered neglected
corrections due to the Lorentz field,5 which are large pre-
cisely in the case of a thin film,6 and for this reason they did
not reflect the true picture of the interaction between the fi
of an ultrashort optical pulse and a nonlinear interface.7–9

Many other interesting phenomena are possible in a
film besides nonlinear surface waves. There are nume
treatments of the optical bistability accompanying diffracti
and reflection of an electromagnetic wave by a thin film
resonant two-level atoms. It has been shown that a thin
of resonant atoms can be described by the same syste
equations that arises in the model of a nonlinear Fabry–P
resonator.10 Therefore it is natural to expect optical bistab
ity and self-pulsation phenomena in the reflection of an
trashort pulse from a thin film of resonant atoms.8,11–14Op-
tical bistability, taking account of the finite thickness of th
substrate, has been studied in Refs. 10 and 15–17. It
noted that in this case there exists an analogy with the p
lem of the passage of a wave through a system of opt
resonators.

The parametric interaction of several waves is a typi
example of nonlinear optical phenomena. Three-wave in
action in a thin film of a nonlinear dielectric on the interfa
between two linear dielectrics was studied in Ref. 18. It w
shown that coherent responses, specifically, photon echo19

and superluminescent pulses,20,21 can be generated in a thi
film of resonant two-level atoms in response to an exter
pulse.
161063-7761/99/88(1)/8/$15.00
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Two-photon resonance in a multilevel medium or doub
resonance in a three-level medium is a simple generaliza
of the model of a resonant medium forming a thin film on
interface. The case of double resonance has been stu
only in Ref. 4, but the Lorentz field was neglected in t
model investigated. Two-photon resonance was studied
Refs. 22 and 23. In Ref. 23, in contrast to Ref. 22, the p
sage of light through a thin film of resonant atoms was st
ied taking account of the local field, and it was shown th
optical bistability can appear in the quasistationary state.

It is known24–26 that if a monochromatic wave interac
with a medium under two-photon resonance conditions, t
a response at the frequency of this wave and at the trip
frequency of the wave necessarily arises in such a medi
Such third-harmonic generation also occurs when quasi
nochromatic waves, which correspond to optical pulses,
used. The basic problem studied in the present paper i
take account of correctly two-photon absorption and thi
harmonic generation as well as the inverse of these proce
in a thin film on the interface between linear dielectrics.

The problem is formulated in Sec. 1. A distinguishin
feature of the formulation is that third-harmonic generati
and its inverse effect on the interaction with the atoms in
film are taken into account. The effective Hamiltonian f
the problem under study is obtained in Sec. 2. The Bloch
coupling equations are formulated in Secs. 3 and 4. The
ter equations express in terms of the incident field and
parameters of the medium the local field acting on an ato
An example of the application of the approach developed
taking account of third-harmonic generation and its inve
effect on the passage of an ultrashort pulse is discusse
Sec. 5.

2. THIN FILM ON THE INTERFACE BETWEEN MEDIA

Let a thin film of atoms interacting resonantly with th
electromagnetic field of a light wave be present on the in
face between two dielectric media in thex50 plane. The
dielectric media surrounding the film are characterized
the permittivities«1 for x,0 and«2 for x.0. Thez axis is
© 1999 American Institute of Physics
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chosen to lie in the plane of the interface. The resonant
oms are described by an effective-Hamiltonian model.25,26

The duration of the light pulse is assumed to be short co
pared with the relaxation times of the polarization and
population difference but much longer than the optical
riod, so that the approximation of slowly varying comple
envelopes of such ultrashort pulses would be applicable.
account of the presence of a planar interface the system
Maxwell’s equations decomposes into two independent s
tems describingTE waves,

E5~0,Ey,0!, H5~Hx,0,Hz!

andTM waves,

E5~Ex,0,Ez!, H5~0,Hy,0!.

The film thicknessl is assumed to be much shorter than t
wavelength of the resonant radiation.

Let us consider an ultrashort TE pulse incident on
interface from thex,0 region. The reflected wave propa
gates back into thex,0 region, and the refracted wav
propagates into thex.0 region. The passage of an ultrasho
pulse through the interface will be studied as in Refs. 2 a
3.

It is convenient to represent the field intensitiesE andH
and the polarizationP of the resonant atoms inside the th
film as

E~x,z,t !5E
2`

` dv

2p

db

2p
exp~2 ivt1 ibz!Ẽ~x,b,v!,

H~x,z,t !5E
2`

` dv

2p

db

2p
exp~2 ivt1 ibz!H̃~x,b,v!,

P~z,t !5E
2`

` dv

2p

db

2p
exp~2 ivt1 ibz!P̃~b,v!.

Outside the film the Fourier componentsẼ(x,b,v) and
H̃(x,b,v) of the field vectors are determined by Maxwell
equations, and the components atx50 are determined by
continuity so that for theTE case under consideration w
obtain the system of equations

d2Ẽ

dx2
1~k2« j2b2!Ẽ50,

~1a!

H̃z52
b

k
Ẽ, H̃z52

i

k

dẼ

dx
, Ẽ5Ẽy

with the boundary conditions

Ẽ~x502 !5Ẽ~x501 !,

H̃z~x501 !2H̃z~x502 !54p ik P̃y~b,v!. ~1b!

Here j 51,2 andk5v/c. Outside the thin film the solution
of Eq. ~1a!, taking account of the behavior of the field fa
from the film, has the form
t-

-
e
-

n
of
s-

e

t
d

Ẽ~x,b,v!55
A~b,v!exp~ iq1x!1B~b,v!exp~2 iq1x!,

x,0,

C~b,v!exp~ iq2x!,

x.0,

and

H̃~x,b,v!

55
q1k21$A~b,v!exp~ iq1x!2B~b,v!exp~2 iq1x!%,

x,0,

q2k21C~b,v!exp~ iq2x!,

x.0,

where qj5Ak2« j2b2, j 51,2. The boundary condition
~1b! at x50 give relations between the amplitudes of t
incidentA, reflectedB, and refractedC waves and the polar
ization Ps5 P̃y of the film

C~b,v!5
2q1

q11q2
A~b,v!1 i

4pk2

q11q2
Ps~b,v!,

~2!

B~b,v!5
q12q2

q11q2
A~b,v!1 i

4pk2

q11q2
Ps~b,v!.

It is convenient to introduce notation for the~Fresnel! trans-
mission coefficientT and the coupling constantk:

T~b,v!5
2q1

q11q2
, k~b,v!5

4pk2

q11q2
.

We shall now focus our attention on the refracted wa
We shall consider only the case«1,«2, where total internal
reflection does not occur for any angle of incidenceu in

5cos21(q1 /kA«1) and the refraction angleu tr is determined
by Snell’s law

sinu tr5b/kA«25A«1 /«2 sinu in .

If the polarization of the film is determined, then th
expressions~2! determine the field in all space. We emph
size that they are in no way related with the assumption
slowly varying envelopes of the optical pulses and are ex
To find the polarization of the atoms in the film a model
the resonant system must be specified. In addition, let
envelopes of the optical pulses and the polarization of
atoms vary slowly. The optical pulses are assumed to
ultrashort.
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3. EFFECTIVE HAMILTONIAN AND POLARIZATION OF A
THIN FILM

Let us consider two-photon resonance, where
doubled frequency of the carrying wave of the ultrash
pulse equals approximately the atomic transition frequen
but the transition itself is dipole-forbidden. It was shown
Refs. 24–26 that in this case the wave with the carry
frequency generates polarization of the resonant medium
the frequenciesv0 and 3v0. For this reason, if we takeac
count of the inverse effect of the medium on the atoms in
film, two fields with intensity

Ea15A1exp~2 iF0!1c.c.,

Ea35A3exp~23iF0!1c.c., ~3!

F05v0t2bz,

with amplitudesA1 and A2 , and carrying frequenciesv0

and 3v0 act on the atoms in the film, and the two-phot
resonance conditions

2v0'vca ,

wherevca'(Ec2Ea)/\ is the transition frequency betwee
the energy levelsEa andEc , are satisfied.

We now obtain an expression for the atomic polarizat
induced in the film by a quasimonochromatic wave with c
rying frequenciesv0 and 3v0. The atomic polarization is
given by the standard formula

P~ t,z!5N0Tr~rd!, ~4!

whereN0 is the surface density of the atoms, and the den
matrix r of the atoms satisfies the standard equation

i\
dr

dt
5@H02Eatomd,r#. ~5a!

HereH0 is the Hamiltonian of a resonant atom in the film,d
is the dipole moment operator of the atom, andEatom5Ea1

1Ea2 is the intensity of the electric field acting on an ato
The square brackets denote a commutator.

The resonant energy levelsEa andEc of the Hamiltonian
and the nonresonant energy levelsEs are eigenvalues of the
HamiltonianH0:

H0ua&5Esua&, a5a,c,s,s8, Ec2Ea'2v0 .

To write down a system of equations describing only re
nant levels and to construct the effective interaction Ham
tonian and the effective dipole moment operator of an ato
we shall follow the approach described in Ref. 26. We u
the unitary operator exp(iS) to transform the atomic densit
matrix as

r̃5e2 iSreiS.

The equation for the transformed density matrix

i\
]

]t
r̃5@H̃,r̃ # ~5b!

is determined by the Hamiltonian
e
t
y,

g
at

e

n
-

ty

.

-
l-
,

e

H̃5e2 iSH0eiS2e2 iSEatomdeiS2 i\e2 iS
]

]t
eiS,

which we expand in the standard manner

H̃5H02 i @S,H0#2
1

2
@S,@S,H0##2 . . . 2Eatomd

1 i @S,Eatomd#1
1

2
@S,@S,Eatomd##

1 . . . 2 i\e2 iS
]

]t
eiS.

We representS andH̃ as series expansions in powers of t
electric field intensity

S5S~1,1!1S~2,0!1S~0,2!1 . . . ,

H̃5H̃ ~0,0!1H̃ ~1,0!1H̃ ~0,1!1H̃ ~2,0!1 . . . ~6!

(S(n,m) and H̃ (n,m) are terms of ordern in the fieldEa1 and
orderm in the fieldEa2). Then

H̃ ~0,0!5H0 ,

H̃ ~1,0!52Ea1d2 i @S~1,0!,H0#1\
]

]t
S~1,0!,

H̃ ~0,1!52Ea2d2 i @S~0,1!,H0#1\
]

]t
S~0,1!,

H̃ ~2,0!5
i

2
@S~1,0!,Ea1d#2

i

2
@S~1,0!,H̃ ~1,0!#

2 i @S~2,0!,H0#1\
]

]t
S~2,0!,

H̃ ~1,1!5
i

2
@S~1,0!,Ea2d#1

i

2
@S~0,1!,Ea1d#

2
i

2
@S~0,1!,H̃ ~1,0!#2

i

2
@S~1,0!,H̃ ~0,1!#

2 i @S~1,1!,H0#1\
]

]t
S~1,1!,

H̃ ~0,2!5
i

2
@S~0,1!,Ea2d#2

i

2
@S~0,1!,H̃ ~0,1!#

2 i @S~0,2!,H0#1\
]

]t
S~0,2!,

. . .

Let H̃ (1,0)5H̃ (0,1)50. Hence, and from the condition that th
field is switched on adiabatically, we find the following e
pressions for the matrix elements of the hermitian operat

Saa8
~1,0!

52
idaa8

\ S A 1e2 iF0

vaa82v0

1
A1* eiF0

vaa81v0
D ,

~7!
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Saa8
~0,1!

52
idaa8

\ S A 3e2 i3F0

vaa823v0

1
A3* ei3F0

vaa813v0
D .

We take as the effective Hamiltonian

Heff5H̃ ~0,0!1H̃ ~2,0!1H̃ ~1,1!1H̃ ~0,2!.

Following Ref. 26, it is not difficult to obtain elements of th
effective Hamiltonian matrix in the form

Hca
eff52F1

2
A 1

2Pca~v0!1A3A1* Pca~2v0!Ge2 i2F0

5Hca
eff* , Haa

eff 5Ea1Ea
St , ~8!

Ea
St5uA 1u2Pa~v0!1uA 3u2Pa~3v0!, a5a,c,s,

where

Pca~v!5(
s

dcsdsa

\ S 1

vsc1v
1

1

vsa2v D ,

Pa~v!5(
a8

udaa8u
2

\ S 1

vaa81v
1

1

vaa82v
D .

The polarization of the film can be expressed in terms of
transformed density matrixr̃ and the effective dipole mo
ment operatorD

P5N0Tr~rd!5N0Tr~eiSr̃e2 iSd!5N0Trr̃D,

D5e2 iSdeiS5d2 i @S,d#2
1

2
@S,@S,d##.

Taking account of Eq.~7!, we obtain the following expres
sions for the matrix elements of the effective dipole mome

Dac5A1Pca* ~2v0!e2 iF01A1* Pca* ~v0!eiF0

1A3Pca* ~23v0!e2 i3F01A3* Pca* ~3v0!ei3F0,

Daa52A1Pa~v0!e2 iF02A3Pa~3v0!e2 i3F01c.c.,
~9!

Dcc52A1Pc~v0!e2 iF02A3Pc~3v0!e2 i3F01c.c.

To calculate the polarization of the medium we sh
neglect the nonresonant terms as well as the terms pro
tional to A3 in the effective dipole moment operator, ma
ing the assumption that

uA3u!uA1u. ~10!

Then, expressing the elements of the density matrix in te
of the slowly varying amplitudes we obtain

P~ t,z!5P 1~ t,z!exp~2 iF0!1P 3~ t,z!

3exp~23iF0!1c.c.,

P 1~ t,z!52~Pa~v0!r̃aa1Pc~v0!r̃cc!A1

1Pca* ~v0!RA1* ,

P 3~ t,z!5Pca* ~2v0!RA1 , ~11!
e

t:

l
or-

s

R5 r̃caexp~2iF0!.

We introduce the variableN5 r̃aa2 r̃cc . It will be
shown below thatr̃aa1 r̃cc5 const. Choosing the constan
to be 1, the envelope of the polarization at the frequencyv0

can be expressed as

P 1~ t,z!52~P1~v0!1P2~v0!N!A1

1Pca* ~v0!RA1* , ~12!

where

P1~v0!5
1

2
~Pa~v0!1Pc~v0!!,

P2~v0!5
1

2
~Pa~v0!2Pc~v0!!.

4. THE BLOCH EQUATIONS

The equations for the elementsr̃aa ,r̃cc , and r̃ca5 r̃ac*
5Rexp(22iF0) of the transformed density matrixr̃ form a
closed system:

]r̃aa

]t
5 i ~L* R2LR* !,

]r̃cc

]t
52 i ~L* R2LR* !,

S ]

]t
2 iD DR5 iL~Raa2Rcc!,

where

L5F1

2
A 1

2Pca~v0!1A3A1* Pca~2v0!G\21,

~13!

D52v02vca2$uA 1u2@Pc~v0!2Pa~v0!#

1uA 3u2@Pc~3v0!2Pa~3v0!#%\21.

One can see thatr̃aa1 r̃cc5const in the effective Hamil-
tonian approximation and neglecting relaxation, so that
tersm of the variablesR andN we have

]R

]t
5 iDR1 iLN,

]N

]t
52i ~L* R2LR* !. ~14!

5. THE COUPLING EQUATIONS

The intensityEatomof the electric field acting on an atom
is determined by the fieldEf in the film and by the polariza-
tion P of the medium:

Eatom5Ef1jP,

where the parameterj accounts for the environment. It i
often assumed thatj54p/3 for an isotropic medium. If we
take into account third-harmonic generation, this express
assumes the following form in terms of slowly varying va
ables:

A15E f 11jP 1 , A35E f 31jP 3 .
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We neglect other harmonics~fifth and so on! and the spread
in the parameterj.

We shall obtain from Eq.~2! relations for the slowly
varying amplitudes. Neglecting the dispersion of the line
media we have

E f 1~ t !5T~b0 ,v0!E in~ t !1 ik~b0 ,v0!P 1~ t !,
~15!

E f 3~ t !5 ik~3b0,3v0!P 3~ t !.

Using the expression~12! for the polarization of the medium
at the pump frequency, we obtain the following depende
of the amplitude of the field acting on an atom on the am
tude of the incident field and the parameters of the medi

A15T~b0 ,v0!U21$E in1~j2 ik!~P1~v0!

1P2~v0!N!E in1~j1 ik!Pca* ~v0!RE in* %, ~16!

where

U5~12j~P1~v0!1P2~v0!N!!21k2~P1~v0!

1P2~v0!N!22~j21k2!uPca~v0!Ru2.

The standard condition of phase matching for bulk me
will appear in the present problem as a rule determining
anglesu re f

3v ,u tr
3v , andu tr8

3v for which the harmonic wave will
propagate into the medium surrounding the thin film. T
relations for these angles follow from the requireme
b(3v0)53b(v0):

n1~3v0!sinu re f
3v 5n1~v0!sinu in

v ,

n2~3v0!sinu tr
3v5n1~v0!sinu in

v , ~17a,b!

n2~3v0!sinu tr8
3v5n2~v0!sinu tr

v . ~17c!

6. PROPERTIES OF THE REFRACTION OF AN ULTRASHORT
PULSE

Let the elements of the matrixP jk(v) be real~other-
wise, their constant phases can be included in the phas
the slowly varying amplitude of the density matrix!. We ne-
glect the dispersion of these quantities and write

Pcc~v!

Paa~v!
5k,

Paa~v!

Pcc~v!
52m.

Introducing the normalized amplitudeA0 of the optical
pulses and the characteristic timet052\(PacA0

2)21 so that

E15A0a1 , E25A0a2 , E in5A0ain , t5t0t,

the Bloch equations and the coupling equations can be w
ten in the normalized form

]s

]t
5 iDvt0s14im~k21!~ ua1u21ua3u2!s1 iFr,

~18a!

]r

]t
52i ~sF* 2s* F !, ~18b!

and
r

e
-
:

a
e

e
t

of

it-

a1~t!5T~b0 ,v0!ain~t!1g~a1 ib!

3$2m~k11!a11m~k21!ra11sa1* 1ns* a3%,

~19a!

a3~t!5g~a13ib!$2m~k11!a3

1m~k21!ra31sa1%, ~19b!

whereF5a1
212ga1* a3 andg'1, g54pnAuPacuA«1. Here

g and n are the ratios of the elements of the matr
Pa8a9(v), which differ only by the value of the argumen

These ratios are approximately 1, since the dispersion
Pa8a9(v) is neglected. The parametersa and b are given
by

a5
jA«1

3
, b5

~v/c!l

cosu1Acos2 u1~«22«1!/«1

,

and the transmission coefficient is

T~b0 ,v0!5
2 cosu

cosu1Acos2u1~«22«1!/«1

,

where the angle of incidenceu is employed.
Certain sources in the literature give

Pac'1.4310224 emu, Paa'2310224 emu,

Pcc'4310224 emu,

so thatk'2 andm'1.521.4. The parameterg depends on
the density of resonant atoms and is 1.7631023 emu, if nA

51020 cm23. In the subsequent numerical calculations t
refractive indices of the media surrounding the film we
held constant,«151 and«252.25. The parameters in Eqs
~18! and ~19! were taken asj51, g50.5, 2p( l /l)50.05,
k52, andm51.

Let us consider first an ultrashort pulse, having a du
tion of the order of one period of the Rabi oscillations, inc
dent normally on a thin film. To solve the system of equ
tions ~18! and ~19! numerically it was assumed that th
normalized envelope of the incident pulse is described by
function

ain~t!5a0sechS t2tm

tp
D , ~20!

where a0 is the amplitude,tp is the normalized duration
(tp5tp /t0), andtm is the normalized time shift of this ul
trashort pulse.

The numerical solution of Eqs.~18! and ~19! showed
that the shape of the transmitted pump pulse is the sam
that of the incident ultrashort pulse. The transmission co
ficient differs by less than 1% from the coefficient calculat
using the Fresnel formula. This is because the shift in
resonant transition frequency due to the high-frequency S
effect and the Lorentz field drive the system out of res
nance, and we observe a weak perturbation of the atom
the thin film and, in consequence, a negligibly small
sponse of the atoms. Here it should be noted that for a t
photon resonance~in contrast to a one-photon resonance! the
high-frequency Stark effect plays the dominant role in t
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FIG. 1. Envelopes of the incident pulse~a!,
transmitted pulse~b!, harmonic pulse~c!, and
population difference~d!. The pump pulse had
the form ~20! with a050.65,tp56, and
tm520.
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dynamic destruction of resonance. In order of magnitude
harmonic signal is 1022 times the pump amplitude~Fig. 1!.
Increasing the amplitude of the incident signal does
change the Fresnel character of the reflection of the pu
The harmonic signal acquires an oscillatory character~Fig.
2!, attesting to rapid evolution of the Bloch vector~the nor-
malized effective field in the Bloch equations, which det
mines the angular rotation rate of the Bloch vector, can
estimated asF;a1

2).
Let us now consider a normally incident ultrashort pu

persisting much longer than the period of the Rabi osci
tions. Here, in solving numerically the system of equatio
~18! and~19! it was assumed that the normalized envelope
the incident pulse has the form of a ‘‘plateau’’

ain~t!5a0F tanhS 2
t2tm

tp
D2tanhS 2

t2tm2tw

tp
D G , ~21!

where tw5twidth /t0 is the normalized width of the ‘‘pla-
teau.’’ In the calculations the slopes of the edges of this pu
were fixed.

A characteristic example of the numerical calculation
displayed in Fig. 3. Once again, the transmitted signal
the same shape as the incident ultrashort pulse but
weaker than the latter in accordance with the Fresnel for
las. This case differs considerably from the preceding on
that the oscillations of the populations of the atoms in
film decay and the population reaches a stationary value
ferent from the equilibrium value. It is important to emph
size that here the irreversible relaxation times in the sys
e

t
e.

-
e

-
s
f

e

d
as
u-
in
e
if-

m

are once again much longer than the duration of the
trashort pulse. This behavior becomes understandable if
Bloch equation is rewritten in the form

]R

]t
; i ~D1Re~ f !N!R1 i ~g11g2N!N2Im~ f !NR, ~22!

wheref, g1 , andg2 are certain functions that depend on t
incident field and the parameters of the medium accordin
the general equations~13!, ~14!, and ~16!. It is evident that
the Lorentz field and the characteristic features of the tw
photon interaction together produce an effective relaxat
mechanism whereby the polarization and the population
ference of the atoms in the film reach stationary values. T
is seen especially clearly in the shape of the third-harmo
signal ~Fig. 4!: The amplitude modulation near the leadin
edge of the third harmonic is replaced by stationary h
monic generation. We emphasize once again that in the
considered the phase matching determines the directio
emission of the harmonic from the film but in no way influ
ences the harmonic generation efficiency.

This behavior of a normally incident ultrashort pulse
manifested with increasing angle of incidence of the fun
mental wave on the interface containing a thin film of res
nant atoms, between two dielectric media. Since the effec
field penetrating into the film decreases with increasing an
of incidence, the period of the Rabi oscillations changes
that such a pulse with a thin film can exhibit both types
interaction for the same pulse length.
FIG. 2. Envelopes of a — incident pulse of the
form ~20!, b — transmitted pulse, c — harmonic
pulse, and d — population difference.a0

51.13,tp56, andtm520.
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Since the density of resonant atoms in the film was c
sen to be low, a large change in the shape of the pump p
was not observed in the series of investigations perform
For films with resonant atom densitynA51022 cm23 or giant
dipole moments;10 D, the shape of an ultrashort puls
interacting with the film will be strongly deformed becau
of the inverse effect of the film. As the amplitude of th
incident pulse increases, the transmitted pulse can be
pected to split, just as in the case of an ultrashort pu
propagating in an extended medium in the two-photon s
induced transparency regime.27 As the angle of incidence o
the pump radiation increases, the additional peaks in the
velope of the transmitted pulse will vanish. Since the eff
tive field acting on an atom decreases, the number of R
oscillations, each of which corresponds to a peak in the
velope of the transmitted pulse, decreases. The harmonic
nal will exhibit all of these features of the pump pulse d
namics. This case must be investigated in greater detail.

FIG. 3. Envelopes of the incident pulse~a!, transmitted pulse~b!, and popu-
lation difference~c! for a plateau-shaped pulse of the fundamental wave~21!
with the parametersa050.75,tp56,tm56, andtw58.

FIG. 4. Envelope of the harmonic pulse produced by a pulse of the fu
mental wave~21! with the same parameters.
-
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7. CONCLUSIONS

We have examined effects associated with the passag
an ultrashort electromagnetic pulse, under two-photon re
nance conditions through the interface, containing a thin fi
of resonant atoms, between two dielectric media. The fun
mental aspect of our analysis is that the Raman interactio
the fundamental wave and the generated third harmoni
taken into account. The matching conditions determine o
the direction and not the generation efficiency of the h
monic radiation.

When the local Lorentz field is taken into account,
dynamic relaxation of the polarization of the film of resona
atoms occurs in times much shorter than the irreversible
laxation times of the medium. As a result, a stationary po
lation of the energy levels of the resonant atoms which
different from the equilibrium value is established in the m
dium. In the future it would be best to focus attention
optical bistability, which is a characteristic phenomenon
the situation considered.

The effects discussed can be conveniently observe
the third harmonic, since its signal can be easily dist
guished from the powerful pump wave by using filters and
the matching conditions.

It is worth noting that if a harmonic signal comparable
the pump signal can be obtained on account of a high den
of resonant atoms in the film, then parametric bleaching24

where the population of resonant atoms remains cons
during the application of the electromagnetic pulses, can
expected. However, generation of the fifth and higher h
monics is now possible, since for them phase matching in
film is not required.
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21É. Vanagas, Pis’ma Zh. Tekh. Fiz.19~6!, 6 ~1993! @Tech. Phys. Lett.19,

158 ~1993!#
22S. M. Zakharov and E´ . A. Manykin, Zh. Éksp. Teor. Fiz.95, 800 ~1989!
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Two-channel resonance scattering of waves and particles by point and planar defects
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Zh. Éksp. Teor. Fiz.115, 306–317~January 1999!

The shattering of a wave~quasiparticle! with a dispersion curve consisting of two quadratic
branches by a planar defect is discussed. The analog of such a process is the scattering of a similar
wave ~quasiparticle! in a one-dimensional system by a point defect. It is shown that even
when the defect is passive, i.e., has no internal degrees of freedom, scattering may become
resonant. The physical explanation of this effect is that a wave with a lower-lying
spectrum scattered by the defect is in resonance with a localized~bound! state emerging because
of the interaction between the defect and a wave with a higher-lying spectrum. ©1999
American Institute of Physics.@S1063-7761~99!02501-9#
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1. INTRODUCTION

The study of the scattering of various types of wave i
medium with point or planar defects has a long history an
interesting not only from the scientific standpoint but a
with regard to applications. The theoretical aspects of s
tering by a planar defect are interesting because analy
this process reduces to studying one-dimensional dynam
problems and often allows for a simple analytical descr
tion. It is this fact that makes it possible to easily reco
some features of scattering in a resonance situation. For
reason we will deal in this paper with the scattering of wav
by a planar defect.

The occurrence of resonance scattering by a defect
easily be explained in two cases:~a! when the defect has
structure and the wavelengthl of the scattered wave
matches the geometrical sizeh of this structure, e.g.,l
52nh, wheren is an integer~geometric resonance!; and~b!
when the defect has an internal dynamic degree of freed
characterized by some frequency, and the frequency of
scattered wave coincides with the natural frequency of
defect. The common approach to studying resonance sca
ing in quantum mechanics is to examine the scattering
particles with a quadratic dispersion law by a doub
humped potential, which in the one-dimensional case has
shape schematically depicted in Fig. 1. If the defect poten
has a quasistationary level, the scattered particles with a
dratic dispersion law and an energyE satisfying E0,E
,Em may resonantly interact with this level. All the featur
of such resonance scattering in the one-dimensional cas
determined by the shape of the potential and have been
oughly described~see, e.g., Ref. 1!. When the defect is pla
nar, the coordinatex is measured along the normal to th
defect plane.

If the planar defect is very thin and the wavelength
much longer than its thickness (l@h), geometric resonanc
is impossible. On the other hand, if the defect is passive,
has no internal vibrational modes~or quasistationary energ
levels in the quantum problem!, ordinary ~frequency! reso-
1681063-7761/99/88(1)/6/$15.00
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nance is also impossible. In this case the reflection coe
cient ~or the transmission coefficient! has no singularities.

Nevertheless, in a recent paper,2 Darinskii and Maugin
described resonance reflection of a transverse elastic w
from a thin passive planar defect in conditions where
phase velocity of the incident wave is close to the velocity
the longitudinal elastic wave. This result has stimulated
studies of the physical reasons for the resonance effect.

To clarify the statement of the problem, we take a sim
example of scattering by a point defect in a one-dimensio
system. This example has been described in many textbo
on wave and particle scattering, but its analysis will allow
to introduce and recall necessary notation and terminolo

We consider a one-dimensional system whose stat
described by a fieldC(x,t) obeying, in the case of steady
state vibrations (C(x,t)5c(x)e2 i«t), the equation

«c5«0c2
1

2m

d2c

dx2
. ~1!

The eigensolution of this equation,c(x)5c0eikx, corre-
sponds to an energy« with a dispersion law

«5«01
k2

2m
. ~2!

When there is a point defect localized at pointx50, the
right-hand side of Eq.~1! acquires a local-potential term. I
the long-wavelength approximation, the local potential c
always be written as

U~x!5U0hd~x!, ~3!

whereh is the effective width of the localized perturbatio
(kh!1).

Solving the scattering problem amounts to finding so
tion of the form

c~x!5eikx1Ae2 ikx, x,0,

c~x!5Beikx, x.0. ~4!
© 1999 American Institute of Physics
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The amplitudesA andB determine the reflection coefficien
R5uAu2 and transmission coefficient~transparency! T
5uBu2, with R1T51. These coefficients can easily b
found; in particular, the transmission coefficient is

T5
k2

k21~mhU0!2
. ~5!

For U0Þ0 the transmission coefficientT has no singu-
larities for k real, i.e., in the region where plane waves ex
(«.«0), andT is always positive but smaller than unity.

The transmission coefficientT may acquire a singularity
only for «,«0 andU0 negative~a local attractive potential!,
at k5 ik, with k5A2m(«02«) . However, a value«,«0

gives rise to a localized state,

c~x!5c0e2kuxu, ~6!

which corresponds to an eigenvalue lying in the forbidd
band for the natural frequencies of free waves~particles!.
Usually such a state is not directly related to the scatterin
free waves~with «.«0).

The situation changes if the dispersion law«5«(k) in a
defect-free medium has several branches~or valleys, to use
the terminology of electronic semiconductor theory!. This
means that additional scattering ‘‘channels’’ can open du
the existence of several valleys.

Usually the independent branches of vibrations~or group
of particles! differ in the parameters of their dispersion law
In the simplest case of two types of particle~wave!, the
dispersion law within a certain range of eigenvalues has
form «5«1(k) and«5«2(k) for the first and second groups
respectively, where

«1~k!5«11
k2

2m1
, «2~k!5«21

~k2k0!2

2m2
, ~7!

with «1,«2 ~Fig. 2!.
The excitations of different branches are independen

an ideal medium. When the medium has defects, local
bridization of the excitations is possible, which may have
strong effect on the scattering processes. Let us assume
a passive local attractive potential allows for local states
the form~6! for the second group when«,«2 holds. Then a
scattered particle of the first group in a state of the form~6!
with «1,«,«2 may find itself in resonance with the loca
eigenstates of excitations belonging to the second branc

FIG. 1.
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Sec. 2 we will see that in this situation particles of the fi
type may satisfy the conditionsT50 (R51) and also the
conditionsT51 (R50).

In Sec. 3 we will study the resonance scattering o
transverse acoustic wave by a planar defect under condit
in which the phase velocity of the wave along the defect l
within the interval limited by the velocities of the transver
and longitudinal acoustic waves. Finally, in Sec. 4, we w
discuss the scattering of a particle~wave! with a two-valley
dispersion law by a point defect in a three-dimensional m
dium. We will also find the particle energy at which th
wave is not scattered by the point defect.

2. ONE-DIMENSIONAL MODEL: SCATTERING BY A POINT
DEFECT OF A WAVE HAVING A DISPERSION LAW
WITH TWO BRANCHES

Suppose that the elementary excitations of the sys
have two branches in the dispersion law, similar to tho
depicted in Fig. 2, where« is the energy~or the frequency
squared!, and k is the wave vector. In the energy range«
;«22«1, the dynamics of the system is described by tw
groups of excitations with dispersion law~7!. In an ideal
system, these particle-waves do not interact, and their
namics obeys a wave equation or the Schro¨dinger equations

«c12«1c11
1

2m1

d2c

dx2
50,

~8!

«c22«2c21
1

2m2
S d

dx
2 ik0D 2

c250.

The quasiparticles interact when there is a defect. The de
generates an interaction that corresponds to the additi
energy of the system localized at the defect. Assume that
density of this energy is

U int~x!5U0$a1uc1u21a2uc2u21b~c1* c2

1c1c2* !%d~x!. ~9!

As a result the dynamical equations for the system with
defect acquire the form

«c12«1c11
1

2m1

d2c1

dx2
5U0@a1c1~0!1bc2~0!#d~x!,

~10!

FIG. 2.
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«c22«2c21
1

2m2
S d

dx
2 ik0D 2

c2

5U0@a2c2~0!1bc1~0!#d~x!. ~11!

Clearly, the presence of a local perturbation potential~9!
is equivalent to the presence of additional boundary con
tions for Eqs.~8! at pointx50 ~with the functionsc1(x) and
c2(x) continuous!:

dc1
1

dx
2

dc1
2

dx
52m1U0@a1c1~0!1bc2~0!#,

~12!
dc2

1

dx
2

dc2
2

dx
52m2U0@a2c2~0!1bc1~0!#,

where

wa
15wa~10!, wa

25wa~20!, a51,2.

Note that the adopted potential of the interaction of
fields c1 and c2 at the defect is similar to the free surfac
energy of a superconductor introduced in Ref. 3, the ene
expressed in terms of the order parameterc in the presence
of a twinning boundary. Finding the spatial distribution
the order parameterc in the presence of a planar defe
reduces to solving a one-dimensional equation of the fo
~8! ~if we ignore the existence of the vector potential of t
magnetic field! satisfying the boundary conditions, and Eq
~12! can be considered a particular case of these conditi

Let us take the standard problem of the wavec1(x) with
an energy« in the interval between«1 and«2 («1,«,«2)
scattered by such a defect. The wavec1(x) is sought in the
standard form~4!, and a natural expression for the wa
c2(x) is one generalizing~6!,

c2~x!5M exp$ ik0x2kuxu%, ~13!

where k252m1(«2«1), and k252m2(«22«). In ~13! we
have allowed for the continuity of the functionc2(x) at x
50 and for natural boundary conditions at infinity.

The continuity ofc1(x) connects the amplitudes of th
reflected (A) and transmitted (B) waves, 11A5B, and Eqs.
~12! yield

B5
ik~k1a2m2U0!

D~«!
, ~14!

M52
ikbm2U0

D~«!
, ~15!

D~«!5 ik~k1a2m2U0!

1m1U0@a1k1~a1a22b2!m2U0#. ~16!

We see thatB50 if

k~«!1a2m2U050. ~17!

This relationship is meaningful fora2U0,0, i.e., if the po-
tential of the defect is attractive for the particlec2(x). In this
case the reflection and transmission coefficients areR51
andT50, respectively.

But if

a1k1~a1a22b2!m2U050, ~18!
i-

e

y

.
s.

we haveB51, and the scattering process is characterized
R50 andT51.

The physical meaning of the resonance conditions
quite clear and can easily be explained by analyzing E
~11! and~12!. The amplitudeB vanishes ifc1(0)50, a con-
dition that means that Eq.~11! becomes autonomous and h
a localized solution if condition~17! is met ~this follows
from ~12! if c1(0)50). A localized vibration of the field
c2(x) is the dynamical system which is in resonance w
the incident wave of the fieldc1(x) and creates condition
for total reflection of this wave.

The coefficient T is equal to unity if a1c0(0)
1bc2(0)50, a condition that means thatc1(x) does not
feel the perturbation generated by the potentialU0, so that
the incident wave passes through the defect without be
distorted. As for the fieldc2(x), it becomes autonomous
since in its right-hand side

a2c2~0!1bc1~0!5S a22 b2

a1
Dc2~0!.

Hence Eq.~12! again has a localized solution correspondin
however, to another energy, for which condition~18! is met.

Thus, we have established that the resonance feature
the scattering of a wave of fieldc1(x) by a point defect are
related, as expected, to the features of the problem of ste
eigenstates of the total fieldc5c11c2. Here it is advisable
to analyze in detail the part of the eigenstate problem tha
related to this aspect~scattering by a point defect!. Solving
the problem of steady eigenstates of the fieldc5c11c2, we
can write

c1~x!5H A sin~kx2w1!, x,0,

B sin~kx2w2!, x.0,

c2~x!5Mexp$2kuxu1 ik0x%, ~19!

wherek andk have been defined earlier.
The existence of the solution~19! implies that the steady

state has two terms, a standing wave of the fieldc1(x) on the
entirex axis and a vibration localized near the defect.

The solution~19! is characterized by five parameters: t
amplitudesA, B, and M and the phasesw1 and w2. The
continuity of the functionc1(x) and the boundary condition
~12! lead to the a system of homogeneous algebraic eq
tions for the amplitudesA, B, andM :

A sinw12B sinw250,

A~2a1m1U0 sinw11k cosw1!2Bk cosw2

12bm1U0M50, ~20!

Abm2U0 sinw11~k1a2m2U0!M50.

By equating the determinant of the system~20! to zero
we arrive at a relationship between the phasesw1 and w2,
retaining one parameter~or the difference of the parameter!
as a free parameter.

This leads to two conclusions:~a! if the energy« satis-
fies «1,«,«2, a quasilocalized vibration is the steady sta
of the system; and~b! for « fixed there is a continuous spec
trum of quasilocalized states.
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A remarkable feature of the set of quasilocalized vib
tions is that there is a steady state of the fieldc(x) in which
a standing wave exists only on one semiaxis and a local
vibration exists on both semiaxes. Indeed, settingB50 in
~20!, we see thatw1 is automatically equal to zero, i.e
c1(0)50 and, in addition,k1a2m2U050. As for the am-
plitude M , it is uniquely determined by the formula

M52
kA

2bm1U0
. ~21!

Naturally, the condition for the existence of a quasiloc
ized vibration of the type we have just described~with
B50) coincides with the condition for total resonance
flection. Hence the standing wavec1(x) with an amplitudeA
can exist only on one semiaxis (x,0) if

«5«22
1

2
a2

2m2U0
2 ~22!

and at the same time there is a localized vibration of the fi
c2(x) with an amplitude~21!.

Finally, a steady state with a single standing wave alo
the entirex axis withc1(0)Þ0 corresponds to the condition

A5B, w15w25
p

2
. ~23!

In this case, as Eqs.~20! imply, we haveM52a1A/b, and
the frequency can be found from the condition~18!, which
yields

«5«22
1

2S a22 b2

a1
D 2

m2U0
2 . ~24!

This is possible if (a1a22b2)U0,0.
Clearly, the results of this section are weakly depend

on the type of boundary conditions ‘‘mixing’’ the fieldsc1

andc2 and on the specific form of the dynamical equatio
that lead to a ‘‘two-valley’’ dispersion law with different in
which the valleys have different depths. Moreover, the m
conclusions drawn in this section are valid not only for
systems with continuous field distributions but also for d
crete models.

3. SCATTERING OF A TRANSVERSE ELASTIC WAVE BY A
PLANAR DEFECT IN AN ISOTROPIC MEDIUM

Examples of planar defects in crystals are well know
twinning boundaries, interphase boundaries, flat pack
faults, etc. In the long-wavelength approximation~which we
consider in this paper!, where the crystal dynamics is de
scribed by the theory of elasticity, such a defect may
sumed to be lying on a plane. In this case, as shown in S
2, the presence of the defect manifests itself in additio
boundary conditions imposed on the equations of the field~in
our case the field of elastic displacementsu!. We start with a
discussion of the possible boundary conditions. Suppose
the defect is entirely in the planez50. Two types of viola-
tion of the properties of the solid may be localized along t
plane.

1. The surfacez50 coincides with a monatomic layer o
isotopes, atoms whose massM differs from the massm of the
regular atoms of the medium. Ifs ik is the elastic stress ten
-

d

-

-

ld

g

nt

s

n

-

:
g

-
c.

al

at

s

sor andr is the density of the medium, the dynamical ela
ticity equation perturbed by the defect plane has the form

]s ik

]xk
5r

]2ui

]t2
1hr

]2ui

]t2
hd~z!, ~25!

whereh5(M2m)/m, and h is the thickness of the defec
layer.

Equation~25! yields the obvious boundary conditions

s iz
12s iz

25hhr
]2ui~0!

]t2
, i 51,2,3. ~26!

Let us examine the scattering of a plane elastic wave by
defect, assuming that the wave is polarized in the plane
incidence. We select thezx plane as the plane of incidence
Then the conditions~26! that are important are those wit
i 5x and i 5z.

Allowing for the continuity of the vectoru and its de-
rivatives with respect tox in the planez50 and the mono-
chromaticity of the wave, we can reduce the conditions~26!
to the following two:

cl
2S ]uz

1

]z
2

]uz
2

]z D 5W0uz~0!, ~27!

ct
2S ]ux

1

]z
2

]ux
2

]z D 5W0ux~0!, ~28!

whereu15u(z510), u25u(z520), W052hhv2, with
v the frequency, andcl andct are the velocities of the lon
gitudinal and transverse acoustic waves, respectively.

The conditions~27! and ~28! generalize the boundar
conditions~12! in the one-dimensional case. Note that t
conditions ~26!–~28! corresponds to the continuity of dis
placements in the planez50 and a discontinuity in the
stresses across the opposite sides of the defect plane, a
this sense are similar to~12!.

2. Different boundary conditions arise when the inte
atomic interaction along the defect plane varies.

The ways of deriving the macroscopic boundary con
tions vary, but all are based on studying the long-wavelen
limit of the crystal lattice dynamics. However, the mod
most often used here is that of a three-layer sandwich
which the thickness of the middle layer goes to zero.~This
was the approach used in Refs. 2 and 4 to obtain the bou
ary conditions. Other boundary conditions were formula
phenomenologically in Ref. 5!.

In the simplest case where the effective elastic modul
the defect layer are small compared to the elastic modul
the medium, the boundary conditions presuppose that
normal components of the stress tensor are continuous in
presence of a discontinuity of the corresponding compone
of the displacement vector:

sxz
1 5sxz

2 5
m

l 1
~ux

12ux
2!,

~29!

szz
15szz

25
m

l 3
~uz

12uz
2!,
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where l 1 and l 3 are the effective thicknesses of the defe
layer, which are inversely proportional to the elastic mod
of this layer, andm is the shear modulus of the isotrop
medium.

The boundary conditions~29! are broadly applicable
range if one assumes that the parametersl 1 and l 3 are fixed.
They have natural limits: atl 5` ~the appearance of a fre
layer! both sxz and szz vanish at the defect layer (z50),
while at l 50 the displacements~and stresses! become con-
tinuous at the planez50.

Having established the boundary conditions~27!, ~28!,
or ~29!, we begin the solution of the problem by examinin
the scattering of a transverse wave. We assume that the w
is incident at an angleu to thez axis. Then the dependenc
of the displacement field on the coordinatex is the same for
all the field components and is described by the wave exikx,
where k5(v/ct)sinu. We also assume~this is important!!
that the phase velocityc of the wave along the surface
v/k5ct /sinu,cl , i.e., we assume that sinu.ct /cl .

We write the displacement vectoru for the geometry of
the problem@u5(ux50,uz)# in the form

u~x,z,t !5u~z!exp~ ikx2 ivt !, ~30!

where the fieldu(z) determines the dependence of the s
of the longitudinal and transverse vibrations of the elas
medium on the coordinatez:

u~z!5u~ t !1u~ l !, kux
~ t !5 i

duz
~ t !

dx
, kuz

~ l !52 i
dux

~ l !

dz
.

~31!

In the bulk (zÞ0), the longitudinal and transverse com
ponents obey the equations

~v22ct
2k2!ut5ct

2 d2ut

dz2
, ~32!

~v22cl
2k2!ul5cl

2 d2ul

dz2
. ~33!

It should be recalled thatk, by assumption,

ctk,v5ck,clk, ~34!

and solving the standard problem of the scattering of a l
gitudinal wave reduces to finding the solution

u~ t !5H aeiqz1Ae2 iqz, z,0,

Beiqz, z.0,
~35!

u~ l !5H Mekz, z,0,

Ne2kz, z.0,
~36!

wherekax1qaz50 for the polarization vector of the inci
dent transverse wave, withctq5Av22ct

2k25kAc22ct
2,

andclk5Acl
2k22v2 .

We start with the problem of the scattering of the wa
by a defect that leads to the boundary conditions~27! and
~28!. The conditions for the continuity of the total displac
ments ux(z) and uz(z) together with boundary condition
~27! and ~28! constitute a system of four linear algebra
equations for determining the amplitudesA, B, M , and N,
t
li

ve

c

-

whose components are linked through relationships that
low from ~31!. Technically the solution of the problem i
difficult, and here we give only the results that are of inter
to us. In order to proceed with the discussion of the probl
of resonance scattering, we write the expression for the
plitude B, whose calculation yields1)

B52
2iq

D
@2kcl

21hhv2#a,

~37!

D5hhF ~hhv222kcl
2!

v2

ct
2

1~k22q2!hhk2cl
2G

22iq@~2kcl
22hhv2!2~hhk!2cl

2k#,

with s5ct
2/cl

2 .
We see that total reflection (B50) occurs when

2cl
2Ak22

v2

cl
2

52
Dm

m
hv2. ~38!

Total reflection is possible only if there is a heavy defe
layer (M.m). In the long-wavelength approximation (hk
!1), the phase velocityc5v/k of a resonantly reflected
wave is close to the velocitycl of longitudinal acoustic
waves and is given by the formula

c5clF12
1

2S Dm

2m
hkD 2G . ~39!

As is usual in such situations,Dc/c;(Dm/m)2h2k2.
Note that the condition~38! determines the frequency~or

phase velocityc) of a steady-state localized longitudin
wave obeying the boundary condition~27! in the absence of
a transverse component. In addition to the wave~36!, the
total steady-state solution incorporates the standing tra
verse wave

u~ t !5H asinqz, z,0,

0, z.0,

which exists only on one side of the planar defect.
Now we turn to the second case, in which the bound

conditions~29! are employed. The solution of the proble
under such boundary conditions is given in Ref. 6. Here
will again list the results related to the calculation of t
transmission coefficientT5uBu2. It turns out that

T5
4s2~s21!

D~s!
F ~22s!2

kl1
2

2sA12ss

kl1kl2
2

4~12ss!

kl3
G2

,

~40!

wheres5(c/ct)
25(v/kcl), s5(ct /cl)

2, andD(s) is sure to
be a positive function ofs for s.1, i.e., forc.ct .

The condition for total wave reflection corresponds
T50. Equation~40! implies that this is possible either fo
s51 (c5ct , which corresponds to a wave gliding along th
planar defect! or for

2sA12ss5~22s!2kl324~12ss!kl1 , ~41!

which is an equation for the phase velocity.
In the limit l 1 ,l 3→0, Eq. ~41! simplifies and the phase

velocity c tends tocl , i.e.,
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c25cl
22

l4~kl3!2

@2m~l12m!#2
, kl3!1, ~42!

wherel andm are the Lame´ coefficients.
The same dependence on (kl3)2 for the resonant phas

velocity was obtained in Ref. 2. However, Eq.~42! repre-
sents a more complicated dependence over a broad ran
values of the parametersl 1 and l 3.

In Ref. 6 it was shown that Eq.~41! coincides with the
condition for the existence of a steady-state quasilocali
solution, which forz,0 has the form of a standing tran
verse wave and a longitudinal vibration localized near
defect ~in full agreement with the results obtained with th
other boundary conditions!.

If we introduce the notationj5 l 1 / l 3, it is convenient to
write Eq.~41!, which represents the dependence of the ph
velocity on, say,kl3, in the inverse-function form:

kl35
2sA12ss

~22s!224~12ss!j
. ~43!

Comparing~43! with the law of dispersion of pseudosu
face waves,4,7 we conclude that the corresponding quasi
calized wave has a phasew given by the following relation-
ship:

j5A 12s

12ss
cotw.

Thus, we have again demonstrated the general law
the occurrence of resonance conditions when a transv
wave is scattered by a planar defect, a law related to
‘‘multichannel’’ nature of the dispersion of the scatter
wave.

4. THE RESONANCE FEATURES OF SCATTERING BY A
POINT DEFECT IN A THREE-DIMENSIONAL MEDIUM

And now let us confirm the above conclusion by analy
ing the three-dimensional case. Suppose that the state o
particles with a two-valley dispersion law is described by
sum of the wave functionsc1(r ) andc2(r ) corresponding to
the dispersion laws«5«a(k), a51,2, which differ from the
dispersion laws~7! by the simple fact that the wave vectorsk
andk0 are three-dimensional.

A defect at pointr50 ‘‘mixes’’ the statesc1 and c2.
We write the simplest local condition at the defect, a con
tion that acts as boundary conditions and generalizes~12!:

lim
r→0

F ]

]r
~rc1!22m1rU 0~a1c11bc2!G50,

~44!

lim
r→0

F S ]

]r
2 ik0–nD rc222m2rU 0~a2c21bc1!G50,

with n5r /r . The solution of the problem of the scattering
a particle with an energy«,«0 reduces in the three
dimensional case to finding the solution

c15eik–r1
x

r
eiq–r, ~45!
of

d

e

se

-

or
rse
e

-
the
e

i-

c25
Q

r
exp$ ik0–r2kr %, r 25x21y21z2, ~46!

whereq252m1«, andk252m2(«02«). The factorsx and
Q can be found from the boundary conditions~44!:

x5
k12m2a2U0

D
, Q52

2m2bU0

D
, ~47!

D5~2m1a1U02 iq–n!~2m2a2U01k!24m1m2b2U0
2 .

~48!

We see that if the point defect ensures particle attrac
(a2U0,0), a situation withx50 is possible if

A2m2~«02«!52m2ua2U0u, ~49!

which is a condition similar to~38!. The condition~49! de-
termines the energy at which the local state~46! would arise
in the absence of the wavec1. In the case of the scattering o
the wave~45!, the amplitude of the local state is determin
by the fact that the amplitude of the incident wa
Q5(2m1bU0)21 is equal to unity.

Thus, we have shown that a point defect can be ‘‘re
nantly’’ transparent in a characteristic two-channel scatter
process. This possibility is related to the fact that at a cer
energy there is a steady quasilocalized state in the syste

5. CONCLUSION

There are two features that make the results of
present study remarkable. From the standpoint of scatte
theory, the resonance effects described in this paper a
manifestation of the scattering of a particle~wave! by a qua-
sisteady state. What sets these effects apart from those
monly described in the literature is that in the case at h
the resonance effect is due entirely to the special feature
the two-valley dispersion law for the particles in an ide
~defect-free! medium and is weakly dependent on the sha
of the local potential that causes the scattering. From
viewpoint of the theory of quasilocalized states, the abo
results can be considered an addition to the results of Re
and 7, where a complete one-parameter system of eigens
tions of the dynamical elasticity theory corresponding
pseudosurface waves was derived.
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The effect of parametrically excited spin waves on the dispersion and damping of
magnetostatic surface waves in ferrite films
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This paper describes an experimental study of variations of the dispersion and damping of
magnetostatic surface waves in ferrite films, caused by three- and four-magnon interactions with
parametric spin waves excited by an auxiliary surface magnetostatic pump wave with
frequencyf p . The variations in the dispersion and damping were identified, respectively, with
variationsDk8 in the real part andDk9 in the imaginary part of the wave number of the
surface magnetostatic wave. TheDk8 and Dk9 values were determined from the ratio of the
changes of the phase incrementDf and the amplitude incrementDA of the surface
magnetostatic wave to the lengthL of the nonequilibrium section of the film, where the parametric
spin waves exist. It is found that, when three-magnon decay processes are allowed for the
pump wave and the surface magnetostatic probe wave, the probe wave can substantially alter the
distribution of the parametric spin waves in the film. ©1999 American Institute of
Physics.@S1063-7761~99!02601-3#
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1. INTRODUCTION

Processes of parametric excitation of spin waves in
rite films by travelling magnetostatic waves are of significa
interest from both scientific and applied viewpoints.1 One
effective way to experimentally study the parametric ins
bility of magnetostatic waves is the two-pump method.2–6

This method is based on the effects of the interaction of
probe signal of a magnetostatic wave whose powerP is less
than the parametric instability thresholdPth with parametric
spin waves created by a pump wave with frequencyf p and
power Pp>Pth . When the probe signal passes through
nonequilibrium section of the film, containing the paramet
spin waves, changes can be observed in its amplitudeA and
phasef from which one can judge whether parametric
stability will appear in the pump wave and what its behav
will be beyond the threshold.2–6

On the other hand, there is interest in the amplitudeDA
and phase variationDf of the probe wave themselves, sin
they carry information concerning the dispersion and dam
ing of the magnetostatic waves on the nonequilibrium s
tion of the film. Finally, there is interest in seeking the co
ditions under which the probe wave not only experiences
action of the parametric spin waves but also itself affe
their distribution in the film. The goal of this paper is
experimentally study the effect of parametric spin waves
the dispersion and damping of magnetostatic waves in
yttrium–iron garnet film and to detect how the magnetosta
waves affect the distribution of the parametric spin waves
the film.

Note that the effect of parametric spin waves on mag
tostatic waves in an yttrium–iron garnet film was apparen
considered for the first time in Ref. 7. Backward bulk ma
netostatic waves propagated in the film, and locally homo
1741063-7761/99/88(1)/8/$15.00
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neous parallel pumping served as the source of the para
ric spin waves, while the excitation frequencyf of the
magnetostatic wave and the interval of magnetic fieldsH0

were chosen to satisfy the condition

f , f th
3m , ~1!

where f th
3m is the limiting frequency for three-magnon deca

processes. The inequality~1! signifies8 that three-magnon
processes for magnetostatic waves are forbidden by the
servation laws, and magnetostatic and parametric spin wa
can directly interact only via four-magnon processes of ty1

2 f 5 f 11 f 2 , 2k5k11k2 , ~2!

wheref andk are, respectively, the frequency and wave ve
tor of the magnetostatic wave, whilef 1,2 andk1,2 are analo-
gous quantities that characterize the parametric spin wav

Unlike Ref. 7, this paper discusses changes in the
persion and damping of Damon–Eshbach surface magn
static waves9 in an yttrium–iron garnet film under the influ
ence of such parametric spin waves, excited
inhomogeneous pumping in the form of an additional ma
netostatic surface wave with frequencyf p . Moreover, we
consider the changes in the dispersion and damping o
magnetostatic surface wave, caused by interaction with p
metric spin waves both in processes of the form~2! and in
three-magnon processes, which satisfy the conserva
laws1

f 5 f 11 f 2 , k5k11k2 . ~3!

In determining how parametric spin waves affect the d
persion and damping of magnetostatic surface waves, we
an approach in which the phase and amplitude variationsDf
and DA of the probe signal passing through the film a
related to the overall changesDk8 and Dk9 in the real and
© 1999 American Institute of Physics
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imaginary parts of the wave numberk5k81 ik9 of the mag-
netostatic surface wave when the length of the nonequ
rium section of the film isL:

Df5E
0

L

Dk8~x!dx, ~4!

DA528.68E
0

L

Dk9~x!dx, ~5!

whereDf is the phase change of the signal in radians,DA is
the amplitude change of the magnetostatic surface wav
decibels, andx is the coordinate along the film. TheDk8 and
Dk9 values averaged over the length of the nonequilibri
section of the film will then be determined by

Dk85
Df

L
, ~6!

Dk952
DA

8.68L
. ~7!

It is understood that the lengthL of the nonequilibrium sec-
tion must be known in order to implement such an approa
and this depends on the powerPp and the type~three- or
four-magnon! of parametric instability process of the pum
wave.4–6 We shall show that this problem can be solved if,
in Refs. 4–6, the pump and probe waves are excited by s
rate transducers the distanceS between which can be varie
by displacing one of them along the surface of the film, j
as in the movable probe method of Ref. 10.

2. THE INFLUENCE OF PARAMETRIC SPIN WAVES ON THE
DISPERSION AND DAMPING OF MAGNETOSTATIC
SURFACE WAVES

The studies were carried out on a prototype of
magnetostatic-surface-wave delay line, consisting of th
parallel microstrip transducers 4 mm long and 40mm wide
~Fig. 1!. Transducer1 was placed on separate polycore boa
4, while polycore board5 was common to transducers2 and
3, and, as in the movable-probe method of Ref. 10, w
displaced relative to polycore board4, remaining in the same
plane with it. In this case, the distanceS1 between transduc
ers 1 and 2 could vary within the limitsS150.1–4 mm,
while the distance between transducers2 and3 was fixed and
equalledS254 mm. On the transducers was placed an e
taxial yttrium–iron garnet film on a substrate made fro
gadolinium–gallium garnet with~111! orientation. These
studies used 3035-mm samples in which the film thicknes
wash'5 mm and'7 mm, the saturation magnetization wa
4pM051750 G, and the ferromagnetic resonance line wi
wasDH50.2–0.3 Oe.

A pump signal with frequencyf p53455.0 MHz and
power Pp

in<60 mW was supplied to transducer2 or 1. Two
other transducers were used to study the amplitud
frequency and phase–frequency characteristics of a p
signal with frequency f z53 –5.6 GHz and power
Pz

in50.01–1 mW, where the lower limit was determined b
-

in

h,

s
a-

t

e

s

i-

h

–
be

the sensitivity of the measurement apparatus. The spec
of the pump signal transmitted through the film was sim
taneously monitored from transducer3.

The magnetic field was oriented parallel to the transd
ers and was varied within the limitsH05430–610 Oe. First,
this corresponded to the condition for excitation of magn
tostatic surface waves at the frequencies of the pump and
probe signals; second, forH05560–610 Oe the limiting fre-
quency for three-magnon decaysf th

3m was within the limits of
the frequency bandf 0, f th

3m, f s , where f 0 and f s are, re-
spectively, the long-wavelength and short-wavelength lim
of the spectrum of magnetostatic surface waves in the fil8

The conditions for three-magnon processes with the par
pation of parametric spin waves were satisfied in the f
quency intervalf th

3m–f s in this case, whereas four-magno
processes played the main role at frequenciesf 0–f th

3m . For a
magnetostatic surface pump wave with fixed frequencyf p ,
three-magnon decay processes are possible forH0,H0

3m ,
while four-magnon processes are possible forH0.H0

3m ,
whereH0

3m corresponds to the conditionf p5 f th
3m(H0

3m).
The limiting frequencyf th

3m and field H0
3m were deter-

mined experimentally from the bound on the output power
the magnetostatic surface wave when it propagates unde
conditions of three-magnon decay:1,8 The power of the mag-
netostatic surface wave is bounded for frequenciesf > f th

3m .
~The typical form of the amplitude–frequency characteris
and the position of the limiting frequencyf th

3m when fre-
quencyf th

3m lies within the excitation-frequency band of th
magnetostatic surface wave are shown in Fig. 2.! A field of
H0

3m'589 Oe was obtained for the chosen pump freque
and the test film, in agreement with calculations ofH0

3m and
f th

3m that take into account the effect of the anisotropy a
inhomogeneous-exchange fields as indicated in Ref. 11.

FIG. 1. Prototype of delay line.~a! Design:1—input transducer of probe
signal f z ; 2—input transducer of pump signalf p to create nonequilibrium
region L; 3—output transducer;4—board with movable transducer
5—board with fixed transducers;6—epitaxial film of yttrium–iron garnet;
7—gadolinium–gallium garnet substrate.~b! Determining the lengthL1 of
the nonequilibrium region.
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FIG. 2. Amplitude–frequency and phase–frequency~in insets!
characteristics of the prototype with a magnetostatic surface w
recorded for probe signalf z at various power levelsPp of the
pump signal (f p53455 MHz!: 1—Pp,Pth , 2—Pp.Pth , 3—Pp

@Pth . ~a! H0 5 579 Oe, for three-magnon decay,f p. f th
3m ; ~b! H0

5 598 Oe, for four-magnon instability,f p, f th
3m ; DA is the addi-

tional damping of the magnetostatic probe wave andDf is the
phase change of the probe signal at the output of the protot
both caused by parametric interaction with the parametric s
waves.
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To study the effect of parametric spin waves on the d
persion and damping of the probe wave, the pump signal
fed to transducer2, and the surface magnetostatic pro
wave was excited and detected by transducers1 and 3, re-
spectively~Fig. 1a!. A pump wave with a powerPp.Pth in
the path of the surface magnetostatic probe wave in this
created a nonequilibrium section of the film~see the shaded
area in Fig. 1!. The overall lengthL of the section was mad
up of the lengths of the nonequilibrium sections in the f
ward (L1) and reverse (L2) directions, which correspond t
magnetostatic surface pump waves localized on the bou
aries between the film and the air and between the film
the substrate and propagating in opposite directions f
transducer2. When the probe wave passes through the n
equilibrium section, changes analogous to those observe
Refs. 2–6 appeared in its amplitude- -frequency and pha
frequency characteristics.

For cases in which a magnetostatic surface pump w
excites parametric spin waves as a result of three-mag
and four-magnon processes, Fig. 2 shows the behavior o
amplitude–frequency and phase–frequency characteristic
the pump supercriticality C510 log(Pp /P th) increases,
where Pp corresponds to the power of the wave under
input transducer. The powerPp was determined from

Pp5PR~H01!2PR~H0!, ~8!

wherePR is the power reflected from the input transduc
measured at fieldH0 corresponding to the conditions for ex
-
as

se

-

d-
d

m
-
in

e–

e
on
he
as

e

,

citing a magnetostatic surface wave and fieldH01. f p /g for
which the pump frequency lies below the bottom of the sp
trum of spin waves. Typical powers of the magnetosta
surface pump wave were 5–50% of the incident powerPp

in .
As in Refs. 2–6, the ‘‘threshold power’’Pth refers to the
pump-wave powerPp at which an absorption band close
frequencyf p is formed in the amplitude–frequency chara
teristic of the probe signal. Curve1 in Fig. 3 shows how the
threshold power at pump frequencyf p in the film depends on
the fieldH0.

The amplitude changeDA and phase changeDf of the
probe wave at the frequencyf z of the probe wave were de
termined experimentally as shown in Fig. 2. TheDA andDf
values thus obtained were then used in Eqs.~6! and ~7! to
calculate the corrections to the dispersion law,Dk8, and to
the damping law,Dk9, at the chosen frequencyf .

To determine the lengthL of the nonequilibrium section
the pump signal was fed to transducer1, while transducers2
and3, which were used to analyze the amplitude–frequen
characteristic of the probe wave, were displaced along
film ~Fig. 1b!. It is obvious that absorption bands in th
amplitude–frequency characteristic of the probe wave of
type shown in Fig. 2 will be observed only until transduce2
is on the nonequilibrium section of the film (S1,L1). The
distance S1 at which the pumping ceased to affect th
amplitude–frequency characteristic was taken to be
length L1 of the nonequilibrium section for a given supe
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criticality level C of the pumping. To determine the leng
L2 of the nonequilibrium section corresponding to a surfa
magnetostatic pump wave propagating along the bound
between the film and the substrate, the direction of fieldH0

is changed. Because of the nonreciprocity of magnetosta
surface waves,1 the lengthL2 of the section in the revers
direction is always less than in the forward direction; it s
isfied L2<L1/5 in our case. Note that, besides the nonre
procity effect, the ratio of lengthsL1 andL2 can be affected
by the difference of the film parameters at the bounda
between the film and the air and between the film and
substrate.

Curves2–4 in Fig. 3 show the how the lengthL1 of the
nonequilibrium section in the forward direction depends
the fieldH0 at different supercriticality levels of the pump
ing. It can be seen that the size of the nonequilibrium reg
increases asC increases and is always greater for fou
magnon instability of the magnetostatic surface wave t
for three-magnon decays. However, the character of theL1

5L1(C) dependence is essentially determined by the t
of instability of the magnetostatic surface wave. Under c

FIG. 3. Dependence on external magnetic fieldH0 of the threshold power
Pth of the decay processes~curve1! and of the lengthL1 of the nonequi-
librium region for supercriticalityC510 dB ~curve2!, 20 dB~curve3!, and
30 dB~curve4!. The dashed line shows the boundary between the region
three-magnon and four-magnon processes.
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ditions of three-magnon decay of the surface magnetos
pump wave, the length of the nonequilibrium section beg
quickly to increase with increasingC in the region of values
C.20 dB, for which kinetic instability of the spin waves i
generated.12,13,5,6For values ofH0.H0

3m , the increase ofL1

slows down in the region of valuesC.12 dB, where kinetic
instability arises for four-magnon processes with the part
pation of magnetostatic surface waves.6

Note that for both three and four-magnon instability o
magnetostatic surface wave with frequencyf p close to the
limiting frequency for three-magnon decay, spin waves
excited, propagating almost parallel to the fieldH0.2–6

Therefore, removal of the interaction products in our ca
must not cause a substantial difference in the length of
nonequilibrium sections for three-magnon and four-magn
instability of a surface magnetostatic pump wave. The s
nificant increase of the size of the nonequilibrium regi
observed whenH0.H0

3m should consequently be associat
with the smaller damping of the pump wave under the c
ditions of four-magnon instability than with three-magno
decay processes.

Figures 4 and 5 show the frequency dependence of
corrections to the dispersion law,Dk8, and the damping law
Dk9, under conditions of three- and four-magnon instabil
of a surface magnetostatic pump wave, calculated from
experimental values ofDA and Df using Eqs.~6! and ~7!,
respectively. The same figures show the spectra of the p
signal transmitted by the film.

Most importantly, we compare the form of the frequen
dependence of the corrections toDk8 andDk9 with the form
of the spectrum of the output pump signal~see Figs. 4 and
5!. Under conditions of four-magnon instability of the pum
wave, the character of theDk8( f ) andDk9( f ) dependence as
a whole corresponds to the form of the spectrum: the
quency band in which the corrections to the dispersion
damping law appear corresponds to the frequency ban
the existence of the noise spectrum close to the pump
quency~Fig. 5!.

It can be seen from Fig. 4 that, under conditions of thr
magnon decay, there can be an appreciable difference in
frequenciesFs at which satellites exist in the pump spectru

of
on-
FIG. 4. Spectrum of the output pump signal~a!. Frequency depen-
dence of the additional lossesDk9 ~b! and of the dispersion
changesDk8 of the magnetostatic probe wave~c! caused by inter-
action of the probe wave with parametric spin waves in the n
equilibrium region forH05490 Oe andC522.5 dB in the case of
three-magnon decay,f p. f th

3m .



ib-

178 JETP 88 (1), January 1999 Kazakov et al.
FIG. 5. Spectrum of the output pump signal~a! and frequency
dependence of the additional lossesDk9 ~b! and dispersion
changesDk8 of the magnetostatic probe wave~c! caused by inter-
action of the latter with parametric spin waves in the nonequil
rium region for H0 5 595 Oe, C511 dB ~filled squares!, C
516.2 dB ~open squares!, andC519 dB ~crosses! in the case of
four-magnon instability,f p, f th

3m .
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and those at which one finds corrections to the dispers
Dk8, and the damping,Dk9, of the surface magnetostat
probe wave. SinceDk8( f ) andDk9( f ) differ from zero only
at frequenciesFa where absorption bands of the amplitude
frequency characteristic exist, this difference is a con
quence of the noncoincidence of frequenciesFs andFa— a
fact pointed out earlier in Refs. 2, 4–6. At the same time
is to be hoped that there is a definite correspondence betw
the satellites and the absorption bands in the amplitu
frequency characteristic. To establish this correspondenc
was convenient to use the dependence of the frequencieFa

andFs on the fieldH0. Figure 6 shows the experimental fie
dependence of the frequencies of the satellites and absor
bands lying below pump frequencyf p . It can be seen tha
those satellites and absorption bands whose frequencie
n,

-

it
en
–

, it

ion

are

connected by the relationshipFa(H0)'2Fs(H0)2 f p exist
in the same range of magnetic fieldsH0 ~one such pair cor-
responds to curvesb andb8 in Fig. 6!. It is to be hoped that
there is a direct connection between such satellites and
sorption bands.

We should point out that the satellites are second
magnetostatic surface waves, generated on the nonequ
rium section of the film as a result of processes of blend
of parametric spin waves of the form14

f 11 f 25Fs , k11k25ks . ~9!

Note that theFs(H0) has a characteristic shape.8,14

As can be seen in Figs. 2–5, the instability of the pum
wave increases the spatial damping rate and changes
wave number of the surface magnetostatic probe wave.
mp
–
ve,
s in

the
s

FIG. 6. Dependence on external magnetic fieldH0 of the fre-
quencies of the satellites in the spectrum of the output pu
signal ~1! and of the damping bands in the amplitude
frequency characteristic of the magnetostatic probe wa
caused by interaction with packets of parametric spin wave
the nonequilibrium region for a film withh'7 mm. Curvesb
and b8 are an example of parametric interdependence of
satellites and damping bands;a andb, b8 are the dependence
corresponding to Figs. 8a and 8b, respectively.
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indicated changes occur only at those frequenciesf of the
probe wave at which the conditions given by Eq.~2! or ~3!
are satisfied, corresponding, respectively, to four-magno
three-magnon interaction with the parametric waves exc
by the pump wave. TheDk8 andDk9 values recorded unde
conditions of three-magnon decay of the pump wave are
order of magnitude greater than for four-magnon instabi
in this case. Note also that the dispersion of the probe w
assumes an anomalous character in the frequency re
where the absorption maximum is observed.

In the linear approximation, the dispersion equation
magnetostatic surface waves in a ferromagnetic film has
form9

exp~2kd!5
~21x1!22x2

2

x1
22x2

2
, ~10!

wherex15vHvm /(vH
2 2v2) and x25vvm /(vH

2 2v2) are
the components of the magnetic susceptibility tensor of
ferromagnet. If it is assumed that, for the probe wave,
processes given by Eqs.~2! and ~3! do not change the form
of the dispersion relation~10!, but only affect the suscepti
bility of the ferromagnet, resulting in a small nonlinear a
dition dx to the susceptibility (x@dx), we get for long-
waveleng th (2kd!1) magnetostatic surface waves

Dk8;Redx, Dk9;Im dx. ~11!

Comparing the frequency dependence ofDk8 andDk9 with
Eqs. ~11!, we see that in essence they reflect the Krame
Kronig relations for the real and imaginary parts of the no
linear additions to the susceptibility.

The increase of the losses and the variation of the
persion of the magnetostatic surface wave shown in Fig
and 5 can result not only from interaction with the param
ric spin waves when they pass through the nonequilibri
section, but also from the effect of the latter on the pro
wave excitation and detection processes2,4 and from thermal
heating of the film by the pump wave.7 The effect of the
parametric spin waves on the excitation and detection p
cesses was eliminated by placing transducers1 and3 beyond
the limits of the nonequilibrium section:S1.L2, S2.L1.

To estimate how thermal heating of the film affected t
measured results, the dependence ofDA andDf on the in-
verse duty factorU was studied by modulating the pum
signal with square pulses at a frequency off m51 kHz. Note
that the time to establish a steady-state temperature dist
tion over the thicknesss50.5 mm of a structure consisting o
a film with a substrate ist'0.1 sec and can be calculate
from t5s2/D,15 whereD50.02 cm/sec2 is the thermal dif-
fusion coefficient. It was found that varying the inverse du
factor within the limits 1<U<5000 does not cause varia
tions ofDA andDf to the accuracy with which these qua
tities are measured, better than 3% over the entire freque
range in which magnetostatic surface waves were excite

Of course, the absence of appreciable variations ofDA
andDf by no means indicates that there is no heating of
film with microwave power—the temperature increaseDT of
the section of the film close to transducer2, measured with
the maximum level of decreasing power by means of a th
or
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mocouple, wasDT'0.2 °C. If we assume that the temper
ture of the entire film increased byDT'0.2 °C, and note tha
at room temperatures the rate of variation of the magnet
tion with varying temperature is'3.3 G/deg,15 the magneti-
zation of the entire film changes by'0.7 G. If it is assumed
that the other parameters of the film remained unchang
the increment of the real and imaginary parts of the wa
numbers, obtained by solving the dispersion equation for
magnetostatic surface waves9 with parameters correspondin
to Fig. 2, areDk8'0.5–2 cm21 and Dk9'0.001–0.002 cm
21. Such changes of the wave numbers in our case will c
respond to an amplitude change ofDA'0.1–0.2 dB and a
phase change ofDf'30–90°. A comparison of theseDA
andDf values with those observed in experiment~see Fig.
2! shows that the contribution of heating to the observ
phase change of the magnetostatic surface wave coul
'50% in a number of cases, while the effect of heating
signal attenuation should be negligible. However, no ph
change of the magnetostatic surface wave associated
heating appeared in experiments with a modulated pump
nal. Such a discrepancy can be explained by assuming
only the part of the film close to transducer2 is heated. If
one starts from an accuracy of 3% in determiningDf, the
heated region must not exceed'1 mm for the case corre
sponding to Fig. 2, whereDf'130° –300°. Since the ther
mocouples used for the measurements themselves had a
of '0.5 mm, we could convince ourselves only that t
heated region in our case does not exceed 2 mm.

3. EFFECT OF A SURFACE MAGNETOSTATIC PROBE
WAVE ON THE DISTRIBUTI ON OF PARAMETRIC SPIN
WAVES IN „v,k… SPACE

The interaction of the surface magnetostatic probe w
and the parametric spin waves created by pumping can m
fest itself not only in a change in the dispersion and in dam
ing of the magnetostatic surface wave but also in reshap
of the distribution of the parametric spin waves in (v,k)
space. If it is assumed that, in the absence of a surface m
netostatic probe wave, a pump wave with frequencyf p and
power Pp.Pth has established a steady-state distribut
n0(v,k) of parametric spin waves in (v,k) space, the pro-
cesses given by Eqs.~2! and ~3! with the participation of a
probe wave can not only change the number of already
isting parametric spin waves,n(v,k)5n0(v,k)1dn(v,k),
but can also cause them to appear in other regions of (v,k)
space. When this happens, new frequency components
appear or new amplitude variations of the already exist
satellites can be observed in the spectrum of the output p
signal. Of course, the indicated changes in the spectrum
the output signal are possible if thedn(v,k) values substan-
tially exceed the level of thermal spin wavesnT(v,k)
@dn(v,k)@nT(v,k)#.

When the delay-line prototype shown in Fig. 1a is us
the effect of the probe wave on the distribution of the pa
metric spin waves created by the pumping will be det
mined by the powerPz and frequencyf z of the probe signal,
as well as by the distanceS1 between the transducers th
excite the probe wave and the surface magnetostatic p
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FIG. 7. Variation of the spectral structure of one of th
satellites as a function of the pumping supercriticalityC at
H05480 Oe.
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wave. The value ofS1 determines not only the losses of th
probe wave on the way from transducer1 to the boundaries
of the nonequilibrium region of the film but also the mech
nism by which the probe wave affects the distribution of t
parametric spin waves established by pumping. Actua
when the power of the probe wave is greater than the thr
old value close to transducer1, a nonequilibrium region of
sizeLz also arises, containing parametric spin waves crea
by the probe wave. IfS1,Lz

11Lp
2 holds the distribution of

the parametric spin waves generated by the pump wave
be altered not only by the surface magnetostatic probe w
itself, but also by the parametric spin waves created by16

Here we consider the results for a film withh'7 mm,
obtained at such a distanceS1 that the nonequilibrium re-
gions close to transducers1 and2 did not overlap no matte
what Pp andPz values were used:S1.Lz

11Lp
2 . Moreover,

the frequencies of the probe wave and the pump wave w
chosen to be different,f zÞ f p , and such that three-magno
decay processes were allowed for a magnetostatic sur
wave at these frequencies. The power of the probe w
varied within the limitsPz50.1–100mW.

Note that whenf z5 f p holds adding the powers of th
probe wavePz and the pump wavePp gives an effect analo
gous to simply varying the supercriticality level of the pum
ing. The processes that occur here in the system of para
ric spin waves were studied in Refs. 2–6, 8, 14 and 17
the case of three-magnon decay of a magnetostatic su
wave. It was shown that, for magnetic fieldsH05430–
600 Oe and a supercriticality level ofC'5 –25 dB, satellites
separated from the pump frequency byDFs5u f p2Fsu
'5 –200 MHz appear in the spectrum of the signal transm
ted by the film.8 Since these satellites result from thresho
less processes involving the blending of parametric s
waves of the form of Eq.~9!, the amplitudeAs of the satel-
lites is associated with the numbers of parametric spin wa
in the (v1 ,k1) and (v2 ,k2) regions by

As}n01~v1 ,k1!n02~v2 ,k2!. ~12!

It is significant that, as the fieldH0 increases, the sate
lite widths vary within the range 0.5–8 MHz and that fin
structure becomes distinguisha ble in them at some field
-
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Fig. 7, for C values close to the threshold where a satel
appears, one can clearly see this structure as a set of
rower satellites with widthDV;10–100 kHz, unstable be
cause of parasitic deviations of the generator frequency
magnetic-field fluctuations.

It can be assumed that, for the chosen experimental
rameters (f zÞ f p , S1.Lp

21Lz
1), the surface magnetostati

probe wave will have an appreciable effect on processe
the system of parametric spin waves in combination with
pump wave if two conditions are satisfied: First, a region
(v,k) space must be found where the spin waves are sim
taneously in parametric resonance with both the surface m
netostatic pump wave and the probe wave. Second, the
cated spin waves at a pump level ofC'5 –25 dB must be
close to losing stability.

The necessity of the second condition is associated w
the chosen experimental technique, in which the thr
magnon decay processes are judged from the spectra o
output signal or from the change of the amplitude–freque
and phase–frequency characteristics of the probe wave. T
in the indicated supercriticality interval, on one hand, t
pumping excites parametric spin waves in rather narrow
gions of (v,k) space, and, on the other hand, the interact
of the parametric spin waves with each other is not yet gr
enough to generate a noise spectrum—the ‘‘kinetic insta
ity’’ of Refs. 12, 5 and, 6.

In order to choose experimental parameters at which
first requirement is satisfied, it was sufficient at a fixed va
of H0 to set the frequency of the probe wave within t
frequency interval of one of the absorption bands in
amplitude–frequency characteristic,f z5Fa . In this case, for
a distance between the transducers ofS150.1–4 mm, ampli-
tude changes whose character substantially depended
their width and structure were observed at the satellites un
the influence of the probe signal.

When the width of the satellites was less than 1–2 MH
a change was observed in the amplitude of the satellites
whole. The amplitude of the satellite directly associated w
the chosen absorption band in the amplitude–frequency c
acteristic and separated from the pump frequency byDFs
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FIG. 8. Behavior of the spectrum of the output pum
signal in the neighborhood of the satellite frequency f
H05457 Oe,f p53455 MHz,S154 mm when the probe-
signal frequencyf z changes in a neighborhood that doe
not correspond to the given satellite of the absorpti
band forC520.3 dB,Cz522 dB ~a!; and that does cor-
respond to the satellite of the absorption band forC
516 dB,Cz522 dB ~b!.
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'uFa2fpu/2 could be increased in this case b
dAs'1 –18 dB. The amplitudes of all the other satellit
could be decreased at the same time bydAs'1 –18 dB. To
illustrate this, Fig. 8 shows how the signal spectrum of
satellite with central frequencyFs53354.6 MHz depends on
frequencyf z in a field of H05457 Oe~curve c in Fig. 6!.
Figure 8a illustrates the situation in which the frequencyf z

passed through a series of values in the neighborhood o
absorption bandFa'3208 MHz that had no direct connec
tion with the chosen satellite~curve a in Fig. 6!. Figure 8b
illustrates the character of the changes in the spectrum o
satellite for probe-signal frequencies corresponding to
absorption band with central frequencyFa'3258 MHz,
which is directly associated with the chosen satellite~curve
b8 in Fig. 6!. Note that an interaction was observed for the
parameters even whenCz was reduced all the way to26 dB.

When the satellite width was within 2.5–8 MHz, th
presence of the fine structure rendered the interaction
biguous, and so the amplitude was observed to increase
f z5Fa in a frequency interval less than the satellite wid
However, for f zÞFa suppression of the satellite also o
curred in a narrow frequency interval, whereas the rest of
satellite could increase its amplitude.

4. CONCLUSION

The following conclusions can be drawn from the e
periments that have been carried out:

1. The main contribution to the variation of the dispe
sion and damping of a magnetostatic surface wave on a
tion of film subjected to the action of microwave pumping
the form of an additional magnetostatic surface wave a
frequency off p comes from three-magnon and four-magn
interaction processes involving parametric spin waves
cited by the pumping. For identical supercriticality levels
the pumping, the variation of the dispersion and damping
the magnetostatic surface wave is an order of magnit
higher for three-magnon interaction than with four-magn
interaction.

2. Under conditions of three-magnon instability of th
pumping and the probe wave, the distribution of the param
e
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ric spin waves in (v,k) space can change substantially at t
same time as the dispersion and damping of the probe w
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The behavior of the solution of the Korteweg–de Vries equation for large-scale oscillating
aperiodic initial conditions prescribed on the entirex axis is considered. It is shown that the
structure of small-scale oscillations arising in a Korteweg–de Vries system ast→` loses
its dynamical properties as a consequence of phase mixing. This process can be called the
generation of soliton turbulence. The infinite system of interacting solitons with random
phases developing under these conditions leads to oscillations having a stochastic character. Such
a system can be described using the terms applied to a continuous random process, the
probability density and correlation function. It is shown that for this it suffices to determine from
the prescribed initial conditions amplitude distribution function of the solitons and their
mean spatial density. The limiting stochastic characteristics of the mixed state for problems with
initial data in the form of an infinite sequence of isolated small-scale pulses are found.
Also, the problem of stochastic mixing under arbitrary initial conditions in the dispersionless
limit ~the Hopf equation! is completely solved. ©1999 American Institute of Physics.
@S1063-7761~99!02701-8#
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1. INTRODUCTION

The main features of the structure of the asymptotic
lutions of the Korteweg–de Vries~KdV! equation

ut16uux1«2uxxx50 ~1!

are determined by the form of the initial potentialu(x,0)
5u0(x).

In the classical theory of the integration of this equati
by the inverse-scattering method1 a necessary condition i
that the functionu0(x) vanish with sufficient rapidity as
uxu→` ~localized initial data!. The asymptotic solution o
this problem in the limitt→` describes an ordered chain
diverging solitons defined by the discrete spectrum for
quantum-mechanical problem of scattering by the poten
2u0(x). The contribution of the continuous spectrum is re
resented by the oscillating wave ‘‘tail,’’ whose amplitud
falls ast21/2. In the semiclassical case«2!1 ~Refs. 2 and 3!
the number of solitons~of order 1/«), although large, is
fixed, and the asymptotic limit of the solution ast→` re-
mains regular regardless of the detailed form of the funct
u0(x).

The initial datau0(x) in the form of a smooth function
with different asymptotic limits at infinityu0(2`).u0

(1`) lead to the appearance of a continuously expand
oscillator region.4

An important difference from the classical theory is th
the number of solitons now grows without bound in tim
1821063-7761/99/88(1)/14/$15.00
-

e
l
-

n

g

t
.

However, their structure ast→` remains regular.
A fundamental difference from the cases describ

above is the solution of the periodic problem

u0~x!5u0~x1X0!,

whereX0 is the period. This problem can be integrated e
actly only if u0(x) is chosen from a special class of period
functions called finite-band potentials.1,5–8 The asymptotic
dynamics of the oscillations in the periodic problem can ha
a very complicated character~in the case«!1 the number of
nonlinear modes is large, of order 1/«), which has the out-
ward appearance of a disordered system of waves of dif
ent amplitudes.

Despite this, the exact solution of this problem alwa
manifests its dynamical nature explicitly, strictly conservi
its periodicity in space: the conditionu(x,t)5u(x1X0 ,t) is
fulfilled at all times.

The aim of the present work is to examine th
asymptotic behavior of the solutions of the KdV equation
the semiclassical limit«!1 for aperiodic initial functions
u0(x) oscillating on the entirex axis. A more precise defini-
tion of the class of initial data will be given below.

As will be shown, this case differs fundamentally fro
all solutions of the KdV equation considered previously. A
though at any finite timet the structure of the solution, a
before, has a dynamical character, its asymptotic limit
t→` completely loses its dynamical properties as a con
quence of ergodic phase mixing. The infinite system of
© 1999 American Institute of Physics
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teracting solitons with random phases developing in this c
gives rise to oscillations having a stochastic character. S
a system can be described in terms of a continuous ran
process. Specifically, in the asymptotic limitt→` the exact
dynamical value ofu(x,t) loses meaning and it is possib
only to speak off (u;x,t), the probability density of finding
at the pointx,t the given valueu in the interval@u,u1du# or
of f (u,u8;x,t,x8,t8), the two-point distribution function, i.e.
the joint probability density of having values@u, u1du # at
the pointx,t and values@u8, u81du8# at the pointx8,t8; or
of a three-point distribution function, etc. It is remarkab
that the possibility arises here, as we will see below, o
significant simplification in the description of the asympto
behavior of the solution. In particular, for a spatially hom
geneous initial functionu0(x) the probability densityf `(u)
depends only on the velocityu and the spatial correlation
function K5K (s), wheres5ux2x8u.

Note that the evolution of random initial data in int
grable systems has been investigated in a number of ea
works; however, they only considered the influence o
small stochastic perturbation on the soliton solutions~see,
e.g., Refs. 9 and 10!. The question of the emergence of
stochastic regime as a result of the purely dynamical ev
tion of an integrable system is posed in the present work
the first time.

This paper is organized as follows. Section 2 formula
the initial-va lue problem for a spatially homogeneous os
lating function u0(x). It then considers its solution in th
dispersionless limit, described by the Hopf equation, conta
ing neither dissipation nor dispersion. In this case, nonlin
reversal gives rise to multistream flows. Here the numbe
streams, and consequently their density in velocity spaceu)
increases continuously with time. Therefore, ast→` to first
order in O(1/t) a steady-state velocity distribution functio
of the streams,f (u), is set up over all space. A gener
solution of the problem is found, allowing one to determi
the form of the distribution functionf (u) for any initial func-
tion u0(x). The asymptotic behavior of the correlation fun
tions is determined, which shows that ast→` in fact a dis-
tribution that is completely uncorrelated in space is set u

Section 3 investigates the semiclassical KdV probl
for the initial condition considered,u0(x). As a consequence
of the presence of the dispersion term«2uxxx multistream
flows never arise here. However, in the vicinity of the rev
sal points of the original profile bands of regular small-sc
~with period ;«) oscillations appear. With the passage
time the oscillator regions expand and overlap. It is sho
that the structure arising ast→` can be represented as
system of random interacting solitons homogeneous
space–time. They are described by a soliton amplitude
tribution functionf (a), and also by a mean soliton density
space~on the x axis!, which defines the intensity of thei
interaction. Specific examples of the calculation of the fu
tion f (a) and the mean soliton density are given.

Section 4 considers the case in which the initial funct
u0(x) consists of an infinite sequence of isolated pulses.
steady-state velocity distribution functionf `(u) is found,
which, on the one hand, has certain features in common
the distribution functionf (u) obtained for the same initial
se
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value problem in the Hopf limit but, on the other hand, d
fers from it significantly. Finally, Sec. 5 determines for th
same problem the steady-state correlation functionK „s… set
up ast→` and, correspondingly, the spectral power of t
process.

The Conclusion summarizes the main features of
process—the generation of soliton turbulence in the dyna
ics of a continuous one-dimensional nondissipative mediu
described by the integrable KdV equation. In addition,
provide a brief comparison with other known mechanis
for the occurrence of a chaotic state in dynamical syste
Of course, a rigorous basis of the stochastic systems con
ered here requires a special mathematical study.

Note also that integration of the KdV equation by th
inverse-scattering method establishes a direct connection
tween the dynamical theory considered here and the spe
theory of disordered systems, one subject of which is
quantum-mechanical Schro¨dinger equation with so-called
‘‘metrically transitive random potentials.’’11,12 It may there-
fore be supposed that the methods developed here may
interest not only for nonlinear dynamics, but also for t
theory of such quantum systems.

2. DISPERSIONLESS LIMIT

The main features of ergodic mixing can be illustrat
by the example of dispersionless evolution, described by
Hopf equation

] tu1u]xu50, u~x,0!5u0~x!, ~2!

where u0(x) is an arbitrary smooth oscillating aperiod
function prescribed on the entirex axis. We also assume tha
the distancesl between the zeros are contained in the inter

l min< l< l max, ~3!

where l min and l max are arbitrary finite values. The functio
u0(x) has a finite maximumumax and a finite minimumumin :

u0min<u0~x!<u0max. ~4!

We also assume thatu0(x) is spatially homogeneous, i.e
that there exists a scale, as large as desired but finite, sta
from which all the basic properties of the functionu0(x)
repeat. This latter condition excludes the possibility of s
gular behavior of the functionu0(x) at infinity. It is also
necessary that the value

u0~x!5u0min ~5!

be repeated not less than once on the scaleL. Conditions
~2!–~5! are satisfied by almost periodic or quasiperiod
functionsu0(x).

The evolution~2!, ~3!, as is well known,13 leads after a
finite time t5tk to the appearance of a singularity@Fig. 1a#

U]u

]xU
x5xk

→`. ~6!

In the absence of dissipation and dispersion, multistream
motion in the system is possible. In this case, fort.tk in the
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vicinity of the singularity ~6! three flows form: ui( i
51,2,3), each of which as before is described by the H
equation

] tui1Vi]xui50, Vi5ui . ~7!

At the singular points—the caustic points defined by con
tion ~6!—the flows join together~see Ref. 14! and the mul-
tistream system closes@Fig. 1~b!#. Such a solution is of
course equivalent to the implicit solution of the Hopf equ
tion

x5ut1x0~u!, ~8!

describing the evolutionu(x,t) in terms of multivalued func-
tions. Herex0(u) is the inverse function ofu0(x). Note that
another, fundamentally different, approach to the solution
the Hopf equation viewed as a limit of the dissipative Bu
gers equation was developed by Sinai.15

For the initial-value problem~2!, as one can easily con
vince oneself, the developing regions of three-stream fl
gradually expand with timet for t.tk ; then as a result o
intersection of the regions of reversal of the original profi
u0(x) regions of five-stream flow, seven-stream flow, e
successively appear@Fig. 1c#. To describe the process o
multiplication of streams, it is convenient to use the stre
number density distribution functionf (u,x,t) in the phase
space (u,x) of the system~2! satisfying the Liouville equa-
tion

] f

]t
1u

] f

]x
50. ~9!

The dynamical formulation corresponds to initial conditio
in the form of ad-function:

f 0~u,x,0!5d~u2u0~x!!. ~10!

In our caseu0(x) is an oscillating aperiodic function~2!
obeying conditions~3!–~5!.

The system~2!, ~10! has the obvious solution

f ~u,x,t !5 f 0~u,x,t !5d~u2u0~x2ut!!. ~11!

The zeros of thed function are the streamsui in the arising
multistream system~7!. These streams are defined as t

FIG. 1. Appearance of multistream flows in the Hopf equation.
f

i-

-

f
-

w

,

e

branches of the multivalued curveu(x,t) prescribed by the
implicit solution of the Hopf equation~8!. The solution~11!
in this case can be represented in the form14

f ~u,x,t !5(
i 51

N

r i~x,t !d~u2ui~x,t !!, ~12!

whereN is the total number of streams at the given pointx at
the timet, andr i(x,t) is the relative weight~or density! of
the i th stream:

r i~x,t !5
1

11udx0 /duu i
21t

. ~13!

It follows from Eq. ~13! that the weightr i at any timet is
determined directly by the initial functionu0(x).

We will point out now the main asymptotic properties
the solution~11!, ~12! for the initial function~2!.

1. The number of streamsN at any pointx as t→`
grows in direct proportion to the time:

N}a t,
^uu0u&
l min

,a,
^uu0u&
l max

, ~14!

where^uu0u& is the mean value of the magnitude of the initi
function andl min and l max are the half-periods, defined b
condition ~3!.

2. At any pointx for any valueu belonging to the inter-
val ~4! on which the initial functionu0 is defined, a streamui

is always found such that

uu2ui u,d, d5O~1/t !. ~15!

3. The asymptotic limit for each streamui for t@1 fol-
lows from Eqs.~8! and ~12!:

]ui

]t
5O~1/t !,

]ui

]x
5O~1/t !.

By virtue of the indicated properties, as follows fro
Eqs.~12!–~15!, in the asymptotic limitt→` the distribution
function f (u,x,t) can be represented in the form

f ~u,x,t !5 f ~u!1O~1/t !.

Here

f ~u!5 lim
t→`

H 1

t (
i 51

N Udx0

duU
i

d~u2ui !J , N}t ~ t→`!,

~16!

and the sum is over all roots of Eq.~8! in the limit t→`. The
asymptotic limit ~16! implies that the distribution function
~11!, prescribed at the initial timet50 in the form of ad
function, i.e., one stream at each pointx, washes out with the
passage of time due to the multiplication of streams and
t→`, goes over in the 1/t approximation to a distribution
that is uniform in space~on thex axis! and smeared over th
entire interval of initial velocities~4!: f (u). This is the pro-
cess of ergodic mixing.

To determine the functionf (u), it is convenient to aver-
age the Liouville equation~9! over the spatial interva
L@ l max. Defining
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f̄ ~u,t !L5
1

L E
0

L

f ~u,x,t ! dx, ~17!

we find from Eq.~9!

] f̄ ~u,t !

]t
52

u

L
@ f ~u,L,t !2 f ~u,0,t !#.

Hence it follows that asL→`

] f̄ ~u,t !

]t
U

L→`

50

and, consequently, the averaged function does not depen
time:

f̄ ~u,t !L→`5 f̄ ~u!. ~18!

This means that the limiting functionf (u) can be calculated
directly at the initial timet50 by direct spatial averaging o
the initial function~11!:

f ~u!5 f̄ 0~u!5 lim
L→`

1

L E
0

L

d~u2u0~x!! dx

5 lim
L→`

1

L E
0

L

(
i 51

N~L !
d~x2xi !

uu08~xi !u
dx

5 lim
L→`

1

L (
i 51

N~L !
1

uu08~xi !u
5K 1

uu08u
L

xi

. ~19!

In the last expression the angle brackets^ . . . &xi
denote av-

eraging over the ensemble of rootsxi5x(u) of Eq. ~2!.
In other words, the valuesuu08u are taken at the point

xi(u) defined by the relation

u5u0~x!. ~20!

We emphasize that the existence of limits~15!, ~17!, and
~18! is ensured by ergodicity of the initial function~2!–~5!
~for an exact definition of ergodicity, see, for example, R
16!.

The two-point distribution function and also high
probability characteristics of the mixed state can be found
an analogous way. Indeed, taking into account that the
iting function f (u) does not depend onx, one can readily
convince oneself that the two-point distribution functio
F2(v1 ,v2 ;x8,x9;t) also possesses the same property in
mixed state. Indeed, the functionF2 satisfies a Liouville
equation analogous to~9!:

]F2

]t
1v1

]F2

]x8
1v2

]F2

]x9
50 ~21!

with initial conditions

F2~v1 ,v2 ;x8,x9;0!5d~v12u0~x8!!d~v22u0~x9!!.
~22!

In Eq. ~21! it is convenient to transform to the new variabl

s5x82x9, x5x9.

Thus it takes the form
on

.

n
-

e

]F2

]t
1~v12v2!

]F2

]s
1v2

]F2

]x
50.

By virtue of the spatial homogeneity of the problem, w
average the functionF2 overx on the interval@0,L#. For the
averaged function̂F2&L in this case we obtain the equatio

]^F2&L

]t
1~v12v2!

]^F2&L

]s
5O~1/L ! ~23!

with the initial condition

^F2&L~v1 ,v2 ;s;0!

5
1

L2 E0

L

d~v12u0~x!!d~v22u0~x1s!! dx. ~24!

The solution of Eq.~23! is easily found and has the form

^F2&L~v1 ,v2 ,s,t !5
1

L2 E0

L

d~v12u0~x!!d~v22u0~x1s

2~v22v1!t !! dx1O~1/L !. ~25!

Expression~25! can be represented as a sum ofd func-
tions:

^F2&L~v1 ,v2 ,s,t !

5
1

L2 (
a,b

N~L ! d~s1x0
a~v1!2x0

b~v2!2~v22v1!t !

uu08~x0
a~v1!!u uu08~x0

b~v2!!u
, ~26!

where, as before,x0
a(u) are the roots of the equatio

u0(x0
a)5v1. Physically, the meaning of the argument of t

d function is obvious. It describes the increase with time
the distances between correlated neighboring pointsx1 and
x2 assuming that at the initial timet50 these points were
found a distancesab5x0

a2x0
b apart. For late enough times,

v1Þv2, the initial distancesab can be neglected. Thus from
Eq. ~26! in the limit L→` we obtain

^F2&~v1 ,v2 ,s,t !5d~s2~v12v2!t ! f ~v1! f ~v2!,

v1Þv2 , ~27!

is the single-particle wheref (v1) and f (v2) are single-
particle distribution functions~19!. Hence it can be seen tha
the pairwise correlation function in our case has in fact
nature of ad correlation and is completely determined by t
single-particle distribution. As can be seen from relati
~27!, the spatial correlation functions are proportional
(1/t)d(s/t2(v12v2)) and, consequently, for any finites de-
cay with time as 1/t.

Note that in the derivation of relation~27! it was as-
sumed that the initial functionu0(x) is aperiodic. It can be
easily seen that in the case of a periodic function we ob
analogous relations, but expression~27! will contain a sum
of terms d(s2(v22v1)t1X0n), where n is some integer
andX0 is the period. Analogous relations also obtain for t
higher correlation functionsFn , which are described by the
equation

]Fn

]t
1v1

]Fn

]x1
1 . . . 1vn

]F2

]xn
50.
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Thus, in the limit t→` there exists only one nonzer
function f (u). This implies that the initial distributionu0(x)
becomes completely washed out. The limiting mixed st
~16!, ~19! is thus completely uncorrelated.

Let us consider some examples of the mixing proces
Example 1. Initial data in the form of a periodic func

tion.
We assign the initial function in the form

u05a sinx. ~28!

It follows from Eqs. ~28! and ~19! that x5arcsin(u/a)
and

f ~u!5
C

a ucosx~u!u
5

1

pAa22u2
. ~29!

The normalization constant in formula~29! is chosen from
the condition

E
2a

a

f ~u! du51.

We emphasize that although the probabilityf (u) defined by
formula ~29! for the periodic boundary conditionu0(x
1X0)5u0(x) has a completely real meaning, total stochas
mixing in this case does not occur: for example, the pairw
correlation function forv15v2 and all higher correlation
functions have, to first order in 1/t, infinite peaks forxk

2xm5nX0 ~26!.
Example 2. Quasiperiodic initial conditions.
Let the initial velocity be prescribed in the form

u0~x!5~a01a1sin~kx!!sinx. ~30!

wherek is an arbitrary irrational number,k!1. Separating
the fast and slow variables, we represent the functionu0(x)
as

u0~x!5a~X!sinx,

where

X5k x, a~X!5a01a1sinX.

Thus, to first order inO(k) we obtain for the functionf `(u)

f ~u!5
1

p E
2p/2

p/2 dX

Aa2~X!2u2
. ~31!

This function can be expressed in terms of elliptic integra
Example 3. Infinite sequence of isolated pulses.
We consider the initial dynamical problemu(x,0) in the

form of an infinite sequence of pulses of identical shapeF:

u~x,0!5u0~x!5(
i

FS x2x0i

u D . ~32!

Hereu is the pulse width and the pointx0i is the position of
the maximum of thei th pulse. We assume thatF(0)51
holds at the maximum, thus 0<F<1. The mean distance
between neighboring pointsxi is equal tol , and the ratio of
the pulse widthu to the distance between pulses is

g5
u

l
. ~33!
e

.

c
e

.

The quantityg is a characteristic parameter of the initia
value problem under consideration. With the help of E
~19!, we find the distribution function in the form

f ~u!5~12a~1!g!d~u!1g f 1~u!, ~34!

where the functionf 1(u) has the usual form:

g f 1~u!5 K U du

dxU21L
xi

5
2

l Udu

dxU
21

; ~35!

the xi(u) are the roots of Eq.~19!, determined by the shap
of the initial pulseF(j). The average in Eq.~35! is calcu-
lated on a scale exceeding the width of the initial pulseu.
The presence of thed function in the solution is completely
understandable—the initial distribution~32! has as its most
probable valueu50. The constanta(1) is determined by the
normalization condition.

For example, if the pulse shape has the form

F~j!512
j2

~u/2!2
, u0~x!512

x2

~u/2!2
, ~36!

Then from Eq.~35! we find that

x~u!56
u

2
A12u, Udu

dxU5 4

u
A12u

and correspondingly

f 1~u!5
1

2A12u
, a~1!5E

0

1

f 1~u! du51. ~37!

Example 4. Random initial function.
Above we considered a purely dynamical initial mod

The mixing process takes place in a completely analog
way when the initial condition is prescribed by a rando
function. For example, if the initial function is periodic wit
random amplitudea, then, as can be easily seen, for t
distribution function that sets up after mixing, instead of t
dependence~29! we have

f ~u!5E c~a!
da

pAa22u2
, ~38!

wherec(a) is the prescribed distribution of the random va
ablea. Averaging over the parametersa0, a1, andk can be
done analogously for a quasiperiodic initial function.

3. STOCHASTIC SOLUTIONS OF THE KdV EQUATION

Let us turn now to our main problem, the asympto
properties of the solution of the KdV equation~1! for the
case of aperiodic oscillating initial conditions~2!–~5!. Since
we will make extensive use here of properties of the
called multiphase finite-band solutions of the KdV equatio
it is only natural to first recall the structure of these solutio

3.1. Multiphase KdV solutions

The structure of the initial potential2u0(x) plays an
important role in the integration of the KdV equation by th
inverse-scattering method.
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In the case in which the initial potential is a period
function of a special class, the spectrum of the scatte
problem consists of a finite number of allowed bands~see
Refs. 5–7!. The solutions of the KdV equation constructe
for such initial conditions are multiphase (g-phase!. They are
found in the theory of finite-band integration with the help
the so-called trace formula~see Refs. 17 and 1!

ug~x,t !5r 122(
j 51

g S m j~x,t !2
r 2 j1r 2 j 11

2 D , ~39!

where the constantsr j.0, j 51, . . . ,2g11, are the branch
points of the spectral surface of the complex variablel in the
finite-band scattering problem. This surface is prescribed
the algebraic equation

y25Rg~l!52 )
j 51

2g11

~l2r j !, ~40!

r 1,r 2, . . . ,r 2g11 ,

and is a two-sheet Riemann surface of genusg with cuts
along the allowed bands @2`,r 1#, @r 2 ,r 3#, . . . ,
@r 2g ,r 2g11#.

The functionsm j (x,t) ~the so-called auxiliary spectrum
of the finite-band scattering problem! are described by the
system of Dubrovin ordinary differential equations

«
]m j

]x
5

2is jRg
1/2~m j !

) j Þk
g ~m j2mk!

, j 51,2, . . . ,g. ~41!

Heres j561 are the signs of the square root of the functi
Rg(m j ). Eachm j lies in its own allowed band@r 2 j 21 ,r 2 j #
and oscillates with variation ofx, where each timem j

reaches the edge of the band,s j changes sign and the motio
advances to the next sheet of the Riemann surface. The c
acteristic period of the oscillations of the functionsm j , as is
clear from Eqs.~41!, is of order«.

Equations~41! in general describe a system of coupl
nonlinear oscillators. Forg51 there is only one oscillato
and Eqs.~39! and~41! yield a single equation whose solutio
is expressed in terms of the Jacobian elliptic function:18

u1~x!52~r 22r 1!cn2S ~r 32r 1!1/2
x

«
1w0z mD

1r 11r 32r 2 , ~42!

wherem5(r 22r 1)/(r 32r 1) is the elliptic function param-
eter andw0 is an arbitrary initial phase~integration constant!.
The solutionu1(x) is a periodic function ofx with amplitude
a and periodT:

a52~r 22r 1!, T521/2«~r 32r 1!21/2K~m!, ~43!

whereK(m) is the complete elliptic integral of the first kind
As m→1 the oscillations degenerate into a chain of isola
solitons of heighta, where the distance between solito
grows as the distancer 32r 2, i.e., the width of the allowed
band, decreases:

T5221/2« lnS 16
r 32r 1

r 32r 2
D . ~44!
g

y

ar-

d

For g52, the system~41! describes two coupled oscil
lators, in particular, the motion of a heavy top~the
Kovalevskaya case! ~see, e.g., Ref. 19!.

Results of a numerical integration of system~41! for
various values ofg are plotted in Fig. 2. It can be seen th
with increasingg the shape of the oscillations~39! becomes
increasingly more complex, and for large enoughg they out-
wardly appear to be disordered. This is understanda ble
the single-band solutiong51 contains only one period an
its nonlinear harmonics, then theg-phase solution is a qua
siperiodic function and containsg independent periods, an
all their nonlinear harmonics.

At the same time, it should be emphasized that in
multiphase solution, as in case~42! g51, narrowing of the
j th allowed band,r 2 j 112r 2 j→0, leads to the appearance
special oscillations in the form of the solitons correspond
to this band, separated by a large interval~44!:

Tj}« ln~1/~r 2 j 112r 2 j !!. ~45!

On the other hand, in the case when all the allowed bands
narrow,r 2 j 112r 2 j→0, j 51,2, . . . ,g, the entireg-phase so-
lution decays into solitons of different amplitudes@Fig. 2b#.
For «g!Tj these solitons are free to first order in the para
eter«g/T.

The temporal evolution of the functionsm j (x,t) is de-
scribed by a weakly nonlinear system of differential equ
tions

FIG. 2. Multiphase solutions of the Korteweg–de Vries equation. a —r 1

50, r 250.2. b — Two-phase:r 150, r 250.001, r 353.5, r 453.5005,
r 557. c — Five-phase:r 150, r 251, r 352, r 453, r 554, r 655, r 756,
r 857, r 9510, r 10511, r 11514. d — Six-phase:r 150, r 250.7, r 354,
r 455.6, r 555.7, r 655.8, r 758.6, r 8513.2, r 9515.6, r 10522, r 11523.1,
r 12523.11,r 13527.4.
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]m j

]t
52~2ug~x,t !12m j !

]m j

]x
~46!

with initial data which are found by integrating the stead
state system~41!.

Also note that the finite-band KdV solution~39!–~41!,
~46! can be expressed in terms of an algebraic function o
g-dimensional torus—the theta function of the Riemann s
face ~40! ~see Ref. 19!.

3.2. The stochastization process

We will start off with a brief description of the evolutio
of a single localized perturbation

u~x,0!5u0~x!, u0~1`!5u0~2`!50. ~47!

The development with time of the smooth perturbati
u(x,t) is described by the Hopf equation~2! at the outset,
since the term with the higher derivative in the weak disp
sion limit «→0 is unimportant to start with. After passage
the time tk through the critical reversal pointxk , where
u]u/]xu→`, three streams~7! and ~12! appear in the solu-
tion of the Hopf equation in the vicinity of the pointxk , i.e.,
a multistream flow arises fort.tk ~Fig. 1!. The dispersion
term with the higher derivative«2]3u/]x3 begins to play a
dominant role in the solution of the KdV equation. For th
reason the solution of the KdV equation remains alwa
single-valued, i.e., single-stream, but as if to make up fo
small-scale~with period;«) oscillations are excited in the
vicinity of the reversal point. It is important that these sma
scale oscillations can be represented in the form of a sin
phase solution of the KdV equation~42!, ~43! with slowly
varying ~in spacex and in timet) branch points on the Rie
mann surface—the parametersr 1 ,r 2 ,r 3. The variation of the
parametersr i(x,t) is described by the system of Whitha
modulation equations:20

]r i

]t
1Vi~r 1 ,..r 3!

]r i

]x
50, i 51,2,3, ~48!

r 3>r 2>r 1>0, V3>V2>V1>0.

We see that the system of equations for the Riem
invariantsr 1 ,r 2 ,r 3 in the region of the oscillations is entirel
analogous to the Hopf equations for three streams ari
after reversal~7!. This analogy extends further in the cha
acter of the matching with the nonoscillatory part of t
solution:4 the matching takes place at a caustic pointx2(t),
where not only the invariantsr 1 and r 2, but also the veloci-
ties V1 and V2 coalesce; an analogous coalescence of
invariantsr 2 andr 3 and the velocitiesV2 andV3 takes place
at the pointx1(t) @see Fig. 3a#. The difference from the
three-stream Hopf equations~7! is that the group velocities
Vi now depend on all three invariants, not justr i . However,
fulfillment of conditions ~48! and the matching condition
for the invariants shows that in a qualitative sense the
namics of the Riemann invariants is entirely similar to t
development of three-stream flow.

This is fully confirmed by the solutions of the corre
sponding problems obtaining for different initial condition
~see Refs. 4, 21–26!.
-
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We turn now to the oscillating initial condition of inter
est to us~2!–~5!. In this case, reversal occurs at each infle
tion point of the initial curveu0(x) @Fig. 3b#. Here bands of
single-phase oscillations develop. Then, with the passag
time the bands of single-phase oscillations begin to over
In this way, two-phase, and then three-phase oscillatio
etc., develop@Fig. 3c#. They are described, respectively, b
five, seven, etc. Riemann invariants. The variation of
Riemann invariantsr i for a g-phase structure is described b
a generalized system of Whitham equations~Flaschka,
Kricheveret al.27,3,28,29!:

]r i

]t
1Vi~r 1 , . . . ,r 2g11!

]r i

]x
50, i 51, . . . ,2g11,

~49!

r 2g11>r 2g> . . . >r 1>0,

V2g11>V2g> . . . >V1>0.

Equations~49! are written in a coordinate system movin
with velocity u0min. In this coordinate system, the transitio
from ag-phase structure to a (g11)- or (g21)-phase struc-
ture is completed at the caustic pointsxg

6 , where, according
to the rule described above for a single-phase system,
invariants coalesce.30 For the initial-value problem~2!–~5!,
with the passage of time the number of phases at each p
grows,g}t, but since the region of definition of the param
eters r i is prescribed by the initial conditions~4! in the
bounded scale

u0max2u0min>r>0, ~50!

this means that the mean distance between the invari
^Dr &5^ur i 112r i u& decreases with time ast:

^Dr &}1/t.

The above-described process is completely similar to
multiplication of streams in the solution of the Hopf equati
and takes place uniformly over the entirex axis. Therefore,
in analogy with the multistream solution of the Hopf equ
tion investigated in Sec. 2, a steady-state distributionF(r )
over the invariantsr that is completely determined to firs
order inO(1/t) is asymptotically set up ast→`. The distri-

FIG. 3. Appearance of a multiphase structure.



e

n-
th

a

o

ee
on

an

b-

th
li
it
a

:

as

tio
n

, a

d

ion
l-

u

s

b
n
y
in

a
ean
be-
m-
. As

-
liton

re-

b-
nd

stri-

the
the

e
u-

es

ell

ll

-

e

-

te

189JETP 88 (1), January 1999 Gurevich et al.
bution function F(r ) describes the relative density of th
invariantsr i in the interval fromr to r 1dr. A natural nor-
malization rule is

E
r min

r max
F~r ! dr51. ~51!

The valuesr min andr max are defined in accordance with co
dition ~50!. The phase relations of the various modes of
oscillations in this case are unimportant, so the transition
t→` to a continuous distributionF(r ) already constitutes a
stochastic description of the system. The continuum limit
the theta function introduced by Venakides31 may serve as a
definite analogy of such a description.

3.5. Stochastic multisoliton structure

Let us pause to note one important difference betw
the structure of the Riemann invariants of the KdV soluti
for the initial-value problem~2!–~5! and the structure of a
multistream Hopf flow. Toward this end, we consider
analysis of a single localized perturbation. Fort@1 the
asymptotic behavior of the solution of the initial-value pro
lem ~47! takes the form of a so-called soliton wave,23,24a set
of solitons aligned in amplitude: the lead soliton has
greatest amplitude, followed by a soliton with lesser amp
tude, etc. The distance between solitons grows linearly w
time, Ts}t, which is a natural consequence of the line
dependence of the soliton velocity on the amplitude.2

But, as follows from Eq.~44!, this means that the width
of the allowed bandr 32r 2 narrows exponentially with time

r 32r 25r 3expS 2
t

t~r 3! D , r 1→0, t@1. ~52!

An analogous situation obtains for a two-phase, three-ph
and indeed any multiphase system, ast→`. Solitons of dif-
ferent amplitudeas j , belonging to any given phasej , move
with a different velocityV(as j). Consequently, the periodTj

increases with time and consequently, according to rela
~45!, the width of thej th allowed band decreases expone
tially with time:

r 2 j 112r 2 j}exp~2t/t j !. ~53!

Thus, in the multiphase structure under consideration
t→` the widths of the allowed bands at any pointx narrow
down exponentiall y, and the widths of the forbidden ban
(r 2 j ,r 2 j 11), (r 2 j 12 ,r 2 j 13), etc., decrease with time as 1/t.
This peculiarity distinguishes the structure of the distribut
of invariants in the KdV equation from the structure of mu
tistream flows of the Hopf equation, where all 2j 11 streams
are equivalent. At the same time, Eq.~53! yields an impor-
tant consequence for the chaotic structure of the KdV eq
tion. First, it follows from fulfillment of condition~53! for
each phase that the structure developing ast→` from the
initial condition ~2!–~5! is a system of interacting soliton
@see relation~45!#. Further, it follows from condition~53!
that the solitons belonging to a given mode, i.e., related
their common origin from one hump of the initial functio
u0(x) ~2! and for this reason connected from the outset b
definite phase relation, are found at a large and ever grow
e
s

f

n

e
-
h
r

e,

n
-

s

s
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a
g

distanceTj from each other:Tj}t. But this means that as
consequenc e of the general law of conservation of m
density, the space between them is filled with solitons
longing to other modes, i.e., solitons not related by a co
mon origin and consequently possessing random phases
a result, ast→` a random distribution of solitons with uni
formly distributed phases sets up over all space. Each so
can therefore be characterized by just its amplitudea. The
maximum value of the amplitude is bounded by the p
scribed initial conditionu0(x) @Eqs.~2!, ~43!, and~50!#:

am52~u0max2u0min!.

In this case, for the aperiodic oscillating initial-value pro
lem ~2!–~5! the set of soliton amplitudes is countable a
hence dense on the interval 0>a>am . The arising chaotic
structure can therefore be described by the amplitude di
bution function

f ~a!, 0<a<am . ~54!

In what follows we will takeu0min50 andu0max51 and con-
sequentlyam52.

The existence ast→` of thex-independent limitf (a) is
a consequence of the ergodicity of the initial functionu0(x).
The soliton amplitude distribution functionf (a) is deter-
mined directly by the form of the initial functionu0(x), Eq.
~2!. Indeed, according to the inverse scattering problem,
solitons correspond to levels of the discrete spectrum of
Schrödinger equation with the potential2u0(x). By virtue
of the smallness of the parameter« it is possible to use the
semiclassical approximation in the solution of th
Schrödinger equation. Thus, the soliton amplitude distrib
tion f (a) describing the number of solitons with amplitud
in the interval froma to a1da,

dW5 f ~a! da, ~55!

is determined by the shape of each individual potential w
of the initial function. Specifically,23

f ~a!52
1

4p« E
a/2

1 D8~z!

Az2a/2
dz. ~56!

HereD(z) is the width of the initial well at the levelu5z.
The derivativeD8(z) is related to the initial shape of the we
F(j) by the obvious relation

D8~z!52S u

udF/djuj1~z!
1

u

udF/djuj2~z!
D , ~57!

wherej1(z) and j2(z) are the values of the two-valued in
verse function ofF(j) at the pointF(j)5z. By virtue of the
smallness of the parameter« the system of levels can b
considered separately in each well. As a result we obtain

f ~a!5
1

m (
k51

m

f k~a!, ~58!

where f k is the distribution function in thekth well.
Thus the functionf (a) is normalized to the mean num

ber of solitons per well,N. According to condition~4!, it is
possible to limit the number of wells in this sum to a fini
valuem on a sufficiently large intervalL of thex axis. In this
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case, according to the initial-value problem~2!–~5!, the dis-
tribution function f (a) to first order in O(u/L) does not
depend on which segmentL of the initial function it is cal-
culated on. We give examples.

Example 1.Let u0(x) be a sequence of isolated pulses
the form ~38!. Then, according to formula~56! we have

f ~a!5
u

8p« E
a/2

1 dz

A12zAz2a/2
5

u

8«
. ~59!

We assume that the width of the pulses is modulated:

u5u0~11b cos2~kx!!, k!1.

In this case, averaging on a scaleL@1/k, we obtain the
continuous soliton distribution

f ~a!5
u0

8«S 11
b

2D .

Example 2. If u0(x)5b(12cosx), then D(z)
52 arccos(12z/b) and from formula~56! we obtain

f ~a!5
1

2p«Ab
E

arccos~12a/2b!

0 dt

A12a/2b2cost

5
1

p«
A 2

ab
FS arcsinSA a

8bD ;A8b

a D , ~60!

where F(f;m) is the incomplete elliptical integral of th
first kind.

Next, considering the slow variation of the amplitude
the oscillations of an initial functionu0(x) of the form
b511b1sin(kx) (b1,1; k!1, wherek is irrational!, it is
also possible here to obtain a continuous distributionf (a) by
averaging expression~60! on a scaleL@1/k:

f ~a!5
1

A2ap2«
E

2p

p dz

A11b1sinz

3FS arcsinA a

8~11b1sinz!
;A8~11b1sinz!

a D .

Another important parameter is the mean spatial den
of the solitonsC characterizing their interaction. The mea
spatial density of the solitonsC is also determined directly
by the form of the initial functionu0(x). Indeed, the total
number of solitons in one individual well, according to fo
mula ~56! is

Ni5E f i~a! da. ~61!

Determining the total number of solitons in all the wells on
‘‘representative’’ scaleL, we find the mean soliton densit
corresponding to the given initial-value problem:

C5
1

L (
i 51

m

Ni . ~62!

According to conditions~3!–~5! the densityC does not de-
pend on the choice of segment of the initial distribution. F
example, for the soliton density in the case~59! we have
f

f

ty

r

C5
g

4«S 11
b

2D ,

where according to Eq.~33! g5u0 / l ( l is the mean distance
between pulses!. We emphasize that the density
bounded—it does not exceed a quantity of order 1/«. For
example, in the case of a single-phase wave~42! the mini-
mum value of the period of the oscillationsTmin is reached as
m→0 and according to formula~43! is equal to

Tmin5
p«

a1/2
.

Consequently, the maximum value of the density is equa

Cm5
1

Tmin
5

a1/2

p«
.

Hence it is clear thatCm decreases as the soliton amplitu
decreases. Note that the soliton distribution function norm
ized to the spatial density of the solitons isf C(a)5C f(a).

We emphasize that the possibility of describing the m
properties of the structure under consideration with the h
of a chaotic system of solitons characterized only by
amplitude distribution and the mean density is determined
the form of the initial functionu0(x).

An important role is played here by the condition
spatial homogeneity of the initial functionu0(x) and condi-
tion ~5!, which exclude the effect of a singular point at in
finity (x→6`).

Despite the fact, as was indicated above, that the c
tinuum limit of the theta function31 is a definite analog of the
system considered here, it is necessary to also turn our a
tion to an important difference between them. The point
that Ref. 31 considers the limit for ag-band structure, aris-
ing, for example, in the case of a periodic initial-value pro
lem. This structure is formed by a large numberg;N;1/«
of soliton lattices,29 each of which corresponds to a defini
band. The width of the allowed bands describing the latti
in this case is exponentially small in comparison with t
width of the forbidden bands describing the difference in
levels of the solitons belonging to neighboring lattices.
other words, the soliton amplitudes in a mixed system are
arbitrary, but vary by small (;«) jumps.

In the system under consideration, in the asympto
limit as t→` no distinct soliton lattices arise. The quantu
levels of the initial distribution form a continuous system
Correspondingly, a continuous distribution of soliton amp
tudes~56!–~58! arises ast→`. We emphasize that althoug
in the semiclassical limit considered in Ref. 31 the contin
umized description of the discrete spectrum is identical t
description of the continuous soliton distribution, upo
closer analysis, e.g., in a consideration of the correlat
functions, fundamental differences between them can a
as is already evident in the case of the Hopf equation. T
paper by Krylovet al.32 is dedicated to a more detailed trea
ment of the corresponding mathematical questions.
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4. SEQUENCE OF ISOLATED PULSES IN THE KdV
EQUATION

We consider for the KdV equation with weak dispersi
«!1 initial data in the form of an infinite sequence of puls
of identical shape~32!. We assume the pulses to be we
separated:

g5
u

l
!1. ~63!

Over a timet<1/g@1 each pulse can be treated separate
After this time the pulse transforms into a soliton wave, i.
it decays into a large number of solitonsN;u/«, aligned in
amplitude.23,24 The total number of solitons arising as a r
sult of the decay of one pulse is equal to

N5E
0

2

f ~a! da5
u

p« E
2`

`
AF~j! dj. ~64!

Each soliton moves with its own velocityvs , which is pro-
portional to its amplitude:

vs52a. ~65!

We now consider the asymptotic behavior of the solut
of the KdV equation with the initial condition~2! with con-
dition ~63! taken into account in the limitt→`. As was
shown in Sec. 3, as a consequence of ergodicity of the p
lem the system passes into a uniformly mixed~on thex axis!
stochastic state. The process of multiplication of modes
vestigated in Sec. 3 is equivalent in our case to a grad
superposition of the soliton waves arising as a conseque
of the differences in the velocities of the solitons~65!. The
considered mixing process is more obvious by virtue of
fact that in the linear-in-g approximation the interaction o
the solitons can be neglected. We are thus talking about
mixing in one-dimensional space of an ideal gas of nonin
acting particles~solitons! with velocity spectrumf (vs). Note
that the kinetics of a gas of solitons with their interactio
taken into account was considered by Zakharov.33

For the problem of interest to us, it is important that ea
soliton has a completely determined dependence of its sh
u on x and t:

u5us~x!5a cosh22S x2vst

« S a

2D 1/2D . ~66!

Therefore, following the results of Sec. 2, in order to find t
velocity distribution function f `(u) in the stochastically
mixed state in the leading approximation, it is necessary
to consider the probability density distribution function in
soliton wave of fixed amplitude,

f a~u!5^d~u2us~x!!&xi
5

2

l Udus

dx U
21

,

and then average it over the soliton amplitudes:

f `~u!5
2

l K 1

udus /dxu L
a

5
2

l E
u

2

f ~a!Udus

dx U
21

da. ~67!

Here we have taken into account that the soliton amplitu
are distributed according to the rule~55!, ~56! and that only
.
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solitons with amplitude greater thanu contribute tof `(u).
We now take into account that the quantityudu/dxu for soli-
tons with the shape~66! has the universal form

Udus

dx U5 A2

«
uAa2u. ~68!

Substituting expression~68! into formula ~56! and integrat-
ing, we arrive at a universal expression for the steady-s
distribution function:

f `~u!5g
C1

u
DS u

2D . ~69!

HereC1 is a normalization constant.
It is clear from Eq.~69! that the distribution function

f `(u) grows without bound like 1/u as u→0, so that the
distribution ~69! is not normalizable. It should, however, b
borne in mind that for very smallu the implemented approxi
mation of noninteracting solitons breaks down.

To calculate the interaction between the solitons~see
Ref. 1!, note that asg→0 the solitons overlap mainly in the
region of their exponential tails.

Therefore the velocityu(x) in the interaction region can
be represented in the form of a superposition of two ex
nential soliton ‘‘tails’’:

u~x!5a expS 2
x

«
Aa

2D 1a2 expS x2x0

«
Aa2

2 D . ~70!

As follows from Eq. ~67!, we must calculatex8(u) as a
function ofu. Differentiating expression~70! and regrouping
terms, we obtain a relation betweenu8(x) andu:

ln@~Aau1«A2u8!~uAa22«A2u8!Aa2 /a#

52
x0

«
Aa2/21 ln@~a3/21aAa2!Aa2 /a~a2Aa1a2

3/2!#.

~71!

By virtue of the smallness of the parameterg the following
condition is fulfilled:

x0

«
Aa2

2
@ ln@~a3/21aAa2!Aa2 /a~a2Aa1a2

3/2!#.

Therefore the solution of Eq.~71! can be represented in th
form

~Aau1«A3u8!~uAa22«A2u8!Aa2 /a

5expH 2
x0

«
Aa2

2 J . ~72!

Analysis of expression~72! shows that there exists a min
mum valueumin such that there is no solution foru,umin ,
where

umin5
1

Aa
SAa2

a D 2Aa2 /a/~11Aa2 /a!

3expH 2
x0

«

Aa2/2

11Aa2 /a
J .
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In this case, fordx/du we have the following relation:

Udx

duU
u→umin

}
1

Au2umin

, u>umin .

Thus we see that the 1/u divergence obtained earlier i
expression~69! for f `(u) is cut off at smallu at values
u5umin . Therefore, to eliminate the divergence in expre
sion~69! it is necessary when averaging to introduce a cu
at u5umin . Note that exact calculation shows that the res
does not depend on how the cutoff is effected. Therefore
simplest to make the cutoff by introducing the Heaviside s
functionH(x), which, as usual, is equal to zero forx,0 and
one forx.0. This function must be averaged over the po
tion of the second solitonx0 and over the amplitudesa,a2. It
can be shown that the probability of the relative arrangem
of the solitons in the mixed stochastic state obeys Pois
statistics regardless of the form of the initial distribution. T
Poisson distribution is a spatial analog of the uniform dis
bution of the phases over their periods. In other words,
probability that the distance between the solitons will ta
the valuex0 is

P~x0!5
4«

g
expS 2x0

g

4« D . ~73!

Here we have taken into account that the mean distance
tween the solitons in our case~32!, ~62!, ~63! is equal to
4«/g. Averaging over the Poisson distribution~73!, we ob-
tain

^H~u!&x0
5E

0

`

P~x0!H~u2umin~x0 ,a2 ,a!! dx0

5ug/2A2S 1

Aa2

1
1

Aa
D . ~74!

Next it is necessary to average expression~74! over the soli-
ton amplitudesa anda2. This averaging is performed usin
the soliton amplitude distribution function. As a result, i
stead of formula~56! for f `(u), we obtain the normalized
distribution

f `~u!5
g

2
u211g/2 DS u

2D . ~75!

The normalization constant in formula~75!, as usual, is
found from the equation

E
0

`

f `~u! du51.

Thus, for example, for the case when the initial function
prescribed by a set of parabolic pulses~36!, the distribution
function for g!1 has the form

f `~u!5
g

2
u211g/2A12

u

2
. ~76!

The distribution function~76! is plotted in Fig. 4.
Note that the divergence of the distribution functio

~75! and ~76! as u→0 is a consequence of working to fir
order ing . This approximation does not take account of t
-
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special role of the small-amplitude solitons. Indeed, as
clear from formula~66!, the width of the solitonDxs grows
as its amplitude decreases:

Dxs'
«

Aa
.

The mean distance between solitons is equal to

^Dx&5
l

N
;«

l

u
;

«

g
.

Therefore, fora;g2 the solitons overlap substantially an
cannot be treated as weakly interacting. Thus, the distr
tion function~75! is valid only up to valuesu;g2, i.e., up to
valuesf `;1/g. For valuesu,g2 its growth is truncated due
to the strong interaction of the small-amplitude solitons.

This is also why the functionf `(u) takes the form de-
picted qualitatively by the dashed line in Fig. 4. Its exa
calculation requires a complete account of effects;g2,
which goes beyond the scope of the present work.

We note in conclusion that for the same initial cond
tions ~32! there exists a structural similarity between the d
tribution functions in the solution of the KdV equation
f `(u) given by Eq.~76! and the Hopf equationf (u) given
by ~34!: both have a characteristic value of orderg for
u;1 and a large maximum in the limitu→0 ~see Fig. 4!.
These features reflect the properties of the initial distribut
u0(x).

5. THE CORRELATION FUNCTION

Let us turn now to the correlation function in the mixe
state. As usual, we define it by the formula

K ~s!5^u~x1s!u~x!&2^u~x!&2. ~77!

Here the angle brackets^ . . . & denote averaging over spac
x. According to our earlier analysis of the probability fun
tion f `(u) in the semiclassical problem («→0), in the case
of a well-separated sequence of initial pulses (g→0) two
regions stand out. The first of these is the main region
values u;1, where the solution decays into a system

FIG. 4. Velocity distribution functionf (u) for the initial function u(x),
defined by Eqs.~32! and ~36!; 1 — Korteweg–de Vries equation~76!.
Dashed line — corrections}g2 ; 2 — dispersionless limit~34!, ~37! ~Hopf
equation!.
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FIG. 5. a — Correlation functionK (s); b — Fourier spec-
trum S(k).
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well-separated solitons such that to first order in the par
eter g they can be taken to be noninteracting. The corre
tions here are short-range and are determined only by
soliton scale«. The second region is the region of very sm
values ofu,g2, where the small-amplitude solitonsa;g2

play the main role. In this case, the interaction between
solitons turns out to be not only important, but in fact pr
dominant. In this region long-range correlations should na
rally arise.

We consider here the first approximation in the para
eterg and, consequently, only the region of short-range c
relations. In this approximation only the first term in expre
sion ~77! makes a contribution of orderg to the correlation
function. It can be rewritten in the form

K ~s!5E
0

2

f ~a!Ka~s! da, ~78!

where f (a) is the soliton amplitude distribution functio
~56!, and Ka(s) is the correlation function of solitons of
given amplitudea:

Ka~s!5a2 lim
L→`

1

2L

3E
2L

L

cosh22S x1s

« S a

2D 1/2D cosh22S x

«S a

2D 1/2D dx

5
«a3/2

A2l
E

2`

1`

cosh22~x11s1!cosh22~x1! dx1 ,

s15
s

«S a

2D 1/2

. ~79!

Herel is the mean distance between pulses. After integrat
formula ~78! yields

Ka~s1!5
A2«a3/2

l F coshs1

~sinhs1!3
s12

1

sinh2 s1
G . ~80!

The functionKa(s) takes its maximum value ats50. Near
the maximum fors!«/a1/2 it can be represented in the form

Ka~s!5
A2

3
«

a3/2

l S 12
a

5«2
s2D .

For s@«/a1/2 the correlation function decreases expone
tially:

Ka~s!s@«/a1/254s
a2

l
expS 2A2

sa1/2

« D .

The total correlation function depends on the soliton a
plitude distribution. Let us consider the specific exam
~36!. In this case
-
-

he
l

e
-
-

-
r-
-

n,

-

-
e

D8~z!5
2

uu8~z!u
5

u

2A12z
.

Therefore

f ~a!5
u

8p« E
a/2

1 dz

A~12z!~z2a/2!
5H u

8«
, 2>a>0,

0, a.2.
~81!

It follows from Eqs.~78!, ~80!, and~81! that

K ~s!5
A2u

8l E
0

2F coshs1

~sinhs1!3
s12

1

sinh2 s1
Ga3/2da. ~82!

From this expression we find the asymptotic forms of t
correlation function:

K ~s!s!«5
2

15
gS 12

2s2

7«2D , ~83!

K ~s!s@«53gS «

sD 5F12
2

3S s

« D 5

expS 2
2s

« D G .
Hence it is clear that the maximum value of the correlato
K (0)5(2/15)g, and for large values of the parameters it
falls off ass25. The total integral of the correlation functio
is of course proportional to the small parameterg«:

J5E
2`

`

K ~s! ds5A2g«.

The form of function~82! is depicted in Fig. 5a.
The Fourier transform of the correlation function—th

spectral power of the process34—is usually also of significant
interest:

S~k!5
1

2p E
2`

`

K ~s!eiksds. ~84!

In the case under consideration of a pulsed process with n
overlapping pulses

S~k!5
1

l E
0

2

^uusa~k!u2& f ~a! da,

where

usa~k!5
1

2p E
2`

`

usa~x!e2 ikxdx5
«2k

2p sinh~k«~2/a!1/2!

is the Fourier transform of an isolated soliton.
In the example~36! considered above the integrate

Fourier spectrum has the form



r

am
iu
at

le

st

ro

n
r

s:

re

e

re

r
n
t
s
v
n
te
om

ec-
own

the
the
e

he
on-
ffer-
de-
lar
e

cces-
-

a
n
-

nt

-

cil-

si-

m-

n

-

-
n-

but
r is
m-

am-

y
r
oli-

a
dV
der-

194 JETP 88 (1), January 1999 Gurevich et al.
S~k!5
u

8l« E
0

2 k2«4

4p2sinh2~A2k«/a1/2!
da

5
1

8p2
g«~k«!4 E

k«

` dt

t3sinh2t
. ~85!

Expression~85! has the following asymptotic limits. Fo
k«!1 the spectrum tends toward a constant:

S~0!5
g«

32p2
.

And for k«@1 the spectrum decreases exponentially:

S~k!5
1

4p2
~g«!~k«!2e22k«.

The general form of the Fourier spectrum~85! is shown in
Fig. 5b.

6. CONCLUSION

The process examined in the present paper can be
garded as the generation of soliton turbulence in the dyn
ics of a continuous, one-dimensional nondissipative med
described by the integrable KdV equation. We recapitul
the main results of the theory.

1. For initial conditions having the form of large-sca
oscillationsu0(x) prescribed on the entirex axis, as a con-
sequence of the dynamics of the KdV equation stocha
small-scale oscillations set up ast→`, which can be de-
scribed in terms of a continuous random process: the p
ability densityf (u), the correlation functionK(s), and other
higher correlations.

2. The statistical characteristicsf (u), K(s), and others
are uniquely determined by the form of the initial functio
u0(x) and can be calculated. They are stable, i.e., they
main invariant for arbitrary finite perturbationsJ of the initial
function u0(x):

J5E
2`

`

udu~x!udx,`, du5ũ0~x!2u0~x!. ~86!

A general proof of the last statement proceeds as follow
finite perturbation of the initial condition~86! corresponds to
a finite perturbation of the initial soliton structure and the
fore cannot alter the distribution functionf (a), which is
formed by an infinite number of solitons.

3. All the dynamical properties of the system are d
scribed by corrections that areO(1/t). As t→` they disap-
pear asymptotic ally and only a statistical description
mains possible.

Of course, an exact proof of these statements would
quire a detailed mathematical study, which would go beyo
the scope of the present work. We also emphasize that
final expressions obtained here for the simple specific ca
given can be generalized using the analytical methods de
oped in Refs. 3, 31, and 25 for minimizing the multisolito
interaction, or by numerical methods. It should also be no
that the proposed theory can be generalized to other c
pletely integrable systems.
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In conclusion, we make a few remarks about the conn
tion between the process considered here and other kn
models of the appearance of chaotic motion.

1. It is possible to discern an analogy between
Landau–Hopf mechanism of successive bifurcations in
development of an instability in the flow of a dissipativ
continuous medium13 and the successive increase in t
number of modes of a multiband structure in the theory c
sidered here. But one should also note the substantial di
ence between them. While Landau–Hopf bifurcations
velop as linear streaming instabilities, in our case singu
points in x-space play the defining role. It is precisely th
appearance of singularities as a consequence of the su
sive reversal of the velocity profileu that leads to the gen
eration of new modes which immediately develop as
strongly nonlinear process in the local vicinity of the give
singular pointxk . Note that the contemporary theory of hy
drodynamic turbulence~see, e.g., Ref. 35! also points to the
important role of singularities in the higher correlations.

2. Since u(x,t) is the velocity, the trajectory of any
given pointx in the coordinate system moving with consta
mean velocityū5^u0(x)&, is described by the equation

dx

dt
5u~x,t !2ū. ~87!

In our case all the trajectoriesx(t) begin as large-scale mo
tion defined by Eq.~87! with initial condition ~2!–~5!, but
then with the passage of time contracts to small-scale os
lationsx(t) with characteristic scale of order«. This process
of compactification of the trajectoriesx(t) has a possible
analogy with the attractors considered in the theory of dis
pative turbulence.

3. According to the theory of integrability of the KdV
equation, an arbitrary large-scale, finite functionu0(x).0
can be approximated with a high degree of accuracy@of
order exp(21/«)# by a multisoliton solution withN;1/«
~Ref. 3!. It is important that each soliton has a definite a
plitude ai , but the position of its centerxi in this case is
rigidly fixed. In regard to the oscillating initial function
u0(x) ~2!–~5! it can be said that the position of the solito
inside each large-scale oscillation has a fixed phasew i(xi).
Thus, at the initial timet50 there is a rigid connection be
tween the amplitudesai and phasesw i of the solitons. Their
motion in spacex takes place with different velocities de
pending on their amplitude. As a result, the rigid initial co
nection between their amplitudesai and phasesw i breaks
down. We stress that the solitons do not move freely,
interact with one another, and the more strongly, the large
their mean density. Despite this fact, solitons of greater a
plitude move on average faster than those with smaller
plitude, which follows directly from relations~48! and ~52!.
As a result, ast→` complete phase mixing takes place. An
value of the phasew between 0 and 2p becomes possible fo
any soliton. Such a situation corresponds to the onset of s
ton turbulence.

From this standpoint the process of turbulization of
one-dimensional continuous medium described by the K
equation can be considered as ergodic. This fact is un
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scored by the analogy with the solution of the Hopf equat
~2! indicated in Sec. 3.2. On the other hand, it cannot
without mention that phase shifts also arise as a consequ
of interactions between the solitons.1,33 This process ampli-
fies the phase mixing.

4. We have not touched here on the huge literature
voted to plasma turbulence. The main difference in our w
consists in an analysis of the dynamics of an exactly in
grable system.

We are deeply indebted to A. L. Krylov; without th
many valuable discussions we had with him this work wo
never have been finished. We are also grateful to
Venakides, N. G. Mazur, V. V. Geordz haev, and M.
Ptitsyn for helpful discussions.
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Fund for Fundamental Research for partial financial supp
~Grant No. 96-01-01453!.

* !E-mail: alex@td.lpi.ac.ru

1S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharo
Theory of Solitons: the Inverse Scattering Method~Consultants Bureau
New York, 1984! @Russ. original, Nauka, Moscow, 1980#.

2V. I. Karpman,Non-Linear Waves in Dispersive Media~Pergamon Press
Oxford, 1975!

3P. D. Lax and C. D. Levermore, Commun. Pure Appl. Math.36, 253, 571,
809 ~1983!.

4A. V. Gurevich and L. P. Pitaevski�, Zh. Éksp. Teor. Fiz.65, 590 ~1973!
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Dynamics of an anharmonic oscillator with a periodic perturbation
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We study the features of the stochastic dynamics of a Hamiltonian system with the potentialx2n

subjected to an external monochromatic perturbation. Three regimes of stochastic diffusion,
which differ in the value of the amplitude of the external perturbation, are detected. We
demonstrate the possibility of chaotic regimes manifesting themselves in pendulum
vibrations of the well of a water-moderated and -cooled nuclear power reactor as an application
of the model being investigated. Finally, we propose a method of simple proportional
control, which makes it possible to control the chaotic vibrations of the anharmonic oscillator.
© 1999 American Institute of Physics.@S1063-7761~99!02801-2#
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1. INTRODUCTION

The revival of interest in the classical problem of t
dynamics of a linear system subjected to a periodic per
bation is due to two facts. On the one hand, the interest st
from the need to describe the rapidly growing number
experiments dealing with the interaction of periodic fiel
and nonlinear systems, and on the other, the new ideas a
the dynamics of nonlinear systems, developed in the
decades,1–4 require confirmation by models. The essence
these new ideas is that under certain conditions the motio
a strictly deterministic system acquires all the features
random motion, although no visible source of stochasticity
present. Examples of dynamical chaos have been discov
in essentially all areas of physics, and their number is s
increasing.

A one-dimensional Hamiltonian system with a tim
dependent interaction is the simplest dynamical system
allows for chaotic behavior. The case of a monochroma
perturbation is convenient for analysis and reflects the
perimental situation fairly accurately. The reason is that
many cases the motion of three-dimensional objects can
approximately described by one effective degree of freed
Such a situation occurs, for instance, in the case of Rydb
states in a microwave field5,6 or surface states of an electro
above liquid helium.7 These systems are also interesting co
ceptually from the viewpoint of the problem of quantu
chaos.8,9

A general study of the dynamics of any nonlinear syst
in which chaotic behavior is possible consists of the follo
ing stages.

1. The numerical study of the structure of classical ph
space.

2. Analytical estimates of the critical parameters of t
regularity-to-chaos transition.

3. The study of the dynamics of a system in chao
regimes and the development of methods for describing s
behavior.

Our previous work10,11 was devoted to solving the firs
two problems for an anharmonic oscillator under a perio
1961063-7761/99/88(1)/10/$15.00
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perturbation. The aim of the present work is to study t
chaotic regimes in this model. In Sec. 2 we briefly descr
the structure of phase space and give an expression fo
amplitude of the periodic perturbation, which makes it po
sible to determine the intervals of regular and chaotic m
tion. In Sec. 3 we use the quasilinear approximation to de
an expression for the local diffusion coefficient and study
various diffusion regimes. In Sec. 4 we employ the mode
an anharmonic oscillator with a periodic perturbation to d
scribe the unidirectional vibrations of the well of a nucle
power reactor. We show that for the parameters of work
water-moderated and -cooled~water–water! reactors the vi-
brations of the reactor well can become stochastic. Finally
Sec. 5 we demonstrate the possibility of converting the c
otic vibrations of an anharmonic oscillator into regular vibr
tion by introducing a small programmed perturbation into t
system. We study the stability of the proposed algorithm
chaos control against additive Gaussian noise.

2. THE STRUCTURE OF PHASE SPACE

In this paper we study the classical particle dynam
generated by the Hamiltonian

H~p,x,t !5H0~p,x!1Fx cosVt, ~1!

where the unperturbed Hamiltonian is

H0~p,x!5
p2

2m
1Axn5E ~n52l , l .1!. ~2!

Herep, x, andm are the particle momentum, coordinate, a
mass, andF and V are the amplitude and frequency of th
external field.

The anharmonic oscillator described by the Hamilton
~2! fills the gap between two important physical models, t
harmonic oscillator (n52) and the infinitely high rectangu
lar well (n5`). Research in both classical and quantu
dynamics of the anharmonic oscillator~2! has a rich history.
~A detailed list of papers on the subject can be found
Ref. 12.!
© 1999 American Institute of Physics



-

o

o
al

n

lap
al-
dd

sid-

the

ly.

-
his
ich
is

si-

of
eso-
n in-

d
ase
ich
situa-
to

ith

of
of

nce
an
rly

or-

olu-
ion

197JETP 88 (1), January 1999 Bolotin et al.
The Hamiltonian~1! can be written in terms of dimen
sionless variables if we introduce arbitrary units of massm0,
lengthl 0, and timet0. The new parameters (m8, A8, F8, and
V8) are linked to the old ones through the relationship

A85
Fl 0

n22t0
2

m0
, V85Vt0 ,

F85
FT0

2

m0l 0
, m85

m

m0
. ~3!

By proper selection of the unitsm0, l 0, andt0 we can use
~3! to obtain ‘‘convenient’’ values of the parametersm8, A8,
F8, andV8. Of the four parameters three can be fixed. F
instance, by selectingA85m85V851 we determine the fol-
lowing set of the basic units:

m05m, t05
1

V
, l 05S mV2

A D 1/~n22!

. ~4!

Here the only parameterF that enters into the Hamiltonian

H5
p2

2
1xn1Fx cost ~5!

~below we drop the prime wherever this does not lead t
misunderstanding! can be expressed in terms of the initi
physical parameters:

F85FS 1

mV2D S A

mV2D 1/~n22!

5
F

mV2l 0

. ~6!

The scaled HamiltonianH0(p,x) can be expressed i
terms of the action and angle variables (I and u) as
follows:11,13

H0~ I !5F 2p

aG~n!I G
a

, ~7!

where

G~n!52~2p!1/2
G~111/n!

G~1/211/n!
, a5

2n

n12
. ~8!

The resonant values of the action,I k , which are determined
from the condition

kv~ I !51, v~ I !5
]H0

]I
, k51,2, . . . , ~9!

are

I k5aFG~n!

2p G2n/~n22!

k~21n!/~22n!. ~10!

If we expand the perturbation in a Fourier series inu, the
total system Hamiltonian can be written

H~ I ,u,t !5H0~ t !1 (
k52`

`

xk~ I !cos~ku2t !, ~11!

where the Fourier coefficientsxk are given by the integrals

xk~ I !5E du

2p
x~ I ,u!exp~ iku!. ~12!
r

a

An analysis based on the Chirikov resonance over
criterion14 leads to an expression for the critical extern
field amplitude that ensures the overlap of neighboring o
resonances11 ~to first order in the amplitudeF of the external
field the widths of even resonances for the potential con
ered here are zero!:

Fk
cr52~223n!/~n22!

n~n22!

~n12!2xk
FG~n!

p G2n/~n22!

k4/~n22!

3@k~21n!/~22n!2~k11!~21n!/~22n!#2. ~13!

This expression solves the problem of reconstructing
structure of the phase space of the Hamiltonian~1! for arbi-
trary values of the parameters. The analysis of~13! reveals
the following main features of this structure:

1. For a rectangular well (n5`), for every value ofF
there exists an energy~or number of the resonance! above or
below of which the motion is regular or chaotic, respective

2. For everyn,` there is always a valueF0(n) of the
external perturbation at which for allF,F0(n) the motion is
regular at all energies.

3. For everyF.F0(n) the anharmonic oscillator under
goes a regularity-to-chaos-to-regularity transition, i.e., in t
case we can always specify an energy interval within wh
the motion is chaotic and outside of which the motion
regular.

The reason for a regularity-to-chaos-to-regularity tran
tion is the following.10,11For high-lying resonances~smallk)
and fixedF, the resonance widths decrease as a function
the order more slowly than the distances between the r
nances. This ensures the existence, as the perturbatio
creases in strength, of the well-known~normal! regularity-to-
chaos transition. However, this is true only within a limite
energy interval. The increase of the relative rate of decre
of the resonance width in comparison with the rate at wh
the distance between resonances decreases leads to a
tion in which the conditions for resonance overlap cease
be met, which results in a new~anomalous! chaos-to-
regularity transition.

The structure of the phase space varies smoothly w
the degree of anharmonicityn. Hence for a typical example
we take the numerical results forn58. Figure 1 depicts a
phase diagram that makes it possible, for a fixed level
external perturbation, to determine the energy intervals
regular and chaotic motions. The synoptic depende
E(x,tn52pn) supports the hypothesis that there is
anomalous chaos-to-regularity transition. Figure 1 clea
shows that fork.13 there are still isolated resonances c
responding to regular motion.

3. STOCHASTIC DIFFUSION

When the amplitudeF of the external perturbation is
large, there is a strong overlap of resonances, and the ev
tion of the system can be described by a distribution funct
f (I ,t) satisfying the Fokker–Planck equation~the quasilinear
approximation!:
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FIG. 1. Above: stroboscopic images of the pha
space forn58; to the right, F50.01; to the left,
F50.2. Below: the phase diagram forn58. The
dashed curve separates the regular region~to the left
of the curve! from the chaotic region~to the right of
the curve!. The black squares show the stabilit
boundary for the resonances whose numbers stan
the squares, andA, B, andC are the three regions in
the phase diagram corresponding to different stoch
tic diffusion regimes.
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]

]I
Dql~ I !

] f

]I
, ~14!

whereDql(I ) is the quasilinear diffusion coefficient. A con
sistent derivation of Eq.~14! and of an expression for th
quasilinear diffusion coefficient presupposes the use of
Liouville equation as the starting equation for the distrib
tion function in the (I ,u) space with subsequent averaging
the distribution function over the initial phases and w
analysis of the conditions for the smallness of the terms
carded in the equation for the averaged distribution funct
~see, e.g., Ref. 1!. In this paper we limit ourselves to th
derivation of a formula forDql . For the starting expressio
we use the formula for the diffusion coefficient for a te
particle,

Dql~ I !5 lim
t→`

1

2t E0

t

dt1E
0

t

dt2 ~ İ ~ t1! İ ~ t2!! , ~15!

where İ[dI/dt, and the horizontal bar indicates averagi
over the initial phases. Below~in the present section! we
distinguish between dimensional~unprimed! and dimension-
less~primed! quantities. The correlator in~15! can be calcu-
lated via the equations of motion in the (I ,u) space:

dI

dt
5F (

k52`

`

kxk~ I !sin~ku2Vt !,

~16!
du

dt
5v~ t !1F (

k52`

`
dxk~ I !

dI
cos~ku2Vt !.
e
-
f

s-
n

t

What is important is that the integration of the seco
equation in~16! in the quasilinear approximation is don
along the unperturbed path,

u~ t !'u01vt. ~17!

Plugging~17! into the first equation in~16! and then into
~15!, averaging over the initial phases, and using the n
variablest12t2 and (t11t2)/2, in thet→` limit we arrive at
an expression for the quasilinear diffusion coefficient:

Dql

pF2

2 (
k52`

`

k2xk
2d~kv~ I !2V!. ~18!

We can use this formula to estimate the local diffusi
coefficient atI'I k . To this end we could use the explic
expression for the Fourier coefficients, which are defined
~12!. This expression is too cumbersome, however. It w
found that to make simple estimates we can approxim
xk85x(A/E)1/n by the formula

xk8'0.47 expS 2
3k

4 D ~19!

at n58. Figure 2 illustrates the fact that~19! is a good ap-
proximation of thexk8 vs.k dependence fork>3. Then, com-
bining ~18! and ~19!, we arrive at an estimate~to within a
numerical factor of order unity! for the local quasilinear dif-
fusion coefficient withn58:

Dql~ I k!'F2S Ek

A D 1/4 V2

v3~ I k!
expH 2

3V

2v~ I k!
J . ~20!
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The results of a numerical investigation of stochastic d
fusion in our model (n58) are depicted in Fig. 3. Numerica
analysis revealed the presence of three regions in the b
cation diagram in the dimensionless variables (E,F) charac-
terized by the different diffusion regimesA, B, andC ~see
Fig. 1!. Below we give a brief qualitative characteristic fo
each regime.

RegionA, in which the amplitudeF of the external per-
turbation is only slightly larger than the minimum critic
value F0~8!. Here the primary resonances overlap on
slightly, and diffusion involves secondary resonances. Fig
3a depicts a chaotic path of the dimensionless variabletn

and I , with tn52pn, which first wanders around the fift
primary resonance and then jumps to the seventh prim
resonance. Figure 3c depicts the dependence of^I 2& on tn at
F50.01, which is of a linear nature, witĥ& standing for the

FIG. 2. Values of the logarithm of the dimensionless Fourier coefficienxk

for k odd ~the black squares!. The dashed line represents Eq.~19!.
-

r-

re

ry

probability average. Note that the diffusion coefficie
D5 limt→`^I 2&/t, defined in this diagram as the slope of th
line to the time axis, is different for the random walks of th
particle near the fifth and seventh primary resonances.

RegionB corresponds to moderate external-perturbat
amplitudes. Here the resonances effectively overlap
hence the conditions for the quasilinear approximation
met. The chaotic pathI (n) at F50.2 is depicted in Fig. 3b,
and the dependence of^I 2& on n is shown in Fig. 3d. The
linear nature of this dependence is evident.

RegionC corresponds to large external-perturbation a
plitudes. Figure 4 illustrates the specific features of diffus
in this region. Clearly, the dependence of the diffusion co
ficient on the square ofF, which is linear inB @this corre-
sponds to the quasilinear approximation; see Eq.~18!#, in C
becomes less slanted. This may be explained as follows
deriving the expression for the quasilinear diffusion coe
cient we integrated with respect to the angle along the
perturbed path@see Eq.~17!#. As F increases, we must allow
for its effect on the path. In the theory of resonan
broadening,15 this effect is taken into account by replacin
the delta function in the quasilinear diffusion coefficient wi
a resonance curve of a finite width, which increases withF.
We allow for this feature by replacing the delta function
~18! with an exponential:

d~kv2V!→
1

Ap g
expH 2

~kv2V!2

g2 J , ~21!

whereg(F) is the exponential-curve width, which increas
with F. Then forg!v,V we have an estimate for the qua
silinear diffusion coefficient:
FIG. 3. Upper row: a chaotic path in the (lnI,n)
space. Lower row: the dependence of^I 2& on n: ~a!
and ~c!, at F50.01 ~region A); and ~b! and ~c!, at
F50.2 ~regionB).
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Dql~ I !→D̃ql~ I !5Dql~ I !~12D!, D}
g2

vV
. ~22!

For g50 ~22! leads to the previous estimate~20! and hence
to a linear dependence of the diffusion coefficientD on F2.
The estimate~22! clearly shows that an increase inF causes
an increase ing, so that the dependence of the diffusio
coefficient onF2 becomes less slanted.

4. THE ANHARMONIC OSCILLATOR UNDER A PERIODIC
PERTURBATION AS A MODEL OF REACTOR-WELL
VIBRATIONS

As a possible application of the above results, we stu
the possibility of chaotic regimes setting in in reactors of
water-moderated water-cooled power type~VVÉR in Rus-
sian!, or simply a water–water reactor. In the course of o
eration, the reactor well experiences stresses due to the
erful fluxes of the heat-transfer agent from the cold legs
the circulation loops. In view of this, the well vibrates
relation to the reactor vessel, and these vibrations are re
tered and analyzed by neutron-sensing elements placed
side the well but inside the vessel.16 The monitoring of the
movements of the well and the inner components during
eration is an important problem of reactor noise diagnost
which is being actively developed in countries that ha
nuclear reactors~see the materials17 of the Specialists Meet
ing on Reactor Noises, SMORN VII!. What is especially
worth mentioning is the possibility that~due to wear and tea
of some of the fastening elements! ~quasi!pendulum vibra-
tions of the well as a beam with a fixed upper end can
velop, vibrations involving contact with the vessel in th
lower part of the well.18 Identifying, describing, and moni
toring changes in the characteristics of these vibrations
important in the early stages of diagnosing construction
fects acquired in the process of operation.

Monitoring the reactor well amounts to measuring a
processing the signals from noise sensors and analys
these signals via theoretical models. In interpreting the d
on the vibrations of the well~and other construction elemen
of the reactor!, models of linear oscillators~or coupled linear
oscillators! are used. In these models the values of

FIG. 4. Diffusion coefficientD5^I 2&/n as a function of the square of th
external-perturbation amplitude for regionsB andC.
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masses and the stiffness and friction coefficients are obta
by combining the results of theoretical calculations, ben
tests, computer modeling, and pre-operational tests.19 Gener-
ally, the external force~perturbation! in these models con
sists of two components: the random component, which
sults from local turbulent pulsations, and the regu
component, with several high peaks in the spectrum~for
more details concerning the origin of forces acting on
reactor well see the review in Ref. 19!.

From the variations from measurement to measurem
of, say, the spectral characteristics~auto power spectra, co
herence functions, and the phase! of the noise signals, which
register well vibrations, we can draw conclusions concern
the state of the devices inside the reactor vessel and of
tening elements. The possibility of this follows from the fa
that different types of possible defects lead to variations
different parts of the spectrum.20 However, when interpreting
the data of measurements one must bear in mind that du
contact with the reactor vessel the~quasi!pendulum vibra-
tions of the well are essentially nonlinear,18 so that a periodic
external force may make these vibrations chaotic. The pr
erties of chaotic motion cannot be taken into account
linear models, with the result that such models must be a
mented by an analysis of possible nonlinear effects.

The first to study nonlinear effects in~quasi!pendulum
vibrations of a reactor well was Vavrin,21 who, however, did
not consider the possibility of stochastization of these vib
tions by an external periodic force. According to a rece
report,22 theoretical and experimental investigations of t
nonlinear effects in the vibrations of other elements of
intravessel devices, such as control rods and clusters of
elements, have just started.

Only estimates done with appropriate models can ans
the question of whether chaotic regimes occur at values
parameters corresponding to operating reactors. As on
the simplest models describing unidirectional quasipendu
vibrations of a reactor well we can take the above mode
an anharmonic oscillator with a periodic perturbation. T
oscillator’s potential energy models the elastic interact
that emerges when the reactor well contacts the reactor
sel, while the periodic perturbation models the force at
frequency of rotation of the main circulating pumps.

To determine the type of motion~chaotic or regular!
occurring in quasipendulum vibrations we must connect
parameters of the model with the parameters of the reac
Let D be the amplitude of reactor-well vibrations at a fixe
energy,

E5ADn. ~23!

Then for the stiffness coefficientA expressed in terms of th
amplitudeD we have

A5
2

p
mv2Gn

2D22n, Gn[
G~111/n!

G~1/211/n!
. ~24!

In terms ofD, the unit of length,l 0, is

l 05F S 2

p D 1/2

GnvG2/~22n!

D, ~25!
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FIG. 5. Phase diagrams for differentn. The
hatched areas correspond to the paramet
of the VVÉR-1000 reactor.
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and hence the dimensionless energy is

E85
E

mV2l 0
2

5F 2

p

Gnv

V G2n/~22n!

. ~26!

The law of variation of the momentum of the coola
flow acting on the reactor well yields the force exerted by
cold leg of a circulation loop:

F5rn2pr 2, ~27!

where r is the density of the heat-transfer agent,n is the
average velocity of the heat-transfer agent in the cold
and r is the radius of the pipe. The dimensionless result
force exerted by two opposite circulation loops is

F85
F

mv2l 0

5
a

D

rn2pr 2

mv2 F S 2

p D 1/2Gnv

D G2/~n22!

, ~28!

where the coefficienta characterizes the imbalance of th
opposing pumps.23

Equations~26! and ~28! make it possible to determin
where in the diagram in Fig. 1 the region corresponding
the characteristic values of the parameters for quasipendu
vibrations of the well of a VVE´ R-1000 reactor is situated
The rated values of the parameters are~1! m52.203105 kg,
~2! W52p16.6 Hz,~3! r 50.425 m, and~4! D50.06 mm.

In Fig. 5, the hatched areas of the phase diagrams
different values ofn correspond to the following paramete
intervals:v52p3(226), anda50.0220.15 ~see Ref. 24;
as in the previous figures, we have discarded the prime
e

g,
g

o
m

or

on

dimensionless quantities!. We see that for a ‘‘typical’’ set of
parameters chaotic modes may set in. Stochastization o
vibrations of the reactor well occurs in the vicinity of th
resonances that overlap for the given level of periodic p
turbation. Here the parametern determines the ‘‘relative’’
weight of the region with regular and chaotic motion with
the range of admissible values of the parameters.

5. CONTROL OF THE CHAOTIC VIBRATIONS OF AN
ANHARMONIC OSCILLATOR

An important feature of the dynamics of a nonlinear sy
tem interacting with a periodic external field is the possibil
of nonresonant~diffuse! absorption of energy. As applied t
the problem being discussed, this process may cause the
plitude of the reactor well vibrations to build up dangerous
due to absorption of the energy of the heat-transfer ag
Chaos plays a useful role since, by stimulating mixing,
affords a powerful heat and mass transfer mechanism. H
ever, in many cases~in particular, for vibrations of the reac
tor well! chaos is undesirable, since it leads to additio
mechanical fatigue of the fastening elements, has an adv
effect on the operation of measuring devices, and hinders
analysis of spectra. For this reason there have been sig
cant recent attempts to control chaos, i.e., to convert it in
periodic process. To this end a small programmed varia
of one~or several! parameters of the system is enforced25 or
a specially constructed external perturbation is used.26
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As is well known, the extremely high sensitivity to sma
perturbations is the key feature of chaotic systems. In 19
the OGY group~Ott, Grebogi and Yorke25! proposed using
this feature to control dissipative dynamical systems wh
phase space contains a small attractor. OGY suggested
following procedure to stabilize any unstable periodic or
lying on the attractor. In the preliminary stage, the equati
of motion or time series of the measured characteristics
the system27 are used to construct the Poincare´ section
Zn115F(Zn ,p0) for a certain fixed value of the paramet
p5p0 of the system available for control. When a pointZn

on the chaotic path of the system in the Poincare´ section is
found to be close to a pointZ* (p0) of the objective unstable
orbit of period k(Z* (p0)5Fk(Z* (p0),p0)), we slightly
change the value of the control parameterp (pn5p0

1dpn) so that in the next iteration the pointZn11

5F(Zn ,pn) lands in the stable set of the saddle po
Z* (p0). This condition leads to the main formula of th
OGY control method:

dpn5
lufu–dZn

~ln21!fu–w
, ~29!

where

dZn5Zn2Z* ~p0!, w5
]F~Z,p!

]p U
Z* ,p0

,

lu is an unstable eigenvalue of the Jacobi matrix describ
in the linear approximation the dynamics in the vicinity
Z* (p0), andfu is a contravariant unstable eigenvector of t
Jacobi matrix. Formula~29! can be written

dpn5Cfu–dZn , ~30!

i.e., the deviation of the parameter from the rated va
needed for control is proportional to the vectordZn on the
unstable directionfu , and the constantC is calculated from
the projection on the same direction of the system’s reac
w to the perturbation of parameter p. The effectiveness of
OGY control method and its numerous generalizations
been demonstrated in all areas of science~physics, chemis-
try! and in medicine~see Ref. 28!.

The vast majority of examples of chaos control achiev
to date refer to motion on a strange attractor. The comple
of chaos control in Hamiltonian systems is due to tw
facts.29

1. In view of conservation of phase volume, for som
points of a periodic path may have complex eigenvalues
ing on the unit circle. Hence in this case the OGY formu
~29! cannot be used directly. Of course, we can, using
Jacobi matrix for the orbit of periodk, obtain real eigenval-
ues via formula~29!. In this case, however, using the contr
method at eachkth step, we may either fail to achieve co
trol or may lose control very fast even in the event of a we
noise.

2. The second reason is related to the durationt of the
transient period just before control locking. In dissipati
chaotic systems, for randomly selected initial conditionst
has an exponential probability distribution,30
0,

e
the
t
s

of

t

g

e

n
e
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e

k

P~t!}expS 2
t

^t& D ~31!

for t large, wherê t& is the average control locking time
which is a power-law function of the range of admissib
values of the parameter,

^t&}~dp!max
2D , ~32!

whereD is the information size of the attractor. Hence in th
case^t& is always finite. In Hamiltonian systems,31

P~t!}t2a, ~33!

where 1,a,2. In this case the average control locking tim
^t& is infinite.

In view of these difficulties, to stabilize the chaotic v
brations of an anharmonic oscillator, we use an alterna
approximation, which we call simple proportional control.
order to formulate the procedures of this approximation,
note that the control process can be broken down into sev
stages.

1. The system approaches the objective periodic orbit
ergodic random walks. Special methods are sometimes u
to shorten this stage.

2. Control locking. Here maximum control is exerted o
the system.

3. Exponential approach to the objective (g is the expo-
nent!. The numerical value ofg can be interpreted as th
measure of effectiveness of control and can be used as
objective function to optimize control.

4. The stabilization stage with a small chaotic comp
nent, whose value is determined either by noise or by fl
tuations due to the finite accuracy with which numbers
represented in a computer.

5. Recreation of chaos after control has ceased.
stage is characters by exponentially rapid departure from
objective orbit and by chaos buildup.

Note that the classification is universal both for discre
maps and for fluxes described by ordinary differential eq
tions.

We consider a system whose dynamics is described
two-dimensional map~for continuous systems we assum
that this map is generated by the corresponding Poinc´
section!

Zn115F~Zn!. ~34!

Then we call the map

Zn11
c 5F~Zn!1DF~Zn11! ~35!

a totally controlled map, whereDF(Zn11)5Ĉ(Zn11

2Zn11* ), with

Ĉ[S C11 C12

C21 C22
D

the matrix of control coefficients, andZn11* an unstable fixed
point or one of the points of the unstable period orbit of t
map. Note that in the case where the additive control par
eter enters only into one map row~e.g., the upper row!, the
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FIG. 6. Stabilization of the chaotic vibrations of a
anharmonic oscillator by simple proportional con
trol. The unstable orbit with period 3 is the objec
tive orbit.
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map~35! reduces to a controlled OGY map: the coefficien
C11 and C12 are determined by OGY formulas, andC21

5C2250.
To find the coefficientsCi j we can use one of the usu

optimization methods~e.g., the gradient method, the meth
of conjugate directions, the random search method!, taking
the exponentg as the objective function.

Figure 6 depicts the results of stabilization by controlli
the unstable orbit with period 3 of the anharmonic oscilla
~5!, with the matrixĈ found by random search. The admi
sible perturbation of the system in the process of control i
most 0.03. Figure 6a depicts the synoptic Poincare´ section of
the classical phase space$p(tn),x(tn)% at timestn52pn(n
50,1,2, . . . ). All points in the chaotic region were obtaine
via a single path; the light3 ’s denote the objective unstab
orbit with period 3. Figure 6b depicts the differencep(tn)
2pF( i ) ( i 51,2,3) between the running synoptic comp
nentp(tn) and thep-coordinateof the unstable periodic orb

The control method was initiated at the 50th iterati
and was discontinued at the 230th iteration~the small verti-
cal arrows indicate these moments!. We see that the the stag
r

at

of ergodic random walks, which precedes control lockin
lasts 30 to 40 iterations. In Fig. 6c the control process
illustrated by the time seriesp(tn). The control process de
picted in Fig. 6d on the log-linear scale makes it possible
follow all the control stages mentioned earlier. Finally,
Figs. 6e and 6f we depict the power spectraP( f ) of the
system without the control method~e! and with the control
method~f! (n5150–230). In the latter case there is a d
tinct peak, corresponding to the frequency of the object
periodic orbit (f 51/3).

Figure 7 illustrates the stability of the adopted algorith
of chaos control against additive Gaussian noise. It dep
the same characteristics of the system as Fig. 6, with the
difference that«dxn and«dpn have been added to the righ
hand sides of the equations. The independent random v
ablesdxn anddpn have a Gaussian probability distribution,
zero mean value, and a unit variance. The noise amplitud«
was assumed equal to 0.03. It is possible to retain an
equate quality of control~Figs. 7b, 7c, and 7d! and fairly
good spectral purity~Fig. 7f! provided that the perturbation
level grows only up to 0.06.
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FIG. 7. The same as in Fig. 6 with external noise
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6. CONCLUSION

In this paper we have studied the dynamics of an anh
monic oscillator subjected to a periodic monochromatic p
turbation in relation to the stochastization of the vibratio
when the system parameters are varied.

A numerical analysis of the equations of motion made
to distinguish three regions representing different diffus
regimes in the (E,F) plane. There is the region of sma
amplitudes, where diffusion primarily involves seconda
resonance, and only occasionally do transitions betw
neighboring primary resonances occur. There is also the
gion of moderate amplitudes, where the conditions for
quasilinear approximation are met. The^I 2& vs. tn depen-
dence in this region is clearly linear. Finally, there is t
region of large amplitudes, in which deviations from the qu
silinear approximation occur. Allowance for the effect of
external perturbation on the unperturbed path used in de
ing the quasilinear diffusion coefficient provided a quali
tive explanation for the observed deviation.

As a possible application of our results we have exa
ined the possibility of chaotic regimes developing in qu
sipendulum vibration of the well of a reactor of the wate
r-
r-
s

t
n

n
e-
e

-

v-
-

-
-

water type. We have found that for values of the parame
of operating reactors of this type the well vibrations may
either regular or chaotic, depending on the well–vessel
and the resulting force with which the heat-transfer ag
flux acts on the reactor well. Allowance for the possibility
stochastization of well vibrations may help to interpret t
noise spectra and hence to increase the reliability of con
sions about the state of intravessel devices.

We have proposed an algorithm of simple proportion
control, which converts the chaotic vibrations of an anh
monic oscillator into periodic vibrations, thus preventing
dangerous buildup of the vibration amplitude~in the case of
chaotic vibrations of the reactor well! due to nonresonan
energy absorption.
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Erratum: Hexagonal optical structures in photorefractive crystals with a feedback
mirror †JETP 86, 614–627 „March 1998 …‡

P. M. Lushnikov

L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117334 Moscow, Russia
Zh. Éksp. Teor. Fiz.115, 378 ~January 1999!

@S1063-7761~99!02901-7#

1. The unnumbered equation following Eq.~42! on page 623 should read

dCk5 (
k11k25k

Ak1
Ak2

ck1
ck2

.

2. At the beginning of the second paragraph on page 623 ‘‘Substituting Eqs.~42! and~43! into . . . .’’ should be replaced
by ‘‘Substituting Eq.~42! into . . . .’’

3. Equation~43! on page 623 should be replaced by

]Ak

]t
5nkAk1

U

2 (
k11k25k

Ak1
Ak2

2 (
k11k21k35k

$@2^ck
c~0!uh~ck1

~0! ,ck2

~0!ck3

~0!!1h~ck2

~0!ck3

~0! ,ck1

~0!!&

2^ck
c~0!uQ~ck1

~0! ,ck2

~0! ,ck3

~0!!&#/^ck
c~0!uJck

~0!&%Ak1
Ak2

Ak3
, ~43!

Translated by M. E. Alferieff
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Erratum: Symmetries and causes of the coincidence of the emission spectra
of mirrors and charges in 1 11 and 3 11 spaces †JETP 87, 25–34 „July 1998 …‡

V. I. Ritus

P. N. Lebedev Physical Institute, Russian Academy of Sciences, 117924 Moscow, Russia
Zh. Éksp. Teor. Fiz.115, 378 ~January 1999!

@S1063-7761~99!03001-2#

The abstract should read as follows:

This paper discusses the symmetry of the wave field that lies to the right and left of a two-sided accelerated mirror11
space and satisfies a single condition on it. The symmetry is accumulated in the Bogolyubov matrix coefficientsa andb that
connect the two complete sets of solutions of the wave equations. The amplitudes of the quantum processes in the
left half-spaces are expressed in terms ofa andb and are related to each other by transformation~12!. Coefficientbv8v

* plays
the role of the source amplitude of a pair of particles that are directed to opposite sides with frequenciesv andv8 but that are
in either the left or the right half-space as a consequence of the reflection of one of them. Such an interpretation mabv8v

*

observable and explains the fact, given by Eq.~1! and found earlier by Nikishov and Ritus@JETP81, 615~1995!# and by Ritus
@JETP83, 282~1996!#, that the emission spectra of a mirror in 111 space coincide with those of charges in 311 space by the
fact that the moment of the pair emitted by the mirror coincide with the moment of the single particle emitted by the

The quantity 1 on the left-hand side of the first member of Eq.~71! should be replaced by 0, and the phrase in front of t
formula should be replaced by the following phrase: ‘‘In these cases the rms fluctuation of the number of bosonic

always greater thann̄B and the rms fluctuation of the number of fermionic pairs is always less thann̄F, being equal to

n̄(16n̄), where,’’ etc.
2071063-7761/99/88(1)/1/$15.00 © 1999 American Institute of Physics
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Long-wavelength structure on a charged liquid surface
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Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovka,
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The problem of the equilibrium form of a charged surface of a dielectric liquid in a strong
electric field, such that a flat surface becomes unstable, is studied. A periodic long-wavelength
structure with a small amplitude can arise when the gap between the surface and a charged
electrode is small compared with the capillary length and the charge completely screens the electric
field. The equilibrium form of the surface is calculated assuming that the resulting wave is
one-dimensional. The effect of the boundary conditions at the vessel walls on the dependence of
the amplitude of the standing wave on the applied voltage is estimated. It is shown that
this dependence is very sensitive to the conditions of contact between the vessel walls and the
liquid. The possibility is discussed of using the theory developed in this paper to explain
the experimental results obtained with a charged liquid-hydrogen surface. ©1999 American
Institute of Physics.@S1063-7761~99!00401-1#
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1. INTRODUCTION

In recent experiments on the reconstruction of a char
liquid-hydrogen surface,1,2 a stationary structure was ob
served to appear on the surface of the liquid. This wa
soliton-like hump with amplitude much less than the cap
lary lengtha5As/rg, wheres andr are, respectively, the
surface tension and density of the liquid. Such a pheno
enon cannot be explained on the basis of the exis
theory,3–6 which was developed for electrons localized abo
the surface of bulk helium and predicted a ‘‘hard’’ transitio
into a reconstructed state with a structural amplitude of or
a.

In the present paper the equilibrium form of the surfa
is calculated for the experimental conditions of Ref. 1, i.
when the distanced between the controlling electrode and
charged liquid-hydrogen surface is much smaller than
characteristic horizontal size of the deformation wave
pearing on the surface and the surface charge comple
screens the external electric field~the charged clusters form
quasi-two-dimensional layer beneath the surface of the
uid!. The calculation shows that a stationary periodic wa
with amplitude much less and period much greater than
capillary length can form in fields exceeding the critic
value V05A4prgd3. The hump observed in the exper
ments of Ref. 1 corresponds to one period of a wave wit
maximum inside the experimental cell. Numerical calcu
tions of the wave amplitude as a function of the volta
applied to the diode faces were performed, taking accoun
the contact conditions between the cell walls and the liqu

The existence of a small parameter, the slope angle
the surface, makes it possible to simplify the calculation s
stantially and to write down a local equation for the form
the surface, identical to the equation for a periodic nonlin
traveling wave on the surface of a liquid in a channel.7 The
approach based on an expansion in terms of a small pa
241063-7761/99/88(1)/4/$15.00
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eter was used in Ref. 8 to calculate the stationary form o
charged liquid-helium surface.

2. EQUILIBRIUM FORM OF THE SURFACE

The equilibrium form of the surface corresponds to t
minimum of the effective energyE of the liquid in an elec-
tric force field with the potentialV prescribed on the surfac
and in the volume of the liquid,9

E5Emech2
1

8p E dr E
z~r !

d

dz E2, ~1!

where Emech is the total mechanical energy of the liquid
equal to the sum of the energy in the gravitational field a
the surface energy. The second term in Eq.~1! is the energy
stored in the electric field~the integration extends over th
volume between the surface and the controlling electro
located at a distanced above the liquid!. The z axis is ori-
ented vertically in a direction opposite to the force of gravi
r is a vector in the (x,y) plane, andz5z(r ) is the equation
of the surface.

As the subsequent calculation will show, there exists
interval of voltagesV where the spatial derivative satisfie
u¹z(r )u!1. When this inequality holds, perturbation theo
can be used, treating¹z(r ) as a small parameter, to calcula
the electrostatic energy~1!. To simplify the calculations we
shall also assume that, together with the derivative, the
formation of the surface itself is small,z!d ~the latter as-
sumption is not fundamental!.

In the case at hand (d!a) the expression~1! for the
energy of the liquid has the form, up to terms cubic inz/d,

E5
s

2 E dr ~¹z!22
rgg

2 E dr z22
V2

8pd4 E dr z3.

~2!
© 1999 American Institute of Physics
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Here g5V2/V0
221,V05A4prgd3. We note that the quan

tity ¹z arises in the expression~2! only from the surface
energy of the liquid@i.e., from the first term in Eq.~1!#.

For voltagesV.V0 ~i.e., for g.0) the squared fre-
quency of surface waves with small wave numbersv2,0
and a flat liquid surface is unstable.10 For g.0 the equation
describing the equilibrium formz(r ) of an incompressible
liquid, taking account of the fact that the total volume of t
liquid remains constant when the shape of the volu
changes, can be obtained by setting to zero the variatio
the sum of the energyE of the liquid and the volume with an
undetermined Lagrange multiplierp:11

dS E2pE dx z D50. ~3!

The quantityp is a pressure acting on the surface of t
liquid. It follows from Eqs.~2! and ~3! that the equilibrium
form of the liquid surface is described by the equation

z91
D21

x
z81gz1

3V2

2
z21p50. ~4!

HereD is the dimension of the space, and Eq.~4! was written
in dimensionless variables: distances in the horizontal pl
xy are measured in units of the capillary length, voltage
measured in units ofV0, and the deformationz(r ) is mea-
sured in units ofd.

In what follows we shall consider the one-dimension
case (D51), where the deformation of the surface depen
only on the coordinatex. This corresponds to a system
‘‘rolls’’ on the surface of the liquid. Then Eq.~4! has a first
integral of the form

z82/21U~z!5C, ~5!

whereU(z)5gz2/21V2z3/21pz. The formz(x) of the sur-
face can be obtained by integrating Eq.~5! and then calcu-
lating p from the condition

E dx z50. ~6!

~The level of the liquid is measured from its average valu!
The equation describing the equilibrium form of the su

face~4! possesses periodic solutions with periodX0 depend-
ing on the voltageV and the amplitude of the wave. Th
following mechanical analogy is helpful in describing th
properties of such solutions. For fixedp Eq. ~4! can be inter-
preted as the equation of motion of a fictitious point parti
with massm51 in an external field with potential energ
U(z). Herez plays the role of the coordinate of the partic
and x plays the role of time. Then the functional~2! is the
Lagrangian of the particle. The equation~5! expresses the
law of conservation of energy; the first term on the left-ha
side is the ‘‘kinetic energy’’ of the particle andC is the
‘‘total energy’’ of the particle. A plot of the potential energ
for g.0 is displayed in Fig. 1.

The equationU(z)5C has three solutions:z5a i ,
i 51,2, 3 ~we assumea1.a2.a3). The periodic deforma-
tion wave of interest to us corresponds to the motion o
particle in the regiona2<z<a1, wherez825C2U(z).0.
e
of

e
s

l
s

.
-

d

a

Let the functionz assume its minimum valuea2 at a
certain pointx5x0. This corresponds to zero initial velocit
z8 of the fictitious particle. Then for 0<x2x0<X0/2 the
form of the surface can be found from the equation

E
a2

z~x! dz

AG~z!
5x2x0 , ~7!

where G(z)5V2(a12z)(z2a2)(z2a3). The integral in
Eq. ~7! can be expressed in terms of an incomplete ellip
integral of the first kind. A calculation using Eq.~7! gives the
following expression for the equilibrium form of the surfac

z~x!5a31
a32

dn2u
, ~8!

where u5Aa31V(x2x0)/2, dn is an elliptic function with
modulusk5Aa21/a31, anda ik5ak2a i .

For real u the period of the function dnu is 2K(k),
whereK(k) is a complete elliptic integral of the first kind
Therefore the period of the stationary wave~8! is

X05
4K~k!

Aa31V
. ~9!

The deformation of the surface assumes the value

z5H a1.0, x2x05~n11/2!X0 ,

a2,0, x2x05nX0 ,

where n50,61, . . . . Thepresence of the parameterx0 in
Eq. ~8! expresses the translational invariance of Eq.~4!.

Calculation of the integral~6! with the function z(x)
from Eq. ~8! gives the following equation that definesp im-
plicitly as a function of the energyC:

E~k!1
a3

a31
K~k!50. ~10!

We first consider a small-amplitude wave (C→0). The
modulusk is close to zero, and the rootsa i can be found
using the well-known asymptotic expressions for the in
grals K and E.12 It follows from Eqs.~8! and ~10! that we
havea252a1 and

z5z0 cosqx. ~11!

The wave numberq5Ag does not depend onC,
z05z0(C) is the wave amplitude, andp50. This solution

FIG. 1. Plot of the potential energy for the motion of a fictitious particle
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corresponds to oscillations of a fictitious particle near
minimum z50 of the potentialU(z), neglecting nonlinear
terms~i.e., V2z0!g).

For finite C.0 the rootsa i required to calculate the
form of the surface using Eq.~8! can be found numerically
The quantityp determined from Eq.~10! is negative. A plot
of the function~8! for various wave amplitudes is present
in Fig. 2.

The numerical calculations of the amplitudez0 of a one-
dimensional wave as a function of the periodX0 are dis-
played in Fig. 3. It follows from the figure that for fixedV
the period of the wave decreases with increasing amplitu

For arbitrary values of the rootsa i , Eq. ~8! possesses a
solution in the form of a solitary hump, which can be o
tained by passing to the limitX0→`. However, the forma-
tion of such a wave is forbidden by the condition that t
total volume of the liquid is constant, as expressed by
~10!. Indeed, it follows from Eq.~9! that such a limit solution
arises when the rootsa2 and a3 of the polynomialG(z)
merge. Thenk→1. In addition, Eq.~10! has no solutions for
k close to 1; this can be shown by expanding the ellip
integrals in terms of the small quantityk82512k2.

It follows also from the absence of solutions wi
a25a3 that forC.0 the equationU(z)2C50 always pos-
sesses three roots. Therefore the solution~8! of Eq. ~4! is a
periodic wave for any energyC.0 ~i.e., for arbitrary ampli-
tude of the wave!.

FIG. 2. Form of the liquid surface for fixed voltage and various wa
amplitudes (g50.3).

FIG. 3. The amplitude of a wave on an infinite liquid surface versus
period of the wave for various voltages.
e

e.

.

c

This calculation shows that for a one-dimensional wa
arising on a horizontally unbounded surface and fixed v
ageV.V0 the shape of the surface can be described b
one-parameter family of curves of the form~8!. The wave
amplitude@or the constantC.0 related to it by~10!# is a
parameter. Therefore, in contrast to the well-known probl
of the equilibrium form of the surface of bulk liquid helium
with a fixed number of charges localized at the surface, in
case at hand (d!a) it is impossible to determine unequivo
cally the equilibrium form of the surface without taking a
count of the boundary conditions at the vessel walls.

Let us now consider the effect of the boundary con
tions on the possible stationary form of the surface. The s
plest boundary conditions correspond to setting the con
angleb between the liquid and the vertical walls of the ve
sel ~whose width we denote byL):

z8~2L/2!52u0 , z8~L/2!5u0 , ~12!

whereu5u(x0)5cotb. We assume thatu0!1; otherwise,
the condition thatz8 is small, which is fundamental for the
derivation of Eq.~4!, is not satisfied.

The conditions~12! limit the possible values ofC to a
discrete sequenceCn (n50,1,2, . . .!. The numbern is the
number of maxima of the functionz(x) in the interval
2L/2,x,L/2.

We first consider the caseu050. The dependence of th
wave amplitude on the applied voltage can be determi
from the functionz0(X0) calculated for an infinite surface
The amplitude of a wave with a fixed numbern of maxima is
the ordinate of the point of intersection of the curvez0(X0)
and the vertical straight lineX05L/n. It follows from Fig. 3
that z0 decreases monotonically with increasing voltageV.

The voltage dependence ofz0 for u0Þ0 can be calcu-
lated similarly. This requires studying the points of interse
tion of the vertical straight linex15L/n and the plot of
z0(x1), describing the amplitude as a function of thex coor-
dinate of the point~designated asx1) where the condition
~12! holds. A numerical calculation for the caseu0.0 gives
a double-valued functionz0(x0) for fixed g. The result is
that the functionz0(g) possesses two branches, one of wh
decreases monotonically and the other possesses a minim
At someg5g1 one branch passes into the other branch
g.g1 holds, a stationary solution with fixedn does not
exist, since it is impossible to satisfy the boundary conditio
~12!. Figure 4 shows the amplitudez0 of a wave with one
hump versusg for two values of the vessel widthL.

In summary, it is impossible to pass continuous
between states with a different numbern of maxima, and a
hump forms on the surface with a jump in the wave amp
tude. For eachn there exists a minimum possible valuezm of
the amplitude of the wave formed. For smallu0, we have
zm;u0d in order of magnitude.

3. CONCLUSIONS

It follows from the calculations performed in this wor
that ford!a a long-wavelength stationary wave of the for
~8! with a small amplitude~‘‘soft’’ reconstruction of the sur-
face! can form on a charged liquid surface at voltages ab
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a critical valueV0 ~for which a flat surface becomes un
stable!. For an infinite surface, the form and period of t
wave with fixed voltageV depend on the positive paramet
C and cannot be uniquely determined without taking acco
of the boundary conditions at the vessel walls. Taking
count of the contact conditions at the boundary of a fin
size vessel distinguishes a discrete spectrum of possible
uesCn , wheren is the number of maxima in the profile of
wave inside the finite vessel. The character of the dep
dence of the wave amplitude on the applied voltage is
ferent for zero and finite contact angles.

In the first case the wave amplitude decreases with
creasing voltage. Foru0.0 the amplitude of the structur
arising on the surface can depend nonmonotonically on
voltage. A transition of the initial state~prior to reconstruc-
tion! into a state with one or several maxima occurs with
jump ;u0d in the amplitude, i.e., the jump is small withi
the range of applicability of the theory~for u0!1). At the
voltageV25V0A11g1, which depends on the dimensions
the vessel, the reconstructed surface becomes unstable.

FIG. 4. Voltage dependence of the amplitude of a wave on a liquid sur
in a vessel with two unequal dimensions:1 — x0514; 2 — x0510. Here
u0

250.001.
t
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-
al-

n-
f-
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e
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This calculation indicates that the amplitude depende
of the wave formed in a finite vessel is extremely sensitive
the form of the boundary conditions at the vessel walls.
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Computer simulation of the structure of liquid cesium and determination of the pair
potentials over a wide temperature range

D. K. Belashchenko* ) and A. S. Ginzburg†)

Moscow Institute of Steels and Alloys (Technological University), 117936 Moscow, Russia
~Submitted 5 June 1998!
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Using diffraction data for liquid cesium structure over a wide temperature range, models of
liquid cesium are constructed and the effective pair potentials are extracted using the theory of
liquids. The iterative procedure proposed by L. Reatto is used. In the range 323–1923 K
the pair potentials are weakly temperature-dependent. The potentials extracted from the diffraction
data differ from the potentials calculated using the Animalu–Heine pseudopotential. The self-
diffusion coefficients in liquid cesium are determined. Their temperature dependence is
described satisfactorily by a power-law function. ©1999 American Institute of Physics.
@S1063-7761~99!00501-6#
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1. INTRODUCTION

A new and interesting direction in the physics of no
crystalline condensed systems is unedr active study—
construction of atomic models of one- and two-compon
liquids or amorphous substances on the basis of existing
fraction structural data~specifically, on the basis of know
structure factors or pair correlation functions!. This problem
can be formulated as a purely geometric one. In this c
points representing the atoms of the components mus
arranged in space so that the pair correlation function o
one-component system or three independent partial pair
relation functions of a two-component system for pairs
12, and 22 are the same~to within reasonable accuracy! as
the corresponding functions obtained for a real substanc
diffraction methods~x-ray or neutron scattering!. If the
model constructed in this manner is adequate, then inve
gation of the model will yield additional information abou
the structure of the system of interest. Doubtless this met
of analyzing noncrystalline structures has a great future.

The problem of well-posedness is directly related to
question of the uniqueness of the construction of the mo
Here uniqueness is taken to mean that the main struc
characteristics are the same as the corresponding chara
istics of a real body, provided that the pair correlation fun
tions are the same. Existing data show that in principle
problem can be well-posed~to within the limits of accuracy
of the initial data! for ‘‘dense’’ structures, such as simpl
liquids and liquid and amorphous metals. However, for loo
systems with low coordination numbers~such as liquid sili-
con, silica, and so on! agreement between the pair correlati
functions in the model and in the real body does not guar
tee that the three-particle correlation functions, distributio
of the azimuthal angles and Vorono� polyhedra, and so on
will agree.

However, the problem at hand is not purely geomet
since the equilibrium arrangement of the atoms at fixed te
perature and density is due to the form of the interpart
interaction potentials. Additional considerations of a physi
281063-7761/99/88(1)/7/$15.00
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character can therefore be used to construct the models.
most common one is the assumption that the interaction
sponsible for the structure is pairwise, i.e., in construct
models the three-particle and cooperative contributions to
energy can be neglected and effective pair interatomic in
action potentials with a fixed volume of the system can
introduced. This approach is used, for example, for liqu
and amorphous metals.

Including interaction potentials in the model makes
possible to formulate the inverse problem also, specifica
the problem of finding an interparticle potential such that
model structure constructed for a liquid or amorphous ma
rial is quite close to the structure of the real body. Th
problem is solved in the present paper for liquid cesium.
contrast to previous work, where individual states of a liqu
are studied~see below!, we have constructed a series of mo
els of liquid cesium on the basis of diffraction data obtain
in a very wide range of temperatures, right up to 1923
The existence of a definite temperature dependence of
extracted pair potentials, which is due to an appreciable
crease in the density with increasing temperature, co
serve as an additional adequacy criterion for the models c
structed.

2. METHODS FOR CONSTRUCTING MODELS USING
DIFFRACTION DATA

Several methods have been proposed for calculating
terparticle potentials from existing diffraction structural da
for a liquid assuming a pair interaction~which may not be
valid in a real liquid!.1–10 This problem was first formulated
in Ref. 1, where it was solved on the basis of the appro
mate Born–Green–Kirkwood and the Percus–Yevick eq
tions. Schommers proposed a different approach.2,3 He found
a pair potential by an iterative procedure employing a step
which a molecular-dynamics model of the liquid is co
structed using a trial potential and corrections are then in
duced into this potential. The correction was calculated us
a special algorithm that takes account of the discrepancy
© 1999 American Institute of Physics



re

u
m
ic

th
he
is
by
al

s

-

If

of

d
r
-

ure
po-

6.
he
ab-
or-

ion
to

te
si-
is
la-
.
e

en-
of

ex-
was
–

tion

iq-

his
-

tions

29JETP 88 (1), January 1999 D. K. Belashchenko and A. S. Ginzburg
tween the pair correlation function of the model and the p
scribed pair correlation function of the real~‘‘target’’ ! liquid.
Schommers used his method to construct a model of liq
Ga and to find the pair interparticle potential at the sa
time. The procedure required a series of iterations in wh
the potential and the pair correlation functiong(r ) con-
verged asymptotically to the desired solution.

This procedure proved to be inadequate. While
model function converges well to the target function, t
reconstructed potentialu(r ) can approach a solution that
different from the target solution. This was pointed out
Reatto.4,5 To calculate the corrections to the trial potenti
he proposed using the complete equation, containing a
called bridge functionB(r ), from the theory of liquids:

u~r !

kT
5g~r !212c~r !2 ln g~r !1B~r !. ~1!

Here u(r ) is the pair potential,g(r ) is the pair correlation
function of the liquid, andc(r ) is the direct correlation func
tion. The form of the functionB(r ) for an arbitrary potential
is unknown. The functionsg(r ) andc(r ) are related by the
Ornstein–Zernicke equation

h~r !5g~r !215c~r !1
2pN

Vr E
0

`

c~s!s dsE
ur 2su

r 1s

h~ t !t dt,

~2!

wheren5N/V is the number of particles per unit volume.
it is assumed that the functionB(r ) is insensitive to the form
of the potentialu(r ), then two successive approximations
the potentialsu1 andu2 satisfy

u2~r !

kT
5

u1~r !

kT
1g~r !2g0~r !2 ln

g~r !

g0~r !
1c~r !2c0~r !.

~3!

Hereg(r ) andc(r ) are the correlation functions of the liqui
with the potentialu1(r ); u2(r ) is the next approximation fo
the potential; andg0(r ) and c0(r ) are the correlation func
-

id
e
h

e

,
o-

tions of the target model. In Refs. 4 and 5 this proced
gave convergence of the potential to the Lennard–Jones
tential

u0~r !54«@~s/r !122~s/r !6#, ~4!

used to construct the target model.
A different iteration scheme was proposed in Ref.

This scheme used a ‘‘hybrid algorithm’’ to reconstruct t
interparticle potential. The algorithm can operate only at
solute zero temperature, and it is therefore suitable for am
phous systems. The hybrid algorithm employed the condit
of mechanical equilibrium for all particles and was found
be suitable for amorphous iron.

Finally, an iteration algorithm that employs the comple
Born–Green–Bogolyubov equation, without the superpo
tional Kirkwood approximation, to extract the potential
proposed in Ref. 7. In this method the three-particle corre
tion function is calculated for a trial model of the liquid
Given this function and the pair correlation function of th
model, a trial pair potential can be calculated and this pot
tial can then be used for molecular-dynamics construction
the next model, and so on.

The methods of Refs. 2, 6, and 7 have also been
tended to binary systems. In Ref. 8 Schommer’s method
used to calculate the pair potentials in the liquid alloy Ag
Ge. In Refs. 9 and 10 the Born–Green–Bogolyubov equa
method was used for the liquid alloys Ag–Ge and Fe2Tb.

In Ref. 11 Reatto’s iterative method was used for a l
uid with the pair potential~4! under conditions different from
those of Refs. 4 and 5. The pair correlation function for t
state was calculated earlier by Verlet.12 The standard devia
tion

Rf5H 1

n22n111 (
n1

n2

@ f 2~r i !2 f 1~r i !#
2J 1/2

~5!

can be used as a measure of the closeness of two func
f 1(r ) and f 2(r ) in tabular form. Heren1 and n2 are the
iven
,

f

TABLE I. Iteration procedure for constructing models of liquid cesium at 573 K.

N Rg Rc Ra Ru•1000 r m , Å Um , eV r min , Å r 1 , Å G(r 1) C0 H0

0 0 0.8781 0.5520 49.4 5.7 20.074 3.5 5.5 1.978 0 0
2 0.0596 0.1279 0.0619 0.8765 5.7 20.073 3.3 5.5 2.161 219.14 20.8804
4 0.0458 0.0936 0.0501 0.5818 5.7 20.072 3.3 5.5 2.118 218.16 20.8806
5 0.0378 0.0805 0.0394 0.4787 5.8 20.072 3.3 5.5 2.082 217.74 20.8718
6 0.0354 0.0796 0.0376 0.4679 5.8 20.071 3.3 5.5 2.090 217.60 20.8743
7 0.0303 0.0754 0.0320 0.3983 5.8 20.071 3.3 5.5 2.055 217.35 20.8600
8 0.0258 0.0705 0.0260 0.3562 5.8 20.071 3.3 5.5 2.059 217.09 20.8730
9 0.0230 0.0680 0.0231 0.3707 5.8 20.071 3.3 5.5 2.035 216.85 20.8807
10 0.0187 0.0507 0.0196 0.2544 5.8 20.071 3.3 5.5 2.038 216.72 20.8671
11 0.0151 0.0645 0.0143 0.2903 5.8 20.071 3.3 5.5 2.027 216.55 20.8682
12 0.0138 0.0435 0.0119 0.2155 5.8 20.071 3.3 5.5 2.010 216.50 20.8842
20 0.0081 0.0372 0.0069 0.1776 5.8 20.072 3.3 5.5 2.002 216.15 20.8585

Note: N— number of iterations;Rg ,Rc , andRa — standard deviations for the pair correlation function,C(r ),
and the structure factor, respectively;Ru — standard deviation of the pair potentials at the preceding and g
iterations;r m — coordinate of the potential minimum;Um — value of the pair potential at the minimum
r min — coordinate of the point where the pair correlation function is zero;r 1 — coordinate of the first peak o
this function;G(r 1) — height of this peak;C0 — value of the direct correlation function atr 50; H0 — value
of the functionh(K)5a(K)21 in the limit K→0.
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TABLE II. Values of the bridge function at iterations 21–23 in the simulation of cesium at 1923 K.

Distance, Å 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

i 521 0.528 0.242 0.148 0.092 0.063 0.063 0.052 0.034 0.0
i 522 0.458 0.239 0.124 0.088 0.066 0.058 0.047 0.049 0.0
i 523 0.487 0.207 0.109 0.076 0.025 0.034 0.039 0.016 0.0
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summation limits of the tabular data. The deviationRf of the
pair correlation function of the modelM1 from the pair cor-
relation function of the Verlet model is 0.0074~on the sec-
tion 0.88<r<2.40). Such a value indicates that the fun
tions are essentially identical. The values of the poten
energyU and the factorpV/NkT ~with a correction for cut-
off of the potential;p is the pressure! also were in good
agreement. However, the target potential~4! in the region of
attraction could not be extracted using Eq.~3! even with a
large number of iterations~greater than 20!, although the
repulsive branch was extracted satisfactorily. The stand
deviation Rf can be decreased to extremely low valu
~0.005–0.008 for the pair correlation function and 0.00
0.006 for the structure factor! by increasing the molecular
dynamics run lengths up to 10000–15000 steps, but
agreement between the extracted and target potentials
not improve in the process. Moreover, asymptotic conv
gence to a definite functionu(r ) was not observed with the
Reatto procedure as implemented in Ref. 11, since eve
states with the lowest values ofRf the potential continued to
vary from one iteration to the next. This is evidently due
the natural fluctuations of the pair correlation function a
the exceedingly high response of the direct correlation fu
tion to this near the first peaks in the pair correlation fun
tion.

It is nonetheless evident from Refs. 4, 5, and 11 that
liquids Reatto’s procedure makes it possible to construc
almost ideal model in the sense that its pair correlation fu
tion and the structure factor of the model agree with th
target analogs. In this connection, in the present work
procedure was used to construct models and to extract in
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particle potentials for liquid cesium, for which diffractio
structural data at temperatures 323–1923 K are availabl13

3. ANALYSIS OF THE DIFFRACTION DATA

Professor F. Hensel~Marburg, Germany! kindly pro-
vided us with the initial structure factors of liquid cesium.13

The pair correlation function of liquid cesium at various de
sities and pressures were obtained using Filon’s implem
tation of the Fourier transform. In the process spurious os
lations of the pair correlation function are ordinari
observed at short distances. A procedure proposed in Re
for correcting the initial structure factor was used to impro
the quality of the Fourier transform. The least-squa
method was used to find minimal corrections to the struct
factor that at the same time minimize the amplitude of
spurious oscillations. For liquid cesium, this amplitude w
decreased by approximately an order of magnitude by in
ducing corrections of order 0.01 to the structure factor. T
pair correlation functions obtained in the process were u
in Reatto’s procedure.

4. CONSTRUCTION OF MODELS OF LIQUID CESIUM AND
EXTRACTION OF INTERPARTICLE POTENTIALS

In all models, the main cube contained 1000 particl
The initial potential for the Reatto procedure was calcula
by the method of Refs. 4 and 5. The molecular-dynam
runs ordinarily consisted of 5000 steps at the initial iteratio
and 10000 steps at the last stage. The NVT-ensemble me
was used, and the size of the main cube was set accordin
the actual density of the metal. The pair correlation functio
t
FIG. 1. Pair correlation functions in liquid cesium a
323 K: 1 — model pair correlation function,2 — dif-
fraction pair correlation function.
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FIG. 2. Pair correlation functions in liquid cesium a
1923 K:1 — model pair correlation function,2 — dif-
fraction pair correlation function.
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were calculated in a molecular-dynamics run up to distan
;L/3, whereL is the edge length of the main cube, and th
the lengths were extended up to 60 Å using the Ornste
Zernicke equation analogously to Refs. 4, 5, and 11. To
tend the pair correlation function to distances exceedingL/3,
the potential~and therefore the direct correlation function,
accordance with the Percus–Yevick equation! was assumed
to be zero.

As an example, Table I gives data for the iteration p
cedure used to construct models of liquid cesium at 573
After 20 iterations, quite small values were obtained forRg

~about 0.008! for the pair correlation function and forRa

~less than 0.007! for the structure factor and somewhat larg
values were obtained forRc ~about 0.037! for the direct cor-
relation function. At higher temperatures, in general, few
iterations were required to achieve an acceptable value oRg

for the pair correlation function. As shown in Ref. 11,
simulations with runs of 10000 steps the natural limit
accuracy~because of fluctuations of the function itself! is
Rg50.00320.004, and for runs with 15000 step
Rg.0.0025. Hence to extract a potential from the diffracti
data a logical rule for terminating the iteration process~pro-
vided it converges! would be a deviation of the model func
s
n
–
x-

-
.

r

r

f

tion from the target function of about 0.003–0.005. Appro
mately such values were in fact attained for models
cesium at temperatures above 573 K.

Just as in Ref. 11, the direct correlation function w
found to be very sensitive to small differences between t
pair correlation functions. The assumption that bridge fu
tion varies little while a potential is being extracted is al
unjustified. As an example, the values of the bridge funct
B(r ) in 21–23 iterations in the simulation of cesium at 19
K are given in Table II. It is evident from these data that t
bridge function fluctuates from one iteration to anoth
within several hundredths, i.e., more strongly than the p
correlation itself changes. In accordance with Eq.~1!, this
leads to fluctuations of the computed potential of ord
0.01kT, i.e., by several meV with the minimum of the po
tential being only;56 meV.

Hence it follows that Eq.~3! is inaccurate and the ex
tracted pair potential need not approach a definite limit fu
tion. Indeed, the form of the extracted pair potential chan
continuously during the iteration process. An appreciable
crease in the rate of change of the depth of the minimum
the computed potential is noticeable only at 1923 K, wh
24 iterations were performed. In all other cases this does
1000

8.6
TABLE III. Characteristics of liquid cesium models constructed from the diffraction data. Model size —
particles. Number of iterations — from 8 to 20.

T, K
V/N,

cm3 mole13 L, Å Rg Rc Rs a(0) P, MPa

E,
kJ

mole

U,
kJ

mole

D•105,
cm2

s

Calc. Exp.13 Calc. Exp.13

323 72.6 49.406 0.0188 0.1177 0.0498 0.087 0.015 98.3 0.3216.9 220.9 2.84
573 79.1 50.835 0.0081 0.0372 0.0069 0.142 0.048 262 0.3211.7 218.8 9.58
773 84.6 51.996 0.0055 0.0365 0.0075 0.102 0.08 461 0.3 16.1 6.38 1
1073 95.6 54.149 0.0068 0.0253 0.0078 0.194 0.18 333 0.6 12.820.534 31.2
1173 99.9 54.952 0.0063 0.0157 0.0139 0.372 0.29 146 0.3 3.70210.9 42.7
1373 109.9 56.727 0.0064 0.0203 0.0058 0.434 0.52 173 2.0 5.98211.1 54.6
1673 139.0 61.345 0.0057 0.0122 0.0638 0.814 1.10 105 5.3 9.20211.7 96.6
1923 225.3 72.052 0.0140 0.0164 0.0209 2.28 2.54 21.3 96 15.028.96 196

Note: V/N — molar volume,L — edge length of the main cube,a(0) — zero limit of the structure factor,
E — total energy,U — potential energy,D — self-diffusion coefficient.
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happen, even though the values ofRg were already in the
limit of stable molecular-dynamics determination in ru
with 10000 steps. In essence, the iteration process coul
continued further, even with an indefinite result for the p
tential. True, the changes in the depths of the minimum
the potential from one iteration to another are small. The
fore the problem of extracting a potential on the basis of
structure of the liquid cannot be solved uniquely if a cert
lower level of the standard deviation is fixed for the p
correlation function~determined by the size of the mode
and the length of the molecular-dynamics runs!. This result
is at variance with Refs. 4 and 5, where an asymptotic s
tion for the potential was obtained with a finite number
Reatto iterations.

The pair correlation functions of our models are d
played in Figs. 1 and 2. For the values ofRg attained in this
work, the difference between the ‘‘target’’ and model fun
tions is very small. The other characteristics of the mod
constructed are given in Table III. For not very high tem
peratures, the zero limit of the structure factora(0), ob-
tained by extending the pair correlation function using
Ornstein–Zernicke equation, turned out to be greater than
actual value13 ~see Table III!. From the relation between
a(0) and the isothermal compressibilityb and the density of
the liquid (N is the number of atoms in a volumeV),

a~0!5
N

V
bkT, ~6!

it can be concluded that far from the critical point the co
pressibility of real cesium is 1.3–5.8 times smaller than t
of the model metal with a pair interparticle interaction. T
discrepancy decreases with increasing temperature. Thi
fect is evidently due to the negative contribution of the el
tron gas to the compressibility and has been discussed t
retically in previous work.15 Using Eq.~6!, the bulk modulus
K51/b can be calculated. The actual moduliKexp of liquid
cesium and the computed moduliK theor due to the pair inter-
action are compared in Table IV; the moduliK theor were
calculated taking account of the zero limitsa(0) given in
Table III. The differenceDK5Kexp2K theor is due to the con-
be
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tribution of the electron gas. Even though the accuracy of
calculations is not very high, it is evident thatDK decreases
rapidly ~approximately asV212) as the metal expands. Th
free-electron model atT50 gives a much weaker depen
denceDK;V25/3. At 1923 K temperature the difference be
tweenK theor and Kexp becomes less than the error in dete
mining Kexp, so that at this temperature the electron gas
longer makes an appreciable contribution to the compre
ibility. The electrical conductivity also decreases rapidly
the metal expands: At 1900 K and a pressure of 86 bar
0.016 times the conductivity at the melting temperature.16

Various characteristics of cesium models are given
Table III: the pressure as well as the total energyE and the
potential energyU due to the effective pair interaction. Sinc
they were calculated neglecting the volume electronic c
tributions to the energy, their values cannot be compa
directly with the actual values.

The computed pair interparticle potentials in cesium
various temperatures are shown in Figs. 3 and 4. They
crease rapidly in absolute magnitude with increasing d
tance; forr .8 Å they do not exceed a few meV, and fo
r .10 Å they are less than 1 meV. Monotonic variation
the potentials with increasing temperature is not observed
the repulsion region the potential increases on heating u
773 K and once again decreases as temperature incre
further. This is evidently because the calculated potent
are highly sensitive to the form of the pair correlation fun
tion; comparatively small errors in the computed functio
lead to changes in the potentials that are much greater
the regular changes occurring with increasing temperatu

TABLE IV. Comparison of the actual moduliKexp of liquid cesium with the
computed moduliK theor determined by the pair interaction.

T, K 323 573 773 1073 1173 1923

V/N, cm3/mole 72.6 79.1 84.6 95.6 99.9 225.3
1028

•Kexp, Pa 24.6 12.5 9.49 5.18 3.36 0.279
1028

•K theor, Pa 4.25 4.24 7.44 4.81 2.62 0.311
1028

•DK, Pa 20.4 8.26 2.05 0.37 0.74 ;0
s
FIG. 3. Interparticle potentials in cesium at variou
temperatures:1 — 323 K, 2 — 573 K, 3 — 773 K.
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FIG. 4. Interparticle potentials in cesium at variou
temperatures:1 — 1073 K,2 — 1173 K,3 — 1973 K.
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The effective interionic potential in liquid cesium ne
the melting temperature was calculated in Refs. 17 and
using the Animalu–Heine pseudopotential and Gelda
Vosko screening. It differs from the potential found from t
diffraction data. For example, the first node of our poten
occurs at 4.7 Å and the first node of the pseudopoten
occurs at 4.9 Å ; the second nodes are located at 9.1 and
Å , respectively. The diffraction potential increases at sm
distances less rapidly than the pseudopotential~for example,
at 4.5 Å the diffraction potential is;24 meV, while the
theoretical potential is 53 meV!. The depth of the minimum
of the diffraction potential at 5.7 Å is255.6 meV, while for
the computed potential the minimum lies at the same lo
tion but its depth is226 meV.

The self-diffusion coefficients found from the depe
dence of the mean-square displacement of cesium atom
the molecular-dynamics relaxation time are shown in the
column of Table III. The self-diffusion coefficient increas
by the factor;70 in the temperature range 323–1923
The temperature dependence is described satisfactorily
the power-law expression

D56.69310211T2.228cm2/s. ~7!

The Arrhenius-type exponential formulaD53.35
31023exp(212636 J/RT) gives a much worse descriptio
of the results. Power-law expressions forD(T) have been
proposed in previous work,19,20 taking account of the fac
that the diffusion mechanism in a liquid metal is not activ
tional.

5. DISCUSSION

Judging from our data, an entire family of computed p
potentials giving good agreement with the target pair co
lation function with a reasonable standard deviation can e
at fixed temperature and pressure. Accordingly, the pro
dure for extracting the potential using the equations from
theory of liquids can, in principle, be unstable, so that fo
sufficiently large number of iterations different terms of th
family will appear in succession. The successful extraction
Refs. 4 and 5 of the Lennard–Jones potential could be du
8
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.
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a felicitous choice of the initial conditions and the initi
potential. However, there is no guarantee that a transitio
a different potential will not occur if the iteration process
extended further.

This result is unpleasant from the standpoint of extra
ing the potential of real liquids, where the optimal initi
conditions are unknown. As for the adequacy of the extr
tion of the structure of a liquid, for dense systems go
agreement between the actual and model pair correla
functions evidently guarantees agreement between o
structural characteristics, specifically, the angular corre
tions, distributions of the Vorono� polyhedra, and so on.10,21

The obtained pair potential can be used to calculate pro
ties of a liquid, such as the vibrational spectrum, the s
diffusion coefficient, and the viscosity. This is no longer tr
for topologically loose systems with low coordination num
bers~such as liquid silicon!, since ideal agreement betwee
the pair correlation functions of two states with complete
different three-particle correlation functions can
obtained.22

* !E-mail: dkbel@bel.misa.ac.ru
†!E-mail: postmaster@phch.misa.ac.ru
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Discrete thinning of free-standing smectic films in the de Gennes ‘‘pre-smectic liquid’’
model

E. E. Gorodetski , E. S. Pikina, and V. É. Podnek* )

Petroleum and Gas Institute, Russian Academy of Sciences, Moscow, Russia
~Submitted 9 July 1998!
Zh. Éksp. Teor. Fiz.115, 61–69~January 1999!

It is shown that the successive discrete thinning of free-standing smectic films~FSSFs!, which is
observed when the films are heated above the temperature of the smecticA–nematic bulk
phase transition, has a natural explanation in terms of the de Gennes ‘‘pre-smectic liquid’’ model,
provided that a sufficiently large external compressive force is applied to the free surfaces
of the FSSF. In a real situation this force stems from the curvature of the surrounding miniscus,
which plays the role of a volume reservoir. In this model a superheated FSSF is stabilized
by balancing the external compressive and elastic forces. When heating takes place the bulk
modulus of the pre-smectic lattice decreases, and when the superheating reaches a critical
value, the FSSF is subject to a long-wavelength instability in thickness beause the external
compressive and elastic forces can no longer be balanced for a fixed number of smectic
layers. If a superheated FSSF possesses adequate stability against disruption, the balance of forces,
which was disrupted, and hence the stability of the FSSF can be restored as a result of
spontaneous thinning of the film to a thickness corresponding to a smaller number of smectic
layers. In general, heating of a superheated FSSF is accompanied by a series of such
thinning transitions. Near the critical points where the balance of the forces breaks down, the
dislocation mechanism of spontaneous thinning, which could be responsible for the
stratified nature of the progressive discrete thinning of real FSSFs, can become dangerous.
© 1999 American Institute of Physics.@S1063-7761~99!00601-0#
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1. Discrete thinning of free-standing smect
films ~FSSFs!, which is observed when the films ar
heated above the temperature of the smecticA–isotropic
liquid1 and smectic A–nematic ~NA!2,3 bulk phase
transitions, remains one of the unsolved problems of
physics of liquid crystals. It is well known that FSSFs pr
pared below the temperature at which smectic order is
stroyed in the bulk can be easily superheated even abov
indicated temperature. Such superheating is made pos
by the ‘‘attracting’’ action of the free surfaces and the r
markable stability of smectic films against the formation
perforations.4 When heated, superheated FSSFs underg
series of spontaneous thinning transitions at various temp
tures that terminates with the films rupturing.1–3 The maxi-
mum possible superheating of FSSFs is a power-law fu
tion of the film thickness,1–3 the thermal expansion
coefficient of a superheated FSSF is negative,5 and the pro-
cess of discrete thinning itself is of a pronounced monotro
character.1–3 It is shown in the present paper that the ent
spectrum of phenomena enumerated above has a natura
planation in the phenomenological pre-smectic liquid mo
of de Gennes,6 provided that a sufficiently large extern
compressive force is applied to the free surfaces of the FS
The remarkable fact is that in a real situation this force is d
to the curvature of the surrounding miniscus, which for
superheated FSSF acts like a volume reserv
~see Ref. 7!.
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2. We recall that the de Gennes pre-smectic liqu
model6 is a simplified version of the phenomenologic
model of aNA transition,4,8 describing short-range smect
order effects above the bulkNA transition temperature. In
this model a superheated FSSF is a thin layer of a p
smectic~nematic! liquid which is bounded by two paralle
free surfaces and is connected at the periphery with the
rounding volume reservoir. A pre-smectic wave of mass d
sity is induced in the space between the free surfaces.
makes it possible to speak of the indicated system a
‘‘smectic’’ film.

For definiteness, let the free surfaces bounding a su
heated FSSF of thicknessL be located atz56L/2, and let
the pre-smectic wave of mass density be parametrized a

d%~z!5A 2 %0~z! cos@ q0~z1u~z!! # , ~1!

where%0(z) is the modulation amplitude of the mass de
sity, q052p/d0 is the optimal wave number,d0 is the pe-
riod of the volume smectic lattice, andu(z) is a long-
wavelength variable describing the elastic displacemen
the smectic layers.

In the harmonic approximation the free-energy fun
tional of a superheated FSSF can be written in the sim
form ~compare with Ref. 6!
© 1999 American Institute of Physics
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FSm@d%#5S
a

2 E
2L/2

L/2

dzF td%21
j i0

2

4q0
2 @~¹z

2

1q0
2!d%#2G , ~2!

wheret5(T2TNA)/TNA is the dimensionless superheatin
of the FSSF relative to the critical temperature of the b
NA transition (t.0), j i 0 is the direct longitudinal smectic
correlation length,a is a dimensionless phenomenologic
constant, andS is the area of the FSSF.

Substituting~1! into Eq. ~2! reveals the nontrivial char
acter of the de Gennes model and yields the following
pression for the free-energy functional of a superhea
FSSF:6

FSm@ %0 ,u #5S
at

2 E
2L/2

L/2

dz@ %0
21j C

2 $~¹z%0!2

1q0
2%0

2~¹zu!2%# , ~3!

where jC5j i 0t21/2 is the bulk value of the longitudina
smectic correlation length. Here and below we have

L @ j C @ q0
21 , ~4!

which is the condition for simultaneous applicability of th
long-wavelength approximation and ‘‘phonon’’ parametriz
tion of the pre-smectic wave of mass density.

3. In terms of the functional~3!, the spatial distribution
of the amplitude%0(z) and the displacementu(z) over the
thickness of the FSSF is given by the following system
Euler equations:6

¹z@ %0
2 ¹zu #50, ~5!

%0 @ 11q0
2j C

2 ~¹zu!2 # 5 j C
2 ¹z

2%0 . ~6!

Following de Gennes,6 it is natural to assume that th
positions of the maxima of the pre-smectic wave of m
density are rigidly fixed on the free surfaces of the FSS
Since the functional~3! is invariant under the substitution
2%0→%0, this means that

q0 FL 1 2uS L

2 D G52pN , ~7!

whereN is the integer, equal to the number of smectic laye
closest toL/d0.

The solution of the system~5! and~6! with the boundary
condition ~7! is given in Ref. 6. The first derivation of a
expression for the free energy of a pre-smectic wave of m
density induced in the space between the two parallel ‘
tracting’’ surfaces is also given there. For a fixed surfa
value of the squared amplitude@%0(6L/2)#2[%0s

2 , the re-
sult of de Gennes for the free energy of a pre-smectic w
of mass density has the form9

FSm~L !5SatjC%0s
2 F tanhS L

2jC
D1

12cos@f#N

sinh~L/jC! G , ~8!

where @f#N5q0(L2Nd0). The first term in Eq.~8! de-
scribes the usual~harmonic theory! contribution due to the
k

l

-
d

-

f

s
.

,

ss
t-
e

e

spatial nonuniformity of the amplitude%0(z) to the free en-
ergy of the FSSF, while the second term describes the ela
deformation energy unavoidably arising for thicknessesL
different from the ‘‘integer’’ valuesLN5Nd0.

Subtracting from Eq.~8! the L-independent purely sur
face part of the free energy, we obtain the dimensional co
ponent of the free energy of a superheated FSSF:

DFSm~L !5S
atjC%0s

2

sinh~ L/jC ! FexpS 2
L

jC
D2cos@f#NG . ~9!

It follows from Eq. ~9! that the free energy of a superheat
FSSF has an infinite sequence of local minima forL'LN ,
the depth of these minima increasing with decreasingN.6

The latter signifies that superheated FSSFs are systems
metastable thermodynamic state.

4. It is obvious that as a result of the existence of
volume reservoir, the thicknessL of a superheated FSSF is
free thermodynamic parameter. The oscillatorL-dependence
of the energy~9! has the effect that the range of values ofL
is divided into sequentially alternating ‘‘allowed’
(@DFSm#LL9 >0) and ‘‘forbidden’’ (@DFSm#LL9 ,0) zones
differing by the sign of the effective bulk modulus of th
pre-smectic lattice. When the inequality~4! is satisfied, the
widths of the alternating zones are close tod0/2, and the
allowed zones~regions of positive elasticity of the pre
smectic lattice! are centered near ‘‘integer’’ values ofL. We
note that the positivity of the effective bulk modulus of th
pre-smectic lattice is a necessary condition for the stability
superheated FSSFs. Therefore, under an external force
thickness of a FSSF can vary continuously only within re
tively narrow limits, but in any case within the correspon
ing allowed zone.

On account of the inequalities~4! the free energy~9! can
be represented to within small terms in the simple form

DFSm
~N! ~L !52 S

Bm
~N!

q0
2jC

cos@f~L ! #N , ~10!

where

Bm
~N!52aq0

2j i0
2 %0s

2 exp~2 LN /jC ! ~11!

is the bulk modulus at the center of the pre-smectic wave
mass density~see below!. In the present approximation th
allowed zones are centered atL5LN and are given by the
inequality

u L2LN u < d0/4 . ~12!

We note that the ‘‘melting through’’ points discussed by
Gennes6 in the middle of a pre-smectic lattice fall outside th
allowed zones and therefore are unattainable in superhe
FSSFs.

5. When an external force is applied to the free surfac
an elastic restoring force

GSm
~N! ~L !52 S

Bm
~N!

q0jC
sin@f~L ! #N , ~13!

arises in the system. Here the values ofL do not exceed the
zones given by the inequality~12! ~see Fig. 1!. Near the
minima of the energy~10! Eq. ~13! simplifies and assume
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FIG. 1. Elastic forceGSm
(N) as a function of the reduced

thicknessL/d0. The thick segments represent allowe
zones centered atL5Nd0, whereN is the number of
smectic layers~see Eq.~12!!. The dashed curves show
sections corresponding to thermodynamically u
stable states. The horizontal line corresponds to
external compressive forceSDp. The points (s) of
intersection of the external compressive and elas
forces determine the spectrum of the equilibriu
thicknesses. The existence of such a spectrum ma
possible the restoration of the balance of the exter
compressive and elastic forces, which was destroy
at the critical point (() by the spontaneous thinning
of the superheated FSSF to an equilibrium thickne
corresponding to a smaller number of smectic laye
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the form GSm
(N)'2SBm

(N)(dL/jC), where dL5L2LN . The
latter agrees with the fact that when the inequalities~4! hold,
the elastic deformation is entirely concentrated at the ce
of the FSSF with thickness of orderjC , where the bulk
modulusBm

(N) of the pre-smectic wave of mass density
minimal ~see Ref. 6!.

It is obvious that because the allowed and forbidd
zones alternate with one another, the elastic properties
superheated FSSF are discontinuous functions of the th
nessL. Specifically, the force~13! has upper and lower lim
its

@ GSm
~N! #6* 5 6 S

Bm
~N!

q0jC
, ~14!

which are reached, respectively, at the bottom (1) and top
(2) boundaries of the corresponding allowed zones~see
Fig. 1!.

It is obvious, considering the relation~11!, that the lim-
iting values~14! decrease rapidly with increasingt and in-
crease with decreasing numberN of smectic layers~see Fig.
1!. Therefore the heating of a superheated FSSF in the p
ence of an external force inevitably terminates with the sp
taneous breakdown of the balance of the external and el
forces and, in consequence, mechanical instability of
FSSF. When the external force is compressive, the bala
of forces which was disrupted can be restored and hence
stability of the FSSF can be restored as a result of spont
ous thinning of the film to a thickness corresponding to
smaller number of smectic layers~by shedding ‘‘excess’’
smectic layers into the surrounding reservoir!. Moreover,
when a superheated FSSF with adequate stability agains
ruption is heated in the presence of an external compres
force, in general a series of spontaneous thinning transit
at various temperatures should occur. It is obvious that
specific scenario of such successive discrete thinning, inc
ing disruption of the FSSF, is probabilistic and a dynam
theory is required to analyze it.

We note that the successive discrete thinning of sup
heated FSSFs is of a distinctly monotropic character. Inde
on cooling, on the one hand the balance of the forces ac
on a FSSF is not disrupted in any way, while on the ot
hand the transition to larger thicknesses is obviously en
er
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getically unfavorable~see Sec. 3!. For heating in the pres
ence of an external tensile force, the breakdown of the b
ance of the forces will inevitably be accompanied
disruption of the FSSF.

6. Let an external compressive force produce an ad
tional pressureDp.0 on the free surfaces. Then the cond
tion of mechanical equilibrium of a superheated FSSF~the
condition for the balance of forces! is

2
Bm

~N!

q0jC
sin@ f~L ! #N5Dp , ~15!

where, as earlier, the values ofL stay within the correspond
ing allowed zone. It is obvious that a superheated FSS
stable only ifBm

(N)/(q0jC)>Dp holds, which corresponds to
an ‘‘upper’’ limiting value @GSm

(N)#1* exceeding the externa
compressive forceSDp ~see Fig. 1!.

It follows from Eq.~15! that when a superheated FSSF
heated in the presence of an external compressive force
equilibrium value ofL shifts continuously toward the lowe
limit of the corresponding allowed zone~the point whereL
2LN52d0/4 holds!; this corresponds to a negative therm
expansion coefficient of the superheated FSSF. This effe
a trivial consequence of the decrease in the effective b
modulus of the pre-smectic lattice when heating occurs in
presence of a constant external compressive force. The lo
limit of the allowed zone is itself a critical point where th
balance of the external compressive and elastic forces br
down, i.e., the point of mechanical instability of the FSS
~see Fig. 1!. It is obvious that this point is reached for
critical superheating t* (LN) given by the condition
Bm

(N)/(q0jC)5Dp.
We note that the breakdown of the balance of the ex

nal compressive and elastic forces signifies a lo
wavelength thickness instability of the superheated FS
Indeed, introducing a displacement of the free surfaces r
tive to the equilibrium positionsz56L/2 and adding to Eq.
~3! terms which explicitly account for the increase in the fr
surface area~which are proportional to the surface tensio
g), we can show that the critical points of breakdown of t
balance of forces are simultaneously points of the lo
wavelength instability of an antisymmetric capillary squee
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ing mode, which is responsible for the thermal thickne
fluctuations.10,11 Formally, this is related to the fact that th
second derivative of the interaction energy of the free s
faces with respect to thicknessL ~in this case,@DFSm#LL9 )
vanishes at the critical points of breakdown of the balance
forces and plays the role of a gap in the spectrum of
squeezing mode. Therefore anomalous enhancement of
scattering by the squeezing mode can occur as the cri
points where the balance of forces breaks down are
proached~see Ref. 12!. It can also be shown that as the
points are approached, the thermal expansion coefficient
superheated FSSF should diverge~while remaining nega-
tive!; this reflects the divergence of the isothermal compre
ibility that is natural for the thickness instability.

7. It is obvious that if the dislocation mechanism of thi
ning is neglected~see below!, the critical points where the
balance of forces breaks down are points with the maxim
possible superheating of the FSSF. The envelope of th
points is determined by the equation

expS LN

jC*
D 5

2Bs

q0jC* Dp
, ~16!

whereBs5aq0
2j i 0

2 %0s
2 is the ‘‘surface’’ value of the bulk

modulus andjC* is the bulk smectic correlation length on th
envelope.

It follows from Eq. ~16! that, to logarithmic accuracy
the envelope of the points of maximum possible superh
ing of a FSSF follows a simple ‘‘scaling’’ relation

LN /jC* 'const, ~17!

where the constant~the logarithm of the right-hand side o
Eq. ~16!! is large because of the left-hand inequality in E
~4!. The latter signifies that near the points of the maxim
possible superheating, which lie on the ‘‘scaling’’ section
the envelope, the thicknessL of a superheated FSSF shou
be much greater~at least severalfold! than the bulk smectic
correlation lengthjC .

We note that the relation~17! is a trivial consequence o
the fact that when the inequalities~4! holds, the elastic re-
storing force is short-range. Since the latter is unrelated
the simplified character of the de Gennes model, ther
hope that the relation~17! is universal. Then for a power-law
function jC(t) the envelope of the points of the maximu
possible superheatingt* (LN) should be a power-law func
tion of LN with an exponent that is the reciprocal of th
exponent of the bulk smectic correlation length.

8. Proceeding to numerical estimates, we note that
van der Waals force~which is always present in the rea
situation!, the force due to the pseudo-Casimir effect~dimen-
sional screening of thermal fluctuations of a nema
director!,13 and the force due to the pressure difference a
ing between the exterior and interior regions of a FSSF a
result of the curvature of the surrounding miniscus7,14 could
act as the ‘‘external’’ compressive force inducing success
discrete thinning of superheated FSSFs in conjunction w
heating. The first two forces are long-range, and for thi
nesses L;1025 cm, which are typical of known
experiments,2,3 they are of order 1 dyne/cm2, while the last
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force depends weakly onL and gives a characteristic valu
Dp;103 dynes/cm2.7,14 Such a large ‘‘external’’ compres
sive force, together with the large value ofq0jC;102 ~for
t;1023 see, for example, Ref. 15!, makes it necessary to
provideBm

(N);105 dynes/cm2 on the envelope of the critica
points. The latter withBs;107 dynes/cm2 ~i.e., on the order
of the typical value of the bulk modulusB ~Ref. 4!! gives a
‘‘reasonable’’ value of the ratioLN /jC* '425. Unfortu-
nately, the lack of measurements of the maximum poss
superheating of FSSFs as a function of the numberN of
smectic layers and the temperature-dependence of the
smectic correlation lengthjC for the same substance togeth
with the uncertainty in the bulk modulusBs make it impos-
sible at the present time to discuss the experimental situa
in greater detail, and specifically, to check the ‘‘scaling
relation ~17!.

9. We shall show that the dislocation mechanism
spontaneous thinning of superheated FSSFs, which is a
ciated with the production of elementary edge dislocat
loops in the plane of the central layer, where the effect
uniaxial tension of such a dislocation is minimal, can b
come dangerous near the critical points where the balanc
forces breaks down. The effective uniaxial tension eviden
consists of ‘‘volume’’ (Em

(N)) and ‘‘surface’’ (Es
(N)) parts,

which are related to the appearance of a distributed ela
deformation field in the interior of the FSSF and with th
occurrence of transitional edge profiles at the free surfa
causing the thickness of the FSSF tro vary continuously
an amount of orderd0 ~see Refs. 16–18!.

Since the amplitude%0(z) varies slowly in the range
uzu&jC , the well-known ‘‘parabolic’’ formula of de Genne
can be used for the elastic deformation field produced by
edge dislocation,4,19 andEm

(N) can be estimated qualitativel
as

Em
~N! ;

~Bm
~N!!3/4K1/4d0

2

jC
1/2

, ~18!

where K is the Frank constant, determining the energy
transverse bending of the director field in a nematic.4 It can
be shown in turn that the width of the transitional edge p
file occurring at the free surface of the FSSF is given by
squeezing capillary lengthlsq5(g/@DFSm#LL9 )1/2. Using Eq.
~10!, Es

(N) can be estimated qualitatively as

Es
~N! . g

d0
2

lsq
;

g1/2~Bm
~N!!1/2d0

2

jC
1/2

. ~19!

Comparison of~18! and ~19! shows that forg@(KBm
(N))1/2

the ‘‘surface’’ contribution to the effective uniaxial tensio
of an edge dislocation dominates. This inequality obviou
holds, since in the typical situationg.30 ergs/cm2,4

K;1026 dynes,4 andBm
(N);105 dynes/cm2 ~see Sec. 8!.

It can also be shown that in a wide neighborhood o
critical point where the balance of forces breaks down,
determined by the inequalityBm

(N)/(q0jC)2!Dp, the gain in
the free-energy density of a superheated FSSF as a resu
the thinning of the film by an amount of orderd0 is less than
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the corresponding workDpd0 performed by the pressure di
ference. Then the activation energy of a critical dislocat
loop can be estimated qualitatively as

Wc . p
~Es

~N!!2

Dp d0
;

Bm
~N!

q0jCDp
g d0

2 . ~20!

We note thatd0;1027 cm ~Ref. 4! and thereforegd0
2

;10kBT, i.e., it is on the order of the threshold activatio
energy satisfiesWc* (Wc* '60kBT ~Ref. 4!). Therefore it fol-
lows from Eq.~20! that far from the critical points where th
balance of forces breaks down (Bm

(N)/(q0jC)@Dp) the acti-
vation energyWc@Wc* and so the probability of spontane
ous thinning of a superheated FSSF as a result of nuclea
of growing dislocation loops is vanishingly small. Co
versely, near the critical points (Bm

(N)/(q0jC);Dp) the acti-
vation energy satisfiesWc;Wc* and so dislocations ca
strongly influence the scenarios of successive discrete t
ning of a superheated FSSF, determining, specifically,
stratified nature of the thinning. Unfortunately, the pure
qualitative character of the estimates, together with the
certainty in the character of the spontaneous thinning res
ing from the squeezing instability, preclude us from maki
an unequivocal assertion about the real nature of the suc
sive discrete thinning of superheated FSSFs. In our view
final word here belongs to experiments.

In conclusion, we note that discrete thinning of sup
heated smectic~pre-smectic! films should also be observe
in Izraelishvili-type experiments,9,20,21 if the temperature is
raised under a fixed external load. The observation of
effect would be an additional confirmation of the theory p
sented here.
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The Lancaster experiments@C. A. M. Castelijns, K. F. Coates, A. M. Guenault, S. G. Mussett,
and G. R. Pickett Phys. Rev. Lett.56, 69 ~1986!# with a cylindrical wire moving in
superfluid3He-B are discussed, where the measured critical velocity of pair creation was much
below the Landau critical velocity. The phenomenon is shown to be analogous to the
instability of the electron–positron vacuum in an adiabatically alternating strong electric potential
of both signs, where the positive- and negative-root levels cross and thus the instability
threshold is half the conventional value in a single static potential well. ©1999 American
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1. INTRODUCTION

In superfluid Fermi systems pairs of quasiparticles
produced by a uniformly moving object if its velocity ex
ceeds the Landau critical velocity,vL5D0 /pF . Here pF is
the Fermi momentum, andD0 is the superfluid gap in bulk
liquid. The critical velocity vL is also called the pair-
breaking velocity; it marks the threshold of instability of th
superfluid vacuum: breaking of Cooper pairs which form
superfluid condensate. In the vacuum of high energy phys
a similar situation can occur~i! in a strong electric field;1–3

~ii ! in a strong gravitational field, for example near an ev
horizon;4 ~iii ! if the hypothetical object, which is external t
the physical vacuum, moves at superluminal speed. Here
consider pair creation in superfluid3He-B, which is analo-
gous to the production of electron–positron pairs in a stro
electric field.

Such experiments have been conducted in Lancaste5,6

where a cylindrical wire vibrating in superfluid3He-B has
been used as a moving object. It turned out that the meas
critical velocity, at which significant extra dissipation of th
wire was observed due to particle creation, was consider
less thanvL ~about 0.25vL, independent of the material an
radius of the wire!.

It was originally suggested in Ref. 5 that such reduct
has two origins: a geometrical factor 1/2 results from
local enhancement of velocity near the wire, while the ot
reduction is related to suppression of the gap in the vicin
of the surface of the wire,D,D0 . As a result, the Landau
criterion for the filling of surface bound states is much le
thanvL . To provide for momentum loss by the wire, how
ever quasiparticles must escape to infinity, which is why
production of scattering states at subcritical velocity must
explained. This scenario was developed by Lambert, w
401063-7761/99/88(1)/6/$15.00
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shows7 that adiabatic oscillation can do this job if the spe
of the wire exceeds some value, which was estimated to
v* 5(1/5)vL .

Here, we further develop these arguments, noting firs
that in3He-B the surface leads to splitting of the gap intoD i

and D' , and secondly that the classical description of t
bound state in the surface layer must be replaced by a q
tum mechanical description. We obtain a modified value
v* , which depends on the gap suppression. Si
Bogolyubov–Nambu fermions in3He-B are in many re-
spects similar to Dirac electrons, we associate the crit
radiation of quasiparticles by a slowly vibrating wire wit
instability of the electron–positron vacuum in the presen
of a strong electric field. The present case corresponds
slowly alternating electric potential, which allows fo
electron–positron production in much weaker fields than
conventional mechanism discussed by Gershtein
Zel’dovich.2 In this scenario the classical positive- an
negative-root solutions cross, which leads to particl
antiparticle production~see also the discussion in Ref. 8!.
We construct a simple time-dependent potential for Di
electrons that enables us to model the proposed scenari

2. FERMIONS IN A VIBRATING WIRE

2.1. Fermionic spectrum in 3He-B

In bulk superfluid3He-B the fermionic spectrum is de
fined by the following 434 matrix Hamiltonian
~Bogolyubov–Nambu Hamiltonian!9,10:

H~p!5bM ~p!1cp–a, M ~p!5vF~p2pF!,

c5D0 /pF . ~1!
© 1999 American Institute of Physics
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Hereb anda are Dirac matrices, composed from the 232
Pauli matricest describing the Bogolyubov–Nambu spin
particle-hole space and 232 Pauli matricess for conven-
tional spin:

b5t3 , a5t1s. ~2!

The energy spectrum is

E6~p!56AM2~p!1c2p2. ~3!

The quantityc plays the part of the speed of light, but
contrast to the relativistic case, the massM depends on the
momentump. Since vF@c, the minimum of the positive
energy occurs not atp50 but at p5pF, with minE1(p)
5D0.

According to the Landau criterion, if the external bod
moves at a velocity greater thanvL5min (E1(p)/p)5c, it
will produce quasiparticles. In contrast to the relativis
case, where the minimum is realized atp→`, in 3He-B it
occurs atp5pF .

In the reference frame of the body, the energy spectr
is Doppler shifted:

H~p!5p–vs1bM ~p!1cp–a,

E6~p!5p–vs6AM2~p!1c2p2, ~4!

where vs is the superfluid velocity in the body frame.
vs(`).c, the positive square-root continuum merges w
the negative square-root continuum, and thus the produc
from the vacuum of pairs of quasiparticles with momentu
pF becomes possible. Here we discuss the situation in wh
particle production is possible even well below the Land
criterion. This is a combined effect of enhancement of
local superfluid velocity in the vicinity of the surface of th
object, the decrease in the ‘‘speed of light’’ near the surfa
and adiabatic oscillation of the velocity of the body.

2.2. Fermions in the surface layer

Experimentally,5,6 the external body moving in3He-B is
a cylindrical wire of radiusR from 2 to 50 mm, which is
much larger than the coherence lengthj;vF /D0 . The ve-
locity of the wire oscillates,u(t)5 x̂u(t), u(t)5u0 cos(vt),
at frequencyv;102– 103 Hz, which is much less than th
characteristic quasiparticle energy of orderD0; the motion is
thus extremely adiabatic.

The presence of a moving external object disturbs
vacuum state of the superfluid. First, the velocity field
modified by the moving wire. In the reference frame of t
wire, the superfluid executes ideal dipole flow around
wire:

vs~r ,t !52u~ t !1
R2

r 2 @2r̂ ~ r̂–u~ t !!2u~ t !#, r .R, ~5!

wherer5(x,y) is the 2D radius vector in the plane perpe
dicular to the wire, reckoned from the center of the wirer̂
5r /r . At two lines at the surface of the wire the superflu
velocity is twice the value at infinity:vs(6Rŷ)522u(t).

The second effect is that the order parameter~gap! is
suppressed near the surface of the wire in a layer wh
m

on

h
u
e

e,

e

e

se

thickness is of the order of the coherence length. In3He-B
this suppression is anisotropic, which leads to the t
‘‘speeds of light’’ in the regionr 2R;j;vF /D0 ~see Fig.
1!:

H5bM ~p!1@ci~d i j 2n̂i n̂ j !1c'n̂i n̂ j #pia j ,

E6~p!5p–vs6AM2~p!1c'
2 ~ n̂–p!21ci

2@ n̂–p#2, ~6!

wherec'5D' /pF andci5D i /pF are the ‘‘speeds of light’’
along the normaln̂5 r̂ to the surface of the wire and paralle
to the surface, respectively. According to Ref. 11, where d
fusive boundary conditions were considered, the transve
speed of light vanishes,c'(r 5R)50, while ci(r 5R)
'0.4c at T50. Due to the suppression of the order para
eter the surface layer serves as a potential well for quasi
ticles, which contains bound states with energies below
gap12 ~see Fig. 1!.

3. CRITICAL VELOCITIES AND NUCLEATION OF
QUASIPARTICLES

3.1. Excitations of bound states

We first consider a uniformly moving wire with consta
velocity u. The filling of the bound states can occur at
velocity smaller than the Landau velocityvL for creation of
fermions in the continuous spectrum. This velocity can
estimated from the Landau criterion for the classical sp
trum in Eq.~6! for the surface fermions. Since the superflu
velocity is tangential near the wall, the Landau velocity f
nucleation of quasiparticles in surface states isvL

surf

5min (E1(p)/pi)5ci(r5R). The minimum first occurs atpi

5pF andE15pFci(r 5R); note that the transverse speed
light c'(r ) does not enter into the criterion. Taking enhanc
ment of the superfluid velocity near the wall into conside
ation, one obtains that negative energy levels appear in
surface layer if the velocityu exceeds

v0* 5
1

2
ci~r 5R!5vL

D i~r 5R!

2D0
. ~7!

Here we used the Lambert notation for the various criti
velocities7 ~in his paper, however, he does not take splitti
of the gap into account, and he assumes thatv0* is very
small!.

FIG. 1. Schematic illustration of gaps, ‘‘speeds of light,’’ and bound sta
near the surface of the wire.
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The situation does not change if instead of taking a c
sical approach to the energy spectrum in the surface la
one takes into account quantization of quasiparticle mo
along the normal to the wall. According to Ref. 12, the qu
sicontinuum of the subgap bound states starts above the
ergy pFci(r 5R) with pi'pF , which again yields
(1/2)ci(r 5R) as the Landau critical velocity for nucleatio
of surface fermions.

Can negative energy levels in the surface layer be fi
by quasiparticles? For this it is necessary to connect t
reservoir of quasiparticles. It appears that this always occ
in the present situation. The negative square-root branchE2

of quasiparticles in Eq.~4! is always occupied. When th
velocity u exceedsv0* , the energy of branchE2 can be
positive, while the energy of branchE1 can be negative, so
the branches overlap and a quasiparticle from the fi
branchE2 can jump to an empty level onE1 . Since mo-
mentapz of these states are opposite, this can happen on
the momentumpx is not conserved, which is always the ca
because of surface roughness.

3.2. Analog of Zel’dovich mechanism of positron nucleation

When the surface Landau velocity is reached, howe
the created surface quasiparticles, which have zero energ
the wire reference frame, cannot escape to infinity, where
minimum energy of the scattering state isD02pFu
5D0@12(1/2)(ci(r 5R)/c)#.0. For quasiparticles to es
cape to infinity, the velocity of wire must be considerab
higher. This happens when the lowest energy of the bo
statepFci(r 5R)22pFu0 merges with the continuum of th
negative root states, whose upper edge is at2D01pFu. This
yields a criterion for the emission of a quasihole,u.v1* ,
with

v1* 5@c1ci~r 5R!#/3. ~8!

This is equivalent to the production of a positron by t
strong electrostatic potential well discussed by Zel’dovi
where the created electron fills the bound state, while
positron is emitted to infinity.

It may be helpful to remind the reader of the essen
features of the Zel’dovich mechanism2 ~see also Ref. 13 for a
detailed review!. Consider an electron-attractive potent
with a vacant discrete level~Fig. 2a!. Suppose that the po
tential adiabatically increases in strength. The level w
crossE50 for some valueV1 of the potential~V15p/2 for
a d-function potential!. There is nothing critical happenin
during the crossing. At some greater valueV2 the level
crossesE52M , and thus merges with the negative ener
continuum~V25p for a d-function potential!. The original
electron vacancy is now interpreted as the presence of a
itron, and since the positron occupies a scattering state, it
escape to infinity~Fig. 2c!. If the potential now become
weak again, we revert to the situation of a discrete ene
level ~Fig. 2d!, which however is now electron-filled. Th
whole cycle clearly conserves charge; the positron esca
however, when the potential is strong, and the electron
observed when the potential returns to its original we
value.
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If the velocity of the object is kept constant, the emissi
of quasiparticles atu.v1* will finally stop after all the nega-
tive levels become occupied. Then the object will mo
without dissipation, but its mass will be greater due to t
quasiparticles that occupied the negative-energy bo
states. In the case of moving vortices in superfluids and
perconductors, a similar enhancement of the mass du
trapped quasiparticles is the origin of the so-called Kop
mass of the vortex~see Ref. 14!.

Thus, for a uniformly moving object, dissipation is a
sent even if its velocity exceedsv1* , and nothing happens
until the Landau velocityvL5c is reached~if, however, hy-
drodynamic instability does not develop earlier15!. The
source of this instability can be the following: filling of th
bound state leads to an increase in the normal compo
density, and thus to rearrangement of the whole superfl
pattern due to mass conservation~see Ref. 14 for the effec
of the backflow due to the normal component in the vor
core!. At some velocity the superflow pattern becomes u
stable, being unable to satisfy mass conservation. Such
drodynamic instability usually leads to the production of vo
tices by the moving object.

Equation ~8! is analogous to the criterion obtained b
Lambert,7 and transforms to his result ifci(r 5R) is ne-
glected. However, in realityci(r 5R)/c is not small: it is
close to unity for specular boundary conditions, while f
diffuse conditions it is aboutci(r 5R)/c50.4.11 Thus, the
most optimistic estimate yieldsv1* 50.47vL, which is greater
than the experimental value, demonstrating that supercrit
dissipation starts at;0.25vL . Thus, it turns out that the
Zel’dovich mechanism in its simplest form is not responsib
for supercritical behavior. Modification of this mechanism
required according to another scenario, also suggested
Lambert,7 who exploited the adiabatic oscillations of th
wire.

FIG. 2. Zel’dovich mechanism of positron creation.
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FIG. 3. Temporal evolution of two branches,E6(px5pF) and
E2(px52pF), of bound states. a! Subcritical regime. The half
of the period is shown in which the velocity increases tou0,
and then decreases to zero. b! In the supercritical regime the
two branches cross each other, but the evolution of the lev
does not change if momentumpx is conserved. c! Level flow in
the presence of mixing of1pF and 2pF states. The whole
period of oscillations is shown, in which an ‘‘electron
positron’’ pair is created.
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3.3. Radiation by adiabatically oscillating potential

This mechanism exploits the fact that in an oscillati
wire u5u0 cos(vt), the velocity changes sign twice per p
riod. Consider the case in which the amplitude of the vel
ity u0.v0* in Eq. ~7!. After the peak velocity1u0 is
reached, for example, the bound state with energyE1

5D0ci(r 5R)/c22pFv0* 50 will be filled by a quasiparti-
cle. If the wire vibrates slowly, which is the case sincev
!D0 , after half a period the energy of this quasiparticle w
become E15D0ci(r 5R)/c12pFv0* . We must compare
this energy to the minimum energy of the scattering sta
which occurs for the opposite direction of the momentu
E1(min scattering)5D02pFv0* . Thus, if

v0* .vL/5, i.e., ci~r 5R!/c.2/5, ~9!

the continuum~conduction! energy band is achieved an
quasiparticles will be emitted by the vibrating wire. If, how
ever ci(r 5R),(2/5)c, then the same mechanism starts
work at higher velocity, withu0.(1/5)vL . The latter case
corresponds to the Lambert result obtained under the
sumption thatv0* is very small. Thus, the criterion for th
emission of quasiparticles by the vibrating wire isu0.v* ,
with

v* 5v0* if v0* .vL/5,

v* 5vL/5 if v0* ,vL/5. ~10!

The general scheme of particle production foru0.v* is
shown in Fig. 3. In the supercritical regime~b!, as
progresses, the two branchesE1(px5pF) and E2(px

52pF) of bound states cross each other if the moment
px is conserved. In a real situation, surface roughness m
1pF and2pF states, which leads to repulsion of levels. T
temporal evolution of levels and one of the trajectories o
-

l

s,
:

s-

es

a

quasiparticle in the supercritical regime are shown in Fig.
for a full period of oscillation. The transition of a quasipa
ticle from branchE2(2) to branchE1(1) occurs either by
scattering or Zener tunneling. In one cycle, the parti
moves from the Dirac sea to the positive energy continu
via bound states. This corresponds to the production of
electron–positron pair via bound states.

This mechanism is different from the Zel’dovich mech
nism, in which the bound-state energy touches the continu
spectrum of the Dirac sea, the electron occupies the bo
state, and the positron is emitted. In the present case, c
cality occurs when the bound-state energy of the branchE1

reaches the zero energy and thus touches the occupied b
states of the branchesE2 . In this process two particles in th
scattering states are created~‘‘electron’’ and ‘‘positron’’!,
resulting in the production of momentum 2pF from the
vacuum. The level flow along two other branches,E2(px

5pF) andE1(px52pF), is similar, but is shifted by half a
period. As a result, in this process the opposite moment
22pF , can be produced during a cycle.

4. ANALOGY WITH FERMION PRODUCTION IN A STRONG
ELECTRIC FIELD

Since close to the threshold velocity the relevant qua
particle momentumpx is greatest,px56pF , the termp–vs

in Eq. ~4! serves as the timelike component of the 4-vec
electromagnetic potential:p–vs56pFvsx(x,t)5eA0(x,t).
Here the sign of the momentum plays the part of the elec
charge. Thus we have the problem of Dirac particles in
strong electric field. The above mechanism of particle c
ation requires five ingredients:

1! bound states;
2! for filling of the negative energy levels abovev0* it is
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necessary to have the mirror image branch of quasiparti
with opposite momentum~i.e., with oppositee!;

3! there must be an interaction that mixes the mome
pF and2pF, and thus allows the signe to change;

4! the potential A0 must be strong enough for th
positive-root and negative-root branches to cross;

5! the potentialA0 must oscillate slowly in time. During
one cycle, the positive-root and negative-root levels cr
and then return to their respective~positive/negative! con-
tinua.

This is why, in mapping to the Dirac problem, we ne
particles with both negative and positive charges, which
transform into one another. One possibility is to use, inst
of the timelike component of the four-vector electromagne
potential, a time- and space-dependent mass term. In
case the spectrum is symmetric, so that positive and nega
energy bound states can in principle approach one anot3

in a manner similar to Fig. 3b.
The other possibility is to have the conventional elect

magnetic fieldA0 , but in the form of two spatially separate
potentials with opposite signs ofA0 . In this case one has th
required mirror image of states. This can be modeled by
conventional Dirac Hamiltonian with potential

A0~x,t !5U cos~vt !@d~x1a!2d~x2a!#. ~11!

Assuming that the Dirac massM51 and oscillations are
adiabatic,v!1, one obtains the time-dependent bound-st
energy levels

E25cos2 l1e24ka sin2 l, l5U cos~vt !, k2512E2.
~12!

If U exceeds the critical valueU15p/2, the first~positive
energy! bound state crossesE50. If thed-potentials are well
separated,a@1, the time-dependent energy levels are as
Fig. 4. HereE1 andE2 denote the bound state levels in th
right and left d-function potential, respectively. The prob
ability of nucleation of electron–positron pairs is determin
by the transition between theE2 and E1 branches. ForU
slightly above but not very close toU15p/2, one obtains a
result similar to that for the Landau–Zener tunneli
problem,16 with pair-creation probability per cycle

2P~12P!, P5expS 2
2ApT 2

vAU2U1
D , ~13!

T 25e24a!U2U1 . ~14!

FIG. 4. Spectral flow and pair production in a system of potentials alter
ing in antiphase in the supercritical regime.
es

ta

s

n
d

c
is

ive
r,

-

e

te

n

If v is large enough, the transition betweenE2 andE1 states
is given by the matrix elementT , while for small v the
process is determined by Zener tunneling through the
2T between repelling levels.

A similar effect in nuclear physics would correspond
a situation, different from that suggested by Gershtein a
Zel’dovich. In their case positron production is possible d
ing collision of two heavy bare nuclei with total chargeZ
greater that the supercriticalZc at which the electron bound
state with energyE52M appears. This would correspon
to critical strengthU25p of the d-function potential. In our
case the critical strength isU15p/2. This means that we
need considerably less total chargeZ, at which the negative
energy bound state for an electron appears,E1,0. But in
addition nearby one should have a similar hypothetical c
lision of the anti-nuclei, which produces the potential of t
opposite sign. If the latter contains the bound state withE2

5E1 , an electron occupying this bound state can tunne
the bound state of the positively charged nucleus. As a re
an electron–positron pair will appear after such a collisio

5. DISCUSSION

According to the present scenario, the observed crit
velocity for pair nucleation by a vibrating wire,v0*
'0.25vL ,5 is determined by bound states near the surface
the wire, and thus by suppression of the parallel gap at
surface of the wire in Eq.~7!. This yields an experimenta
estimate for the suppressed gap,D i(r 5R)'0.5D0 , which is
comparable to the theoretical estimateD i(r 5R)'0.4D0 .11

This consistency provides experimental evidence for a mo
fied Zel’dovich pair creation mechanism in a strong field,
which particles can be created by a subcritical electric pot
tial because of level crossing.

Other objects whose motion can be used to simulate
ticle production from the vacuum are topological objec
vortices and domain walls. For a discussion of the prod
tion of momentum from the vacuum by a moving vortex, d
to the axial anomaly phenomenon, see Ref. 17. Quasipar
production by a moving soliton in superfluid3He-A due to
the combined effect of Schwinger pair production, the ev
horizon, and the ergoregion, is discussed in Ref. 18.

One of us~A. C.! wishes to thank the Low Temperatur
Laboratory of Helsinki University of Technology for hosp
tality, and the EU Training and Mobility of Research Pr
gram CHGECT94-0069 for its support.
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Analysis of the effect of oxygen doping and pressure on superconducting transition
temperature in metal oxides
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The two-orbital Hubbard model is used to obtain formulas for the fermion excitation spectrum in
the energy bands hybridized by the Anderson interaction. An analysis of lower part of the
energy spectrum leads to a formula for the superconducting transition temperatureTc associated
with the pairing of quasiparticles in one of the correlated bands. The dependence ofTc on
pressure is analyzed, and the individual influence of carrier density enhancement and interaction
strength is obtained as a function of oxygen concentration. The experimental discrimination
made by Honmaet al. @Solid State Commun98, 395 ~1996!# in Y0.9Ca0.1Ba2Cu3O72d by
separating out the contributions due to carrier density and pairing strength can be reproduced
quantitatively, and perhaps with further refinement, so can the carrier concentration. Although the
prediction of the absolute value of the transition temperature using the present model is not
accurate, it is clear that it furnishes a reasonably accurate description of the change in transition
temperature with pressure. The component contributions due to the change in carrier
concentration and due to the change in interaction strength as a function of oxygen concentration
are also in reasonable agreement with the experimental results. ©1999 American Institute
of Physics.@S1063-7761~99!00801-X#
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1. INTRODUCTION

The investigation of the mechanism of superconductiv
in cuprate superconductors is related to the effects of oxy
doping and pressure on the superconducting transition t
perature (Tc) of these substances. One of the advantage
using high-pressure techniques is the ability to cha
atomic distances without substitution of components, wh
often causes some side effects.1,2 At the present time severa
review articles concerning high-pressure work in cuprate
perconductors have been published. According to the exp
mental results and the conclusions of Shaferet al.,3 and
Kubo et al.,4 the carrier concentration increases with incre
ing pressure in many high-Tc materials. This increase in ca
riers is considered to be due to charge transfer from a ch
reservoir layer to the Cu–O plane. The evidence for the
pendence of the carrier concentration on pressure co
from measurements of the Hall number 1/eRH and the ther-
moelectric power under high pressure. Generally,Tc initially
increases with increasing 1/eRH , but decreases when 1/eRH

exceeds a specific value. However, the relation betweenTc

and 1/eRH in high-pressure experiments varies among diff
ent cuprate superconductors. For instance, in La–Sr–Cu
ceramics, Tc increases with increasing pressure, but
change in 1/eRH is observed. On the other hand, in the ca
of Y–Ba–Cu–O, a variation ofTc with 1/eRH has been ob-
served by several authors in high-pressure experiment
was proposed5 that the change inTc due to pressureDTc

should be expressed as the sum of two terms, (DTc)c and
461063-7761/99/88(1)/5/$15.00
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(DTc)p , where (DTc)c is the change inTc due to pressure-
induced changes in the carrier density, and (DTc)p is the
change inTc due to pressure-enhanced electron pairing~e.g.,
change in the electron-phonon coupling strength, or in
exchange coupling constant!. Honmaet al.,6 investigated the
dependence ofTc on the Hall number by changing the oxy
gen content and the pressure in Y0.9Ca0.1Ba2Cu3Oy . They
determined that the contribution of (DTc)c to DTc increases
with decreasing oxygen content.

In this work we use the idea thatDTc5(DTc)c

1(DTc)p and apply the Anderson-Hubbard two orbit
model7 to describe the experimental results of Ref. 6. In S
2 we introduce the Hamiltonian of the problem, the Gree
functions of the quasiparticles in correlated bands, and
equation forTc . Section 3 is devoted to the calculation
the pressure effect on the superconducting transition t
perature. By proposing a simple relation between the va
of pressureP and the width of the correlated bandW, we can
obtain the dependence ofTc on pressure. In addition, a com
parison with experimental results on the dependence ofTc ,
DTc , (DTc)c and (DTc)p on the concentration of carriers i
YCaBaCuO is made. Good agreement between the theo
cal calculation of the dependence of (DTc), and (DTc)c on
pressure and the experimental results is found. It is c
cluded that the model under consideration is quite promis
for studying the effects of oxygen doping and pressure on
superconducting transition in cuprate superconductors.
© 1999 American Institute of Physics
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2. FORMULATION

One of the popular models used for describing a stron
correlated system is the Hubbard model.8 Recently Kosov
and Shilov7,9 studied the superconducting transition a
pressure effects by using a unified Hamiltonian contain
operators of the Hubbard two-orbital model and the And
son interaction. The interaction considerably enhances
applicability of the Hubbard model and allowed the auth
to describe the interaction of non-localized and localiz
electrons by proceeding from the mixing of their one-parti
states.

The model in Refs. 7 and 8 is based on the followi
Hamiltonian:

H5H01H int5(
i

H0i1(
i js

t i j cis
1cis ,

H0i52m~nia↑1nia↓1nic↑1nic↓!1E~nia↑1nia↓!

2H~nia↑2nia↓1nic↑2nic↓!1Inia↑nia↓U

3~nia↑1nia↓!~nic↑1nic↓!1U1nic↑nic↓

1V0~ai↑
1ci↑1ai↓

1ci↓1H.c.!, ~1!

wherecis
1 , cis andais

1 , ais are field operators correspondin
to free and localized electrons at the sitei with spin projec-
tion s: nias5ais

1ais andnics5cis
1cis are the operators for th

number of electrons:m is the chemical potential;H is the
applied magnetic field.E is the one-particle energy of th
a-electrons;I, U, andU1 are the energy parameters defini
intra-atomic correlation;I is the Hubbard interaction betwee
localized electrons;U is the interorbital Coulomb interactio
of c- and a-electrons;U1 is the repulsive interaction o
c-electrons on one site;V0 is the matrix element responsib
for the hybridization of thec- anda-electronic states~Ander-
son’s constant!; and H int describes the interstitial tunnelin
of c-electrons with transport integralt i j .

We need to check our results according to separate
dition: E.0 andE,0. For this reason, we use the interm
diate symbols:

Q5 HB, E.0,
A, E,0, S5 HD, E.0,

C, E,0.

This means, for example, that for valueRK
S we have

RK
S5H RK

D , E.0,

RK
C , E,0.

We assume that the density of states in the disper
region has a rectangular shape:7–11

r~«!5~1/2W!u~W22«2!,

where 2W is the width of thec-band.
Carrying out calculations similar to those in Refs. 7 a

11, we obtain the following expression for the chemical p
tential:

m52D/22WB1/212~nK1nS!W~RK
S!22P2/2, ~2!

P65~B1
2 W262D1B2W1D1

2!1/2,
ly

g
r-
he
s
d

n-

n

-

B65cos2 a~n01nQ!6~RD
K !2~nK1nS!.

Heren0 , nQ , nK , andnS are the population densities of th
energy states under investigation, which satisfy the condi
n01nQ1nKnS51;

RC
K5RA

K5cosa~C1A32A1C3!/&

1sina~C1A22C2A1!,

A5~11A21
2 1A31

2 !21/2, A25A21A1 , A35A31A1 ,

A215~EL22E2I !2/2V0
2, A315~EL22E2I !2/

~EL2U1!2,

B25~11B12
2 1B32

2 !21/2, B15B12B2 , B35B32B2 ,

B125
~EM12E2U !~EM2U1!22V0

2

&V0~EM2U1!
,

B325
&V0

EM2U1
,

C35~11C12
2 1C23

2 !21/2, C15C13C3 , C25C23C3 ,

C135
~EK2E2U !~EK2U1!22V0

2

2V0
2 , C235

EK2U1

&V0

,

EK,EM,EL .

The energy of the two-particle statesEK , EL , andEM

can be obtained by using the cubic equation

X31AX21BX1C50,

A52~ I 1U1U113E!, B5~ I 12E!~ I 1U !

1U1~3E1U1I !24~V0!2,

C52~V0!2~ I 12E1U1!2U1~E1U !~2E1I !. ~3!

The rootsX5$Xm% of Eq. ~3! define the energyEK,L,M :
Xm52m1Em , m5K,L,M .

The chemical potentialm is determined by the concen
tration of electrons in the dispersed correlated band, wh
equalsnc5(RK

S)2(nK1nS). The dependence ofnc andm on
V0 shows different behaviors in the casesE.0 andE,0.
An increase in the hybridization parameterV0 leads to a
decrease innc for E.0, and to an increase forE,0.

A transition to the Hubbard operators allows the use
the Green’s temperature function technique to take the in
stitial jump term into account in order to study the superco
ducting properties of the model. An analysis of the low
part of the energy spectrum leads to the following formu
for the superconducting transition temperature associa
with the pairing of quasiparticles in one of the correlat
bands:

Tc

2W
50.57F2

j10~2W!j10~W!

W2 G1/2

expF2
1

A~n,t0!G , ~4!

j10~2W!522~RK
S!2~nK1nS!,

j10~W!52m1~B1W2P12D!/2,
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A~n,t0!5G~n,t0!/L~n,t0!,

G~n,t0!5t0@cos2 a~n01nQ!~ES2EK!~ES1B2t0!

1~RK
S!2~nK1nS!EQ~EQ2EK1B2t0!#,

L~n,t0!5W@B1~2m1D!1B2D1#~2m1D2B1t0!.

The quantityA(n,t0) plays the role of the quasiparticl
scattering amplitude with different spin orientation. The
traction between quasiparticles in a correlated band ta
place under the conditions:

A~n,t0!.0, 2W,t0,W, j10~W!>0. ~5!

The conditions~5! can be used to determine the conce
tration nS1,n,nS2 for which TcÞ0 holds. Solving the
equationj10(W)50 gives the following value fornS2 :

nS25
2 cos2 a

cos2 a1~RK
S!2 . ~5a!

The conditionA(n,t0)50 gives the following result for
nS1 :

nS15
2 cos2 a

cos2 a12~RK
S!2 . ~5b!

In particular, if we putV050 andE.0 in ~5a! and~5b!,
we obtain nS152/3 and nS251. This result has been ob
tained by Zaitsev and Ivanov12 in the framework of the one
orbital Hubbard model~the so-called «kinematic mechanis
of superconductivity»!.

3. PRESSURE EFFECTS

In applying the two-orbital Anderson-Hubbard model
describe the pressure dependence ofTc , we choose to exam
ine the energy parameters, which more sensitively depen
the value of pressure. SinceU, I, U1 , V0 , andE are on-site
properties, their pressure dependence can be neglected
transport integraltp depends on the spatial distribution
atoms and is changed by applied pressure. Let us cons
the region whereW depends linearly ontp (W}tp). Accord-
ing to Marsiglo and Hirsh,13 the transport integral in cuprat

FIG. 1. Dependence of the functionTc on the oxygen contenty for
Y0.9Ca0.1Ba2Cu3Oy obtained for the parameterska50.00024 GPa21, P
52 GPa.
-
es

-

on

The

er

superconductors can be expressed trough the lattice pa
eters of the CuO2 planesa, b, andc by the formulas

t i5
\2

2mia
, t'5

\2

2m'c
,

wheremi andm' are the respective effective masses.
Neglecting any pressure dependence of the effec

masses, we estimate the magnitude ofdW/dP:

dW

dP
}

dtp

dP
;22W

d ln a

dP
52Wka . ~6!

Hereka , kb , andkc are the compressibility componen
along each crystallographic direction, defined by

ka52
d ln a

dP
, kb52

d ln b

dP
, kc52

d ln c

dP
.

In order to simplify the numerical estimation of the r
sults, we consider the caseka5kb5kc . Using the relations
in the equation~6!, we obtain the following expression fo
the dependence of the bandwidth on pressure

W~P!5W~P50!exp~2kaP!. ~7!

Formulas~4! and~7! allow us to expressTc as a function
of pressure. Using expression~6! we can obtain formulas for
dTc /dP andd ln Tc /dP:

dTc

dP
5Tc

d ln Tc

dP
;2Wka

dTc

dW
, ~8!

dTc

dW
5

Tc

2W H 112W

3FB21
B1

2 ~P12P2!W2D1B2~P11P2!

2P1P2
G

1
2W

A2~n,t0!

dA~n,t0!

dW J ,

dA~n,t0!

dW
52

A~n,t0!

W
1

1

L~n,t0!

dm

dW
$@2~2m1D!

2B1t0#@cos2 a~n01nQ!~Es2EK!~ES

12B2t0!1~RK
S!2~nK1nS!EQ~EQ2EK

12B2t0!1A~n,t0!B1W~B1~2m1D!

1D1B2!#22WA~n,t0!@2B1~2m1D!

1D1B22B1
2 t0#%,

dm

dW
52~RK

S!2~nK1nS!2
B1

2
2

WB1
2 2D1B2

2P2
.

By means of formula~8! we obtain a theoretical expres
sion for (DTc)p :

~DTc!p5
dTc

dP
DP5

dTc

dW
DW. ~9!

To compare our results with the experimental data
Ref. 6 we obtain the value (DTc)c from formula ~4!:
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~DTc!c5
dTc

dn
Dn5

dTc

dn

dn

dP
DP5

dTc

dn

dn

dW
DW. ~10!

4. DISCUSSION

We have chosen to compare the theoretical results
sented in the previous section with the recent experime
results of Honmaet al.,6 who studied the pressure depe
dence and the effect of oxygen doping on the transition te
perature of the Y0.9Ca0.1Ba2Cu3Oy ~YCBCO! system. These
authors systematically investigated the critical tempera
dependence and the dependence of the Hall number 1/eRH ,
on pressure, in order to be able to distinguish between th
effects which result from changes in carrier density (DTc)c ,
and changes in the coupling strength~electron pairing!
(DTc)p .

The first comparison we shall examine is the depende
of the critical temperatureTc , on the oxygen contenty. The
theoretical results for a pressure of 2 GPa and a compr
ibility ka of 0.0024 GPa21 are displayed in Fig. 1, where fiv
curves are plotted, each with a variation in one or more
the following bandwidth-normalized parameters: the sing
particle energyE/W, the interatomic correlation energie
I /W, U1 /W, andU/W; and the hybridization energyV0 /W.
The values of the parameters used in the various curves
to fit the data are listed in Table I below.

The data of Fig. 1 in the paper by Honmaet al., are
represented by open circles. As can be seen from the fig
the general concave-downward form of the experimental
sults can be qualitatively reproduced by the theoret
curves with the same maximum value, and with little var
tion exhibited for different parameter combinations. The re
uisite width of the curve exhibited by the experimental da
however, is not readily attained with any reasonable va
tion in the parameters. The difficulty in fitting the theory

TABLE I. Parameter values used.

Curve 2E/W I/W U1 /W U/W V0 /W

1 21.9 6.0 3.5 2.4 1.8
2 21.9 6.0 3.5 2.4 2.0
3 21.7 6.0 3.5 2.4 1.8
4 21.8 5.0 2.5 2.8 1.8
5 21.9 6.0 2.4 3.5 2.0
e-
al
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se

ce

ss-
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ed

re,
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,
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an absolute quantity like the critical temperature is not un
pected, since the absolute values of the potentials chose
involved in making such a comparison.

In Figs. 2a and 2b are plotted the critical temperatu
change at a pressure of 2 GPa and a compressibilityka of
0.0024 GPa21, due to changes in carrier density and pairi
strength (DTc)c and (DTc)p , respectively, as a function o
oxygen contenty. Here, the agreement with the experimen
results of Honmaet al. ~open circles! is fairly good. Once
again, the theoretical curves exhibit a concave-downward
havior over the range ofy that was measured. Of the param
eter sets chosen for illustration, it appears that the parame
corresponding to curve5 ~2E/W521.9, I /W56.0, U1 /W
52.4,U/W53.5, andV0 /W52.0! give the closest fit to the
experimental data in both cases. Figure 3 illustrates the
of the two effects to give the total change in temperatu
(DTc)c1(DTc)p5DTc plotted vs. oxygen contenty, along
with the experimental data. Once again the theoretical tr
ment yields a set of concave-downward curves which qu
tatively approximate the data with the best fit to the expe
mental data given by curve5. Overall, the theoretical mode
appears to quite accurately account for the observed exp
mental variation with oxygen content. In contrast with t
first plot, these comparisons involve the change in criti
temperature with pressure and so can be more realistic
accounted for by the theoretical model.

FIG. 3. Dependence of (DTc)p1(DTc)c on the oxygen contenty for
Y0.9Ca0.1Ba2Cu3Oy obtained for the parameterska50.00024 GPa21, P
52 GPa.
FIG. 2. Dependences of (DTc)p ~a! and
(DTc)c ~b! on the oxygen contenty for
Y0.9Ca0.1Ba2Cu3Oy obtained for the param-
eterska50.00024 GPa21, P52 GPa.



m
e

e

ha

e
tr
th
ti
i

l
t

n

r

by
re

t

i-
ti
in
th
Th
d
m
he

tio
in
t

he

-

ing
with
ugh
ra-

at it
e in
tri-
to

on-
eri-

e

rs

ys.

n.

with

r

50 JETP 88 (1), January 1999 A. A. Kosov and R. I. Boughton
For the Hall number 1/eRH , which should scale with the
ratio of the carrier density enhancement of the critical te
perature (DTc)c to the sum of the absolute values of th
individual critical temperature enhancementsu(DTc)cu
1u(DTc)pu, the plot vs. oxygen concentrationy shown in
Fig. 4 illustrates the comparison between theory and exp
mental data of Honmaet al., who labelled this ratioa. Here
the fit is not good with any of the parameter variations t
were tried. Although the experimental data fall on curve4
nearDTc /(u(DTc)cu1u(DTc)pu)51, where the temperatur
change is almost entirely due to change in carrier concen
tion, the slopes are clearly not in agreement. We believe
discrepancy arises from the reduced accuracy in evalua
this fraction when the Hall coefficient changes sign, which
does in the case where (y,a)5(6.87,0.39). The theoretica
curve nevertheless gives a reasonable qualitative descrip
of the variation in this parameter, as a decreasing functio
oxygen content. In order to determine howdTc /dn varies
with oxygen concentrationy, we have used a third-orde
polynomial fit of the form:dn(y)5a3y31a2y21a1y1a0 .
The fitting parameters are obtained by using the data
Honmaet al., at y56.59, 6.72 and 6.87, respectively, and
settingdn(7.0)50. The values of the fitting parameters a
a052461.1850, a15141.5920, a25211.6100, a3

50.1135. This relation provides a reasonable idea about
strength of the effect of charge carrier density uponDTc .

Finally, in Fig. 5, we plot the total change in the trans
tion temperature vs. pressure as obtained from the theore
model. The experimental results are shown as data po
according to the legend. It is apparent that the quality of
agreement is good, with no more than 10% discrepancy.
rate of increase inTc with pressure is faithfully reproduce
for all three fractional oxygen contents studied by Hon
et al. It is important to note the nearly zero slope at t
highest concentration,y56.87.

5. CONCLUSIONS

In this paper we have demonstrated that the applica
of the Hubbard model provides a good basis for describ
the observed variation of the pressure dependence of
critical temperature on oxygen concentration in t

FIG. 4. Dependence of the ratioa5u(DTc)cu/(u(DTc)pu1u(DTc)cu) on the
oxygen contenty for Y0.9Ca0.1Ba2Cu3Oy obtained for the parameterska

50.00024 GPa21, P52 GPa.
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Y0.9Ca0.1Ba2Cu3Oy ~YCBCO! system. It appears that the ex
perimental discrimination made by Honmaet al., in separat-
ing out the contributions due to carrier density and pair
strength can be reproduced quantitatively, and perhaps
further refinement, as can the carrier concentration. Altho
the prediction of the absolute value of the transition tempe
ture is not accurate using the present model, it is clear th
furnishes a reasonably accurate description of the chang
transition temperature with pressure. The component con
butions due to change in carrier concentration and due
change in interaction strength as a function of oxygen c
centration are also in reasonable agreement with the exp
mental results.

* !E-mail: kosov@margu.mari.ru
†!E-mail: boughton@bgnet.bgsu.edu
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The stimulated emission spectrum of uniaxially strainedp-Ge is presented. The energy spectrum
of the states of a shallow acceptor in Ge under uniaxial compression is calculated. The
threshold pressure at which the acceptor state split off from the ground state becomes resonant is
found. The pressure dependence of the width of this resonant level is calculated. The
stimulated emission lines are identified. In particular, it is shown that the principal emission peak
corresponds to the transition of holes from the resonant 1s (1sr) state to the localp61

state. The probabilities of optical transitions are calculated. A mechanism of population inversion
due to the intense resonant scattering of hot holes with an energy corresponding to the
position of the 1sr level is proposed. ©1999 American Institute of Physics.
@S1063-7761~99!00901-4#
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1. INTRODUCTION

Solid-state sources of electromagnetic radiation in
terahertz range, which corresponds to wavelengths of
1000 mm, have been undergoing rapid development. T
first pulsed semiconductor lasers with wavelengths in
range 100–300mm were developed in the mid-1980s usin
emission fromp-Ge under the simultaneous action of stro
electric and magnetic fields at liquid-helium temperatu
~see, for example, Ref. 1 and the work cited there!. It was
shown that the stimulated emission is caused by an inve
hole population in momentum space. A cascade laser b
on intraband transitions in narrow quantum wells was
cently developed and can, in principle, operate at wa
lengths from the mid-IR range to 100mm.2,3

The stimulated emission ofp-Ge subjected to uniaxia
compression was observed in a strong electric field in Re
It was suggested that such stimulated emission is due to
appearance of resonant states as a result of the strain-ind
splitting of the fourfold degenerate acceptor level.5 This sys-
tem is of unquestionable interest for developing a new t
of lasers for the terahertz range. Uniaxial strain appears
example, in heterostructures based on semiconductors
lattice parameter mismatch, particularly in Ge–Si structu

This paper compares the stimulated emission spectr
uniaxially strainedp-Ge with the calculated energy spectru
of the strain-split levels of a shallow acceptor. Analysis
the emission spectrum reveals that the stimulated emissio
associated with the appearance of resonant acceptor s
The possibility of adjusting the emission energy in the ran
from 10 to 42 meV by varying the pressure is demonstra
A mechanism of population inversion as a consequenc
the accumulation of holes near the lower resonant state
to the intense resonant scattering of free holes at that en
511063-7761/99/88(1)/7/$15.00
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is proposed. The probabilities of intra-impurity optical tra
sitions and transitions from the continuous spectrum to lo
states are calculated. It is shown that the principal peak in
stimulated emission spectrum corresponds to a radiative t
sition from the lowest resonant 1s (1sr) state to the first
excited local 2p61 state. The probability of this transition i
calculated; in particular, when the pressure along the@111#
axis isP56.85 kbar, for which the transition energy shou
be 24 meV, the radiative transition time ist52.231026 s.

2. EXPERIMENT

Gallium-dopedp-Ge crystals with a Ga concentratio
from 331013 to 1014cm23 were investigated at liquid-
helium temperatures. Match-shaped samples having a le
of 6–10 mm and a cross-sectional area of 0.5– 1 mm2 were
cut in the@111# or @100# crystallographic direction. A pres
sureP was applied along the sample in either of these dir
tions. Voltage pulses of duration 0.2–1ms, which created an
electric fieldE parallel to the pressure, were applied to co
tacts deposited on a lateral~long! face of the sample. The
distance between the contacts was 4–9 mm.

The terahertz emission of the samples was detected
cooled Ga-doped Ge photodetector with a sensitivity ba
hn.10 meV. Figure 1a shows the pressure dependenc
the photodetector signal, which is proportional to the in
grated luminescence intensity in the sensitivity band of
detector, forEiPi@100# at various voltages. For sample
such that the long faces deviated from parallel by less t
48 the intensity increased abruptly at a certain thresh
pressurePc . The intensity jump was also accompanied by
current jump~by up to ten fold!.

The high-intensity emission observed is stimulated, a
shown by the following facts: 1! there is a threshold pres
© 1999 American Institute of Physics
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FIG. 1. Intensity S of far-IR luminescence as a
function of the pressureP for various values of the
mean fieldU/L. HereU is the applied voltage and
L is the sample length;EiPi@100#. The nonparal-
lelism of the lateral~long! faces of the sample
equals about 48 ~a! and less than 209 ~b!.
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nal
sure; 2! a resonator, which is formed in our case by para
faces of the sample owing to total internal reflection~see, for
example, Ref. 6!, is needed for the appearance of the inte
sity jump. A simple experiment showed that this is, in fa
the case. Rough grinding of one of the lateral faces of
sample removed both the intensity jump and the curr
jump. Repeated polishing and etching of that face permi
restoration of the resonator, and the stimulated emiss
reappeared.4

The current jump appearing simultaneously with the
tensity jump, as well as the voltage dependence ofPc , can
be explained in the following manner. In uniaxially strain
Ge the redistribution of hot holes between different branc
of the Ge valence band with different effective masses p
duces a negative differential conductivity, which leads to
formation of electric domains.7–9 In this case the distribution
of the electric field along the sample is very nonuniform a
consists of strong- and weak-field regions.

As the applied voltage is increased the length of
strong-field domain increases, but the electric field intensi
inside and outside the domain scarcely depend on the ap
voltage;10 therefore, the current–voltage characteristic of
sample has a current-saturation segment. Stimulated e
sion appears at a certain critical domain length. As w
shown in Ref. 10, the domain length increases with b
increasing voltage and increasing pressure at a fixed volt
Therefore, the smaller is the applied voltage, the greate
the pressure which must be applied so that the domain le
would reach the critical value~see Fig. 1!. When the stimu-
lated emission intensity is sufficiently high, the domain d
appears, the field distribution in the sample becomes ho
geneous, and the current abruptly increases to the v
corresponding to the homogeneous field.10

Stimulated emission could be obtained at a lower pr
sure by improving the resonator. The best result, which w
obtained for a sample with the faces about 209 out of paral-
lel, is shown in Fig. 1b. The intensity jump was observed
P'4 kbar and at a significantly smaller voltage~below the
domain formation threshold!, beginning at the impurity
breakdown voltage. We note that in this case a domain co
not form at any applied voltage due to suppression of
negative differential conductivity by the high-intensi
stimulated emission. At low voltages@due to the small
l
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amount of power dissipated in the sample, which was eq
to ;100 mW~Ref. 10!# stimulated emission could be excite
in a continuous regime.

The stimulated emission spectrum measured usin
grating monochromator forP56.85 kbar is shown in Fig. 2
In these measurements a cryostat with the sample was pl
at the entrance, and a cryostat with the photodetector
placed at the exit from the monochromator. The spectr
consists of several peaks. The energy at which the princ
maximum occurs varies from 21.2 meV atP56.85 kbar to
40.2 meV atP511.5 kbar~see the points in Fig. 8!. The
width of the maxima is fairly large and amounts to 0.2–0
meV for different peaks.

The maxima in the spectra measured in greater de
exhibit a mode structure which results from the resona
modes. Figure 3 shows the principal stimulated emiss
maximum at P57.1 kbar for a sample with a 131 mm2

cross section. The inset shows the optical path in the sam
at resonance due to total internal reflection. It can be s
that the distance between the lines in the spectru
('0.11 meV) coincides with the value found from the co
dition Kl5nL, wherel is the emission wavelength,n is the
refractive index (n54 for Ge!, L is the optical path length
andK is an integer. Thus, in our case, in analogy to Ref.
an optical resonator is formed as a result of total inter
reflection from parallel longitudinal faces of the crystal.

FIG. 2. Stimulated emission spectrum.EiPi@111#. The peak at 21.2 meV
corresponds to the optical transition between the resonant 1s state and the
2p61 acceptor state.
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3. ANALYSIS OF THE EMISSION SPECTRUM

To analyze the emission spectrum we calculated the
sitions of the levels of a shallow acceptor in uniaxially co
pressed Ge. As is well known, uniaxial strain removes
degeneracy of the Ge valence band atk50 and splits it into
two subbands with the momentum projectionsM563/2 and
M561/2 on the axis parallel toP ~the z axis!, which are
separated by an energy gap proportional to the applied p
sure. The degenerate acceptor ground state is similarly
into two states, whose energy difference also increases
pressure. Figure 4 schematically shows the structure of
Ge valence band and the positions of the ground state
shallow acceptor and the state split off from it by uniax
compression at various pressures. Above a certain pres
(P'4 kbar for Pi@111# and P'3 kbar for Pi@100#) the
split-off acceptor state is in the continuous spectrum a
forms a resonant level~see the band diagrams forP
>4 kbar in Fig. 4!, while the ground state remains in th
band gap. There should be two series of excited states
longing to split valence subbands in the band gap and in
continuum.

For the calculations we used the Luttinger Hamiltoni
in the spherical approximation.11,12 Diagonalization of this
Hamiltonian for uniaxial strain gives a valence-band sp

FIG. 3. Mode structure of the principal peak in the stimulated emiss
spectrum. The cross section of the sample measures 131 mm2. The optical
path in the sample is shown in the inset.
o-
-
e

s-
lit

ith
he

a
l
ure

d

e-
e

-

trum consisting of two subbands, which can be called
heavy-hole («h) and light-hole (« l) subbands. Their extrem
are separated by the energy gap

«def5
\2z

m0
5bP, ~1!

where b is the deformation potential,z is the deformation
parameter, andm0 is the free electron mass. In germaniu
we haveb'4 and 6 meV/kbar for compression along th
@111# and @100# axes, respectively. The spectrum of the v
lence subbands in a strained crystal has the form

« l ,h~k!52
\2

2m0
@2g1~kx

21ky
21kz

2!

6Az222gz~2kz
22kx

22ky
2!14g2~kx

21ky
21kz

2!2#,

~2!

whereg5(3g312g2)/5, andg1 , g2 , andg3 are the Lut-
tinger parameters:g1513.38,g254.24, andg355.69.13

The positions of the levels of a shallow acceptor
uniaxially compressed Ge were calculated both within
zero-radius potential model and by the variational meth
for Coulomb centers in the large-strain limit, where only o
subband can be taken into account in the treatment of e
series of levels. The details of the calculation of the splitti
of the G8 acceptor state in a strained semiconductor wit
the zero-radius potential model and of the lifetime of t
resonant states appearing in such a system were given in
14. Here we present only the results and some brief expla
tions.

The acceptor ground state in the unstrained semicond
tor is fourfold degenerate with respect to the projection
the total momentum onto thez axis. According to the zero-
radius potential method, the wave function of the impur
state is constructed as the Green’s function of the Luttin
Hamiltonian. The energies of the impurity levels appear
the expressions for the wave functions as parameters fo
assigned value of the binding energy in the unstrained se
conductor. Above a certain pressure the energy of the im
rity level with M563/2 has a complex value«63/22 iG/2,
which corresponds to the passage of this level into the c

n

ac-
FIG. 4. Structure of the valence band and position of the
ceptor levels for various values ofP. The heavy-hole and light-
hole bands are denoted byhh and lh, the acceptor ground and
split-off states are denoted bygs andss, and the energy of the
optical phonon is denoted by«opt . For convenience the hole
bands are shown as in the electron case.
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tinuous spectrum of the light-hole subband and the app
ance of resonant states with lifetimet5\/G. The calculation
for Ga impurities in Ge~the binding energy is 11.3 meV! in
the zero-radius potential model gives the threshold va
«def515.7 meV, at which the split-off 1s state becomes reso
nant. When there is compression along the@111# direction,
this occurs atP53.9 kbar.

Figure 5 presents plots of the dependence of the pos
of the tops of the light-hole (l ) and heavy-hole (h) subbands
~lines 1 and 2! and the energies of the strain-splitM
561/2 andM563/2 levels~curves3 and4! of an impurity
center on the pressure applied to the sample, which w
calculated by the zero-radius potential method, as well as
results of a variational calculation of the energies of the re
nant 1s (1sr) state and the local 2p61 and 1s states.~We
note that a variational calculation of the potential of thes
and 1sr states of a shallow acceptor was previously p
formed in Ref. 11.! It is seen that the zero-radius potent
model poorly describes the position of the resonant leve
large pressures. However, it makes it possible to estimate
magnitude of the decay of the resonant state. Figure 6
sents the dependence of the widthG of the resonant state o
applied pressure.

A variational calculation of the level splitting, includin
the positions of the excited states of a Coulomb impu
center in a uniaxially compressed crystal, has been

FIG. 5. Positions of the tops of the light-hole and heavy-hole subband~1,
2! and binding energies of the 1s and 1sr impurity levels calculated by the
zero-radius potential method~3, 4!, together with the 1s, 2p1 , and 1sr

levels obtained from a variational calculation, as functions of press
Pi@111#.

FIG. 6. Pressure dependence of the widthG of the resonant level.Pi@111#.
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formed only for fairly high pressures. In that limit, retainin
only the terms quadraticink in the expression under the rad
cal sign in Eq.~2! and expanding it in a series in the sma
parameterk2/z, we obtain a valence-band spectrum cons
ing of two noninteracting ellipsoidal subbands:

« l~k!5
\2

2m0
@~g112g!kz

21~g12g!~kx
21ky

2!2z#,

~3!

«h~k!5
\2

2m0
@~g122g!kz

21~g11g!~kx
21ky

2!1z#.

The large-strain limit corresponds to the transition from
four-component basis set to two two-component basis
u63/2 and u61/2 of the Bloch functions, i.e., to the elimina
tion of the off-diagonal terms corresponding to the intera
tion of states with different values of the projection of th
hole spin onto thez axis, which is parallel toP, from the
Luttinger Hamiltonian. In this approximation the Coulom
potential of the shallow acceptor impurity creates two ser
of acceptor levels below the bottom of each subband.
calculated the energies of the four lowest local states (s,
2p61 , 2p0 , and 2s) below the bottom of the ellipsoidall
band, following Ref. 15, in which the energy spectra of
shallow donor in Si and Ge were calculated. A similar a
proximation was employed to calculate the ground-st
splitting in Ref. 11. We used the variational functions list
in Table I in the calculation.

The energies of the levels of the shallow acceptor in
obtained are presented in Table II. The energies of the st
are calculated relative to the edges of the respective s
bands~see Fig. 5!. We recall that the 1s state below the
bottom of theh subband is a resonant state. The last colu
contains the energies corresponding to possible optical t
sitions from the resonant state (1sr) to the local states (i )
indicated in the first column for splitting of the valence su
bands by 27.4 meV, which corresponds toP56.85 kbar. The
scheme of acceptor levels is presented in Fig. 7. The fig
also points out optical transitions that are split in the dip
approximation from the resonant 1sr state to local states
Comparing these data with the spectrum in Fig. 2, we
assign the principal peak in the stimulated emission spect
to the optical transition from the resonant 1sr state to the
local 2p61 excited state and the peak at 20.5 meV to t
transition between the resonant 1sr state and the local 2p0

state. We attribute the peak at 19.9 meV to the transit
from the 1sr state to shallow states which are located n
the edge of thel band and are not resolved in the prese
experiment. The peak at 23 meV is close to the expec
value for the optical transition between the resonant 1sr state
and the local 1s state. However, transitions between the 1sr

e.

TABLE I.

States Variational functions

1s C exp(2Ar2/a21z2/b2)
2p0 Czexp(2Ar2/a21z2/b2)
2s (C11C2r21C3z2)exp(2Ar2/a21z2/b2)
2p61 C(x6 iy)exp(2Ar2/a21z2/b2)
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TABLE II.

l subband h subband
M561/2 M563/2

States « i , meV a•106, cm b•106 cm «, meV a•106 cm b•106 cm
«def2«1sr

1« i , meV
(P56.85 kbar)

1s 3.8 1.137 1.137 4.76 1.145 0.51 26.5
2p61 1.3 1.57 2.3 0.9 2.71 1.338 24
2s 1.2 1.227 1.8 1.53 1.51 0.72 23.8
2p0 0.8 2.195 3.185 2 1.56 0.744 23.4
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state and locals states are forbidden in the dipole approx
mation. Therefore, we assume that this peak is caused
optical transitions of carriers from the continuous spectr
to the 1s level. This is possible only if the energy distribu
tion of the free carriers has a local maximum near the ene
of the resonant state.

Figure 8 shows the calculated energies of thesr

→2p61 optical transition for holes~the solid line! and the
energy of the principal stimulated emission peak~points! as
functions of pressure. It should be noted that the distan
between the peaks in the stimulated emission spectrum a
well with the calculated values, but the entire spectrum
shifted relative to the calculated spectrum by about 3 m
This may be because the interaction of the light-hole a
heavy-hole bands, which gives rise to the decayG and to
displacement of the levels to smaller energies, was not ta
into account in the calculation performed.

The participation of the resonant 1sr state in the transi-
tion is confirmed by several additional facts. The minimu
pressure at which stimulated emission could be excited~Fig.
1b! corresponds exactly to the pressure at which the acce
1sr state split off from the ground state passes into the c
tinuous spectrum~see the diagrams in Fig. 4!. The energy
splitting of the ground acceptor state at that pressure amo
to about 10 meV~Fig. 4!. On the other hand, as can be se
from Fig. 1a, the intensity of the stimulated emission d
creases sharply at a pressure of about 8 kbar forPi@100#.
Depopulation of the 1sr state begins at that pressure beca
holes pass to the valence-band edge with emission o
optical phonon. The corresponding hole transition is sho
in Fig. 4 for Pi@111# ~for this crystallographic direction the
energy of the split-off state measured from the valence-b

FIG. 7. Impurity level diagram and intracenter optical transitions in unia
ally strained Ge.
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edge becomes equal to the energy of the optical phono
P512 kbar). The splitting energy of the ground accep
state is then.42 meV. Thus, the energy of the stimulate
emission can vary with pressure in the range from 10 to
meV.

4. POPULATION INVERSION MECHANISM

Stimulated emission can appear only when there is
inverted energy distribution of the carriers. In our case th
must be inverted population of the resonant 1sr state with
respect to the local states in the band gap, which are dep
lated by impact ionization. We associate the appearanc
inversion with strong resonant scattering by acceptors of
holes with an energy« close to«0 , which corresponds to the
position of the resonant 1sr level ~see Fig. 7!. For the prob-
ability of resonant scattering we obtained the following e
pression within the zero-radius potential model:

w«,u0 ,u5N
\2g1

3/2

m0
3/2

«0

«3/2

~«/«0!2

~12«/«0!21~G/«0!2

3GS «def

«
,u0 ,u D . ~4!

HereN is the impurity concentration,G is the broadening of
the resonant state (G!«0), G is a function which specifies
the angular dependence of the scattering, andu0 and u are
the angles of incidence and scattering relative to theziPiE
direction. Figure 9 shows the angular dependence oG
for three values ofu0 at «def527.4 meV, and «5«0

522.6 meV~which corresponds to«1sr
). It is seen that the

-
FIG. 8. Energy of the principal stimulated emission peak~points! and cal-
culated energies of the optical transitions from the resonant 1sr acceptor
state to the local 2p61 state~straight line!.
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momentum of the holes after scattering is directed, for
most part, perpendicularly to the applied field and thus a
promotes the accumulation of holes with an energy clos
«0 .

5. PROBABILITIES OF OPTICAL TRANSITIONS

Let us now consider the relationship between the pr
abilities of the 1sr→2p61 intracenter transitions and th
transitions of free holes with an energy«'«0 to the local 1s
state. In the continuous spectrum there are two types of s
at the resonance energy«0 , viz., quasilocal~resonant! states
and continuum states, which are specified by solutions of
unperturbed Luttinger Hamiltonian, and transitions to lo
states in the band gap are possible for them. According to
selection rules, the 1sr→1s transition is forbidden in the
dipole approximation; therefore, transitions to the grou
state are possible only from continuum states near the r
nance energy. The transition from 1sr to the local 2p61 state
is allowed in the dipole approximation. For transitions fro
states in the continuous spectrum to the 1s state we assume
that the initial energy of the carriers lies within an interval
width G near«0 . We suppose that the intense exchange
tween the resonant level and the band establishes a q
equilibrium between these types of states, which allows u
introduce a single distribution functionf « . Then the concen-
trationp of holes in the interval of widthG near«0 is speci-
fied by the expression

p5@h~«0!G1N# f « , ~5!

where N is the concentration of centers andh(«0)
5(2p)23*d(«(k)2«0) d3k is the density of states in th
continuous spectrum.

Since the radiation emerges from the sample perpend
larly to thez axis in the experiment, we present expressio
for the probabilityW1 of the spontaneous 1sr→2p61 optical
dipole transition, as well as for the probabilityW2 of transi-

FIG. 9. Angular dependence of the probability of the resonant scatterin
holes with an energy«'«0 on the scattering angleu for three values of the
angle of incidenceu0 : solid line — u05p/2; dashed line —u05p/3;
dotted line —u05p/4. Pi@111#.
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tions between continuum states with an energy« in the in-
terval («02G/2,«01G/2) and the local 1s state~these tran-
sitions are shown in Fig. 7!:

W15N f«

e2g1
2

c3m0
2

\v1n
1

a1
2

b2p

b1
I 1 dV, ~6!

W25N f«

e2g1
2

c3m0
2

k2\v2n
G

«0
~a1sk!2~b1sk!I 2 dV, ~7!

where\v1 and\v2 are the photon energies for these tra
sitions,a1 , b1 anda1s , b1s are the characteristic sizes of th
resonant 1sr state and the 1s state, respectively,b2p is the
characteristic size of the local 2p61 state~see the tables!, n
is the refractive index, andI 1 andI 2 are dimensionless quan
tities. A numerical calculation givesI 150.056 and I 2

50.0215 forP56.85 kbar. The parameterk is related to«0

by the expression«05\2k2g1/2m0 .
Figure 10 presents the pressure dependence of the

of transition probabilitiesW2 /W1 . The level widthG found
within the zero-radius potential model was used in the c
culations. ForP56.85 kbar we haveW2 /W1'0.3, which is
close to the intensity ratio of the peaks at 23 and 20.5 meV
the stimulated emission spectrum~Fig. 2!.

To conclude this paper, we present the expression for
radiative lifetime of the spontaneous intracenter 1sr→2p61

transition:

t@s#5531025~4P@kbar#23.5!21. ~8!

For P56.85 kbar we obtaint52.231026 s.

6. CONCLUSION

The experimental data presented and a comparison
the results of calculations show that the terahertz stimula
emission of uniaxially strainedp-Ge is caused by populatio
inversion of pressure-split acceptor levels, which, in turn
caused by the resonant scattering of holes heated by the
tric field. One necessary condition for such inversion is t
the acceptors have resonant states, i.e., states located i
continuous energy spectrum of the valence band. The line
the spectrum have been identified. It has been shown
particular, that the principal line in the stimulated emissi

of

FIG. 10. Pressure dependence of the transition probability ratio: contin
(«5«1sr

)→1s level (W1) and quasilocal 1sr level→2p61 level (W2).
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spectrum is caused by optical transitions of holes from
resonant 1s state to the local 2p61 excited state of the ac
ceptor. The strong alteration of the frequency by exter
pressure has been demonstrated.
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Longitudinal dynamic susceptibility of superparamagnetic particles with cubic
anisotropy
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We study the linear response of a system of single-domain ferromagnetic particles with cubic
magnetic anisotropy to a weak external a.c. magnetic field. By averaging the Gilbert
equation with a fluctuating field for the magnetization of an individual particle we derive a
system of recurrence equations for the spectra of equilibrium correlation functions describing the
longitudinal relaxation of the system. We find the solution of this system by using matrix
continued fractions. We also evaluate the longitudinal relaxation time and the spectrum of the
complex-valued magnetic susceptibility. Finally, we show that the nature of susceptibility
dispersion is determined by the anisotropy and dissipation parameters. ©1999 American Institute
of Physics.@S1063-7761~99!01001-X#
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1. Single-domain ferromagnetic particles are charac
ized by an internal anisotropy potential, which may ha
several positions of local equilibrium with potential barrie
separating them. If the particles are small (;100 Å! and as a
result the potential barriers are low, thermal fluctuations m
cause the magnetization vector to reorient itself over the
riers from one equilibrium position to another.1 The thermal
instability of magnetization leads to what is known
superparamagnetism.2 Studies of thermal fluctuations and th
relaxation of magnetization of single-domain particles ha
attracted much attention in connection with the problem
improving the characteristics of magnetic storage elemen3

When relaxation processes in superparamagnets
studied theoretically, to simplify the mathematics one u
ally examines the case of uniformly magnetized uniax
particles.2,4–12Although using a uniaxial anisotropy potenti
simplifies the analysis significantly, the results obtained
this approximation are of limited value.13 For other types of
anisotropy, such as cubic, either the discrete orientation
proximation has been employed or solutions for the conti
ous diffusion model that are only asymptotic have been s
ied ~see, e.g., Refs. 2 and 13–19!. However, neither
approach can be used in the most interesting case wher
anisotropy energy is comparable to the thermal energykT.

In the diffusion model the dynamics of the magnetiz
tion vectorM (t) of a single-domain particle is similar to th
Brownian rotation of a macromolecule in a liquid and
described by the Fokker–Planck equation for the probab
distribution densityW($M%,t) of magnetization.2,20,21 The
Fokker–Planck equation is derived from the Gilbe
equation2,20 with a fluctuating field that allows for the ther
mal fluctuations of the magnetization of an individual pa
ticle. For the case of cubic anisotropy, the Fokker–Pla
equation can by formally solved by, say, expanding the d
tribution function W in spherical harmonics.19 In this ap-
proach, we need only solve an infinite system of recurre
equations for averaged spherical harmonics~moments!.19
581063-7761/99/88(1)/8/$15.00
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The system of equations for the moments can be derived
averaging the Gilbert equation without using the Fokke
Planck equation.12 It is difficult to employ the well-known
methods of solving such a system of equations in the cas
weak dissipation~characteristic of single-domain particles!,1!

since such calculations require using 104–105 and more
equations to achieve convergence. For this reason, calc
tions and analysis of the spectrum of the complex-valu
magnetic susceptibility in the case of cubic anisotropy for
diffusion model have yet to be done. The problem, howev
can be simplified significantly if we use the method of mat
continued fractions developed in Refs. 22 and 23 to so
infinite systems of recurrence equations for the moments
the present paper we use this method to calculate the re
ation timet i of the longitudinal component of magnetizatio
and the dynamic magnetic susceptibilityx i(v) of a system
of noninteracting single-domain particles for arbitrary valu
of the anisotropy and dissipation energy parameters,s and
a. We determine and study the behavior oft i and x i(v)
over the entire range of values ofs anda.

2. If we allow for thermal fluctuations, the Gilbert equa
tion for the magnetizationM of a single-domain particle ha
the form2,24

d

dt
M ~ t !5gM ~ t !3@H~ t !1h~ t !2hM ~ t !#, ~1!

whereg is the gyromagnetic ratio,h is the friction coeffi-
cient, H is the total magnetic field, which an consist of e
ternal fields applied to the system and the effective magn
field of the anisotropy, andh(t) is a random field having the
properties of white noise:

hi~ t !50, hi~ t1!hj~ t2!5
2kTh

v
d i j d~ t12t2!. ~2!

Herev is the volume of the particle, and the horizontal b
stands for statistical averaging over an ensemble of parti
© 1999 American Institute of Physics
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having at timet the same magnetizationM (t). The order of
magnitude of the amplitude ofh(t) can be estimated a
kT/vMs (Ms is the magnetization of the material of the pa
ticle!, which at room temperature yields a value>100 Oe
and, the strength of the random field is thus comparabl
that of the magnetic anisotropy field.8

If V is the free energy per unit volume expressed
terms of the components ofM , the fieldH is determined by
the equation

H52
]V

]M
. ~3!

In the present case of weak cubic anisotropy we use
representation2,23

V5K~ux
2uy

21ux
2uz

21uy
2uz

2!

5
K

4
~sin4q sin2 2w1sin2 2q!, ~4!

whereK is the anisotropy constant, which is either positi
or negative~below we use the dimensionless anisotropy
rameters5vK/4kT). WhenK is positive, the potential~4!
has 6 minima, 8 maxima, and 12 saddle points~e.g., in the
directions@100#, @111# and @110#, respectively!.2 WhenK is
negative, the minima and maxima change places. ForK.0
both the heights of all the potential barriers and the energ
the saddle points are equal tos, while for K,0 the barrier
heights areusu/3 and the energy at the saddle points isusu
~see Ref. 2!. Below we limit ourselves to the case of positiv
anisotropy,K.0. The case ofK,0 can be examined alon
the same lines.

By transforming the Gilbert equation~1! to the Landau–
Lifshitz equation2 and writing the components of this equ
tion in the laboratory system of coordinates, we arrive at12

1

ag8Ms

dux~ t !

dt
5@12ux

2~ t !#hx~ t !

2@a21uz~ t !1ux~ t !uy~ t !#hy~ t !

1@a21uy~ t !2uz~ t !ux~ t !#hz~ t !

1@12ux
2~ t !#Hx~ t !

2@a21uz~ t !1ux~ t !uy~ t !#Hy~ t !

1@a21uy~ t !2uz~ t !ux~ t !#Hz~ t !, ~5!

1

ag8Ms

duy~ t !

dt
5@a21uz~ t !2ux~ t !uy~ t !#hx~ t !

1@12uy
2~ t !#hy~ t !

2@a21ux~ t !1uy~ t !ux~ t !#hz~ t !

1@a21uz~ t !2ux~ t !uy~ t !#Hx~ t !

1@12uy
2~ t !#Hy~ t !

2@a21ux~ t !1uy~ t !ux~ t !#Hz~ t !, ~6!
to

e

-

at

1

ag8Ms

duz~ t !

dt
52@a21uy~ t !1ux~ t !uz~ t !#hx~ t !

1@a21ux~ t !2uy~ t !uz~ t !#hy~ t !

1@12uz
2~ t !#hz~ t !

2@a21uy~ t !1ux~ t !uz~ t !#Hx~ t !

1@a21ux~ t !2uy~ t !uz~ t !#Hy~ t !

1@12uz
2~ t !#Hz~ t !, ~7!

wherea5ghMs is the dimensionless dissipation coefficien

g85
g

~11a2!Ms

, ~8!

ux5sinq cosw, uy5sinq sinw, uz5cosq, ~9!

with w and q the azimuthal and polar angles, respective
Here we have ignored surface effects and assumed tha
side the particle the magnetization is uniform.

Below we use the spherical harmonicsYn,m ~Ref. 26!,
which in terms of the variablesux , uy , anduz are

Yn,m5~21!mA~2n11!~n2m!!

4p~n1m!!
~ux1 iuy!m

3
dmPn~uz!

duz
m

, m>0, ~10!

Yn,2m5~21!mYn,m* , ~11!

where the Pn(x) are Legendre polynomials.26 Moreover,
when averaging and transforming the stochastic differen
equations~5!–~7! with multiplicative noise, it is convenien
to use the Stratonovich approach.25 In particular, in this case
there is no need to first transform Eqs.~5!–~7! into the
equivalent form of Itoˆ equations.22 Thus, bearing in mind
that in transformations of stochastic differential equations
the Stratonovich approach25 we can use the rules of ordinar
analysis,22,23 we easily arrive at a stochastic differenti
equation for the spherical harmonics:

dYn,m~ t !

dt
5

1

ux~ t !1 iuy~ t !

3FmYn,m~ t !S dux~ t !

dt
1 i

duy~ t !

dt D
2Yn,m11~ t !An1m11

n2m21

duz~ t !

dt G , ~12!

where u̇x , u̇y , and u̇z can be found from~5!–~7!, respec-
tively. Next, using the method developed in Refs. 12, 23, a
27 for solving nonlinear Langevin equations with multiplic
tive noise, we can derive from~12!, after doing a series o
algebraic transformations, a system of coupled equations
the equilibrium correlation functions characterizing the li
ear response of the system:
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tN

dcn,m~ t !

dt
5 (

s521

1

(
r 524

4

dn,m,r ,scn1r ,m14s~ t !, ~13!

where

cn,m~ t !5^cosq~0!Yn,m~ t !&0 , ~14!

with angle bracketŝ &0 standing for average over the equ
librium state at timet50, and

tN5
v

2kTag8
~15!

is the characteristic time of thermal fluctuations of magn
zation. The expressions for the coefficientsdn,m,r ,s are given
in Appendix A. The system of equations~13! can also be
derived from the corresponding Fokker–Planck equation19

2tN

]W

]t
5

1

sinq

]

]qH sinqF v
kTS ]V

]q
2

1

a sinq

]V

]w DW

1
]W

]q G J 1
1

sinq

]

]wF v
kTS 1

a

]V

]q
1

1

sinq

]V

]w DW

1
1

sinq

]W

]w G . ~16!

Using ~13! to find c1,0(t), we can calculate the longitudina
dynamic susceptibility and relaxation time, since accord
to linear-reaction theory23 the decrease in the magnetizatio
^M &(t) due to a sudden switch-on at timet50 of a weak
external d.c. magnetic fieldH1 parallel to thez axis of the
laboratory system of coordinates is of the form

^M i&~ t !5x iH1Ci~ t !, ~17!

where

Ci~ t !5
c1,0~ t !

c1,0~0!
~18!

is the normalized relaxation function of the longitudin
magnetization component, and

x i5
v2Ms

2N0

3kT
~19!

is the static magnetic susceptibility~here we have allowed
for the fact that in the case of cubic anisotropy,^ux

2&0

5^uy
2&05^uz

2&051/3), with N0 the number of particles pe
unit volume. The longitudinal dynamic magnetic susceptib
ity x i(v) can be expressed in terms of the spectrumCi(t) as
follows:

x i~v!5x i8~v!2 ix i9~v!5x i$12 ivC̃i~ iv!%, ~20!

where

C̃i~ iv!5E
0

`

Ci~ t !e2 ivt dt. ~21!

Moreover, the relaxation timet i of the longitudinal magne-
tization component, defined as the area under the cu
Ci(t), or
i-

g

-

ve

t i5E
0

`

Ci~ t ! dt5C̃i~0!, ~22!

can be measured in experiments or calculated by~21!. We
assumed all along that the particles are identical. To al
for the polydispersity of the particles we must also avera
the susceptibility and relaxation time over the respective d
tribution functions.8

3. A formal approach that uses matrix continued fra
tions in the solution of recurrence equations of type~13!,
where two indices vary, was proposed in Refs. 22 and
However, it proved to be extremely difficult to use this a
proach to solve practical problems, since matrices of ind
nite dimension have to be introduced into th
transformations.28 Below we use a modified method, whic
makes it it possible to reduce the solution procedure to
erations involving finite-dimensional matrices. Let us intr
duce a vectorCn(t) by the formula

Cn~ t !5S c4n~ t !

c4n21~ t !

c4n22~ t !

c4n23~ t !

D ,

~23!

c4n2 i~ t !5S c4n2 i ,24~n211d i0!~ t !

c4n2 i ,24~n221d i0!~ t !

A

c4n2 i ,24~n211d i0!~ t !

D , i 50,1,2,3.

The vectorCn(t) has 8n22 elements. Thus, Eq.~13! re-
duces to the matrix equation

tN

dCn~ t !

dt
5Qn

2Cn21~ t !1QnCn~ t !

1Qn
1Cn11~ t !, n51,2,3, . . . , ~24!

where

C0~ t !50, C1~ t !5S c4,24~ t !

c4,0~ t !

c4,4~ t !

c3,0~ t !

c2,0~ t !

c1,0~ t !

D . ~25!

The explicit form of the matricesQn
2 , Qn , andQn

1 is given
in Appendix A.

Using the general method of solving matrix recurren
equation of Ref. 23~see Appendix B!, we obtain the exact
solution for the Laplace transform ofC1(t) in the form

C̃1~s!5tN@tNsI2Q12Q1
1S2~s!#21H C1~0!

1 (
n52

` F )
k52

n

Qk21
1 Sk~s!~Qk

2!21GCn~0!J , ~26!
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whereI is the identity matrix, and the matrix continued fractionSn(s) is given by the formula

Sn~s!5
I

tNsI2Qn2Qn
1

I

tNsI2Qn112Qn11
1

I

tNsI2Qn122•••

Qn12
2

Qn11
2

Qn
2 . ~27!
u-

o
.

rs
se
th

r-
e
la
r-

io

-

n
to
e

le

-

en

d

itu-
in

i-
e-

that
.
si-

the
at

t
the
stic

of

f

The method of calculating the initial-value vectorsCn(0) via
matrix continued fractions is given in Appendix C.

Formula~26! is the exact solution of Eq.~24! expressed
in terms of matrix continued fractions. In this form the sol
tion was obtained in Ref. 23. By its very nature, formula~26!
is the analytical representation of the numerical algorithm
matrix continued fractions used in Risken’s monograph22

An essential development of the results of Ref. 22 is, fi
that the solution is obtained in analytic form and is expres
by formula ~26! and, second, that we have generalized
method to the case where the dimension ofQn , Qn

2 , or Qn
1

depends onn. As shown in Ref. 23 by many examples, fo
mula ~26! is convenient for calculations. In our problem th
maximum dimension of all matrices required by the calcu
tions is of order 102, which makes it possible to use a pe
sonal computer for all calculations.

4. First we examine the dependence of the relaxat
time t i on the anisotropy parameters5vK/4kT for different
values of the dissipation parametera. The curves represent
ing this dependence calculated by~22! and~26! are depicted
in Fig. 1. By its very physical meaning,t i is determined
primarily by the lowest-frequency longitudinal relaxatio
mode related to the transition of the magnetization vec
over the barrier separating one potential well from anoth
The characteristic relaxation timet of this low-frequency
mode is determined by the reciprocal value of the smal
eigenvaluel1 of the Fokker–Planck operator in~16!. In the
low-temperature limit (s@1) and for strong and/or moder
ate dissipation (a>1), the estimate oft is given by a rela-
tionship derived in Refs. 2 and 15, which in the pres
notation can be written

FIG. 1. Dependence of log(t/tN) on the anisotropy parameters for different
values of the dissipation parametera. Solid curves represent the results
calculations by~22! and ~26! for a→` ~curve1!, a51 ~curve2!, a50.1
~curve 3!, and a50.01 ~curve 4!; the d and 3 represent the results o
calculations by the asymptotic formula~28! for a→` and a51, respec-
tively; and the * represent the results of calculations by~29! at a50.01.
f

t,
d
e

-

n

r
r.

st

t

t;
tNpes

2A2 s~A918/a211!
, s.0. ~28!

The corresponding formula13,18 for weak dissipation (a
!1) is

t;
pkTes

2vADE
'

tNpes

8s2
, s.0, ~29!

wherevA58sgkT/vMs is the frequency of oscillations in a
potential well, andDE'avK/4 is the energy loss per perio
of the almost periodic motion ofM (t) ~see Ref. 13!. Figure
1 shows that in contrast to uniaxial particles, wheret i /tN is
independent ofa ~see Ref. 6 and 9!, in the case of cubic
anisotropy the ratiot i /tN strongly depends ona. This de-
pendence is due to the interaction of transverse and long
dinal relaxation intrawell modes. This interaction leads,
particular, to a nonmonotonic dependence oft i /tN on s for
small values ofa ~for s,1, the contribution of longitudinal
modes leads to a decrease int i /tN with increasings; a
further increase ins leads to a situation in which the contr
bution of the low-frequency longitudinal relaxation mode b
comes dominant andt i /tN begins to grow exponentially!.
Note that at intermediate values ofa ~say,a'0.1) neither
~28! nor ~29! yields correct values oft i /tN . In this case a
more exact analysis is needed, and there are no formulas
would make it possible to estimate the values of the ratio13

The dependence of longitudinal relaxation on the dis
pation parametera also manifests itself in the spectrax i9(v)
depicted in Figs. 2 and 3. Two peaks are clearly visible in
loss spectrum~the necessary calculations were done
v2Ms

2N0 /kT51). The first~low-frequency! peak appears a
frequencies on the order of the average frequency of
reorientation of the magnetization vector. The characteri

FIG. 2. log(2Imx i9) vs. log(vtN) at s510 for different values of the dis-
sipation parameter:a5` ~curve1!, a51 ~curve2!, a50.1 ~curve3!, and
a50.01 ~curve4!.
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frequency and halfwidth of this band are determined byt.
The susceptibility dispersion in this frequency range is o
purely relaxational nature. The second, lower, peak app
because of the contribution of high-frequency transverse
longitudinal modes. Ass decreases, this high-frequenc
band narrows and shifts toward higher frequencies, and
nature of the dispersion changes from relaxation to reson
On the other hand, ass increases, the band also shifts towa
higher frequencies, but it does not narrow significantly in
process. Such behavior can be explained by the stron
effect of transverse modes on this band, and these m
determine the transverse susceptibility spectrum and the
romagnetic resonance at frequencies coinciding with thos
which the magnetization vector precesses,v0;s(atN)21,
with damping;a21 ~see Ref. 6!.

The model we have developed can be used to explain
results of measurements of the dynamic susceptibility of s
tems of single-domain particles with cubic anisotropy. Un
now the interpretation of experiments involving such s
tems has been done within the uniaxial-particle model~see,
e.g., Refs. 29 and 30, where the frequency and tempera
curves of the linear and nonlinear dynamic susceptibilities
systems of single-domain particles are studied!. However, in
the present paper we have shown that the behavior of
response of particles with cubic anisotropy differs from th
of uniaxial particles. In particular, one must take into acco
the dependence of the response on the dissipation param
a. Bitoh et al.29 probably were unable to achieve quantit
tive agreement with the experimental data because they
nored this.

We believe that our approach will enable us to quant
tively describe the experiments of Bitohet al.29,30 and simi-
lar experiments. In a future paper we propose comparin
every detail the theory and experiment in relation to the f
quency and temperature curves of the linear and nonlin
dynamic susceptibilities of systems of single-domain p
ticles with cubic anisotropy, since this goal requires calcu
ing the transverse componentx' of the linear susceptibility,
2) and comparison with the experimental data on the non
ear response requires calculating the nonlinear dynamic
ceptibility. One must also take into account the volume d
tribution of the particles. All these problems can be solv
by our method, but such analysis lies outside the scope o
present paper.3!

5. Thus, the longitudinal dynamic susceptibilityx i(v)
and the relaxation timet i in the case of cubic anisotropy ca
a
rs
d

he
nt.
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be calculated by formula~26! by using matrix continued
fractions in all ranges of the anisotropy and dissipation
rameters. Here, in contrast to uniaxial particles, the spect
x i(v) and the relaxation timet i of particles with cubic an-
isotropy are strongly dependent ona, owing to the interac-
tion of the longitudinal and transverse modes.

The authors are grateful to W. T. Coffey and Yu.
Ra�kher for fruitful discussions. The work was supported
a grant from the Russian Fund for Fundamental Resea
~Grant No. 96-02-16762-a!.

APPENDIX A: EXPLICIT FORM OF THE MATRICES Q n
2 , Qn ,

AND Qn
1 AND THEIR ELEMENTS

The matricesQn
2 , Qn , andQn

1 of ~24! are given by the
formulas

Qn
25S J4n 0 0 0

D4n21 J4n21 0 0

P4n22 D4n22 J4n22 0

B4n23 P4n23 D4n23 J4n23

D , ~A1!

Qn5S A4n B4n P4n D4n

B4n
T A4n21 B4n21 P4n21

f 4nP4n
T B4n21

T A4n22 B4n22

D4n
T f 4n21P4n21

T B4n22
T A4n23

D , ~A2!

FIG. 3. log(2Imx i9) vs. log(vtN) at a50.1 for different values of the an-
isotropy parameter:s50 ~curve 1!, s51 ~curve 2!, s55 ~curve 3!, and
s510 ~curve4!.
Qn
15S g4n14J4n14

T D4n13
T f 4n12P4n12

T B4n13
T

0 g4n13J4n13
T D4n12

T f 4n11P4n11
T

0 0 g4n12J4n12
T D4n11

T

0 0 0 g4n11J4n11
T

D , ~A3!
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where the superscript T stands for ‘‘transposed,’’ and

f n52
2n211

2n19
, gn52

n24

n11
. ~A4!

The dimensions of the matricesQn , Qn
1 , and Qn

2 are, re-
spectively, (8n22)3(8n22), (8n22)3(8n16), and
(8n22)3(8n210). An exception is the matrixQ1

2 , which
degenerates into a vector of dimension 6.

In Eqs.~A1!–~A3!, the submatricesA4n , A4n21, A4n22,
A4n23, B4n21, B4n22, B4n23, D4n21, P4n21, andP4n22 can
be represented as follows:
X4n2 i5S x4n2 i ,24~n211d i0! x4n2 i ,24~n211d i0!
1

0 ••• 0

x4n2 i ,24~n221d i0!
2 x4n2 i ,24~n221d i0! x4n2 i ,24~n221d i0!

1
••• 0

0 x4n2 i ,24~n231d i0!
2 x4n2 i ,24~n231d i0! ••• 0

A A A � A

0 0 0 •••
x4n2 i ,4~n211d i0!

D ~A5!

( i 50,1,2,3). They are of dimension@2(n1d i0)21#3@2(n1d i0)21#. The submatricesB4n , D4n , J4n , P4n , D4n22, D4n23,
J4n21, J4n22, J4n23, andP4n23 have the form

X4n2 i5S x4n2 i ,24~n211d i0!
1

0 0 ••• 0

x4n2 i ,24~n221d i0! x4n2 i ,24~n221d i0!
1 0 ••• 0

x4n2 i ,24~n231d i0!
2 x4n2 i ,24~n231d i0! x4n2 i ,24~n231d i0!

1
••• 0

A A A � A

0 0 0 ••• x4n2 i ,24~n211d i0!
2

D ~A6!

( i 50,1,2,3) and are of dimension@2(n1d i0)21#3@2(n1d i0)23#. The submatrix elements in~A5! and~A6! are given by
the formulas

an,m5dn,m,0,05s
9~n21!n~n11!~n12!215m2@6n~n11!2527m2#

~2n23!~2n21!~2n13!~2n15!
2

n~n11!

2
,

an,m
2 5an,2m

1 5dn,m,0,215
15sA~n1m!~n2m14!@n22~m23!2#@n22~m22!2#@n22~m21!2#

2~2n23!~2n21!~2n13!~2n15!
,

bn,m5dn,m,21,052
3ism~3n22527m2!

a~4n229!
An22m2

4n221
,

bn,m
2 52bn,2m

1 5dn,m,21,2152
3is

2a~4n229!
A~n1m24!~n1m!@n22~m23!2#@n22~m22!2#@n22~m21!2#

4n221
,

pn,m5dn,m,22,05
s~2n19!~n22n2227m2!

~2n25!~2n21!~2n13!
A~n22m2!@~n21!22m2#

~2n11!~2n23!
,

pn,m
2 5pn,2m

1 5dn,m,22,21

52
s~2n19!

2~2n25!~2n21!~2n13!
A~n1m25!~n1m24!~n1m23!~n1m!@n22~m22!2#@n22~m21!2#

~2n11!~2n23!
,

dn,m5dn,m,23,052
7ism

a~2n23!~2n21!
A~n22m2!@~n21!22m2#@~n22!22m2#

~2n25!~2n11!
,

dn,m
2 52dn,2m

1 5dn,m,23,215
is

2a~2n23!~2n21!
A~n1m26!~n1m25!•••~n1m21!~n1m!~n2m11!

~2n25!~2n11!
,

j n,m5dn,m,24,05
7s~n11!

~2n25!~2n23!~2n21!
A@~n23!22m2#@~n22!22m2#@~n21!22m2#~n22m2!

~2n27!~2n11!
,
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j n,m
2 5 j n,2m

1 5dn,m,24,215
s~n11!

2~2n25!~2n23!~2n21!
A~n1m27!~n1m26!•••~n1m21!~n1m!

~2n27!~2n11!
Eq

,

a

-

rs

ce
we have allowed for the fact that the coefficientsdn,m,r ,s

obey the following relationships:

dn,m,r ,15dn,2m,r ,21* , dn,m,1,s5dn11,2m24s,21,s* ,

dn,m,3,s5dn13,2m24s,23,s* ,

dn,m,2,s5 f n12dn12,2m24s,22,s ,

dn,m,4,s5gn14dn14,2m24s,24,s ,

wheres50,21, and f n andgn are defined in~A4!.

APPENDIX B: SOLUTION OF EQUATION „24…

By using the Laplace transformation we can reduce
~24! to

Qn
2C̃n21~s!1uQn2stNI uC̃n~s!1Qn

1C̃n11~s!

52tNCn~0!, ~B1!

whereI is the identity matrix, and

C̃n~s!5E
0

`

Cn~ t !e2st dt. ~B2!

Following Refs. 22 and 23, we seek the solutionC̃n(s)
in the form

C̃n~s!5Sn~s!C̃n21~s!1Un~s!, ~B3!

where Sn(s) is a matrix continued fraction given by~27!.
Substituting~B3! into ~B1! and allowing for the fact that
according to the definition of the continued fraction~27!

Sn~s!5@stNI2Qn2Qn
1Sn11~s!#21Qn

2 ,

we arrive at the recurrence equation

Un~s!5Sn~s!~Qn
2!21@tNCn~0!1Qn

1Un11~s!# . ~B4!

This equation can be solved by successive substitutions
has the form

Un~s!5tNSn~s!~Qn
2!21H Cn~0!

1 (
k51

` F )
m51

k

Qn1m21
1 Sn1m~s!

3~Qn1m
2 !21GCn1k~0!J . ~B5!

Thus, allowing for~B3! and ~B5!, we obtain the desired so
lution ~26! if we put n51 andC̃0(0)50.
.

nd

APPENDIX C: CALCULATING THE INITIAL- VALUE
VECTORS

It is convenient to calculate the initial-value vecto
Cn(0) in ~26! by using matrix continued fractions.22,23 Ac-
cording to~14!, the initial valuescn,m(0) have the form

cn,m~0!5^cosq~0!Yn,m~0!&0

5A ~n11!22m2

~2n11!~2n13!
^Yn11,m&0

1A n22m2

~2n11!~2n21!
^Yn21,m&0 . ~C1!

In accordance with~13!, the equilibrium averageŝYn,m&0

satisfy the recurrence relation

(
s521

1

(
r 524

4

dn,m,r ,s^Yn1r ,m14s&050, ~C2!

which can be written in the form of a matrix recurren
relation:

Qn
2Rn211QnRn1Qn

1Rn1150, n51,2,3, . . . , ~C3!

where the matricesQn , Qn
1 , and Qn

2 are given in~A1!–
~A3!, and

Rn5S r4n

r4n21

r4n22

r4n23

D , r4n2 i5S ^Y4n2 i ,24~n211d i0!&0

^Y4n2 i ,24~n221d i0!&0

A

^Y4n2 i ,4~n211d i0!&0

D ,

i 50,1,2,3,... .

The solution of Eq.~C3! has the form

Rn5Sn~0!Rn215
Sn~0!Sn21~0!•••S2~0!S1~0!

A4p
, ~C4!

whereSn(0) is the matrix continued fraction defined by~27!
with s50 and where we have allowed for the fact thatR0

51/A4p .
Using ~C4!, we can write the initial-value vectorsCn(0)

as

Cn~0!5
1

A4p
@K̂n1@Kn1K̂n11

T Sn11~0!#

3Sn~0!#Sn21~0!] •••S1~0!, ~C5!

where the matricesKn and K̂n have the form
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Kn5S 0 U4n 0 0

U4n
T 0 U4n21 0

0 U4n21
T 0 U4n22

0 0 U4n22
T 0

D , K̂n5S 0 0 0 0

0 0 0 0

0 0 0 0

U4n23 0 0 0
D , ~C6!

with the matrixK̂1 degenerating into a vector of dimension 6. The submatricesU4n21, U4n22, andU4n23 in ~C6! are

U4n2 i5S u4n2 i ,24~n21! 0 0 ••• 0

0 u4n2 i ,24~n22! 0 ••• 0

0 0 u4n2 i ,24~n23! ••• 0

A A A � A

0 0 0 ••• u4n2 i ,4~n21!

D ~C7!

( i 51,2,3) and are of dimension (2n21)3(2n21). The submatrixU4n is

U4n5S 0 0 ••• 0

u4n,24n14 0 ••• 0

0 u4n,24n18 ••• 0

A A � A

0 0 ••• u4n,4n24

0 0 ••• 0

D ~C8!
at
se

om
th

bil

r
tio
w

. a

n,

i-

io

pl.

hys.

gn.
and is of dimension (2n11)3(2n21). The elements of the
submatrices~C7! and ~C8! are

un,m5An22m2

4n221
.

* !E-mail: ypk169@ire216.msk.su
†!E-mail: svt245@ire216.msk.su
1!Discussions of the theoretical and experimental methods used in estim

the dissipation parametera can be found, say, in Refs. 6 and 13. The
methods yield values ofa of order 0.01–0.1.

2!In experiments involving dynamic susceptibility measurements, the c
mon system of particles is the one in which the anisotropy axes of
particles are oriented at random. In this case the magnetic suscepti
has the formx5(x i1x')/3.

3!The method of calculating the dynamic susceptibility used in this pape
of a very general nature and can be employed in studies of relaxa
processes and ferromagnetic resonance of single-domain particles
magnetic anisotropy of various types in systems in strong external d.c
a.c. magnetic fields.
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Nonlinear-spectroscopy population effects due to spontaneous transfer of optical coherence are
examined. The existence in the velocity distribution of new resonance elements of a
specific form is established. The occurrence of these effects in the nonlinear resonance of a
counterpropagating wave is analyzed. ©1999 American Institute of Physics.
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1. INTRODUCTION

The main physical ‘‘signature’’ of the nonlinear spe
troscopy of rarefied gases is the Bennett structure, which
system of fairly sharp ‘‘peaks’’ and ‘‘dips’’ in the distribu
tion of the atoms in the velocity projected on the wave vec
of a monochromatic field resonantly interacting with t
atoms.1 The spectral manifestations of the Bennett struct
are closely linked to two other fundamental phenomena,
field-induced splitting of levels and the nonlinear interfe
ence effects, and critically depend on many factors, suc
the type of radiative process~absorption, scattering etc.!, the
spectral and spatial properties of the field, the field inten
and polarization, the nature of the collisions, the angular m
menta of the levels, the oscillator strengths, and the exte
fields ~see, e.g., Refs. 2–4!.

The shape of the components of the Bennett struc
follows the spectral lineshape of an immobile atom and
many cases is Lorentzian. Generally speaking, variation
the atomic velocities due to collisions affect the contours
the Bennett peaks and dips, sometimes significantly, bu
not alter the dome-like shape of the contours. This ‘‘stab
ity’’ of the shape of Bennett structures results from allowi
only for radiative and collisional transitions in the number
particles. If magnetic- and optical-coherence transfers
taken into account, the situation changes dramatically. T
is a fact well known in the theory of collisional collapse
spectral lines and in the spectroscopy of magnetooptic r
nances. For instance, a spontaneous magnetic-coherenc
cade generates a resonance whose contour is describe
the product of two complex-valued Lorentzians and alt
nates in sign~see, e.g., Refs. 5 and 6!. The spectral line
reflecting radiative optical-coherence transfer underg
similar changes. More precisely, in Refs. 7–9 it was est
lished that radiative optical-coherence transfer from a hi
lying transitionm1–n1 ~Fig. 1! to a low-lying transitionm–
nconstitutes a special type of radiative process, which diff
from the Bohr–Einstein process~particle transfer! and the
Barrat–Cohen-Tannoudji process~magnetic-coherence trans
fer!. While the latter processes determine the intensity
polarization, optical-coherence transfer generates a cha
teristic interference, alternating-in-sign, structure, as w
61063-7761/99/88(1)/10/$15.00
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shown in Refs. 7–9 for linear emission, absorption and
fraction spectra.

In view of all this, we should expect that in the event
optical-coherence transfer the fine nonlinear structure in
velocity distribution will differ from the ordinary Bennet
structure due to the effect of the strong field on the le
populations. In this paper we will focus on this problem.
Secs. 2 and 3 we will use the simple model of nondegene
states to derive a velocity distribution that allows for coh
ence transfer. In Sec. 4 we analyze, under the same co
tions, the nonlinear resonance of a counterpropagating p
wave. In Sec. 5 we generalize the results to degenerate le
and discuss polarization effects.

2. THE MAIN RELATIONSHIPS

Radiative optical-coherence transfer has much in co
mon with collisional transfer10 but differs from the latter in
the origin or mechanism of transfer. In contrast to the co
sional process, radiative spontaneous optical-cohere
transfer has a unidirectional cascade nature. The spontan
transfer of optical coherence is universal and is virtually
dependent of the external conditions~one exception is radi-
ating systems in a high-Q cavity that interact with a smal
number of modes!. Below we examine the process of spo
taneous optical-coherence transfer for a system with a le
diagram sketched in Fig. 1.

To make things clear and simple, we begin with t
model of nondegenerate states. The fact that degenerac
tually exists strongly complicates analysis due to the inter
tion of transitions withDM50 and DM561 (M is the
magnetic quantum number!, but at the same time has littl
effect on the qualitative picture of the phenomena. It is a
known that some simple systems with small angular m
menta are described directly by the model of nondegene
states. In Sec. 5 we will show that a similar rule holds for o
problem. Note that in the level diagram depicted in Fig.
four transitions are allowed:m1–n1, m–n, m1–m, and
n1–n. Moreover, for optical-coherence transfer to manife
itself the differenceD5vm1n1

2vmn must be small.
Suppose that the electromagnetic field is a plane mo

chromatic wave~frequencyv, wave vectork, and amplitude
© 1999 American Institute of Physics
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7JETP 88 (1), January 1999 S. G. Rautian
E). We use the standard resonance approximation and
model of relaxation constants~see, e.g., Refs. 2 and 4!. Un-
der the above restrictions and steady-state conditions,
off-diagonal elementsr andr1 of the density matrix for the
transitions m–n and m1–n1, respectively, obey the
equations8

~G2 iV8!r5 iG~rn2rm!1Ar1 ,
~2.1!

~G12 iV18!r15 iG1~rn1
2rm1

!.

Here ther j ( j 5m,n,m1 ,n1) are the diagonal elements o
the density matrix, andG andG1 are the relaxation constant
The termAr1 describes optical-coherence transfer proce
with A the rate of spontaneous optical-coherence transfe

A5KAAm1mAn1n , ~2.2!

G5 dmnE/2h , G15dm1n1
E/2h , V85V2k–v,

V5v2vmn , V185V82D5V12k–v,

V15v2vm1n1
, D5vm1n1

2vmn5vm1m2vn1n ,

wheredi j , v i j , andAi j are the dipole-moment matrix ele
ments, the Bohr frequencies, and Einstein’s first coefficie
for the i – j transition, andK is a proportionality coefficient
of order unity, which actually depends on the degenerac
the level and will be specified in Sec. 5. According to Eq
~2.1!,

r15
iG1

G12 iV18
~rn1

2rm1
!,

~2.3!

r5
i

G2 iV8
FG~rn2rm!1

AG1

G12 iV18
~rn1

2rm1
!G .

In weak fields the level populationsr j are assumed
fixed. Equation~2.3! has been used in Refs. 7 and 8 to d
scribe the role of optical-coherence transfer in this appro
mation. To analyze the nonlinear phenomena, which are
interest to us and are related to the variations in the pop
tions caused by the field, we examine the equations forr j :

FIG. 1. The transition diagram for a four-level system. The vertical arro
stand for polarizations induced by a resonant field, and the connec
slanted arrow stands for the optical-coherence transfer.
he

he

s,

ts

of
.

-
i-
of
a-

Gm1
rm1

522Re~ iG1* r1!1Qm1
,

~2.4!
Gn1

rn1
52Re~ iG1* r1!1Qn1

1Am1n1
rm1

,

Gmrm522Re~ iG* r!1Qm1Am1mrm1
,

~2.5!
Gnrn52Re~ iG* r!1Qn1Amnrm1An1nrn1

,

where theQj are the excitation rates of the levelsj . The
terms Ai j r i describe spontaneous population cascad
which, obviously, should be taken into account in examin
optical-coherence transfer. Substituting~2.3! in Eqs. ~2.4!
and ~2.5! yields the equations

Gm1
rm1

1w1~rm1
2rn1

!5Qm1
,

~2.6!
~Gm1

2Am1n1
!rm1

1Gn1
rn1

5Qm1
1Qn1

,

Gmrm1w~rm2rn!5Qm1Am1mrm1
1W~rn1

2rm1
!,

~2.7!
~Gm2Amn!rm1Gnrn5Qm1Qn1Am1mrm1

1An1nrn1
,

where we have introduced the following notation for t
stimulated transition rates:

w5
2GuGu2

G21V82
, w15

2G1uG1u2

G1
21V18

2
,

~2.8!

W5Re
2G* G1A

~G2 iV8!~G12 iV18!
.

The system of equations~2.6! contains only the population
rm1

and rn1
of the levels of the ‘‘upper’’ transition. Its so

lutions enter into the right-hand sides of the equations
system~2.7!, in accordance with the cascade nature of
spontaneous optical-coherence transfer. The physical m
ing of Eqs.~2.6! and~2.7! is well known. An essentially new
term corresponding to optical-coherence transfer isW(rn1

2rm1
). We see that the coherent process of optic

coherence transfer leads to a cascade population flux. Sim
to Einstein stimulated processes~which are transitions due to
absorption and stimulated emission!, the ‘‘coherent’’ transfer
has no effect on the total excitation flux for the levelsm and
n @the second equation in~2.7!#. As in the case of Einstein
processes, the coherence transfer flux is proportional to
differencern1

2rm1
of the populations at the ‘‘upper’’ tran

sition, which emphasizes its cascade origin. From~2.8! we
see that the rateW is proportional to the field intensityuEu2,
and in this respect optical-coherence transfer is no differ
from other nonlinear effects. Also,W}dmndm1n1

A

}AAmnAm1n1
Am1mAn1n , which reflects the interferenc

properties of optical-coherence transfer as a coherent
cess. In contrast tow andw1, which are proportional to or-
dinary Lorentz factors, the frequency dependence ofW is
determined by a product of two complex-valued Lorentzia
and is found to alternate in sign. One can easily show that
integral ofW with respect to the frequencyv vanishes, as it
should for an interference effect. However, the integral of

s
g
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flux W(rn1
2rm1

) with respect tov is finite, since in the
presence of nonlinear phenomena the populations
frequency-dependent.

Absorption~amplification! of the field is determined by
the work done by the field:

P522hvRê i ~G* r1G1* r1!&

5hv^w~rn2rm!1~w11W!~rn1
2rm1

!&, ~2.9!

where the angle brackets stand for averaging over the ve
ties. The dependence ofP on the frequencyV stems from
two factors: the lineshape of a single atom, which is speci
by w, w1, and W, and the variation of the difference o
populations as functions ofV. Like the classical statement o
the Karplus–Schwinger problem,11 the absorption lineshap
for a strong monochromatic field changes, according to~2.9!,
because of the second factor, the frequency dependenc
the field-induced variationr i2r j . Thus, optical-coherenc
transfer does not alter this fundamental conclusion of
theory.

3. VELOCITY DISTRIBUTION OF THE ATOMS

When the atoms interact with a plane monochroma
wave and the Doppler broadening is large, the velocity d
tribution of the atoms acquires a characteristic Bennett st
ture, which has been studied in detail in the two-level mo
~see, e.g., Refs. 2–4!. Below we analyze such a structure
the four-level system with optical-coherence transfer.

The solution of the system of equations~2.7! for rn

2rm can be represented as

rn2rm5Nn2Nm

2
1

11TwH Tw~Nn2Nm!1TW~rn1
2rm1

!

2
An1n~rn1

2Nn1
!

Gn

1
Am1m~Gn2Amn!~rm1

2Nm1
!

GmGn
J , ~3.1!

where theNj have the meaning of populations of the leve
j 5m,n,m1 ,n1 in the absence of a field, andT is the effec-
tive time of interaction of the field and the two-level syste
m,n:

Nm1
5

Qm1

Gm1

, Nn1
5

Qn1
1Am1n1

Nm1

Gn1

,

Nm5
Qm1Am1mNm1

Gm
, Nn5

Qn1AmnNm1An1nNn1

Gn
,

~3.2!

T5
Gm1Gn2Amn

GmGn
.

We will assume that theNj have a Maxwellian velocity dis-
tribution:
re

ci-

d

of

e

c
-
c-
l

Nj5
Nj 0

~Ap v̄ !3
expS 2

v2

v̄2D , v̄25
2Ta

m
, ~3.3!

whereTa andm are the atomic temperature and mass.
The expression inside the braces in Eq.~3.1! consists of

terms describing the field-induced variation of the populat
difference, where the last two terms are related to casc
population transfer~effects of the type discussed in Ref. 1!
and of interest to us only in second order. We focus on
term containing the rateW; this term describes the variatio
of the populations due to coherence transfer from them1–n1

transition to them–n transition. By its very appearance th
term differs little from its analog related to ‘‘ordinary’’ tran
sitions: instead of the ratew of stimulated Einstein transi
tions we haveW, and instead of the differenceNn2Nm we
have the saturated population difference of the ‘‘upper’’ tra
sition, rn1

2rm1
. Hence the population variation due t

optical-coherence transfer experiences saturation both on
‘‘upper’’ transition and on the ‘‘lower’’ transition@the factor
1/(11Tw)]. The components ofrn2rm due to a population
cascade have the same property@the last two terms in Eq.
~3.1!#.

We now write the well-known expressions for the pop
lations of the levels belonging to the ‘‘upper’’ transition
which enter into~3.1! and are simpler because they are n
‘‘burdened’’ by cascade processes:

rm1
2Nm1

5
G1

2k1

G1s
2 1V18

2

1

T1Gm1

~Nn1
2Nm1

!,

T15
Gm1

1Gn1
2Am1n1

Gm1
Gn1

,

rn1
2Nn1

52
G1

2k1

G1s
2 1V18

2S 12
1

T1Gm1
D ~Nn1

2Nm1
!,

k15
2uG1u2T1

G1
, ~3.4!

rn1
2rm1

5S 12
G1

2k1

G1s
2 1V18

2D ~Nn1
2Nm1

!,

k5
2uGu2T

G
,

G1s
2 5G1

2~11k1!, Gs
25G2~11k!.

Equations~2.9!, ~3.1!, and ~3.4! imply that as the field
intensity tends to infinity, the population differencesrn

2rm and rn1
2rm1

tend to zero as 1/uEu2, while the work
done by the field,P, tends to a finite value. Hence thes
properties of the classical saturation effect are not viola
by optical-coherence transfer.

It should be recalled thatV8 andV18 are linear functions
of the projection of the atomic velocityv on the wave vector
k @see Eq.~2.2!#, so that the dependence onV8 and V18
represents the velocity distribution. From Eqs.~2.8!, ~3.1!,
and ~3.4! it follows that the distinctive pattern in the four
level system considered here consists of Bennett ‘‘pea
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and ‘‘dips’’ and specific components reflecting the optic
coherence transfer process. A Bennett structure has the
properties as a structure without optical-coherence tran
~Lorentzian contours with characteristic halfwidthsGs and
G1s). The structure with optical-coherence transfer is d
scribed by the term on the right-hand side of Eq.~3.1! con-
taining W. The transition rateW as a function ofv5k–v/k
has a nonstandard form. We write

W5
AG* G1

GG1
f ~v !,

~3.5!

f ~v !5
GG1@GG11~D/2!22~kv2V1D/2!2#

@G21~kv2V!2#@G1
21~kv2V1D!2#

.

In Fig. 2 the functionf (v) is plotted for some values o
uDu/G andG/G1. The integral off (v) with respect tov van-
ishes, and the function changes sign at

kv5V2 D/2 6A~D/2!21 G/G1 . ~3.6!

If D50 holds, the functionf (v) is symmetric about the
point kv5V,

f ~v !5
GG1@GG12~kv2V!2#

@G21~kv2V!2#@G1
21~kv2V!2#

, ~3.7!

and~if we discard the negative tails! resembles a Lorentzian
But in the limit uDu@G,G1, near the pointskv5V and kv
5V2D the function f (v) is described fairly well not by
Lorentzians but by dispersion curves:

f ~v !'2
G1

D

G~kv2V!

G21~kv2V!2
, ukv2Vu'G,

~3.8!

f ~v !'
G

D

G1~kv2V1D!

G1
21~kv2V1D!2

, ukv2V1Du'G1

~curve4 in Fig. 2!. The functionf (v) depends on three pa
rameters, e.g.,G/G1, D/G, andV/G, but not on the charac
teristics of the Maxwell distribution. The center of this di

FIG. 2. The graphs off (v) as functions ofx5(kv2V)/G: curve1, D50
andG5G1; curve2, D54G andG5G1; curve3, D54G andG52G1; and
curve4, D510G andG53G1 ~the functionf (v) has been multiplied by 10!.
-
me
er

-

tribution corresponds tokv50 and can be at any point o
the horizontal axis in Fig. 2. Thus, optical-coherence trans
generates elements of a specific shape in the velocity di
bution, elements that differ from the Bennett structure pro
resulting from the interaction with the field and from th
structure reflecting a cascade transfer of particles~popula-
tions!.

4. NONLINEAR RESONANCE OF A
COUNTERPROPAGATING PROBE WAVE

As is well known, when Doppler broadening is large, t
work P done by a traveling wave, regarded as a function
frequency, has a Gaussian shape with a Doppler width,2,4 i.e.,
a Bennett structure does not lead to narrow nonlinear re
nances. Using Eqs.~2.8!, ~2.9!, and~3.4!, we can easily show
that the above conclusion is also true in the case of opti
coherence transfer. The fine structure of the velocity dis
bution of the atoms can be detected by different versions
the probe-field method.2–4 Here we use the method of
counterpropagating probe wave of the same frequen3

which is convenient from the experimental viewpoint since
requires the use of only one laser.

As is known, three types of nonlinear effects manife
themselves in the probe-field method: variation of popu
tions by a strong field, field-induced splitting of the leve
into quasienergy sublevels, and nonlinear interfere
effects.2,4 When there is a counterpropagating probe wa
and large Doppler broadening, field-induced splitting of le
els and nonlinear interference effects do not manifest th
selves in the first nonvanishing nonlinear corrections, i
only population effects are important in this approximatio
Below we examine this simple case.

For the polarizationsrm and r1m induced by the probe
wave at the ‘‘lower’’ and ‘‘upper’’ transitions, respectively
we have equations of the form~2.1!:

~G12 iV1m8 !r1m5 iG1m~rn1
2rm1

!,

~G2 iVm8 !r5 iGm~rn2rm!1Ar1m ,
~4.1!

Gm5dmnEm/2h , G1m5dm1n1
Em/2h ,

Vm8 5V1kv, V1m8 5V11kv,

whereEm is the amplitude of the probe wave, and the pop
lations are independent of the characteristics of the pr
wave and are given by formulas~3.1! and ~3.4!. The work
done by the probe field is described by the expression

Pm522hvRê iGm* rm1 iG1m* r1m&

52hvReK uGmu2

G2 i ~V1kv !
~rn2rm!1H uG1mu2

G12 i ~V11kv !

1
AGm* G1m

@G2 i ~V1kv !#@G12 i ~V11kv !#J ~rn1
2rm1

!L .

~4.2!

Combining this with ~3.1! and ~3.4! are keeping the first
nonlinear correction terms, we obtain
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Pm52hvK GuGmu2

G21~V1kv !2 F S 12
G2k

G21~V2kv !2D
3~Nn2Nm!2

2AT

GG1
G* G1f ~v !~Nn1

2Nm1
!

2
T2

T1

G1
2k1

G1
21~V12kv !2

~Nn1
2Nm1

!G
1F uG1mu2G1

G1
21~V11kv !2

1
Gm* G1mA

GG1
f ~2v !G

3F12
G1

2k1

G1
21~V12kv !2G ~Nn1

2Nm1
!L , ~4.3!

where

T25S 12
Amn

Gn
D Am1m

Gm1
Gm

1S 12
Am1n1

Gm1

D An1n

GnGn1

. ~4.4!

Equation~4.3! has eight different terms. Three terms corr
spond to linear absorption of the probe wave: two Vo
contoursI 1 andI 2 for the doubletvmn ,vm1n1

, and the inter-
ference contourI 3 described in Ref. 8:

I 15K G2

G21~V1kv !2L ,

~4.5!

I 25K G1
2

G1
21~V11kv !2L , I 35^ f ~2v !&.

The counterpropagating-wave resonances due to the ord
Bennett structure,I 4 andI 5, and the cross-resonance due to
Bennett-structure population cascade,I 6, are proportional to
the factors

I 45K G2

G21~V1kv !2

G2

G21~V2kv !2L ,

~4.6!

I 55K G1
2

G1
21~V11kv !2

G1
2

G1
21~V12kv !2L ,

I 65K G2

G21~V1kv !2

G1
2

G1
21~V12kv !2L . ~4.7!

Finally, there are two nonlinear terms related to optic
coherence transfer: one is the nonlinear resonance of
counterpropagating wave in the population variation due
optical-coherence transfer,

I 75K G2

G21~V1kv !2

3Re
GG1 L , ~4.8!
@G2 i ~V2kv !#@G12 i ~V12kv !#
-
t

ary

-
he
o

and the other is the nonlinear resonance in the Bennett s
ture of the ‘‘upper transition’’m1–n1 of the part of the po-
larization that is induced by the probe wave and has exp
enced optical-coherence transfer,

I 85K Re
GG1

@G2 i ~V1kv !#@G12 i ~V11kv !#

G1
2

G1
21~V12kv !2L ,

~4.9!

The integralsI 1 ,I 4 and I 2 ,I 5 characterize the spectrum o
absorption of the probe wave by the two-level systemsm,n
andm1 ,n1, respectively, provided that these systems are
coupled; the quantitiesI 3 and I 6–I 8 reflect population trans-
fer (I 6) and optical-coherence transfer.

The quantitiesI 1–I 8 can be expressed in terms of th
error function ~probability integral! of a complex-valued
argument.13 For instance,

I 15ReK G

G2 i ~V2kv !L 5
Ap G

kv̄
Re@w~p!#, p5

G2 iV

kv̄
,

~4.10!

w~p!5exp~p2! @12F~p!#, F~p!5
2

Ap
E

0

p

exp~2t2! dt,

~4.11!

I 25
Ap G1

kv̄
Re@w~p1!#, p15

G12 iV1

kv̄
,

I 35
Ap GG1

~kv̄ !2
Re

w~p!2w~p1!

p12p
. ~4.12!

All averaged expressions in~4.5!–~4.9! can be represente
by partial fraction expansions~as functions ofkv) and hence
can be written in the form of linear combinations of th
functionsw(p) with different arguments. The quantitiesI 1–
I 5 have been thoroughly studied, so that we need to cons
only I 6–I 8, which reflect the interaction of the monochro
matic waves with both transitions and describe the contri
tion of the stimulated population transfer and optic
coherence transfer to the nonlinear resonance of
counterpropagating probe wave. Here we will not write t
lengthy expressions forI 6–I 8 in terms of the functionsw(p);
we confine ourselves to an analysis of simple and physic
clear limits and, primarily, the limit of large Doppler broad
ening (G,G1!kv̄).

The value of the parameteruDu/kv̄ is important here. For
uDu,kv̄ and uVu,kv̄ a Bennett structure involving the lev
els of both transitions and an optical-coherence tran
structure develop within the Maxwell distribution. In th
case the approximate expressions are

I 65
Ap G

2kv̄

G1~G1G1!/2

~G1G1!2/41~V2D/2!2

3expH 2FV2D/2

kv̄
G 2J , ~4.13!
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I 75
Ap G

2kv̄
Re

GG1

~G2 iV!@~G1G1!/22 i ~V2D/2!#

3expF2S V

kv̄
D 2G , ~4.14!

I 85
ApG1

2kv̄

3Re
GG1exp$2@~V2D!/kv̄#2%

@~G1G1!/22 i ~V2D/2!#@G12 i ~V2D!#
.

~4.15!

All three formulas have characteristic resonance singular
at the frequencyV5D/2, right in the middle between th
components of the doubletV50 andV5D, right out of a
clear sky, so to say. The reason is that the resonant rate
the Bennett structure for the ‘‘upper’’ transition arekv5V
2D, and after the spontaneous transfer to the ‘‘lower’’ tra
sition they are in resonance with the counterpropaga
wave atkv52V. The two conditions match atV5D/2, a
fact revealed in~4.13!–~4.15!. The same arguments expla
the splitting of the Lamb dip in gas lasers with a magne
field applied to their active medium.14,2

Formula ~4.13! describes a nonlinear resonance of t
ordinary Lorentzian shape. The contours of the nonlin
resonances~4.14! and~4.15!, related optical-coherence tran
fer, are characteristic of an interference effect~Fig. 3! and
qualitatively resemblef (v), differing only in width and po-
sition of singularities~cf. Figs. 2 and 3!. The resonancesI 7

and I 8 are shifted in relation to each other and overlap o
in the regionV'D/2, where they are partially balance
when uDu@G,G1.

Formulas~4.13!–~4.15! are valid foruDu,kv̄, while the
halfwidthsG andG1 can be either larger or smaller thanuDu.

FIG. 3. The graphs ofI 7(V) ~solid curves! and I 8(V) ~dashed curves! as
functions ofx5(V2D/2)/G: curve 1, D50 andG5G1; curves2 and 5,
D54G andG5G1; curves3 and6, D54G andG52G1; and curves4 and
7, D510G and G53G1 ~the functionsI 7 and I 8 have been multiplied by
10!.
s

of

-
g
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In other words, the resonances near the frequenciesV50,
D/2, andD are spectrally resolvable.

In the limit uDu@kv̄, the value ofuVu/kv̄ plays an im-
portant role. IfuVu,uV1u.kv̄, all four levelsm, n, m1, and
n1 have no Bennett structure, and the Lorentz factors
~4.7!–~4.9! overlap by distant tails. Then

I 65
G2G1

2

V2V1
2

, I 752
G2G1

2

V3V1

,

~4.16!

I 852
G2G1

2

VV1
3

, uVu,uV1u.kv̄.

If uDu is still much larger thankv̄ but we have eitheruVu
,kv̄ or uV1u,kv̄, there is a Bennett structure involving th
levels of one transition, and because of the resonance co
tions the values of theI j increase substantially:

I 65
Ap G

kv̄

G1
2

D2
expF2S V

kv̄
D 2G , I 852

Ap G

kv̄

G1
3

D3
Im w~p!,

~4.17!

I 75
Ap G

2kv̄

G1

D

GV

G21V2
expF2S V

kv̄
D 2G , uVu,kv̄,

I 65
Ap G1

kv̄

G2

D2
expF2S V

kv̄
D 2G ,

I 752
Ap G1

kv̄

G3

D3
Im w~p1!, ~4.18!

I 852
Ap G1

2kv̄

G

D

G1V1

G1
21V1

2
expF2S V1

kv̄
D 2G , uV1u,kv̄.

Hence, when the splitting of the doublet is so large tha
appreciably exceeds the Doppler width, the largest amplit
of the resonance due to optical-coherence transfer is atta
when the field frequency is scanned within the limits of t
Doppler width of the doublet components@ I 7 in ~4.17! and
I 8 in ~4.18!#.

Let us discuss the amplitude properties of the re
nances. We begin by noting their dependence on the Eins
coefficientsAi j of the four allowed transitions in the syste
of levels depicted in Fig. 1~note that (Ai j )

1/2 is proportional
to di j ). The resonances of the two-level systems, which
described by the integralsI 1 ,I 2 andI 4 ,I 5, are proportional to
Amn ,Am1n1

and Amn
2 ,Am1n1

2 , respectively. The other fou

resonances are closely related to the radiative transfer of
ticles or polarizations and contain products of all four co
ficientsAi j :

uGm* G1muA}AAmnAm1n1
Am1mAn1n ~ I 3!,

T2uGmu2k1}Am1mAmnAm1n1
, Am1n1

An1nAmn ~ I 6!,

uGmu2G1G* A}AAmn
3 Am1n1

Am1mAn1n ~ I 7!,

uG1u2Gm* G1mA}AAmnAm1n1

3 Am1mAn1n ~ I 8!. ~4.19!
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The coefficientsAi j may differ substantially, by a factor o
ten or more, and so the ratios of amplitudes of differe
resonances may vary within broad limits.

Now let us examine the effect of Doppler broadening
the amplitude properties of linear and nonlinear resonan
We take the amplitude of a Doppler broadened spectral
in the absence of saturation~i.e., Ap G/kv̄) and use as the
unit in estimating the amplitudes of the other resonanc
ignoring all other factors. Sincef (v) alternates in sign, the
contribution of optical-coherence transfer to the linear
sorption coefficient contains an additional factorG1 /kv̄ ~if
the conditions for resonance are met:uDu,uVu,uV1u,kv̄) or
G/uDu ~if uDu.kv̄ and uVu'G) or Gkv̄/D2 ~if uDu@kv̄ and
uVu,uV1u.kv̄). On the other hand, the nonlinear resonan
due to optical-coherence transfer have relative amplitu
Akk1 (I 7) andk1 (I 8), which may exceed the amplitude o
the linear resonances. Thus, the selectivity of the Ben
structure compensates for the negative effect of the fact
f (v) alternates in sign by replacing the factorG1 /kv̄ with
Akk1 or k1 and, to within these factors, the amplitude of t
nonlinear resonances due to optical-coherence transfe
mains essentially the same as for immobile atoms.

5. DEGENERATE LEVELS

The analysis of Secs. 2–4 can also be applied to deg
erate states. To this end, each magnetic sublevel shoul
considered a separate state. We then deal with a set of
level systems each of which resembles the one depicte
Fig. 1. We introduce the density matrix elemen
r(JiM i ,JjM j ) (Mi andM j are the magnetic quantum num
bers of the statesi and j ) and replace the matrix elementsG
and G1 of the interaction with the field and the optica
coherence transfer rate via the well-known formulas~see,
e.g., Refs. 2, 4, and 8!

G→GMM85
dmn

2A3 h

3(
s

~21!Jn2M8^JmM Jn2M 8u1s&Es ,

~5.1!

G1→G1MM85
dm1n1

2A3 h

3(
s

~21!Jn1
2M8^Jm1

M Jn1
2M 8u1s&Es ,

A→A~JmMJnM 8uJm1
M1Jn1

M18!

5AAm1mAn1n (
s

^JmM1suJm1
M1&

3^JnM 81suJn1
M18&. ~5.2!

HereEs is the circular component of the field,Ji is the total
angular momentum of statei , di j is the reduced dipole
moment matrix element,15 and^•••u•••& stands for a vector
addition coefficient. Also,Gm and G1m of Sec. 4 must be
t

s.
e

s,

-

s
s

tt
at

re-

n-
be
ur-
in

interpreted as the quantities~5.1! after Es is replaced by
Ems . Spontaneous magnetic-coherence transfer, which is
sent in the model of nondegenerate states, proceeds w
rate2,4,5

A~JmMJmM 8uJm1
M1Jm1

M18!

5Am1m (
s

^JmM1suJm1
M1&^JmM 81suJm1

M18&.

~5.3!

Thus, the problem reduces to a set of four-level syste
jJ jM j ( j 5m,n,m1 ,n1) that to a certain extent are couple
by spontaneous and stimulated processes. The problem
comes extremely cumbersome for arbitrary values ofJj and
in strong fields, especially because of the inclusion of
types of spontaneous cascade processes. Hence, as in
areas of nonlinear polarization spectroscopy, we limit o
selves to the analysis of specific cases.

First we must mention the states of field polarization a
systems of levels with small values ofJj , which can be
directly reduced to the model of nondegenerate states an
which the first three rows in Table I correspond. For t
combinations represented by rows 4–8 of Table I, the pr
lem of the interaction with a strong field also reduces to
model of degenerate states and can be solved exactly
arbitrary field intensities. The distinctive nonlinear structu
of the velocity distribution contains the same elements a
the model of nondegenerate states~see Eq.~3.4! and the
discussion that follows!. However, in the cases correspon
ing to rows 4–8 of Table I there are additional populati
cascade channels, and because of this the relative amplit
of the various structure components change. The differe
between the cases represented by rows 1–3 and 4–8 is
trated in Figs. 4a and 4b: the dashed arrows in Fig. 4b in
cate additional~relative to the model of nondegenera
states! spontaneous cascades, which contribute to the B
nett structure in the levels involved in optical-coheren
transfer. Hence the systems listed Table I exhibit noth
new in comparison to the model of nondegenerate states
that we will not analyze then here in greater detail.

In diagrams of levels with large values of angular m
mentaJj , the problem of the interaction with a strong fie
becomes more complicated, which naturally leads to a m
complicated Bennett structure: each of the subsystemsm,n
andm1 ,n1 acquire Bennett dips and peaks, and the squa
of the corresponding widths are nonlinear functions of

TABLE I.

No. Jm1
Jn1

Jm Jn DM

1 1 0 0 1 0,61
2 1 0 1 1 0,61
3 1 1 0 1 0,61
4 0 1 1 0 0,61
5 0 1 1 1 0,61
6 1 1 1 0 0,61
7 1 1 1 1 0,61
8 1/2 1/2 1/2 1/2 61
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power of the field. An example is the interaction of a hig
power linearly polarized field and the system withJm5Jn

52 discussed in Ref. 16. However, the frequency dep
dence of the optical-coherence transfer rate similar toW has
the form 1/(G2 iV)(G12 iV1), as in the model of nonde
generate states, i.e., we can say that the Karplus–Schw
idea,11 according to which in the strong-field problem th
broadening is due to light-induced population variation,
mains valid. At moderate intensities, when we can limit o
selves to the first nonlinear corrections, the theory leads
universal result for arbitrary values ofJj and arbitrary polar-
ization states of the field. We will not write the expressio
for the velocity distribution and the work done by the stro
field, and we limit ourselves to an analysis of the workPm

done by the probe field in the scheme with a counterpro
gating prove wave of the same frequency:

Pm52hvUdmn

2h U2 Em
2

3 H 1

G
I 1~V!Nnm1F d2

G1
I 2~V!

1
dA

GG1
I 3~V!GNn1m1

2Udmn

2h U2

2E2

3(
kq

I ~kq!I m* ~kq!FTk

G2
I 4~V!Nnm

1
d2T1k

G1
2

I 5~V!Nn1m1
1

d2T2k

GG1
I 6~V!Nn1m1

1
dA

GG1
ReS Tk

G
I 7~V!1

d2T1k

G1
I 8~V! DNn1m1G J .

~5.4!

HereI (kq) andI m(kq) are the normalized field polarizatio
tensors,

I ~kq!5A3 (
ss1

~21!12s^1s1 12sukq&
Es1

Es*

E2
,

E25(
s

uEsu2,

I m~kq!5A3 (
ss1

~21!12s^1s1 12sukq&
Ems1

Ems*

Em
2

,

FIG. 4. Diagrams of optical coherence transfer in the case of row 1 in T
I ~a! and in the case of row 8 in Table I and an additional spontane
population cascade~dashed arrows! ~b!.
-

n-

ger

-
-
a

s

a-

Em
2 5(

s
uEmsu2, ~5.5!

and the effective timesTk , T1k , andT2k are similar toT,
T1, and T2 of the model of nondegenerate states~see Eqs.
~3.2!, ~3.4!, and~4.4!!:

Tk5
amnk

2

Gm
1

anmk
2

Gn
2

amnkanmkAmnk

GmGn
,

T1k5
am1n1

2

Gm1

1
an1m1k

2

Gn1

2
am1n1kan1m1kAm1n1k

Gm1
Gn1

,

T2k5am1n1kS amnk2
anmkAmnk

Gn
D Am1mk

Gm1
Gm

1anmkS an1m1k2
am1n1kAm1n1k

Gm1

D An1nk

Gn1
Gn

, ~5.6!

amnk53~21!11k1Jm1JnH Jn Jm 1

k 1 Jm
J ,

anmk53~21!11Jn1JmH Jm Jn 1

k 1 Jn
J ,

A5AAm1mAn1n~21!Jm1
1JnA2Jm1

11

3A2Jn1
11H Jm1

Jn1 1

Jn Jm 1
J ,

~5.7!

Ai j k5Ai j ~21!11k1Ji1Jj~2Ji11!H Ji Ji k

Jj Jj 1J ,

d5Udm1n1

dmn
U, Ni j 5Ni2Nj .

The dependence ofPm on the frequencyV is given by
the same integralsI j (V) as in the model of nondegenera
states defined by Eqs.~4.5!–~4.9!. The I j (V) acquire other
coefficients~in comparison to the model of nondegenera
states!, which depend on field polarization and degeneracy
the levels. The quantitiesTk andT1k are the effective times
of the interaction of the field and the polarizations mome
in the transitionsm–n andm1–n1, andT2k is the effective
time of interaction for the spontaneous cascades through
channelsm1→m, m1→m→n, n1→n, and m1→n1→n, a
parameter specific to four-level systems~in two-level sys-
tems there are onlyTk andT1k ; see Refs. 2 and 4!. Formulas
~5.4! and~5.6! remain valid of the decay times of the pola
ization moments of the levels depend onk. In this caseG j

must be replaced byG j k in ~5.6! ~see Refs. 2 and 4!.
Note that the timesTk andT1k specify the amplitudes o

‘‘ordinary’’ nonlinear resonances due to saturation (I 4(V)
and I 5(V)) and nonlinear resonances due to optic
coherence transfer (I 7(V) and I 8(V)).In the event this
seems quite obvious, but predicting it would be difficult. W
conclude that the relationship between the resona

le
s
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I 4(V),I 5(V) and I 7(V),I 8(V) is weakly dependent on th
angular momenta of the levels and is fixed by the valued
andG/G1.

In the method of a counterpropagating probe wa
within the adopted approximation in the intensity of t
strong field, the nonlinear resonances of all three types
pend in the same manner on the polarization of the fie
with the dependence expressed by the product of polariza
tensors,I (kq)I m* (kq). The values ofI (kq)I m(kq) for the
ordinary~simplest! combinations of linear and circular pola
izations are listed in Table II. This table readily shows th
the ai j k

2 entering intoTk and T1k may be present in the
following combinations acting as factors of 1/G i :

↑↑: ai j 0
2 12ai j 2

2 ,

↑→: ai j 0
2 2ai j 2

2 ,

11: ai j 0
2 1

3

2
ai j 1

2 1
1

2
ai j 2

2 ,

12: ai j 0
2 2

3

2
ai j 1

2 1
1

2
ai j 2

2 . ~5.8!

The validity of the following relationships can easily b
proved:

amn0
2 12amn2

2 5anm0
2 12anm2

2 ,

amn1
2 2amn2

2 5anm1
2 2anm2

2 ,

amn0
2 1

3

2
amn1

2 1
1

2
amn2

2 5anm0
2 1

3

2
anm1

2 1
1

2
anm2

2 . ~5.9!

As a result, for counterpropagating waves of like polarizat
(↑↑ and11), the level lifetimesG i

21 enter intoTk andT1k

in the combinationsGm
211Gn

21 andGm1

211Gn1

21 . This is also

the case for arbitrary polarizations whenJm5Jn . The quan-
tities in ~5.8! have been thoroughly studied in Refs. 2 and
where the cases of strong dependence of the relative am
tudes on the field polarizations are also investigated.

In view of the inequalities

UA2Jm11A2Jn1
11H k Jm1

Jn1

1 Jn Jm
J U<1,

~5.10!UA2Jm1
11A2Jn11H k Jm1

Jn1

1 Jn Jm
J U<1,

TABLE II. Values of I (kq)I m(kq).

kq ↑↑ ↑→ 11 12

00 1 1 1 1
10 0 0 3/2 23/2
20 2 21 1/2 1/2

aNote: The ‘‘plus’’ and ‘‘minus’’ stand for circular polarizations, and th
arrows stand for linear polarizations. The combinations↑↑ and↑→ corre-
spond to parallel and orthogonal linear polarizations of the counterpr
gating waves. The values for linear polarizations are given in a sys
whosez axis is directed along the field strength in one of the waves, and
values for circular polarizations are given in a system whosez axisis di-
rected alongk.
e

e-
s,
on

t

n

,
li-

which follow from the orthonormality of 6j -symbols, we
have

uAi j ku<A2Ji11

2Jj11
Ai j ,

~5.11!

uAu<A2Jm1
11

2Jm11 AAm1mAn1n,

and, as can easily be shown, the effect of the cascade t
Ai j k /G iG j on Tk and T1k diminishes ask increases. Note
also that in some casesAi j k may be negative~in the adopted
approximation this happens whenk52 andJm5Jn51), and
then the population cascade extends the time of interac
with the field for the corresponding polarization moment.

It is convenient to write the factorA ~the optical-
coherence transfer rate! in the form

A5A2Jm1
11

2Jm11 AAm1mAn1n K, ~5.12!

K5~21!Jm1
1JnA2Jm11A2Jn1

11H Jm1
Jn1 1

Jn Jm 1
J ,

since the coefficientK obeys the inequalityuKu<1 and is
symmetric with respect to the permutationsJm1

↔Jn and
Jn1
↔Jm . Table III lists the values ofK for possible combi-

nations of angular momentaJj . Other combinations reduc
to those listed if we use the symmetry properties. We see
there is a remarkable case,K51, in which the polarization
of them1–n1 transition is shifted to them–n transition with
a probability equal to unity for all values ofJ. For other
combinations of angular momenta (uKu,1), the values ofK
may be positive or negative, and they can increase or
crease with increasingJ.

6. DISCUSSION

One of the main conclusions that can be drawn from
fact that there is spontaneous optical-coherence transfe
that the common two-level approximation must be discard
even under exact resonance conditions. Joint analysis o
least a pair of two-level systems coupled by optic
coherence transfer is required. This becomes especially
dent when an external field~e.g., a magnetic field! is applied

a-
m
e

TABLE III. Values of K.

Jm1
Jn1

Jm Jn K

J J J J 121/J(J11)
J J J J11 1/(J11)
J J J11 J 2A112/(2J11)/(J11)
J J J11 J11 A121/(J11)2

J J11 J11 J 1/(J11)(2J11)
J11 J J J11 1/(J11)(2J13)
J11 J11 J11 J 21/(J11)
J11 J11 J J11 A122/(2J13)/(J11)
J11 J J12 J11 A124/(2J13)2

J J11 J11 J12 1
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to the systems, with each quadruplet of the Zeeman suble
of the statesm1, n1, m, andn playing an independent role.

Spontaneous optical-coherence transfer introduces
features into the physical picture of the processes that pla
important role in nonlinear saturation spectroscopy. The
locity distribution of the atoms acquires, in addition to
system of Bennett peaks and dips, elements of the form~3.5!
with specific shapes, alternating in sign and having a z
total area~Fig. 2!. The amplitudes of this optical-coherenc
transfer structure depend on many factors; in particular, t
decrease with increasing relative splittinguDu/G of the dou-
blet.

Nonlinear resonances of a counterpropagating pr
wave contain two terms due to optical-coherence trans
These terms are in the frequency range 0<uVu<D and ad-
join each other. The ratio of their amplitudes is strongly d
pendent on the polarizations of the fields and many par
eters of the m–n and m1–n1 transitions: population
differences, Einstein coefficients, angular momenta of
levels, etc.

In linear spectra~absorption and the like!, due to the
alternation in sign of the velocity distribution of the optica
coherence transfer structure, the spectral manifestatio
this structure is masked by Doppler broadening, and beca
of this the amplitudes of the spectral resonances decreas~in
comparison to those of immobile atoms! in theG-to-kv̄ratio,
which in typical conditions amounts to something of the
der 1022–1023. Nonlinear Bennett peaks and dips elimina
the Doppler flattening of spectral optical-coherence tran
structures and lead to a paradoxical excess of nonlinear r
nances over linear.

The resonance of a counterpropagating prove wave is
simplest type of nonlinear resonances in gas saturation s
troscopy. In the many variants of the probe-field meth
including those that use spontaneous and stimulated tra
tions to ‘‘third’’ levels, one can expect other manifestatio
of optical-coherence transfer, manifestations in which, in
dition to the population effects discussed in this paper, n
linear interference effects and field-induced level splitti
play a significant role. But if the population factor is pr
dominant, the phenomena resemble those discussed in S
and 5. In particular, field-induced population variations a
important for fluorescence resonance,3 which contains com-
ponents due to optical-coherence transfer that are pro
tional to I 7 and I 8.

As is well known, atomic collisions affect nonlinea
resonances in various ways~see, e.g., Refs. 2 and 4!. If we
ignore variations in rate, collisions may be taken into a
count by redefining the relaxation constants of the levels
transitions, i.e., by including radiative and collisional term
in the relaxation constants~the model of relaxation con
els
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stants!. But if rate variations are significant, the optica
coherence transfer structure occupies a special position
to alternation of its sign. In particular, in the model of inten
collisions, optical-coherence transfer provides almost no
ing to the homogeneous saturation band.

In conclusion we note that in this paper we focused
the doubletvm1n1

,vmn . Clearly, similar phenomena occu
near the doubletvm1m ,vn1n : all the relationships of this
paper remain valid when we go over to this spectral regio
we interchange the indices as follows:m↔n1, m1→m1, and
n→n. These two doublets carry common information, sin
the properties if each doublet depend on the characteristic
all four transitions between the levelsm, n, m1, andn1.
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Electrical conductivity of germanium with dislocation grids
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Zh. Éksp. Teor. Fiz.115, 115–125~January 1999!

Samples ofn-type germanium with a donor concentrationNd52.431016cm23 are plastically
deformed to a degree of strain equal to 18–40% to detect static conduction by electrons
trapped on dislocations in a system of dislocation grids. In samples with 20%,d,31%, which
retain an electronic type of conductivity, the conductivity forT,8 K, which is weakly
temperature-dependent, is associated with conduction by electrons trapped on dislocations. The
nonmonotonic dependence of the conductivity at 4.2 K on the degree of strain as the
latter increases from 18% to 40% attests to the existence of an energy gap between the donor
and acceptor dislocation states in strongly plastically deformed germanium. ©1999
American Institute of Physics.@S1063-7761~99!01101-4#
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1. INTRODUCTION

The interest in the study of the conductivity of plas
cally deformed germanium stems from the possibility
quasi-one-dimensional conduction along dislocations and
relationship to the structure of the energy spectrum of dis
cations in semiconductors.

In Ref. 1 plastically deformedp-type germanium was
found to exhibit low-temperature static conductivity, whic
was characterized by a weak temperature dependence
essential absence of a Hall emf, and a conductivity at 4.
exceeding that of the control sample by several orders
magnitude. It was assumed in Ref. 1 that the specific di
cation conductivity due to the motion of charge carrie
trapped on dislocations in strongly deformed crystals is
perposed on the conductivity due to free charge carri
which decreases as a function of temperature. It was su
quently established2–4 that dislocation conductivity appear
at a threshold~at a degree of straind.15% in Ref. 3 and
d.30% in Ref. 4! and becomes a measurable Hall emf
the dislocation conduction region asd increases further and
that the signs of the Hall emf and the thermopower cor
spond to hole-type conductivity. Structural investigations3,5,6

showed that the high-temperature deformation of german
and silicon tod515240% promotes the formation of
block ~cellular! structure and that 60° and screw dislocatio
~with a density;1010cm22) are arranged, for the most par
in the form of grids in block walls. This permitted associa
ing dislocation conduction with the motion of holes trapp
on dislocations along a branched system of dislocation s
ments in block walls.

The dislocation conductivity of strongly plastically de
formed germanium was investigated in Refs. 4 and 7–9 o
broad ranges of temperatures and electric and magn
fields, as well as in the frequency range 0.1–10 MHz. T
appearance of an activationless temperature dependen
the dislocation conductivity when a certain value ofd* is
attained, which depends on the deformation conditions,
attributed in Ref. 4 to the delocalization of carriers in a ‘‘di
661063-7761/99/88(1)/6/$15.00
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location’’ band as a consequence of the semiconductor-m
transition caused by plastic deformation.

The idea that conduction is possible along dislocatio
was also confirmed by observing the features of the mic
wave conductivity of germanium with anisotropically a
ranged 60° dislocations, whose density was less tha
3107 cm22 ~Refs. 10,11!. Investigations of the dislocation
microwave conductivity in silicon12 and germanium aided in
the development of theories regarding the structure of
energy spectrum of dislocation states in covalent semic
ductors. In Shockley’s picture13 linear dislocation segment
are represented in the form of rows of atoms with dangl
chemical bonds. These atoms can trap electrons from
conduction band or donate unpaired electrons to other c
ters and consequently exhibit acceptor or donor activity,
spectively. The states in a dislocation core were represe
at first by one level or a half-filled one-dimensional band a
later on in the form of two bands separated by a gap. A
cording to Refs. 14–17, the donor~lower! E1 and acceptor
~upper! E2 dislocation bands are separated by a gapD12

;0.18 eV and are located in the germanium band gap~unlike
the model used to explain hole conduction on germani
bicrystal boundaries18,19!. There are localizedE18 acceptor
states~a narrow band! at a distanceD18,0.03 eV above the
top of the donor band.14–17 In Refs. 15 and 16 they were
hypothetically assigned to states of holes bound by Coulo
attraction near negatively charged dislocation defects, s
as steps, kinks, and sites of intersection with other dislo
tions.

Within this scheme it was possible to account for t
decrease in the microwave conductivity inn-type germanium
with increasing dislocation density,10,11as well as the depen
dence of the microwave conductivity on the concentrat
and type of the dopant present.20 The dislocation conductiv-
ity in strongly plastically deformed germanium was asso
ated in Ref. 3 with the same dislocation states as the mi
wave conductivity. In this case there is probably sta
conductivity due to the motion of electrons trapped on d
location grids inn-type germanium. In the present work a
© 1999 American Institute of Physics
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FIG. 1. Optical-microscopic image of the$111% plane in a sample from group II (d518%) after chemical etching~a! and image of a fragment of a dislocatio
boundary in a$112% plane obtained by transmission electron microscopy on a germanium sample withd529% from group Ib~b!.
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attempt was made to detect such conductivity.

2. EXPERIMENT

The investigations were performed on single crystals
n-type germanium cut from a GE´ S-0.1 ingot with a differ-
ence concentration of chemical donors~antimony! Nd52.4
31016cm23 and a density of growth dislocations less th
10 cm22. According to the data from spark mass spectro
etry, the oxygen and carbon concentrations in this ingot
not exceed 1.231017 and 431016cm23, respectively, and
the concentration of other elements is less than
31016cm23.

Two groups of crystals in the form of parallelepipe
measuring 103632.5 mm3 were prepared for deformation
They differed with respect to the direction of the compre
sion axis, which coincided with the@100# direction in the
crystals from group I and deviated by 10° in the cryst
from group II. Consequently, the crystals from groups I a
II contained two primary$111% slip planes or one such plane
respectively. All other deformation conditions being equ
this difference can influence the connectivity of the dislo
tion system. The other edges of the crystals were direc
along the@011# and @011̄# axes. These crystals were po
ished mechanically and chemically, were coated by a t
layer of gold~to prevent contamination by impurities durin
deformation! and were deformed atTd5800 °C in a dy-
namic regime tod518240%. The strained crystals wer
cooled for 30 min atTd and then cooled at a rate of 1–
deg/min to room temperature~group Ia! or were cooled to-
gether with the furnace without additional annealing~groups
Ib and II!.

To measure the static conductivity and the Hall effect
the temperature range 4.2–300 K, samples of length;9 mm
and cross section;231.2 mm2 were cut from the centra
part of the strained crystals. Six molten indium contacts w
deposited on chemically polished surfaces of these sam
After high-voltage (;25 kV) pulses were supplied to eac
pair of current and potential contacts, their ohmic proper
f
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s
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,
-
d
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e
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s

improved. The measurements were performed on the lin
portions of the current–voltage characteristics. The magn
field strength could be varied from 0.05 to 0.7 T. The te
perature in the helium cryostat was held to within60.05 K.
The maximum error in the determination of the conductiv
and the Hall coefficient was620% and610%, respec-
tively.

We previously investigated the dislocation structure
strongly plastically deformed germanium3 and silicon5 by
x-ray structural analysis, as well as optical and transmiss
electron microscopy. It was established that the samples
d55240% are composed of numerous blocks~cells! mea-
suring 1–20mm ~see Fig. 1a, as well as Fig. 2 in Refs. 3 a
5!. The dislocations are concentrated mainly in the low-an
boundaries separating blocks, i.e., in the block walls, wh
structure is well resolved by transmission electron mic
scopy.3,5,21,22These boundaries are formed from partially o
dered rows of 60° and screw dislocations, which move d
ing deformation, and dislocation segments formed as pr
ucts of their interaction, i.e., they have the form of tw
dimensional dislocation grids. Asd rises, the number of
disordered rows of dislocations and incomplete fragments
dislocation grids decreases, and the fraction of regular~com-

FIG. 2. Temperature dependence of the conductivity in control~k! and
strained samples ofn-type germanium (Nd52.431016 cm23, group Ia! with
various values ofd, %: 1 — 18.6,2 — 20.9,3 — 21.5,4 — 28.
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plete! fragments of dislocation grids like those shown in F
1b increases. Therefore, the connectivity of the macrosc
system of dislocation segments covering distances of 3
1000 Å in block boundaries increases as a function ofd. The
estimated values of the mean dislocation densities in sam
with d518240% lie in the range 13109,ND,5
31010cm22.

3. MEASUREMENT RESULTS

It follows from Fig. 2 that the conductivity in the contro
~k! sample decreases with decreasing temperature with
activation energy of 0.004860.0004 eV, which is equal to
half of the ionization energy of antimony atoms in germ
nium and attests to the weak degree of compensation o
original samples. In such crystals there is a transition to h
ping conduction with a constant activation energy forT
,6 K ~Ref. 8!.

The s(T) curves for strained samples from groups
and Ib are presented in Figs. 2 and 3. In strained sam
2–7, which retained an electronic type of conduction, t
conductivity for T.8 K decreases with increasingd as a
consequence of the decrease in the concentration and m
ity of free electrons, as has been observed repeatedly in
vious studies.8,16 The number of electrons trapped on disl
cations at 80 K equals;0.25Nd for sample 1 and (0.5
20.8)Nd for samples2, 3, 5, and6. In samples4 and7 with
the lowest conductivity in groups Ia and Ib, respectively,
Hall coefficient has a negative sign, but does not prov
information regarding the concentration of the charge ca
ers in them. ForT,8 K the temperature dependence of t
conductivity of then-type strained samples weakens app
ciably ~except in the case of sample1 in Fig. 2!. In samples
2, 3, 5, and6 the conductivity for 4.2 K (s4.2) is 2–5 times
greater than the value for the control sample (s4.253
31024V21

•cm21), and in samples4 and 7 s4.2,2
31025V21

•cm21. In samples2–7 the measurements of th
Hall emf for T,10 K are unreliable because of the low va
ues and instability of the signal at the;5mV level. How-
ever, the voltage on the potential contacts used to calcu
the conductivity exceeds 0.5 mV.

We note that in the samples from group II~with one
primary slip plane!, which exhibit an electronic type of con

FIG. 3. Temperature dependence of the conductivity in strained sampl
n-type germanium (Nd52.431016 cm23, group Ib! with various values of
d, %: 5 — 27.6, 6 — 28.4, 7 — 31, 8 — 33.9 (p* -type!, 9 — 49.1
(p* -type!.
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duction for 20%,d,29%, the value ofs4.2 decreases with
increasingd and lies in the range 102421026 V21

•cm21.
The small increase ind from 31% to 33.9% in samples7

and8 from group Ib, respectively, leads to inversion of th
type of conduction in the sample over the entire tempera
range and the appearance of dislocation conduction foT
,30 K, which was previously observed in Refs. 3, 4, 7, a
8. In this cases4.2 increases by more than two orders
magnitude~compare curves7 and8 in Fig. 3!. We shall call
samples8 and 9 p* -type samples. Thus, in plastically de
formed n-type germanium withNd52.431016cm23 the
value of s4.2 varies nonmonotonically asd is gradually in-
creased to 40%.

4. DISCUSSION

In the Shockley–Read models13,23 some of the electrons
from shallow chemical donors are trapped on states in di
cation cores inn-type germanium atT50 K, and regions of
positive space charge~Read cylinders! form around the dis-
locations. In accordance with the scheme of the energy s
trum of the dislocation states~Fig. 4! in strained samples o
germanium withNd52.431016cm23 and d,30%, which
retain an electronic type of conduction, the cutoff for fillin
of the dislocation states is found in theE2 band. The free
electrons within blocks are separated by dielectric regi
from the electrons trapped on dislocations in the walls a
within the blocks. Therefore, several conduction mechanis
are possible in such samples: conduction by free electr
and hopping conduction between shallow chemical don
by electrons outside the Read cylinders and conduction
electrons trapped on dislocations over the system of dislo
tion grids in block walls.

It follows from Figs. 2 and 3 that the conductivity b
free electrons outside the Read cylinders~at T.8 K) de-
creases as the degree of straind increases. The exponentia
decrease in the concentration of free electrons as a func
of temperature promotes a decrease in the contribution

of

FIG. 4. Energy diagram of dislocation states in germanium according
Refs. 15 and 16. HereNE is the density of states,D150.07 eV, D18
,0.03 eV,D1250.18 eV,D250.49 eV.
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this conductivity at low temperatures. According to Ref.
the hopping conductivity among shallow donors with a co
stant activation energy~at T,6 K) in n-type germanium
with Nd52.531016cm23 also decreases with increasingd.

Since the dislocation conductivity inp- andp* -type ger-
manium is quite high in the range 22%,d,30% @s4.2.5
31023V21

•cm21 ~Ref. 3!#, a connected system of conduc
ing dislocation segments probably also forms inn-type ger-
manium at these values ofd. Taking these arguments int
account, we can assume that in the strained samples2–4 in
Fig. 2 and samples5–7 in Fig. 3 the conductivity forT,8
K, which falls off slowly with temperature, is attributable t
the motion of electrons trapped on dislocations in a conti
ous system of dislocation grids in block walls. It is disti
guished from the dislocation conductivity in thep- and
p* -type samples~see Ref. 3! by the significantly smaller
values ofs4.2 at similar values ofd and by the fact that it
arises at lower temperatures.

In a disordered system of dislocation grids generally
static conductivity is exponentially dependent on the conn
tivity of the dislocation segments.24 The very low values of
s4.2 (,1024V21

•cm21) in the samples from group II with
20,d,29%, which were deformed under the same con
tions as the samples from groups Ia and Ib, can be rega
as a manifestation of the influence of the connectivity of
dislocation system ons4.2. In fact, the motion of disloca-

tions in intersecting (111) and (111̄̄) planes during defor-
mation of the samples from groups Ia and Ib promotes

joining of dislocation grids lying in parallel (111) and (111̄̄)
planes into a single macroscopic dislocation grid penetra
the entire volume of the sample.

The connectivity of this system can probably be im
proved by annealing the strained samples at temperaturT
.Td , which promotes an increase in the area of the reg
grids.5,21,22 Preliminary investigations showed that after t
annealing of sample4 (p* -type, d545%) from Ref. 2 at
890 °C for 5 h the value ofs4.2 does, in fact, increase. There
fore, it can be assumed that the annealing of samples2 (d
520.9%) and3 (d521.5%) from group Ia at 800 °C pro
motes improvement of the connectivity of the system of d
location segments and an increase ins4.2 in them to values
comparable to those for samples5 and 6 from group Ib,
which have higher values ofd ~27.7 and 28.4%, respec
tively!. The influence of the small difference in the numb
of electrons in theE2 band in these samples is less sign
cant. On the other hand, since the connectivity of the dis
cation system increases as a function ofd, the sharp drop in
the value ofs4.2 in samples4 (d528%) and7 (d531%) in
comparison to samples3 and 6, respectively, is due to the
decrease in the concentration of electrons in theE2 band
with increasingd.

According to Refs. 25 and 26, the point defects a
polyatomic complexes appearing during the plastic deform
tion of germanium vanish after brief~for several minutes!
annealing at a temperatureT>700 °C. The bulk of the cop-
per ~one of the rapidly diffusing impurities in germanium! is
found near dislocations in the form of isolated precipitat
The latter bind some of the oxygen and, possibly, carb
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Therefore, the variation ofs4.2 in response to annealing or a
increase ind is caused, with a high probability, by chang
in the system of dislocation segments itself.

The existence of a considerable dislocation conductiv
in n-type germanium withNd<131016cm23 following in-
version of the type of conduction was associated in Re
with the appearance of a new structural element in the
viz., dislocation intersection sites~grid sites!. They belong to
the category of dislocation line defects to which kinks, ste
and impurity atoms in dislocation cores are also assigne
was theorized in Refs. 15 and 16 that the donor («1) and
acceptor («2) states of such defects are located below the
of the E1 donor band~Fig. 4!. Some of the unpaired elec
trons in dislocation cores pass into these states, and h
form in theE1 band. Each such hole is attracted to the ne
est negatively charged dislocation defect and localized n
it. The narrowE18 acceptor band was associated in Refs.
and 16 with just such dislocation defects.

For d,20% the concentration of dislocation defectsnd

is small (nd!Nd), all the E18 states are filled by electrons
the dislocation filling cutoff is located in theE2 acceptor
band~Fig. 4!, and the low-temperature conductivity is med
ated by electrons trapped on dislocations. If the value ofNd

is fixed andnd ~i.e., the number of acceptor states in theE18
band! is increased, the number of acceptors in theE2 band
decreases with increasingd as a consequence of the filling o
states in theE18 band, and ifnd;Nd , theE2 band is emptied.
This case probably corresponds to the minimum value ofs4.2

in Figs. 2 and 3. Whennd.Nd holds, the cutoff for filling of
the dislocation states shifts into theE18 band with resultant
inversion of the type of conduction and the appearance
hole-type dislocation conduction.3 It follows from Fig. 3 that
this occurs already for strained sample8 (d533.9%).
Therefore, at such values ofd the total concentration of dis
location defects exceeds 2.431016cm23. This conclusion is
consistent with the estimate of the possible concentration
dislocation defects obtained by another method. For
maximum dislocation density in the samples withd.30%
we take the valueND5531010cm22, which corresponds to
a concentration of unpaired electrons;1018cm23. Taking
into account that the filling factor of the dislocation states
p-type germanium equals 0.05,14 we obtain a concentration
of acceptor centers equal to 531016cm23.

The conducting cluster probably contains only some
the dislocation segments, i.e., the total number of disloca
holes is greater than the number of holes contributing to
dislocation conductivity. The concentration of the latter w
identified in Ref. 3 with the Hall numberph51/eR (R is the
Hall coefficient, ande is the charge of an electron!, which
was determined from measurements ofR in the dislocation
conduction region. The values ofph for sample 4 (d
536%) in Fig. 3 and sample7 (d539.3%) in Fig. 4 in Ref.
3 are equal to 431015 and 631015cm23, respectively, i.e.,
they are, in fact, lower than the estimated concentration
dislocation defects. However, the relation betweenph andR
for a percolation system of quasi-one-dimensional dislo
tion segments is unknown.

It follows from Fig. 3 that the dislocation conductivit
decreases as a function of temperature in thep* -type
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samples. It was established in Ref. 4 that the disloca
conductivity can be described by a dependence of the f
s(T);Ty over a very broad temperature range~0.01–40 K!
and that the values ofy decrease from 1.5 to 0.4 asd in-
creases from 30 to 43%. The values ofy for the samples
investigated in Ref. 3 decreased from 0.8 to 0.2 asd in-
creased from 22 to 39.3%. The valuesy50.35 and 0.23 are
obtained using such a description for samples8 and9 ~Fig.
3!. The disparity between the experimental values ofy for
samples with similar values ofd is due to the dependence o
this parameter on the deformation conditions. It was note
Ref. 3 that no difference between the empirical dependen
s(T)}Ty ands(T)} ln T can be traced fory,0.2 within the
experimental error for 4.2,T,20 K. If Ty is written in the
form exp(y ln T) and expanded in powers ofy ln T, it can
easily be shown that the values ofTy and 11y ln T for y
,0.2 are essentially indistinguishable in the temperat
range 4.2–20 K. It is known27 that a function of the form
11y ln T characterizes the conductivity of a two
dimensional degenerate electron gas~in the weak-disorder
limit ! with consideration of the quantum corrections in t
weak-localization and electron-electron interaction theo
and that the corrections themselves are considerably sm
than the value of the residual metallic conductivitys0 .

According to Refs. 28 and 29, the variation of the res
tivity of strongly plastically deformedp-type germanium in a
magnetic field in the temperature range 0.1–4.2 K follo
the laws characteristic of two-dimensional metallic system
This fact is not surprising, since the localization radius
unpaired electrons on dislocations (;10 Å) is much smaller
than the distance between dislocation segments in g
which are extended two-dimensional formations~see the fig-
ures in References 6, 22, and 23 and Fig. 1b!. Therefore, the
dislocation system in strongly plastically deformed samp
consists of macroscopic fragments of two-dimensional dis
cation grids joined in a specific manner. The lack of a te
perature dependence of the Hall coefficient in the disloca
conduction region atT,10 K ~Refs. 2 and 3! can be evi-
dence that the Fermi level is located within the dislocat
band. If the carriers are delocalized at the Fermi level,
conductivity along dislocation grids has a metallic charac
and the weak decrease in the dislocation conductivity a
function of temperature inp- andp* -type germanium can be
associated with the influence of the quantum corrections

We estimate the relative addition to the residual cond
tivity a5@s(T)2s0#/s05y ln T at 4.2 K for such a case
using the experimental values ofy presented above. Th
minimum valuea4.250.12 was obtained for ap-type sample
(d538% andy50.08), on which the magnetoresistance w
measured in Refs. 28 and 29. The additions tos0 for y
>0.2 are found to be larger (a4.2>0.28), and they increas
with decreasingd. Since macroscopic inhomogeneities in t
samples influence the manifestations of the quan
effects,30 the decrease in the connectivity of the dislocati
cluster with decreasingd probably has a significant influenc
on the character ofs(T) for T.4.2. Then, according to Ref
4, the plots ofs(T)}Ty with y,0.1 atT,30 K describe the
metallic state far from the metal–insulator transition, and
plots for y.0.2 characterize the conductivity of the disloc
n
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tion cluster as the classical metal–insulator transition is
proached. We note that in two-dimensional conducting ch
nels based on silicon and gallium arsenide31,32 the
logarithmic dependence ofs on T in the metallic region~at a
high concentration of free electrons! gives way to a power-
law dependence withy50.8 when the electron concentratio
decreases. This was regarded as a manifestation of the
rection to the logarithmic dependence in the next approxim
tion.

In this model the dislocation conductivity in thep- and
p* -type samples can be associated with the motion of d
calized holes, although the cutoff for filling of the dislocatio
states is located in theE18 band. ForND,107 cm22 the val-
ues ofnd are small (;1013cm23), and the hole states ar
positioned far from one another and are, in fact, localiz
Consequently, microwave conductivity is not observed
overcompensated samples.11 Whennd is increased to values
of the order of 1016cm23, the situation can change, becau
the dislocation defects are arranged in two-dimensio
grids, rather than distributed uniformly throughout the vo
ume. In heavily dopedp-type semiconductors the impurit
band merges with the valence band, if the mean dista
between acceptors is equal to twice the radiusr a of the hole
wave function~‘‘complete’’ overlap of the wave functions!.
For shallow chemical acceptors in germaniumr a585 Å
~Ref. 33!. The estimated value of the transverse radius of
wave functions of unpaired electrons and holes localized
dislocation defects, whose states are;0.1 eV above the top
of the valence band, is;10 Å. The binding energy of dislo-
cation holes to negatively charged defects depends on
defect potential and probably does not exceedD18 @D18
,0.03 eV~Refs. 3 and 5!#. If the distance occupied by hol
wave functions along a dislocation is of the same order
r a , then finding several kinks or steps on a dislocation s
ment with a length of;500 Å ~Refs. 3 and 5! is sufficient
for ‘‘complete’’ overlap of the wave functions of the loca
ized holes. Then the dislocation holes are delocalized a
consequence of the broadening of theE18 band and its merge
with the E1 band.

Negatively charged dislocation defects are scatter
centers for electrons in theE2 band and can lead to th
partial or complete localization of states in this band34

Therefore, the amplitude and character of the tempera
dependence of the electron conductivity along dislocat
grids can differ from those in thep- andp* -type samples at
equal values ofd. The narrowness of the temperature ran
precludes reliable determination of the character of the
pendence ofs on T in the n-type samples forT,8 K. It
follows from Fig. 3 for samples5 (d527.7%) and6 (d
528.4%) that the value ofs4.2 (;1023V21

•cm21) is, in
fact, significantly smaller than the values4.254
31022V21

•cm21 in the p-type (d527%, Na52
31012cm23) and p* -type (d529%, Nd5131016cm23)
samples from Ref. 3 prepared by the same method. Thu
a fixed value ofd (;28%) the value ofs4.2 depends onNd ,
if Nd is comparable to nd ~for 131016,Nd,2.4
31016cm23), while no such dependence is observed wh
Nd!nd .3

This finding, as well as the nonmonotonic variation
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s4.2 with d ~Fig. 3!, reflects the presence of a gap betwe
the donor and acceptor dislocation states. In this case d
cation conduction can be mediated by both electrons
holes. In this respect static conduction along dislocat
grids differs fundamentally from hole conduction on germ
nium bicrystal boundaries.18,19 The model of a boundary
composed of edge dislocations with unpaired electro
whose states are strongly localized and located in the vale
band, was used in the papers just cited. Inp-type crystals the
negative charge of dislocations which have trapped elect
from the valence band, is screened by the cloud of mo
degenerate holes in the valence band~the radius of the cloud
is about 30 Å!. When the misorientation angle between t
two parts of a bicrystal is large (u520230°), the distance
between neighboring dislocations amounts to 15–30 Å~Ref.
18!, the hole clouds overlap, and a two-dimensional condu
ing plane forms. The concentration of degenerate holes
termined from measurements of the Hall effect in bicryst
at low temperatures turned out to be fairly large (1012

21013cm23) and not dependent on the dopant concentra
whenNd , Na,231016cm23 ~Ref. 19!.

An energy spectrum of quasi-one-dimensional sta
with a gap can also be characteristic of states in a disloca
deformation potential. In the absence of dopants the st
near the bottom of the conduction band are then empty,
states near the top of the valence band are filled
electrons.17 The attempt which we undertook in Ref. 5
observe static dislocation conductivity along dislocati
grids in low-dopedn- andp-type silicon, in which there are
no dangling bonds of linear dislocation segments, was un
cessful.

We express our sincerest thanks to Yu A. Osip’yan,
V. Kveder, A. I. Kolyubakin, I. A. Ryzhkin, V. D. Shikin,
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some valuable comments, as well as I. I. Khodos for perm
sion to publish the photograph shown in Fig. 1b.
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Neutron-radiation analysis is used to investigate the subbarrier reflection of ultracold neutrons
from the surface of a titanium-stabilized Fe–Ni–Cr stainless steel. A significant selective
increase in the probability of neutron capture by nuclei of the medium in comparison to theory is
discovered. An explanation is given for the effect, which is associated with the existence of
titanium-containing clusters and structural defects that distort the form of the distribution of the
effective interaction potential between ultracold neutrons and the material surface. ©1999
American Institute of Physics.@S1063-7761~99!01201-9#
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INTRODUCTION

It was reported in a preliminary publication1 that theo-
retically unexpected enhancement of ultracold-neutron c
ture by the principal elements comprising 1Kh18N9T sta
less steel was discovered during an investigation of
subbarrier reflection of such neutrons from this material. F
ther study of the structural features of this steel using e
tron microscopy provided an explanation for the physi
mechanism of this enhancement as a manifestation of
cluster structure of the material, which causes the chara
of ultracold-neutron capture to differ from the simple mod
of this interaction for a homogeneous multielement mediu

For a medium containing several (q) elements uniformly
distributed throughout the volume with the relative nucle
concentrationsci , it is known that the total probability of the
interaction of ultracold neutrons with the surface is equa
the sum of all the partial probabilitiesmc

i of capture by each
specific element of the medium and the inelastic scatte
probability m ie :

m5m ie1(
i 51

q

mc
i , ~1!

where m ie5h ief (v) and mc
i 5hc

i f (v) are specified by the
relations

f ~v !52y22@arcsiny2yA12y2 #,

h ie5ks ie/4pb̄, hc
i 5ksc

i ci /4pb̄.

Here v is the neutron velocity,y5v/v lim , v lim5A2Elim /m
is the cutoff velocity of the medium,m is the neutron mass
Elim5h2Nb̄/2pm is the cutoff energy of the medium,N is
721063-7761/99/88(1)/7/$15.00
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the number of nuclei per unit volume,b̄5( i 51
q cibi is the

coherent scattering length averaged over the atomic com
sition of the medium,k is the wave number,s ie is the in-
elastic scattering cross section, andsc

i is the capture cross
section of thei th element averaged over its isotopic comp
sition.

Experimental testing of the theory of the interaction
ultracold neutrons with a medium in the presence of subb
rier reflection became possible following the appearance
neutron-radiation analysis for ultracold neutrons.2 In the
present work this method was used to study the interactio
ultracold neutrons with stainless steel both with capture
with inelastic scattering.

A diagram of the setup is shown in Fig. 1. The samp
under investigation was irradiated by ultracold neutrons i
cylindrical stainless steel vessel of length 112 cm and dia
eter 8.8 cm. The sample, which was prepared fr
1Kh18N9T stainless steel, was an electropolished foil
thickness 200mm in the form of a spiral of width 10 cm and
external diameter 8 cm with a total areaS53120 cm2.

Neutrons from an ultracold-neutron source entered
vessel along a vertical neutron guide through an entra
diaphragm with an aperture having an areaS050.785 cm2 or
through the entire cross section of the vessel when the
phragm was removed. The velocity spectrum of the ultrac
neutrons in the vessel was concentrated in the range fro

to 4.4 m/s with a mean velocityv̄53.8(2) m/s. The flux
density of ultracold neutrons in the vessel and at its entra
was measured by three gas proportional detectorsD1 , D2 ,
andD3 , to which the vessel is exposed through apertures
areaS0 . Theg rays appearing on the sample surface in co
© 1999 American Institute of Physics
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FIG. 1. Diagram of the setup:1 — entrance Al foil,2
— vertical neutron guide,3 — rod for moving the
entrance diaphragm,4 — inlet chamber,5 — mov-
able entrance diaphragm,6 — lead shielding,7 —
10B converter,8 — jacket with a heating element an
a heat shield,9 – sample,10 — vessel for ultracold
neutrons,11 — heating element,12 — annealing
chamber,13 — rod for moving the sample,14 —
vacuum valve,15 — Ge detector,D1 , D2 , D3 —
ultracold-neutron detectors.
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junction with ultracold-neutron capture were detected b
Ge(Hp) detector made from ultrapure Ge with a resoluti
of 2 keV at ag-ray energy of 1 MeV. Inelastically scattere
ultracold neutrons were detected using a10B converter of
thickness 1 cm positioned between the vessel and the
trance window of the detector. A7Li nucleus forms in an
excited state with probability 0.96 in the reactionn110B
5a17Li and emits 477 keVg rays, which are picked up by
the detector.

When the background was measured or the sample
degassed, the latter was withdrawn from the vessel
moved to a special chamber, which was separated from
vessel by a vacuum valve. The residual pressure in the ve
was maintained at 2310252531026 Torr, and the residua
pressure in the chamber was'1023 Torr.

When the total loss coefficient was measured, ultrac
neutrons entered the vessel through the diaphragm.
counting ratesj 1 , j 2 , and j 3 of detectorsD1 , D2 , andD3

were used to determine the quantity

m̄S1m̄ tSt5
2~ j 122 j 22 j 3!S0

j 21 j 3
, ~2!

wherem̄ andm̄ t are the total loss coefficients averaged ov
the ultracold-neutron flow for the sample surface and
vessel, respectively, andSt is the surface area of the vesse
The value ofm̄ tSt was determined with the sample with
drawn from the vessel. The value ofm̄ for the sample was
calculated from the results of two measurements by a dif
ence method.

To measure the inelastic scattering probability and
partial capture coefficients of ultracold neutrons, the d
phragm was removed so that they would enter the ve
through the entire cross section. The inelastic scatte
probability averaged over the neutron velocity spectrum w
defined as

m̄ ie5
2 j ieS0«

~ j 21 j 3!S« ie
, ~3!

where j ie is the pulse counting rate in the total absorpti
peak of 477 keVg rays, « ie is the detection efficiency o
ultracold neutrons that are inelastically scattered on
sample surface and manifested inj ie , and« is the detection
efficiency of ultracold neutrons that have passed through
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entrance apertures of the detectors. The ratio« ie /« was de-
termined in an additional measurement with a polyethyle
reference sample.

The probability of ultracold-neutron capture by thei th
element averaged over the flow was defined as

m̄c
i 5

2 j i~E!«S0

~ j 21 j 3!b i«g~E!S
, ~4!

where j i(E) is the counting rate in the total absorption pe
of g rays with energyE, b i is the yield of quanta with
energyE per neutron capture act for a natural mixture
isotopes of thei th element, and«g(E) is the detection effi-
ciency of g rays with energyE emitted from the sample
surface. The energy dependence of the ratio«g(E)/« was
determined by additional measurements using polyethyle
titanium, and aluminum reference samples.

The measurements were performed after chemical cle
ing of the sample surface by etching in H3PO4 and vacuum
annealing at about 1000 K for 2 h. Figure 2 presents fr
ments of theg-ray spectrum. Total absorption peaks of 4
keV and 2.22 MeVg rays, which are produced by the in
elastic scattering and capture of ultracold neutrons on sur
hydrogen, can be seen in the spectrum. The spectra obta
were treated with allowance for the externalg background
and theg background caused by the interaction of ultraco
neutrons with the vessel surface.

The measurements yielded the following values:m̄

56.44(57)31024, m̄ ie51.57(26)31024, and m̄c
H

52.2(3.8)31026. There is a difference between the tot
(m̄) and summed (m̄ ie1m̄c

H) probabilities, which equals
( i 51

q m̄c
i 54.85(62)31024 and specifies the total probabilit

of ultracold-neutron capture by elements other than h
rogen.

Direct measurements of the partial capture probabilit
were performed at the most intenseg transitions for
ultracold-neutron capture by Fe, Ni, Cr, and Ti nuclei. F
comparison with theory, the values of the parametershc

i

5m̄c
i / f (v) were determined from the values ofm̄c

i obtained
in the approximationf (v)5 f ( v̄)50.96. The results are pre
sented in Table I. It can be seen from the table t
( i 51

4 m̄c
i 54.99(18)31024, which is consistent with the in-

dependent data obtained from measurements ofm̄, m̄ ie , and
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m̄c
H . A comparison of the experimental and theoretical v

ues ofhc
i reveals that the experimental capture probabilit

are considerably higher than the theoretical values. This
crease has a selective character and is most pronounce
titanium.

The observed enhancement cannot be attributed to a
sible admixture in the spectrum of ultracold neutrons w
v>v lim56 m/s, which could increase the partial captu
probabilities as a result of the above-barrier penetration
ultracold neutrons into the bulk of the sample. Control m
surements for a copper sample withv lim55.65 m/s showed
that the experimental value ofm̄c

Cu exceeds the theoretica
value by no more than a factor of 2–2.5. While this upwa

FIG. 2. Fragments of theg-ray spectra for the irradiation of a sample b
ultracold neutrons;n — number of pulses from theg detector in relative
units.

TABLE I. Results of measurements ofm̄c
i andhc

i .

Element Ni Ti Fe Cr

m̄c
i 3104 0.83~10! 1.23~4! 1.74~10! 1.19~9!

hc
i 3104, experiment 0.86~11! 1.28~5! 1.81~11! 1.24~10!

hc
i 3104, theory 0.128 0.014 0.60 0.207

Exp./theor. ratio 6.7 91 3 6
Dhc

i 3104 0.73~11! 1.27~5! 1.21~11! 1.03~10!
-
s
n-
for

s-

f
-

deviation can be associated with the penetration of neutr
with v.5.65 m/s into a copper sample, this effect will b
weaker for stainless steel and can only partially account
the increase in capture on Fe, but has little effect on
observed enhancement for other elements.

Such enhancement might appear if there is a la
strongly enriched with titanium on the surface. Sinceb̄,0
holds for titanium, in such a model the potential at the s
face has the form of a potential well in front of a positiv
potential jump of heightElim . Considerable enhancement
ultracold-neutron capture on titanium nuclei would be po
sible in this case. To test this possibility, atomic analysis w
performed within the sample and in its surface layer us
~1! bulk neutron-radiation analysis,~2! x-ray fluorescence
analysis at a depth of 50mm, ~3! an x-ray spectral electron
probe microanalyzer at a depth of 1mm, and ~4! an x-ray
photoelectron spectrometer at depths<10 nm. The results
are presented in Table II. According to the data obtained
methods~1!–~3!, the content of the principle elements co
responds to 1Kh18N9T steel, for whichhc

i was calculated.
No tendency for an increase in the Ti content is observed
the thickness of the layer being analyzed is decreased. M
over, when the thickness of the layer is on the order of
wavelength of ultracold neutrons, the absolute content o
and the other elements of the stainless steel is less than
bulk value because of oxygen, carbon, and hydrogen ato
to which method~4! is not sensitive. In addition, the rati
between the concentrations of Ti, Fe, Ni, and Cr correspo
to the bulk ratio.

The small value of the mean concentration of titaniu
on the surface did not rule out the possibile existence
regions where it is localized with an increased content. T
raised the hypothesis that titanium forms clusters emerg
on the surface, whose dimensions are greater than the w
length of ultracold neutrons. Then neutrons freely pass i
these clusters, move about in them, and are reflected f
the boundaries until they are captured or escape back into
vacuum. If the clusters contain some Fe, Ni, and Cr nuc
ultracold neutrons will also be efficiently captured by the

To test this hypothesis, we investigated the structu
features of 1Kh18N9T steel using electron microscopy.
JEOL-100CX transmission electron microscope and a DS
960 digital scanning electron microscope equipped with
x-ray spectral analyzer were used. Thin samples with
‘‘translucent’’ thickness (,2000 Å) were prepared electro
lytically in an aqueous solution of sulfuric and orthopho
phoric acid at room temperature.

Figure 3 presents photomicrographs of the same port
of a sample surface obtained using the DSM-960 dig
scanning electron microscopy in various regimes: in seco

TABLE II. Results of the atomic analysis of the samples.

Element Ti Fe Ni Cr Si C O

Content, at. %, method~1! 0.7 70.6 8.7 20.0 2 2 2

Content, at. %, method~2! 0.6 70.7 8.3 20.4 2 2 2

Content, at. %, method~3! 0.7 69.5 8.5 19.7 1.6 2 2

Content, at. %, method~4! 0.3 32.4 4.2 11.3 2 28.8 23.0
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ary electrons~a!, in characteristicKa Ti radiation~b!, and in
back-reflected electrons~c!. Figure 3a reflects the surfac
relief and reveals the existence of second-phase inclus
~clusters! emerging on the surface with dimensions up
9 mm. Figure 3b attests to the presence of an appreci
amount of titanium in the composition of the clusters. Figu
3c shows that the clusters contain an element with a sm
value ofZ ~probably carbon!, which provides for good con

FIG. 3. Photomicrographs of a portion of the surface of a sample
1Kh18N9T steel obtained using a DSM-960 digital scanning electron
croscope in various regimes: a — in second electrons, b — in characteristic
Ka Ti radiation, c — in back-reflected electrons.
ns

le
e
ll

trast between these clusters and the matrix of iron, nic
and chromium. Estimation of the surface density of clus
outcrops with linear dimensions greater than 1mm from a
series of photographs showed that it is equal to (226)
3104 cm22. The characteristic dimensions of the clust
outcrops vary from 1 to 9mm with a mean value of 3mm.

Figure 4 presents photomicrographs of the structure o
sample obtained using the JEOL-100CX transmission mic
scope on regions with a very small thickness~2000 Å!. A
group of small clusters measuring from 300 to 1000 Å can
clearly traced in Fig. 4a. An analysis of photomicrographs
different regions of the sample showed that the diamete
the small clusters varies in the range 150–1500 Å, that
mean diameterd equals 400 Å, and that the bulk densi
n51.7(5)31014cm23. When the diffraction patterns ob
tained from the small clusters were calculated, the value
the interplanar distances for the second-phase inclus
forming them were found to essentially coincide with t
tabulated values for titanium carbide TiC~Table III!.

A large precipitate with characteristic dimensions of 2
mm, which is assigned to a group of large titanium
containing clusters, was discovered on one of the translu
areas of the sample~Fig. 4b!. Thus, two groups of titanium-
containing clusters of different size, which are uniformly d
tributed throughout the volume of the sample, were disc
ered in it. It is known that titanium can be present
1Kh18N9T steel in the form of small carbide precipitate
whose formation has a thermodynamic character. Their s

f
i-

FIG. 4. Photomicrographs of the structure of a sample obtained usin
JEOl-100CX transmission electron microscopy: a — group of small clus-
ters, b — large cluster.
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number, and distribution in the structure of the metal
determined by the annealing temperature and time of
steel part. In addition, titanium can be present in the form
metallurgical inclusions of various composition, which for
during the smelting and preparation of the steel. One cha
teristic feature of these inclusions is their dimensions, wh
usually exceed several microns. Apparently, just such in
sions are observed in Figs. 3 and 4b as clusters with cha
teristic dimensions greater than 1mm.

The density of titanium carbide is 4.92 g/cm3, and the
scattering lengths of carbon and titanium are equal to 0
310212cm and20.34310212cm, respectively. The cutof
energy Elim

TiC54.131028 eV, which is appreciably smalle
than the cutoff energy of the stainless steelElim

ss 51.8
31027 eV. Therefore, the clusters emerging on the surf
deform the distribution of the effective potential for the i
teraction of ultracold neutrons with the surface. Neutro
with an energyE.Elim

TiC can penetrate a cluster, move abo
in it, and be reflected from its walls until they are captured
escape back into the vacuum. If the diameter of the clu
appreciably exceeds the wavelength of ultracold neutr
(l.900 Å), neutron capture will occur mainly on titanium
nuclei.

In the classical approach the excess loss coefficientDmc
Ti

due to ultracold-neutron capture by titanium nuclei in clu
ters having an outcrop on the surface can be represente
the form

Dmc
Ti5W1WpWc ,

whereW1 is the probability that ultracold neutrons strike th
outcrop cross section of a cluster,Wp is the probability that
they penetrate into the bulk of a cluster, andWc is the prob-
ability of ultracold-neutron capture by titanium within a clu
ter. The bulk density and real diameter of a group of sm
clusters were determined from transmission photograp
Since the mean outcrop cross-sectional area of the cluste
pd2/6 and the number of clusters emerging on a surface
unit area equals 2dn, we haveW15pd3n/3. The densityr
of cluster outcrops on the sample surface and the mean
ameter of these outcropsd̄ were determined for the larg
clusters. In this caseW15pd̄2r/4. To estimateWp we as-
sume that the ultracold-neutron flow has a Maxwellian sp
trum, F(E)}E from 0 to Emax51027 eV, which roughly
corresponds to the conditions of the experiment. Only ul
cold neutrons with a normal velocity component greater th
v lim

TiC penetrate a cluster. If we neglect the quantum effect
the reflection of ultracold neutrons due to the potential ju
at the entrance to a cluster, the value averaged over the s

TABLE III. Tabulated and experimental values of the interplanar distan
dhkl for titanium carbide.

hkl dhkl , tabulated dhkl , exptl.

111 2.49 2.30
200 2.15 2.10
220 1.52 1.49
311 1.30 2

222 1.245 1.22
e
e
f
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trum and isotropic distribution of the ultracold-neutron flo
is Wp5(12Elim

TiC/Emax)
250.35. Inside a cluster the mean v

locity for the ultracold-neutron flow decreases tov
52.7 m/s, since the spectrum of the flow takes on the fo
F(E)}E from 0 to Emax50.5931027 eV. The mean free
path of the ultracold neutrons before escaping from a clu
can be estimated as being of order 2d. Hence for the small

clustersWc52dNTisv th / v̄, wheres55.9 barn is the cross
section for the capture of neutrons with a velocityv th

52200 m/s by titanium andNTi5531022cm23 is the num-
ber of titanium nuclei in a unit volume of TiC. For the larg

clusters Wc.2.5d̄NTisv th / v̄. The value of Dmc
Ti

.d4nNTisv th / v̄, which is due to the existence of the grou
of small clusters, equals (1.0560.32)31025. Despite the
roughness of the estimate, it can be seen that the existen
the small clusters makes only a 10% contribution to the
lective enhancement of capture on titanium.

It should be noted that the closed small clusters are s
lar to pores in a material, in which bound states of ultrac
neutrons are possible.3,4 If the energy of the ultracold neu
trons equals the resonance value, a neutron can penetr
pore with a high probability, increasing the probability
losses. However, evaluation of the volume fraction occup
by small clusters in the sample material shows that this ef
makes only an insignificant contribution to the observed
hancement.

Evaluation of the excess capture probabilityDmc
Ti asso-

ciated with the penetration of ultracold neutrons into t

large clusters gives Dmc
Ti.d̄3rNTisv th / v̄5(1.323.9)

31024. This value shows that the large titanium carbi
clusters cause the required enhancement of ultracold-neu
capture by titanium nuclei.

The enhancement of capture by other elements in
steel~Fe, Cr, and Ni! could be associated, in principle, wit
their presence as impurities in the titanium carbide clust
However, according to the literature data, the atomic conc
tration of these elements in second-phase precipitates of
is extremely small.5 This is clearly seen on a qualitative lev
in Fig. 5, which shows photomicrographs of a sample surf
with several large clusters obtained using the scanning e
tron microscope in secondary electrons~a!, as well as in
characteristicKa Ti radiation ~b! and characteristicKa Cr
radiation~c!. The clusters appear as sharply contrasted d
spots superposed on the light field~Fig. 5c! produced by the
characteristic radiation of Cr in the matrix, where its conce
tration is equal to 18%. This is evidence that the concen
tion of Cr is considerably smaller in the clusters than in t
matrix. Since the cross sections for neutron capture by
Cr, Ni, and Ti are comparable, the titanium-containing clu
ters can make only an insignificant contribution to the o
served excess capture of ultracold neutrons by these nu

A somewhat different mechanism for enhancement
ultracold-neutron capture by these nuclei, which is asso
ated with the presence of phase boundaries between th
dividual grains of the stainless steel matrix, is possible
principle. Phase boundaries can be clearly seen in Fig
which presents a typical photomicrograph of the surface
lief of a sample obtained using the DSM-960 scanning el

s
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tron microscope in secondary electrons. An analysis of s
eral such photographs showed that the mean grain diam
is 10 mm. It was established in Ref. 6 for 12R72 Fe–Cr–
steel with a titanium content of 0.52 wt. % using electro
microscopic methods that the maximum titanium concen
tion near the grain boundaries reached 7.7 at. % after s
dard heat treatment. The width of the enrichment zone
2000 Å, and the region occupied by grain-boundary prec

FIG. 5. Photomicrographs of a sample surface with several large clu
obtained using a digital scanning electron microscope: a — in secondary
electrons, b — in characteristicKa Ti radiation, c — in characteristicKa Cr
radiation.
v-
ter
i
-
-
n-
s

i-

tates measured 500 Å. Thus, the probabilityW1 of ultracold
neutrons striking an enrichment region is fairly high and c
amount to 0.04. It is also known that holding austenitic sta
less steel at 550–650 °C can lead to the precipitation of ch
mium carbides on the grain boundaries.7 The increase in the
concentration of titanium and chromium in grain-bounda
regions adjacent to the surface can be promoted by the
celerated diffusion of carbon along grain boundaries aw
from the sample surface~Table II!. Since chromium has a
comparatively small scattering length (bCr50.35
310212cm, bNi51.03310212cm, and bFe50.95
310212cm), a rise in the relative concentration of Ti and C
in the intergrain regions can lower the value of the cut
energy in comparison to the cutoff energy of the matrix. T
same effect can be produced by an elevated hydrogen
centration in the intergrain regions, whose presence on
surface follows from the measurement results.

If some of the ultracold neutrons can pass into the int
grain regions and be captured, the excess values of the pa
capture probabilitiesDhc

i will be proportional toNcisc
i . The

experimentally observed ratio between the values of the
cess capture of ultracold neutrons by Fe, Cr, and Ni nu
requires that their atomic concentrations be in the ra
2.9:2.0:1.0, which givesb̄5( i 51

q cibi50.75310212cm.
The corresponding effective interaction potential of ultraco
neutrons is lower than the potential of the matrix; therefo
the observed enhancement of capture can take place.
cutoff energy of such a medium is determined by the num
density of nuclei, which is no higher than the number dens
of nuclei in the grains, and thereforeElim is at most 1.5
31027 eV. Thus, the intergrain regions can also be regio
of reduced effective potential, which extend into the sam
to a depth on the order of 10mm or more.

The estimate ofElim obtained is above the edge of th
ultracold-neutron spectrum (131027 eV), but the spectrum
contains an admixture of ultracold neutrons with a high

rs

FIG. 6. Typical photomicrograph of the surface relief of a sample obtai
using a DSM-960 electron microscope in secondary electrons. The m
grain diameter is;10mm.
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energy, as is indicated by control measurements with a c
per sample. If the relative fraction of ultracold neutrons w
E.1.531027 eV in the spectrum is 10%, the probability o
their reflection from a grain boundary equals 0.9, and
probability of their absorption in the intergrain space is clo
to 1, then the excess probability of losses as a result of c
ture by Fe, Ni, and Cr nuclei can be of order 431024, which
is sufficient for explaining the observed enhancement.

Thus, the observed selective enhancement of cap
does not contradict the existing theory of the interaction
ultracold neutrons with a multielement medium. Its occ
rence indicates only that detailed information regarding
nuclear composition of the surface and its structure is nee
to analyze experimental data and compare them with the
The presence of localized regions having an increased
centration of elements with a negative or small positive sc
tering length and dimensions greater thanl in the medium
can result in deformation of the effective interaction pote
tial of ultracold neutrons.

We thank H. Just for assisting in the performance of
experiment, A. K. Churakov for providing the program f
treating the gamma spectra, and S. A. Teterin for perform
the atomic analysis of the samples.
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Search for low-energy upscattering of ultracold neutrons from a beryllium surface
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Zh. Éksp. Teor. Fiz.115, 141–148~January 1999!

We present results of a search for anomalous low-energy upscattering of ultracold neutrons from
a beryllium surface. This upscattering is considered one for the possible reasons for UCN
‘‘disappearance’’ from very cold beryllium bottles, as observed in experiments. The indium foil
activation method was used to measure a very low intensity flux of upscattered UCN. The
~15–300! m/s velocity range of upscattered UCN is ruled out by these measurements at a
confidence level of 90%. ©1999 American Institute of Physics.@S1063-7761~99!01301-3#
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1. INTRODUCTION

There exists the well-known and long-standing puzzle
ultracold neutron~UCN! storage times in closed volumes,
equivalently, of anomalous losses of UCN upon reflect
from the inner surfaces of UCN traps. The most surprisin
large discrepancy between experimental and predicted
coefficients is observed in the most promising materials
long UCN storage times: cold beryllium1,2 and solid
oxygen.3 The anomaly consists of an almost temperatu
independent~in the temperature range 10–300 K! wall loss
coefficient (;3•1025), corresponding to an extrapolated i
elastic thermal neutron cross sections* ;0.9b. This experi-
mental figure for Be is two orders of magnitude higher th
the theoretical one, the latter being completely determine
low temperatures by neutron capture in Be~0.008b!. The
experiment/theory ratio for a very cold oxygen surfa
reaches three orders of magnitude.3 Approximate universal-
ity of the loss coefficient for beryllium and oxygen, and t
temperature independence of the Be figures, forces on
suspect a universal reason for this anomaly.

A series of experiments to find the channel by whi
UCN leave the trap are described in Ref. 2. None of
suspected reasons has been confirmed: surface contamin
by elements with large absorption cross-sections; penetra
of UCN through possible micro-cracks in the surface lay
of Be, hypothetical milliheating of UCN due to collision
with a low-frequency vibrating surface; upscattering of UC
due to thermal vibrations of the wall nuclei. The latter ite
deserves special and more careful consideration.

According to the description of the experiment in Ref
~a subsequent conclusion2 about the absence of UCN upsca
tering from the beryllium surface at liquid nitrogen tempe
ture is based entirely on that experiment!, upscattered neu
trons passed through 1.5 mm of copper, 1.1 mm of stain
steel, and 2 mm of Al prior to entering the neutron detec
For an isotropic distribution of upscattered neutrons, t
means that the detection efficiency of upscattered neut
with energies of 0.5 meV was less than 0.2, and decrease
791063-7761/99/88(1)/5/$15.00
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lower neutron energies. The reported2 upscattering cross
section of UCN from a beryllium surface at a surface te
perature of 80 K was 0.14b with an uncertainty of 30%, so
is quite possible that UCN upscattering takes place to
energy range below 1 meV. This hypothesis is consist
with the observed temperature independence2 of anomalous
losses of UCN if the vibrations causing this upscattering
not thermal in nature. The frequency of these vibratio
~possibly surface waves! is in the range 108– 1012Hz. From
a purely experimental point of view~without going into any
hypotheses about the reasons for UCN anomalous los!,
this low-energy upscattering channel is almost the only o
that has not yet been investigated with conclusive results

Additional qualitative considerations favoring possib
high-frequency surface sound wave UCN upscattering co
from the rough coincidence of the typical surface roughn
correlation length T;300– 500 Å, UCN wavelengthl,
which is close to these values, and the possible surface so
wavelength. This coincidence may, in principle, increase
UCN upscattering probability due to some kind of «res
nance». If the surface sound velocityc.105 cm/s then the
upscattered neutron energyE5hc/l.1024 eV, which is
just outside of the investigated energy range.2

Recently, results have been published5,6 describing
searches for UCN upscattering from a beryllium foil surfa
in which gas counters were used for upscattered neutron
tection. According to Ref. 5, the total~to the energy range
(1027– 1022)eV) reduced upscattering cross-section w
(060.2)b at liquid nitrogen temperature, and (060.3)b at
room temperature. The first result is consistent with the ea
data,2 but the second is in serious disagreement with
previous results. The authors of Ref. 5 point out that th
figures are not final, and that ‘‘these values were obtain
after the subtraction of the large background from the t
walls and separating foil and it is necessary to increase
accuracy of measurements to establish these values.’’

In contrast, Refs. 6 and 7 give quite different figures
the upscattering loss factor upon UCN reflection from a
surface: (1.4760.15)•1024 and (1.3960.18)•1024 for two
© 1999 American Institute of Physics
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different beryllium samples at room temperature, and (
60.3)•1025 and (1.760.2)•1025 at liquid nitrogen tem-
perature for the same two beryllium samples.

According to the usual formalism with which UCN in
teraction with a surface is considered, the UCN reflect
probability as a function of the normal component of t
neutron momentump' is

w52h•x/A12x2, x5p' /pbound.

The loss factor is

h5Im b/Reb, Im b5s inel/2l,

whereb is the coherent scattering length of the wall mater
pbound52\(pNb)1/2 is the boundary momentum of th
UCN, characterizing the reflecting wall, ands inel is the total
cross-section of all inelastic UCN interaction processes w
the wall surface.

Using the above relations, it is easy to obtain from Re
6 and 7 the thermal neutron energy inelastic scattering c
sections for the two beryllium samples,s inel52lh Reb:
(4.160.4)b and (3.960.5)b for the room-temperatur
samples, and (0.7360.08)b and (0.4860.06)b for the liquid
nitrogen temperature samples.

It is seen from the above that the results in Refs. 2, 5
and 7 are mutually inconsistent.

For the sake of completeness, it is necessary also
mention measurements8 of the UCN upscattering probability
to the thermal energy range from the surface of a roo
temperature beryllium foil after different high-temperatu
procedures: 18.5•1024 before any heating of the sampl
3.9•1024 after heating at the 450 °C, 4.1•1024 after heating
at 700 °C with subsequent 5-min exposure to atmosph
air, and 2.2•1024 after heating at 700 °C in vacuum.

Taking into account that according to Ref. 8 the me
velocity of the stored UCN was measured to be.3.2 m/s, it
is possible to transform these figures into the roo
temperature neutron upscattering cross-sections if we ass
that the imaginary part of the wall potential can be attribu
to this cross-section according Eq.~1!. This procedure yields
for the reduced upscattering cross-sections for the cases
tioned above 76, 16, 17, and 9b respectively, per atom of
wall. These and the previous2,5,6,7 figures for the reduced
upscattering cross-section lead to unrealistically high c
centrations of hydrogen in the surface layer of wall if w
take into account that the reduced UCN upscattering c
section per hydrogen atom at room temperature is.~7–8!b.
It means that the usual procedure that relates the upscatt
cross-section to the imaginary part of the wall potential
means of Eq.~1! is incorrect, and can only serve to compa
the results of different experiments.

The authors of Ref. 9, which used neutron-induced
diation analysis for the investigation of UCN interaction wi
beryllium samples, did not find any neutron-capture gamm
radiation from beryllium nuclei. From this fact they con
cluded that anomalous upscattering with reduced cro
section 0.9b~Gatchina anomaly! can not yield upscattere
neutrons with velocity less than;70 m/s in the final state
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From this follows a lower bound on the velocity range of t
upscattered neutrons:v.70 m/s ~with no indicated confi-
dence level!.

2. EXPERIMENTAL METHOD

The measurements were performed at the test chann
the UCN turbine source at the Institut Laue–Langevin.10 The
irradiation scheme is shown in Fig. 1.

Ultracold neutrons enter the stainless steel cylindri
chamber1 (f560 mm, wall thickness 0.5 mm! through the
vertical stainless steel neutron guide2 ~height 120 cm!, and
rebound from the surface of the specimen3, made of alumi-
num foil covered with a beryllium layer~film thickness
(2 – 3)•103 Å). The specimens had the form of a corrugat
ribbon rolled into a spiral with an overall area~two sides! of
;0.5 m2 or ;0.25 m2. The upscattered neutrons leaving t
trap penetrate the cylindrical stack of indium foils surroun
ing the tube and activate them with an activation cro
section that conforms an inverse velocity law. The indiu
foils were 5–50mm thick and were manufactured by mea
of electrolytic deposition on the surface of 10mm copper
foil. The homogeneity of the In thickness was thorough
verified by cutting the test foils into numerous small spe
mens and weighing them, and was found to be better t
5%. The density of the UCN flux in the trap was calibrat
by means of the activation measurement of the flux of
scattered UCN from small polyethylene samples located
the center of the irradiation chamber, and monitored wit
3He proportional counter5 located after the UCN trap an
connected to the trap by a vertical neutron guide6 through a
small ~0.5 cm2! hole. The UCN flux at the beryllium sampl
measured in this way was.40 cm22 s21.

The efficiency of the UCN detector in the geometry
the experiment was simulated by the Monte Carlo meth
under various assumptions about the probability of diffu
UCN reflection from the neutron guide walls between t
small hole and the membrane of the detector. The result
this simulation show almost constant~.90%! efficiency in
the UCN energy interval of interest, 0–150 neV.

With the known efficiency of the UCN detector it i
possible to determine from these measurements the effe
areas of the polyethylene samples and to compare them
the actual ones. Figures 2 and 3 show the results of

FIG. 1. The layout of an experiment to search for the low-energy ups
tering of UCN from a Be surface.1—Vacuum stainless steel chambe
f6030.5 mm. 2—Vertical UCN guide f6030.5 mm, height 12 cm.
3—Rouleau of aluminum foils with beryllium deposition.4—Cylindrical
stack of In foils. 5—Detector of UCN (3He proportional counter!.
6—Vertical UCN guidef6030.5 mm, height 60 cm.7—Shielding~borated
polyethylene!.
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activation measurements of indium stacks for two polyeth
ene samples with surface areas of 5.3 and 8.8 cm2.

The response function of the activation of the stack
indium foils was calculated by the Monte Carlo method. T
upscattered neutrons were assumed to emerge from th
scatterer isotropically, having their starting points on the s
face of the Be spiral. Reflection and absorption of upsc
tered neutrons along their trajectories were rigorously ta
into account.

Detailed results of these simulations will be publish
elsewhere.11

Activity of the In foils was measured with a high effi
ciency ~;70%! 4p scintillation b-counter with active~4p
plastic anticoincidence counter! and passive~lead! shielding.
The area of the In foils whose activity was measured sim
taneously was;200 cm2. The counter background was abo
1.05 s21 in these measurements. The counter efficiency w
carefully measured for different thicknesses of irradiated
and Cu foils. A description of the counter and results of
calibration will be published in Ref. 11.

This method of measuring slow neutron spectra via
tivation of a stack of In foils was calibrated by irradiating th
stack with a beam of monochromatic thermal neutro
or a precisely measured~time-of-flight method! quasi-
Maxwellian spectrum of cold and thermal neutrons. T
measured and calculated distributions of foil activity alo
the stacks were in good agreement.

FIG. 2. Activation of the stack of indium foils as a result of UCN upsc
tering from polyethylene scatterers with surface area: line1—8.8 cm2; line
2—5.3 cm2; line 3—the empty stainless steel chamber.

FIG. 3. Measured effective polyethylene sample area obtained from ind
foil activation measurements as a function of the polyethylene scat
surface area.
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In the absence of low-energy anomalous upscatter
UCN acquire energy from the thermal vibrations of the b
ryllium lattice, and with higher probability, from vibration
of surface contaminants~mostly hydrogenous!. The spectrum
of the upscattered neutrons has a «thermal» character, b
is not known. Information about the spectrum of possib
‘‘anomalous’’ upscattering is even more obscure. Therefo
In foil activity measured as a function of position in the sta
~thickness coordinate! was approximated under the very ge
eral assumption that the spectrum of upscattered neut
consists of two Maxwellian flux components, one wi
v th52.2•105 cm/s ~‘‘normal’’ upscattering from room tem-
perature Be! and the other with lowv0 , the latter being
chosen in the range 10–300 m/s~anomalous upscattering!.

The overall thickness of the indium stacks did not e
ceed 250mm in our measurements, (ns;0.3 for the isotro-
pic thermal neutron flux!, so the accuracy of the upscattere
thermal neutron spectrum is not high. But it was demo
strated by rigorous Monte Carlo simulation11 that it is pos-
sible not only to distinguish the low energy component of t
upscattering from the high thermal background, but also
carry out rough spectrometry of this low-energy part of t
spectrum.

Figure 4 demonstrates some results of the computer
dium stack «activation experiment» and restoration of
incoming spectrum of upscattered UCN under the assu
tion that the spectrum consists of two Maxwellian flux com
ponents, one withv052.2•105 cm/s and the second one wit
v05104 cm/s, the latter had a weight 1/20 of the former.

The results of computer ‘‘activation’’ of the indium foi
stack before the restoration procedure were statistic
Gaussian-distributed with a standard deviation of 5%
each foil. It can be seen that the method is able to reconst
with high confidence the small low energy-admixture to t

m
er

FIG. 4. Results of computer indium foil stack ‘‘activation experiments
~solid curves! and subsequent restoration of the incoming upscattered n
trons spectra~in relative units! under the assumption that the spectrum co
sists of two Maxwellian flux components: one withv th52.2•105 cm/s and
the other withv05104 cm/s, the latter had a weight 1/20 of the form
~dotted curves!. The results of computer ‘‘activation’’ of indium foil stack
before the restoration procedure were statistically Gaussian distributed
a standard deviation of 5% for each foil.
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intensive thermal background, but it is not dependable
extracting the thermal component of the spectrum from
indium activation data.

3. RESULTS AND DISCUSSION

Figure 5 shows the measured activity of irradiated
foils as a function of the thickness coordinate for two ber
lium samples with different areas.

In our measurements, we used the compact sur
sample with the enhanced area, so that the mean gap bet
the adjacent turns of our helical ribbon sample with a
;0.5 m2 was about 1 mm. In UCN upscattering how effe
tively is the full surface area of the sample used with su
narrow channels for UCN diffusion between the adjac
turns? Additional activation measurements were carried
with a sample of area;0.2 m2 with ;2.5 times larger gaps
between the adjacent turns. Figure 6, representing the m
sured indium stack activity as a function of sample surfa
aréa, shows good proportionality between area and activ
attesting to evidence of the uniform and effective UCN u
scattering over the full sample area.

The total measured flux of upscattered UCN from t
beryllium sample with area 0.5 m2 was.50 s21.

As mentioned above, this method has low reproduci
ity in extracting the spectrum of the thermal component
upscattered UCN. Therefore, the experimental data were
cessed under a different reasonable assumption abou
temperature of the thermal component. Figure 7 repres
the 90% exclusion contours for the cross-sectionssanom* and

FIG. 5. Measured In foil activation points as a function of indium thickne
coordinate for two different beryllium samples areas: full poins points
m2, empty points 0.2 m2.

FIG. 6. Flux intensity of upscattered UCN normalized per primary UC
flux ~relative units! from the beryllium sample as a function of sample are
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s th* deduced from the In foil activation measurement of u
scattered UCN fluxes from a normal temperature Be surfa
assuming that the thermal component of upscattering re
sents a Maxwellian neutron flux with room temperature.

The contours are presented for three different charac
istic velocitiesv0 of anomalously~low-energy! upscattered
UCN, assumed to have a Maxwellian flux form:v0

515 m/s;v0550 m/s;v05200 m/s.
As is seen from Fig. 7 the room-temperature-adjus

UCN upscattering cross-section to the final thermal ene
range is very high for non-outgassed beryllium~;22b!,
which is consistent with the result of Ref. 5 and some of
results of Ref. 8. We attribute so large an upscattering cro
section partly to the presence in the incoming UCN spectr
of neutrons with energies higher than the boundary energ
beryllium, but mostly to upscattering from the aluminu
cuts of sample ribbons not covered with a beryllium layer.
both cases, this upscattering takes place not at the sa
surface but in the bulk of the aluminum. This enhanced th
mal upscattering was not very significant in our search
the low-energy anomalous component in the upscatte
neutron spectrum, but it increased the thermal backgrou

Figure 8 shows the 90% confidence restriction curves

s
5

.

FIG. 7. The 90% exclusion contours for the cross sectionssanom* and s th*
deduced from In foil activation measurement of upscattered UCN flux fr
normal-temperature Be surface, under the assumption that the thermal
ponent of upscattering represents a Maxwellian neutron flux with room t
perature. The contours are presented for three different characteristic ve
ties v0 of anomalously~low-energy! upscattered UCN, assumed to have
Maxwellian flux form: line1—v0515 m/s; line2—v0550 m/s; line3—
v05200 m/s.

FIG. 8. The 90% confidence restriction curves for the reduced cross-se
as a function of the characteristic velocityv0 of the Maxwellian flux of
anomalous low-energy UCN upscattering from room-temperature beryll
sample under different assumptions about the characteristic velocityv th of
the thermal flux: line1—v th51600 m/s, line2—v th52200 m/s; line3—
v th52800 m/s.
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the reduced cross-section as a function of the character
velocity v0 of the Maxwellian flux of anomalous low energ
UCN upscattering from a room-temperature berylliu
sample under various assumptions about the characte
velocity v th of the thermal flux.

In addition to ~1! the following formulas were used in
the data processing. The loss probability of UCN with t
velocity v, averaged over an isotropic angular distributi
upon reflection from the surface with boundary veloc
vb : m̄ loss52h(arcsin(y)2yA12y2)/y2, where y5v/vb ,
m̄5*0

v limm̄ f (v)dv is the UCN loss coefficient averaged ov
the normalized UCN flux spectrumf (v)54v3/v lim

4 , which is
the low-energy tail of the Maxwellian spectrum. In our ca
v lim53.9 m/s.

As may be seen from Fig. 8 we were not able to co
pletely rule out in this experiment low-energy UCN upsc
tering over the entire energy range of interest, 0.1– 103 meV
but a significant part of this energy range,.~1–200! meV is
ruled out by our measurements.

Preliminary In foil activation measurements with upsc
tered UCN and partial calibrations of the method in cold a
thermal neutron beams were performed at the reactor of
St. Petersburg Nuclear Physics Institute~SPNPI! at Gatchina.
We are grateful to Drs. A. P. Serebrov, A. G. Kharitono
V. V. Nesvizhevsky, and R. R. Taldaev for their kind pe
mission to use the UCN channel of SPNPI and for their v
valuable help. We thank them also for placing the Be sam
at our disposal. Efficiency measurements of the beta-cou
were performed via irradiation of indium and copper foils
the thermal neutron beam of the IBR-2 reactor of FLN
JINR and the microtron neutron source of FLNR JINR. T
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Electron–lattice kinetics of metals heated by ultrashort laser pulses
L. A. Falkovsky and E. G. Mishchenko
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We propose a kinetic model of transient nonequilibrium phenomena in metals exposed to
ultrashort laser pulses when heated electrons affect the lattice through direct electron-phonon
interaction. This model describes the destruction of a metal under intense laser pumping.
We derive the system of equations for the metal, which consists of hot electrons and a cold lattice.
Hot electrons are described with the help of the Boltzmann equation and equation of
thermoconductivity. We use the equations of motion for lattice displacements with the electron
force included. The lattice deformation is estimated immediately after the laser pulse up
to the time of electron temperature relaxation. An estimate shows that the ablation regime can be
achieved. ©1999 American Institute of Physics.@S1063-7761~99!01401-8#
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1. INTRODUCTION

The first theoretical prediction of transient laser-induc
nonequilibrium electron temperature phenomena in me
was made more than twenty years ago.1 It was shown that an
ultrashort laser pulse (;10213– 10212s) produces a non
equilibrium state of the electron gas near a metal surfa
However, experimental picosecond (;10212s) laser studies
of thermally assisted multiphonon photoemission were
able to measure, and even failed to observe this nonequ
rium electron state.2 This failure had a simple explanation i
terms of the theory of electron–lattice thermal relaxatio3

which yields a relaxation timete– l;10212s. It was neces-
sary to use power pulses shorter thante– l . Such measure
ments with subpicosecond (;10213s) pulses revealed
transient nonequilibrium regime in transmittivity and I
reflection,4–8 giant electron emission9–11 and the emission o
light.12–14

We briefly summarize the physical process. The
trashort laser pulse (Dt;10214– 10213s) absorbed in a
metal raises the electron temperatureTe considerably higher
than the lattice temperature because of the difference in t
specific heats (ce!cl). Subsequent electron cooling resu
mainly from two processes, namely electron-lattice therm
relaxation and electron thermoconductivity. These are u
ally modeled with a set of coupled thermoconductivity equ
tions for the electron and lattice components. These eq
tions are nonlinear and can generally be solved numerica
yielding the electron temperature relaxation. The solut
also shows that the subsequent ablation regime can
achieved, which involves the «cold» destruction of a me
into the parts consisting of different phases. ‘‘Hot’’ destru
tion, namely melting, can also be studied with the help
this solution.15 However, such an approach has several sh
comings. First, the question remains as to whether the e
tions of thermoconductivity are still hold at such high fr
quencies (;1/Dt). Second and more importantly, the
equations can only describe the temperature dynamics
metal but not electron transport, lattice deformation, ther
841063-7761/99/88(1)/5/$15.00
d
ls

e.

-
b-

-

eir

l
u-
-
a-
y,
n
be
l

-
f
t-
a-

a
i-

onic emission, etc. It is evident that a strict kinetic approa
is needed to describe the various transport phenomena p
erly and derive thoroughly the equation o
thermoconductivity.16

In this paper we present a theory of transient noneq
librium phenomena in metals subject to ultrashort la
pulses. Our theory is based on the Boltzmann equation
the nonequilibrium electronic partition function. We focu
mainly on times shorter than the electron-lattice relaxat
time te– l . Electrons therefore affect the lattice via dire
electron-phonon interactions. To consider lattice deform
tions, we use the equations of the so-called dynamical the
of elasticity. Lattice deformation is due to the nonequili
rium electron state and results from the effective ‘‘driving
force ~proportional to¹Te

2! on the lattice. This force also
governs the renormalization~depending onTe! of the lattice
constants~sound velocity and optical phonon gap!. We show
that the driving force leads to large lattice deformations, a
can destroy the crystal. These results are in agreement
measurements of time-resolvedX-ray diffraction synchro-
nized with laser pumping.17 A nonstationary increase in lat
tice parameters of Au~111! and Pt~111! single crystals was
detected. Measurements of the shift and intensity variatio
Bragg peaks, as well as the Debye-Waller factor, enables
to separate the effects of lattice deformation and heating.
transformation of elastic into plastic deformation was a
observed.

The plan of the paper is as follows. In Sec. 2 we pres
the kinetic theory of the process under study: the Boltzma
equation for an electron gas and the elastic equation for
lattice are derived, along with the equation for thermoco
ductivity. In Sec. 3, the solutions of the proposed equatio
are found for the times of interest. The lattice deformation
calculated. In Sec. 4 the solutions are analyzed. The lat
deformation is estimated analytically in various limitin
cases. The possibility of crystal destruction under la
pumping in discussed.
© 1999 American Institute of Physics
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2. THEORETICAL FRAMEWORK

Let us briefly recapitulate the main equations of o
problem. For the lattice deformation we use the so-ca
equation of dynamical theory of elasticity18,19

r
]2ui

]t2 2l i j lm

]2ul

]xj]xm
5Gi , ~1!

wherer is the lattice density,l i j lm is the tensor of elastic
constants, and the driving force describes the effect of
carriers on the lattice,

Gi5
]

]xj
E 2d3p

~2p!3 l i j ~p! f p~r ,t !. ~2!

The deformation potentiall i j (p) yields the change in the
local electron spectrum,

d«~p,r ,t !5l i j ~p!ui j ~r ,t !.

To find the electron distribution functionf p(r ,t), we use
the Boltzmann equation with the electron–phonon collis
integral

St f p5(
n
E d3k

~2p!3 wpk
~n!d~«p1k2«p1vk

~n!!

3@~12 f p! f p8Nk
~n!2 f p~12 f p8!~11Nk

~n!!#

1(
n
E d3k

~2p!3 wpk
~n!d~«p1k2«p2vk

~n!!

3@~12 f p! f p8~11Nk
~n!!2 f p~12 f p8!Nk

~n!#, ~3!

with the probability of a scattering process involving a ph
non of thenth branch,

wpk
~n!5

p

rvk
~n! uei

~n!l i j ~p!kj u2,

where ei
(n) and vk

(n) are the polarization and spectrum
phonons of thenth branch, respectively.

Since the phonon-phonon relaxation time is larg
(;10211s) compared with the times of interest, the phon
distribution functionNk

(n) takes its equilibrium value at th
lattice temperatureTl ,

Nk
~n!~Tl !5

1

exp~v~n!/Tl !21
.

The electron–electron relaxation time due to scattering
phononst;Tl

21;10214s ~see below! is much less than the
characteristic time of laser pumping. Therefore the elect
gas is nearly in thermal equilibrium at the local temperat
Te(r ,t). We seek a solution of the Boltzmann equation in t
form

f p5 f 0S «p2m

Te
D1xp

] f 0

]«
, ~4!

wheref 0 is the local equilibrium Fermi–Dirac partition func
tion and xp is the nonequilibrium part. We obtain for th
collision integral~3!
r
d

e

n

-

n

n

n
e
e

St f p5St f 02t21S xp2
^xp&

^1& D ] f 0

]«
, ~5!

where the scattering rate

t215Tl(
n

K wpk
~n!

vk
~n!L ;pg2Tl .

The latter estimate is valid when the ion temperatureTl is
considerably higher than the Debye temperature; the dim
sionless electron–phonon coupling constantg;l/«F;1.
The brackets denote integration over the Fermi surface

^...&5E 2dSF

v~2p!3 ~ ...!.

The first term in~5! comes from the contribution of the loca
equilibrium partition function:

St f 05(
n
E d3p8

~2p!3 wpk
~n!@ f 0~«p!2 f 0~«p8!#

3@Nk
~n!~Te!2Nk

~n!~Tl !#@d~«p2«p82vk
~n!!

1d~«p2«p81vk
~n!!#. ~6!

This term describes the energy flow from electrons
phonons when they are at different temperatures. This t
is absent if the temperatures of the electron and lattice s
systems coincide.

The nonequilibrium part of the electron distributio
function has to satisfy two conditions. The first is indeed t
conservation law of the number of carriers:

E d3p

~2p!3 xp

] f 0

]«
50.

This expression determines the chemical potentialm and re-
sults in the renormalization of the deformation potenti
l(p)→l(p)2^l(p)&/^1&.

The second condition

E d3p

~2p!3 ~«p2m!xp

] f 0

]«
50 ~7!

enables us to define the local temperatureTe ~see Ref. 20!,
i.e., to write the equation of thermoconductivity.

Substituting Eq.~4! into the Boltzmann equation, we ge

]xp

]t
1v

]xp

]r
1

xp2^xp&/^1&
t

52evE2l i j ~p!
]ui j

]t

1
«p2m

Te
S ]Te

]t
1v

]Te

]r D1St f 0Y ] f 0

]«
. ~8!

To obtain the equation for the local temperatureTe(r ,t),
we multiply the Boltzmann equation~8! by («p

2m)] f 0 /]« and integrate overp. With the help of Eq.~7!
we find the equation of thermoconductivity

ce~Te!
]Te

]t
1div q5Q2a~Te2Tl !, ~9!

wherece(Te)5p2^1&Te/3[bTe is the electron heat capac
ity and q is the heat flow:
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q5E 2d3p

~2p!3 v~«p2m!xp

] f 0

]«
. ~10!

Using Eq.~6!, we can find the last~relaxation! term on the
right-hand side of Eq.~9!. For high temperaturesTl ,Te

@vD , the electron–lattice relaxation constanta is

a5(
n
E 2dSFdSF8

vv8~2p!6 wpk
~n!vk

~n! .

The densityQ of laser energy absorbed by electrons c
be taken in the form

Q~z,t !5I ~ t !~12R!ke2kz, ~11!

whereR is the reflectivity andk is the inverse penetratio
depth. The functionI (t) describes the pulse shape.

Equations ~1! and ~9! must be supplemented by th
proper boundary conditions. We assume the simplest ge
etry: the metal occupies the half-spacez,0. Hence, the
boundary conditions for the above equations are

]Te

]z U
z50

50,
]uz

]z U
z50

50, ~12!

signifying that the heat flow through the surface and
normal stress tensor component vanish on the surface.

We also need the boundary conditions for the kine
equation~8! at the metal surface. These boundary conditio
depend on the type of electron reflection from the surfa
We assume the specular reflection for simplicity.

3. DYNAMICS OF ELECTRON TEMPERATURE AND LATTICE
DEFORMATION

The above equations are nonlinear and very complica
However, it is possible to solve them in an important limitin
case. Below we are interested in times shorter than
electron-lattice relaxation timete– l;ce(Te)/a. In this case
the lattice temperature can be set to the initial tempera
T0 , and the last terms in Eqs.~8! and ~9! can be omitted.

To solve the system~1!, ~8! for the half-space with the
boundary condition~12!, we use the even continuation of th
temperatureTe(r ,t) and the partition functionxp , and the
odd continuation ofuz(r ,t), into the half-spacez,0:

Te~z,0!5Te~2z,0!, uz~z,0!52uz~2z,0!. ~13!

For the parallel componentsux anduy one must use the eve
continuation, but owing to the fact that the external heat~11!
depends only onz, these components vanish. In Eq.~8! we
discard^xp&, which represents the ‘‘in-term’’ in the collision
integral. This term accounts for carrier conservation, i.e.,
the isotropic channel of collision processes. Therefore it d
not affect the heat flow and lattice driving force.

The solution of Eq.~8! has the form

xp~r ,t !5E
2`

t

dt8Xp~r2v~ t2t8!,t8!expS 2
t2t8

t D .

~14!

whereXp is the right-hand side of Eq.~8!,
n

m-

e

c
s
e.

d.

e

re

r
s

Xp52l i j ~p!
]ui j

]t
1

«p2m

Te
S ]Te

]t
1v

]Te

]r D . ~15!

Substituting the solution~14!, ~15! into the heat flow~10!,
and integrating over the energy variable according tod3p
5d(«p2m)dSF /v, we obtain

q~r ,t !52
p2

6 K E
2`

t

dt8 expS 2
t2t8

t D vS ]

]t8
1v

]

]r D
3Te

2~r2v~ t2t8!,t8!L . ~16!

The expression~16! is linear inTe
2. It is convenient to intro-

duce the new functionQ(r ,t)5Te
2(r ,t) and take the Fourier

transform with respect to space and time variables. Then
~16! yields the Fourier component of the heat flow:

q~k,v!5
ip2

6 K ~v2vk!v

v2vk1 i t21L Q~k,v!. ~17!

Substituting this result into the equation of thermoconduc
ity ~9!, we obtain its Fourier component

2 i
p2

3 K v1
~v2vk!vk

v2vk1 i t21L Q~k,v!

52k~12R!I ~v!U~k!, ~18!

whereI (v) is the Fourier transform of the pulse shapeI (t).
The factorQ(k) describes the spatial distribution of the las
field ~11!, and

U~k!5
2k

k21kz
2 ,

which depends only onkz . Equation~18! yields the tempera-
ture dynamics of metals under laser heating with the ti
and space dispersion.

We now turn to the equation for lattice displacemen
~1!. The driving forceGi(r ,t) can be evaluated as in th
derivation of Eqs.~16! and ~17!. Both the local equilibrium
partition function and nonequilibrium part~4! contribute to
the integral~2!. Expanding the integrals over the energy va
able in powers ofTe /«F up to the second order, we obtain

Gi~k,v!52
p2

6

]

]«F
K t21l i j ~p!kj

v2vk1 i t21L Q~k,v!. ~19!

In addition to the electron force~19! we also obtain the
temperature-dependent renormalization of the elastic c
stantsl i j lm ~sound velocities! due to the interaction with
electrons~electron loop in the phonon self-energy function!.
The dominant contribution in the range of interest com
from the local equilibrium partition function:

l i j lm→l i j lm2^l i j ~p!l lm~p!&

2
pTe

2

6

]2

]«F
2 ^l i j ~p!l lm~p!&.

The electron contribution to the sound velocity is seco
order in the electron temperature,Ds/s;Te

2/«F
2.
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Taking the Fourier transform of the left-hand side of E
~1!, one needs to keep in mind the singularity atz50 after
continuation~13! of the functionuz . This singularity con-
tributes the term dd(z)/dz in the second derivative
d2uz /dz2; such a term accounts for surface effects. The F
rier transform with respect to the coordinatez over the entire
space gives

2r~v22s2k2!uz~k,v!5Gz~k,v!1kC~v!, ~20!

where s5lzzzz/r is the longitudinal sound velocity in th
z-direction. In the last term,C(v) must be determined from
the boundary condition~12!, and takes the form

C~v!522ivsE dk

2p

Gz~k,v!

v22s2k2 . ~21!

We next proceed to the electron temperature and lat
deformations represented by Eqs.~18! and ~20! in various
limiting cases.

4. SPATIAL VARIATION OF ELECTRON TEMPERATURE
AND LATTICE DEFORMATION

Equation~18! describes the electron temperature evo
tion under ultrashort laser heating of metals. This equa
generalizes the usual thermoconductivity equation.1 We are
interested in the wave vectork, which is the greater of the
inverse skin depthk (;105 cm21) and the electron diffusion
lengthvAtt0 during the laser pulset0 . In the usual experi-
mental situationt21;1014s21, kv;1013s21, and the hy-
drodynamic regimekv!t21 is obtained. Thus, one can om
the termkv in the denominator of the left-hand side of E
~18!. The dominant contribution comes from the diffusio
pole v;tv2k2!t21. Therefore, we can also omitv every-
where in comparison witht21 or kv. The solution of the
thermoconductivity equation reads

Q~z,t !5Q01
i

b E
2`

` dkdvdt8dz8

~2p!2~v1 iDk2!
I ~ t8!

3exp@2 iv~ t2t8!1 ik~z2z8!2kuz8u#, ~22!

where the diffusion coefficientD5t^vz
2&/^1& is introduced.

The constantQ05T0
2 comes from the solution of the corre

sponding homogeneous equation, and represents the i
temperature. Evaluating the integral~22! with respect tov
andk, we obtain

Q~z,t !5Q01E
2`

t

dt8E
2`

`

dz8
Q~ uz8u,t8!

bAp~ t2t8!D

3expS 2
~z2z8!2

4~ t2t8!D D . ~23!

We see immediately that the function~23! satisfies the
boundary condition~12!. For the temperature at the surfa
z50, Eq. ~23! gives

Te
2~0,t !5T0

21
4

pb E
0

t

dt8Q~0,t2t8!

3exp~k2Dt8!erfc~Ak2Dt8!.
.

-

e

-
n

tial

The electron temperature~23! just after the pulse peak
at the surface:

Tmax
2 ;

It 0~12R!

b
min~k,~Dt0!21/2!. ~24!

This result has a simple explanation. For short pul
kADt0!1, the time dependence of the temperature co
sponds to the local laser intensity at the observation point
the opposite case,kADt0@1, the temperature distribution i
determined mainly by the diffusion process.

Consider now the equation for lattice displacements~20!
with the force~19!. Note that in the hydrodynamic regime
kv!t21, the dominant contribution to the forceGi comes
from the local equilibrium partition function, i.e., the firs
term in ~4!, if we consider times greater than the electro
electron relaxation time,t@t. In this case, the force has th
simple expression

Gi~r ,t !5L i j

]Te
2~r ,t !

]xj
,

where the constants

L i j 5
1

32p

]

]«F
E dS

v
l i j ~p!;gb

are of the order of the electron density of states at the Fe
surface.

From Eq.~20! with the help of the expression~21! one
can find the lattice deformation

duz

dz
5

iLzzk~12R!

rb E dvdk

~2p!2

k2U~k!I ~v!

~v1 ik2D !~v22s2k2!

3@eikz2eivuzu/s#e2 ivt. ~25!

The first term in the brackets in Eq.~25! represents the par
ticular solution of the inhomogeneous Eq.~1!, while the sec-
ond corresponds to the general solution of the homogene
form of Eq. ~1!, and represents the effect of the surface. T
integrand in~25! contains poles associated with the diffusio
and sound-wave excitations. Sound singularities are
passed using infinitesimal phonon damping,v→v1 i0.

5. EFFECT OF ACOUSTIC AND OPTICAL DISPLACEMENTS
ON DESTRUCTION OF METALS

Equation ~25! describes the effect of nonequilibrium
electron heating on lattice deformations of acoustic ty
This deformation vanishes at the surfacez50 according to
the boundary condition~12!. For zÞ0, the second term in
brackets in~25! represents a deformation wave propagat
from the surface into the bulk of the metal. It makes a no
zero contribution only at sufficiently small depthsz,st
;1027 cm. Thus, we see that the deformation~25! peaks at
z;1027 cm!k21. To obtain the order of the effect, we ca
drop the second term in parentheses. It is then convenie
integrate overv, substituting the Fourier transformI (v).
We obtain
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duz

dz
;

Lzzk~12R!

rb E
0

t

dt8I ~ t8!E dk

2p
U~k!

3S exp@2 isk~ t2t8!#

s~s1 ikD !
2

exp@2k2D~ t2t8!#

k2D21s2 Deikz.

~26!

Consider times greater than the duration of a pulse (t.t0)
but less than both the characteristic time of electron diffus
(t,(k2D)21;10212s) and a sound-wave period (t
!(sk)21;10211s) with characteristic wave vector of th
order of the inverse skin depthk. In this range we can ex
pand the exponentials in~26! in powers oft up to second
order:

duz

dz
;

LIt 0k~12R!

2rb
t2E

2`

` dk

2p
U~k!k2eikz. ~27!

Using the estimateL/r;gs2/«F
2 and Eq.~24! for the

maximum electron temperature, we extrapolate our resul
to electron diffusion timest;(k2D)21:

duz

dz
;g~12R!

It 0

kb S s

tv2«F
D 2

;gS sTmax

ktv2«F
D 2

. ~28!

Settings/v;1022, k;105 cm21, we arrive at the numerica
estimateduz /dz;1022g5(Te /«F)2.

Our result contains the natural factorTe
2/«F

2, which
means that laser heating is important as soon as the ele
temperature is higher than the Fermi energy. Although
estimate was obtained forTe!«F , it is still roughly correct
up to Te;«F . The additional small factors2/(vk l )2 is due
to the fact that the characteristic period of the sound w
(10211s) is much greater than the characteristic times
electron diffusion (10212s) and laser heating (10213s).
Therefore it would be of considerable interest to calculate
lattice deformation from high-frequency~nevertheless long
wavelength! excitations, i.e., optical phonons whose peri
is about 10214s. This case differs from the calculation
above in the equations of lattice motion~1! and electron
force ~2! due to the different form of deformation potenti
~see Ref. 21!. Estimates show that the relative optical d
placement~with respect to the lattice constant! is of the order
of Te

2/«F
2.

6. CONCLUSIONS

Our result~28! for acoustic deformation agrees with th
experiment reported by Rentzepis,17 where a deformation
duz /dz;1023 had been observed in the laser heating
noble metals. However, we see that the interaction of he
electrons with optical phonons can provide a more effec
means of strong lattice deformation, but this case has ye
be studied experimentally. An ultrashort intense laser pu
can result in the destruction and ablation of metals, wh
only the electron component is heated, and the lattice s
cool at a considerably low temperature.

In conclusion, we emphasize two points. First, as f
lows from Eq.~9!, the driving force for lattice expansion i
proportional toTe]Te /]z. Because of the high absorptio
coefficient of metals in the UV (k;105 cm21), the tempera-
n
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f

e

f
ed
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to
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e
ys

-

ture gradient reaches;109 K/cm. Note that the extremely
high values of this parameter~which is typical of metals!
leads to nonequilibrium expansion of the lattice. Seco
subpicosecond elastic deformation of the lattice of the or
of 1023– 1022, corresponding to an internal pressure 1
100 GPa, can provide an effective mechanism for subseq
laser fracture of metals.
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A general formulation of cluster methods applied to calculations of thermodynamic quantities of
alloys in terms of renormalizing fields describing interaction between a cluster and its
environment is given. We have shown that the well-known cluster variation method and the
cluster field method, which was suggested earlier, are special cases of our approach. These
methods have been used in calculations of phase diagrams of fcc alloys withL12 andL10

ordering transitions with several realistic interaction models. It turns out that, for all these models,
the simple tetrahedron version of the cluster field method suggested in this paper describes
the phase diagrams almost as accurately as more complicated cluster variation techniques. Possible
applications of the tetrahedron version of the cluster field method to inhomogeneous states
and kinetics of phase transitions in fcc alloys are discussed. ©1999 American Institute of
Physics.@S1063-7761~99!01501-2#
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1. INTRODUCTION

Studies of thermodynamics and kinetics of phase tra
formations in alloys attract a lot of attention because, in p
ticular, the related problems are important for technical
plications. Since experimental research in phase transit
of this kind is usually complicated, development of adequ
theoretical techniques for their description is deemed v
important.1–7 The simplest theoretical method in this area
the mean-field approximation. In real alloys, however, t
approximation does not yield quantitatively accurate resu
and in the analysis of ordering transitions in fcc alloys
yields phase diagrams with incorrect configurations.1 This is
caused by the presence of strong interatomic correlat
among nearest neighbors, where the configurational en
is comparable to or larger than temperatureT, whereas the
mean-field approximation neglects such correlations. In
der to describe such correlations, more accurate cluster t
niques, primarily the well-known cluster variatio
method,4,8–14 which are usually applied to calculations
alloy phase diagrams, have been developed. Some rese
ers have also used computer simulations based on the M
Carlo method.5 As concerns realistic models of alloys, how
ever, such numerical calculations demand a lot of CPU ti
therefore they are rarely used in practice.

Various formulations and versions of the cluster a
proximation have been discussed in numero
publications.4,9–15This method has been discussed mostly
the context of applications to ordering transitions in fcc
loys, in particular, the most commonL12 or L10 ordering
~like in Ni3Al or TiAl !, since the results obtained by th
mean-field approximation proved unsatisfactory, as w
stated above. The comparison with available Monte Ca
calculations has demonstrated that the results of comm
used methods of tetrahedron cluster variation~TCVM! and
tetrahedron–octahedron cluster variation~TOCVM! taking
891063-7761/99/88(1)/12/$15.00
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into account interactions among nearest and second-ne
neighbors are fairly accurate,10,11especially when clusters o
larger sizes are defined in the disordered phase.4 At the same
time, interactions among the third and farther neighbors
usually weak and can be described in the mean-fi
approximation.2,3 Thus, the techniques for calculating pha
diagrams of homogeneous alloys based on the cluster v
tion method can be considered self-sufficient and w
grounded.

Yet the physics of phase transformations is not limited
the study of homogeneous and equilibrium systems. For
ample, one topical problem in this field is kinetics of tran
formations, in particular,L12 and L10 ordering transitions
mentioned above.16 In reality, these phase transitions~for
example, after quenching into the region of thermodynam
instability of the initial state! proceed via generation of mi
croscopic nuclei of a new phase within the initial phase a
further growth of these entities. Therefore, the process
phase transformation should be described in terms of ev
tion of essentially inhomogeneous and nonequilibrium sta
As a matter of fact, fully homogeneous states are unatt
able, and real alloys usually contain a lot of inhomogeneit
in particular, interphase and antiphase boundaries. The
crostructure and macroscopic properties, such as plast
and strength, strongly depend, as a rule, on the thermal
kinetic prehistory of a sample, in particular, on the kine
trajectory of phase transformations. Therefore, topics c
cerned with structure and evolution of inhomogeneous
nonequilibrium alloys have been intensely investigated a
discussed in literature.6,7 In this connection, generalization o
the cluster methods mentioned above to inhomogeneous
unsteady states, in particular, to ordering in fcc alloys,
very significant from the viewpoint of both fundamental r
search and applications.

As is stated in earlier publications17,18 and below, such
© 1999 American Institute of Physics
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generalizations of the conventional cluster variation meth
lead to very cumbersome equations, which can hardly
used in practical calculations. At the same time, these g
eralizations can be fairly simple and practicable if one use
simplified version of the cluster approximation, namely t
cluster field method, which was previously employed
studies of thermodynamics19–22and short-range order23–26 in
some strongly correlated alloys. The question arises, h
ever, of the accuracy of this relatively simple method sin
unlike the cluster variation technique, the accuracy of
cluster field method has yet been little investigated. O
should also keep in mind that the calculation accuracy m
depend on both the type of the adopted model and the
cific version of the method~namely, tetrahedron, TCVM, o
tetrahedron–octahedron, TOCVM!, moreover, utilization of
more complex clusters does not necessarily lead to a hi
accuracy.4 The accuracy of this technique based on so
models and versions of the cluster field method in calcu
tions of phase diagrams was tested by comparison to M
Carlo or cluster variation calculations15,19 and proved to be
fairly high. Such investigations, however, have not been s
tematic. At the same time, the accuracy of the cluster fi
method in applications to simpler, equilibrium properties
materials should be investigated comprehensively in view
applying it to complex and little-known problem of pha
transformation kinetics.

This publication is dedicated to these problems. We w
discuss the accuracy of some simplest versions of the clu
field method in describing phase diagrams of fcc alloys w
L12 or L10 ordering. We will consider several models
such alloys. The accuracy of the versions of the clus
method will be estimated by comparing calculations to
sults of one of the most accurate versions of the clu
method described earlier4,10 and applied to the same model
It will be shown that, for models that seem most realis
calculations based on a simple approximation correspon
to a generalization of Yang’s ‘‘quasi-chemical tetrahedr
cluster method’’27 and dubbed QCTCM hereafter, are fair
close to results of the cluster variation method. At the sa
time, with less realistic models, such as those taking i
account interaction only among nearest neighbors,28 the dif-
ference between results of QCTCM and cluster variat
method can be appreciable. Calculations of ordering s
odals, i.e., boundaries of disordered phase stability aga
ordering in the concentration–temperature plane (c2T),
will be also given. In most calculations of phase diagra
published in the literature these curves are not given2–4

whereas they are very important for studies in kinetics
phase transformations.29

Section 2 presents a general description of various c
ter techniques in terms of renormalizing fields in cluste
This approach seems more simple and general than c
monly used ones8–14 and admits various generalizations, i
cluding those used in the reported work. In Sec. 3 gen
results of Sec. 2 will be applied to cluster techniques use
our calculations. Section 4 describes applications of th
techniques to calculations of phase diagrams and orde
spinodals for several models of alloys withL12 or L10 or-
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dering and analyzes the results. Basic results of this w
will be summarized in the Conclusion.

2. DESCRIPTION OF CLUSTER TECHNIQUES IN TERMS
OF RENORMALIZING FIELDS IN CLUSTERS

This section presents general formulations of vario
cluster techniques, including the cluster variation metho
and cluster field methods, in which basic physical quantit
are effective fields and interactions inside a cluster due to
interactions with the environment. This graphic approa
which was described in detail earlier,15 allows one to see
clearly both the assumptions on which various generali
versions are based and the opportunities offered by th
The feasibility of this approach in a special case of clus
variation method was mentioned previously.12,14 Below we
will generalize earlier results15 to the case of multicompo
nent and, possibly, inhomogeneous alloys and rectify so
inaccurate statements.

2.1. General formulation of cluster methods.Consider a
substitutional alloy that contains atoms ofm sorts, p
5p1 , p2 , . . . , pm , including, possibly, vacancies. The di
tribution of atoms over lattice sites is characterized by va
ous sets of occupancies$npi%, wherenpi51 if the i th site is
occupied by an atom of sortp andnpi50 if otherwise. At all
i operatorsnpi satisfy the condition(pnpi51, so that only
m21 of them are independent. Hereafter we assume tha
one sort of atoms, specifically,p5pm , this operator is ex-
pressed in terms of the rest,npmi512(pÞpm

npi , so that
below the sums overp include only m21 terms with
p5p1 , p2 , . . . , pm21. In the case of a binary alloy, sub
script p can have only one value and is omitted.

A general expression for the configurational Hamiltoni
H8 ~i.e., it depends only on the distribution of atoms amo
lattice sites! in terms of occupanciesnpi is

H85(
pi

w i
pnpi1 (

pq,i , j
v i j

pqnpinq j

1 (
pqr,i , j ,k

v i jk
pqrnpinq jnrk1••• ~1!

Here ‘‘external fields’’ w i
p are due to possible nonequiva

lence of sites, for example, owing to lattice defects. In c
culations of equilibrium parameters, one should calcul
thermodynamic potentialV as a function of temperatureT
and relative chemical potentialsmp5mp

02mpm

0 , where m0

are ‘‘absolute’’ chemical potentials~for example, measured
with respect to the vacuum!:

V52T ln Tr exp~2bH !, H5H82(
pi

mpnpi . ~2!

Here b51/T, and Tr denotes summation over all possib
configurations$npi%. For brevity, the effective Hamiltonian
H of the grand canonical distribution in Eq.~2! will be
dubbed simply Hamiltonian, and its mean value^H& will be
called energyE.

Cluster techniques deal with clusters, i.e., sets of spec
lattice sitesi , j , . . . ,l , which will be denoted for brevity by
first letters of the Greek alphabet, e.g.,$ i , j , . . . ,l %5a. The
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distributionra of various configurations in clustera is char-
acterized by its effective HamiltonianHa and the corre-
sponding potentialVa , which is obtained, strictly speaking
by averaging the full Gibbs distribution over variablesnpi

for all sites not included in the cluster:

ra5exp@b~Va2Ha!#5 Tr
i ¹a

exp@b~V2H !#, ~3!

Va52T ln Za52T ln Tr
i Pa

exp~2bHa!. ~4!

If we denote for brevity the operator characterizing t
occupancy of statej5$pi,q j , . . . ,rk% in a certain subclus-
ter g5$ i , j , . . . ,k% of cluster a by nj5npinq j . . . nrk ,
HamiltonianHa can be written in a compact form as a su
over all possible configurationsj of the cluster:

Ha5(
p,i

~wpi1cpi
a 2mp!npi1 (

pq,i , j
~v i j

pq1cpi,q j
a !

3npinq j1 . . . [ (
j#a

~vj1cj
a!nj . ~5!

Here the sums are performed over sites and configuration
clustera, vj5wpi2mp for ‘‘one-atom’’ occupanciesj5pi,
andcj

a describes renormalization of variablesvj , i.e., fields
wpi and potentialsv i . . . j

p . . . q owing to interaction between th
clustera and its environment. It follows from Eqs.~4! and
~5! that the mean occupancygj5^nj& for all clustersa$j is
related to fieldcj

a in this cluster by the formula

gj5~]Va /]cj
a!T,vj

. ~6!

Hamiltonian Ha accurately describes interactionsvj

within the cluster. Its interaction with the environment, ho
ever, is described by variablescj

a , which can be calculated
in practice using some approximation. The contribution
interactions within the cluster, as compared with fieldscj

a ,
grows, generally speaking, with the cluster size, and the
curacy improves, but calculations become more complica
In calculating thermodynamic quantities, such as thermo
namic potentialV52T ln Tr exp(2bH), one should per-
form the following operations:~a! express the full Hamil-
tonianH in terms of a combination of cluster Hamiltonian
Ha as a series fast converging with the cluster size;~b! select
a decomposition of the lattice into clusters and an appro
mation for calculating fieldscj

a .
A consistent approach that should be used on step~a! is

the method of cumulant expansions,15 whose underlying
ideas were discussed in several papers.4,9,12 The physical in-
dicator of convergence in this technique is the reduction
the contributions from irreducible correlations to all physic
quantities with the number of sites in the cluster. These c
tributions are obtained by subtracting from fulln-particle
correlators the contributions of all correlations involvin
smaller numbers of particles,m5n21,n22, . . . ,1, which
compose subclusters of this cluster. This means that the
pression for the energy should include, alongsideHa , ‘‘clus-
ter cumulant’’ HamiltoniansH̃a ~for brevity called simply
cumulants!, which are related toHa by the formulas
of

f

c-
d.
y-

i-

n
l
n-

x-

H̃a5 (
g#a

~21! uau2uguHg , ~7!

Ha5 (
g#a

H̃g , ~8!

whereuau is the number of lattice sites in the clustera, and
the sum is performed over all subclustersg of cluster a
obtained by excluding 0,1,2, . . . ,uau21 different sites. In
particular, for double and triple cumulants and one-parti
cluster fields c̃pi

a , we have the following expressions i
terms of cumulants defined by Eq.~7!:

H̃ i j 5Hi j 2Hi2H j ,

H̃ i jk5Hi jk2Hi j 2H jk2Hki1Hi1H j1Hk ; ~9!

c̃pi
i j 5cpi

i j 2cpi
i , c̃pi

i jk5cpi
i jk2cpi

i j 2cpi
ik1cpi

i . ~10!

Equations~5! and ~7!–~10! clearly show that cumulants
H̃a and fieldsc̃j

a do not contain interactions and fields in
cluded in the subclusters of the cluster. Therefore, it is na
ral to expect that the contributions of these cumulants to
physical quantities should decrease fairly rapidly with t
cumulant sizeuau.

If the entire lattice is treated as the largest cluster,
~8! reads as

H5(
a

H̃a . ~11!

Selection of the approximation on step~a! means retention of
a limited set of cumulants$a% on the right-hand side of Eq
~11! with small normsuau<uaumax and rejection of the res
H̃a . After this operation, exact expressions for clus
HamiltoniansHa , i.e., fieldscj

a in Eq. ~5!, are replaced by
approximate ones. By expressing the retained cumulantsH̃a

in Eq. ~11! in terms of cluster HamiltoniansHa , we obtain
the basic equations of the cluster methods:

H5(
a

naHa . ~12!

Here the sum is performed over the retained clusters of
maximal size and their subclusters, and factorsna , as was
shown by Sanchezet al.,12 for each subclusterg of the basic
clusters satisfy the condition

(
a$g

na51, ~13!

which ensures equality of the factors in front of all intera
tions vjnj on both sides of Eq.~12!. The left-hand side of
Eq. ~12!, on the other hand, does not contain renormaliz
fields cj

a , so for all occupanciesj these fields should be
related by the equation

(
a$j

nacj
a50. ~14!

The largest, or ‘‘basic,’’ clustersam with uamu5uaumax,
which are not considered as parts of other clusters, contrib
to Eqs. ~13! and ~14! only one term each witha5am .
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Hence follows thatnam
51 andcjm

am50, where thejm denote

different uamu-particle occupancies of basis clusters. Th
interactions amonguamu particles,vjm

, in Eqs. ~3!–~5! for
the maximal clusters are not renormalized. This approxim
tion, which limits the sum in Eq.~11! to cumulants with
a#am is the basic approximation of all cluster technique

The geometrical factorsna in Eqs. ~12! and ~14! are
determined by Eq.~13!, i.e., they depend on the lattice co
figuration ~bcc, fcc, etc.! and selection of basic clusters, b
they are independent of the atomic distribution in the latti
in particular, on its order. These factors for the fcc lattice
the most common versions of the cluster variation techni
and cluster field method will be given in Sec. 3. The gene
properties of factorsna were discussed in Refs. 4 and 1
where they were denoted byaa . Those papers mentioned,
particular, an important property of such factors for ‘‘inne
subclusters of basic clusters, i.e., such subclustersg that are
parts of only one basic clusteram . In order to discover this
property, let us apply Eq.~13! to an inner subclusterg. We
obtain nam

1ng51 and ng50, since in the basic cluste
nam

51. Equation~14! indicates that in this case the field

cj
am , corresponding to occupanciesj in the inner subcluste

of the basis clusteram , also go to zero. Thus, the factorsng

for the inner subclusters in Eqs.~12!–~16! and the corre-
sponding fieldscj

am in the basic clusters equal zero, so the
subclusters do not contribute to observable quantities
can be discarded. This result, which we dub for brevity
inner-subcluster theorem, simplifies considerably all clus
calculations and will be used in Sec. 3.

By integrating overb the thermodynamic relation

^H&5
]

]b
~bV!52

]

]b
ln Tr exp~2bH !, ~15!

where^H& is calculated using approximation~12!–~14!, we
obtain

V5(
a

naVa , ~16!

where Va is defined by Eq.~4!. Here we have taken into
account that@as follows from Eqs.~6! and ~14!# the full
derivative of expression~16! with respect to each indepen
dent variablecj

a is zero.20 Really, if we express, using Eq
~14!, somecj

b in terms of the rest of independent variabl
cj

a , where aÞb, the derivative dcj
b/dcj

a equals
(2na /nb) and, given Eqs.~6! and ~14!, we obtain

dV

dcj
a

5gjS na1nb

dcj
b

dcj
aD 50. ~17!

Note in this connection that the self-consistency con
tions ~6! are equivalent to the condition of minimal therm
dynamic potential~16! when independent parameterscj

a are
varied at specified average occupanciesgj . Therefore, ex-
pression~16! can also be used in variational versions of t
cluster technique, where fieldscj

a are varied parameters an
the averagesgj are Lagrange multipliers, the same for a
clustersa.
,

-

,

e
l

e
d

e
r

i-

2.2. Cluster variation method.The cluster variation tech
nique relies only on those approximations that have led
Eqs.~12!–~14!. Therefore, in calculations of thermodynam
parameters, i.e., average occupanciesgj and potentialV in
Eq. ~16! as functions ofT andvj , one should solve equatio
system~6! and ~14!.

Equation~6!, which determines fieldscj
a and potentials

Va in Eq. ~4! as functions of average occupanciesgj , can be
solved directly. With this end in view, note that, if the co
tribution from a state with occupancynj to the partition
function Za in Eq. ~4! is denoted bySj

a , i.e., Za51
1(jSj

a , the quantitySj
a is related toyj

a5exp@2b(vj1cj
a)#

by the equation

ln Sj
a5 (

h#j#a
ln yh

a , ~18!

and Eq.~6!, which determinesSj
a in terms of mean occupan

ciesgh , takes the form

Zagj5 (
j#h#a

Sh
a .

This equation can be solved with respect toSj
a by induction,

starting with the maximaluju5uau and reducinguju, with the
help of the following identity for the polynomial coefficients

(
k51

m

Cm
k ~21!k21512~12x!mux5151.

As a result, we have

Sj
a5Za (

h#j#a
~21! uhu2ujugh ,

where

Za[exp~2bVa!5F11 (
h#a

~21! uhughG21

. ~19!

Further, by solving Eq.~18! with respect to lnyj
a by induc-

tion on uju starting with the minimaluju51, and increasing
uju similarly to the procedure described above, and expre
ing lnSj

a in terms ofgh using the above expression, we o
tain expression for fieldscj

a in terms of mean occupancie
gh :

b~vj1cj
a!5~21! uju ln Za2 (

h#j#a
~21! uju2uhu

3 lnF (
h#z#a

~21! uzu2uhugzG , ~20!

whereuj, uhu, or uzu is the number of sites in subclusterj, h,
or z. Note that Eqs.~14b! and ~15! in Ref. 15, which are
similar to Eqs.~20! and ~23! of this paper, contain errors.

After multiplying Eq. ~20! by na , performing the sum
over all a$j, and using Eqs.~13! and ~14!, we obtain an
equation system for all mean occupanciesgj with uju
<uamu:
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bvj5 (
a$j

nal j
a$g%, ~21!

wherel j
a$g% denotes the right-hand side of Eq.~20!.

Substitution ofgj derived from Eq.~21! in Eqs.~19! and
~16! allows one to calculate the thermodynamic potentialV
5V(T,mp). In solving physical problems, however, it
more convenient to use instead ofV the free energyF,
which is related toV by the formula

F~T,cpi!5V1(
pi

mpcpi , ~22!

wherecpi5^npi& is the mean occupancy of sitei by an atom
of type p in the alloy, which can be either homogeneous
inhomogeneous.17,18,30 Then the one-particle meansgpi

5cpi in Eq. ~21! should be treated not as sought-for fun
tions of chemical potentialsmp , but as arguments of sough
for functionsV, mp , andgj for uju>2. In this approach, Eq
~21! for the one-particle occupancyj5pi determines the
chemical potentialmp(cqi ,T), and Eqs.~19! and ~16! deter-
mine functionV(cpi ,T).

The main computational problem in the cluster variati
technique is solving nonlinear equation system~21! with re-
spect to multiparticle meansgj for uju>2. We have solved
this equation system by Newton’s method.31 This procedure
is simplified by the opportunity to calculate analytically th
matrix of derivativesl jh

a 5] l j
a/]gh of functions l j

a on the
right of Eqs.~20! and ~21!:

l jh
a 5~21! uju2uhu11

3H Za
211 (

u#~jùh!
F (

u#z#a
gz~21! uzu2uuuG21J , ~23!

where u#(jùh) means that the sum is performed ov
clustersu, which are subclusters of bothj and h clusters.
The convergence of Newton’s method in this case is fa
fast, but this requires inversion of the matricesl jh

5(anal jh
a , which are often ill-conditioned and sensitive

initial conditions. Therefore, it seems that, given mode
high-performance computers, one should use more sim
and stable methods, such as the method of conju
gradients.32

Now let us discuss how our approach based on E
~3!–~5! is related to the conventional cluster variatio
techniques4,12–14based on distribution functionsra in clus-
ters and their entropiesSa . In accordance with Eqs.~3!–~5!,
expressions for the cluster mean energyEa and its entropy
Sa can be written as

Ea5^Ha&5 (
j#a

~vj1cj
a!gj , ~24!

Sa5b~Ea2Va!52Tr ra ln ra . ~25!

Then, using Eqs.~12!–~14! and ~16!, we express the full
system entropyS5b(E2V):

S5bS (
j

vjgj2(
a

naVaD 52(
a

naTr ra ln ra , ~26!
r

y

n
le
te

s.

which is the basic equations in the approaches develo
earlier.4,10–14

Note also that, in conventional versions of the clus
variation technique,4,8–14 ‘‘pseudospin’’ variables spi ,
which are related tonpi by formulas likespi52npi21, are
substituted for occupancy operatorsnpi . In our opinion, uti-
lization of natural variablesnpi instead of pseudospin vari
ablesspi simplifies both the calculations15 and physical in-
terpretation of results, especially in multicompone
alloys.18,30

2.3. Cluster field method.The cluster field method is a
simplified version of the cluster variation method, when clu
ter Hamiltonians~5! include only on-site fieldscpi

a due to
environment, whereas renormalizations of interactionscj

a

with (uamu21)>uju>2 are ignored. In this case the equali
among multiparticle meansgj with uju>2 in clusters of dif-
ferent sizesuau ~which is achieved in the full cluster varia
tion method by introducing renormalizations ofcj

a), gener-
ally speaking, no longer holds. Therefore the degree of s
consistency, hence the accuracy of the cluster field meth
should be, in a general case, lower than in similar version
the cluster variation method. Nonetheless, when cluster s
are sufficiently large, the contribution of renormalizations
interactions within one cluster is usually reduced, so err
due to omission of such renormalizations can be limit
This circumstance was illustrated by comparing cluster fi
calculations to cluster variation and Monte Car
calculations.15,19The more important is the fact that, in som
specially selected basic clusters discussed below, interac
renormalizations and their thermodynamic contributions v
ish, i.e., fieldcj

a with uju>2 or factorsna in Eqs.~12! and
~16! for clusters containing these fields go to zero. In th
case, the cluster field method is equivalent to the clus
variation method, so both the degree of self-consistency
calculation accuracy can be fairly high. The QCTCM a
proximation mentioned above and discussed in detail
Secs. 3 and 4 is one example. Therefore, the good accu
of the QCTCM calculations of simple models, which will b
discussed in the following sections, is quite natural.

Equation system~19!–~21! is simplified considerably in
the cluster field method. It is convenient to operate, inst
of cpi

a , with variables defined as ‘‘activities’’ypi
a of lattice

sites and introduce them to Eq.~4!, definingVa :

ypi
a 5exp@b~mp2wpi2cpi

a !#. ~27!

The cluster partition functionZa in Eq. ~4! takes the form of
a polynomial of poweruau with ya:

Za5 (
j#a

exp~2bvj! )
piPj

ypi
a , ~28!

which contains the product of all activitiesya corresponding
to the occupancy j5$p1i 1 , p2i 2 , . . . , pmi m%, i.e.,
yp1i 1

a yp2i 2
a . . . ypmi m

a . Equation~6! transforms to

cpi
a 5ypi

a ] ln Za /]ypi
a . ~29!

According to Eq.~28!, the right-hand side of Eq.~29! is
the ratio of two polynomials withya, whose numerator in-
cludes only those terms of the denominator which cont
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factor ypi
a . For all clustersa equation system~29! can be

easily solved with respect to functionsypi
a $cqi% using New-

ton’s method. Then thermodynamic potentialV$cpi% is de-
rived from Eqs.~4!, ~16!, and~28!, and Eqs.~14! and~27! for
one site,j5pi, determine the chemical potentialmp$cqi%:

mp5wpi1T(
a

na ln ypi
a . ~30!

Now let us comment on applications of basic equatio
of the cluster variation technique~21! and cluster field
method~29! to inhomogeneous states. The mean occup
ciesgj for subclustersj corresponding to nonequivalent site
are different. Therefore, the number of sought-for functio
gj in Eq. ~21! is large even for simple, ordered phases. So
the tetrahedron–octahedron cluster variation method, an
sis of pureL10 or L12 phases requires calculations of 27
22 functionsgj , respectively, and a description of a simp
inhomogeneous system, namely a plane antiphase boun
in the L12 phase, based on the tetrahedron cluster varia
method demands calculation of several thousands ofgj and a
lot of computer time.4,33 Analysis of kinetic properties o
alloys requires solution of the kinetic master equation, wh
is a system of differential equations containing derivativ
with respect to time for all occupanciesgj in a lattice where
all N sites are nonequivalent.17,18Solution of this problem by
the cluster variation technique would require solutions
equation systems like Eq.~21! for all occupanciesgj on each
time step ~labeled by numbers), and for interesting
systems29 with N*105 and s*103 such numerical calcula
tions are hardly feasible, at least, in the foreseeable future
the same time, equations~29! of the cluster field method ar
fairly simple, as was noted above, and algorithms for th
solutions are fast convergent and stable. Therefore, app
tion of these equations to kinetic problems mentioned ab
is quite feasible.

3. SELECTION OF BASIS CLUSTERS IN DIFFERENT
VERSIONS OF CLUSTER TECHNIQUES

In this section we will discuss several commonly us
versions of the cluster variation and cluster field metho
which will be used in Sec. 4. These versions are charac
ized by selection of maximal or basic clusters, which w
discussed in Sec. 2.1.

3.1. Approximation of pair clusters.First let us consider
the simplest approximation of pair clusters~2-clusters! in an
alloy with pair interactionsv i j

pq . The basic clusters in this
case are all pairs of sites$ i , j % whose interactionsv i j

pq are
nonvanishing. As was proven above, interactionsvjm

for
ujmu5uamu in clusters with the maximal sizesuamu are not
renormalized. Since in the approximation of 2-clusters
have uamu52, the renormalizing fieldscj

a in Eq. ~5! are
nonzero only for one-site subclusters,j5pi, and the cluster
variation method is equivalent to the cluster field method

As follows from Eq. ~13!, one-site coefficientsn i are
related to pair factorsn i j by the formula n i512( jn i j ,
wheren i j 51 if v i j

pqÞ0 andn i j 50 for v i j
pq50. Equation~14!

relating fieldscpi
i j andcpi

i in 2- and 1-clusters can be rewri
ten as
s

n-

s
n
ly-

ary
n

h
s

f
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ir
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e

s,
r-
s

e

(
j

n i j ~cpi
i j 2cpi

i !1cpi
i 50. ~31!

This equation illustrates additivity of fieldsd pi
i j acting on an

atom of typep at sitei and generated by all ‘‘external’’ site
j . Then the difference between fieldcpi

i j in a 2-cluster$ i j %
and total fieldcpi

i generated by all sites is only the contrib
tion of interaction (i j ): d pi

i j 5cpi
i 2cpi

i j , and summation of
all such contributions over all interactions (i j ) yields the
total field cpi

i , i.e., Eq.~31!.
Equations~16! and~30! for V andmp in the pair cluster

approximation have the form

V5(
i

V i1(
i , j

Ṽ i j , ~32!

mp2wpi5mpi1(
j

m̃pi
i j . ~33!

Here V i and mpi correspond to one-site contributions, i.e

they describe an ideal solution, whereasṼ i j andm̃pi
i j are due

to interactionsv i j
pq :

V i5T lnS 12(
p

cpiD ,

mpi5T ln ypi
i 5T lnFcpi /S 12(

q
cqiD G ; ~34!

Ṽ i j 5V i j 2V i2V j , m̃pi
i j 5 ln~ypi

i j /ypi
i !. ~35!

In the important case of a binary alloy AB, Eqs.~27!–
~29! can be solved analytically for an arbitrary distribution
local concentrationsci5^nAi&.

20,23 In Eqs. ~33!–~35! sub-
scriptp of the chemical potentialmp5mA2mB can be omit-
ted: V i5T ln(12ci), m i5T ln@ci /(12ci)#, and quantitiesṼ i j

and m̃ i
i j in Eqs.~32!–~35! are expressed by

Ṽ i j 52T ln~12cicjgi j !, m̃ i
i j 5T ln~12cjgi j !, ~36!

where gi j is expressed in terms of Meyer’s functionf i j

5exp(2bvij)21 so that

gi j 5
2 f i j

Ri j 111 f i j ~ci1cj !
,

Ri j 5$@~11~ci1cj ! f i j #
224cicj f i j ~ f i j 11!%1/2. ~37!

In the case of weak interaction,bv i j !1, Eqs.~36! transform
into the results obtained by the mean-field approximati

Ṽ i j 52v i j cicj ; m̃ i
i j 5v i j cj .

3.2. Yang’s tetrahedron approximation.27 As was noted
in Introduction, an adequate description of ordering in f
alloys should take into account at least correlations am
all nearest neighbors, i.e., tetrahedron clusters of these ne
bors should be included.8–15,27 Such an analysis was firs
performed by Yang.27 He used the ‘‘quasi-chemical’
method, equivalent to the cluster approach discussed h
considered a model with interactions between nearest ne
bors, and his basic clusters were tetrahedrons shown in
1. These tetrahedrons have only one common point, and
lattice site is included in four tetrahedrons. Note that t
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choice of basic clusters is different from the configuratio
of the conventional tetrahedron version of the cluster va
tion technique to be discussed in Sec. 3.4, where the b
clusters are all eight tetrahedrons including a specific lat
site, so these tetrahedrons have, in addition to one com
point, common edges.

With Yang’s selection of basic clusters, Eq.~13! or ~14!
applied to subclusters withuau or uju, which are equated
sequentially to 4, 3, 2, and 1, yield the factorsna5n uau and
fields cj

a ~denoted for brevity byc uju
uau):

n451, n35n250, n1523; ~38!

c4
45c3

45c2
450, c1

45
3

4
c1

1 . ~39!

Thus, interactions within 4-clusters are not renormaliz
whereas 3- and 2-clusters do not contribute to observ
quantities, thus the cluster variation method in this appro
mation is again equivalent to the cluster field method. N
that the vanishing of factorsn3 and n2 and corresponding
fieldsc3

4 andc2
4 is the result of the inner subcluster theore

given in Sec. 2.1: Fig. 1 clearly shows that the subclus
formed by a face and an edge of a basic tetrahedron are i
clusters. Note also that Eq.~39! relating fieldsc1

4 andc1
1 in

the 4-cluster and 1-cluster is again consistent with the c
cept of additivity of field component generated by each ‘‘e
ternal’’ bond. The number of such bonds for a 4-cluster is
and for a 1-cluster~one site! it is 12, which is in agreemen
with Eq. ~39!.

3.3. Approximation of Yang’s tetrahedrons and pa
clusters of non-nearest neighbors.If there are interactions
vn5v2 , v3 , . . . ,vm with second, third,. . . , mth neighbors,
the tetrahedron approximation described in the previous
tion can be generalized to include these interactions. In
cluster variation technique, this is done by using more co
plex approximations with larger basic clusters, namely,
tetrahedron–octahedron approximation taking into acco
v2, the double tetrahedron-octahedron approximation incl
ing v2 andv3, and so on.4,10–13For most of real alloys and
temperatures interesting from the practical viewpoint, ho
ever, interactions between non-nearest neighbors are w
and bvn is much lower than unity.2 In this connection, the
contributions of interactionsvn , wheren>2, are described
in terms of the mean-field approximation,2,3 which is justi-

FIG. 1. Decomposition of the fcc lattice into tetrahedron clusters in Yan
quasi-chemical approximation.27
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fied if bvn is small. But if the parameterbvn is comparable
with unity, the pair cluster approximation described in S
3.1 may have a better accuracy than the mean-fi
approximation.19–26 At the same time, straightforward equa
tions~32!–~37! make this approximation just as easy, at le
in the case of two-component alloys. This approximatio
which includes interaction between nearest neighbors in
approximation of Yang’s tetrahedrons and interactionsvn for
n>2 in the pair cluster approximation will be dubbe
QCTCM. Section 4 will be dedicated largely to investigatio
of this relatively simple approximation.

Using results of Secs. 3.1 and 3.2, one can write exp
sions for potentialsV andmp in QCTCM in a form similar
to Eqs.~32!–~35!:

V5(
i

V i1 (
i , j ,n.2

Ṽ i j ,n1 (
$ i jkl %PtY

Ṽ i jkl , ~40!

mp2wpi5mpi1 (
j ,n.2

m̃pi
i j ,n1 (

$ jkl %PtY,i
m̃pi

i jkl . ~41!

HereV i andmpi are the same as in Eqs.~32!–~34!, whereas

Ṽ i j ,n or m̃pi
i j ,n stands forṼ i j or m̃pi

i j in Eq. ~35!, but for
interaction betweennth neighbors. The notation$ i jkl %PtY
in the last sum of Eq.~40! means that the sum is performe
over all Yang’s tetrahedrons including sitesi , j ,k,l of the
lattice, and$ jkl %PtY,i in Eq. ~41! means that summation i
performed over four Yang’s tetrahedrons that contain siti .

The variablesṼ i jkl and m̃pi
i jkl for tetrahedron$ i jkl % are de-

fined similarly toṼ i j and m̃pi
i j for pair clusters in Eq.~35!:

Ṽ i jkl 5V i jkl 2V i2V j2Vk2V l ;

m̃pi
i jkl 5 ln~ypi

i jkl /ypi
i !. ~42!

3.4. Versions of the cluster variation method.Different
approximations in the cluster variation methods have b
described in the literature in detail.4,10–14In the notation used
in this paper, the thermodynamic potentials are expresse
Eqs. ~16!, ~19!–~22!, and different versions correspond
different configurations of basic clusters, hence different f
tors na in Eqs. ~16! and ~21!. Next is a brief discussion o
most common versions of the cluster variation method
fcc lattices,10,13 which will be used in calculations of Sec. 4

In the tetrahedron approximation, basic clusters are
tetrahedrons including the nearest neighbors. Each tria
of nearest neighbors~which is dubbed minimal! is a part of
only one basic cluster, i.e., it is an inner subcluster a
according to the inner subcluster theorem, does not con
ute to thermodynamic quantities. Each pair of nearest ne
bors ~a ‘‘bond’’ ! belongs to two different tetrahedrons, an
each site belongs to eight basic clusters and twelve bo
By solving Eq. ~13! with due account of these facts, w
obtain for factorsna5n uau in the tetrahedron approximation

n451, n350, n2521, n155. ~43!

In the tetrahedron–octahedron approximation~TOCVM!
the basic clusters are all elementary tetrahedrons and oc
drons, such as$1,2,3,4% and $1,3,4,5,6,7% in Fig. 2. All the
octahedron subclusters, except minimal triangles, bonds,

s
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single sites, are inner, so their factorsna are zero, in accor-
dance with the inner cluster theorem. Each minimal trian
~e.g. $1,2,3% in Fig. 2! belongs to one octahedron and o
tetrahedron; each bond~such as$1,3% in Fig. 2! belongs to
two octahedrons, two tetrahedrons, and four minimal
angles; each single site belongs to six octahedrons, eigh
rahedrons, twenty-four minimal triangles~three in each tet-
rahedron! and twelve bonds. Using these relations in solvi
Eq. ~13!, we obtain factorsna5n uau in the tetrahedron–
octahedron approximation:

n65n451, n3521, n251, n1521. ~44!

In the double tetrahedron–octahedron approximati
the basic clusters are double tetrahedrons like$1,2,3,4,7,8%
and octahedrons like$1,3,4,5,6,7% in Fig. 2, hereafter de-
noted bydt ando. Using Fig. 2, one can find that the ove
lapping ~i.e., non-inner! subclusters of these basic cluste
are tetrahedrons formed of nearest neighbors and denote
t, tetrahedrons like$2,3,4,8% denoted byt̃ , right triangles like

$2,4,8% denoted as 3˜ , minimal triangles, bonds and sing
sites. Each tetrahedront belongs to six double tetrahedron
~all of which have one common bond witht), and each tet-
rahedront̃ belongs to one octahedron and one double te
hedron. Triangle 3˜ belongs to one octahedron, two doub
tetrahedron, and two tetrahedronst̃ . Each minimal triangle
belongs to one octahedron, six double tetrahedrons, one
rahedront, and three tetrahedronst̃ . Each bond belongs to
two octahedrons, eleven double tetrahedrons, two tetr
drons t, ten tetrahedronst̃ , and four minimal triangles, and
each single site belongs to six octahedrons, thirty-six dou
tetrahedrons, eight tetrahedronst, forty-eight tetrahedronst̃ ,
twenty-four minimal triangles, and twelve bonds. All the
relations and Eq.~13! yield factors na for the double
tetrahedron–octahedron approximation:

ndt5no51, n t525, n t̃521, n352,

n 3̃5n250, n1521. ~45!

3.5. Approximations employed in the reported work.In
our calculations of phase diagrams by the cluster varia
method reported in Sec. 4, we have used the tetrahed

FIG. 2. Sites of the fcc lattice discussed in the paper in connection
different configurations of basic clusters.
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octahedron approximation for ordered phases and the do
tetrahedron–octahedron approximation for disorde
phases. We selected the more accurate approximation in
latter case because fluctuation effects in the phase trans
region ~which generate uncertainties largely responsible
calculation errors! are appreciably stronger in the disorder
than in ordered phase.4 Around the points of first-order phas
transitions discussed in this paper, fluctuation effects are
tably suppressed in the ordered phase owing to the pres
of the moderate-size order parameter. Therefore, in orde
obtain a similar degree of accuracy in both phases,
should apply a more accurate technique to the disorde
phase.

As was noted in Sec. 3.3, the tetrahedron–octahed
approximation is sufficient for taking into account interacti
v2 between second neighbors, and the double tetrahedr
octahedron approximation takes into account interactionsv2

andv3 between second and third neighbors, but they ign
interactionsvn with highern. At the same time, taking into
account experimental data forvn ,34 we will consider a
model with nonvanishingv3 and v4. As was stated in Sec
3.3, the contributions of interactionsvn beyond large basic
clusters will be included in the pair cluster approximation,
in Eqs. ~40! and ~41!, i.e., we will add to expressions like
~16! in the cluster variation approximation the compone

Ṽ i j ,n or m̃pi
i j ,n from Eq. ~40! or ~41! with n53 and 4 for the

tetrahedron–octahedron approximation andn54 for the
double tetrahedron–octahedron approximation. Thus, un
otherwise stated, we will hereafter define the cluster va
tion technique in this manner, i.e., the tetrahedro
octahedron approximation for ordered phases, dou
tetrahedron–octahedron for disordered phases, and, in a
tion, pair clusters for interactionsvn with n>3, if such in-
teractions are present and ignored by the basic cluster
proximation.

As concerns calculations by the cluster field method
scribed in the next section, we will discuss, in addition to t
basic QCTCM approximation treated in Sec. 3.3, an alter
tive version of this method~QCT̃CM!, which uses basic
clusters of the tetrahedron cluster variation method, i.e., e
lattice site belongs not to four QCTCM tetrahedrons, but
eight. Since this version relies on the main assumption of
cluster field method,cj

a50 for uju.1, the main self-
consistency condition~6! is violated for uju52, i.e., the
mean occupanciesgj for uju52 in the tetrahedrons and pa
clusters of nearest neighbors differ. Since the contribution
these clusters to thermodynamic quantities, according to
~43! and unlike Eq.~38!, is nonvanishing, there is every rea
son to suppose that the accuracy of QCT˜CM should be worse
than that of QCTCM. This opinion is supported by calcu
tions of Sec. 4.

4. CALCULATIONS OF PHASE DIAGRAMS WITH L12

AND L10 ORDERING BY DIFFERENT CLUSTER
APPROXIMATIONS

This section describes results obtained using meth
specified in Secs. 2 and 3 in calculating phase diagrams
some models withL12 or L10 ordering. In cubic structure

h
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L12 ~which occurs, for example, in alloys like Ni3Al) mi-
nority atoms~Al ! occupy predominantly sites of sublattice
i.e., vertices of the cell cube shown in Fig. 2, whereas m
jority atoms~Ni! occupy predominantly sites of sublattice
i.e., the centers of cube faces. The mean occupanciesc1 and
c2 of sites~for example, by minority atoms! in these sublat-
tices are related to the mean concentrationc of alloy compo-
nents and order parameterh by the formulas35

c15c13h, c25c2h, ~46!

whereh may vary between zero andc.
The tetragonalL10 structure~for example, in TiAl al-

loys! is formed by alternating@100# lattice planes occupied
predominantly by atoms of the first or second sort. In t
case, sublattices 1 and 2 are formed by alternating lat
planes, so their occupanciesc1 andc2 are related to the orde
parameterh by the formulas

c15c1h, c25c2h, ~47!

whereh, just as in Eq.~46! varies between zero andc.
As was mentioned in Introduction, the main subject

this section is the accuracy of phase diagram calculat
based on the simple QCTCM approximation described
Sec. 3.3 in comparison with more complicated calculatio
based on the cluster variation method. The cluster varia
method in this case is the version described in Sec.
which uses the tetrahedron–octahedron approximation
ordered phases and double tetrahedron–octahedron app
mation for disordered phases. Earlier investigations4,10,11

suggest that the accuracy of this version of the cluster va
tion method is extremely high, since the difference betwe
calculations by this method and Monte Carlo results w
usually within one percent.

As in Refs. 10 and 11, we will analyze only models wi
interactionsv1 and v2 between nearest and second-near
neighbors dubbed for brevity 2-models. In this case, ph
transitions to theL12 or L10 phase are possible whenv1

.0 andv2,0,11 and if the temperature is replaced by t
‘‘reduced’’ temperatureT85T/v1, the phase diagram in th
c2T8 plane is determined by one parametere5v2 /v1,0.
The available experimental evaluations ofe in such
alloys4,25,26,34yield 20.3&e&0. For this reason, we hav
used in our studies of 2-models four values ofe equal to
21/2, 21/4, 21/8, and 0. In addition, we have also studi
the model including interactions between up to fourth nei
bors ~the 4-model! at vn derived from experimental data34

for the Ni0.927Al0.073 alloy at T5673 K. These estimates o
interaction constants arev151680 K, v252210 K, v3

535 K, andv452207 K. Note that these values are of th
same order of magnitude as both experimental4,25 and
theoretical2,3 data for various alloys of this kind.

In calculations of temperatureTi j (c) at which phasesi
and j are in equilibrium, we used conventional thermod
namic equations, i.e., equilibrium conditions for chemic
potentialsm and potentialsV of these phases.11,22 In addi-
tion, we also calculated the ordering spinodalTos(c).1 Lines
Tos(c) in thec2T plane separate regions of different kine
mechanisms of phase transformations after quenching
homogeneous disordered alloy below the ordering temp
-

s
e

f
s

n
s
n
5,
or
xi-

a-
n
e

st
e

-

-
l

a
a-

ture, namely, the metastable region of nucleation and nuc
growth for T.Tos(c) and the region of exponential growt
of concentrational wave amplitudes with time, starting w
infinitesimally small fluctuations atT,Tos.

6,29 The dis-
cussed phase transitions to phasesL12 or L10 have the same
ordering spinodal corresponding to ‘‘critical’’ concentratio
waves with the star wave vectorks5(2p/a,0,0), wherea is
the lattice constant of the fcc structure.1,35 The shape of this
spinodal can be derived from expression~22! for free energy
F of an ordered alloy with sublattice occupanciesc1 andc2

expressed in terms of the mean concentrationc and order
parameterh using Eqs.~46! and ~47!. The line Tos(c) is
determined by the condition of thermodynamic stabil
against infinitely smallh, i.e., the second derivative ofF
with respect toh should go to zero ath50:

@]2F~T,c,h!/]h2#h5050. ~48!

In our calculations, we substituted in Eq.~48! the expression
for F in the L12 phase calculated by the QCTCM approx
mation@Eqs.~22!, ~40!, and~41!#. To the best of our knowl-
edge, previous calculations ofTos(c) for ordering transition
to phasesL12 andL10 were based on a very special mod
with interactions between nearest neighbors.1 The ordering
spinodals given below contain information about importa
kinetic characteristics of phase transformations based
more realistic alloy models.

The calculation results are plotted in Figs. 3–7. In t
models with pair interactions independent of the concen
tions, phase diagrams are symmetrical with respect to
line of mean concentrationc51/2, therefore the graphs sho
only the regionc<1/2. Let us discuss the calculations plo
ted in the graphs.

First of all, it is clear that the calculations by all mode
except the model taking into account only interactions
tween nearest neighbors~Fig. 7! discussed below, in the

FIG. 3. Phase diagram in thec2T8 plane of an fcc binary alloy AcB12c ,
whereT85T/v1 is the reduced temperature, for the following constants
cluster interactions:vn>350, e5v2 /v1520.5. The solid lines are curves
of equilibrium between phases,Ti j (c), calculated by QCTCM as describe
in Sec. 3.3. The dashed lines areTi j (c) curves calculated by the cluste
variation method described in Sec. 3.5. The regions separated by
Ti j (c) correspond to the following phases~from left to right!: disorderedA1

phase; coexistence ofA1 and L12 phases;L12 phase; coexistence ofL12

andL10 phases;L10 phase. The dotted line is the ordering spinodalTos(c)
calculated by QCTCM.
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QCTCM and cluster variation approximations are very clo
whereas the latter, as was noted above, should be fairly c
to exact results. Thus, in all these models, QCTCM qu
adequately describes thermodynamics of phase transfo
tions. This is our main result, which allows us to suppo
that QCTCM could be perfectly adequate for solving mo
complex problems of phase transition kinetics mentioned
Introduction.

At the same time, Fig. 4 demonstrates that the resul
QCT̃CM, which was described in Sec. 3.5, at notable c
centrations c*0.2 differ considerable from both cluste
variation and QCTCM calculations. This indicates that v
lation of the self-consistency condition~6! by QCT̃CM, i.e.,
the condition of equal occupancies in different clusters c
tributing to thermodynamic quantities, may notably degra
the calculation accuracy. Therefore, one cause of the g
accuracy of QCTCM calculations may be the absence
such a self-consistency violation in this technique.

Comparison between graphs in Figs. 5 and 6 illustra
the effect of interactions between non-nearest neighbors
the phase diagram shape. The ratioe5v2 /v1 in the 4-model
in Fig. 6 is very close toe521/8 in calculations by the
2-model in Fig. 5. The presence of additional interactions
the 4-model, however, primarilyv4.v2, leads to notably

FIG. 4. The same as Fig. 3, but for a model withe520.25. The solid,
dashed, and dotted lines have the same meaning as in Fig. 3. The

dotted lines showTi j (c) curves calculated in the QCT˜CM approximation
described at the end of Sec. 3.5.

FIG. 5. The same as Fig. 3 for a model withe520.125.
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higher temperatures of the phase transition,Tc(c)/v1, and
spinodal,Tos(c)/v1, as compared to the calculations by th
2-model shown in Fig. 5.

The spinodal temperaturesTos(c) in Figs. 3–6 are usu-
ally very close to transition pointsTc(c), remarkably, not
only in the region of ordered phaseL12, but also in the
region ofA1 andL12 coexistence. Therefore, kinetic effec
related to thermodynamic instability in a quenched dis
dered alloy in the regionT,Tos(c) and B2 ordering dis-
cussed in earlier publications29 can also show up in broad
ranges of temperature and concentration. Note also tha
2-models~Figs. 3–5! the ratiosTos(c)/Tc(c) drop with in-
creasingueu5uv2 /v1u. So, for e520.125 ~and in QCTCM
models with1,4 e50) our calculations ofTos(c)/Tc(c) in the
L12 phase and near the peak ofTc(c) are close to 0.75. The
cluster variation calculations based on the tetrahedro
octahedron scheme with4 e50 yield notably higher
Tos(c)/Tc(c).0.96. Therefore, our simple calculations wi
small e by the 2-model probably underestimate the spino

FIG. 6. Phase diagram in thec2T plane for the 4-model described in th
text with vn derived from experimental data.34 The lines have the same
meaning as in Fig. 3.

FIG. 7. Phase diagram in thec2T8 plane for a model of an fcc alloy with
pair interaction only between nearest neighbors describing equilibrium
tween A1 and L12 phases. The solid lines showTi j (c) calculated by
QCTCM, the dashed lines showTi j (c) calculated by TCVM, squares an
crosses plot Monte Carlo calculations.11

sh-
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temperatureTos(c), which might be caused by fluctuatio
effects in the phase transition region discussed below.

The model with interaction between only nearest nei
bors (e50) was studied by many researchers.4,10,11,28 For
this reason, Fig. 7 shows only a few calculations of equi
rium lines between theA1 andL12 phases by this model,11,28

and these data are given as an illustration. The feature of
model is degeneracy~in terms of energy! of several phases
with different symmetry properties, in particular,L12 and
DO22, or L10 andA2B2,11,28 as well as many different con
figurations with short-range order. This leads to a consid
able increase in various fluctuation effects near the ph
transitions, hence a poorer accuracy of such simple appr
mations as QCTCM or TCVM. This, apparently, results
notable differences between results of these methods
Monte Carlo calculations in Fig. 7, as well as similar erro
in spinodal calculations discussed by Finel.4 Nonetheless, it
follows from both theoretical calculations2,3 and experimen-
tal data4,25 that the model taking into account only intera
tions between nearest neighbors is, seemingly, inadequat
all real alloys that have been studied so far. Therefore
relatively low accuracy of QCTCM in combination with th
specific model does not necessarily mean that this me
cannot be applied to more realistic alloy models.

5. CONCLUSIONS

In conclusion, let us summarize the main results of t
work. A general formulation of cluster methods for calcula
ing thermodynamic quantities in alloys with arbitrary num
bers of components and inhomogeneous distributions o
oms is given. The basic variables are effective fields a
interactions within a cluster due to its interaction with t
environment. This approach seems more simple and w
ranging than previous versions, can be generalized to var
cases, and accommodates as special cases the well-k
cluster variation method and the cluster field method
scribed earlier. A simple version of the cluster field meth
~QCTCM! based on selection of Yang’s tetrahedron clust
in an fcc lattice~Fig. 1! and inclusion of interactions with
non-nearest neighbors in the pair cluster approximation
been suggested. We have calculated phase diagrams
several models of fcc alloys withL12 andL10 ordering us-
ing both QCTCM and a more complicated version of t
cluster variation method, whose accuracy, in accorda
with earlier investigations, should be extremely high. W
all realistic interaction models, phase diagrams obtained
the simple QCTCM method are very close to those cal
lated by the cluster variation technique. This indicates t
QCTCM can be applied to topical problems of phase tran
tion kinetics in alloys under discussion, for which the simp
mean-field approximation is insufficient, whereas the clus
variation technique is too cumbersome. We have also ca
lated ordering spinodalsTos(c) for these alloys. Our result
indicate, in particular, that specific kinetic processes, sim
to those associated with simpler phase transitions and
cussed previously,29 can occur when these alloys a
quenched into the regionT,Tos(c). All these results may be
-

-

is

r-
se
xi-

nd

for
e

od

s
-

t-
d

e-
us
wn
-

d
s

as
ing

e

y
-
t

i-

r
u-

r
is-

used as a base for further development of theoretical mo
of inhomogeneous states and ordering phase transition k
ics in fcc alloys.
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ONERA 1987-3~1987!.
14F. Ducastelle, inCohesion and Structures, Vol. 3, F. R. de Boer and D. G.

Pettifor ~Eds.!, North Holland, Amsterdam~1991!, Ch. 4.
15V. G. Vaks and V. V. Kamyshenko, Izv. Akad. Nauk SSSR, Ser. Meta

No. 2, 121~1990!.
16B. H. Kear, Sci. Am. , No. 12, 99~1986!.
17V. G. Vaks, JETP Lett.63, 471 ~1996!.
18K. D. Belashchenko and V. G. Vaks, J. Phys. F10, 1965~1998!.
19V. G. Vaks, N. E. Ze�n, V. I. Zinenko, and V. G. Orlov, Zh. E´ ksp. Teor.

Fiz. 87, 2030~1984! @Sov. Phys. JETP60, 1171~1984!#.
20V. G. Vaks and V. G. Orlov, Fiz. Tverd. Tela28, 3627~1986! @Sov. Phys.

Solid State28, 2045~1986!#.
21V. G. Vaks and V. G. Orlov, J. Phys. F18, 883 ~1988!.
22V. G. Vaks and V. I. Zinenko, J. Phys.: Condens. Matter1, 9085~1989!;

3, 4533~1991!.
23V. G. Vaks, N. E. Zein, and V. V. Kamyshenko, J. Phys. F18, 1641

~1988!.
24V. G. Vaks, N. E. Ze�n, V. V. Kamyshenko, and Yu. V. Tkachenko, Fiz

Tverd. Tela30, 477 ~1988! @Sov. Phys. Solid State30, 270 ~1988!#.
25V. G. Vaks, N. E. Zein, and V. V. Kamyshenko, J. Phys.: Condens. Ma

1, 2115~1989!.
26V. G. Vaks and V. V. Kamyshenko, J. Phys.: Condens. Matter3, 1351

~1991!.
27C. N. Yang, J. Chem. Phys.13, 66 ~1945!.
28Y. Y. Li, J. Chem. Phys.17, 447 ~1949!.
29V. Yu. Dobretsov, V. G. Vaks, and G. Martin, Phys. Rev. B54, 3227

~1996!.
30K. D. Belashchenko and V. G. Vaks, Zh. E´ ksp. Teor. Fiz.112, 714~1997!

@JETP85, 390 ~1997!#.



-

of

100 JETP 88 (1), January 1999 V. G. Vaks and G. D. Samolyuk
31J. Dennis and R. Schnabel,Numerical Methods of Unconditional Optimi
zation and Solution of Nonlinear Equations@Russian translation#, Mir,
Moscow ~1988!.

32W. H. Press, S. A. Teukolsky, W. T. Vetteringet al., Numerical Recipes
in C, Camb. Univ. Press~1996!, Ch. 10.

33A. Finel, V. Mazauric, and F. Ducastelle, Phys. Rev. Lett.65, 1016
~1990!.
34F. Chassagne, M. Bessiere, Y. Calvayracet al., Acta Metall. 37, 2329
~1989!.

35A. G. Khachaturyan,Theory of Phase Transformations and Structure
Solid Solutions@in Russian#, Nauka, Moscow~1974!.

Translation provided by the Russian Editorial office


	1_1.pdf
	101_1.pdf
	105_1.pdf
	114_1.pdf
	118_1.pdf
	128_1.pdf
	135_1.pdf
	138_1.pdf
	148_1.pdf
	157_1.pdf
	16_1.pdf
	168_1.pdf
	174_1.pdf
	182_1.pdf
	196_1.pdf
	206_1.pdf
	207_1.pdf
	208_1.pdf
	24_1.pdf
	28_1.pdf
	35_1.pdf
	40_1.pdf
	46_1.pdf
	51_1.pdf
	58_1.pdf
	6_1.pdf
	66_1.pdf
	72_1.pdf
	79_1.pdf
	84_1.pdf
	89_1.pdf

