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Summary 

 

Pseudomonas aeruginosa is one of the most problematic versatile Gram-negative 

bacteria in causing opportunistic human infections which are particularly difficult to treat 

because of its intrinsic resistance to antibiotics, as a consequence of many intervening resistance 

mechanisms involving the ability to overproduce the chromosomally encoded 

cephalosporinases, Pae-AmpC, which are periplasmic enzymes, belong to group I class C serine 

β-lactamases and are also responsible of bacterial resistance in many bacteria. In P. aeruginosa, 

ampC expression is regulated mainly by AmpG permeases, AmpD amidases, AmpR, NagZ, and 

two competing AmpR-binding muropeptides [UDP-MurNAc-pentapeptides (ampC suppressor) 

and 1,6-anhydromuropeptides (ampC inducer)]. Low molecular mass penicillin-binding proteins 

[LMM-PBP; e.g. PBP4 (DacB), PBP5 (DacC), PBP7 (PbpG)] are a group of periplasmic 

enzymes that have DD-carboxypeptidase and/or DD-endopeptidase activities which participate 

in cell separation, peptidoglycan (PG) maturation and recycling. Binding of β-lactams (e.g. 

penicillin) with LMM-PBPs causes an increase in anhydromuropeptides and periplasmic AmpC 

overproduction to hydrolyze that external unwelcome inducer. This study aims to highlight and 

to characterize the functions of Pae-AmpC and the role of LMM-PBPs PBP4, PBP5 and PBP7 

in PG composition and bacterial resistance in P. aeruginosa; also, to study the role of these 

LMM-PBPs in Pae-ampC regulation and to see if they are needed for the recovery of rod shape 

of imipenem-induced round cells in P. aeruginosa. To fulfill this study we characterized several 

Pae-AmpC forms (wild type and mutants) in wild type and mutants of E. coli and in P. 

aeruginosa PAO1 strain which were tested for their PG composition by HPLC analysis and for 

bacterial resistance by disc diffusion method. Also, we constructed single and combined 

mutants of dacB, dacC, pbpG and ampC in PAO1 strain which were tested for their PG 

composition, ampC expression by RT-PCR, β-lactams susceptibility and their PBPs pattern by 

Bocillin-FL binding test. We analyzed PG composition and PBPs pattern in imipenem-induced 

round cells and their rod shape recovered cells in PAO1. We found that some Pae-AmpC 

mutants had a very low β-lactamase activity (AmpC-F4:C3 and AmpC-F4:C6); the mature form 

of Pae-AmpC had a high β-lactamase activity and a secondary DD-endopeptidase and DD-

carboxypeptidase activities; only dacB single and combined mutations produced high ampC 

expression and β-lactam resistance; only dacC single and combined mutations produced 

maximum increase of PG pentapeptides. The triple mutant of dacB, dacC and pbpG displayed 

the largest increase in ampC expression and β-lactams resistance. Microscopic examination of 

all the constructed Pae mutants showed that they still retain their rod shape morphology similar 

to their parental PAO1 strain. Also, we found that activities of DacB, DacC and PbpG are not 

essential for recovery of rod shape in imipenem-induced spheres in P. aeruginosa. 
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Resumen  
 

P. aeruginosa es una de las bacterias Gram-negativas versátiles y más problemáticas 

causantes de infecciones oportunistas en humanos y que son particularmente difíciles de curar 

debido a su resistencia intrínseca a los antibióticos, como consecuencia de los muchos 

mecanismos de resistencia intervinientes, y que implica la capacidad de sobreproducir las 

cefalosporinas codificados cromosómicamente, Pae-AmpC. En P. aeruginosa, la expresión de 

ampC se rige principalmente por la permeasa AmpG, la amidasa AmpD, AmpR, NagZ y dos 

muropéptidos competidores fijadores de AmpR [UDP-MurNAc-pentapéptido (supresor de 

ampC) y 1,6-anhidro-muropéptidos (inductor de ampC)]. Las proteínas (de baja masa 

molecular) fijadoras de penicilina [LMM-PBP; por ejemplo PBP4 (DacB), PBP5 (DacC), PBP7 

(PbpG)] son un grupo de enzimas periplásmicas que tienen actividades DD-

carboxipeptidasa/DD-endopeptidasa y que participan en la separación celular, y en la 

maduración y reciclaje del peptidoglicano (PG). La unión de un β-lactámicos (por ejemplo, 

penicilina) a las LMM-PBP provoca un aumento en anhidro-muropéptidos y sobreproducción 

de AmpC en periplasma para hidrolizar este inductor externo no deseado. Este estudio tiene 

como objetivo destacar y caracterizar las funciones de Pae-AmpC y la implicación de PBP4, 

PBP5 y PBP7 en la composición del PG y la resistencia bacteriana en P. aeruginosa y además, 

analizar el papel de estas LMM-PBPs en la regulación de Pae-ampC y determinar si son 

necesarias para la recuperación de la forma bacilar a partir de esferoplastos de P. aeruginosa 

inducidos por imipenem. Para realizar este estudio hemos caracterizado varias formas de Pae-

AmpC en E. coli y P. aeruginosa PAO1 que se ensayaron mediante la determinación de su 

composición del PG por análisis de HPLC y su resistencia bacteriana por el método de difusión 

en disco en agar. Además, hemos construido mutantes individuales y combinados de dacB, 

dacC, pbpG y ampC en la cepa PAO1. Además, se analizó la composición del PG y los patrones 

de PBP en esferoplastos inducidos por imipenem y de sus formas bacilares recuperadas en 

PAO1. Hemos encontrado que algunos mutantes de Pae-AmpC tenían una actividad muy baja 

β-lactamasa (AmpC-F4: C3 y AmpC-F4: C6); que el tipo silvestre de Pae-AmpC (AmpC-F4) 

tenía una alta actividad β-lactamasa y unas actividades secundarias de DD-endopeptidasa y DD-

carboxipeptidasa; que sólo mutaciones individuales en dacB y combinadas producen una alta 

expresión de ampC y resistencia a β-lactámicos; que  sólo mutaciones individuales en dacC y 

combinadas producen un aumento máximo de pentapéptidos en el PG. El triple mutante de 

dacB, dacC y pbpG mostró el mayor aumento en la resistencia a β-lactámicos y en la expresión 

de ampC. El examen microscópico de todos los mutantes construidos en PAO1 mostró que 

todavía conservan sus formas morfologías bacilares similar a su cepa parental PAO1. Las 

actividades de DacB, DacC y PbpG no son esenciales para la recuperación de la forma bacilar 

en los esferoplastos de P. aeruginosa inducidos por imipenem. 
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1. Introduction  
 

1.1. Pseudomonas aeruginosa & high challenge  

 

Classification 
Bacteria (Super-kingdom); Proteobacteria (Phylum); Gammaproteobacteria (Class); 

Pseudomonadales (Order); Pseudomonadaceae (Family); Pseudomonas (Genus), aeruginosa 

(Species) (Benson et al, 2009; Sayers et al, 2009).  

 

Genetic complexity and diversity & clinical challenge  
The complete genome of P. aeruginosa PAO1 strain was sequenced and displayed 6.3 

Mbp with 5570 predicted open reading frames (ORFs) which are mostly larger than sequenced 

genomes of 25 bacterial strains showing how complex is P. aeruginosa. This massive number 

of ORFs has only a few gene clusters duplicated and lacks recent gene duplications referring to 

high functional diversity, genetic complexity and evolutionary adaptations of this 

microorganism which can explain its versatility and wide occurrence in soil, water, as well as on 

plant and animal tissues as a pathogen (Stover et al, 2000). PAO1 strain is considered as the 

major reference strain for research P. aeruginosa, where new genomic sequences of other 

Pseudomonas strains are being discovered, annotated and compared with PAO1 reference to 

reveal the function and genetic variations (SNPs) of the new ORFs (Klockgether et al, 2010; 

Winsor et al, 2011). P. aeruginosa is considered as one of the most challenging versatile Gram 

negative bacteria in causing opportunistic human infections which are particularly difficult to 

treat because of its intrinsic resistance to antibiotics, as a consequence of many intervening 

resistance mechanisms; its low outer membrane permeability (OprD porin), active drug efflux 

pumps and mutations leading overproduction of the chromosomally encoded cephalosporinase, 

AmpC. While the incidences of concerning transferable resistance determinants, such as those 

encoding class B carbapenemases are increasing, especially in other pathogens, the current 

global threat of antimicrobial resistance in P. aeruginosa mainly still results from the 

extraordinary capacity of this microorganism to develop resistance to almost any available 

antibiotic by the selection of mutations in chromosomal genes. This enables P. aeruginosa to 

produce multidrug-resistance strains through combinations of the previous resistance 

mechanisms beside accumulation of multiple chromosomal changes overtime. So, treatment of 

P. aeruginosa is a serious therapeutic challenge (Lister et al, 2009; Stover et al, 2000; Strateva 

& Yordanov, 2009). P. aeruginosa secretes several virulence factors (e.g. pili, flagella, 

lipopolysaccharides, quorum sensing, toxins, lipases and proteases), (Lyczak et al, 2000; Stover 

et al, 2000). Also, P. aeruginosa is able to develop biofilm which is surface-attached microbial 
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populations with distinctive construction and phenotypic and biochemical properties different 

from their free-swimming, planktonic counterparts. Bacterial biofilm is characterized by a very 

high antibiotic resistance when compared with planktonic cells (Mah et al, 2003). AmpC 

overproduction is the main mechanism in P. aeruginosa to develop resistance to most of β-

lactams, with the exception of carbapenems and cefepime which require additional mechanisms 

to develop resistance [e.g., AmpC mutations, downregulation of porin production] (Cabot et al, 

2014; Lister et al, 2009). It was reported that P. aeruginosa is the second common pathogen to 

be clinically isolated after E. coli and it was reported that among 56 random isolates of P. 

aeruginosa there were 41.1% non-multidrug resistant (non-MDR) strains, 37.5% extensively 

drug resistant (XDR) strains and 21.4% multidrug resistant (MDR) strains (Gomila et al, 2013); 

such a study highlights how dangerous are the resistant mutants of this microorganism. 

Therefore, finding more effective antibiotics to cure infections with resistant (MDR and XDR) 

P. aeruginosa pathogens is a public necessity.  

 

1.2. Penicillin-binding proteins (PBPs)  
PBPs are a group of enzymes responsible for PG polymerization, crosslinking and 

remodeling in the periplasmic compartment (section 1.3.2; Fig.1.2). They have a common 

penicillin-binding domain although they may have different overall structures and activities. 

According to their molecular masses and structures, PBPs were classified into class A (HMM-

PBPs), class B (HMM-PBPs) and class C (LMM-PBPs) referring to E. coli type which has 

twelve PBPs involving three class A PBPs (PBP1a, PBP1b and PBP1c), two class B PBPs 

(PBP2 and PBP3) and seven class C LMM-PBPs (PBP4, PBP5, PBP6, PBP6b, PBP7, PBP4b 

and AmpH) (Sauvage et al, 2008). Penicillin-binding proteins in E. coli are the best 

characterized, both at molecular and functional level, and the PBPs from most other 

microorganisms are always referred to those one, including Gram-positive that have a different 

peptidoglycan structure (Sauvage et al, 2008).  

 

1.2.1. High molecular mass HMM-PBPs (class A, B)  
HMM-PBPs are multimodular enzymes (>60 kDa) which catalyze PG polymerization 

and/or crosslinking by glycosyltransferase (TGase) and transpeptidase (TPase) activities 

respectively. They mainly act to construct a new PG strands by TGase activity from 

muropeptide subunits carried by lipid II and then to crosslink these new strands into the old PG 

mesh by TPase activity. They have a cytoplasmic tail, a transmembrane anchor and two 

periplasmic domains whose C-terminal one is called penicillin-binding (PB) domain, due to the 

ability to bind β-lactams, and is responsible for TPase activity. HMM-PBPs were further 
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classified into class A and class B depending on the structures and the catalytic activity of the 

N-terminal domain (Sauvage et al, 2008; Vollmer & Bertsche, 2008).  

Class A PBPs (e.g. Eco-PBP1a and Eco-PBP1b) are bifunctional enzymes with TGase 

and TPase activities as their N-terminal domain has TGase activity. Eco-PBP1a and Eco-PBP1b 

are the main bifunctional TGase-TPase enzymes in E. coli (Sauvage et al, 2008). Inactivation of 

both of PBP1a and PBP1b was lethal to E. coli; indicating their vital role in PG synthesis and 

cell life (Denome et al, 1999; Kong et al, 2010; Sauvage et al, 2008). Penicillin-binding proteins 

Pae-PBP1a and Pae-PBP1b of Pseudomonas belong to this class (Sauvage et al, 2008). 

Class B PBPs (e.g. Eco-PBP2 and Eco-PBP3) are monofunctional TPase enzymes. 

They are involved in cell elongation complex (elongase), cell division complex (divisome) and 

cell morphogenesis. Their N-terminal domain may interact with some other proteins involved in 

the cell cycle and in turn affects cell morphogenesis. It was reported that Eco-PBP2 is essential 

for cell elongation and shape maintenance, while Eco-PBP3 is essential for cell division in E. 

coli (Sauvage et al, 2008). Penicillin-binding proteins Pae-PBP2, Pae-PBP3 and Pae-PBP3b of 

Pseudomonas belong to this class (Sauvage et al, 2008). 

1.2.2. Low molecular mass, LMM-PBPs (class C) 
LMM-PBPs include periplasmic proteins (<60 kDa) that are either soluble or associated 

with the cytoplasmic membrane. They are not essential for bacterial viability under laboratory 

conditions (Clarke et al, 2009; Sauvage et al, 2008). Their PB domain has carboxypeptidase 

(CPase) and/or endopeptidase (EPase) activities which enable them to participate in PG 

maturation and recycling and cell separation. LMM-PBPs were sub-divided into 4 sub-groups 

(Type-4, type-5, type-7 and type-AmpH) referring to E. coli type concerning structural and 

functional similarities (Sauvage et al, 2008).  

 

Type-4 class C LMM-PBPs (e.g. Eco-PBP4): E. coli PBP4 with solved crystal 

structure was reported to have both DD-EPase and DD-CPase activities (Clarke et al, 2009; 

Kishida et al, 2006). Type-4 PBPs are very loosely associated with the cytoplasmic membrane 

and may be involved in cell morphology, daughter cell separation and biofilm formation. 

(Sauvage et al, 2008). Inactivation of PBP4 in P. aeruginosa was reported to cause AmpC 

overproduction triggering high β-lactam resistance (Moya et al, 2009). Penicillin-binding 

protein Pae-DacB of Pseudomonas belongs to this class (Sauvage et al, 2008). 

Type-5 class C LMM-PBPs [e.g. Eco-PBP5, Eco-PB6 and Eco-PBP6b (DacD)]: 

Type-5 LMM-PBPs have DD-CPase activity, being Eco-PBP5 the prototype and it is the most 

abundant LMM-PBP with major DD-CPase. Type-5 LMM-PBPs are associated with the 

cytoplasmic membrane by amphipathic helix and play an important role in determining the cell 
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diameter and the correct septum formation (Chowdhury & Ghosh, 2011; Chowdhury et al, 

2010; Ghosh et al, 2008; Sauvage et al, 2008). It was suggested that Eco-PBP5 (but not Eco-

PBP6 and Eco-DacD) may have a role in intrinsic β-lactam resistance (Sarkar et al, 2011). 

Recently, it has been described that the soluble form of PBP5 from PA01 (Pae-sPBP5) 

displayed in vitro bifunctional DD-CPase and expanded-spectrum β-lactamase activities even 

for carbapenems which is unusual when compared with the monofunctional DD-CPase Eco-

PBP5 in E. coli. This behavior was explained by the flexibility and enlargement of the active 

site to share the same catalytic apparatus and similar mechanisms. This may be helpful for 

understanding the evolution of β-lactamase activity from the PBP enzymes (Smith et al, 2013). 

Penicillin-binding protein Pae-DacC of Pseudomonas belongs to this class (Sauvage et al, 

2008). 

Type-7 class C LMM-PBPs (e.g. Eco-PBP7): PBP7 enzymes are loosely associated to 

the cytoplasmic membrane and have DD-EPase activity. It was found that E. coli double mutant 

ΔPBP5-ΔPBP7 had more abnormality than the single mutant ΔPBP5; however the single mutant 

ΔPBP7 showed no morphological change (Sauvage et al, 2008). It was suggested that PBP4 and 

PBP7 affect cell shape in concert with PBP 5 (Meberg et al, 2004). Penicillin-binding protein 

Pae-PpbG of Pseudomonas belongs to this class (Sauvage et al, 2008). 

Type-AmpH class C LMM-PBPs (e.g. Eco-AmpH): It was described that AmpH from 

E. coli showed a bifunctional behavior of EPase and CPase activities (Gonzalez-Leiza et al, 

2011). Type-AmpH PBPs have a close structural similarity to class C-β-lactamase. It was 

suggested that AmpH and AmpC may participate in the normal PG synthesis, remodeling or 

recycling (Pratt, 2008; Sauvage et al, 2008). No penicillin-binding proteins of this class are 

identified in Pseudomonas (Sauvage et al, 2008).  

 

1.3. Peptidoglycan (PG, murein, cell wall)  
PG and murein are synonyms for the periplasmic sacculus surrounding the cytoplasmic 

membrane as mesh-like envelope. Furthermore, PG is the main structural component of the 

bacterial cell wall and mainly acts to maintain the bacterial cell shape and integrity (bacilli, 

cocci …) protecting the cell from its turgor and acts as a support for some other envelope 

components like proteins and teichoic acid. Therefore, PG is vital to the bacterial cell life and 

any major changes in its composition can affect the bacterial cell shape. Moreover, PG 

deformation or degradation can lead to cell lysis (Vollmer & Bertsche, 2008; Vollmer et al, 

2008a; Vollmer & Holtje, 2004; Vollmer & Seligman, 2010).   
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1.3.1. PG structure& chemical and physical properties 
PG is a heterogeneous elastic biopolymer of muropeptides which are linked together by 

β-1,4-bonds to form a long glycan strands cross-linked by bridges between its peptide stems. 

Each muropeptide subunit is composed of disaccharide derivatives of N-acetylglucosamine 

(GlcNAc) and N-acetylmuramic acid (MurNAc) in addition to a peptide stem of di-, tri-, tetra- 

or pentapeptides. Moreover, the glycan chains of muropeptides are crosslinked together 

frequently by 3-4 crosslinks which can be either direct as in most Gram-negative bacteria (e.g. 

E. coli) or through an inter-peptide bridge within most Gram-positive bacteria (e.g. 

Staphylococcus aureus) (fig. 1.1). The peptide stem in PG of E. coli and most Gram-negative 

bacteria is composed of amino acids L-Ala, D-Glu, Dap, D-Ala and D-Ala which occupy 

positions of numbers 1, 2, 3, 4 and 5, respectively, where amino acid number 1 (L-Ala) is linked 

to the D-lactyl group of MurNAc. The same was reported for PG peptide stem in most of Gram-

positive bacteria except for positions number 2 and 3 which are occupied by D-Gln and L-Lys, 

respectively. (Vollmer & Bertsche, 2008; Vollmer et al, 2008a; Vollmer & Holtje, 2004; 

Vollmer & Seligman, 2010). D-amino acids in peptide stems provide PG with resistance against 

auto-degradation by cellular proteases because D-amino acids are not common in natural 

proteins and peptides (Cava et al, 2011). PG composition can change from one strain to another 

and even within the same strain because it is sensitive to changes in growth conditions (e.g. 

growth media, temperature and growth phase). These changes may involve variations in the 

length of the glycan strands, types and degree of cross-linkage, amino acids of the peptide stem 

and PG layers which are almost one layer in Gram-negative bacteria while several PG layers 

occur frequently in Gram-positive bacteria. PG of E. coli was used for long time for HPLC 

analysis to understand its chemical structure beyond its purification and digestion with 

muramidase which cleaves β-1,4-glycosidic bonds between MurNAc and GlcNAc residues 

liberating the constituting muropeptide subunits which can be separated and analyzed by HPLC 

(Glauner, 1988; Glauner et al, 1988). Knowing PG chemical composition provides important 

data concerning cell wall structure which in turns may explain variations in cell shapes (Cava et 

al, 2013). Atomic Force Microscopy and TEM tomography were used to track the mechanics 

and spatial architecture of PG from different bacteria (Cava et al, 2013; Vollmer & Seligman, 

2010; Yao et al, 1999). Additionally, it was concluded that the glycan strands in Gram-negative 

bacteria (e.g. E. coli and P. aeruginosa) run almost in parallel to the cell membrane in the 

direction of the short axis of the cell, while the PG peptide-stems are oriented mostly in the 

direction of the long axis. Also, It was found that the PG is thinner and shorter with less 

crosslinks and larger pores in Pseudomonas aeruginosa than in E. coli (Vollmer & Seligman, 

2010).  
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Figure 1.1. Common 3-4 crosslinks 

between glycan strands of PG 

(Vollmer et al, 2008a).  

(a) Direct 3-4 crosslinks in E. coli 

between D-Ala and m-A2pm. (b)  3–4 

cross-link with a penta-glycine bridge 

between D-Ala and L-Lys in 

Staphylococcus aureus.   

M: N-acetylmuramic acid, G: N-

acetylglucosamine. Numbers refer to positions of amino acids in peptide stems where the 1st 

amino acid, L-Ala, is linked to N-acetylmuramic acid.  

 

 

1.3.2. PG biosynthesis and remodeling  

Biosynthesis of PG takes place in three cellular compartments (cytoplasm, cytoplasmic 

membrane and periplasm) beginning in the cytoplasm where UDP-MurNAc-pentapeptide (fig. 

1.2; 2) is constructed from Fructose-6-P (fig. 1.2; 1), free tri-, tetra- or pentapeptides (fig. 1.2; 

7a-c), GlcNAc-6-P, MurNAc-6-P and anhMurNAc (fig. 1.2; 10) by consecutive activities of 

AnmK, MurQ, NagA, GlmS, GlmM, GlmU, MurA-F and Mpl. The next step occurs at the 

cytoplasmic membrane in the cytoplasmic side where PG precursor carriers (Lipid I and II) are 

formed by the action of MraY and MurG on UDP-MurNAc-pentapeptide, undecaprenoyl 

phosphate carrier and UDP-GlcNAc. Then, lipid II (disaccharide pentapeptide carrier) is turned 

out by flippase activity from cytoplasm into the periplasmic side where muropeptide subunits 

are liberated from lipid II and incorporated into newly formed PG chains by glycosyltransferase 

action of TGase HMM-PBPs (fig. 1.2; 3) and then newly formed PG strands are crosslinked 

with the old PG network by transpeptidase activity of TPase HMM-PBPs (fig. 1.2; 4). 

Meanwhile, PG pentapeptide stems (fig. 1.2; 3c, 4c) are trimmed into tetrapeptide stems by the 

action of DD-CPases. Also, undecaprenoyl phosphate carriers are recycled for new lipid II 

synthesis (Fisher & Mobashery, 2014; Johnson et al, 2013; Typas et al, 2012). Normally, many 

bacterial cells remodel about half of their PG per generation which aids in insertion of newly PG 

strands in PG mesh and cell elongation and division. PG turnover starts in the periplasm by the 

action of PG hydrolases (fig. 1.2; steps 1-5) where endopeptidases (EPases LMM-PBPs) 

hydrolyze the peptide crosslinks between peptide stems of PG strands; DD-carboxypeptidases 

(DD-CPases LMM-PBPs) convert pentapeptide stems into tetrapeptides by elimination of the 

terminal D-Ala (fig. 1.2; 5b; step 1); Lytic transglycosylases (LTs) hydrolyze 1,4-β-glycosidic 

bonds within glycan strands releasing anhydromuropeptides GlcNAc-anhMurNAc-peptides [tri-
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, tetra- or pentapeptides; (fig. 1.2; 6a-c; step 2)]. Moreover, periplasmic amidases AmiA-D in E. 

coli or AmpDh2 and AmpDh3 in P. aeruginosa cleave the peptide stem releasing free tri-, tetra- 

and pentapeptides from the muropeptide subunits in PG strands (fig. 1.2; 7a-c). After that, free 

GlcNAc, MurNAc and peptides are passed into cytoplasm by NagE, MurP and Opp and 

converted into GlcNAc-6-P, MurNAc-6-P and tripeptides, respectively, to be recycled into PG 

biosynthesis. Also, GlcNAc-anhMurNAc (fig. 1.2; 9) and GlcNAc-anhMurNAc-peptide (tri-, 

tetra- or penta-peptide; fig. 1.2; 6a-c) are transported into cytoplasm by AmpG permeases (Fig. 

1.2; step 3). In cytoplasm, muropeptides (fig. 1.2; 6a-c; step 4) and free disaccharide derivatives 

(fig. 1.2; 9) are further cleaved by NagZ into anhMurNAc-peptide (tri-, tetra- or pentapeptides; 

fig. 1.2; 8a-c) and the constituting sugars (GlcNAc and anhMurNAc), respectively. Also, LdcA 

(LD-CPase) enzymes trim all tetrapeptides (free and sugar-linked) into their corresponding 

tripeptides (fig. 1.2; 6a, 7a, 8a). Meanwhile, cytoplasmic AmpD amidases eliminate peptide 

stems from sugar residues releasing free peptides (fig. 1.2; 7a-c; step 5). At the end, free 

peptides and sugar subunits are recycled in synthesis of lipid II and it seems to be a closed circle 

of PG biosynthesis and recycling. On the other hand, it was reported that the liberated 

anhydromuropeptides (ampC inducing peptides) accumulate in the cytoplasm and enter in a 

competition with UDP-MurNAc-pentapeptides (ampC repressing peptides) in binding to AmpR 

(fig. 1.2; step 6) which is a transcription factor for both of ampR and ampC β-lactamase in many 

Gram-negative bacteria (e.g. P. aeruginosa but not E. coli) causing AmpC overproduction and 

in turn β-lactam resistance (Fisher & Mobashery, 2014; Johnson et al, 2013; Reith & Mayer, 

2011; Vollmer et al, 2008b).  

 

1.4. Antibiotics targeting cell wall biosynthesis & bacterial resistance 

In general, antibiotics are a group of natural (e.g. penicillin, erythromycin and 

vancomycin) and synthetic (e.g. linezolid, sulphomethoxazole, cephalosporins and 

trimethoprim) compounds that have variant inhibitory effects to vital physiological pathways 

leading to inhibition of bacterial growth (bacteriostatic effect) or cell death (bactericidal effect). 

As shown in figure 1.3, the main targets for antibiotic inhibition are DNA replication, folate 

metabolism, biosynthesis of bacterial proteins and cell wall; and so antibiotics were classified 

according to their target and mechanism of action and further sub-divided concerning their 

molecular structure (Becker, 2013; Bolhuis & Aldrich-Wright, 2014; Pucci & Bush, 

2013; Walsh, 2003) As peptidoglycan precursor are important component for the biosynthesis 

of PG and also important for induction of ampC-type beta-lactamases, we will describe in some 

details some of the inhibitors of this cellular target. 
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Figure 1.2. Outline of PG biosynthesis, PG recycling and ampC regulation in 

Gram-negative bacteria (Fisher & Mobashery, 2014; Johnson et al, 2013). 
Three main physiological events, described on the text, are summarized in this figure; 1st event 

is PG biosynthesis which occurs in the three cellular compartments (cytoplasm, inner 

membrane and periplasm), starting in cytoplasm (1,2) where UDP-MurNAc-pentapeptide is 
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formed by the action of AnmK, MurQ, NagA,GlmS, GlmM, GlmU, MurA-F and Mpl. Then lipid 

I and II are formed at the inner membrane by the action of MraY and MurG which is followed 

by the action of flippase which cause turning of lipid II from cytoplasmic side into the 

periplasmic side where PG precursors are added into PG strands (3) and inter-crosslinked (4) 

by the activity of HMM-PBPs (TGases, TPases); also, PG-pentapeptides are converted into 

tetrapeptides by the action of DD-CPases (LMM-PBPs). The 2nd event is PG turnover and 

recycling (steps 1-5) starting in the periplasm by the action of PG hydrolases (EPases, DD-

CPases, LTs and amidases AmiA-D in E. coli or AmpDh2-h3 in P. aeruginosa) producing free 

tri-, tetra- and pentapeptides (7a-c), GluNAc, MurNAc, GluNAc-anhMurNAc (9) and GluNAc-

anhMurNAc-peptides (tri-, tetra- or pentapeptides; 6a-c) which are transported into cytoplasm 

through NagE, MurP, Opp and AmpG. In cytoplasm, muropeptides (6a-c) are further degraded 

into anhMurNAc-peptides (tri-, tetra- or pentapeptides; 8a-c), free tri-, tetra- or pentapeptides 

(7a-c), GluNAc-anhMurNAc (9) and anhMurNAc and GluNAc (10) by the action of NagZ, LdcA 

and AmpD. Free peptides and sugar derivatives are then recycled into synthesis of lipid II (PG 

precursors). The 3rd event is regulation of expression of AmpC β-lactamase (step 6) in P. 

aeruginosa (but not in E. coli) by the action of UDP-MurNAc-pentapeptide (repression, basal 

AmpC level) and anhydromuropeptides (derepression, AmpC overproduction) upon binding to 

AmpR. Meanings of all symbols (e.g. MurA-G, PBPs, LTs, LdcA, etc.) are described in the text 

and in the abbreviation list.   

  

1.4.1. Inhibitors of Mur family and PG precursors   

Inhibition of Mur family and PG precursors lead to blocking of PG synthesis, cell wall 

degradation and bacterial cell death. Fosfomycin is a natural antibacterial compound produced 

by various Streptomyces and Pseudomonas species to inhibit MurA (fig. 1.3) and stops the 

construction of UDP-MurNAc and consequently, decreases in PG synthesis and cell growth, and 

ultimately cell lysis (Borisova et al, 2014; Nikolaidis et al, 2014). Tunicamycin blocks 

transglycosylation step of MurG while mersacidin (Type-B lantibiotics) inhibits PG 

biosynthesis by tight interaction with lipid II (Islam et al, 2012; Walsh, 2003). Ramoplanin and 

enduracidin (lipoglycodepsipeptides) have a higher affinity for Lipid II over lipid I which 

results in blocking the transglycosylation reaction of PG biosynthesis as shown in figure 1.3  

(Fang et al, 2006; Walsh, 2003). MoenomycinsA (MoeA) is a phosphoglycolipid which inhibits 

PG synthesis by blocking transglycosylase (TGase) subunit, while vancomycin is a glycosylated 

heptapeptide which blocks transpeptidation reaction (TPases) by binding D-Ala‒D-Ala of the 

peptide stems of PG precursors (Lipid II) and lead to inhibition of PG synthesis (fig. 1.3; 1.4) 

(Jia et al, 2013; Ostash & Walker, 2010; Tseng et al, 2014; Walsh, 2003). 
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Figure 1.3. Sub-cellular targets for antibiotic actions (Walsh, 2003). 

Different antibiotics with different targets [inhibition of cell wall biosynthesis (a), protein 

biosynthesis (b), DNA and RNA replication (c), and folate metabolism (d)] are shown. 

Vancomycin inhibits transpeptidase reaction by binding the peptide stem of PG. β-lactam 

antibiotics (e.g. penicillins and cephalosporins) bind and inhibit transpeptidases; and so inhibit 

cell wall biosynthesis. Also, cell-wall biosynthesis can be inhibited by fosfomycin which inhibits 

MurA; tunicamyin which inhibits MurG TGase and moenomycin which inhibits 

transglycosylases (TGases).  

 

 
Figure 1.4. Mechanism of antibiotic inhibition of bacterial cell wall biosynthesis 
(Tseng et al, 2014). 

Vancomycin binds D-Ala‒D-Ala of the pentapeptide stem in PG. β-lactam antibiotics bind the 

transpeptidase subunit (TPase) of PBPs. Moenomycins A (Moe A) blocks transglycosylation 

reaction by binding to the transglycosylase subunit (TGase) of PBPs. β-lactams block the active 

site of transpeptidase subunits of PBPs. Red colored T-shaped lines identify the target site for 

each of vancomycin, β-lactam antibiotics and Moe A. 
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1.4.2. β-lactam antibiotics  

They are a group of antimicrobial agents targeting PBPs in order to inhibit PG synthesis 

pathway by blocking TPase subunits and consequently inhibit bacterial growth (fig. 1.4; 1.3). 

They have various β-lactam ring systems (penam, cefem, penem, carbapenem and monobactam) 

involving a highly strained and reactive cyclic amide which mimics the terminal D-Ala‒D-Ala 

in the muropeptides. Hence they can bind to PBPs and cause irreversible inhibition of these 

PBPs by blocking their active site Ser [Fig. 1.7; i] (Fernandes et al, 2013; Johnson et al, 2013; 

Tseng et al, 2014; Walsh, 2003). β-lactam antibiotics are produced either by isolation of 

fermented natural compounds (e.g. penicillin) or by further synthetic or enzymatic modification 

of fermented natural compounds like many penicillins and most of cephalosporins (Elander, 

2003; Hamed et al, 2013; Kong et al, 2010).  

Penams (e.g. Penicillins): Penicillins have a bicyclic nucleus, 6-aminopenicillanic acid, 

6-APA (Fig. 1.5) (Kong et al, 2010). Ampicillin, amoxicillin, cloxacillin, floxacillin, 

mezlocillin, nafcillin and oxacillin are different derivatives of penicillin G and penicillin V 

which are sensitive to penicillinase (β-lactamase) action (fig. 1.7; ii), while methicillin and 

dicloxacillin are more stable forms against penicillinase. Also, carbenicillin and ticarcillin are 

penicillins more stable against P. aeruginosa and many Gram-negative rods (Elander, 2003; Tan 

& File, 1995). Penicillin G is active against Neisseria gonorrhoeae and Treponema pallidum. 

Both of penicillin G and V are susceptible to S. aureus. On the other hand, some penicillinase-

stable derivatives (e.g. oxacillin, dicloxacillin and floxacillin) that were developed are less 

effective (in blocking PBPs) than their parental sources (Becker, 2013; Fernandes et al, 2013).  

Cephems (e.g. Cephalosporins): Several generations (table 1.1) of cephalosporins were 

developed with an enhanced spectrum reaching 4th generation (e.g. cefepime, cefpirome) and 

5th generation (e.g. Ceftobiprole, Ceftaroline) with the broadest spectrum activities which are 

more effective against P. aeruginosa than antipseudomonal penicillins (Fernandes et al, 2013). 

They are derivatives of cephalosporin C (fig. 1.5) produced from Cephalosporium acremonium, 

and have a nucleus of 7-aminocephalosporinic acid, 7-ACA, (Kong et al, 2010). Also, They are 

not susceptible to β-lactamases produced by S. aureus (Becker, 2013). 

 

     
Figure 1.5. Chemical structures of penicillins and cephems (Fernandes et al, 2013). 
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Table 1.1. Various cephalosporin generations (Fernandes et al, 2013). 

 
 

Penems: have the broadest spectrum of antibacterial activity which make them resistant 

to hydrolysis by many β-lactamases including ESBL and AmpC enzymes (fig. 1.7) (Dalhoff et 

al, 2006; Papp-Wallace et al, 2011). According to structural differences, penems were sub-

divided into penems (e.g. faropenem) and carbapenems (e.g. doripenem, imipenem and 

meropenem, fig. 1.6) which are more effective than faropenem against P. aeruginosa and 

Enterobacteriaceae, (Dalhoff et al, 2006).   

Monobactams: They are monocyclic, N-sulfonated β-lactams, produced by bacteria. 

Aztreonam is a synthetic monobactam (fig. 1.6) resistant to hydrolysis by chromosomally 

encoded cephalosporinases and many plasmid-mediated β-lactamases such as TEM-1, TEM-2, 

OXA-2, and SHV-1 (Drawz & Bonomo, 2010). 

 

 
Figure 1.6. Chemical structures of penems and carbapenems (Dalhoff et al, 2006); 

aztreonam, sulbactam and tazobactam (Hamed et al, 2013). 

 

1.4.3. Bacterial resistance to β-lactams 

Antibiotic resistance is the ability of bacteria to accommodate and to grow in presence of 

challenging compounds like antibiotics. The intensive and prolonged clinical and agricultural 

use and misuse of antibiotics have triggered the worldwide spread of highly resistant pathogenic 

bacteria (Rodriguez-Rojas et al, 2013). Many resistance mechanisms were previously described 

like production of β-lactamase which is common in many Gram-negative bacteria; changes in β-

lactam targets (PBPs), e.g. Methicillin resistance in S. aureus (MRSA); decreased production of 
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outer membrane proteins (OMPs), e.g. loss of OprD increased resistance to some carbapenems 

in P. aeruginosa; increased efflux pumps and reduced membrane permeability which facilitate 

multidrug resistance in many Gram-negative pathogens especially in P. aeruginosa and 

Acinetobacter spp (Drawz & Bonomo, 2010). β-lactam hydrolysis and emergence of a broad 

spectrum β-lactamases are basic keys for bacterial resistance (Bush & Jacoby, 2010). 

 

1.4.4. β-lactamase inhibitors 

The developed bacterial resistance to most of clinically used β-lactam antibiotics 

pushed the investigators to search for some natural or synthetic compounds that can inhibit β-

lactamases, even though they may have a weak antibiotic effect (Hamed et al, 2013). Clavulanic 

acid, sulbactam, and tazobactam are clinically used as β-lactamase inhibitors. They share 

structural similarity with penicillin (fig. 1.6) and are effective against class A β-lactamases 

(including CTX-M and the ESBL derivatives of TEM-1, TEM-2, and SHV-1); and are generally 

less effective against class B, C, and D β-lactamases (fig. 1.7; table 1.2). Metallo-β-lactamases 

(MBLs) are resistant to all the mechanism-based inhibitors of the serine enzymes (Drawz & 

Bonomo, 2010; Hamed et al, 2013). It was found that the use of β-lactam inhibitors in 

combinations with β-lactam antibiotics (e.g. Amoxicillin/clavulanate, ampicillin/sulbactam, 

pipericillin/tazobactam, ticarcillin/clavulanate, cefoperazone/sulbactam) was more effective 

than their individual use (Drawz & Bonomo, 2010; Hamed et al, 2013; Pucci & Bush, 2013)  

 

1.5. β-lactamases 
 

1.5.1. Classification of β-lactamases 

β-lactamases are a group of chromosomally-encoded or plasmid-mediated enzymes that 

can hydrolyze β-lactam antibiotics. They were classified according to their molecular structure 

by Ambler into molecular classes A, B, C and D, where serine β-lactamases were grouped in 

classes A, C and D, while MBLs were grouped in class B. (Ambler, 1980; Hall & Barlow, 2005; 

Kong et al, 2010). Recently, functional classification was reported and divided β-lactamases 

concerning their activity behavior towards substrates and inhibitors (e.g. β-lactams, clavulanic 

acid, tazobactam and EDTA) into groups 1, 2, 3 and further divided into subgroups (a, b …). 

Also, in that study, both functional and molecular classifications of β-lactamases were 

mentioned in parallel (table 1.2). New candidates of β-lactamases emerged due to mutations in 

the existing ones and showed a broad spectrum activity (e.g. ESACs, group1e and ESBLs, 

group 2b). Functional classification of β-lactamases is very helpful in clinics to characterize and 

to deal with bacterial resistance challenges (Bush & Jacoby, 2010; Bush et al, 1995). 
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1.5.2.  Group 2 and 3 β-lactamases 

 
Functional group 2 β-lactamases (molecular classes A and D) is the largest group of β-

lactamases, due to emerging of new of ESBLs. This group is subdivided into subgroup 2a which 

include β-lactamases (e.g. PC1; predominant in Gram-positive cocci) with a relatively limited 

spectrum of hydrolytic activity; Subgroup 2b includes β-lactamases (e.g. TEM-1, TEM-2, and 

SHV-1 ) readily hydrolyze penicillins and early cephalosporins (e.g. cephaloridine and 

cephalothin); Subgroup 2be β-lactamases (e.g. TEM-3, SHV-2 and CTX-M-15) are active on 

penicillins, extended spectrum cephalosporins and monobactams; Subgroup 2br β-lactamases 

(e.g. TEM-30 and SHV-10) are active on penicillins; Subgroup 2ber β-lactamases (e.g. TEM-

50) are active on penicillins, extended spectrum cephalosporins and monobactams; Subgroup 2c 

β-lactamases (e.g. PSE-1, CARB-3) showed improved activity on carbencicillin; Subgroup 2ce 

β-lactamases (e.g. RTG-4) showed improved activity on carbenicillin and cefepime; Subgroup 

2d β-lactamases (e.g. OXA-1, OXA-10) showed improved activity on cloxacillin or oxacillin; 

Subgroup 2de β-lactamases (e.g. OXA-11, OXA-15) hydrolyze cloxacillin or oxacillin and 

oxyimino-β-lactams; Subgroup 2df β-lactamases (e.g. OXA-23, OXA-48) hydrolyze cloxacillin 

or oxacillin and carbapenems; Subgroup 2e β-lactamases (e.g. CepA) are active extended 

spectrum cephalosporins; Subgroup 2f β-lactamases (e.g. KPC-2, IMI-1,SME-1) displayed 

increased hydrolysis of carbapenems, oxyimino-β-lactams, cephamycins with variable profiles 

with clavulanic acid and tazobactam. β-lactamases of subgroups 2a, 2b, 2be, 2c, 2ce and 2e are 

inhibited by clavulanic acid or tazobactam while subgroups 2br and 2ber are resistant to 

clavulanic acid, tazobactam and sulbactam. Moreover, subgroups 2d, 2de and 2df displayed 

variable profiles with clavulanic acid and tazobactam (Bush & Jacoby, 2010).  

Functional group 3 (class B) of β-lactamases include subgroubs a and b which are 

Zn2+-metallo-β-lactamases (MBLs) and can be inhibited by EDTA but not by clavulanic acid 

and tazobactam. Subgroup 3a β-lactamases (e.g. IMP-1, VIM-1) are active on carbapenems but 

not monobactams. Subgroup 3b β-lactamases (e.g. CphA, Sfh-1) displayed preferential 

hydrolysis of carbapenems (Bush & Jacoby, 2010).  

 

1.5.3. AmpC β-lactamases 

AmpC β-lactamases are periplasmic enzymes, belong to group 1 class C serine β-

lactamases (table 1.2), active on cephamycins (e.g. cefoxitin) and more active on cephalosporins 

than bezylpenicillin while it showed low affinities to cefepime, cefpirome, and carbapenems 

(Bush & Jacoby, 2010; Jacoby, 2009). They are not inhibited by clavulanic acid but inhibited by 

cloxacillin, oxacillin, and aztreonam. AmpC enzymes were reported principally as 

chromosomally-encoded in many members of Proteobacteria; however plasmid- mediated 



Introduction 
 

31 | P a g e  
 

Alaa Ropy_Doctoral Thesis 
 

AmpC enzymes (e.g. ACT-1, CMY-2, FOX-1 and MIR-1) have emerged in the last two 

decades. AmpC is inducible by certain β-lactams (e.g. imipenem and cefoxitin) in many 

organisms (e.g. P. aeruginosa), but it is not induced in some others (e.g. E. coli). Extended-

spectrum AmpC β-lactamases (ESACs) like GC1 in E. cloacae and plasmid-mediated CMY-10, 

CMY-19, CMY-37 are categorized as subgroup 1e (Bush & Jacoby, 2010; Jacoby, 2009). 

AmpC overproduction confers resistance to most penicillins, β-lactamase inhibitor/β-lactam 

combinations and resistance to many broad-spectrum cephalosporins (e.g. cefotaxime, 

ceftazidime, and ceftriaxone) with reduced susceptibilities to carbapenem, cefepime and 

cefpirome (Jacoby, 2009; Mammeri et al, 2006; Rodriguez-Martinez et al, 2009). Infections due 

to AmpC-producing bacteria (e.g. P. aeruginosa) can be treated with carbapenems unless there 

is no carbapenem resistance which can arise by mutations that cause loss of outer membrane 

porin (reduce influx) or increase efflux by efflux pump activation (Jacoby, 2009). 

 

1.5.4. Mechanism of action  

The active site of these proteins (PBPs and β-lactamases) contains nine highly 

conserved residues; the catalytic serine is located at the beginning of α2 helix and followed by a 

lysine to form the S*XXK sequence; a second sequence, SxN, is located in a loop between helix 

α4 and α5; four conserved residues form the KTG(T/S) form the third sequence; and a ninth 

residue, a glycine (G) at the back portion of the active site, is also strictly conserved (Sauvage et 

al, 2008). The reaction between serine β-lactamases or Zn2+-dependent MBLs and common β-

lactam substrates (e.g. penicillin) produces labile acyl-enzyme complexes which easily can be 

hydrolyzed into inactive β-lactams and active enzymes (fig. 1.7 ii and v, respectively) while β-

lactam-based inhibitors (e.g. clavulanic acid) or carbapenems (e.g. imipenem) form stable 

inactive acyl-enzyme complexes with serine β-lactamases due to the formation of stable bond 

with the active site Ser [fig. 1.7 iii and iv, respectively] (Hamed et al, 2013). Physiologically, 

active site inactivation of PBPs by β-lactam antibiotics (fig. 1.7 i), follows the same mechanism 

of reaction producing an inactive acyl-enzyme containing a very stable bond with the active site 

Ser. Inactivation of some PBPs lead to overexpression of AmpC in many Gram-negative 

bacteria to hydrolyze the β-lactam antibiotic and to recover the vital activities of the PBPs for 

maintaining their cell wall (Kong et al, 2010).  
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Table 1. 2. Functional and structural classification of β-lactamases* (Bush & 

Jacoby, 2010). 

 

*Summary of functional classification of β-lactamases (Bush-Jacoby-Medeiros group, 1995), 

updated functional classification (Bush-Jacoby group, 2009) and structural classification 

(Molecular class, Ambler classification). β-lactamases were functionally classified (Bush-

Jacoby group, 2009; Bush-Jacoby-Medeiros group, 1995) regarding their activity behavior 

towards substrates and inhibitors (e.g. β-lactams, clavulanic acid (CA), tazobactam (TZB) and 

EDTA) into groups 1, 2, 3 and further divided into subgroups (a, b …). Also, they were 

classified according to their similarities in their molecular structure by Ambler into molecular 

classes A, B, C and D. More details of the activity, functionality, substrate, inhibitors and 

molecular class are described in the text. 
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Figure 1.7. Mechanism of action of β-lactamases and PBPs on β-lactams (Hamed et al, 2013). (i) The formation of inactive PBP‒penicillin complex. (ii) 

Hydrolysis penicillin by serine β-lactamases. (iii, iv) Inhibition of serine β-lactamases by clavulanic acid and imipenem, respectively. (v) Hydrolysis of 

penicillin by Zn2+-dependent metallo β-lactamases (MBLs). 
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1.5.5. AmpC structure 

The 3-D structure of E. coli AmpC showed that the active site residues are Ser64* (catalytic 

residue), Lys67, Gln120, Tyr150, Asn152, Lys315, Thr316 and Ala318 (Ser318 in some other 

types). These residues are conserved in all class C β-lactamases (Jacoby, 2009; Usher et al, 1998). 

Recently, 3-D structure of P. aeruginosa AmpC was developed and showed active site similarity to 

the E. coli with the exception of having Ser318 (Lahiri et al, 2013). ESACs differ from wild-type 

AmpC by amino acid substitutions or insertions in some regions in the vicinity of the active site 

(e.g. the Ω-loop, the H-10 helix, the H-2 helix and the C-terminal end of the protein) which improve 

affinities and reactions with more β-lactam substrates like broad spectrum cephalosporins [e.g. 

cefotaxime, ceftazidime] (Rodriguez-Martinez et al, 2009). Concerning their structural similarity, it 

was found that both class C β-lactamases and class C LMM-PBPs type-AmpH (e.g. R61 DD-

peptidase) have a close similarity in their general structure and conserved motifs near the active site 

serine (Jacoby, 2009; Sauvage et al, 2008). This suggests that both of them have a common ancestor 

and implies that class C β-lactamases may have a secondary peptidase activity (Bishop & Weiner, 

1992; Hall & Barlow, 2004; Joris et al, 1988; Kong et al, 2010). 

 

1.5.6. AmpC regulation in P. aeruginosa 

In P. aeruginosa, ampC is chromosomally encoded, expressed in low basal amount, and 

can be induced by β-lactam challenge. AmpC expression is regulated mainly by the enzymes; 

AmpG permease homologs (AmpG and AmpP or ampGh1), ampD amidase homologs (ampD, 

ampDh2 and ampDh3), ampR (LysR superfamily) and NagZ, and two competing AmpR-binding 

muropeptides; the first is suppressing peptide, UDP-MurNAc-pentapeptide, which set ampC 

expression at basal level while the second is inducing peptide, 1,6-anhydromuropeptide which 

triggers high ampC expression [fig. 1.2] (Fisher & Mobashery, 2014; Johnson et al, 2013; Lister et 

al, 2009). Normally, GlcNAc-MurNAc-1,6-anhydromuropeptides shed of from peptidoglycan and 

find its way to cytoplasm via AmpG permease (fig. 1.2; step 3), where it is processed by NagZ to 

generate MurNAc-1,6-anhydromuropeptides (fig. 1.2; step 4) which is then cleaved by AmpD to 

generate anhMurNAc and free tri-, tetra- and pentapeptides (fig. 1.2; step 5).  The inducing peptides 

replace UDP-MurNAc-pentapeptides from AmpR binding which in turn undergoes some 

conformational changes that lead to overexpression of AmpC (fig. 1.2; step 6). During β-lactam 

exposure, MurNAc-1,6-anhydromuropeptides accumulate in cytoplasm where AmpD activity is not 

enough to cleave them. So, these anhydromuropeptides can replace the suppressing peptides from 

AmpR binding until the β-lactam inducer is removed, and then the conditions can be reversed to the 
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normal. It is still unidentified the actual and the effector (ampC inducing) anhydromuropeptide 

although it was suggested to be compounds 8a, 8b or 8c in figure 1.2 (Fisher & Mobashery, 2014; 

Johnson et al, 2013; Lister et al, 2009). As AmpR binds to the ampR-ampC intergenic region, 

mutations in this region and in ampR could increase AmpC expression. AmpR plays a dual role, 

positively regulating ampC and negatively regulating the expression levels of chromosomally 

encoded class D β-lactamase poxB, recently described. Also, AmpR has been involved in the 

regulation of many virulence factors. Moreover, AmpR mutant showed a high constitutive 

expression of β-lactamases (Balasubramanian et al, 2012; Kong et al, 2010). The three AmpD 

homologues are responsible for a stepwise ampC upregulation mechanism. The inactivation of 

ampD leads to the constitutive hyperproduction (derepression) of AmpC β-lactamase (Juan et al, 

2006). It was reported that inactivation of nagZ or ampG were able to block ampC induction and 

restored the susceptibility of ampD or dacB laboratory mutants (Zamorano et al, 2010; Zamorano et 

al, 2011). Recently, mutation of the nonessential dacB gene encoding the DD-carboxypeptidase 

PBP4 was found to elicit AmpC expression in the absence of β-lactams (Moya et al, 2009). dacB 

mutations were also identified in β-lactam-resistant clinical isolates of P. aeruginosa, suggesting 

that loss of PBP4 function is a medically relevant resistance mechanism (Juan et al, 2006). In 

Aeromonas spp., induction of AmpC expression requires a specific, 1,6-anhydromuropentapeptide 

(Tayler et al, 2010). These observations suggest that loss of specific enzyme activities, rather than 

general inhibition of PG turnover, leads to AmpC induction. However, mechanism underlining the 

loss of PBP4 activity is unknown and it is not yet clear if it is the only one that triggers that 

response. Lately, two new gene mutants have been reported to be involved in AmpC overproduction 

through an AmpR-dependent mechanism. The first mutant, YT1677, had an insertion in mpl, which 

encodes UDP-N-acetylmuramate (L-alanyl-γ-D-glutamyl-meso-diaminopimelate ligase) which is 

involved in the recycling of cell wall components. The second mutant, YT7988, had an insertion in 

nuoN, which encodes NADH dehydrogenase I chain N. For the first mutant, it was considered that 

AmpC overproduction was related to cytosolic accumulation of cell wall components i.e. 1,6-

anhydromuropeptides. However, it is assumed that the mechanism involved for the second mutant 

was unclear, and although it is AmpR-dependent, it is thought there is another new regulatory 

mechanism for ampC expression or the cell wall recycling system (Tsutsumi et al, 2013). Also it 

was reported that single or double mutants of PBP4, or some lytic-transglycosylases, LTs, (e.g. 

SltB1, or MltB) had an increased ampC dependent β-lactam resistance, while it decreased with 

single mutants of other LTs (e.g. Slt or MltF). Also, it was suggested that there are at least two 

different pathways leading to AmpC expression and β-lactam resistance in P. aeruginosa (Cavallari 

et al, 2013). 
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2. Objectives of this study  
 

There were three main objectives beyond this work;  

The 1st objective was to characterize Pae-AmpC activity not only as a β-

lactamase but mainly to study the effect of AmpC expression on the PG 

composition in both of E. coli and P. aeruginosa, using wild type and mutant 

strains. 

The 2nd objective was to track the consequences on bacterial resistance and 

peptidoglycan composition after gene inactivation of the main LMM-PBPs 

(dacB, dacC and pbpG) in PAO1 as single and combined constructs and further 

to study the effects upon ampC inactivation within these mutants. Also, to go 

closer understanding the mechanism behind the relationship between 

inactivation of these LMM-PBPs and ampC induction in P. aeruginosa as 

previously identified for dacB mutant.  

The 3rd objective was to pursue the physiological role and activities of 

DacB, DacC and PbpG in the recovery of the rod shape in spheroplasts of P. 

aeruginosa. 
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Materials & Methods  
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3.12.2. HPLC analysis 

3.12.3. Effect of Pae-AmpC on the whole PG and individual muropeptides in vitro 
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3. Materials & Methods 
 
 

3.1 Bacterial strains and plasmids 

We worked in this study only with bacterial strains of E. coli and P. aeruginosa PAO1 wild 

type and mutants. All bacterial strains and plasmids used in this study are summarized in table 3.1 

where E. coli DH5α was used for cloning of Pae-ampC-encoding vectors; E. coli BL21(DE3) was 

used for expression, overproduction and purification of Pae-AmpC; E. coli  CS109, BL21(DE3) and 

DV900(DE3) were used to study the effect of Pae-AmpC on PG composition in vitro and in vivo; 

E. coli XL1-Blue was used for cloning of (dacC and pbpG) gene-specific inactivation vectors; E. 

coli S17.1λpyr was used as a carrier of gene-specific inactivation vectors (e.g. pEXTΔpbpG::Gm) 

for conjugation in the double recombination step during the construction process of mutants in 

PAO1.  PAO∆dacC, PAO∆pbpG, PAO∆dacB∆dacC, PAO∆dacB∆pbpG, PAO∆dacB∆ampC, 

PAO∆dacC∆ampC and PAO∆pbpG∆ampC, PAO∆dacC∆pbpG, PAO∆dacC∆pbpG∆ampC, 

PAO∆dacB∆dacC∆ampC, PAO∆dacB∆dacC∆pbpG, PAO∆dacB∆pbpG∆ampC, PAO∆dacB 

∆pbpG∆ampC∆dacC and PAO∆dacB∆dacC∆pbpG∆ampC are mutants of P. aeruginosa PAO1 that 

were constructed in this study starting from the wild type PAO1 while PAOΔdacB and PAOΔampC 

were provided from previous studies (Moya et al, 2009; Moya et al, 2008). These Pae mutants were 

used for characterization of the role of LMM-PBPs (dacB, dacC and pbpG) in PG composition, β-

lactam resistance and ampC regulation in P. aeruginosa. Plasmids pEX100Tlink and pUCGmlox 

were used in generation of gene-specific inactivation vectors. pCM157 plasmid was used for 

expression of cre recombinase after double recombination during the construction of Pae mutants to 

remove the gentamycin cassette from the constructed mutant genotypes. pEXTΔampC::Gm (Moya 

et al, 2008), pEXTΔdacB::Gm (Moya et al, 2009), pEXTΔdacC::Gm and pEXTΔpbpG::Gm are 

gene-specific inactivation vectors which were used for inactivation of ampC, dacB, dacC and pbpG, 

respectively in P. aeruginosa PAO1. pET28b plasmid was used in the construction of vectors (e.g. 

pET-F1, pET-F1:C3, pET-F1:C6, pET-F2, pET-F3, pET-F4, pET-F4:C3, pET-F4:C6, pET-F3-

TEV, pET-F3:C3-TEV, pET-F3:C6-TEV and pET-F4-TEV) encoding different forms of Pae-ampC 

(wild type and mutants described in table 4.1 and figure 4.1). These pET28b vectors were used for 

expression and overproduction of different Pae-AmpC forms in E. coli. pUCP24 plasmid was used 

for cloning and expression of different ampC forms (e.g. pUC-F3 and pUCP-F4 for expression of 

AmpC-F3 and AmpC-4, respectively) in P. aeruginosa of wild type PAO1 and mutants.        
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Table 3.1. Bacterial strains and plasmids.  

Bacterial Strain or Plasmid Genotype/Characteristics Reference/Source 

E. coli   

DH5α F- φ80lacZ∆M15 ∆(lacZYA-rgF)U169 recA1 endA1 hsdR17(rk-, mk+) 

phoA supE44 thi-1 gyrA96 relA1 λ-  

Fermentation service,  CBMSO 

BL21(DE3) F-, ompT, hsdB (rB
- mB

-) gal, dcm (DE3).Encodes T7 RNA polymerase.  Fermentation service,  CBMSO  

CS109 Wild type E. coli Laboratory collection 

DV900 CS-109 Δ[ponB dacA dacB dacC 

dacD pbpG ampH ampC pbp4b]   

(Vega & Ayala, 2006) 

DV900(DE3) DV900 lysogenized by λDE3 lysogenization kit (Novagen, Merck KGaA, 

Darmstadt, Germany) 

This study  

 XL1-Blue  F´::Tn10 proA+proB_+lacIq Δ (lacZ)M15/recA1  endA1 gyrA96 (Nalr) thi 

hsdR17 (rk + mk +) mcrB1 

Laboratory collection 

S17.1λpyr recA pro (RP4-2Tet::Mu Kan::Tn7) Laboratory collection 

P. aeruginosa   

PAO1 Wild type reference strain.  Laboratory collection  

PAOΔampC PAO1 ΔampC::lox  (Moya et al, 2008) 

 PAOΔdacB PAO1 ΔdacB::lox  (Moya et al, 2009) 

PAOΔdacC PAO1 ΔdacC::lox This study  

PAOΔpbpG  PAO1 ΔpbpG::lox This study  

PAOΔdacBΔdacC PAO1 ΔdacB::lox ΔdacC::lox This study  

PAOΔdacBΔpbpG PAO1 ΔdacB::lox ΔpbpG::lox  This study  

PAOΔdacCΔpbpG  PAO1 ΔdacC::lox ΔpbpG::lox  This study  
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PAOΔdacBΔdacCΔpbpG  PAO1 ΔdacB::lox ΔdacC::lox ΔpbpG::lox  This study  

PAOΔdacBΔampC  PAO1 ΔdacB::lox ΔampC::lox  This study  

PAOΔdacCΔampC  PAO1 ΔdacC::lox ΔampC::lox This study  

PAOΔpbpGΔampC PAO1 ΔpbpG::lox ΔampC::lox This study  

PAOΔdacBΔdacCΔampC  PAO1 ΔdacB::lox ΔdacC::lox ΔampC::lox This study  

PAOΔdacBΔpbpGΔampC  PAO1 ΔdacB::lox ΔpbpG::lox ΔampC::lox This study  

PAOΔdacCΔpbpGΔampC  PAO1 ΔdacC::lox ΔpbpG::lox ΔampC::lox   This study  

PAOΔdacBΔpbpGΔampCΔdacC PAO1 ΔdacB::lox ΔpbpG::lox ΔampC::lox ΔdacC::lox This study  

PAOΔdacBΔdacCΔpbpG ΔampC  PAO1 ΔdacB::lox ΔdacC::lox ΔpbpG::lox ΔampC::lox This study  

Plasmids   

pEX100Tlink  Apr sacB, pUC19-based gene replacement vector with an MCS  (Quenee et al, 2005) 

pUCGmlox  Apr Gmr, pUC18-based vector containing the lox-flanked aacC1 gene  (Quenee et al, 2005) 

pCM157  Tcr, cre expression vector  (Quenee et al, 2005) 

pEXTΔampC::Gm   pEX100Tlink containing 5´and 3´ flanking sequence of ampC::Gm lox (Moya et al, 2008) 

pEXTΔdacB::Gm   pEX100Tlink containing 5´and 3´ flanking sequence of dacB::Gm lox (Moya et al, 2009) 

pEXTΔdacC::Gm    pEX100Tlink containing 5´and 3´ flanking sequence of dacC::Gm lox This study  

pEXTΔpbpG::Gm      pEX100Tlink containing 5´and 3´ flanking sequence of pbpG::Gm lox  This study  

pET28b+ Kanr, expression by T7 RNA polymerase. Fusion with poly His at amino 

terminal. 

Novagen 

pET-F1 pET28b expressing AmpC-F1 with C-terminal poly-His tag. This study  

pET-F1:C3 pET28b expressing AmpC-F1:C3 with C-terminal poly-His tag. This study  

pET-F1:C6 pET28b expressing AmpC-F1:C6 with C-terminal poly-His tag.  This study  

pET-F2 pET28b expressing AmpC-F2 with C-terminal poly-His tag.  This study  
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pET-F3 pET28b expressing AmpC-F3 with C-terminal poly-His tag.  This study  

pET-F4 pET28b expressing AmpC-F4 with C-terminal poly-His tag.  This study  

pET-F4:C3 pET28b expressing AmpC-F4:C3 with C-terminal poly-His tag.  This study  

pET-F4:C6 pET28b expressing AmpC-F4:C6 with C-terminal poly-His tag.  This study  

pET-F3-TEV pET28b expressing AmpC-F3-TEV with C-terminal poly-His tag and 

TEV protease recognition site.   

This study  

pET-F3:C6-TEV  pET28b expressing AmpC-F3:C6-TEV with C-terminal poly-His tag and 

TEV protease recognition site.   

This study  

pET-F3:C3-TEV pET28b expressing AmpC-F3:C3-TEV with C-terminal poly-His tag and 

TEV protease recognition site.   

This study  

pET-F4-TEV pET28b expressing AmpC-F4-TEV with C-terminal poly-His tag and 

TEV protease recognition site.   

This study  

pUCP24 Ampr, cloning and expression vector for P. aeruginosa.  Laboratory collection 

pUCP-F4 pUCP24 expressing AmpC-F4 with C-terminal poly-His tag.  This study  

pUCP-F3 pUCP24 expressing AmpC-F3 with C-terminal poly-His tag.  This study  
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3.2 Primers 

Pae-ampC (PA4110) was targeted by this study for functional characterization in bacterial 

resistance and PG composition of E. coli and P. aeruginosa. So, primers were designed for PCR 

amplification of PA4110 ampC gene of wild type and mutant forms in order to be cloned and 

expressed by recombinant vectors (e.g. pET28b and pUCP24) in the target bacterial strains.  

Primers used for PCR amplification of different forms of Pae-ampC (table 4.1; fig. 4.1) are 

summarized in table 3.2 and their uses in PCR-amplifications are summarized in table 3.4. All the 

PCR amplifications were cloned in pET28b plasmid. Primers T7-Fw and pET-Rv-PaeI were used to 

amplify ampC-F3 and ampC-F4 using the templates pET-F3 and pET-F4, respectively, to be cloned 

in the plasmid pUCP24 for ampC cloning and expression in P. aeruginosa. Primers T7-Fw and T7-

Rv were used for sequencing of ampC forms cloned in pET28b vector while primers M13-Fw (-21), 

M13-Rv and M13-Rv2 were used for sequencing of ampC forms cloned in pUCP24 vector. Primers 

PBP5-Fw and PBP5-Rv were used for amplification and sequencing of dacC gene (Pae-PBP5).  

Primers used for amplification of upstream (PCR1) and downstream (PCR2) regions of the 

target genes (ampC, dacB, dacC and pbpG) to be used in the construction of knock out mutants in 

PAO1 are summarized in table 3.3. All the used primers were synthesized by Sigma.  

 

3.3 Culture media for cell growth 

Luria-Bertani (LB) and SOC media were prepared as described previously (Wiley & Sons, 

2002). Agar, yeast extract, and tryptone were purchased from CONDA Pronadisa Micro & 

Molecular Biology, Spain while glucose and NaCl were purchased from Merck, EMD Millipore 

Corporation. Mueller-Hinton media (MHA) and cation adjusted Mueller-Hinton broth (CAMHB) 

were prepared following the provider´s instructions (Becton Dickinson, France S.A). For ampC 

expression, E. coli and P. aeruginosa strains transformed with recombinant vectors (encoding Pae-

ampC) were grown in LB liquid media (with a proper antibiotic) at 37°C with agitation (180 rpm). 

Also, for the construction of Pae mutants LB media was used with a proper antibiotic. For disc 

diffusion assay MHA plates were used. Mostly, LB media was used in this study, otherwise it will 

be mentioned. CAMHB media was used for production of imipenem-induced spheroplasts in P. 

aeruginosa.    
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Table 3.2. Primers used for PCR amplification and DNA sequencing.  

Name* Sequence (5´- 3´) Restriction 

Site* 

Reference/ 

Source 

ampC-Fw1 TTTCCATGGATGCGCGATACCAGATTCC   

NcoI 

 

This study 

 

ampC-Fw2 TTTCCATGGGCGATACCAGATTCCCCT 

ampC-Fw3 TTTCCATGGCCGGCGAGGCCCCGG 

ampC-Fw4 TTTCCATGGCCATGCGCGATACCAGATTCC 

ampC-Rv TTTGAATTCCGCTTCAGCGGCACCTTGC  EcoRI This study 

ampC-Rv-TEV TTTGAATTCCCCTGAAAATACAGGTTTTC-

CGCTTCAGCGGCACCTTGC 

EcoRI+ 

TEV site 

This study 

pET-Rv-PaeI GCATGCT TGTTAGCAGCCGGATCTCAG PaeI (SphI) This study 

T7-Fw TAATACGACTCACTATAG - Laboratory 

collection 

T7-Rv GCTAGTTATTGCTCAGCGG  - Laboratory 

collection  

M13-Fw (-21)  TGTAAAACGACGGCCAGT - Parque 

Científico de 

Madrid 
M13-Rv CAGGAAACAGCTATGACC  - 

M13-Rv2 ACACTTTATGCTTCCGGCTCG - This study  

PBP5-Fw GATCGGTTCGGCGGACGAGGT - This study 

PBP5-Rv ACGCTCGCAGGGGAATTCGAT - This study 

* Fw and Rv refer in the primer direction, forward and reverse, respectively. * Restriction sites 

used for cloning are underlined.  
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Table 3.3. Primers used for the construction of knockout mutants of ampC, dacB, dacC and pbpG in PAO1. 
Target gene Primer Name* Primer Sequence, 5´→3´ PCR Product (bp) Reference 

 

pbpG 

pbpG-F1-ERI -TCGAATTCCACTTTCAAAGCCCTACGTGC- PCR1= 375 This study 

pbpG-RI- HDIII -TCAAGCTTGCAGTTTCGAGTCGAGCACG- 

pbpG-F2-HDIII -TCAAGCTTCACTGCGATCCCGGCCGC- PCR2= 318 

pbpG-R2-BHI -TCGGATCCCAGTACCGGACCCAGGAGC- 

 

dacC 

dacCF-ERI -TCGAATTCACCTTGGCCAGCCGACGC- PCR1= 500 This study 

dacCIR-HDIII -TCAAGCTTCTCGGCCAGGGCGACGC- 

dacCIF-HDIII -TCAAGCTTGAAGTGAAAGCCGGCCTCG- PCR2= 400 

dacCR-BHI -TCGGATCCACGCTCGCAGGGGAATTCG- 

 

dacB 

dacB-F1-ERI -TCGAATTCCGACCATTCGGCGATATGAC- PCR1= 571 (Moya et al, 

2009) dacB-R1-HDIII -TCAAGCTTGTCGCGCATCAGCAGCCAG- 

dacB-F2-HDIII -TCAAGCTTGCCAGGGCAGCGTACCGC- PCR2= 693 

dacB-R2-BHI -TCGGATCCCGCGTAATCCGAAGATCCATC- 

 

ampC 

AmpC-F-ERI -TCGAATTCGCGCGCAGGGCGTTCAG- PCR1= 415 (Moya et al, 

2008) AmpC-I-R-HDIII -TCAAGCTTCGTCCTCTTACGAGGCCAGC- 

AmpC-I-F-HDIII -TCAAGCTTCAGGGCAGCCGCTTCGAC- PCR2= 448 

AmpC-R-BHI -TCGGATCCCAGGTTGGCATCGACGAAG- 

Primers used for PCR amplification of both upstream (PCR1) and downstream (PCR2) regions of target genes (pbpG, dacC, dacB and 

ampC) in P. aeruginosa PAO1 strain. * In each primer name, ERI, HDIII and BHI refer to the presence of the restriction sites 

(underlined sequences) of EcoRI, HindIII and BamHI; while F and R refer to the direction, forward and reverse, respectively.  
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3.4 DNA manipulation 

 

3.4.1 DNA purification and sequencing  
DNA purification was achieved by following the manufacturer’s instructions using the kits; 

Wizard® genomic DNA purification kit (Promega) for purification of chromosomal DNA; Wizard® 

Plus SV minipreps DNA purification system (Promega) for purification of plasmid DNA, while 

Wizard® SV gel and PCR clean-up system (Promega) was used for purification of PCR product and 

DNA fragments separated by agarose gel electrophoresis. The concentration of purified DNA was 

measured by NanoDrop N-1000 (Thermoscientific). Sequencing of PCR products and cloned genes 

was done at the Parque Científico de Madrid; sequence data were analyzed by Chromas LITE 

program and online NCBI blast tools. 

 

 

3.4.2 Agarose DNA electrophoresis 
This technique was used for separation, identification and purification of DNA fragments 

using 1x TAE electrophoresis buffer, 0.5 µg/ml ethidium bromide (for visualization of DNA bands) 

and 0.8-1.0 g% Agarose gel were used (Wiley & Sons, 2000). The used system units were Mini-

sub® cell GT (BIO-RAD) and sub-cell GT WIDE MINI (BIO-RAD). After run, DNA bands were 

visualized on DNA-gel scanner (Slite 140, ETNA, European Technological Network Aliance).  

 

 

3.4.3 PCR amplification 

For PCR amplification of the different forms of Pae-ampC, a 50 μl reaction contained 0.2 

mM dNTPs (BIOTOOLS, Spain), 0.2-1 µM forward and reverse primers (Sigma), 100ng DNA 

and1.25 U Pfu or GoTaq polymerase (Promega), (table 3.4).   

For colony PCR, each of the selected colonies was resuspended in 30 μl sterile distilled 

water and boiled for 10 min at 100°C. After that, cell suspensions were centrifuged at 14000 rpm 

for 5 min and then 1μl form the supernatant was used in the PCR reaction without the addition of 

any DNA or plasmid templates. Usually GoTaq (Promega) was used for colony PCR, while Pfu was 

used for PCR-mediated cloning.  
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Table 3.4. Conditions used for PCR amplification of different ampC forms.a 

Amplified  

ampC 

DNA template Forward primer Reverse primer Annealing 

Temp., °C 

ampC-F1 chromosomal 

DNA, PAO1 

0.2 μM ampC-Fw1 0.2 μM ampC-RV 62 

ampC-F1:C3 pET-F1:C3 

(pGEM-19) 

0.2 μM ampC-Fw1 0.2 μM ampC-RV 62 

ampC-F1:C6 pET-F1:C6 

(pGEM-13) 

0.2 μM ampC-Fw1 0.2 μM ampC-RV 62 

ampC-F2 chromosomal 

DNA, PAO1 

0.2 μM ampC-Fw2 0.2 μM ampC-RV 62 

ampC-F3 chromosomal 

DNA, PAO1 

1 μM ampC-Fw3 0.2 μM ampC-RV 68 

ampC-F4 chromosomal 

DNA, PAO1 

0.2 μM ampC-Fw4 0.2 μM ampC-RV 65 

ampC-F4:C3 pET-F1:C3 0.2 μM ampC-Fw4 0.2 μM ampC-RV 65 

ampC-F4:C6 pET-F1:C6 0.2 μM ampC-Fw4 0.2 μM ampC-RV 65 

ampC-F4-TEV pET-F4 0.2 μM ampC-Fw4 0.2 μM ampC-Rv-TEV 65 

ampC-F3-TEV pET-F3 1 μM ampC-Fw3 0.2 μM ampC-Rv-TEV 68 

ampC-F3:C3-

TEV 

pET-F3:C3 1 μM ampC-Fw3 0.2 μM ampC-Rv-TEV 68 

ampC-F3:C6-

TEV 

pET-F3:C6 1 μM ampC-Fw3 0.2 μM ampC-Rv-TEV 68 

ampC-F3* pET-F3 1  μM T7-Fw 0.2  μM pET-Rv-PaeI 57 

ampC-F4* pET-F4 1  μM T7-Fw 0.2  μM pET-Rv-PaeI 57 
a For all PCR amplifications of ampC, we used 100 ng of DNA template except for some 

cases (*) where 300 ng of pET-F3 and pET-F4 were used. The extension temperature was 

72°C for all reactions.  * Only those two amplifications were used for ampC-F3 and ampC-

F4 cloning in pUCP24 plasmid to be cloned in P. aeruginosa. All the other amplifications 

were cloned in pET28b plasmid to be cloned and expressed in E. coli. 
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3.4.4 ampC cloning and expression using pET28b plasmid  

The plasmid pET28b was used for cloning, expression of various Pae-ampC forms (wild 

type and mutants) in E. coli to characterize the effect of AmpC activity on PG composition and 

bacterial resistance. pET28b plasmid has kanamycin resistance marker (Knr) and multiple cloning 

sites. Expression of ampC from pET28b recombinant vectors was achieved under the control of T7 

promoter of T7 RNA polymerase and lac operator for control of induction with IPTG. Cloning 

within pET28b can provide the cloned gene with N-terminal and/or C-terminal poly-His tag.  

In this study, cloning of different forms of Pae-ampC in pET28b was done in the restriction 

sites of EcoRI and NcoI (fig. 3.1). Moreover, all the developed AmpC proteins were designed to 

have C-terminal His-tag. The plasmid pET28b was digested with EcoRI and NcoI (Fermentas life 

sciences) overnight at 37°C, and then they were purified by the proper kit (section 3.4.1). After that, 

the digested and purified pET28b was then incubated overnight with alkaline phosphatase (Calf 

Intestinal, CIAP, Promega) at 37°C, and then purified as mentioned above. The purified pET28b 

was then ligated by T4 DNA ligase (Promega) overnight at 16°C with each of the purified and 

digested (with EcoRI and NcoI)  PCR products of ampC-F1, ampC-F1:C3, ampC-F1:C6 ampC-F2, 

ampC-F3, ampC-F4, ampC-F4:C3, ampC-F4:C6, ampC-F3-TEV, ampC-F3:C3-TEV, ampC-F3:C6-

TEV and ampC-F4-TEV to produce pET-F1, pET-F1:C3, pET-F1:C6, pET-F2, pET-F3, pET-F4, 

pET-F4:C3, pET-F4:C6, pET-F3-TEV, pET-F3:C3-TEV, pET-F3:C6-TEV and pET-F4-TEV,  

respectively (table 3.1 ). These recombinant vectors were used to transform DH5α which then was 

platted on LB plates containing a 30 μg/ml kanamycin and incubated overnight at 37°C. Selected 

transformants were examined by colony-PCR (addendum, fig. A.1), digestion with EcoRI and NcoI 

and finally DNA sequencing. After that, the recombinant vectors carrying the confirmed ampC 

sequence were used to transform E. coli BL21(DE3) and DV900(DE3) for AmpC expression, 

functional characterization and PG analysis. Restriction and ligation conditions were followed 

according to the manufacturer´s recommendations. For expression of the different AmpC forms 

from pET-ampC recombinant vectors, Bl21(DE3) and DV900(DE3) transformants of pET-ampC 

were cultivated in LB media supplemented with different concentrations of IPTG (indicated in 

results), for different incubation periods at 37°C with agitation. Where, pET-ampC was used to 

refer to the different pET28b recombinant vectors encoding for various ampC forms mentioned 

above.  
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3.4.5 ampC cloning and expression using pUCP24 plasmid  
The plasmid pUCP24 was used for cloning in the wild type and some mutants of P. 

aeruginosa PAO1; for functional characterization of some Pae-AmpC forms on β-lactam resistance 

and PG composition in P. aeruginosa. pUCP24 has a gentamycin resistance marker (aacC1) and 

multiple cloning sites as those present in the plasmid pUCP18 (West et al, 1994). Also pUCP24 has 

lac promoter and lacZα gene which encodes for β-galactosidase that cleaves X-Gal producing blue 

colored transformants while interruption of lacZα gene by gene cloning develops white 

transformants when X-Gal is supplemented into the growth medium. Cloning of ampC-F3 and 

ampC-F4 in pUCP24 was done in the restriction sites of XbaI and PaeI (fig. 3.2). Using pET-F4 and 

pET-F3 as a templates, T7-Fw and pET-Rv-PaeI primers and Pfu polymerase, PCR products For 

ampC-F4 and ampC-F3 were produced (table 3.4) which were then digested as well as the pUCP24 

vector with PaeI (Thermo Scientific) in buffer B for two hours at 37°C and then for another 2 hours 

with 2-fold excess XbaI (Thermo Scientific) and then purified as mentioned in section 3.4.1. After 

that they were ligated with T4 DNA ligase (Thermo Scientific) to produce pUCP-F4 and pUCP-F3, 

respectively. The ligation products were transformed into DH5α and then platted on LB plates 

containing 10 μg/ml gentamycin, 10 mg/ml X-Gal (Sigma) and 0.5 mM IPTG and incubated 

overnight at 37°C, and then white colonies were selected and tested for having pUCP-F3 and 

pUCP-F4 by colony PCR and DNA sequencing. The verified pUCP-F3 and pUCP-F4 recombinant 

plasmids were used to transform the wild type PAO1 and some of the constructed Pae mutants to 

study the complementation in ampC mutants and to follow the expression effect of AmpC on 

bacterial resistance and PG composition of P. aeruginosa. For expression of ampC-F3 and ampC-

F4 in P. aeruginosa, transformants of pUCP24-F3 and pUCP-F4 were cultivated in LB media 

supplemented with 10 μg/ml gentamycin and different concentrations of IPTG (indicated in results), 

for different incubation periods at 37°C with agitation. 
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Figure 3.1. Outline of Pae-ampC cloning region in pET28b vector.  

All the ampC forms described in table 4.1 and figure 4.1 were cloned in pET28b vector in the restriction sites of EcoRI and NcoI (*). 

Expression in pET28b is achieved under the control of T7 promoter (T7 RNA polymerase) and lac operator. The pET28b plasmid 

(5368 bp) has a kanamycin resistance marker, and multiple cloning sites. All the cloned ampC forms (ampC-F1, ampC-F1:C3, ampC-

F1:C6 ampC-F2, ampC-F3, ampC-F4, ampC-F4:C3, ampC-F4:C6, ampC-F3-TEV, ampC-F3:C3-TEV, ampC-F3:C6-TEV and ampC-

F4-TEV) have C-terminal poly-His tag, but only ampC-F3-TEV, ampC-F3:C3-TEV, ampC-F3:C6-TEV and ampC-F4-TEV have the 

TEV site upstream to the C-terminal His-tag. The site of ATG initiation codon of various AmpC forms is colored in blue.  
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Figure 3.2. Outline of Pae-ampC cloning region in pUCP24 vector.  
Expression in pUCP24 is achieved under the control of lac promoter. pUCP24 plasmid (4036 bp) has gentamycin resistance marker, multiple 

cloning sites and lacZα for white/blue colony discrimination. Both of ampC-F3 and ampC-F4 were retrieved from pET28-F3 and pET-F4, 

respectively (fig. 3.1), by PCR amplification (table 3.4) and then were cloned in pUCP24 vector within the restriction sites of XbaI and PaeI (*). 

As shown, pUCP-F3 and pUCP-F4 which encode ampC-F3 and ampC-F4, respectively, have two RBS (and two ATG starting codons) one is 

original from pUCP24 plasmid and the other is external from pET28b. Using these recombinant vectors (pUCP-F3 and pUCP-F4), ampC 

expression from the first ATG (in red color) with the 1st RBS (of pUCP24) will not produce ampC sequence but rather a short ended and different 

sequence; only the 2nd ATG starting codon (in blue color) can produce ampC expression.     
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3.4.6 Bacterial transformation  
Transformation is one way and an important step in gene cloning to introduce the 

recombinant vectors (encoding the gene under study) into bacterial cells for further gene 

characterization, expression and overproduction. Competent cells were provided from the 

fermentation service at CBMSO or prepared as described previously (Wiley & Sons, 1997). For 

transformation by heat-shock, 5 µl of the ligation product was mixed with 100 µl of competent 

cells of E. coli strain (e.g. DH5α, DV900 (DE3), XL1-Blue or S17.1 strains) and kept on ice for 

30 minutes and then heat chocked at 42 ºC for 1 minute, and then was left on ice for 2 minutes. 

After that, 1 ml LB was added and cell suspension was incubated at 37ºC and 180 rpm for 1 

hour. Finally, the culture was plated into LB plates, with a proper antibiotic, overnight at 37ºC. 

For transformation by electroporation, 1-5 µl of the plasmid (e.g. pEXTΔpbpG::Gm) was mixed 

with 100 µl of competent cells of P. aeruginosa or E. coli Bl21(DE3) and left on ice for 10 

minutes. The mixture was transferred to a chilled 0.2 cm electroporation cuvette and 

electroporated at 25 μF, 2.5 kV and 200 Ω, and then 1 ml SOC media was added immediately to 

the cell suspension mixture and incubated at 37ºC and 180 rpm for 1 hour. The culture was 

plated into LB plates, with the proper antibiotic overnight at 37ºC. 

 

 

3.5 Protein manipulation 

 

3.5.1 Estimation of protein concentration 
It was achieved using BIO-RADTM DC protein assay by following the provider´s 

instructions. Standard curve was developed with each assay using BSA (Sigma). Absorbance 

was measured at 750 nm on U-2000 spectrophotometer (HITACHI).  

 

3.5.2 SDS-PAGE electrophoresis 
Polyacrylamide gel electrophoresis technique was used to separate mixture of proteins 

which can be visualized by direct Coomassie staining or by western blot. The different buffers 

(Tris-Glycine-SDS) and run conditions were done as described (Wiley & Sons, 2006). 8-10% 

acrylamide gels and Tris-glycine/SDS were used as electrophoresis buffer. The used system was 

MINI PROTEAN® TETRA CELL (BIO-RAD). Also, Pre-stained molecular markers (SeeBlue® 

Plus-2, Invitroen) were utilized.  
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3.5.3 Western blot 

After SDS-PAGE electrophoresis run, proteins were transferred from gel into 

immobilon-P transfer membrane (Millipore Co.) using the system CriterionTM blotter (BIO-

RAD). Briefly, after 2 h blotting at 45 V and 350 mA using blotting buffer 

(Tris/Gly/SDS/Methanol), the membrane was immersed in blocking buffer (Tris-buffered 

saline-0.05% Tween 20, TBS-T) containing 3% (W/V) nonfat dry milk for 1h with shaking. 

Then, the membrane was incubated for 1h at room temperature with 3000 fold diluted antibody, 

anti-His-tagged rabbit IgG (SC-803; Santa Cruz Biotechnology, Heidelberg, Germany), in TBS-

T buffer. After that, the membrane was washed three times by incubation with fresh TBS-T for 

10 min with shaking. Then, the blot was incubated overnight at 4°C with the 2nd antibody goat 

anti-rabbit IgG–horseradish peroxidase (HRPO, 3000 fold diluted in TBS-T; GAR-HRPO 170-

651; Bio-Rad, Hercules, CA), with shaking. After that, the blot was washed three times as 

mentioned above, then it was incubated for 30 seconds with visualization solution for HRPO 

and then it was exposed to X-ray in KODAK X-OMAT 2000 processor. The visualization 

solution was prepared just before its use and it was prepared as two 1 ml solutions of 100mM 

Tris-HCL, pH 8.0; the 1st contained 5 µl luminol [200x stock solution, 88.6mg luminol (Sigma) 

in 1ml DMSO] and 4.3 luciferin [218x stock solution, 10 mg D-luciferin (Roche Diagnostics) in 

2.1 ml 100mM Tris-HCL, pH 8.0]; the 2nd solution contained 15% H2O2 (Merck). Before use, 

both solutions were mixed together to form the visualization solution for HRPO. Photographs of 

both of X-ray films and stained gels were developed by gel scanner (GS-800 BIO-RAD) using 

Quantity One program. 

 

 

3.5.4 β-lactamase activity assay 

This assay was used to characterize β-lactamase activities of wild type Pae-AmpC and 

some mutants. For each assay, 2 µl sample was mixed with 988 µl PBPs (1x, pH 7.5) and 10 µl 

nitrocefin stock solution (500 µg/ml, Oxoid, Cambridge, United Kingdom), then incubated in a 

dark place at 23° for 15 min then centrifuged at 14000 rpm for 2 min. The supernatant 

absorbance was measured at 486 nm on U-2000 spectrophotometer (HITACHI). One milliunit 

β-lactamase activity is defined as 1 nanomole of nitrocefin hydrolyzed per min per microgram 

of protein. It was modified from a previous method (Kong et al, 2005).  

Values of Vmax and Km of purified AmpC forms were identified (using nitrocefin as a 

substrate) from a plot of the equation of Lineweaver-Burk double reciprocal plot which was 

driven from the Michaelis-Menten equation (Crowe & Bradshaw, 2010);  
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(1 / v) = (1 / Vmax) + (Km / Vmax) (1 / [S])  

Where (1 / v) is y-axis; (1 / [S]) is x-axis; (1 / Vmax) is y-intercept and (Km / Vmax) is plot slope. 

Also, Vmax is the maximum reaction velocity (activity); Km is Michaelis constant and is defined 

by the substrate concentration producing half of maximum activity on a given enzyme substrate.  

 

3.5.5 Bocillin-FL test 
Bocillin-FL test was done to analyze the cellular PBPs pattern by fluorescence scanning 

after incubation of cell membrane fraction with Bocillin-FL which has the ability to bind HMM-

PBPs (e.g. PBP1a, PBP1b, PBP2 and PBP3) and LMM-PBPs (e.g. DacB, DacC and PbpG). 

Briefly, 100µg membrane proteins were incubated with 10 µM Bocillin-FL (Invitrogen, 

Carlsbad, CA) in 1x PBS (pH 7.5) at 37°C for 30 min and then, a proper volume of loading 

sample buffer was added. The samples were left at 100°C for 10 min, centrifuged in Eppendorf 

centrifuge at maximum speed for 5 min and loaded to 8% acrylamide gels in SDS-PAGE 

system and run at 90V. After the run was complete, the gels were being left in fixing solution 

(10% methanol and 7% acetic acid) for 1-2 hours then visualized on a Thyphon 9410 variable-

mode imager (General Electric) at 588 nm, with a 520BP40 emission filter. For the 

determination of the cefoxitin 50% inhibitory concentrations (IC50) for the different PBPs, 

100µg membrane proteins were incubated firstly with serial concentrations from 0 to 1500 

µg/ml of cefoxitin at 37°C for 30 min and then they were incubated with Bocillin-FL at 20 μM 

at 37ºC for 30 min and processed as described above. IC50 was calculated as the cefoxitin 

concentration producing a 50% reduction of Bocillin-FL binding for each individual PBP. In 

this assay a previously described method was used with some modifications (Gonzalez-Leiza et 

al, 2011). 

 

3.5.6 MALDI-TOF 
It is a mass spectrometric analysis-based technique which was used to identify protein bands 

(e.g. AmpC precursor and mature forms) separated by SDS-PAGE. Also, it was used to identify 

unknown muropeptides produced from PG analysis by HPLC. MALDI-TOF was done by the 

unit of proteomics at the Center of Molecular Biology "Severo Ochoa" (CBMSO).  

 

3.5.7 Cell fractionation for protein localization 
Fresh LB cultures of Bl21(DE3), DV900(DE3) and PAO1 strains, harboring inducible 

ampC vector, were induced at OD=0.3 with IPTG for 1-3 h at 37°C with 180 rpm agitation. The 

cells were collected by centrifugation at 5000 rpm for 15 min at 4°C. The cells were re-
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suspended in ice-cold 1x PBS, pH 7.5, and lysed by sonication on ice. A small portion of the 

total sonicate was left on ice, while the other portion was centrifuged at 85000 rpm for 40 min at 

4°C. The cell extract (supernatant) was left on ice. The cell pellet (membranes) was re-

suspended in a proper volume of ice-cold 1x PBS, pH 7.5. Ice-reserved cell fractions were 

checked for AmpC presence by SDS-PAGE, western blot and β-lactamase activity, and then 

stored at -20°C. 

 

3.6 AmpC purification 

Purification of an overproduced cellular protein from other contaminating proteins is 

very important especially for activity characterization and protein X-ray crystallization. 

Purification can be achieved by various chromatographic techniques. In this study, we have 

used Ni2+-affinity chromatography to purify AmpC proteins which have poly-His tag where 

Ni2+-carrying beads trap Poly-His tag-containing AmpC proteins which can be eluted later by 

high concentration of imidazole after removal of the contaminating proteins by washing buffer 

(Wiley & Sons, 1996).       

All AmpC forms were over-produced by IPTG induced pET28b-ampC recombinant 

vectors in Bl21(DE3). For large AmpC production, transformed Bl21(DE3) cells were grown 

with agitation in a 30 L fermenter (Biostat UD30, B. Braun Biotech) in LB medium 

supplemented with 30 μg/ml kanamycin (Kn) at 37°C and induced at OD600 ~ 0.3 with 1 mM 

IPTG for 3 h in case of AmpC-F3 and AmpC-F3-TEV; and induced with 0.1 mM IPTG for 1 h 

in case of AmpC-F2, AmpC-F4, AmpC-F4:C3 and AmpC-F4:C6. After that, cells were 

collected, resuspended in 1x phosphate buffer (43 mM Na2HPO4 and 14 mM KH2PO4, pH 7.5), 

broken within French pressure cell (American Instrument co, Urbana, III) at 20000 psi and 

further centrifuged at 50000 rpm for 30 min at 4°C. Both of supernatant and pellet were either 

stored at -20°C or used in the next step of purification.  

The proteins, AmpC-F3 and AmpC-F3-TEV, were purified from the supernatant 

which passed twice through the Ni-NTA column equilibrated with 1x phosphate buffer (10 mM 

imidazole, pH7.5). Unbound proteins were washed away with 1x phosphate buffer (50 mM 

imidazole, pH7.5). Bound AmpC was then eluted with 250 mM imidazole (Merck, Germany) in 

phosphate buffer, pH 7.5. The Ni-NTA column (QIAGEN GmbH) was regenerated with 500-

1000 mM imidazole, and then it was recharged with NiSO4.6H2O and equilibrated for another 

purification cycle (Wiley & Sons, 1996). The eluted fractions were then dialyzed against 20 

mM Tris HCl, pH 7.5 with three buffer changes (for 2 h each and the third was left overnight) at 

4°C with agitation. Analyzing the purified samples with SDS-PAGE revealed that there was 

three other faint protein bands which were eliminated by passing the previous purification batch 

through Sephadex G-25-80 (Pharmacia Fine Chemicals Co.) column equilibrated with 20 mM 
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Tris HCl (500 mM NaCl, pH7.5). Highly purified fractions were mixed and concentrated using 

Amicon® Ultra Centrifugal Filters (Ultracel®-30K; Millipore Ireland Ltd) on Megafuge 2.0 R 

Heraeus (SEPATECH) at 4° C. The concentrated AmpC-F3 and AmpC-F3-TEV were stored at 

-20°C. The peptide sequence of AmpC-F3 was identified by MALDI-TOF analysis. For 

elimination of His-tag from AmpC-F3-TEV, it was incubated with TEV protease (1 mg enzyme 

for 80 mg protein) with rotation at 4°C. We found that after 1 h the produced AmpC-F3-TEV, 

that had His-tag eliminated, was formed as insoluble precipitate although the precursor AmpC-

F3-TEV (with His-tag) was soluble. The insoluble AmpC-F3-TEV (without His-tag) was 

collected by centrifugation and resuspended in 20 mM tris-HCl, 0.5% Sarkosyl, 100 mM NaCl, 

pH7.5, and then it was dialyzed three times as described above against the buffer 20 mM tris-

HCl, 100 mM NaCl, pH7.5. The purified AmpC-F3-TEV (without His-tag) was tested for 

successful His-tag loss by western blot. Both AmpC-F3 and AmpC-F3-TEV (without His-tag) 

were sent to be crystalized. The proteins AmpC-F3:C3-TEV, AmpC-F3:C6-TEV and AmpC-

F4-TEV were not purified.   

The majority of AmpC-F2, AmpC-F4, AmpC-F4:C3 and AmpC-F4:C6 were found 

insoluble in the membrane pellet fraction. They were extracted by resuspension of the pellet 

fraction in phosphate buffer containing 3 M guanidine HCl (Gn-HCl; Sigma) at pH 7.5 and 

centrifuged at 50000 rpm for 15 min at 4°C. The extract was passed directly through Ni-NTA 

column equilibrated with 1x phosphate buffer (3 M imidazole, pH 7.5). Unbound proteins were 

washed away by 1x phosphate buffer (3 M Gn-HCl, 20 mM imidazole, pH 7.5) while bound 

AmpC was then eluted by 250 mM imidazole (in the equilibration buffer) and dialyzed against 

20 mM Tris HCl, pH 7.5 as mentioned above. We found that all of these AmpC forms re-

precipitated during the first dialysis incubation. So, they were harvested by centrifugation, 

resuspended in 20 mM tris-HCl, 2% Sarkosyl (Sigma), 100 mM NaCl, pH7.5 and dialyzed 

against buffer 20 mM tris-HCl, 0.2% Triton X-100 (Sigma), 100 mM NaCl, pH7.5 or buffer 20 

mM Tris, 300 mM NaCl, 0.15% sarkosyl, pH 7.5. SDS-PAGE and western blot showed that 

AmpC-F2, AmpC-F4, AmpC-F4:C3 and AmpC-F4:C6 were highly purified. After their 

purification, all purified AmpC samples were stored at -20°C. 

Theoretical isoelectric points and molecular masses of purified AmpC forms were 

identified using online ExPASy tools. The purified AmpC proteins were used for 

characterization of their β-lactamase activities on nitrocefin, X-ray crystallography and 

for in vitro reactions with the purified PG and individual muropeptides as described 

later.  
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3.7 Construction of PAO1 mutants  
Our goal is to construct several mutants of LMM-PBPs [dacB (gene PA3047), dacC 

(gene PA3999), pbpG (gene PA0869)] and ampC (gene PA4110) in P. aeruginosa PAO1 strain 

wild type and mutants to pursue their physiological role in PG composition, bacterial resistance 

and ampC regulation in P. aeruginosa. The procedure is based on using cre-lox method (fig. 

3.3) which depends on double recombination between gene-specific inactivation vector and the 

target chromosomal gene (in PAO1). The used gene-specific inactivation vector in this study is 

pEX100Tlink vector which has a cloned DNA fragment (PCR1-lox-aacC1-lox-PCR2) 

containing PCR1 (gene upstream sequence), PCR2 (gene downstream sequence), two lox 

sequences and gentamycin resistance marker (aacC1). Also, pEX100Tlink  vector has 

ampicillin resistance marker and sacB for sucrose sensitivity. After double recombination, the 

next step is to eliminate the gentamycin cassette (aacC1) by cre recombinase (Moya et al, 2009; 

Quenee et al, 2005).   

Previously constructed gene-specific inactivation vectors (pEXTΔampC::Gm and 

pEXTΔdacB::Gm) were used for the generation of dacB and ampC mutants in P. aeruginosa 

PAO1strain (Moya et al, 2009; Moya et al, 2008). These two gene-specific inactivation vectors 

and single mutants of dacB and ampC were used in this study also to construct double and 

multiple mutants in PAO1 strain. In this study we have constructed the gene-specific 

inactivation vectors for pbpG and dacC which were used for the generation of many single and 

combined mutants of LMM-PBPs and ampC (described below).  

 

Construction of gene-specific mutagenesis vectors 
For amplification of  both upstream (PCR1) and downstream (PCR2) regions of the 

gene to be deleted, a 50 µl PCR reaction contained 1.5 mM MgCl2 (sigma), 0.2mM dNTPs 

(Bioline), 1µM forward and reverse primers (Sigma), 10% DMSO (sigma), 2.5 U AmpliTaq 

GoldTM (Roche), 1x Buffer for AmpliTaq and 100ng DNA. For the construction of pbpG and 

dacC gene-specific mutagenesis vectors, both upstream (PCR1) and downstream (PCR2) 

regions of each gene were amplified using the corresponding primers in table 3.3. Then, the 

product, PCR1 was digested with EcoRI (HF, New England Biolabs) and HindIII (HF, New 

England Biolabs), while PCR2 was digested with BamHI (HF, New England Biolabs) and 

HindIII. In the same time pEX100Tlink (with deleted HindIII site) was digested with EcoRI and 

BamHI. The three digestion products were ligated in one reaction using T4 DNA ligase (New 

England Biolabs) to produce pEXTΔpbpG and pEXTΔdacC. The ligation products were used to 

transform E. coli XL1-Blue strain by heat chock. The colonies were selected with 50 µg/ml 

ampicillin LB agar plates and tested by colony PCR. The plasmids, pEXTΔpbpG and 

pEXTΔdacC were digested with HindIII. The lox-flanked gentamicin resistance cassette 
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(aacC1) was extracted from pUCGmlox after digestion with HindIII, using High pure PCR 

product purification kit (Roche). The aacC1 fragment was ligated within the linearized 

pEXTΔpbpG and pEXTΔdacC to produce both pbpG and dacC gene-specific mutagenesis 

vectors which will have the formula: pEXTΔpbpG::Gm and pEXTΔdacC::Gm respectively 

which were used to transform XL1-blue strain. Transformants were selected with 50 µg/ml 

ampicillin and 10 µg/ml gentamicin LB agar plates. The extracted plasmids, pEXTΔpbpG::Gm 

and pEXTΔdacC::Gm were used to transform E. coli S17.1 λ pyr helper strain and selected as 

done previously. The right clones were verified by digestion with restriction enzymes, colony 

PCR (addendum, fig. A.2) and DNA sequencing.  

 

Double recombination and removal of gentamycin cassette 
Knockout mutants were generated by conjugation between PAO strain (receptor) and E. 

coli S17.1 λ harboring gene-specific mutagenesis vector (donor), followed by selection of 

double recombinants using LB plates supplemented with 5% sucrose, 1 μg/ml cefotaxime and 

30 μg/ml gentamicin. Double recombinants were checked by first screening for carbenicillin 

(200 μg/ml) susceptibility and afterwards by PCR amplification and sequencing. For the 

removal of the gentamicin resistance cassettes, plasmid pCM157 was electroporated into the 

different mutants. Transformants were selected in LB plates containing a 250 μg/ml 

tetracycline. One transformant for each mutant was grown overnight in 250 μg/ml tetracycline 

LB broth in order to allow the expression of the cre recombinase. Plasmid pCM157 was then 

cured from the strains by successive passages in LB broth. Selected colonies were then screened 

for their tetracycline (250 μg/ml) and gentamicin (30 μg/ml) susceptibilities and checked by 

PCR amplification and DNA sequencing. Double, triple, and quadruple mutants were then 

generated sequentially following the same procedure (addendum, Fig. A.3→A.7). 

 

 

3.8 Estimation of ampC expression by RT-PCR 

The expression of ampC in P. aeruginosa was determined by RT-PCR for the 

constructed mutants and PAO1 (as a control) following previously described protocols (Juan et 

al, 2006). For the quantification of ampC induction, the strains were incubated in the presence 

of 50 μg/ml of cefoxitin. Briefly, total RNA from logarithmic-phase-grown LB cultures was 

obtained with an RNeasy minikit (Qiagen, Hilden, Germany). 50 ng of purified RNA was then 

used for one-step reverse transcription and real-time PCR using a QuantiTect SYBR green 

reverse transcription-PCR kit (Qiagen) in a SmartCycler II apparatus (Cepheid, Sunnyvale, 

CA). Previously described conditions and primers were used (Juan et al, 2006). The rpsL 

housekeeping gene was used to normalize the expression levels, and results were always 
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referenced against PAO1 basal expression. All RT-PCRs were performed in duplicate, and the 

mean values of mRNA expression resulting from three independent experiments were 

considered in all cases. This assay was done as a cooperative work by  Gabriel Cabot, Irina 

Sánchez-Diener, Bartolome Moya and Antonio Oliver (Servicio de Microbiología and Unidad 

de Investigación, Hospital Universitario Son Espases, Palma de Mallorca, Spain). 

 

3.9 Antimicrobial susceptibility testing 
 

Disk diffusion was used for determination of bacterial resistance to β-lactams in Bl21 

(DE3) and PAO1 mutants transformed with pET-ampC and pUCP-ampC respectively using 

antibiotic disks; cefoxitin (FOX-30 µg), ceftriaxone (CRO-30 µg), imipenem (IMI-10 µg), 

chloramphenicol (C-30 µg), aztreonam (ATM-30 µg), amoxacillin/clavulanic acid (AMC-

20+10 µg), Amikacin (AN-30 µg) and ticarcillin (TIC-75 µg) (BioMerieux® sa, France). 

Inoculum was prepared using growth method and used to inoculate MHA plates as described 

previously (CLSI, 2012b). For determination of antimicrobial susceptibility of the constructed 

PAO1 mutants, MICs of ampicillin, piperacillin, aztreonam, cefotaxime, ceftazidime, cefepime, 

cefoxitin, imipenem, meropenem, and vancomycin were determined by microdilution in 100 μl 

of cation-adjusted Müller-Hinton broth following the Clinical Laboratory Standards Institute 

guidelines (CLSI, 2012a).  
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 Figure 3.3. Outline for gene-knockout inactivation of pbpG and dacC in P. aeruginosa by 

cre-lox method.   

The target gene in red color (e.g. pbpG or dacC) was knocked out and substituted by a DNA 

fragment having PCR1, 2 lox sequences and PCR2 within two steps, firstly the chromosomal 

target gene (pbpG or dacC) in the receptor strain (P. aeruginosa) was exchanged for the 

fragment PCR1-lox-aacC1-lox-PCR2 of the gene-specific mutagenesis vector from the donor 

strain (e.g. S17/pEXTΔpbpG::Gm) by double recombination. The second step is the elimination 

of the gentamycin cassette (aacC1) by cre recombinase. The gene-specific mutagenesis vector is 

a recombinant pEX100Tlink vector having the fragment PCR1-lox-aacC1-lox-PCR2 within the 

multicloning region where PCR1 and PCR2 are the upstream and downstream DNA sequences 

of the target gene. The pEX100Tlink and gene-specific inactivation vectors has genes of sacB 

(sucrose sensitivity) and bla (ampicillin resistance). 
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3.10 Production of imipenem-induced round cells of PAO1 wild type and mutants  

The objective of this experiment is to identify the physiological role of LMMs-PBPs in the 

recovery of rod shape after elimination of imipenem from the culture media. This effect of 

imipenem on P. aeruginosa was reported in a previous study (Monahan et al, 2014).  

Spheroplasts of the wild type PAO1 and all the constructed Pae mutants including the 

quadruple mutant PAOΔdacBΔdacCΔpbpGΔampC were obtained after incubation with 5x 

MICs of IMI in CAMHB media supplemented with 0.5 M sucrose for 4 hours at 37°C without 

agitation. After that round cells were collected at 6000 rpm for 10 min and resuspended in 0.5 

M sucrose supplemented CAMHB medium without imipenem and left for recovery overnight at 

37°C without agitation. Both round and recovered cells were tested for their PG composition by 

HPLC, their morphology by phase-contrast and fluorescence microscopy and their pattern of 

PBPs by Bocillin-FL binding test.     

 

3.11 Confocal microscopic analysis 
Cell preparation for microscopic examination was carried out from overnight cultures of 

PAO1 wild type and mutant strains. They were used to inoculate new LB media and left to grow 

at 37°C and 180 rpm for about 8 hours. The optical density was measured at 600 nm every one 

hour on U-2000 spectrophotometer (HITACHI). Also at different time intervals, the cell 

morphology was tested in vivo (phase-contrast) using equipment of fluorescence resonance 

energy transfer (FRET) comprising Axiovert200 inverted microscope (Zeiss) coupled to a 

monochrome CCD camera. Also, imipenem-induced round cells and their recovered rods of 

PAO1 wild type and mutants were tested by phase-contrast and fluorescence microscopy using 

CYTO 9 dye (green fluorescence staining) following the provider´s instructions (LIVE/DEAD® 

BacLight Bacterial Viability Kit; Molecular Probes, Inc.) where cells stained with CYTO 9 

produce green color and considered to be viable.   
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3.12 Peptidoglycan (PG) manipulation  
 

3.12.1 Preparation of PG  
PG was prepared from E.coli and P. aeruginosa wild type and mutants to be analyzed 

by HPLC in order to study the effect of AmpC activity on PG composition; also, to highlight the 

role of LMM-PBPs (DacB, DacC and PbpG) on PG composition. The used method was adapted 

from a previous study (Gonzalez-Leiza et al, 2011). 

For P. aeruginosa, wild type and the different mutants of PAO1 were cultured in LB 

medium treated with and without 50 µg/ml cefoxitin (FOX) at 37°C and 185 rpm agitation until 

OD600 ̴ 0.75-0.8 was achieved, the cells were collected by centrifugation at 5000 rpm/min at 4°C 

and resuspended in 1x PBS buffer, pH 7.5. One fraction from this cell suspension was left at -

20°C for membrane preparation (see below). The rest of cell suspension was added drop by 

drop to an equal volume of boiling 6% SDS (Merck, Germany) solution with strong stirring. 

The final cell-SDS suspension was left under boiling conditions for 12 hours with stirring.  

For E coli (e.g. Bl21(DE3), DV900(DE3), CS109), overnight culture of one colony was 

1:100 diluted in fresh LB media with specific antibiotic and left growing at 37°C and 185 rpm 

agitation until the exponential phase (OD600 ̴ 0.75-0.8) was achieved, then the cells were 

harvested and added to boiling SDS solution as described above. The cell-SDS suspension was 

left under boiling conditions with stirring for 3-4 hours and overnight at room temperature.   

The cell-SDS suspensions were centrifuged at 60000 rpm for 10 min to collect the 

sacculi from the pellet fraction which was then washed with warm sterile milli-Q water, three or 

more times, until no SDS was detected (no foam appears). Sacculi were suspended in 10 ml of 

10 mM Tris-HCl (pH 7.2) and digested with 100 µg/ml α-amylase (EC 3.2.1.1; Sigma-Aldrich, 

Saint Louis, MO) for 1 h at 37°C and then with 100 µg/ml pre-activated pronase E (EC 

3.4.24.4; Merck, Darmstadt, Germany) at 60°C for 90 min. The enzymes were inactivated by 

boiling for 20 min in 1% (final concentration) SDS. PG was collected and washed as described 

above. One part of undigested PG was stored at 4°C for in vitro assays. The other part of PG 

was digested with 100 µg/ml Cellosyl muramidase (Hoechst AG, Frankfurt, Germany) in 50 

mM phosphate buffer (pH 4.9) at 37°C overnight. The enzyme was inactivated by boiling the 

sample for 10 min in a water bath and centrifuged in Eppendorf centrifuge at 14000 rpm for 5 

min to remove insoluble debris. The supernatant was mixed with 1/3 volume of 0.5 M sodium 

borate buffer (pH 9.0) and reduced with excess sodium borohydride (NaBH4) for 30 min at 

room temperature. The pH was tested with pH indicator strips (Acilit, Merck) and adjusted to 

pH 3 with orthophosphoric acid. All samples were filtered (Millex-GV filters; 0.22-µm pore 

size, 2.5-mm diameter; Millipore, Cork, Ireland) or centrifuged at maximum speed for 10 min., 

then stored at -20°C until its injection in the HPLC.  
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3.12.2 HPLC analysis 

Breeze 2 HPLC System (Waters Breeze™ 2 HPLC System, with 1525 Binary HPLC 

Pump) was used. Sodium phosphate buffers (A) pH4.35 with 0.2% sodium azide and sodium 

phosphate buffer (B), pH 4.95 with 15% methanol (Merck, Germany) were used. It was 

modified from previously reported method (Glauner, 1988; Gonzalez-Leiza et al, 2011). During 

the HPLC run of digested PG, some unknown peaks (muropeptides) were collected, lyophilized 

and sent to be identified by MALDI-TOF. Some other well-known muropeptides (e.g. M5, M4, 

D44 and D45) were collected for in vitro reactions. Quantification of muropeptides was 

achieved from their integrated areas in the HPLC chromatogram.  

 

3.12.3 Effect of Pae-AmpC on the whole PG and individual muropeptides in 

vitro 
To confirm if Pae-AmpC has DD-peptidase activity in vitro, the purified AmpC proteins 

(wild type and mutants) were incubated with purified muropeptides or whole peptidoglycan. 

 

In vitro assay using the whole PG 
A 250 μl reaction contained about 160 µg of undigested purified PG with various 

concentrations (indicated in results) of purified AmpC at 37 or 42°C for variable periods (1→24 h) in 

buffer 20 mM tris-HCl, pH7.5, and then boiled for 15 min. After that, muramidase was added to the 

reaction mixture which was incubated at 37°C overnight. Reduction of digested PG was done as 

described before (Section 3.11.1) and then it was subjected to HPLC analysis. 

 

In vitro assay using individual muropeptides 
A 250 μl reaction contained purified AmpC of various concentrations (indicated in results) 

were incubated in buffer 20 mM tris-HCl, pH7.5 with a different amounts (indicated in results) of the 

individual purified muropeptides (e.g. M4, M5, D44 and D45) at 37 or 42°C for variable periods 

(1→24 h), then the reaction was boiled for 2 min, centrifuged at 14000 rpm for 10 min and injected 

into the HPLC or stored at -20°C until being used.   
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4. Results  
 

 

4.1. Functional characterization of Pae-AmpC β-lactamase in some E. coli and 

P. aeruginosa PAO1 strains 

 

4.1.1. Summary 

 
The aim of this chapter is to characterize the activity of AmpC β-lactamase (Pae-AmpC) 

of Pseudomonas aeruginosa PAO1 strain; also to study the effect of ampC expression in 

bacterial resistance and PG composition and to analyze the effect of some uncharacterized 

mutations on the activity of Pae-AmpC and on the profile of bacterial resistance. For that 

purpose we did the next steps: a) cloning of the wild type Pae-ampC [precursor form 

(ampC-F1) and mature form (ampC-F3 and ampC-F3-TEV)] and wild type Pae-AmpC 

having modified signal peptide sequence (ampC-F2, ampC-F4 and ampC-F4-TEV) and 

some mutants of Pae-ampC having single nucleotide mutation [T728→C (e.g. ampC-F4:C3), 

C152→T (e.g. ampC-F4:C6)] in some wild type and mutant strains of E. coli and P. 

aeruginosa PAO1; b) pursuing AmpC activity and expression by SDS-PAGE, western blot, 

β-lactamase activity assay; c) analyzing the change in bacterial resistance after ampC 

expression using disc diffusion assay; d) purification of some AmpC forms by Ni-affinity 

chromatography for functional characterization and X-ray crystallization; and e) pursuing 

the effect of AmpC activity on PG composition of E. coli and P. aeruginosa by HPLC 

analysis of their PG after ampC expression (in vivo assay). Also, AmpC effect on PG was 

analyzed by HPLC after direct reaction of purified Pae-AmpC with both the whole PG and 

individual muropeptides which were purified from the given bacterial strains (in vitro 

assays). Most remarkable data are: 1) we found that ampC-F1, ampC-F1:C3 and ampC-

F1:C6 were not expressed; 2) AmpC-F4 had the highest β-lactamase activity and caused the 

largest increase in bacterial resistance; 3) the two mutants AmpC-F4:C3 and AmpC-F4:C6 

had a very low β-lactamase activity and a little effect on the profile of bacterial resistance; 

4) data obtained from HPLC analysis of PG composition in vivo support the previous 

suggestion that AmpC can have DD-carboxypeptidase or DD-endopeptidase activity (due to 

structural similarities). Also, in vitro assays showed and confirmed that only AmpC-F3 had 

DD-peptidase activity.  
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4.1.2. Pae-ampC cloning 

 

Outline of the cloned Pae-ampC forms  
The cloned forms of Pae-ampC from PAO1 are ampC-F1 (the wild type ampC, 

precursor form); ampC-F2 is an ampC mutant with G4→C single nucleotide mutation which 

corresponds to R2→G amino acid mutation in the signal peptide; ampC-F3 is the mature form of 

Pae-ampC with an insertion of ATG as initiation codon; ampC-F4 is a designed ampC form 

with insertion of two codons (ATG GCC) before the starting codon of wild type ampC sequence 

inserting the two amino acids M1 A2 to the AmpC protein; ampC-F3-TEV and ampC-F4-TEV 

have the same sequence of ampC-F3 and ampC-F4 respectively but with extra sequence at C-

terminal which encodes amino acids (E N L Y F Q G) that constitute the recognition site for 

TEV protease; ampC-F1:C3, ampC-F3:C3-TEV and ampC-F4:C3 have the same sequence of 

ampC-F1, ampC-F3-TEV and ampC-F4, respectively, but with T728→C single nucleotide 

mutation (we called it C3 mutation) which correspond to single amino acid change (P243→L); 

ampC-F1:C6, ampC-F3:C6-TEV and ampC-F4:C6 have the same sequence of ampC-F1, ampC-

F3-TEV and ampC-F4, respectively, but with C152→T single nucleotide mutation (we called it 

C6 mutation) which correspond to single amino acid change I51→T. All these ampC forms have 

a sequence for poly-His tag at C-terminal. Only ampC-F3:C3-TEV, ampC-F3:C6-TEV and 

ampC-F4-TEV have TEV site sequence upstream to the sequence of the C-terminal poly-His tag 

(fig. 4.1; table 4.1). As described above, the nomenclature of each ampC form involves ampC at 

the beginning then F1, F2, F3 and F4 (referring to the Forward primer used in amplification, 

table 3.2); C3 and C6 referring to the mutations T728→C and C152→T which were first observed 

in a previous unpublished study (our laboratory collection), respectively. The nomenclature also 

involved the word TEV referring to the presence of a sequence coding for recognition site of 

TEV protease. In figure 4.1, we have an illustrative diagram for the different forms of Pae-

AmpC proteins that were produced by expression of all the above described ampC constructs. 

All AmpC forms produced were expected to be periplasmic, except AmpC-F2 having a charge 

defect in the signal peptide, and AmpC-F3, AmpC-F3-TEV, AmpC-F3:C3-TEV and AmpC-

F3:C6-TEV that were produced as cytoplasmic forms because they do not have the signal 

peptides. 

 

Cloning of Pae-ampC in pET28b 

All ampC forms ampC-F1, ampC-F2, ampC-F3, ampC-F4, ampC-F1:C3, ampC-F1:C6, 

ampC-F4:C3, ampC-F4:C6, ampC-F3-TEV, ampC-F3:C3-TEV ampC-F3:C6-TEV and ampC-

F4-TEV were successfully cloned in pET28b plasmid producing respectively the recombinant 

vectors pET-F1, pET-F2, pET-F3, pET-F4, pET-F1:C3, pET-F1:C6, pET-F4:C3, pET-F4:C6, 
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pET-F3-TEV, pET-F3:C3-TEV, pET-F3:C6-TEV and pET-F4-TEV (table 3.1). All of these 

clones were transformed in DH5α (for cloning) and Bl21(DE3) [for ampC expression and 

characterization]. Due to their high ampC expression profile and other interesting results 

(described later), only the recombinant vectors pET-F2, pET-F4, pET-F4:C3, pET-F4:C6 and 

pET-F3 were used to transform DV900 for functional characterization of ampC in this strain. 

All clones were confirmed by DNA electrophoresis of their colony PCR (addendum, figure A. 

1) and by DNA sequencing. For simplification we used pET-ampC to refer to all the cloned 

Pae-ampC forms in the vector pET28b unless there is something special to describe for any of 

these constructs.  

 

Cloning of Pae-ampC in pUCP24 
From all previously cloned ampC forms in E. coli, only ampC-F3 and ampC-F4 were 

selected to be cloned in P. aeruginosa because both forms produced relevant results (described 

later) respect to β-lactamase activity, bacterial resistance and effect on PG composition. Both of 

ampC-F3 and ampC-F4 were cloned in pUCP24 vector producing the recombinant vectors 

pUCP-F3 and pUCP-F4 respectively which were transformed into DH5α and some PAO1 

mutant strains and were confirmed by colony PCR and by DNA sequencing.  

The selected PAO1 mutant strains used for cloning of pUCP-F3 and pUCP-F4 are 

PAO∆ampC, PAO∆dacB∆pbpG∆ampC, PAO∆dacB∆dacC∆ampC and PAO∆dacB∆dacC 

∆pbpG∆ampC. These mutants have ampC deletion and some special characteristics concerning 

their PG composition where PAO∆dacB∆dacC∆pbpG∆ampC has a very large amount of penta 

muropeptides resembling PG composition of E. coli DV900 with which ampC-F3 produced 

some DD-peptidase activity (section 4.1.8) and it was interesting to compare this activity with a 

similar PG composition from P. aeruginosa; also, PAO∆dacB∆dacC∆ampC has a considerable 

increase in penta muropeptides but with larger amounts of tetra muropeptides; both of 

PAO∆ampC and PAO∆dacB∆pbpG∆ampC have a normal penta and tetra muropeptides and 

they were selected because ampC complementation in PAO∆ampC would give us the normal 

effect of AmpC activity without interfering with the effect of inactivation of PBPs, also 

PAO∆dacB∆pbpG∆ampC is a special mutant because it lacks the activity of the main DD-

endopeptidases (dacB and pbpG) and it was interesting to pursue the effect of ampC expression 

in this mutant; more detailed information about these mutants is described in section 4.2.   
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Table 4.1. Mutations and changes in the main sequence of the cloned Pae-ampC 

constructs. 

Pae-ampC form/ 

namea 

Nucleotide changeb Amino acid changec 

ampC-F1 - - 

ampC-F1:C3 T728→C mutation P243→L 

ampC-F1:C6 C152→T mutation I51→T  

ampC-F2 G4→C R2→G 

ampC-F3 A1TG insertion as a start codon   M insertion before  A26 

ampC-F3-TEV A1TG insertion as a start codon   M insertion before  A26 

ampC-F3:C3-TEV T728→C mutation P243→L 

ampC-F3:C6-TEV C152→T mutation I51→T 

ampC-F4 A1TG GCC insertion M A insertion before M1 

ampC-F4-TEV A1TG GCC insertion M A insertion before M1  

ampC-F4:C3 T728→C mutation and ATG GCC 

insertion 

P243→L mutation and M 

A insertion before M1  

ampC-F4:C6 C152→T mutation and ATG GCC 

insertion  

I51→T mutation and M A 

insertion before M1 
a  The cloned Pae-ampC forms from PAO1 were named referring to their corresponding 

forward primers (F1→F4), the presence of C3 or C6 mutationsb and the presence of 

recognition site of TEV protease. Nucleotide changesb and its corresponding amino 

acid changesc within different ampC constructs are shown compared to the wild type 

PAO1 ampC where ampC-F1 is the wild type Pae-ampC; ampC-F2 is an ampC mutant 

with G4→C single nucleotide mutation; ampC-F3 is the mature form of ampC with an 

insertion of ATG as initiation codon while ampC-F4 is a designed ampC form with 

insertion of two codons (ATG GCC) before the starting codon of wild type Pae-ampC 

sequence. All ampC constructs that have C3 or C6 in their nomenclature refer to 

mutations that were previously found (laboratory collection) in transformants colonies 

number 3 and 6 with sense single nucleotide mutations, T728→C and C152→T, 

respectively. All ampC constructs were designed to have C-terminal His-tag. More 

information about these constructs is shown in figure 4.1.    
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Figure 4.1. Schematic outline of general structures and amino acid sequences of the 

studied Pae-AmpC forms.  

Main amino acid sequences of AmpC forms are colored in black while amino acid 

changes and extra-amino acids are colored in red. TEV: Cleavage site for TEV 

protease. Nomenclature of AmpC forms was described within table 4.1. AmpC-F1 is the 

wild type Pae-AmpC; AmpC-F2 is AmpC mutant with R2→G point amino acid 

mutation; AmpC-F3 is the mature form of Pae-AmpC with an insertion of amino acid M 

as a peptide initiator in translation; while AmpC-F4 is AmpC form with insertion of two 

amino acids (M A) before M1 of the main amino acid sequence of wild type AmpC. All 

AmpC forms that have C3 or C6 in their nomenclature refer to the presence of point 

amino acid mutation P243→L and I51→T, respectively, compared to the wild type AmpC. 
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4.1.3. Pae-ampC expression 

 

Pae-ampC expression in E. coli Bl21(DE3) and DV900(DE3) 
The recombinant vectors of pET-ampC were used for expression of their encoded ampC 

forms in Bl21(DE3) and DV900(DE3) under IPTG induction. Bl21(DE3)/pET-ampC 

and DV900(DE3)/pET-ampC were used to refer respectively to Bl21(DE3) and DV900(DE3) 

transformed with some pET28b recombinant vectors encoding for various ampC forms which 

were described in table 4.1. For detection of the expressed AmpC form by SDS-PAGE and 

western blot after induction with IPTG, cell fractionation was done as described in section 3.5.7 

and samples from total sonicate, cell extract and cell membrane pellet were loaded to detect and 

to localize AmpC forms in these fractions (fig. 4.2, 4.3, 4.4, 4.5). For overproduction of AmpC 

forms in transformants of Bl21(DE3) (fig. 4.2, 4.3, 4.5) harboring pET-F1, pET-F2, pET-F3, 

pET-F4, pET-F1:C3, pET-F1:C6, pET-F4:C3 and pET-F4:C6 and transformants of 

DV900(DE3) (fig. 4.4) harboring pET-F2, pET-F4, pET-F4:C3 and pET-F4:C6; cells were 

induced with 0.1 mM IPTG in LB media for 1 h at 37°C with agitation. DV900(DE3) 

transformed with pET-F3 was induced with 1 mM IPTG (fig. 4.4) due to low production of 

AmpC-F3 with 0.1 mM IPTG in Bl21(DE3) (fig. 4.3). The production of AmpC-F1, AmpC-

F1:C3 and AmpC-F1:C6 was too low and cannot be detected by SDS-PAGE and western blot 

(fig. 4.2), while, all of AmpC-F2, AmpC-F4, AmpC-F4:C3 and AmpC-F4:C6 were produced in 

a large amount which can be detected by SDS-PAGE and western blot (fig. 4.2, 4.3, 4.4). 

AmpC-F3 was produced in a low amount that can be detected only by western blot (fig. 4.4). 

For transformants of Bl21(DE3) harboring pET-F3, pET-F3-TEV, pET-F3:C3-TEV, pET-

F3:C6-TEV and pET-F4-TEV we found that the best production conditions for AmpC-F3 was 

induction with 1 mM IPTG for three hours; while, AmpC-F3-TEV, AmpC-F3:C3-TEV and 

AmpC-F3:C6-TEV were produced after induction with 2 mM IPTG for 3 h at 37 °C. On the 

other hand, 0.1 mM IPTG was enough to overproduce AmpC-F4-TEV in two hours (fig 4.5). 

Induction with 1 mM IPTG caused overproduction of AmpC-F2, AmpC-F4, AmpC-F4:C3 and 

AmpC-F4:C6 which were too lethal to both of Bl21(DE3) and DV900(DE3) causing a decrease 

in cell growth and some cell lysis. 

Detection of AmpC proteins of cellular fractions of Bl21(DE3)/pET-ampC by SDS-

PAGE and western blot showed that under induction conditions the majority of AmpC-F2 was 

produced as a precursor form and was present in membrane fraction (fig. 4.2); AmpC-F4:C3 

and AmpC-F4:C6 (precursor and mature forms) were found only in the membrane fraction (fig. 

4.3). Most of mature form AmpC-F4 was found in the cell extract while the majority of its 

precursor form was found in the membrane fraction (fig. 4.3). Mature form AmpC-F3 was not 

detected under these conditions (0.1mM IPTG induction for 1 h) but it was found in a low 
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amount in the cell extract after induction with 1 mM IPTG for 1h (fig. 4.3, 4.4, 4.5). No AmpC 

form of the different constructs was found in fractions of non-induced Bl21(DE3) cells. 

Equivalent results were obtained from cellular fractions of DV900(DE3)/pET-ampC with IPTG 

induction (fig. 4.4), with the exception of a considerable soluble amount of the mature and a 

dimeric AmpC forms in all non-induced samples, indicating some escape from the T7 promoter 

on those strains. Another difference with expression on DV900(DE3) transformants is that most 

of the precursor and mature form of AmpC-F4 were found in the membrane fractions of induced 

cells (fig. 4.4).  

Cellular fractions were tested for β-lactamase activity (table 4.2) where fractions of 

Bl21(DE3)/pET-F4 showed the highest activity in fractions of total sonicate and cell extract; 

cellular fractions of Bl21(DE3)/pET-F2 displayed a medium β-lactamase activity; cellular 

fractions of Bl21(DE3)/pET-F3, Bl21(DE3)/pET-F4:C3 and Bl21(DE3)/pET-F4:C6 displayed 

lower β-lactamase activities. Concerning transformants of DV900(DE3), cellular fractions of 

DV900(DE3)/pET-F4 and DV900(DE3)/pET-F2 showed high β-lactamase activities in fractions 

of total sonicate and cell extract; cellular fractions of DV900 (DE3)/pET-F3 displayed a low β-

lactamase activities while cellular fractions of DV900(DE3)/pET-F4:C3 and DV900 

(DE3)/pET-F4:C6 showed very low β-lactamase activities.  

 

Pae-ampC expression in PAO1 
The vectors pUCP-F3 and pUCP-F4 were used for complementation studies in some 

PAO1 mutants (PAO∆dacB∆pbpG∆ampC, PAO∆dacB∆dacC∆ampC, PAO∆dacB∆dacC 

∆pbpG∆ampC and PAO∆ampC) which have ampC deletion. We observed a low production 

of AmpC-F3 and AmpC-F4 from Pae (P. aeruginosa) transformants of pUCP-F3 and pUCP-F4, 

respectively, after induction with 1mM IPTG for 3 hours in LB media at 37 °C with agitation. In 

this case both of AmpC-F3 and AmpC-F4 were detected only by western blot and they were not 

detected by SDS-PAGE; western blots of samples from cellular fractions of total sonicate 

displayed the bands of both of AmpC-F3 and AmpC-F4 in both of induced and non-induced 

fractions with no difference, indicating that IPTG induction did not help in AmpC production 

from pUCP-F3 and pUCP-F4; also, blots shows that there is a basal production of AmpC-F3 

and AmpC-F4 (fig.4.6).  

β-lactamase activity assays of cellular fractions from total sonicate of all above 

described Pae transformants showed that activity of AmpC-F4 was also very high when 

compared with AmpC-F3 in all Pae transformants, as has been shown previously with E. coli 

transformants. The values of β-lactamase activity (table 4.3) were very close in cellular 

fractions with IPTG induction compared with those without induction which are in perfect 

accordance with data obtained from their production in figure 4.6.  
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             Bl21(DE3)/pET-ampC 

 

 

                         Total sonicate                           Cell extract                       Cell membrane                                      

 

Figure 4.2. Detection of AmpC-F1, AmpC-F1:C3, AmpC-F1:C6 and AmpC-F2 in 
cellular fractions (total sonicate, cell extract and cell membrane) of Bl21(DE3).   

After 1 h of induction (37 °C) by 0.1mM IPTG of Bl21(DE3) harboring pET-F1, pET-

F1:C3, pET-F1:C6 and pET-F2, cells were collected, sonicated and fractionated 

(section 3.5.7). AmpC forms were then detected in Coomassie-stained 8% SDS-PAGE 

gels (upper panel) and in the corresponding western blot (lower panel). An equivalent 

of 0.2 UOD was loaded from each fraction of both of non-induced (NI) and induced (I) 

cells. AmpC-F1, AmpC-F1:C3 and AmpC-F1:C6 were not detected while AmpC-F2 was 

found mostly in the pellet fraction as a precursor form (P). S: standard protein 

molecular mass markers.  
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Bl21(DE3)/pET-ampC 

 

                        

                      Total sonicate                         Cell extract                Cell membrane 

 

Figure 4.3. Detection of AmpC-F4, AmpC-F4:C3, AmpC-F4:C6 and AmpC-F3 in 

cellular fractions (total sonicate, cell extract and cell membrane) of Bl21(DE3).  

After 1 h of induction (at 37 °C) by 0.1mM IPTG of Bl21 (DE3) harboring pET-F4, pET-

F4:C3, pET-F4:C6 and pET-F3, cells were collected, sonicated and fractionated 

(section 3.5.7). AmpC forms were then detected in Coomassie-stained 8% SDS-PAGE 

gels (upper panel) and in the corresponding western blot (lower panel). An equivalent 

of 0.2 UOD was loaded from each fraction of both of non-induced (NI) and induced (I) 

cells. Mature form of AmpC-F4 was detected mainly in cell extract while its precursor 

form was detected mostly in the membrane fraction; both precursor (P) and mature (M) 

forms of AmpC-F4:C3 and AmpC-F4:C6 were observed mainly in the membrane 

fraction while AmpC-F3 was not detected under these conditions. S: standard protein 

molecular mass markers.  
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   DV900 (DE3)/pET-ampC 

  

                 Total sonicate                      Cell extract                         Cell membrane  

Figure 4.4. Detection of AmpC-F4, AmpC-F4:C3, AmpC-F4:C6, AmpC-F2 and 

AmpC-F3 in cellular fractions (total sonicate, cell extract and cell membrane) of 

DV900 (DE3).   

DV900 (DE3) harboring pET-F4, pET-F4:C3, pET-F4:C6 and pET-F2 were induced by 0.1mM 

IPTG at 37 °C for 1 h and then cells were collected, sonicated and fractionated (section 3.5.7). 

DV900(DE3)/pET-F3 was induced by 1 mM IPTG for 1 h.  AmpC forms were then detected in 

Coomassie-stained 8% SDS-PAGE gels (upper panel) and in the corresponding western blot (lower 

panel). An equivalent of 0.2 UOD was loaded from each fraction of both of non-induced (NI) and 

induced (I) cells. Both of precursor (P) and mature (M) forms of AmpC-F4, AmpC-F4:C3 and 

AmpC-F4:C6 were detected mainly in the membrane fraction while AmpC-F3 mature form was 

detected in the cell extract. D is expected to be a dimeric form of AmpC. S: standard protein 

molecular mass markers. 
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P 
M 

 
Figure 4.5. Expression of AmpC-F3, AmpC-F3-TEV and AmpC-F4-TEV in Bl21(DE3) transformants. 
 Expression of AmpC-F3, AmpC-F3-TEV and AmpC-F4-TEV in Bl21(DE3)/pET-F3, Bl21(DE3)/pET-F3-TEV and Bl21(DE3)/pET-F4-TEV, 

respectively, was done with different IPTG concentrations and different incubation times (down-up writing) in LB media at 37°C. Different AmpC 

forms were analyzed by western blot in fractions of total sonicate, cell extract and cell membrane pellet. The best expression conditions (bold; 

underlined) were 1mM IPTG/3 h, 2 mM IPTG/3 h and 0.1 mM IPTG/2 h for production of AmpC-F3, AmpC-F3-TEV and AmpC-F4-TEV, 

respectively. The forms ampC-F3:C3-TEV and ampC-F3:C6-TEV were expressed like ampC-F3-TEV with 2 mM IPTG/3 h (fig. not shown for 

simplification). The bands appearing below the AmpC-F3 band may be due to some protein degradations or other protein background. * Purified 

AmpC-F2 and AmpC-F4 were used as controls. P stands for precursor form while M stands for the mature form. 
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Table 4.2. β-lactamase activity of different forms of AmpC expressed in BL21(DE3) 

and DV900(DE3) after IPTG induction. 

 
E. coli 
Strain 

 
Plasmid 

 
IPTG 
mM 

µmole/min/UODa 
Total  

sonicate 
fraction 

  Cell 
extract 
fraction 

Cell 
membrane 

fraction 
 
BL21(DE3) 

pET-F4 0 27.1 25.8 11 
0.1 526.4 329.0 153 

pET-F4:C3 0 1.3 0.7 0.5 
0.1 10.5 3.4 2.5 

pET-F4:C6 0 0.8 0.4 0.3 
0.1 32.1 28.4 5 

pET-F2 0 6.5 5 1.3 
0.1 113.4 36.1 38 

pET-F3 0 1.2 0.8 0.1 
1 28.2 24.4 1 

pET-F1 0 0.8 0.6 0.1 
1 27.5 6.7 1.1 

pET-F1:C3 0 0.7 0.4 0.05 
1 0.9 0.5 0.2 

pET-F1:C6 0 0.9 0.7 0.04 
1 5 2.7 1 

 
DV900(DE3)  

pET-F4 0 9.5 6.3 2.6 
0.1 196 75.4 128.2 

pET-F4:C3 0 0.53 0.32 0.16 
0.1 3.5 1.4 2 

pET-F4:C6 0 0.13 0.12 0 
0.1 2.2 0.74 1.5 

pET-F2 0 63.3 52.8 4.2 
0.1 260.3 86.8 181 

pET-F3 
 

0 1.1 0.9 0 
0.1 26.4 23.8 0 
1 46.9 42 0 

a β-lactamase Activity using nitrocefin as a substrate was detected in cellular fractions (total 

sonicate, cell extract and  cell membrane) and expressed in µmole/min/UOD. Expression of ampC 

forms in BL21(DE3) and DV900(DE3) using pET28b-ampC vectors was done under non-induction 

and induction conditions with 0.1 or 1 mM IPTG for 1 h at 37 °C. UOD stands for Unit of Optical 

Density. 

http://www.allacronyms.com/UOD
http://www.allacronyms.com/Units_of_Optical_Density/abbreviated
http://www.allacronyms.com/Units_of_Optical_Density/abbreviated
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Figure 4.6.  Pae-AmpC expression in PAO1 mutants transformed with pUCP-F3 and pUCP-F4. 

Western blot analysis of cellular fractions (total sonicate) of PAO1 mutants (PAO∆dacB∆pbpG∆ampC, PAO∆dacB∆dacC∆ampC, 

PAO∆dacB∆dacC∆pbpG∆ampC and PAO∆ampC) transformed with pUCP-F3 (A) or pUCP-F4 (B) after induction by 1mM IPTG for 

3 h at 37 °C. The vector pUCP-F3 produces AmpC-F3 while pUCP-F3 produces AmpC-F4. * Both of purified AmpC-F3 (A) and 

AmpC-F4 (B) were used as positive controls. No difference was observed for production of AmpC-F3 and AmpC-F4 in non-induced 

(NI) and induced fractions (I). P stands for precursor form while M stands for the mature form.   
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Table 4.3.  β-lactamase activity of some PAO1 mutants transformed with pUCP-F3 

and pUCP-F4.  

 

Strain 

 

Plasmid 

 

IPTG (mM) 

Sp. Act.a 

µmole /min/mg 

PAO∆dacB∆pbpG∆ampC pUCP-F4 0 673.3 

1 555.6 

PAO∆dacB∆dacC∆ampC pUCP-F4 0 686.8 

1 521.8 

PAO∆dacB∆dacC∆pbpG∆ampC pUCP-F4 0 568.5 

1 518.7 

PAO∆ampC pUCP-F4 0 591.5 

1 526.6 

PAO∆dacB∆pbpG∆ampC pUCP-F3 0 27.2 

1 28.2 

PAO∆dacB∆dacC∆ampC pUCP-F3 0 19.1 

1 19.2 

PAO∆dacB∆dacC∆pbpG∆ampC pUCP-F3 0 27.4 

1 26.5 

PAO∆ampC pUCP-F3 0 38.9 

1 40.4 
a β-lactamase specific activities (Sp. Act.) of AmpC-F4 and AmpC-F3 on nitrocefin were 

detected in cellular fractions (total sonicate) and expressed in µmole/min/mg. Production 

of AmpC-F4 and AmpC-F3 forms by pUCP-F4 and pUCP-F3 respectively in different 

transformants of mutants of P. aeruginosa PAO1 was done under non-induction and 

induction conditions with 1 mM IPTG for 3 h at 37 °C. 
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4.1.4. Pae-AmpC purification and characterization  
Purification of AmpC-F4, AmpC-F4:C3, AmpC-F4:C6, AmpC-F2, AmpC-F3 (with His tag) 

and AmpC-F3-TEV (without His-tag; symbol: ΔHis) from transformants of Bl21(DE3) was 

previously described in section 3.6. The final purified batches of AmpC-F4, AmpC-F2, AmpC-

F4:C3 and AmpC-F4:C6 were resuspended in buffer 20 mM Tris-HCl, 0.2% Triton X-100, 100 mM 

NaCl, pH 7.5 or buffer 20 mM Tris-HCl, 300 mM NaCl, 0.15% sarkosyl, pH 7.5. While, AmpC-F3 

(with poly-His tag, symbol: +His) and AmpC-F3-TEV (+His) were solubilized in buffer 20 mM 

Tris HCl (pH 7.5), and AmpC-F3-TEV (ΔHis) in 20 mM Tris-HCl, 100 mM NaCl, pH 7.5. These 

final purification batches were analyzed by SDS-PAGE and western blot, which displayed that all 

of AmpC-F4, AmpC-F4:C3 and AmpC-F4:C6 have two bands where the upper corresponds to the 

precursor form (large amount) and the lower corresponds to the mature form (lower amount); 

AmpC-F2 has mostly one band of the precursor form; AmpC-F3 and AmpC-F3-TEV (+His) have 

one band of the mature form; the band of AmpC-F3-TEV (ΔHis) was not detected by western blot 

which confirmed the elimination of poly-His tag from AmpC-F3-TEV (+His) upon TEV protease 

treatment (fig. 4.7).   

The purified Pae-AmpC forms were characterized by identification of their molecular masses, 

theoretical isoelectrical points, Km and Vmax in vitro assays as described in section 3.5.4. We found 

that the mature form AmpC-F3 had the highest activity (Vmax = 100 µmol/min/mg) on nitrocefin 

while AmpC-F4, AmpC-F2, AmpC-F4:C3 and AmpC-F4:C6 had Vmax values 12.5, 5, 2.5 and 2.5 

µmol/min/mg, respectively. AmpC-F3, AmpC-F4, AmpC-F2, AmpC-F4:C3 and AmpC-F4:C6 

displayed Km values 10, 11.3, 10.5, 13.5 and 16.8 µM, respectively (table 4.4).   

 

4.1.5. Pae-AmpC structure and crystallization 
As shown in figure 4.1, AmpC-F4 (and AmpC-F4-TEV), AmpC-F4:C3 and AmpC-F4:C6 

have the same amino acid sequence of AmpC-F1 (Wild type), AmpC-F1:C3 and AmpC-F1:C6, 

respectively, but with two extra-amino acids (M A) at the N-terminal at the beginning of their 

amino acid sequence. AmpC-F2, AmpC-F1:C3 (also AmpC-F4:C3 and AmpC-F3:C3-TEV) and 

AmpC-F1:C6 (also AmpC-F4:C6 and AmpC-F3:C6-TEV) have single amino acid mutations 

R2→G, P243→L and I51→T respectively. AmpC-F3, AmpC-F3-TEV, AmpC-F3:C3-TEV and 

AmpC-F3:C6-TEV are soluble forms of AmpC without signal peptides. AmpC-F1, AmpC-F1:C3, 

AmpC-F1:C6, AmpC-F4, AmpC-F4-TEV, AmpC-F4:C3, AmpC-F4:C6 and AmpC-F2 are 

periplasmic forms having signal peptide of AmpC which involves the first 26 amino acids up to A26. 

All produced AmpC forms have poly-His tag at their C-terminal which can be eliminated from 

those forms that have TEV site by the activity of TEV protease (fig. 4.1).  All the produced AmpC 
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forms except those having TEV site have extra amino acids (N398 S S S V D K L A A A L E H H 

H H H H416) at their C-terminal which are due to the multiple cloning sites and hexa-His tag from 

pET28b. Also, AmpC forms that have TEV site, have C-terminal extra amino acids (E398 N L Y F 

Q G N S S S V D K L A A A L E H H H H H H423 ) due to the TEV site (underlined), multiple 

cloning sites and hexa-His tag from pET28b; TEV protease cleaves between the two amino acids 

Gln (Q) and Gly (G). These amino acid sequences deduced from the sequenced clones and MALDI-

TOF analysis correlate perfectly with the expression patterns shown above. 

The 3-D structure of AmpC β-lactamase from P. aeruginosa (Smith et al, 2013) was solved 

by X-ray crystallography and is discussed later in section 5.2. Because AmpC-F3 showed a 

secondary DD-peptidase activity (section 4.1.8), both AmpC-F3 forms (with and without His-tag) 

were purified and sent for crystallographic analysis to obtain the 3-D structure but unfortunately it 

has not been achieved any AmpC-F3 crystals by the time of submission of this study.  

 

 

Table 4.4. Characterization of the purified Pae-AmpC forms.   

 

Purified AmpC 

 

Vmax 

 

Km (µM) 

 

M.M. (kDa) 

 

pI   

AmpC-F4 12.5 11.3 45.7 8.3 

AmpC-F4:C3 2.5 13.5 45.7 8.3 

AmpC-F4:C6 2.5 16.8 45.7 8.3 

AmpC-F2 5 10.5 45.4 7.8 

AmpC-F3  100 10 43 7.9 

Vmax is the maximum activity on substrate (nitrocefin) expressed in µmol/min/mg. Km is the 

substrate concentration (nitrocefin) producing half of maximum activity.  Vmax and Km were 

calculated from the β-lactamase activity of different forms of Pae-AmpC on nitrocefin. 

Both of Vmax and Km were calculated as described in section 3.5.4. M.M.: molecular mass; 

pI: theoretical isoelectric point (online ExPASy tools). AmpC-F3 displayed a very high 

activity as shown in bold for its Vmax value. 
 

 

http://web.expasy.org/compute_pi/
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Figure 4.7. Analysis of the purified Pae-AmpC forms by SDS-PAGE and western blot. 
Purified AmpC-F4, AmpC-F4:C3, AmpC-F4:C6, AmpC-F2, AmpC-F3 (with poly-His tag), AmpC-F3-TEV (with poly-His tag; symbol: +His )  and 

AmpC-F3-TEV (without poly-His tag; symbol: ΔHis) were analyzed by SDS-PAGE (A) and western blot (B); where the Purified AmpC-F4, AmpC-

F4:C3 and AmpC-F4:C6 displayed two bands corresponding to precursor (upper band; P) and mature (lower band; M) forms; AmpC-F2 

displayed mostly the precursor form while AmpC-F3 and AmpC-F3-TEV displayed only the mature form. In western blot (B), Band of AmpC-F3 

(ΔHis) disappeared confirming the loss of poly-His tag. The final preparations of  AmpC-F4, AmpC-F2, AmpC-F4:C3 and AmpC-F4:C6 were in 

buffer 20 mM tris-HCl, 0.2% Triton X-100, 100 mM NaCl, pH7.5 while AmpC-F3 (with poly-His tag) and AmpC-F3-TEV (+His) were in buffer  20 

mM Tris HCl, pH 7.5 and AmpC-F3-TEV (ΔHis) was in 20 mM tris-HCl, 100 mM NaCl, pH7.5. S: standard protein molecular mass markers. 

Black arrows (dashed) refer to bands of precursor (P) and mature forms (M) of AmpC forms.  
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4.1.6. Effect of Pae-ampC expression on bacterial resistance 

 

Pae-ampC expression and bacterial resistance in E. coli Bl21(DE3) 
Disk diffusion assay showed that β-lactamase activities of AmpC forms were variable in 

Bl21(DE3)/pET28-ampC using 0.05 mM IPTG-MHA plates. We found that among the tested 

AmpC forms, AmpC-F4 was the most active on nitrocefin in total cell extract assay; but strain 

Bl21(DE3)/pET-F4 showed resistance to amoxacillin/clavulanic acid (AMC) and decreased 

susceptibilities to cefoxitin (FOX), ceftriaxone (CRO), imipenem (IMI) and ticarcillin (TIC). 

Bl21(DE3)/pET-F2 showed resistance to AMC and also decreased susceptibilities to cefoxitin 

(FOX), ceftriaxone (CRO), aztreonam (ATM) and ticarcillin (TIC), while AmpC-F4:C3 and F4:C6 

showed very low β-lactamase activities as they only decreased susceptibility to AMC in strains 

Bl21(DE3)/pET-F4:C3 and Bl21(DE3)/pET-F4:C6. AmpC-F3 did not change the resistance 

susceptibilities to the used β-lactams even AMC (table 4.5). Also, we found that some clear 

inhibition zones (Symbol: CZ) were surrounded by a partial growth zone (Symbol: PZ) or had some 

resistant colonies (symbol: CR) growing inside it (table 4.5, 4.6). 

 

Pae-ampC expression and bacterial resistance in some Pae mutants  
Complementation of ampC deletion was studied by disk diffusion assay in some Pae 

mutants, PAO∆ampC, PAO∆dacB∆pbpG∆ampC, PAO∆dacB∆dacC∆ampC and 

PAO∆dacB∆dacC∆pbpG∆ampC (table 4.6). MHA plates were used without IPTG additions for 

disk diffusion because data of AmpC production from Pae transformants of pUCP24-F3 and 

pUCP24-F4 showed that there was no big difference in the levels of AmpC using IPTG induction 

conditions and normal basal conditions (fig. 4.6). In this assay, the same Pae mutants transformed 

with pUCP24 were used as a negative control for β-lactamase level. Basal level of AmpC-F4 

expressed by pUCP-F4 showed resistance to AMC, CRO and TIC, and decreased susceptibilities to 

ATM and IMI in all tested mutants. In the other hand, basal level of AmpC-F3 showed little change 

and deceased susceptibilities to AMC in all Pae mutants, and only to CRO and TIC in the four 

deletions Pae mutant (table 4.6). 
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Table 4.5. Disc diffusion assay for Pae-AmpC expression in Bl21(DE3)/pET-ampC. 
BL21 (DE3)/ 

pET-ampC b 

   

IPTG (mM)c 

Diameter of inhibition zone (mm)a  

AMC ATM IMI C FOX CRO TIC AN 

 

pET-F4 

0 17 34 27 33 22 28 27 26 

0.05 0 34 24 35 18 20 25 27 

 

pET-F4:C3 

0 22 32 31 38 23 33 30 28 

0.05 14(CZ), 

27(PZ) 

33 31 38 23 30 29 28 

 

pET-F4:C6 

0 24 38 31 34 28 36 31 28 

0.05 18(CZ), 

23(PZ) 

38 31 34 28 36  31 28 

 

pET-F2 

0 14 33 26 32 24 28 29 26 

0.05 0 (CZ),  

19(PZ) 

31(CZ), 

38(PZ) 

28 34 17(CZ), 

22(PZ) 

18(CZ), 

27(PZ) 

18(CZ), 

29(PZ) 

28 

 

pET-F3 

0 24 35 30 33 25 32 29 26 

0.05 23 38 30 35 25 32 33 29 

aAmoxacillin/clavulanic acid (AMC), aztreonam (ATM), imipenem (IMI), chloramphenicol (C), cefoxitin (FOX), ceftriaxone (CRO), 

ticarcillin (TIC) and amikacin (AN). CZ: clear inhibition zone; PZ: partial growth zone occurred around the clear inhibition zone; all 

values that are not marked by CZ or PZ are considered CZ. b E. coli Bl21(DE3) harboring pET-F4, pET-F2, pET-F3, pET-F4:C3 and 

pET-F4:C6 produce AmpC-F4, AmpC-F2, AmpC-F3, AmpC-F4:C3 and AmpC-F4:C6, respectively. c The assay was done using MHA 

plates without IPTG (non-induction conditions; values shown in bold) and with 0.05 mM IPTG (induction conditions) for 16 hours.  
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Table 4.6. Disc diffusion assay for complementation of ampC deletion in some PAO1 mutants.  

 

Transformant Pae Strainb 

Diameter of inhibition zone (mm)a 

FOX AMC ATM CRO TIC IMI 

CZ PZ CZ PZ CZ CZ PZ CZ PZ CZ 

PAO∆ampC/ pUCP24* 0  10 21 23 22 17 24 12 18 36 

PAO∆ampC/ pUCP24-F4 0 - 0 - 15 0 - 0 - 26 

PAO∆ampC/ pUCP24-F3 0 - 17 CR - 26 21 CR - 2 - 37 

PAO∆dacB∆pbpG∆ampC/ pUCP24*  0 12 22 26 25 19 26 19 29 36 

PAO∆dacB∆pbpG∆ampC/ pUCP24-F4 0 - 0 - 13 0 - 0 - 25 

PAO∆dacB∆pbpG∆ampC/ pUCP24-F3 0 - 17 CR - 26 1.8 CR - 17 CR - 36 

PAO∆dacB∆dacC∆ampC/ pUCP24* 0 10 22 - 27 22 - 20 - 37 

PAO∆dacB∆dacC∆ampC/ pUCP24-F4 0 - 0 - 18 0 - 0 - 28 

PAO∆dacB∆dacC∆ampC/ pUCP24-F3 0 - 18 CR - 27 20 - 21 - 38 

PAO∆dacB∆dacC∆pbpG∆ampC/ pUCP24* 0 10 20 23 25 22 - 20 - 36 

PAO∆dacB∆dacC∆pbpG∆ampC/ pUCP24-F4 0 - 0 - 14 0 - 0 - 22 

PAO∆dacB∆dacC∆pbpG∆ampC/ pUCP24-F3 0 - 15 CR - 24 10 - 14 23 35 
a Cefoxitin (FOX), ceftriaxone (CRO), imipenem (IMI), aztreonam (ATM), amoxacillin/clavulanic acid (AMC), and ticarcillin (TIC). 

CZ: clear inhibition zone; PZ: partial growth zone occurred around the clear inhibition zone; CR: resistant colonies appeared in the 

clear inhibition zone. The assay was done using MHA plates without IPTG for 16 hours. b Transformants of pUCP-F3 and pUCP-F4 

produce AmpC-F3 and AmpC-F4, respectively. * Pae mutants transformed with pUCP24 vector used as a negative control for AmpC 

production whose data are shown in bold values.    
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4.1.7. Effect of Pae-ampC expression on PG composition (in vivo) 

 

 HPLC analysis of muropeptides and PG structure 
HPLC analysis of muropeptides prepared by digestion of PG described in section 3.12 is 

important information because it gives us an image about PG structure and its main constituents 

(muropeptides) as shown in figure 4.8. Muropeptides can be classified according to their structures 

into monomers (e.g. M2, M3, M4 and M5), Dimers (e.g. D43, D44 and D45), Trimers (e.g. T443, 

T444 and T445), anhydro-muropeptides (e.g. M4N, D44N and T44N), lipo-muropeptides, having a 

link to Braun’s lipoprotein (e.g. M3L), and Dap-Dap (D-D) muropeptides, having a LD type 

crosslink between the Dap of adjacent glycan chains (e.g. D34D). Chromatograms of HPLC 

analysis of PG from the wild type E. coli Bl21(DE3) showed that PG is composed mainly of 

monomers muropeptides (M3, M4G, M4, M2, M5, M3L), dimers muropeptides (D33D, D34D, 

D43, D44, D45), trimers muropeptides (T443, T444), and anhydromuropeptides (D44N and 

T444N); while PG of E. coli DV900(DE3) is composed of monomers muropeptides (M3, M4, 

M5G, M2, M5, M3L), dimers muropeptides (D34D, D43, D44, D45G, D45), trimers muropeptides 

(T443, T445), and anhydromuropeptides (D45N and T445N). Muropeptides M4N, M5N, D43N, 

D44N, D45N, T443N, T444N, T445N have the same structures of M4, M5, D43, D44, D45, T443, 

T444, T445, respectively, but with anhydro-N-acetylmuramic acid instead of N-acetylmuramic acid 

(fig. 4.8). PG analysis of the wild type E. coli CS109 and the wild type P. aeruginosa PAO1 

displayed a similar HPLC chromatograms like the wild type E. coli Bl21(DE3) while the 

constructed PAO1 mutants PAOΔdacBΔdacCΔpbpG and PAOΔdacBΔdacCΔpbpGΔampC 

displayed a similar HPLC chromatograms like E. coli mutant DV900(DE3) (not shown). 

 

Pae-ampC expression and PG composition in E. coli Bl21(DE3) and 

DV900(DE3) in vivo  
E. coli Bl21(DE3) and DV900(DE3) transformants of pET-F4, pET-F4:C3, pET-F4:C6, 

pET-F2 and pET-F3 were grown in LB media +/- IPTG at 37°C with agitation; then PG was 

prepared at the exponential phase and analyzed by HPLC. No big differences were found in all 

transformants under no-induction, indicating no major effect of the presence of the different 

plasmids in any of the two reference strains. In Bl21(DE3)/pET-F4, Bl21(DE3)/pET-F4:C3 and 

Bl21(DE3)/pET-F4:C6, we found that under IPTG induction conditions, PG analysis of 

transformants showed that there was an increase in monomers, anhydro-muropeptides and 

pentapeptides and a decrease dimers and trimers beside low crosslinking degree and lower cell 

length, but actually small changes in Bl21(DE3)/pET-F2 and Bl21(DE3)/pET-F3 (table 4.7).  
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As modifications in PG reflect a global structural change, these data may indicate, not a 

direct and specific activity of the produced proteins on the metabolism of PG, but most probably an 

effect of the overproduction, or IPTG induction itself. PG analysis of IPTG-induced 

DV900(DE3)/pET-F4, DV900(DE3)/pET-F4:C3 and DV900(DE3)/pET-F4:C6 transformants 

displayed only small increases in anhydro-muropeptides and crosslinking, and also small decrease 

in cell length, while no significant change on pentapeptides was encountered (table 4.8). And, again 

no differences were found in DV900(DE3)/pET-F2 or DV900(DE3)/pET-F3 under induction 

conditions. These changes do not suggest any enzymatic activity for Pae-AmpC on PG of this 

heterologous strain. 

 

Pae-ampC expression and PG composition in PAO1 in vivo 
Transformants of PAO∆ampC, PAO∆dacB∆dacC ∆ampC, PAO∆dacB∆pbpG∆ampC and 

PAO∆dacB∆dacC∆pbpG∆ampC harboring pUCP24, pUCP-F3 and pUCP-F4 were grown in LB 

media without IPTG addition at 37°C with agitation where pUCP24 transformants were used as a 

negative control for AmpC production, while transformants of pUCP-F3 and pUCP-F4 were used 

for expression of ampC-F3 and ampC-F4, respectively. For the control strains (plasmid pUCP24), 

there was no changes in PG structure, is spite of those changes already seen in the PG of the 

parental mutants strains. HPLC analysis of PG of these transformants shows that there was some 

increase in crosslinking and anhydro-muropeptides and a slight decrease in cell length compared 

with the control strains (table 4.9). Also, these data indicate no major effect of Pae-AmpC-F3 and 

Pae-AmpC-F4 on the whole PG structure of Pae, in spite of the large β-lactamase activity displayed 

by Pae-AmpC-F4 (table 4.3) on these strains, and the low expression level of these proteins (fig. 

4.6). 

 

4.1.8. Effect of the purified Pae-AmpC forms on PG composition and 

individual muropeptides (in vitro) 

 

Effect of Pae-AmpC on whole PG composition (in vitro) 
In vitro activity of purified AmpC forms on PG of E. coli CS109 and DV900 was followed. 

We found that incubation of (0.4-2 µg/µl) AmpC-F4, AmpC-2, AmpC-F3, AmpC-F4:C3 and 

AmpC-F4:C6 with the whole PG of each of CS109 and DV900 at 37°C for up to 24 hours (as 

described in section 3.12.3) produced no significant structural change while extending incubation 
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(42 h) time at 37°C produced some interesting changes in PG composition especially with AmpC-

F3; indicating that AmpC may has a secondary DD-peptidase activity (table 4.10a).  

 In case of incubation with PG of the wild type E. coli CS109 for 42 hours there was a 

decrease in anhydro-muropeptides, correlated with the decrease in crosslinking and produced an 

increase in monomers and a decrease in dimers and trimers only with AmpC-F3(b) (three month old 

purified sample) (table 4.10a). Moreover, analysis of individual muropeptides revealed there were a 

decrease in D44 and an increase in M4 beside the decrease in the crosslinking degree which 

indicates that there was some DD-EPase activity (table 4.10a).   
 In case of incubation of different AmpC forms with PG of DV900 for 42 hours, there was 

also an increase in monomers and decrease in dimers and trimers only with AmpC-F3 (table 4.10a). 

Again, analysis of individual muropeptides after treatment with AmpC-F3 of PG of DV900 shows a 

large increase in M4 and D44 and a decrease in M5, D45, T445, D45N and T445N (table 4.10b). 

This indicates that AmpC-F3 acted as DD-CPase and DD-EPase on the whole PG of E. coli DV900. 

The fact that in the old preparation of AmpC-F3 the decrease of M5 is higher and the decrease of 

D45 is smaller, and the increase of M4 and D44 are smaller, compared with the fresh preparation of 

AmpC-F3, indicates that freezing may favor the DD-EPase activity of the sample. 

 

Effect of Pae-AmpC on individual purified muropeptides (in vitro)  

Trying to reinforce or confirm data on isolated whole PG in vitro described in the previous 

paragraph, we performed analysis with individual purified muropeptides. The reaction involved 

incubation of (0.4-2 µg/µl) AmpC-F4, AmpC-2, AmpC-F3, AmpC-F4:C3 and AmpC-F4:C6 with 

each of the individual purified muropeptides (M4, M5, D44 and D45) within different conditions 

[temperature (37 and 42°C) and +/- 50 mM NaCl addition, various AmpC concentrations] and was 

continued as described in section 3.12.3. The results showed that a concentration of up to 2 µg/µl of 

AmpC-F4, AmpC-F2, AmpC-F4:C3 and AmpC-F4:C6 had no activity on the muropeptides; while 

0.4 µg/µl AmpC-F3 (b) [three-month old purified AmpC-F3] displayed DD-EPase activity on D44 

(5 ng/μl) and D45 (10 ng/μl) at 42°C for 24 hours however there was no activity on M4 (4ng/μl) 

and M5 (16 ng/μl), (fig. 4.9 and 4.10). Newly purified AmpC-F3(a) (fig. 4.10) was less active than 

the three-month old purified AmpC-F3(b) which also showed some protein degradation (fig. 4.9). 

These data confirm the DD-EPase activity of AmpC-F3 on isolated muropeptides, but it was not 

detected DD-CPase activity on the purified monomers muropeptide. As this last activity was clearly 

seen on whole isolated PG of DV900, it may indicate that particular conformations of the 

muropeptides on the whole structure are required for bringing out that activity.  
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Figure 4.8. Muropeptides structures and chromatograms of HPLC analysis of PG of E. coli Bl21(DE3) and DV900(DE3). 

* Chromatograms of HPLC analysis (lower panel) of PG from E. coli Bl21(DE3) showed that PG is composed of muropeptides M3, M4G, M4, 

M2, M5, M3L, D34D, D43, D44, D45, T443, T444, D44N and T444N while PG of E. coli DV900(DE3)  is composed of muropeptides M3, M4, 

M5G, M2, M5, M3L, D34D, D43, D44, D45G, D45, T445, D45N and T445N. ** In the upper panel, there are chemical structures of common 
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muropeptides in PG of E. coli and P. aeruginosa; where, G: N-acetylglucosamine; M: N-acetylmuramic Acid; M2: disaccharide dipeptide M3: 

disaccharide tripeptide; M4: disaccharide tetrapeptide; M4G: disaccharide tetrapeptide with Gly at position number 4 (not shown);   M5: 

disaccharide pentapeptide where L-Ala, D-Glu, Dap, D-Ala and D-Ala occupy positions of numbers 1, 2, 3, 4 and 5, respectively, also L-Ala is 

linked to N-acetylmuramic acid ; M5G: disaccharide pentapeptide with Gly at position number 5 (not shown);  M3L: disaccharide tripeptide 

bound to Braun’s lipoprotein (not shown); D44: crosslinked-dimer of disaccharide tetrapeptide-disaccharide tetrapeptide; D34D: Dap-Dap 

crosslinked-dimer of disaccharide tripeptide-disaccharide tetrapeptide; D43: crosslinked-dimer of disaccharide tetrapeptide-disaccharide 

tripeptide; D45: cross-linked-dimer of disaccharide tetrapeptide-disaccharide pentapeptide; T443: crosslinked-trimer of disaccharide 

tetrapeptide-disaccharide tetrapeptide-disaccharide tripeptide; T444: crosslinked-trimer of disaccharide tetrapeptide-disaccharide tetrapeptide- 

disaccharide tetrapeptide; T445: crosslinked-trimer of disaccharide tetrapeptide-disaccharide tetrapeptide-disaccharide pentapeptide; anhydro-

muropeptides M4N, M5N, D43N, D44N, D45N, T443N, T444N, T445N have the same structures of muropeptides M4, M5, D43, D44, D45, 

T443, T444, T445, respectively, but with anhydro-N-acetylmuramic acid instead of N-acetylmuramic Acid (not shown for simplification).          
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Table 4.7. HPLC analysis of muropeptides prepared from PG of induced E. coli Bl21 (DE3)/pET-ampC. 

 

BL21(DE3)/pET-ampCb 
 

IPTG 

Muropeptides (% Molar)a    

Mono Di Tri D-D Lpp Anhy Penta  Crosslink D-D/T Length 

pET-F4 0 64.62 33.16 2.22 5.63 12.43 1.94 0.51 37.6 14.96 51.55 

0.1 73.72 25.8 0.48 7.01 18.22 5.25 8.3 26.76 26.18 19.06 

pET-F4:C3 

 

0 66.22 31.69 2.09 5.07 11.96 2.13 0.76 35.86 14.15 46.88 

0.1 71.32 27.99 0.69 9.71 15.39 5.71 6.31 29.37 33.07 17.3 

pET-F4:C6 0 66.07 32.76 1.17 8.69 6.83 2.16 0.75 35.1 24.75 46.75 

0.1 83.53 15.75 0.71 3.23 24.87 5.88 3.57 17.18 18.79 17.02 

pET-F2 0 61.93 35.61 2.46 8.91 12.7 3.38 0.92 40.52 21.98 29.62 

0.1 62.05 36.19 1.76 8.13 8.75 4.6 1.6 39.71 20.46 21.74 

pET-F3  0 63.37 33.79 2.85 5.9 9.16 3.08 0.92 39.48 14.93 32.46 

1 61 36.32 2.68 7.83 6.95 3.5 1.31 41.68 18.78 28.78 
a Relative abundance in % molar of different types of muropeptides; Mono: monomeric muropeptides (e.g. M4, M5); Di: dimeric muropeptides 

(e.g. D43, D44, D45); Tri: trimeric muropeptides (e.g. T444 and T445); Lpp: Muropeptides bound to Braun’s Lipoproteins (e.g. M3L); Anhy: 

anhydromuropeptides (e.g. D44N, T444N); Crosslink: degree of crosslinking in percentage; D-D: total muropeptides that have Dap-Dap cross-

linking (e.g. D34D); D-D/T: ratio of Dap-Dap crosslinking to the total crosslinking. length: measurement for PG length. PG was prepared as 

described in section 3.12. b E. coli Bl21(DE3) transformed with pET-F4, pET-F4:C3, pET-F4:C6, pET-F2 and pET-F3 which were induced with 

0.1 or 1 mM IPTG as indicated in the table. Relevant changes in PG composition are shown in bold.  
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Table 4.8. HPLC analysis of muropeptides prepared from PG of induced E. coli DV900 (DE3)/pET-ampC.  

 

DV900(DE3)/pET-ampCb 

 

IPTG (mM) 
Muropeptides (% Molar)a    

Mono Di Tri D-D Lipo Anhy Penta crosslink D-D/T Length 

pET-F4 0 59.6 35.2 2.7 1.1 1.2 5.1 71 40.7 2.6 19.6 

0.1 57 37.4 3.3 1.3 1.5 8.2 71 44.1 2.9 12.2 

pET-F4:C3  0 63.5 32.8 2.1 0.9 1 4.1 75.7 36.9 2.3 24.3 

0.1 60.4 36.6 1.2 0.9 0.8 7.1 76.4 39 2.3 14 

pET-F4:C6 0 67.8 28.7 1.9 0.7 1.6 3.9 76.7 32.4 2.2 25.9 

0.1 64.6 32 1.9 0.7 1.5 7.9 77 35.8 1.9 12.7 

pET-F2 0 58.8 36.2 2.8 1.2 3.3 5.5 69.1 41.7 2.9 18.3 

0.1 58.1 37.4 2.5 1.1 2.1 6.9 73.7 42.4 2.5 14.5 

pET-F3 0 60.6 35.4 2 0.7 1 4.8 76.2 39.5 1.7 20.7 

1 59.3 36.5 2 1 0.6 4.6 81.1 40.6 2.4 21.9 
a As described previously within table 4.7. Induced (0.1 or 1 mM IPTG) and non-induced cells were collected. b DV900(DE3) transformed with 

pET-F4, pET-F4:C3, pET-F4:C6, pET-F2 and pET-F3.   
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Table 4.9. HPLC analysis of muropeptides prepared from PG of PAO1/pUCP24-ampC.  

 

PAO1 Mutantb 

Harboring 

Plasmid 

Muropeptides (% Molar)a    

Mono Di Tri D-D Lpp Anhy Penta Crosslink D-D/T Length 

PAO∆ampC pUCP24 62.6 34.2 3.2 1.4 1.4 9.6 2.6 40.6 3.5 10.4 

PAO∆ampC pUCP24-F4 59.8 36.4 3.7 1.6 1.3 11 2.1 43.9 3.6 9.1 

PAO∆ampC pUCP24-F3 57.4 38.3 4.3 2.2 1.9 11.7 2 46.8 4.6 8.5 

PAO∆dacB∆dacC ∆ampC pUCP24 58.8 36.3 4.9 2.2 3.6 12.4 31 46.1 4.7 8.1 

PAO∆dacB∆dacC ∆ampC pUCP24-F4 57.8 38 4.2 1.3 1.8 11.8 28.9 46.4 2.9 8.5 

PAO∆dacB∆dacC ∆ampC pUCP24-F3 56.8 38.5 4.8 1.5 2.6 12.4 34 48 3.1 8.1 

PAO∆dacB∆ pbpG ∆ampC pUCP24 54.5 39.9 5.6 2.3 3.6 11.8 5.4 51.2 4.5 8.5 

PAO∆dacB∆ pbpG ∆ampC pUCP24-F4 49.7 43.2 7.1 2.4 3.1 13.5 3.5 57.4 4.1 7.4 

PAO∆dacB∆ pbpG ∆ampC pUCP24-F3 48.5 44 7.4 2.6 3.6 13.6 3.6 58.9 4.5 7.4 

PAO∆dacB∆dacC pbpG ∆ampC pUCP24 54.2 40.2 5.6 0.8 1.9 9.9 66.9 51.5 1.5 10.1 

PAO∆dacB∆dacC pbpG ∆ampC pUCP24-F4 51.4 42.2 6.5 0.8 2.2 11.5 69.1 55.1 1.4 8.7 

PAO∆dacB∆dacC pbpG ∆ampC pUCP24-F3 52.1 41.7 6.2 1 2.2 10.3 68.6 54.1 1.8 9.7 
a As described previously within table 4.7. b Different PAO1 mutants transformed with pUCP24, pUCP-F4 and pUCP-F3 vectors where 
transformants of pUCP24 vector were used as a control negative for AmpC production.  The vectors pUCP-F3 and pUCP-F4 encode ampC-F3 
and ampC-F4, respectively. 
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Table 4.10a. HPLC PG analysis of E. coli DV900 and CS109 after incubation with different forms of Pae-AmpC in vitro. 

 Reaction with 

CS109 PGb 

 

T (°C) 

 

Time (h) 
Muropeptides (% Molar)a  

crosslink 

 

D-D/T 

 

Length Mono Di Tri Gly D-D Lpp Anhy Penta M4* D44* 

DV900-CTRL 37 42 60 35.9 4.1 5.3 0.9 1.5 4 85 3.3 4 44.1 1.9 25.11 

AmpC-F4 37 42 59.5 36.2 4.3 5.6 0.9 0.9 4.1 85 3.4 4.1 44.8 2.1 24.5 

AmpC-F4:C3 37 42 60 36 4.1 5.6 0.9 0.7 3.9 85.3 3.5 3.9 44.1 2 25.9 

AmpC-F4:C6 37 42 60.4 35.8 3.8 5.5 0.9 1.1 3.7 85.2 3.4 3.8 43.4 2 26.9 

AmpC-F2 37 42 59.5 36.6 4 5.6 0.6 0.7 3.8 86.4 3 4.3 44.5 1.5 26.5 

AmpC-F3(a) 37 42 61.7 35.3 3.1 5.2 0.7 1.3 2.8 67.8 13.5 5.3 41.4 1.8 35.3 

AmpC-F3(b) 37 42 68.6 28.8 2.5 5 0.8 1 1.3 67.1 15.4 5.9 33.9 2.4 74.2 

CS109-CTRL 37 42 60.3 37 2.7 7.7 4.4 16.6 5.5 0 22.1 18.5 42.4 10.3 18.3 

AmpC-F3(a) 37 42 61.1 36.5 2.4 6.3 4.3 15.8 5.3 0 23.2 18.9 41.4 10.5 18.7 

AmpC-F3(b) 37 42 71 27.9 1.1 6.9 3.5 14.9 3.1 0 31 15.5 30.1 11.6 32.7 
a As described previously within table 4.7. b In vitro reactions (250 μl)  contained AmpC-F4 (2 μg/μl), AmpC-F2 (2 μg /μl), AmpC-F4:C3 (2 μg 

/μl), AmpC-F4:C6 (2 μg /μl) or AmpC-F3 (0.4 μg /μl) with whole PG of  and E. coli DV900 and E. coli CS109 (italic writing, the last three rows) 

were left at 37°C for 42 h, and then were manipulated as described in section 3.12.3; where DV900-CTRL: control negative without AmpC 

treatment; CS109-CTRL: negative control without AmpC addition; AmpC-F3(a) is a newly purified AmpC-F3 while AmpC-F3(b) is  a purified 

AmpC-F3 stored for 3 months (or more) at -20 °C. *selected muropeptides (M4 and D44) were included due to some relevant changes. 
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Table 4.10b. Selected muropeptides from HPLC analysis of PG of DV900 after incubation with different forms of Pae-AmpC in vitro. 

Reaction with 

DV900 PGb 

 

T (°C) 

 

Time (h) 
Selected Muropeptides (% Molar)a 

M4* M5 D44* D45 T445 D45N T445N 
DV900-CTRL 37 42 3.3 29.7 4 32.3 3.7 3.4 1.6 

AmpC-F4 37 42 3.4 28.8 4.1 31.8 3.7 3.4 1.7 

AmpC-F4:C3 37 42 3.5 29.1 3.9 31.9 3.5 3.3 1.5 

AmpC-F4:C6 37 42 3.4 28.8 3.8 31.7 3.3 3.1 1.5 

AmpC-F2 37 42 3 30.5 4.3 33.6 3.5 3.3 1.6 

AmpC-F3 (a) 37 42 13.5 20.4 5.3 31.2 2.9 2.6 0.8 

AmpC-F3 (b) 37 42 15.4 25.6 5.9 27.4 2.5 1.3 0.4 
a Relative abundance in % molar of some selected muropeptides (M4, M5, D44, D45, T445, D45N and T445N) due to the presence of some 

interesting changes in their occurrence in PG of DV900 upon AmpC treatment in vitro. b The same reactions described in table 4.10a. *Data are 

mentioned before in table 4.10a and was repeated in this table to be compared with the other muropeptides. 
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Figure 4.9. Effect of AmpC-F3(b) activity on individual muropeptides M4, M5, D44 and 

D45 at 37 and 42°C (in vitro). In vitro reactions (250 μl) contained AmpC-F3(b) (0.4 μg /μl) 

with each of individual muropeptides M4 (4ng/ μl), M5 (16 ng/ μl), D44 (5 ng/ μl) and D45 (10 

ng/ μl) were left at 37 or 42°C for 24 h, and then were manipulated as described in section 

3.12.3. * AmpC-F3(b) is  a purified AmpC-F3 stored for 3 months (or more) at -20 °C, which 

showed by HPLC analysis some protein degradations. a Reaction conditions were described 

over each data series where the ones that displayed considerable changes were shown on bold 

letters; where 42°C for 24 h was the best conditions for yielding some DD-endopeptidase 

activities on D44 and D45. Some other reactions contained individual muropeptides without 

any AmpC additions to be a negative control for DD-peptidase activities.  
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Figure 4.10. Effect of AmpC-F3(a) activity on individual muropeptides M4, M5, 

D44 and D45 at 42°C (in vitro).  

* In vitro reactions of 250 μl, contained freshly prepared AmpC-F3(a) (0.8 or 1.6 μg/μl) 

with each of individual muropeptides D44 (2 ng/ μl) and D45 (4 ng/ μl) were left at 

42°C for 24 h, and then were manipulated as described in section 3.12.3. ** AmpC-

F3(a) is a freshly purified AmpC-F3 which showed less DD-endopeptidase activity than 

AmpC-F3(b) on D44 and D45 at 42°C for 24 h. AmpC-F3(a) displayed no activity on 

M4 and M5 (not shown).  
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4.2. Role of LMM-PBPs in ampC regulation, β-lactam resistance and 

peptidoglycan structure in P. aeruginosa 

 
4.2.1. Summary 

The aim of this chapter is to highlight the role of the LMM-PBPs PBPs [DacB (PBP4), 

DacC (PBP5) and PbpG (PBP7)] in peptidoglycan structure, AmpC regulation and β-lactam 

resistance and morphology in P. aeruginosa. To fulfill this objective, we constructed several 

mutants as single and combined constructs of dacB, dacC, pbpG and ampC in P. aeruginosa 

PAO1 strain to compare the effect of inactivation of these LMM-PBPs in presence and in 

absence of AmpC activity on PG composition, ampC regulation and bacterial resistance. The 

constructed mutants were further checked by microscopy to identify morphological changes, 

tested for their PG composition by HPLC analysis and tested for their ampC expression by RT-

PCR. Bocillin-FL test was done to confirm the inactivation of these LMM-PBPs in the 

constructed mutants and also to identify affinities to cefoxitin to LMM-PBPs. The results 

showed that mutants having single and combined dacB deletions had high ampC expression 

with the increase in bacterial resistance to β-lactam antibiotics except for imipenem and 

meropenem. Single mutations of dacC and pbpG did not changed the profile of ampC 

expression, and only dacC single and combined mutations produced maximum increase of PG 

pentapeptides. DacB and PbpG had higher affinities than DacC to cefoxitin. The triple mutant 

of dacB, dacC and pbpG displayed the largest increase in ampC expression and bacterial 

resistance to β-lactams. Microscopic examination of all the constructed mutants showed that 

they still retain their rod shape morphology similar to their parental PAO1 strain. 

 

4.2.2. The constructed PAO1 mutants 

Single and combined double and multiple mutants of dacB, dacC, pbpG and ampC were 

constructed (section 3.7) in P. aeruginosa PAO1 strain to study their physiological role in PG 

composition and bacterial resistance in P. aeruginosa. Also, it was aimed to study the role of the 

LMM-PBPs dacB, dacC and pbpG in ampC expression and regulation P. aeruginosa.  

 

The constructed gene-specific inactivation vectors  
Gene-specific mutagenesis vectors for inactivation of ampC and dacB were constructed 

in previous studies (Moya et al, 2009; Moya et al, 2008) and were used also in this study to 

knock out ampC and dacB and to form combined and multiple mutants of dacB, dacC, pbpG 

and ampC. Both of pbpG and dacC gene-specific mutagenesis vectors (pEXTΔpbpG::Gm and 

pEXTΔdacC::Gm) were constructed in this study, transformed in E. coli XL1 and S17λ and 

confirmed by colony PCR, digestion by restriction enzymes and DNA sequencing. Both of 
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pEXTΔpbpG::Gm and pEXTΔdacC::Gm have a lox flanked gentamycin resistance cassette 

(Gm, aacC1 gene), PCR1 (pbpG or dacC gene upstream fragment) and PCR2 (pbpG or dacC 

gene downstream fragment) which were cloned in the vector pEX100Tlink (Fig. 3.3). These 

two vectors were used for inactivation of pbpG and dacC genes, respectively, in P. aeruginosa 

PAO1 wild type and mutants. Confirmation of pbpG gene-specific mutagenesis vector 

(pEXTΔpbpG::Gm) was done by agarose gel electrophoresis of colony PCR of its transformants 

in E. coli XL1 blue with the vector pEXTΔpbpG::Gm whose PCR amplification product has a 

size (>1.5 kbp) higher than the positive controls for PCR amplification of pbpG gene using 

PAO1 DNA (addendum, figure A. 2a). Also, pEXTΔpbpG::Gm was confirmed by treatment 

with restriction enzymes HindIII, EcoRI and BamHI (not shown). Also, the verification of dacC 

gene-specific mutagenesis vector (pEXTΔdacC::Gm) was done by treatment with restriction 

enzymes HindIII, EcoRI and BamHI, where treatment with HindIII only produced two 

fragments, correspond to pEXTΔdacC Opened Vector (higher size, >7 kbp) having the vector 

pEX100Tlink with PCR1 and PCR2 in one DNA fragment and the other was aacC1 fragment of 

gentamycin cassette (lower size <1.5 kbp). Digestion of pEXTΔdacC::Gm with three enzymes 

HindIII, EcoRI and BamHI produced the 4 fragments [(lane 4): pEX100Tlink Opened Vector 

(~6.17 kbp), aacC1 fragment (<1.5 kbp), dacC-PCR1 (0.5 kbp) and dacC-PCR2 (0.4 kbp) 

(addendum, figure A. 2b)]. Confirmation of pEXTΔpbpG::Gm and pEXTΔdacC::Gm was done 

by colony PCR and restriction enzymes also in E. coli S17λ b. Also, DNA sequencing was done 

for all the constructs. 

 

Double recombination, removal of gentamycin cassette and verification of Pae 

mutants  
The construction of mutants in P. aeruginosa PAO1 was done using two bacterial 

strains; the first was donor strain (E. coli S17λ) having the gene-specific mutagenesis vectors 

S17/pEXTΔdacB::Gm, pEXTΔdacC::Gm, pEXTΔpbpG::Gm and S17/pEXTΔampC::Gm for 

inactivation of dacB, dacC, pbpG and ampC, respectively. The second strain was the receptor 

strain which was either of PAO1 wild type or mutant having the target gene to be inactivated. 

The construction of mutants in P. aeruginosa by cre-lox method depended on double 

recombination between the chromosomal target gene and DNA fragment (PCR1-lox-aacC1-lox-

PCR2) of the gene-specific inactivation vector. The gentamycin cassette (aacC1) was then 

eliminated by cre recombinase (fig.3.3). 

The two mutants PAOΔampC and PAOΔdacB were constructed from the wild type 

PAO1 in previous in studies (Moya et al, 2009; Moya et al, 2008). All the other Pae mutants 

summarized in table 3.1 were constructed in this study and confirmed for their gene inactivation 

by colony PCR amplification and agarose DNA electrophoresis. So that, single, double, triple 
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and quadruple PAO1 mutants of dacB, dacC, pbpG and ampC deletion were constructed from 

PAO1 and confirmed by colony PCR amplification of the target gene (addendum, figure A. 3-

7).  

The mutants PAOΔpbpG, PAOΔdacBΔpbpG and PAOΔpbpGΔampC were constructed 

from the wild type PAO1, PAOΔdacB and PAOΔampC, respectively, by double recombination 

with pEXTΔpbpG::Gm which produced the positive genotypes PAOΔpbpG::Gm, 

PAOΔdacBΔpbpG::Gm and PAOΔampCΔpbpG::Gm, respectively, which were then confirmed 

by colony PCR for removal of their gentamycin cassette producing the genotypes PAOΔpbpG, 

PAOΔdacBΔpbpG and PAOΔpbpGΔampC, respectively.   

The mutants PAOΔdacCΔampC, PAOΔdacCΔpbpG, PAOΔdacC, PAOΔdacBΔdacC 

and PAOΔdacBΔdacCΔpbpG were constructed from PAOΔampC, PAOΔpbpG, PAO1, 

PAOΔdacB and PAOΔdacBΔpbpG, respectively, by double recombination with 

pEXTΔdacC::Gm which produced the positive genotypes PAOΔampCΔdacC::Gm, 

PAOΔpbpGΔdacC::Gm, PAOΔdacC::Gm, PAOΔdacBΔdacC::Gm and 

PAOΔdacBΔpbpGΔdacC::Gm, respectively, which were then confirmed by colony PCR for 

removal of their gentamycin cassette producing the genotypes PAOΔdacCΔampC, 

PAOΔdacCΔpbpG, PAOΔdacC, PAOΔdacBΔdacC and PAOΔdacBΔdacCΔpbpG, 

respectively.  

The mutants PAOΔdacBΔampC and PAOΔdacBΔpbpGΔampC were constructed from 

PAOΔdacB and PAOΔdacBΔpbpG, respectively, by double recombination with 

pEXTΔampC::Gm which produced the positive genotypes PAOΔdacBΔampC::Gm, and 

PAOΔdacBΔpbpGΔampC::Gm, respectively, which were then confirmed by colony PCR for 

removal of their gentamycin cassette producing the genotypes PAOΔdacBΔampC  and 

PAOΔdacBΔpbpGΔampC, respectively. 

The mutants PAOΔdacBΔdacCΔampC, PAOΔdacCΔpbpGΔampC and PAOΔdacB 

ΔdacCΔpbpGΔampC were constructed from PAOΔdacBΔdacC, PAOΔdacCΔpbpG and 

PAOΔdacBΔdacCΔpbpG, respectively, by double recombination with pEXTΔampC::Gm which 

produced the positive genotypes PAOΔdacBΔdacCΔampC::Gm, 

PAOΔdacCΔpbpGΔampC::Gm and PAOΔdacBΔdacCΔpbpGΔampC::Gm, respectively, which 

were then confirmed by colony PCR for removal of their gentamycin cassette producing the 

genotypes PAOΔdacBΔdacCΔampC, PAOΔdacCΔpbpGΔampC and PAOΔdacB 

ΔdacCΔpbpGΔampC, respectively.   

The mutant PAOΔdacBΔpbpGΔampCΔdacC was constructed from PAOΔdacB 

ΔpbpGΔampC by double recombination with pEXTΔdacC::Gm which produced the positive 

genotype PAOΔdacBΔpbpGΔampCΔdacC::Gm which was then confirmed by colony PCR for 

removal of its gentamycin cassette producing the genotypes PAOΔdacBΔpbpGΔampCΔdacC. 
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The constructed mutants were checked for loss of DacB, DacB and PbpG by Bocillin-

FL test as described in section 4.2.4.  

 

4.2.3. Growth rates and microscopic examination of PAO1 mutants  
The growth rates in LB media at 37°C with agitation of single, double and multiple 

PAO1 mutants were not affected by deletion of dacB, dacC, pbpG and ampC when compared 

with the wild type (fig. 4.11). Microscopic examination (phase-contrast) was performed after 2, 

3, 4, and 5 hours and overnight growth for all the constructed mutants and the wild type PAO1. 

By comparing with the wild type, all mutants showed a rod shape with little differences in 

cellular width and diameter in some of them; only microscopic images after 4 hours were shown 

in figure 4.12 but the other images of all the constructed mutants at 2, 3 and 5 hours and 

overnight displayed a close morphological similarity to the wild type. 
 

4.2.4. Bocillin-FL test of PAO1 mutants  
The Bocillin-FL binding pattern of PBPs [PBP1a, PBP1b, PBP2, PBP3, PBP4 (DacB), 

PBP 5 (DacC) and PBP 7 (PbpG)] were checked up through fluorescence scanning of SDS-

PAGE of membrane extracts from the different mutants; the Bocillin-FL binding reaction 

involved incubation of 100 µg of cell membrane proteins (from FOX-induced and non-induced 

cells) with 10 µM Bocillin-FL in 1x PBS (pH 7.5) at 37°C for 30 min (section 3.5.5). The 

observed patterns of the PBPs in both of membranes of non-induced (fig. 4.13) and FOX-

induced cells (fig. 4.14) were almost similar and these PBPs patterns correlated perfectly with 

the loss of the expected LMM-PBP for each mutant except for the two mutants PAO∆dacB and 

PAO∆dacB∆pbpG which had unpredictably undetected DacC even thought that DacC was 

clearly detected in their corresponding mutants with ampC deletion (i.e. PAO∆dacB∆ampC and 

PAO∆dacB∆pbpG∆ampC) respectively. Therefore, these results strongly suggests that the high 

amounts of AmpC produced by DacB mutants (see below) significantly compromises the 

Bocillin-FL concentration required for DacC visualization. For analysis of the cefoxitin affinity 

for PBPs in cell membranes of PAO1, PAO∆ampC and PAO∆dacB∆pbpG∆ampC, 100 µg of 

cell membrane proteins were incubated with serial concentrations of cefoxitin for 30 min at 

37°C and then incubated with 10 µM Bocillin-FL in 1x PBS (pH 7.5) at 37°C for 30 min; the 

results displayed that LMM-PBPs (e.g. DacB, DacC and PbpG) had higher affinity to FOX than 

HMM-PBPs (e.g. PBP3, PBP2, PBP1a and PBP1b); DacB (PBP4) and PbpG (PBP7) are more 

sensitive to FOX than DacC (PBP5) which displayed a close behavior similar to PBP3; while 

PBP1b has the lowest affinity to FOX. IC50 values of FOX binding affinity for DacB, PbpG and 

DacC were of 1.45, <1.5 and 9.1 μg/ml, respectively in the wild type while they were 1.3, <1.5 

and 6.5, respectively in PAO∆ampC. IC50 for FOX and DacC of PAO∆dacB∆pbpG∆ampC was 

7.7 μg/ml (table 4.11). These data demonstrates that DacB and PbpG were very sensitive to 
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FOX while DacC was more resistant. Gene sequencing of dacC in PAO∆dacB and 

PAO∆dacB∆pbpG showed no mutations; indicating that the disappearance of DacC in Bocillin-

FL binding test was not due to a genetic-driven structural change but rather was due to high 

AmpC production in these two mutants (see next section).  

 

4.2.5. Effect of LMM-PBPs inactivation on ampC expression and β-lactam 

resistance in PAO1 mutants 
We have found that among the studied LMM-PBPs in PAO1, dacB mutant is the only single 

LMM-PBP mutant that was able to produce high basal ampC expression which caused a marked 

increase in the MICs for the antipseudomonal penicillins (piperacillin), cephalosporins (cefotaxime, 

ceftazidime, and cefepime) and monobactams (aztreonam) (table 4.12). The double mutant of dacB 

and dacC produced 10-fold increase in ampC expression compared to dacB mutant alone. The triple 

mutant of dacB, dacC and pbpG had the maximum basal increase in ampC expression and β-lactam 

resistance. Under FOX induction, there was a basal-level related increase in ampC expression in all of 

single, double and triple mutants which can be explained mainly by FOX blocking of DacB activity. 

The data suggest that dacC inactivation can largely turn on ampC expression only when DacB is 

inactive. The mutants PAO∆dacB∆dacC∆pbpG and PAO∆dacB∆dacC had the highest and the same 

MICs for CAZ (16µg/ml), ATM (16µg/ml), PIP (128 µg/ml) and CTX (512 µg/ml). Also PAOΔdacB 

and PAOΔdacBΔpbpG had high MICs [CAZ (8 µg/ml), ATM (8 µg/ml), PIP (16 µg/ml) and CTX 

(256 µg/ml)] but it was less than that of the mutant PAO∆dacB∆dacC∆pbpG which showed maximum 

ampC expression. However, all of PAOΔdacB, PAOΔdacBΔpbpG, PAO∆dacB ∆dacC∆pbpG and 

PAO∆dacB∆dacC had the same MIC for CEF (4 µg/ml).  The wild type PAO1 and all mutants with 

active AmpC seemed to have the same MIC for FOX (1026 µg/ml) indicating that ampC induction in 

the wild type was enough to produce the maximal MIC for FOX. There was no change in MICs of 

MER and IMI within the different PAO1 mutants. MICs of vancomycin correlated to the level of 

pentapeptides and not to ampC expression. The wild type PAO1 and all mutants with active AmpC 

had the same MIC for AMP (1024 µg/ml) with the exception of the two mutants PAO∆dacC and 

PAOΔdacBΔpbpG having MICs for AMP of 1536 and 2048 µg/ml, respectively. Both of dacC and 

pbpG mutants had no significant MIC change except for the decrease in piperacillin susceptibility in 

the PAOΔdacC mutant. We found that the MICs for nearly all β-lactams decreased in the 

PAOΔdacCΔampC mutant compared to PAOΔampC mutant, and this effect was further enhanced in 

the PAO∆dacB∆dacC∆pbpG∆ampC mutant, suggesting that LMW PBPs, particularly DacC, play a 

role in the intrinsic level of β-lactam resistance in P. aeruginosa (table 4.12). 
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Figure 4.11. Growth curves of the constructed PAO1 mutants. 

Optical densities at 600 nm of cellular growth of the wild type and all constructed 

PAO1 mutants, in LB media at 37°C with agitation (180 rpm), were recorded every one 

hour (h). Results show that profiles of cellular growth of all constructed mutants in 

PAO1 are of close similarity to the one displayed by the wild type PAO1. 
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PAO1                                             PAOΔdacB                                   PAOΔdacC 
 

                            
PAOΔampC                                PAOΔdacBΔampC                      PAOΔdacCΔampC 
 

                
 PAOΔpbpG                              PAOΔpbpGΔampC       
 
Figure 4.12. Microscopic examination of the constructed PAO1 mutants. 
Phase-contrast microscopic images of the constructed mutants are shown. Scale bars (white 

color) are 2 µm. As shown on this page and on the next page, all the constructed Pae mutants 

including the triple mutant (PAOΔdacBΔdacCΔpbpG) and the quadruple mutants 

(PAOΔdacBΔdacCΔpbpGΔampC and PAOΔdacBΔpbpGΔampCΔdacC) still retain their rod 

shape phenotype similar to the wild type PAO1. 

Fig. is continued on the next page. 
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PAOΔdacBΔdacC                    PAOΔdacBΔpbpG                       PAOΔdacCΔpbpG 
 

                     
PAOΔdacBΔdacCΔampC        PAOΔdacBΔpbpGΔampC           PAOΔdacCΔpbpGΔampC 
 

                      
PAOΔdacBΔdacCΔpbpG   PAOΔdacBΔdacCΔpbpGΔampC  PAOΔdacBΔpbpGΔampCΔdacC 
 

Figure 4.12 continued. Microscopic examination of the constructed PAO1 mutants. 
The wild type and all constructed PAO1 mutants were grown in LB media at 37°C while their 
microscopic examination was done after 4 hours in vivo using equipment of fluorescence 
resonance energy transfer (FRET) comprising Axiovert200 inverted microscope (Zeiss) coupled 
to a monochrome CCD camera. The images of the constructed mutants are of close similarity to 
the wild type PAO1. Scale bars (white color) are 2 µm.  
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Table 4.11. Estimated IC50 values for cefoxitin within cell membranes of the wild 
type and some PAO1 mutants using Bocillin-FL test.  

Strain IC50- FOX (µg/ml)a 
 PBP1a PBP1b PBP2 PBP3 DacB DacC PbpG 
PAO1 6.4 30.7 16.4 8 1.45 9.1 < 1.5 
PAO∆ampC 4.75 27.2 15.4 7.7 1.3 6.5 < 1.5 
PAO∆dacB∆pbpG∆ampC 4.25 29 13.1 6.2 0 7.7 0 
a IC50- FOX is the cefoxitin (FOX) concentration producing a 50% reduction of Bocillin-FL 

binding for each individual PBP. The reaction contained 100 µg membrane proteins which 

were incubated with serial concentrations of cefoxitin for 30 min at 37°C then incubated with 

10 µM Bocillin-FL in PBS (1x-pH 7.5) at 37°C for 30 min. The results show that LMM-PBPs 

(e.g. DacB, DacC and PbpG) have high affinity to FOX than HMM-PBPs (e.g. PBP3, PBP2, 

PBP1a and PBP1b); DacB (PBP4) and PbpG (PBP7) are more sensitive to FOX than DacC 

(PBP5) while PBP1b have the least affinity to FOX.  
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Figure 4.13. Bocillin-FL binding test of cell membranes of PAO1 mutants under non-induction conditions.    
The Pattern of PBPs (at left) of all the constructed mutants and their parental wild type PAO1are shown. The reactions contained 100 µg 

membrane proteins which were incubated with 10 µM Bocillin-FL in 1x PBS (pH 7.5) at 37°C for 30 min. Bocillin-FL binding of cell membranes 

from Pae mutants that were grown without induction confirms the deletions of dacB, DacC and pbpG in the construed mutants. In case of the 

wild type we can see the bands corresponding to PBP1a, PBP1b, PBP2, PBP3, PBP4 (DacB), PBP5 (DacC) and PBP7 (PbpG). DacC was not 

detected in the mutants PAOΔdacB and PAOΔdacBΔpbpG (*) but it was detected in their corresponding mutants with ampC deletion 

PAOΔdacBΔampC and PAOΔdacBΔpbpGΔampC (**), respectively; also, DacC was highly increased in PAOΔampC and PAOΔpbpGΔampC 

when compared with the wild type PAO1 and PAOΔpbpG. The data shows that DacC occurs in a higher proportion when compared with the 

other PBPs in mutants of ampC.   
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  Figure 4.14. Bocillin-FL binding test of cell membranes of PAO1 mutants previously induced with cefoxitin.    
 *, ** Bocillin-FL assay of cell membranes from mutants pre-treated with FOX showed the same results without induction, described previously (Fig. 4.13).  
 

Please, take in your account that the order of the samples is not as shown in figure 4.13  
 

 

 

 

 



Results 
 

114 | P a g e  
 

Alaa Ropy_Doctoral Thesis 
 

Table 4.12. MICs and ampC expression under basal and cefoxitin induction conditions for all studied mutants a.  

 

Strain 

MICs (µg/mL)b ampC expressionc 

CAZ CEF ATM PIP IMI MER CTX FOX VAN AMP Basal Induced* 

PAO1 1 1 4 2 0.5 0.5 12 1024 512 1024 - 347 ± 59 

PAOΔampC 1 1 4 2 ≤0.12 0.25 8 64 512 32 - - 

PAOΔdacB 8 4 8 16 1 0.5 256 1024 512 1024 47 ± 29 569 ± 166 

PAOΔdacBΔampC 1 0.5 2 2 ≤0.12 0.25 8 96 512 32 - - 

PAOΔdacC 0.75 0.5 2 4 0.5 0.5 8 1024 1024 1536 1.3 ± 0.4 542 ± 380 

PAOΔdacCΔampC 0.75 0.5 2 2 ≤0.12 0.25 4 64 4096 16 - - 

PAOΔpbpG 1 1 4 4 1 0.5 16 1024 512 512 0.6 ± 0.3 305 ± 152 

PAOΔpbpGΔampC 1 0.5 3 4 ≤0.12 0.25 8 96 512 32 - - 

PAOΔdacBΔdacC 16 4 16 128 0.5 0.5 512 1024 2048 1024 478 ± 5.1 840 ± 245 

PAOΔdacBΔdacCΔampC 1 0.5 2 2 ≤0.12 0.25 4 64 4096 16 - - 

PAOΔdacBΔpbpG 8 4 8 16 0.5 0.25 256 1024 512 2048 45 ± 32 326 ± 106 

PAOΔdacBΔpbpGΔampC 0.75 0.5 2 2 ≤0.12 0.5 6 64 4096 32 - - 

PAOΔdacCΔpbpG 1 0.5 2 6 0.5 0.25 8 1024 1024 1024 1.4 ± 0.7 162 ± 87 

PAOΔdacCΔpbpGΔampC 0.75 0.5 2 3 ≤0.12 0.25 4 64 4096 24 - - 

PAOΔdacBΔdacCΔpbpG 16 4 16 128 0.5 0.5 512 1024 4096 1024 1207 ± 193 5742 ± 1975 

PAOΔdacBΔpbpGΔampCΔdacC 0.5 0.5 2 2 ≤0.12 ≤0.12 4 64 4096 16 - - 

PAOΔdacBΔpbpGΔdacCΔampC 0.5 0.5 1 2 ≤0.12 ≤0.12 4 64 4096 16 - - 
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a Cooperative work was done by Gabriel Cabot, Irina Sánchez-Diener, Bartolome Moya and Antonio Oliver (Servicio de 

Microbiología and Unidad de Investigación. Hospital Universitario Son Espases. Palma de Mallorca. Spain). b  MICs of ceftazidime 

(CAZ), cefepime (CEP), aztreonam (ATM), piperacillin (PIP), imipenem (IMI), meropenem (MER), cefotaxim (CTX), cefoxitin (FOX), 

vancomycin (VAN) and ampicillin (AMP). c Expression of ampC was determined by RT-PCR for non-induced (basal)  and 50 μg/ml 

cefoxitin treated (induced) PAO1 wild type and mutants. Median values of 3 experiments are shown. Relevant data are shown in bold 

letters. dacB mutant caused large increase in ampC expression and bacterial resistance (to β-lactams except IMI and MER) which 

increased by further deletion of dacC and pbpG. Data of ampC expression show that the increase in bacterial resistance to β-lactams 

was related to a parallel increase in ampC expression except for VAN which was related to the level of penta peptides in PG of each 

PAO1 strain. The triple mutant PAOΔdacBΔdacCΔpbpG displayed the largest ampC expression. Both of PAOΔdacBΔdacCΔpbpG and 

PAOΔdacBΔdacC displayed the same resistance profile with the examined β-lactam antibiotics. PAOΔdacB mutant displayed high 

ampC expression and β-lactam resistance when compared with other single mutants. 

.
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4.2.6. PG composition of the constructed PAO1 mutants 
PG composition of cells untreated and treated with FOX was revealed by HPLC analysis 

(section 3.12) of the constituting muropeptides (tables 4.13 and 4.14, respectively). PG analysis of 

untreated single mutant cells showed that there was a large increase in penta muropeptides only 

when DacC was inactivated and this effect was enhanced by further inactivation of DacB and PbpG 

which produced a maximal penta muropeptides in the triple mutant. The data indicates that DacC 

has the main role in the DD-CPase activity in P. aeruginosa. There was no penta increase within the 

PG of dacB and pbpG single mutants, and only small increase (7.1 % mol) in the dacC single 

mutant (table 4.13). However, when those mutants were grown with 50 µg/ml cefoxitin (FOX), 

only dacC mutant shows a large increase in penta (38.8 % mol) most probably due to the inhibition 

of a DD-CPase activity (table 4.14). This result may indicate a low affinity of DacB or PbpG by 

cefoxitin, or some enhanced effect of DacC over the two other DD-CPases. Data on the high FOX 

affinity (IC50) of DacB (1.45 µg/ml) and PbpG (<1.5 µg/ml) (table 4.11) and PG analysis of double 

mutant indicate that the effect must be mainly due to some kind of interaction of DacC with the two 

other DD-CPases, because PG analysis of PAO∆dacB∆dacC shows a high increase (28.6 % mol) 

and PAO∆pbpG∆dacC a moderate increase (9.8 mol%), but double mutant PAO∆dacB∆pbpG had 

no effect (2.5 % mol) on penta composition of PG (table 4.13). When induced by cefoxitin, the 

effect is exacerbated with values of 39.8 and 44.0 % mol for both double mutants 

PAO∆dacB∆dacC and PAO∆pbpG∆dacC, respectively, but again no increase for 

PAO∆dacB∆pbpG mutant (table 4.14). Without FOX treatment, the penta increase in 

PAO∆dacB∆dacC∆ampC (32.0 % mol) is four times higher than that in PAO∆dacC∆ampC (8.0 % 

mol) (table 4.13), however their corresponding penta increase with FOX treatment is more or less 

the same (62.3 and 63.1 % mol) and it is very close to that observed in the triple mutant (65.5 % 

mol) and so did the mutant PAO∆pbpG∆dacC∆ampC (64.5 % mol) (table 4.14). This indicates 

several conclusions: 1) DacB complements the DD-CPase activity when dacC is absent, 2) with less 

efficiency PbpG complements that activity when dacC or dacB are absent, 3) DacC is the major 

DD-CPase in PAO1 because the mutant PAO∆dacB∆pbpG has no significant penta increase, and 4) 

these three PBPs are expected to have an interaction and a synergetic effect respect to the total DD-

CPase activity in the cell. PG of the mutant PAO∆dacB∆pbpG had less monomers, more dimers, 

more anhydromuropeptides and a higher crosslinking when compared with the PAO1 wild type; 

this data must be related to the inhibition of a DD-endopeptidase (DD-EPase) activity, suggesting 

also these PBPs may have this type of activity (table 4.13). 
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Table 4.13. HPLC analysis of muropeptides prepared from PG of the constructed Pae mutants under non-induction conditions.  

 
Strain 

Muropeptides (% Molar)a    
Mono Di Tri D-D Lpp Anh Penta Crosslink D-D/T Length 

PAO1 57.8 38.3 3.9 1.9 3.1 8.7 1.6 46.1 4.1 11.5 
PAO∆dacB 56.1 39 4.8 1.5 3.7 9.6 2.4 48.9 3.1 10.5 
PAO∆dacC 59.3 37.1 3.6 1.1 3.2 9.1 7.1 44.4 2.4 11 
PAO∆pbpG 58.7 37.2 4.1 1.5 2.8 9.4 1.4 45.4 3.2 10.7 
PAO∆dacB∆dacC 58.4 36.7 4.8 1.1 3.4 9.4 28.6 46.6 2.3 10.7 
PAO∆dacB∆pbpG* 54.5 39.5 5.9 1.5 3.3 14.2 2.5 51.6 2.9 7 
PAO∆dacC∆pbpG 55.9 39.4 4.6 1.2 3.3 8.9 9.8 48.8 2.6 11.2 
PAO∆dacB∆dacCpbpG 54.7 40 5.2 1.3 2.4 7.6 66.4 50.6 2.5 13.2 
PAO∆ampC 59.9 36.3 3.8 1.2 3.3 9 2.5 43.8 2.8 11.1 
PAO∆dacB∆ampC 54.2 40.3 5.4 2.1 4.1 10.3 2.5 51.2 4.1 9.8 
PAO∆dacC∆ampC 59.7 36.6 3.7 1.1 3.2 9.1 8 44.1 2.4 11 
PAO∆pbpG∆ampC 56.4 38.6 4.9 1.5 3.7 9.7 2.5 48.5 3.1 10.3 
PAO∆dacB∆dacC∆ampC 59.4 36.1 4.4 1 2.5 7.9 32 45.2 2 12.6 
PAO∆dacB∆pbpG∆ampC* 49.4 43.5 7 1.7 3.6 11.3 3.7 57.8 3 8.8 
PAO∆dacC∆pbpG∆ampC 54.9 39.9 5.1 1.8 3.7 9.4 9.4 50.4 3.5 10.7 
PAO∆dacB∆dacCpbpG∆ampC 54.8 40 5.1 0.6 2.1 7.2 67.6 50.4 1.1 13.9 
PAO∆dacB∆pbpG∆ampC∆dacC 53 40.4 6.5 1.5 2.4 8.8 65.9 53.6 2.8 11.4 
a As described previously within table 4.7. The interesting changes are shown in bold letters. dacC single and combined mutants displayed large 

increase in penta peptides in their PG due to inhibition of DD-CPase activity. *dacB and pbpG double mutant showed an increase in monomers, a 

decrease in dimers and trimers and an increase in crosslinking due to inhibition of  DD-EPase activity.  
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Table 4.14. HPLC analysis of muropeptides prepared from PG of the constructed Pae mutants treated with FOX. 

 
Strain 

Muropeptides (% Molar)a    
Mono. Di. Tri. D-D Lpp Anh. Penta. Crosslink D-D/T Length 

PAO1 55.5 39.3 5.1 1.9 3.7 10.1 4.4 49.9 3.7 9.9 
PAO∆dacB 57.1 37.2 5.6 1.7 3.4 13.7 3.7 48.6 3.5 7.3 
PAO∆dacC 55.2 39.6 5.1 1.2 2.5 8.2 38.8 50.1 2.3 12.3 
PAO∆pbpG 56.6 37.9 5.4 1.9 3.6 8.9 4.2 49 3.9 11.3 
PAO∆dacB∆dacC 58.8 36.7 4.4 1.1 3.2 8.1 39.8 45.8 2.4 12.4 
PAO∆dacB∆pbpG 51 42.1 6.8 2.1 4.9 12.3 4 56.1 3.7 8.2 
PAO∆dacC∆pbpG 54.3 40.3 5.3 1 2.6 7.5 44 51.3 1.8 13.4 
PAO∆dacB∆dacCpbpG 54.8 39 6 1.1 3.1 9.3 66 51.6 2.1 10.8 
PAO∆ampC 54.9 40.3 4.6 1.3 2.6 7.2 14 50 2.6 14 
PAO∆dacB∆ampC 55.8 39.5 4.5 1.3 3.4 7.7 16.5 48.9 2.7 13.1 
PAO∆dacC∆ampC 58.1 37 4.8 1.4 3.4 7.5 62.3 46.9 3 13.3 
PAO∆pbpG∆ampC 53.9 40.6 5.4 1.8 3.1 8.2 14.1 51.7 3.5 12.3 
PAO∆dacB∆dacC∆ampC 56.9 37.6 5.3 1.2 2.6 7.5 63.1 48.8 2.5 13.3 
PAO∆dacB∆pbpG∆ampC 53.4 40.6 5.8 1.9 3.6 8.3 14.7 52.8 3.6 12 
PAO∆dacC∆pbpG∆ampC 55.8 38.5 5.5 1.3 2.8 7.3 64.6 50.2 2.5 13.7 
PAO∆dacB∆∆dacCpbpG∆ampC 57 37.2 5.6 1.3 2.7 6.7 63.1 49.1 2.7 15 
PAO∆dacB∆pbpG∆ampC∆dacC 57.2 36.7 5.9 1 2 7.4 65.5 49 1.9 13.5 
a As described previously within table 4.7 and 4.15. FOX induction caused some increase the level of pentapeptides in all PAO1 wild 

and mutants. The double mutant of  dacC and ampC showed a very close level of penta peptides (maximum penta level) as found in PG 

of the tripe mutant of dacB, dacC and pbpG and its quadruple mutant with ampC deletion. 
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4.3. Activities of DacB, DacC and PbpG are not essential for recovery of rod shape 

in imipenem-induced spheroplasts in P. aeruginosa 

 

4.3.1. Summary 
A previous study reported that incubation of P. aeruginosa with 5x MIC of imipenem or 

meropenem with a static growth at 37°C caused the development of spherical shaped cells which 

were able to recover their shape after elimination of IMI or MER from the growth medium 

(Monahan et al, 2014). Taking advantage of the different mutant described in the previous section, 

the role of DacB, DacC and PbpG in the recovery of the rod shape can be studied. Then, we are 

about to pursue this analysis by producing that round cells by IMI induction and their recovered rod 

cells (in the wild type PAO1 and all the constructed Pae mutants) following the same procedure 

described previously (Monahan et al, 2014) and then to analyze their PG composition by HPLC 

(only for PAO1 and PAO∆dacB∆dacC∆pbpG∆ampC). Bocillin-FL test of round cells and rod 

shape recovered cells of the wild type PAO1 and the mutant PAO∆ampC was done to identify their 

changes in PBPs pattern. Also, phase contrast and fluorescence microscopy was used to pursue the 

change in cell shape and viability. Results of PG analysis showed that by comparing to non-induced 

cells, PG composition of IMI-induced round cells of both of the wild type and mutant had a 

decrease in monomers, D-D muropeptides, pentapeptides and length and an increase in dimers, 

trimers, anhydro-muropeptides and crosslinking degree; also they had a large increase in M3 and 

decrease in M4, D44 and D45 muropeptides. However, PG composition of rod shape recovered 

cells had muropeptides with relative abundance similar to that of non-induced cells. Fluorescence 

microscopy showed that the round cells were viable however there were some unviable cells 

observed. Bocillin-FL test shows that membranes of round cells of both of the wild type PAO1 and 

the mutant PAO∆ampC had a low amount of DacC and lost DacB while the rod shape recovered 

wild type PAO1 had a recovered DacB but DacC was still detected as a low amount; while at the 

opposite of that, the rod shape recovered PAO∆ampC mutant had a recovered DacC at high amount 

and DacB at low amount. Also both of overnight recovered and non-induced cells had no PbpG 

detected.  
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4.3.2. Microscopic examination of  imipenem-induced spheroplasts wild type 

and mutant PAO1 cells 
Round cells were produced after 4 hours incubation of the wild type PAO1 and the 

constructed Pae mutants in CAMHB media supplemented with 0.5 M sucrose and induced with 5x 

MICs of IMI for 4 hours at 37°C without agitation (section 3.10). MICs for IMI for the wild type 

PAO1 and constructed Pae mutants are mentioned in table 4.12. We found that round cells of both 

of PAO1 and all mutants recovered their rod shape after elimination of IMI from the medium with 

static overnight growth at 37°C. Non-induction conditions were also performed as a control for the 

change in the morphological pattern. Phase-contrast and fluorescence microscopy (using green 

CYTO 9 staining, section 3.11) showed that in both of PAO1, PAO∆ampC and the quadruple 

mutant (PAO∆dacB∆dacC∆pbpG∆ampC) the round cells were viable and alive. Some dead cells, 

indicated by white arrows in figure 4.15, were observed also in both strains, but in higher amount 

for the mutant. Under non-induction conditions cells from wild and quadruple mutant were all 

viable and alive. Moreover, published data of recovered cells, after removal of IMI in wild type 

strain, show they had normal morphology and were alive (Monahan et al, 2014); and also quadruple 

mutant in our assay seemed to have a normal rod shape and cells were all alive. All other 

constructed single and double Pae mutants displayed the same behavior (under microscope) for 

IMI-induced spheroplast formation and rod shape recovery after removal of IMI from the growth 

medium (not shown).   

 

4.3.3. PG composition of imipenem-induced spheroplasts wild type PAO1 and 

mutants  
Only PG of spheroplasts and recovered cells of PAO1wild type and 

PAO∆dacB∆dacC∆pbpG∆ampC mutant was analyzed by HPLC because we wanted to compare the 

effect of inactivation of all LMM-PBPs (dacB, dacC and pbpG) on PG composition with that of 

PAO1 wild type. It is just a way to reveal physiological role of these main Pae DD-CPases and 

EPases in PG composition during spheroplast formation and rod shape recovery.   

IMI-induced round PAO1 cells of wild type and the mutants  PAO∆dacB∆dacC∆pbpG 

∆ampC were grown in CAMHB media supplemented with 0.5 M sucrose and induced with 5x 

MICs of IMI at 37°C without agitation (section 3.10). After 4  incubation with IMI and 22 h 

incubation after removal of IMI, PG was collected from round-induced and non-induced cells, 

digested and analyzed by HPLC (section 3.12). Differences in main general structure of PG were 

found for both wild type and mutant under non induction conditions, compared with data of the 

same strains grown in exponential phase in LB and 180 rpm. These changes are expected due to 
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differences in media and growth conditions. However, major changes were found for round-induced 

and non-induced for both PAO1 and mutant strains. We found that PG of round cells in both strains 

had an increase in dimers, trimers, anhydro-muropeptides and crosslinking and a decrease in 

monomers, D-D muropeptides and length (table 4.15a). Respect to the individual muropeptides, 

round-shaped PAO1 wild type and the mutant PAO∆dacB∆dacC∆pbpG∆ampC had unusual 

increase in M3 and decrease in M4, D44 and D45 while M5 was not changed in the quadruple 

mutant (table 4.15b). After elimination of imipenem the round-shaped cells recovered the original 

rod shape and PG analysis after recovery showed normal levels of M3 and M4. The given data 

indicates that the activities DacB, DacC, PbpG and AmpC are not essential for rod shape recovery 

in P. aeruginosa.  

 

4.3.4. Bocillin-FL test of imipenem-induced spheroplasts wild type PAO1 and 

PAOΔampC   

As the pattern of changes in morphology and PG structure were equivalent in PAO and 

PAO∆dacB∆dacC∆pbpG∆ampC, indicating no role for the LMM-PBPs on the mechanism of 

production of round cell, then we decided to analyze the presence of these LMM-PBP on the wild 

type (complete set of PBPs) and the ampC mutant (no AmpC production). Round cells and 

recovered cells of the wild type PAO1 and the mutant PAOΔampC were produced as described 

before (section 3.10) with 5x MICs of imipenem. Bocillin-FL binding reaction involved incubation 

of a 100 µg of cell membrane proteins of PAO1 and PAO∆ampC with 10 µM Bocillin-FL in PBS 

(1x-pH 7.5) at 37°C for 30 min. The Bocillin-FL binding pattern of PBPs of membranes of 4 hours 

non-induced PAO1 and PAO∆ampC displayed a full pattern of PBPs: PBP1a, PBP1b, PBP2, PBP3, 

PBP4(DacB), PBP5(DacC) and PBP7(PbpG), with higher binding for PBP7 in PAO∆ampC, while 

overnight non-induced cells of both strains had lost PBP7 band. The Bocillin-FL binding pattern of 

PBPs of membranes of 4 hours IMI-induced round cells of PAO1 and PAO∆ampC displayed an 

equivalent pattern with the loss of all PBPs bands, except for small amount of their DacC band. On 

another hand, overnight recovered PAO1 and PAO∆ampC had regained all PBPs band with the 

exception of PBP7, but they have a different pattern of expression of PBP4 and PBP5. The given 

data show that overnight recovered PAO1 had very low PBP5 amount and considerable amount of 

PBP4, but in the contrary, overnight recovered PAO∆ampC had a low amount of PBP4 and large 

amount of PBP5 (fig. 4.16). 
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Table 4.15a. HPLC analysis of muropeptides prepared from PG of imipenem-induced Pae spheroplasts.  

 

Strain 

 

Conditions 

Time 

(h) 

Cell 

shapec 

Muropeptides (% Molar)a    

Mono Di Tri D-D Lpp Anhy Penta Crosslink D-D/T Length 

PAO1 No IMI 4 Normal 63.6 33.9 2.5 3.7 2.1 6.2 5.7 38.8 9.5 16.2 

+ IMI 4 >95% 

Round 

59.2 37.9 2.9 2.3 1.2 12.3 2.1 43.8 5.2 8.1 

No IMI 22 Normal 62.1 34.9 2.9 8 2.3 5.7 12.9 40.8 19.6 17.7 

Recovery 22 Normal 57.6 39.1 3.3 4.9 2.8 6.8 6.6 45.7 10.7 14.6 

PAO∆dacB ∆dacC 

ΔpbpG∆ampC 

No IMI 4 Normal 60.2 36.3 3.5 1.2 2.9 6 59.6 43.3 2.7 16.7 

+ IMI 4 >95% 

Round 

52 43.2 4.8 1.2 2.2 14.8 55.4 52.9 2.3 6.8 

No IMI 22 Normal 52.7 42.8 4.5 1.4 2.7 8.3 66.4 51.7 2.7 12 

Recovery 22 Normal 58.5 37.1 4.4 3.5 3.7 8.3 59.3 45.9 7.7 12.1 

 a As described previously within table 4.7. b No IMI: cells was not treated with imipenem; +IMI: cells were treated with 5x MIC of 

imipenem; Recovery: cells after removal of imipenem; PG was analyzed from induced and non-induced cells after 4 and 22 hours 

static growth at 37°C in CAMHB media supplemented with 0.5 M sucrose.  c The wild type PAO1 and the mutant  PAO∆dacB 

∆dacCΔpbpG∆ampC are rod shaped but after their incubation with imipenem by 4 hours, their shapes turned into spheres (Fig. 4.15) 

and recovered their rod shapes after elimination of IMI in overnight growth. Spheres PG of induced PAO1 cells displayed increase in 

monomers and decrease in M4, D43 and D44; while, Spheres PG of the quadruple mutant displayed a large increase in M3 and 

decrease in M4, D43, D44 and D45 and no change in M5. After recovery the PG composition had normal proportions of muropeptides 

as in non-induced cells.  
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 Table 4.15b. Selected muropeptides produced from PG of imipenem-induced Pae spheroplasts.   

 

Strain 

 

conditionsb 

Time 

(h) 

Cell 

Shapec 
Muropeptides (% Molar)a 

M3 M4 M5 D43 D44 D45 T444 T445 D44N D45N T444N T445N 

PAO1 No IMI 4 Normal 8.7 22.7 0.4 3.9 19.1 0.7 1.4 0.3 3.2 0.1 1 0 

+ IMI 4 > 95% 

Round 

14.3 14 0.2 2 10.8 0.3 0.6 0 4.4 0 0.8 0 

No IMI 22 Normal 6.27 14.5 2 3.1 15.1 0.3 1.3 0.3 2.7 0.2 1 0 

Recovery 22 Normal 7.7 21.8 0.6 3.9 23.1 0.8 2.1 0.4 3.9 0.2 1.4 0 

PAO∆dacB ∆dacC 

ΔpbpG∆ampC 

No IMI 4 Normal 4.2 7 13.1 1.5 11.8 17.3 0.9 2 1.3 2.1 0.6 1.3 

+ IMI 4 >95% 

Round 

6.7 5.9 13.1 0.9 6.2 11.3 0.4 0.9 2.2 3.7 0.3 1 

No IMI 22 Normal 3.1 5.1 16.1 1.5 12 22.4 1 2.8 1.9 2.9 0.7 1.9 

Recovery 22 Normal 2.7 5.1 12.5 1.9 8 14.5 1 2 1.7 2 0.5 1.1 
a As described previously within table 4.10b. b As described within table 4.15a. This table shows the molar abundance of common 

muropeptides in PG of imipenem-induced PAO1 cells which displayed large increase in M3 and decrease in M4, D43 and D44 in the 

wild type PAO1. While, PG of the quadruple mutant Spheroplasts displayed a large increase also in M3 and decrease in M4, D43, 

D44 and D45 and displayed no change in M5. After overnight recovery, the PG composition had normal proportions of muropeptides 

as in non-induced cells.  

     



Results 
 

124 | P a g e  
 

Alaa Ropy_Doctoral Thesis 
 

 

  
 

              
 

  
 
 
 
Figure 4.15. Microscopic examination of  spheroplasts of imipenem-induced PAO1 
wild type, PAOΔampC  and PAOΔdacBΔdacCΔpbpGΔampC mutants.  
A. Microscopic images of phase-contrast (ph) and fluorescence with CYTO 9 (F) of the 
wild type PAO1 (I) PAOΔampC (II) and PAOΔdacBΔdacCΔpbpGΔampC (III) showing 
spheroplasts which were obtained after incubation with 5x MICs of imipenem (+IMI) in 
CAMHB media supplemented with 0.5 M sucrose for 4 hours at 37°C without agitation; where 
the green colored spheres and their corresponding phase-contrast are supposed to be alive 
cells while the others pointed by white arrows are supposed to be dead cells. Scale bars are 
2 µm. 

Fig. is continued on the next page.  
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Figure 4.15 continued. Microscopic examination of spheroplasts of imipenem-induced 

PAO1 wild type, PAOΔampC and PAOΔdacBΔdacCΔpbpGΔampC mutants.  
B. Phase-contrast images of wild type wild type PAO1, PAOΔampC and 

PAOΔdacBΔdacCΔpbpGΔampC before addition of imipenem (IMI) to the growth medium (CAMHB 

media supplemented with 0.5 M sucrose at 37°C without agitation). C. Phase-contrast images of 

wild type wild type PAO1, PAOΔampC and PAOΔdacBΔdacCΔpbpGΔampC after elimination of 

IMI from the medium (CAMHB media supplemented with 0.5 M sucrose) and overnight incubation 

at 37°C without agitation. RE: recovery of rod shape from Pae spheroplasts (A) after elimination of 

IMI from the growth medium. Scale bars (white color) are 2 µm.  

B. 

C. 
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Figure 4.16. Bocillin-FL binding test of Pae spheroplasts membranes of IMI-induced 

PAO1 wild type and PAOΔampC mutant.  

The Pattern of PBPs (at left) of PAOΔampC mutant and the wild type PAO1are shown. 

Assay of Bocillin-FL with cell membranes of PAO1 and PAOΔampC which were grown in 

CAMHB media supplemented with 0.5 M sucrose at 37°C without agitation. PAO1/NI/4 h 

and PAOΔampC/NI/4 h: non-induced (NI) PAO1 and PAOΔampC after 4 hours of 

growth; PAO1/+IMI/4 h and PAOΔampC/+IMI/4 h: induced PAO1 and PAOΔampC after 

4 hours of growth with 5x IMI which produced round cells ; PAO1/NI/ON and 

PAOΔampC/NI/ON: non-induced (NI) PAO1 and PAOΔampC after 4 hours of overnight 

(ON) growth; PAO1/ΔIMI/ON and PAOΔampC/ΔIMI/ON: overnight recovery of rod 

shape after elimination of IMI (ΔIMI) from the growth medium of PAO1 and PAOΔampC. 

The reaction contained 100 µg membrane proteins which was incubated with 10 µM 

Bocillin-FL in 1x PBS (pH 7.5) at 37°C for 30 min.  
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5. Discussion  
 

5.1. Motivation and design of this study 
 
Functional characterization of Pae-AmpC from P. aeruginosa has a significant importance 

because AmpC overproduction and emergence of AmpC mutants (e.g. ESACs) are considered as 

one of the basic resistance tools used by this clinically problematic microorganism to overcome the 

inhibitory effect of most of β-lactam antibiotics (Bush & Jacoby, 2010; Jacoby, 2009; Lister et al, 

2009). AmpC enzymes are historically known as β-lactamases but they were thought to have a DD-

peptidase activity (CPase and/or EPase) due to structural similarities with LMM-PBPs (e.g. Eco-

AmpH) that have these activities (Bishop & Weiner, 1992; Gonzalez-Leiza et al, 2011; Hall & 

Barlow, 2004; Joris et al, 1988; Kong et al, 2010; Sauvage et al, 2008). So, this study (section 4.1) 

concerned especially with tracking DD-peptidase activity in vivo and in vitro for Pae-AmpC forms 

(wild type and mutants) in E. coli and in P. aeruginosa by HPLC analysis of their PG and 

muropeptides; that was beside characterization of β-lactamase activity, β-lactam resistance and the 

effect of Pae-AmpC overproduction in these bacterial strains.  

In addition to their structural similarities, LMM-PBPs play a role in ampC regulation and β-

lactam resistance, likewise it was reported that inhibition of LMM-PBPs by β-lactam antibiotics 

triggers AmpC overproduction and sometimes mutations that can lead to the emergence of ESACs  

(Bush & Jacoby, 2010; Kong et al, 2010; Lister et al, 2009). Also, it was found that deletion of 

dacB triggered AmpC overexpression and β-lactam resistance in P. aeruginosa (Moya et al, 2009). 

So that, we aimed also to unveil the physiological role and functional interaction of the main LMM-

PBPs (dacB, dacC and pbpG) in P. aeruginosa in ampC regulation, bacterial resistance and PG 

composition in P. aeruginosa which was achieved by the construction of single and combined 

mutants of these LMM-PBPs with and without Pae-ampC inactivation in PAO1 strain (section 4.2). 

Then, these Pae mutants were tested for their PG composition by HPLC analysis, their ampC 

expression by RT-PCR and their resistance to some β-lactam antibiotics. 

On the other hand it was found that imipenem supplemented growth of P. aeruginosa produced 

spherical shaped cells and elimination of imipenem from the medium helped these round cells to 

recover their rod shape (Monahan et al, 2014). So, we aimed to characterize LMM-PBPs (DacB, 

DacC and PbpG) in the round and the recovered cells of P. aeruginosa by Bocillin-FL test and to 

pursue the physiological role of these LMM-PBPs on the recovery of the rod shape from round cells 

after elimination of imipenem from the growth medium(section 4.3).     
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5.2. Functional characterization of Pae-AmpC β-lactamase 
 

5.2.1. Various forms of Pae-AmpC were produced 
 
The first main goal was to characterize the function of AmpC-F1 (the wild type Pae-AmpC 

precursor form), AmpC-F3 (the wild type mature AmpC, without signal peptide) and two 

uncharacterized AmpC mutants (AmpC-F1:C3 and AmpC-F1:C6) to compare their functional 

activities and to characterize the effect of the two mutations on AmpC activity in PG composition 

and bacterial resistance. Because all of AmpC-F1, AmpC-F1:C3 and AmpC-F1:C6 were not 

produced in large amount from their encoding pET28b vectors in Bl21(DE3) (fig. 4.2), we designed 

another AmpC forms (AmpC-F4, AmpC-F4:C3, AmpC-F4:C6 and AmpC-F4) in order to 

overproduce the precursor form of Pae-AmpC and these two mutants using pET28b vectors. Also, 

some AmpC forms were designed to have C-terminal TEV protease site (e.g. AmpC-F3-TEV, 

AmpC-F3:C3-TEV, AmpC-F3:C6-TEV and AmpC-F6-TEV) to remove the poly-His tag (by TEV 

protease) from the purified proteins to be crystallized. 

 
 
5.2.2. Interpretation of AmpC production using pET28b and pUCP24 vectors 
 

AmpC production from ampC-encoding pET28b recombinant vectors   
Detection of the different forms of AmpC proteins by SDS-PAGE and the corresponding 

western blot analysis is proportional to AmpC production by different recombinant plasmids. 

AmpC-F1 (the wild type) and the two mutants AmpC-F1:C3 and ampC-F1:C6 were not detected by 

SDS-PAGE or western blot because they were not actually produced. By returning to the forward 

primer (ampC-Fw1) of their PCR amplification, it has the sequence 

(5'…TTTCCATGGATGCGCGATACCAGATTCC…3') providing the transcription process with 

two ATG that could be a starting codon for the peptide sequence; the 1st ATG (underlined) is 

favored rather than at the 2nd one (underlined, bold, the actual AmpC initiation codon) because it is 

closer to the RBS, which means that the normal AmpC peptide sequence was not produced but 

rather another short and different amino acid sequence peptide. This explanation is highly supported 

by the expression profile (detection by SDS-PAGE and western blot) of the other AmpC forms that 

have the 1st ATG (closer to RBS) and can be used as a start codon for AmpC amino acid sequence 

(table 3.2; fig 3.1). So, there was protein overproduction in case of AmpC-F2, AmpC-F4, AmpC-

F4:C3, AmpC-F4:C6 and AmpC-F4-TEV (periplasmic forms), except for AmpC-F3, AmpC-F3:C3-

TEV and AmpC-F3:C6-TEV (cytoplasmic forms, without signal peptides) having a low expression 
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which may be due to the instability of this forms in the cytoplasm or its degradation by some 

cytoplasmic proteases (fig. 4.2→4.5). Also we found that all the purified AmpC forms were stable 

when stored at -20°C except AmpC-F3 which showed some degradation after 3 months or more 

which was observed during HPLC analysis with muropeptides (fig. 4.9).  

 

AmpC production from ampC-encoding pUCP24 recombinant vectors   
AmpC-F3 and AmpC-F4 were detected in a low amount by western blot after IPTG 

induction of pUCP-F3 and pUCP-F4, respectively, in PAO1 wild type and mutant strains. Also, 

there was no difference in western blot detection of AmpC-F3 and AmpC-F4 in cases of induction 

and no-induction with IPTG (fig. 4.6). Also, the β-lactamase activities in Pseudomonas 

transformants of pUCP-F3 under induction conditions were almost similar compared with the no-

induction cases (table 4.3). However, Pseudomonas transformants of pUCP-F4 showed lower β-

lactamase activities in induction conditions when compared with non-induction conditions. This can 

be explained by returning to the design of the cloned sequence of both of ampC-F3 and ampC-F4 in 

pUCP24 (fig. 3.2) where two pairs of RBS and starting codon (ATG) are present, the 1st pair (RBS-

ATG) is original in pUCP24 vector while the 2nd pair is external and was retrieved from the 

corresponding sequence of ampC in pET28b recombinant vectors. Expression from the 2nd pair will 

only produce the desired AmpC peptide, however the data indicates that IPTG induction, only 

affected the 1st RBS-ATG pair which produces a different peptide. Also, expression of ampC from 

the 2nd ATG by means of the 1st RBS is not favored because the 1st ATG is closer to 1st RBS and at 

the right distance for start of translation.  

 

5.2.3. Mutations, sub-cellular localization and solubility can largely affect 
AmpC β-lactamase activity 

In E. coli BL21(DE3)/pET-ampC, AmpC-F4 showed the highest β-lactamase activity in 

cellular fractions of E. coli Bl21(DE3)/pET-F4, (table 4.2) and remarkable increase in β-lactam 

resistance (table 4.5) because it had the majority of its mature form soluble (fig. 4.3). The purified 

mature form AmpC-F3 showed the highest activity on nitrocefin (table 4.4) however it showed a 

very low activity in vivo (table 4.2) which may be due to its low expression or degradation. Because 

AmpC-F3 was produced in the cytoplasm, it did not change the profile of bacterial resistance in 

Bl21(DE3). AmpC-F2 showed a moderate β-lactamase activity (table 4.2) and decreased the 

susceptibility to some β-lactams beside resistance to amoxicillin/clavulanic acid, AMC (table 4.5) 

which may be due to the very low production of the mature form (fig 4.2).  
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The two mutants AmpC-F4:C3 and AmpC-F4:C6 showed a very low β-lactamase activity 

in vivo and in vitro (tables 4.2, 4.4) and did not change the profile of bacterial resistance against the 

tested β-lactams except for amoxicillin/clavulanic acid, AMC (table 4.5); indicating that these two 

mutations affected largely the β-lactamase activity of Pae-AmpC.  

Although both of AmpC-F2 and AmpC-F4 have some modification in the signal peptide 

(fig. 4.1), both of them would be proficient to produce the wild type of the mature AmpC form by 

elimination of the signal peptide. By following the β-lactamase activity in cellular fractions of E. 

coli DV900(DE3)/pET-ampC, we found that AmpC-F3, AmpC-F4:C3 and AmpC-F4:C6 showed 

the same behavior as encountered in Bl21(DE3) while AmpC-F2 showed higher activity and 

AmpC-F4 produced lower activity which could be due to the low production of the soluble mature 

form (table 4.2; fig. 4.2-4.5). As described before (table 4.1; fig 4.1), AmpC-F2, AmpC-F4:C3 and 

AmpC-F4:C6 have single amino acid mutations; R2→G, P243→L and I51→T, respectively, which 

could affect the general protein folding and in turn AmpC activity as demonstrated by low β-

lactamase activity of AmpC-F4:C3 and AmpC-F4:C6 and the intermediate activity of AmpC-F2 

(tables 4.2, 4.4, 4.5). 

On line databases (Benson et al, 2009; Sayers et al, 2009; Winsor et al, 2011) showed that 

there are a total number of 179 SNPs, which include 80 silent SNPs and 99 missense SNPs, along 

the total length of Pae-ampC (PA4110) gene, representing about 14,99 SNPs, involving 8,29 silent 

SNPs and 6,70 missense SNPs, per gene length unit. These values are largely about the mean value 

for Pseudomonas SNPs. Also, it was found that SNPs changes did not take place within the active 

site residues and neither in amino acids (e.g. N70 and R76) responsible for interaction with C3 and 

C4 of β-lactam nucleus. It was reported in some P. aeruginosa isolates that some amino acid 

mutations (e.g. A97V and T105A) in the region close to the active site Ser64 in some clinical ampC 

variants (e.g. PDC-2 variant with G27D, A97V, T105A, and V205L substitutions) enhanced the 

hydrolytic activity of AmpC into an extended spectrum AmpC cephalosporinases activity, ESAC 

(Rodriguez-Martinez et al, 2009). On the other hand, mutations in active site residues results in 

decreased β-lactamase activity (Jacoby, 2009). Similarly, K67R mutant displayed lower β-

lactamase activity and minimal conformational changes compared to the wild type AmpC (Chen et 

al, 2009). Conversely, all these missense SNPs must indicate adaptations to change the global 

structure to adapt the active site to new substrates, without changes on the essential and well 

conserved catalytic residues. 

In Pseudomonas transformants of pUCP-F3 and pUCP-F4, the β-lactamase activity of 

AmpC-F4 was 10-times higher than that of AmpC-F3, which may be due to the low expression, 

instability or the misfolding of this second form (table 4.3; fig. 4.6). Although AmpC-F4 was 
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detected by SDS-PAGE and western blot at a very high level in E. coli Bl21(DE3) and very low 

level in all PAO1 strains , the bacterial resistance of Pae transformants was largely higher than 

those of BL21(DE3) as seen by resistance of all Pae/pUCP-F4 transformants (table 4.6) to FOX, 

AMC, CRO and TIC in comparison of resistance of Bl21(DE3)/pET-F4 transformants (table 4.5) to 

AMC and moderate resistance to FOX which may be explained by more active and higher AmpC 

folding in homologous PAO1 strains rather than in heterologous Bl21(DE3).  

 

5.2.4. The secondary DD-peptidase activity was clear with AmpC-F3 rather 
than the other studied AmpC forms  

Our data proved basically previous suggestions (Bishop & Weiner, 1992; Hall & Barlow, 2004; 

Joris et al, 1988; Kong et al, 2010; Sauvage et al, 2008) that AmpC can produce DD-peptidase 

activity (EPase and/or CPase) which can be inferred or clearly observed from the following 

observations on the HPLC analysis of PG composition and muropeptides: 1) The DD-EPase activity 

could be deduced from the increase in monomers, anhydromuropeptides and pentapeptides in 

parallel with the decrease in dimers upon AmpC expression in Bl21(DE3)/pET-ampC in vivo with 

most of AmpC forms (table 4.7), and also from in vitro analysis with whole PG of CS109 and 

DV900 with AmpC-F3 form only (table 4.10a). 2) The DD-CPase activity could be inferred from 

the increase in M4 and decrease in M5, D44, D45, T445, D45N and T445N beyond incubation of 

purified AmpC-F3 with the whole DV900-PG (table 4.10b) and the hydrolysis of individual dimeric 

muropeptides, D44 and D45, after incubation with AmpC-F3 (fig. 4.9, 4.10). Our data, also show 

that the produced mature form (AmpC-F3) has the highest β-lactamase activity in vitro (Vmax=100 

µM) which was very high (8-fold or more) compared to the other AmpC forms (table 4.4), also it 

was the only AmpC form having DD-peptidase activity (DD-EPase) in vitro and it had inferred DD-

CPase and DD-EPase in vitro higher than the other forms. These data indicate that the active site in 

AmpC-F3 has high accommodation, folding and flexibility permitting higher binding affinity and 

faster reaction with its β-lactam substrates and also with some PG muropeptides which are 

substrates for LMM-PBPs (DD-peptidases), the enzymes of the PG metabolism which have a close 

structural similarity with AmpC β-lactamases (Hall & Barlow, 2004; Sauvage et al, 2008). On the 

other hand, orthologous of Eco-PBP5 are known as been the main DD-CPases of the different 

bacteria, and it was reported that the mature form of Pae-PBP5 (PAO sPBP5) was produced and 

characterized having both a DD-CPase and wide spectrum β-lactamase activity (Smith et al, 2013). 

That result is in good accordance with our data, and allows highlighting two things; firstly, the 

production of the soluble mature form can display higher activity to its common substrates and can 
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increase the affinity to other secondary or low-affinity substrates. Furthermore, these findings may 

explain that both of class C serine β-lactamases and DD-peptidases have a common ancestor and 

how β-lactamases were evolved from the DD-peptidases (Hall & Barlow, 2004). Our data 

highlighted the other side of AmpC activity and physiological function concerning its ancestor DD-

peptidases (PBPs) which were clustered together in one grouped (COG1680) by phylogenetic 

classification of proteins encoded in complete genomes (Tatusov et al, 2003). 

 

5.2.5. AmpC-F3 crystallization & obstacles on the way! 

Recently, crystal structures of Pae-AmpC in native form and bound to avibactam (non-β-lactam 

inhibitor) and bound to aztreonam (β-lactam monobactam) were developed using vapor diffusion in 

hanging drop setting (Lahiri et al, 2014; Lahiri et al, 2013). These crystal structures showed that 

conserved domains and active site residues of Pae-AmpC comprise amino acids Ser64* (catalytic 

residue), Lys67, Gln120, Tyr150, Asn152, Lys315, Thr316 and Asn346 which are conserved in 

most of AmpC β-lactamases with a little exceptional changes in some amino acids among other 

species (e.g. Asn346, the most variable residue) (Lahiri et al, 2014). In that study, they used pET-9a 

vector for cloning, Bl21(DE3) as a host strain which was grown in auto-inducing medium ZYP-

5052 at 37 °C for 48 hours and for purification they used cationic chromatography and gel filtration 

which is somehow different from our procedure for purification of AmpC-F3. Although at the end 

we had a protein concentration of AmpC-F3 very close to what was used in the former study and 

crystallographers adopted the same techniques used in that work but, unfortunately we did not get 

crystals of AmpC-F3 by the time of submission of this thesis, which may be due to the instability 

and the degradation of this AmpC-F3 form (with poly-His tag). Also, the produced AmpC-F3-TEV 

(without poly-His tag) after TEV protease treatment was insoluble due to unclear reasons, may be 

misfolding, (Costa et al, 2014) and we had to use sarkosyl as ionic solvent for resuspension (Seddon 

et al, 2004), which added another difficulty to AmpC crystallization. His-tag terminal peptide stem 

may affect the protein structure and in turn the formation of protein crystals (Rosano & Ceccarelli, 

2014; Smyth et al, 2003; Terpe, 2003). So, cloning and purification of AmpC-F3 that could produce 

a stable protein form without His-tag would be required. Moreover, 3D structure for AmpC-F3 

would give us a clue for the peptidase activity of this form, and the required adaptation of the active 

site of a β-lactamase for accommodation a muropeptide substrate. 
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5.3. Role of Pseudomonas aeruginosa LMM-PBPs in PG composition, β-lactam 
resistance and ampC regulation in P. aeruginosa 

 

5.3.1. Role of P. aeruginosa LMM-PBPs in cell wall physiology  
 
Previous analyses of the P. aeruginosa cell membrane identified eight proteins able to bind 

H3-benzylpenicillin or I125-ampicillin, (PBP1a, PBP1b PBP2, PBP3, PBP3b PBP4, PBP5 and PBP7) 

and in silico analysis revealed the presence of eight open reading frames annotated as potential 

penicillin-binding proteins (Liao & Hancock, 1997; Song et al, 1998; Weigel et al, 1994). In this 

study we have used fluorescence-labeled antibiotic (Bocillin-FL) to identified PBPs of wild type 

and mutants strains of PAO1 (fig. 4.13, 4.14). PBPs patterns of single and multiple deletion mutants 

correlated perfectly with the loss of the expected PBP for each mutant PBP4 (DacB), PBP5 (DacC) 

and PBP7 (PbpG) with the exception of the two mutants PAO∆dacB and PAO∆dacB∆pbpG which 

had undetected DacC band although it was clearly detected in their corresponding mutants with 

ampC deletion (PAO∆dacB∆ampC and PAO∆dacB∆pbpG∆ampC), respectively. This apparently 

mysterious lost for DacC in these two mutants may be due to their high AmpC production, that 

cleaves the Bocillin-FL lowering the needed concentration for detection, mutations on the dacC 

gene, or low dacC expression. However, we have confirmed by DNA sequencing that there is no 

dacC mutations on these two mutants (PAO∆dacB and PAO∆dacB∆pbpG), and data of PG 

pentapeptide content of these strains, suggest a normal level of DacC (DD-CPase) produced. So, 

most plausible explanation is high production of β-lactamase activity on these mutant strains. 

Nevertheless, it will be interesting more future morphological and physiological studies to pursue 

and to compare the behavior of DacC in these two mutants with their corresponding ampC mutants 

(PAO∆dacB∆ampC and PAO∆dacB∆pbpG∆ampC). Presumably, these data would give information 

on the implication of the protein on important cellular process, as it has been obtained by the 

orthologous PBP in E. coli. These PBPs (DacB, DacC and PbpG) belong to the class C LMM-PBPs, 

type 4, type 5 and type 7, respectively. All PBPs in these subclasses have DD-endopeptidase and/or 

DD-carboxypeptidase. Largest changes in peptidoglycan structure (increase in pentapeptide 

content) were observed for the triple mutant, DacB-DacC-PbpG, with a structure similar to the nine-

PBPs deletion mutant of E. coli, where all DD-endopeptidase and DD-carboxypeptidase activities 

were depleted causing aberrant cellular morphology in E. coli (Vega & Ayala, 2006). So, these 

three PBPs must represent the major endolytic armory of P. aeruginosa. Crystal structure of 

PaePBP5 (DacC) reveals a protein fold that is highly similar to the related E. coli PBP5 and PBP6, 

and also more closely resemble features seen previously only in the class A β-lactamases (Smith et 
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al, 2013). Gram-negative bacteria most often have a major type-5 PBP which is the most abundant 

PBP they produce (Sauvage et al, 2008). The most highly expressed PBP in P. aeruginosa 

membranes is also PBP5 (Noguchi et al, 1979) and as it is also shown in this work. It has been 

recently shown that PBP5 is a DD-carboxypeptidase that preferentially degrades low-molecular-

weight substrates (Smith et al, 2013). In this work we confirm that PBP5 is the major DD-

carboxypeptidase in P. aeruginosa, as evidenced by the fact that of the three single LMM-PBP 

mutants only dacC led significantly increased pentapeptide levels. Moreover, our results indicate 

that DacB plays a significant role as DD-carboxypeptidase when DacC is absent and that the DD-

carboxypeptidase activity of PbpG is only apparent when both, DacC and DacB, are inactivated. On 

the other hand, the peptidoglycan structure of dacB and pbpG single and double mutants indicated 

that P. aeruginosa PBP4 and PBP7 have DD-endopeptidase activity as previously suggested for E. 

coli (Korat et al, 1991). 

No major effect on cell morphology of growth parameters was seen for any of single, double or 

triple mutants (fig. 4.12), suggesting that major changes observed in the peptidoglycan structure do 

not affect significantly the morphology of the cell under laboratory conditions. However in E. coli, 

it was reported that PBP5 inactivation was the only single mutation of LMM PBPs to produce 

aberrant cellular shape, but further inactivation of PBP6 or PBP4 and PBP7 caused more 

deformation in cell morphology (Meberg et al, 2004; Nelson & Young, 2000; Nelson & Young, 

2001). In parallel to our findings within P. aeruginosa (fig. 4.11), it was found in E. coli that 

multiple mutants of all possible LMM PBPs did not affect their growth curves in LB medium at 

37°C and the cells were viable (Denome et al, 1999; Vega & Ayala, 2006). However, the in vivo 

role, and particularly the impact on virulence, of P. aeruginosa LMW PBPs still needs to be 

explored.  

 

 

5.3.2. Role of P. aeruginosa LMM-PBPs in AmpC regulation and β-lactam 
resistance 

It was reported previously that inactivation of Pae-dacB stimulated AmpR-dependent 

AmpC overexpression and β-lactam resistance (Cavallari et al, 2013; Moya et al, 2009); in this 

study, we found that among LMM-PBPs, the only single gene inactivation that triggered AmpC 

overexpression and β-lactam resistance was dacB inactivation but further inactivation of Pae-dacC 

and Pae-pbpG, as combined double and multiple deletions with dacB, led to an enormous increase 

on AmpC expression and in turn higher β-lactam resistance in PAO1 (table 4.12). Also, we found 

that among the constructed double mutants, PAOΔdacBΔdacC was the only one produced AmpC 
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overexpression (about 10-fold higher) and β-lactam resistance higher than the single mutant 

PAOΔdacB, inferring a synergetic role of dacC in AmpC overexpression and β-lactam resistance. 

By the same way, pbpG inactivation in the double mutant PAOΔdacBΔdacC showed a maximal 

AmpC overexpression (about 3-fold higher), suggesting a secondary synergetic effect of pbpG in 

AmpC overexpression and β-lactam resistance. Our data showed that the synergetic behaviors of 

dacC and pbpG in AmpC expression were not helpful for AmpC overexpression without dacB 

inactivation. The increase of AmpC expression beyond FOX induction in the wild type and all 

PAO1 mutants was mainly due to the sensitivity of DacB to FOX as demonstrated in table 4.11. It 

was reported that the increase of anhydro-muropeptides and their binding to AmpR is the main 

effector of AmpC over-expression which also is regulated by the activities of the permeases AmpG 

and AmpP, the amidases AmpD, AmpDh2 and AmpDh3 and the hydrolase NagZ and generates β-

lactam resistance in P. aeruginosa (Balasubramanian et al, 2012; Boudreau et al, 2012; Fisher & 

Mobashery, 2014; Jacobs et al, 1997; Johnson et al, 2013; Lister et al, 2009). Moreover, we found 

that the increase in anhydro-muropeptides was mostly accompanied with DacB inactivation (as 

single and combined forms) during high AmpC expression. Also, our data shows that DacB activity 

(on/off) alone or in addition to the activities of DacC and PbpG are critical for ampC expression in 

PAO1. Also, our results show however that DacC is the major DD-CPase, and that the DacC mutant 

is the only single LMM-PBP mutant producing a significant increase in pentapeptide levels (up to 

4.4-fold higher than wild-type PAO1). Thus, increased PG pentapeptide levels, and neither 

apparently any other effect on peptidoglycan structure (table 4.13), do not explain, at least for P. 

aeruginosa, the major role of PBP4 in AmpC induction. Whether the PBP4 effect is driven by 

significantly increasing periplasmic soluble anhydromuropeptides levels needs still to be explored. 

Nevertheless, our results suggest that increased peptidoglycan pentapeptide levels, explain the 

major role of PBP5 in ampC expression when PBP4 is absent. Indeed, except for the specific effect 

of PBP4, a correlation between peptidoglycan pentapeptide levels and ampC expression was 

documented (Tayler et al, 2010).  

Our data showed that MICs for the antipseudomonal penicillins (piperacillin), 

cephalosporins (cefotaxime, ceftazidime, and cefepime) and monobactams (aztreonam) correlated 

well with ampC expression data (table 4.12); they were significantly increased in the DacB mutant 

and further increased in the DacB-DacC double mutant. On the other hand, unlike for ampC 

expression, β-lactam resistance was not further increased in the triple DacB-DacC-PbpG mutant. 

Besides the obvious effect on resistance driven by the impact on ampC expression, we asked 

whether P. aeruginosa LMM PBPs had a direct effect on β-lactam susceptibility. For this purpose, 

we analyzed the β-lactams MICs for all combinations of LMM PBPs and AmpC mutants. As 
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expected (Livermore, 1992; Zamorano et al, 2011), the inactivation of AmpC in wild-type PAO1 

produced a marked increase in the susceptibility of strong AmpC-inducer β-lactams, including the 

carbapenems, cefoxitin and ampicillin, whereas the MICs of weak AmpC-inducer β-lactams 

(antipseudomonal penicillins, cephalosporins and monobactams) were not significantly modified. 

Remarkably, the MICs for nearly all β-lactams were lower in the DacC-AmpC mutant compared to 

the single AmpC mutant, and this effect was further enhanced in the DacB-DacC-PbpG-AmpC 

mutant, indicating that LMM PBPs, particularly DacC, play a role in the intrinsic level of β-lactam 

resistance in P. aeruginosa. Our results are therefore in agreement with recent studies suggesting 

that E. coli LMM PBPs, particularly PBP5, play a role in intrinsic β-lactam resistance (Sarkar et al, 

2010; Sarkar et al, 2011). Purified E. coli PBP5 failed to show significant β-lactamase activity and 

therefore it was concluded that the role of this PBP in intrinsic β-resistance could be consequence of 

β-lactam trapping. However, interestingly, the recently crystalized P. aeruginosa PBP5 does show 

certain broad spectrum (including penicillins, cephalosporins and carbapenems) β-lactamase 

activity (Smith et al, 2013). Therefore, the observed effect of PBP5 in P. aeruginosa intrinsic 

resistance is expected to result from both, trapping and hydrolysis of β lactams. 

We found that the carbapenems IMI and MER were resistant to hydrolysis by the wild type 

AmpC as the observed MICs were 0.5 µg/ml for both of them in both of the wild type PAO1 and in 

the triple mutant PAOΔdacBΔdacCΔpbpG although their corresponding AmpC expression was 347 

and 5742, respectively, under induction conditions (table 4.12). Resistance to carbapenems by 

AmpC overproduction in P. aeruginosa requires additional resistance mechanisms efflux pump 

overproduction, decreased OprD, and/or production of a class A/class B carbapenemase (Lister et 

al, 2009; Rodriguez-Rojas et al, 2013). Also, it was reported that OprD inactivation alone is known 

to result in clinical imipenem resistance which supports the previous idea of the ability of combined 

resistance mechanisms to develop carbapenems resistance (Gutierrez et al, 2007).   

 

5.4. Activities of DacB, DacC and PbpG are not essential for recovery of rod shape 
in imipenem-induced spheroplasts in P. aeruginosa 

It was described that imipenem-supplemented media caused transition of the rod shaped 

wild type P. aeruginosa cells into cell wall-defective spherical shaped cell (Monahan et al, 2014).  

We achieved the same results with the wild type PAO1 and the mutant PAO∆dacB∆dacC∆pbpG 

∆ampC which were able to produce round cells (spheroplasts) after 4 hours incubation with IMI, 

and both of them were able to recover their normal rod shape after elimination of IMI, inferring that 

activities of DacB, DacC and PbpG are not necessary for recovery of rod shape as shown by 

microscopic examination (fig 4.15). Similarly, all other single and combined Pae mutants of dacB, 
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dacC, pbpG and ampC that were constructed in this study displayed the same behavior in the ability 

of IMI-induced spheroplasts formation and rod shape recovery upon growth in imipenem-free 

media (data not shown). By comparing the PG composition of round cells and the recovered rod 

shaped ones in the wild type and in the final quadruple mutant, we found that PG of round cells 

contained unusual high amount of M3, which may be related to the high amount of 

anhydromuropeptides and shorter PG length. Also we found that after recovery of rod shape, PG 

contained a normal ratio of M3 and other muropeptides with normal PG length (table 4.15a, 4.15b). 

Also, we found that analysis of PBPs pattern in round cells by Bocillin-FL of both the wild type 

PAO1 and PAO∆ampC displayed loss of bands of PBP1a, PBP1b, PBP2, DacB and PbpG with low 

intensity of DacC, although they were detected in their recovered rod cells (fig 4.16). We found that 

imipenem was able to block these PBPs in vitro which may explain that they were also blocked in 

the IMI-induced spheroplasts in vivo. Inhibition of PBPs by imipenem caused spherophast 

formation due to blocking of PG synthesizing machinery and degradation of their cell wall. PG of 

these Pae spheroplasts was less than one tenth when compared with normal untreated cells and had 

large increase in anhydromuropeptides (PG glycan chains ends, susceptible of degradation). 

Moreover, it has an increase in M3 which can be explained by the activity of increased LD-CPase 

which are produced when cell walls are degraded (Korza & Bochtler, 2005). Also the decrease in 

pentapeptides and the increase in PG crosslinking can be explained by blocking of DD-CPase 

activity (i.e. DacC) and the DD-EPase activity (i.e. DacB and PbpG), respectively. Also, the 

decrease in pentapeptides (PG donors for transpeptidation reaction) resulted in low values of PG 

length in spheroplasts. After elimination of imipenem from the growth medium Pae cells, PG 

synthesizing machinery was back to work normally and was able to re-build the rod shaped PG and 

so Pae cells were able to revert into shape again. Also, in PG of the recovered Pae cells, M3 

returned to its normal level because it was used for the construction of new PG subunits (Johnson et 

al, 2013). It was reported that inactivation of PBP2 in E. coli by amdinocillin (β-lactam antibiotic) 

led to inhibition of cell elongation and the formation of osmotically stable round cells with one half 

less in their murein content when compared with normal cells (de Pedro et al, 2001) which is in 

according to what is described for inhibition of PBP2 by mecillinam in stimulation of round cell 

formation in both of E. coli and P. aeruginosa (Noguchi et al, 1979). Similarly, it was reported that 

inactivation of PBP2 and PBP3 by mecillinam and aztreonam, respectively, produced enlarged 

spheres however inactivation of both of PBP1a and PB1b was lethal in E. coli (Denome et al, 1999). 

Likewise, it was reported that carbapenems (e.g. imipenem, meropenem) showed strong affinities to 

PBP2 of E. coli and P. aeruginosa, PBP1a of E. coli and PBP1b of P. aeruginosa (Yang et al, 

1995).  
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It was settled that PBP1a, PBP1Bb and PBP2 are responsible for PG elongation and 

insertion of newly formed PG units into the old PG network; PBP3 is responsible mainly for cell 

division, and LMM-PBPs (DacB, DacC and PbpG) participate in PG maturation and recycling 

(Sauvage et al, 2008). In E. coli, it was identified that PBP1b, PBP5 and PBP6 are among eight 

proteins identified for regeneration of normal rod shape from E. coli spheroplasts (formed by the 

effect of lysozyme) which failed in the recovery process by loss of these proteins (Ranjit & Young, 

2013; Weiss, 2013). In that study, it was demonstrated that E. coli spheroplasts of PBP1b mutant 

were unable to recover the rod shape but rather become enlarged and lysed; spheroplasts of mutants 

of PBP5 and PBP6 displayed recovery of defective shapes however spheroplasts of mutant PBP4 or 

PBP7 regenerated their normal rod shape  (Ranjit & Young, 2013). In our study, we described that 

combined deletions of dacB, dacC and pbpG did not remarkably affect morphology of P. 

aeruginosa and mutants still retain their rod shape. Consequently, we can conclude that the 

formation of cell wall-defective spheroplasts in Pseudomonas aeruginosa after imipenem induction 

was due to the inhibition of PBPs, especially HMM-PBPs (PBP1a, PBP1b, PBP2 and PBP3). Also, 

the ability of spheroplasts of the quadruple mutant PAO∆dacB∆dacC∆pbpG∆ampC to revert into 

rod shape confirms that DacB, DacC and PbpG are dispensable and unessential for this reversion 

process in Pseudomonas aeruginosa.   
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6. Conclusions  

 

 The single amino acid mutations P243→L and I51→T, in AmpC-F1:C3 and AmpC-

F1:C6, respectively, caused a large decrease β-lactamase activity. 

 AmpC-F4 (precursor form) produced higher β-lactamase activity in vivo, most 

probably due to correct localization, while AmpC-F3 (mature form) produced β-

lactamase activity of 8-fold higher than AmpC-F4 in vitro.  

 AmpC β-lactamase in Pseudomonas can comprise a secondary DD-EPase or DD-

CPase activity. 

 The LMM-PBPs DacB and PbpG are more sensitive to FOX (ampC inducer) than 

DacC. 

 DacC is the main DD-CPase in P. aeruginosa, and DacB and PbpG were suggested 

to elicit some DD-CPase in the mutant PAOΔdacC. 

 Fluctuations in DacB activity are critical for ampC regulation. 

 dacB inactivation was the only single mutation of LMM-PBPs found to trigger 

AmpC overproduction and β-lactam resistance. 

 Inactivation of both of dacC and pbpG can stimulate large AmpC overexpression 

only when dacB was inactivated (synergetic effect). 

 Activities of DacB, DacC and PbpG are not essential for recovery of rod shape in 

imipenem-induced P. aeruginosa spheroplasts. 
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Conclusiones 
 

 Las mutaciones individuales de aminoácido P243 → L y I51 → T, en AmpC-

F1: C3 y AmpC-F1: C6, respectivamente, causaron una gran disminución de la 

actividad β-lactamasa. 

 AmpC-F4 (forma precursora) produjo una mayor actividad de β-lactamasa en 

vivo, probablemente debido a su correcta locaclización, mientras que AmpC-

F3 (forma madura) produjo una actividad β-lactamasa 8 veces superior a 

AmpC-F4 in vitro. 

 AmpC en Pseudomonas puede tener una actividad DD-EPase/DD-CPase 

secundaria. 

 Las LMM-PBPs DacB y PbpG son más sensibles a FOX (inductor de ampC) 

que DacC.  

 DacC es la enzima DD-CPase principal en P. aeruginosa, mientras que DacB y 

PbpG pueden compensar la pérdida de actividad DD-CPase en el mutante 

PAOΔdacC  

 Las fluctuaciones en la actividad enzimática de DacB son críticas para la 

regulación de ampC. 

 La inactivación de dacB fue la única mutación individual de LMM-PBPs capaz 

de desencadenar la sobreproducción de AmpC y la resistencia a β-lactámicos. 

 La inactivación de los genes dacC y pbpG pueden estimular la sobreexpresión 

de AmpC sólo cuando dacB fue simultáneamente inactivado (efecto sinérgico). 

 Las actividades de DacB, DacC y PbpG no son esenciales para la recuperación 

de la forma bacilar a partir de esferoplastos de P. aeruginosa inducidos por 

imipenem. 
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Addendum 
                                  

 
 

Figure A.1. Colony-PCR amplifications of the different ampC forms displaying their 

DNA fragment sizes. 
 Agarose gel electrophoresis shows DNA sizes of ampC-F4, ampC-F4:C3, ampC-F4:C6, ampC-F2 

and ampC-F3which were amplified by colony-PCR of Bl21(DE3) harboring pET-F4, pET-F4:C3, 

pET-F4:C6, pET-F2 and pET-F3, respectively. For simplification, only colony-PCR confirmation of 

some ampC forms were shown while all other ampC were confirmed by the same way in 

transformants of Bl21(DE3), DV900(DE3) and PAO1 strains; where, ampC-F1 and ampC-F4-TEV 

displayed a very close size and migration as shown by ampC-F4; ampC-F1:C3 and ampC-F1:C6 

displayed a very close size and migration as shown by ampC-F4:C3 and ampC-F4:C6, respectively. 

All of ampC-F3:C3, ampC-F3:C6 and ampC-F3-TEV displayed a very close size and migration as 

shown by ampC-F3. Colony PCR of ampC-F1, ampC-F4-TEV, ampC-F1:C3, ampC-F1:C6, ampC-

F3:C3, ampC-F3:C6 and ampC-F3-TEV were amplified from the clones pET-F1, pET-F4-TEV, 

pET-F1:C3, pET-F1:C6, pET-F3:C3, pET-F3:C6 and pET-F3-TEV, respectively, in E. coli; while 

we cloned only the two forms ampC-F3 and ampC-F4 in PAO1 strains using the vectors pUCP-F3 

and pUCP-F4, respectively. All of these clones have been confirmed by DNA sequencing.    



Addendum 
 

162 | P a g e  
 

Alaa Ropy_Doctoral Thesis 
 

 
 

 
Figure A.2. Confirmation of the constructed pbpG and dacC gene-specific mutagenesis 

vectors.  

(A) Verification of the constructed pbpG gene-specific mutagenesis vector by colony PCR 

and agarose gel electrophoresis: lane 1: DNA Ladder (SmartLadder); lane 2: PCR 

negative control; lane 3: pbpG-PCR positive control; lane 4: colony PCR of E coli XL1 

havepEXTΔpbpG::Gm vector. (B) Confirmation of the constructed dacC gene-specific 

mutagenesis vector by treatment with restriction enzymes: lane 1: 100bp DNA Ladder; lane 

2: pEXTΔdacC::Gm circular vector; lane 3: pEXTΔdacC::Gm cleaved with Hind III; lane 

4: pEXTΔdacC::Gm cleaved with HindIII, EcoRI and BamHI.  All colony PCR and enzyme 

digestions were visualized by 1% agarose gel electrophoresis.  
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Figure  A.3. Verification of the constructed mutants PAOΔpbpG, PAOΔdacB ΔpbpG 

and  PAOΔpbpGΔampC by colony PCR and agarose gel electrophoresis.  
(A) Confirmation of recombination for PAOΔpbpG::Gm and PAOΔdacBΔpbpG::Gm constructs: 

lanes 1, 2 and 5: not PAOΔpbpG::Gm genotype; lanes 3 and 4: have PAOΔpbpG::Gm genotype; 

lane 6: PCR negative control; 7: PCR positive control for PAO1 pbpG; lane 8: DNA Smart Ladder; 

lanes 9, 10, 12, 13, and 14: not PAOΔdacBΔpbpG::Gm genotype; lanes 11 and 15: have 

PAOΔdacBΔpbpG::Gm genotype. (B) Confirmation of elimination of Gm resistance cassette; lanes 

1→6: have PAOΔpbpG genotype; lanes 7 and 8: pbpG-PCR negative and positive controls; lane 9: 

smart Ladder; lanes 10→15: have PAOΔdacBΔpbpG genotype. (C) Confirmation of recombination 

for PAOΔampC ΔpbpG::Gm construct; lane 1:  λ HindIII DNA ladder. Lane 2: pbpG-PCR positive 

control; lane 3: PCR positive control for recombination using   pEXTΔpbpG::Gm; lanes 6→13:  

have  PAOΔampCΔpbpG::Gm genotype; (D) Confirmation of elimination of Gm resistance cassette 

from PAOΔampCΔpbpG::Gm; lane 1: λ HindIII DNA ladder; lanes 2 and 3: pbpG-PCR negative 

and positive control, respectively; lane 4:  PCR positive control for recombination using   

pEXTΔpbpG::Gm; lanes 5 and 6: have PAOΔpbpG ΔampC genotype.   
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Figure  A.4. Verification of the constructed mutants PAOΔdacCΔampC, 

PAOΔdacCΔpbpG, PAOΔdacC, PAOΔdacBΔdacC and PAOΔdacBΔdacCΔpbpG.  

(A) Confirmation of recombination; lanes 1→7:  havePAOΔampC ΔdacC::Gm genotype; 

lanes 8, 23, 34 and 46: dacC-PCR positive control; lanes 9→15:  have PAOΔdacC::Gm 

genotype; lanes 16 and 22:  have PAOΔpbpGΔdacC::Gm genotype; lanes 17→21: not 

PAOΔpbpGΔdacC::Gm genotype; lanes 24 and 28: have PAOΔdacBΔdacC::Gm genotype; 

lanes 25→27 and 29→31: not PAOΔdacBΔdacC::Gm genotype; lane 32: 100 bp DNA 

ladder; lanes 33 and 45: PCR negative control; lanes 35 and 37→43: have 

PAOΔdacBΔpbpGΔdacC::Gm genotype. (B) Confirmation of removal of Gm resistance 

cassette; lanes 1 and 29: 100 bp DNA ladder; lanes 2→6: have PAOΔdacCΔampC 

genotype; lanes 7→11: have PAOΔdacC genotype; lanes 12→15: have PAOΔdacCΔpbpG 

genotype; lanes 16 and 17: dacC PCR positive control; lanes 18→24: have 

PAOΔdacBΔdacCΔpbpG genotype; lanes 25→28:  have PAOΔdacBΔdacC genotype.      
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Figure A.5. Verification of the constructed mutants PAOΔdacBΔampC and 

PAOΔdacBΔpbpGΔampC. 

(A) Confirmation of recombination of PAOΔdacBΔampC::Gm construct; lane 1: 100 bp 

DNA ladder; lane 2 and 18: recombination PCR control positive using   

pEXTΔampC::Gm; lane 3: ampC PCR positive control; lanes 4→16:  Not 

PAOΔdacBΔampC::Gm genotype; lane 17: has PAOΔdacBΔampC::Gm genotype; lanes 19 

and 22: have PAOΔdacBΔpbpGΔampC::Gm genotype. (B) Confirmation of removal of Gm 

resistance cassette; lane 1: 100 bp DNA ladder; lanes 3 and 4: have PAOΔdacBΔampC 

genotype; lanes 5 and 6: ampC PCR positive control; lanes 7, 8, 10, 11, and 13: have 

PAOΔdacBΔpbpGΔampC genotype.  
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Figure  A.6. Verification of the constructed mutants PAOΔdacBΔdacCΔampC, 

PAOΔdacCΔpbpGΔampC and PAOΔdacBΔdacCΔpbpGΔampC.  

(A) Confirmation of recombination in PAOΔdacCΔpbpGΔampC::Gm and 

PAOΔdacCΔpbpGΔ ampC::Gm constructs; lanes 1 and 27: ampC PCR positive control; 

lane 2: recombination PCR positive control using   pEXTΔampC::Gm; lanes 3→7: have 

PAOΔdacBΔ dacCΔ ampC::Gm genotype; lanes 11 and 18: λ HindIII DNA ladder; lanes 12 

and 16: have PAOΔdacCΔpbpGΔampC::Gm genotype; lanes 19→25: have 

PAOΔdacBΔdacCΔpbpGΔampC::Gm genotype. (B)  Confirmation of removal of Gm 

resistance cassette; lane 1: PCR negative control; lanes 2 and 20: recombination PCR 

positive control using   pEXTΔampC::Gm; lanes 3 and 19: ampC PCR positive control; 

lanes 4, 10, 18 and 26:  λ HindIII DNA ladder; lanes 5→9: have PAOΔdacBΔdacCΔampC 

genotype; lanes 13→15 and 17: have PAOΔdacCΔpbpGΔampC genotype; lanes 21 and 24: 

have PAOΔdacBΔdacCΔpbpGΔampC genotype. All colony PCR amplifications were 

visualized by agarose gel electrophoresis.                  
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Figure  A.7. Verification of the constructed mutant PAOΔdacBΔpbpGΔampC ΔdacC.   

(A) Confirmation of recombination in PAOΔdacBΔpbpGΔampCΔdacC::Gm construct; lane 

1: λ HindIII DNA ladder; lanes 2→11: have PAOΔdacB ΔpbpGΔampCΔdacC::Gm 

genotype. (B) Confirmation of removal of Gm resistance cassette; lanes 1 and 8: dacC-

PCR positive control; lane 2: λ HindIII DNA ladder; lanes 3→7: have 

PAOΔdacBΔpbpGΔampCΔdacC genotype.                           
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