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Abstract Yeasts, widely distributed across the Earth,

have successfully colonized cold environments despite

their adverse conditions for life. Lower eukaryotes play

important ecological roles, contributing to nutrient recy-

cling and organic matter mineralization. Yeasts have

developed physiological adaptations to optimize their

metabolism in low-temperature environments, which affect

the rates of biochemical reactions and membrane fluidity.

Decreased saturation of fatty acids helps maintain mem-

brane fluidity at low temperatures and the production of

compounds that inhibit ice crystallization, such as anti-

freeze proteins, helps microorganisms survive at tempera-

tures around the freezing point of water. Furthermore, the

production of hydrolytic extracellular enzymes active at

low temperatures allows consumption of available carbon

sources. Beyond their ecological importance, interest in

psychrophilic yeasts has increased because of their

biotechnological potential and industrial uses. Long-chain

polyunsaturated fatty acids have beneficial effects on

human health, and antifreeze proteins are attractive for

food industries to maintain texture in food preserved at low

temperatures. Furthermore, extracellular cold-active

enzymes display unusual substrate specificities with higher

catalytic efficiency at low temperatures than their

mesophilic counterparts, making them attractive for

industrial processes requiring high enzymatic activity at

low temperatures. In this minireview, we describe the

physiological adaptations of several psychrophilic yeasts

and their possible biotechnological applications.
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Introduction

Microorganisms inhabiting extreme environments meet a

variety of stressful and changing environmental conditions

that challenge their optimal development. To successfully

proliferate under these extreme conditions, microorganisms

have evolved several immediate responses and long-term

adaptation mechanisms. A large proportion of our planet

([80 %) experiences temperatures below 5 �C, including
areas such as deep oceans, glaciers, and polar regions, and

microorganisms that colonize these environments play

important ecological roles (Russell 1990; Margesin et al.

2007).

At present, these microorganisms are referred to as

psychrophilic or psychrotolerant (also cold-tolerant or

psychrotrophic), differing in that psychrophiles grow faster

at 15 �C or below and are unable to grow above 20 �C
(Margesin et al. 2007). To overcome the challenges of low

temperatures that affect the rates of biochemical reactions

and the viscosity of their aqueous environment, these

microorganisms have adapted their cellular processes to

cold; furthermore, they synthesize cryoprotectant com-

pounds such as trehalose and antifreeze proteins (D’Amico

et al. 2006; Margesin et al. 2007; Rossi et al. 2009).
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Despite the suggestion that yeasts may be better adapted to

low temperatures than bacteria (Shivaji and Prasad 2009),

many studies have focused on bacteria; however, the

number of reports describing the isolation of yeasts from

cold environments is increasing (Guffogg et al. 2004;

Gilichinsky et al. 2005; Russell 2006; de Garcia et al. 2007;

Turchetti et al. 2008; Branda et al. 2010; Pathan et al. 2010;

Thomas-Hall et al. 2010; Turchetti et al. 2011; Carrasco

et al. 2012; de Garcia et al. 2012; Zhang et al. 2012; Singh

et al. 2013). Considering that yeasts provide the benefits of

single-cell fermentations and there are a large number of

genetic tools to study and manipulate them, psychrophilic

and psychrotolerant yeasts have attracted the attention of

scientists for their potential application in various indus-

tries. In this minireview, we discuss three major ‘‘cold-

loving’’ microorganism adaptations, focusing on yeasts,

and their possible applications.

Membrane fluidity

Membranes compartmentalize biochemical reactions

within the cell, forming a system that needs to keep its

dynamism in changing environments for proper function.

The well-established fluid mosaic model of the cell mem-

brane (Singer and Nicolson 1972) describes the membrane

as a liquid-crystalline lipid bilayer with embedded proteins.

This structure is one of the primary cell protection barriers

that separates the contents of the cytoplasm from the

extracellular environment. Keeping the fluidity of the

membrane is essential for its proper function, and organ-

isms restructure their membrane lipid composition in

response to environmental changes to keep lipids in a

lamellar crystalline phase (Gunde-Cimerman et al. 2014).

By modulating lipid composition it is possible to counter-

act the decrease in membrane fluidity and to adapt to low

temperatures. Among the most common changes across

different microbial phylogenetic groups to modulate flu-

idity are to decrease the saturation of fatty acids (FA) and

to decrease the average length of FA chains (Russell 2008).

In addition to FAs, sterols are essential structural and

regulatory lipids in eukaryotic cell membranes that affect

their fluidity, with ergosterol being the principal sterol in

yeasts. Sterols intercalate across the FA chains, generally

stabilizing and strengthening the membrane lipid bilayer

(Russell 2008) and having a condensing effect if lipids are

in a liquid crystalline state or a liquefying effect if they are

in a gel state (Gunde-Cimerman et al. 2014). Even though

the sterol composition does not typically change with

temperature, a decrease in the relative proportion of sterols/

phospholipids is an important feature that increases mem-

brane fluidity in eukaryotic microorganisms at lower tem-

peratures (Russell 2008).

The degree of saturation in FAs is one of the most

studied cold adaptation responses (Gunde-Cimerman et al.

2014). The proportion of unsaturated FAs in several psy-

chrophilic yeasts can reach up to 50–90 % of the total FA

composition (Shivaji and Prasad 2009). Unsaturated FAs

include monounsaturated (MU) and polyunsaturated (PU)

FAs, the latter containing more than one double bond at the

aliphatic chain. Rossi et al. (2009) studied the FA com-

position of yeast strains representative of 12 species, which

were classified as obligate psychrophiles and facultative

psychrophiles (strains from cold habitats), and mesophiles

(strains from temperate habitats), according to their origin

and ability to grow at 4, 18 and 30 �C. In all the yeasts,

only linear FAs were found at all the temperatures analyzed

and about 97 % of these FAs had a chain length of 14–18

carbon atoms. Interestingly, the proportion of C18:1 and

C18:2 FAs was significantly higher in both groups of

psychrophiles than in the group of strains from temperate

habitats when cultured at 4 �C, and the highest proportion

of C18:3 was found in the obligate psychrophiles. Both

psychrophilic groups displayed a higher proportion of

PUFAs than the temperate group, which had a significantly

higher content of MUFAs. Finally, the PUFA content in the

facultative psychrophiles group decreased and the MUFA

content increased as the growth temperature increased from

4–18 or 30 �C, a trend that was not observed among the

strains from temperate habitats. In a similar study, the FA

composition was analyzed in Antarctic and non-Antarctic

yeasts, finding that in general, C18:2 and C18:3 were less

represented in the non-Antarctic yeasts and absent in

Saccharomyces cerevisiae (Bhuiyan et al. 2014). In

agreement with these results, examples of high levels of

PUFAs in psychrophilic yeasts (McMurrough and Rose

1973), yeasts isolated from Antarctic ecosystems (Thomas-

Hall and Watson 2002; Thomas-Hall et al. 2002; Contreras

et al. 2015) and Patagonian cold-adapted yeasts (Libkind

et al. 2008) have been reported.

The production of C18 FAs could be required for

introducing additional double bonds by D12 and D15
desaturases (Rossi et al. 2009). Among PUFAs, the n-6

(omega 6) and n-3 (omega 3) FA families are biologically

relevant and essentials to mammals. Linoleic acid

(18:2D9,12) and alpha-linolenic acid (18:2D9,12,15) are the

precursors of the omega-6 and omega-3 families, respec-

tively (Warude et al. 2006); therefore, these FAs and some

of their elongation products, are essential nutrients for

mammals (De Caterina 2011).

The demand for PUFAs is increasing (Warude et al.

2006), with fish oils being one of the most important

sources; however, there are several concerns about fish oils.

These include heavy metal pollution of marine ecosystems

causing accumulation in fish (a hazard to human health),

the undesirable fishy smell and taste that remain after
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PUFA extraction from fish oils, and the complex mixture of

FAs in fish oils that may have antagonistic effects (Abd El

Razak et al. 2014). Microbial oils are attractive alternative

sources of PUFAs (Ratledge 2004), and according to

experimental evidence, psychrophilic microorganisms (in-

cluding yeasts) may be promising sources of these

metabolites.

Antifreeze proteins

Antifreeze proteins (AFPs) or ice-binding proteins (IBPs)

were first discovered in Antarctic fishes (DeVries and

Wohlschlag 1969), and later in bacteria, fungi, and plants

(Duman and Mark 1993), microalga (Jung et al. 2014) and

arthropods (Hawes et al. 2011). This kind of proteins have

important functions in organisms that must tolerate freez-

ing temperatures, as they lower the freezing point of a

solution without affecting its melting point (thermal hys-

teresis, TH) and inhibits ice crystallization (Davies et al.

2002; Bang et al. 2013). In microorganisms that inhabit

environments covered with ice, the secretion of IBPs

probably helps in retention of a liquid environment sur-

rounding the cells and maintains water channels necessary

for nutrients fluxes, while still allowing the attachment of

the microorganism to ice (i.e., to form biofilms) (Davies

2014). The mechanisms by which AFPs exert their effects

may be variable because of the diversity of protein struc-

tures described as having this property (Sharp 2011; Davies

2014; Todde et al. 2015).

Reports describing AFPs from yeasts are far less com-

mon than reports involving other organisms. In one study

looking at a freezeing-tolerant Rhodotorula svalbardensis

sp. nov. isolated from Arctic cryoconite holes at Ny-Ale-

sund, the presence of AFPs was suggested by the formation

of hexagonal ice crystal structures in broth culture (Singh

et al. 2014). High TH and inhibition of ice recrystallization

properties were detected in culture filtrates of the psy-

chrophilic yeast Glaciozyma antarctica and, according to

genomic data, a cDNA encoding a probable 177-residue

AFP was found. This cDNA was expressed in Escherichia

coli, obtaining a recombinant protein with antifreeze

properties (Hashim et al. 2013). The Arctic yeast Leu-

cosporidium sp. secretes an IBP of about 26.8 kDa, whose

deduced amino acid sequence has high identity with AFPs

from fungi, diatoms and bacteria (Lee et al. 2010).

Considering their protective effect that prevents large

ice formation and leakage of ions from the membranes, the

obvious application of antifreeze proteins is as protecting

agents in processes that involve the storage of different

kinds of cells at low temperatures. The use of 0.4 and

0.8 mg/ml of the recombinant LeIBP (expressed in Pichia

expression systems from Leucosporidium sp. AY30)

together with 40 % glycerol, showed a cryoprotective

effect on red blood cells (Lee et al. 2012) and successfully

cryopreserved the marine diatom Phaeodactylum tricor-

nutum (Koh et al. 2015). In food storage at low tempera-

tures, AFPs contribute to preserve the food texture, reduce

cellular damage, and minimize the loss of nutrients (Ven-

ketesh and Dayananda 2008).

Finally, the expression of an AFP from Ixodes scapu-

laris in transgenic flies and mice, increased the Staphylo-

coccus aureus infection resistance, raising a new potential

application field for antifreeze proteins (Heisig et al. 2014).

Extracellular hydrolytic enzymes

As in all environments, yeast inhabiting cold regions must

be able to assimilate different available carbon sources,

contributing to nutrient recycling and organic matter min-

eralization. Psychrophiles and psychrotolerant organisms

have developed the ability to degrade a wide range of

polymeric substances by producing extracellular hydrolytic

enzymes. These ‘‘cold-adapted’’ or ‘‘cold-active’’ enzymes

have higher catalytic efficiencies than their mesophilic

counterparts at temperatures below 20 �C and display

unusual substrate specificities (Gerday et al. 2000), making

them attractive for industrial processes requiring high

enzymatic activity at low temperatures. In addition,

because of their heat lability, the use of cold-adapted

enzymes facilitates their specific inactivation by moderate

heat treatment when required (Margesin and Feller 2010).

Examples of the most used cold-adapted enzymes

include—among others—amylases, cellulases, invertases,

proteases and lipases, which are used in food, biofuel, and

detergent industries (Buzzini et al. 2012; Burhan et al.

2014).

Proteases are applicable in the laundry, chemical, food

and medical industries (Anwar and Saleemuddin 1998).

However, studies characterizing cold-active extracellular

proteases from psychropilic yeasts are rather scarce com-

pared with those from bacteria or filamentous fungi. An

alkaline protease was purified and characterized from the

marine yeast Aureobasidium pullulans, which showed an

optimal activity at pH 9.0 and 45 �C (Ma et al. 2007). A

protease from the psychrophilic yeast G. antarctica was

expressed in Pichia pastoris, and the recombinant enzyme

was successfully secreted into the culture medium reaching

a production of 28.3 U/ml and showing a maximum

activity at 20 �C (Alias et al. 2014). The number of reports

of protease activity, with no major enzyme purification or

characterization, from yeasts inhabiting cold environments

has increased. Protease activity was described in six

unidentified yeasts isolated from alpine glacier cryoconite

samples (Margesin et al. 2003); in psychrotolerant Cr.
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gilvescens, Leuconeurospora sp., Mrakia gelida and

Wickemanomyces anomalus isolated from subantarctic

regions (Carrasco et al. 2012); in Leucosporidiella sp. and

L. creatinivora isolated from Antarctic marine sponges

(Vaca et al. 2013); in yeast belonging to Leucosporidiella,

Udeniomyces, Mrakia and Mrakiella isolated from glacial

ice of the Argentinian Patagonian Andes (de Garcia et al.

2012); and in A. pullulans, Cryptococcus adeliensis, C.

magnus, C. victoriae, Rhodotorula mucilaginosa and

Rhodosporidium diobovatum isolated from an oligotrophic

lake in Argentinian Patagonia (Brandao et al. 2011).

Specifically, casein degradation was described in yeasts

identified as Rhodotorula glacialis, Mrakia psychrophila

and Cryptococcus gastricus, which were isolated from

sediments from small puddles in the vicinity of the Arctic

Midre Lovénbreen glacier (Pathan et al. 2010).

Cold-active lipases may be used as additives in deter-

gents for cold washing, baking, cheese manufacturing, and

meat tenderizing; in environmental bioremediations and

biotransformation; and in molecular biology (Joseph et al.

2008). The potential to remove milk fat BOD5 in activated

sludge was described for the yeast Mrakia blollopis, iso-

lated from an algal mat of sediments from the Naga-like

lake in Skarvsnes in East Antarctica, and the degradation of

milk fat in wastewater was performed by a lipase (Tsuji

et al. 2013b). A novel cold-active lipase from Candida

albicans with optimal activity at 15–25 �C and pH 5–6,

was expressed in P. pastoris and displayed activity toward

triacylglycerols such as olive oil and sunflower oil that

increased in the presence of Zn2? (Lan et al. 2011). A

lipase enzyme from Cryptococcus sp. MLB-24 isolated

from ice cores of the Arctic Midre Lovénbreen glacier at

Svalbard, displayed the highest activity at 40 �C and pH

7.0 (Singh et al. 2013). Lipase activity has also been

described in Cr. gilvescens, Cr. victoriae, D. fristingensis,

Leuconeurospora sp., Rh. larynges and W. anomalus

(Carrasco et al. 2012). Several yeasts and fungi isolates

including Cryptococcus victoriae, Trichosporon pullulans

and Geomyces pannorum, showed multiple enzymatic

activities including lipase, cellulase and gelatinase, with

higher activities at 4 and/or 20 �C (Loperena et al. 2012).

Cold-adapted chitinases have many potential applications,

like processing chitin-rich wastes at low temperatures, or the

biocontrol of phytopathogens in cold environments or microbial

spoilage of refrigerated food. Chitinase activity was described in

Antarctic yeast isolates D. fristingensis, Leuconeurospora sp.,

Metschnikowia sp., and Sporidiobolus salmonicolor (Carrasco

et al. 2012). A cold-adapted chitinase from G. antarctica that

exhibited optimumactivity at 15 �CandpH4.0was expressed in

P. pastoris, and its activity increased in presence of K?, Mn2?

and Co2? (Ramli et al. 2011).

Cellulose, the largest source of renewable energy on the

planet, is hydrolyzed by cellulases (Kasana and Gulati

2011). These enzymes are useful in food production,

environmental remediation, fuel production and the laun-

dry industry (Kasana and Gulati 2011). Currently, most of

the cellulases used in industry are produced by fungi and

have an optimal temperature at 50 �C (Kádár et al. 2004).

Cellulase activity has been described in yeasts Cr. laurentii

and Cr. nemorosus (Gomes et al. 2015), Tetracladium

(Abdullah 1989), in Mrakia species isolated from Arctic

puddles (Pathan et al. 2010), in Cr. victoriae, D. fristin-

gensis, Leuconeurospora sp., M. blollopis and M. psy-

chrophila, isolated from sub-Antarctic region (Carrasco

et al. 2012).

Amylases are comprised of three groups of enzymes: a-
amylase, b-amylase and c-amylase, which-despite struc-

tural and catalytic differences-all hydrolyze a-glucosidic
bonds in starch (Vihinen and Mantsala 1989; Janeček and

Ševčı́k 1999; Janeček et al. 2014). a- and b-amylases are

important for alcoholic beverage production and as sup-

plements to detergent during the generation of ethanol

using raw material containing starch; c-amylases are used

in the food, pharmaceutical, and chemical industries (Gu-

rung et al. 2013). Although there are limited data regarding

amylase activity in yeasts, this activity has been described

in Cryptococcus sp. (Iefuji et al. 1994), M. blollopis (Tsuji

et al. 2013a), R. svalbardensis sp. nov (Singh et al. 2014),

Tetracladium setigerum (Abdullah 1989) and species of

Cryptoccoccus, Leuconeurospora, Dioszegia, and Rhodo-

torula (Carrasco et al. 2012). An amylase originally

described in Cr. flavus (Wanderley et al. 2004), was suc-

cessfully expressed in S. cerevisiae, obtaining a recombi-

nant a-amylase with higher activity towards soluble starch

(Galdino et al. 2011).

One of the most important enzymes in the food industry

is phytase, as it is used as a supplement in feed to com-

plement the digestive enzymes of animals and favor the

liberation of inorganic phosphate from phytate (a major

form of phosphorus in plant-based feeds). Furthermore,

phytase is used to improve the nutritional value of cereal

foods (Kumar et al. 2010). Cold-adapted phytases are

appropriate to be used in aquaculture, because of their high

catalytic activity at the animals’ physiological temperature

ranges. Although a phytase purified from a R. mucilaginosa

strain isolated from Antarctic deep-sea sediment has opti-

mal activity at 50 �C, it maintain 85 % of its activity at

37 �C and exhibited a higher activity than its mesophilic

counterparts at 20–30 �C (Yu et al. 2015).

Concluding remarks

Despite the description of psychrophilic or psychrotolerant

yeasts has been done for over one century, research in the

field of cold-adapted yeasts is relatively young. As shown
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in Fig. 1A, nucleotide and protein data related to cold-

adapted yeasts had a pronounced rise in the last decade and

in our literature revision it was observed that more than a

half of the isolates belong to only four genera, from which

Cryptococcus the most represented (Fig. 1B). Even though

a great fraction of our planet is under cold conditions, little

is known about cold-adapted yeasts that proliferate in these

environments and the increasing scientific interest in the

this kind of microorganisms is mainly due for their high

biotechnological potential. Without doubts, information

regarding cold-adapted yeasts will have a continuous

increment especially with the development of new micro-

biological and molecular methodologies.
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