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Abstract

Sedimentological and paleontological studies, including foraminifera, ostracodes, gastropods, and trace fossils, were carried out on
Neogene sedimentary successions and offshore boreholes of south-central Chile (~33°-45°S). Sedimentology shows the occurrence of a
thin, shallow marine, basal conglomerate overlain by a succession that includes the following facies: massive sandstones, conglomerates,
interbedded siltstones and sandstones showing Bouma cycles, parallel-laminated sandstones, synsedimentary breccias, slides, slumps,
diamictites, and massive siltstones. These facies were deposited by gravity flows, with turbidity currents and sandy debris flows as the
main modes of deposition. Paleontology indicates the occurrence of trace fossils assigned to the Zoophycos ichnofacies and deep-water
(~2000 m) benthic foraminifers, ostracodes, and gastropods. Sedimentology and paleontology indicate that deposition took place on a
slope apron during a period of rapid and major forearc subsidence. Planktic foraminifers indicate ages ranging from the late Miocene to
the early Pliocene (zones N16-N19) for these successions. We attribute this episode of major Neogene subsidence to an important event
of subduction erosion that would have removed the underside of the upper continental plate and caused its thinning.
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1. Introduction

Neogene strata crop out at different localities along the
Chilean coastline (e.g., Cecioni, 1980; Ibaraki, 2001;
Achurra, 2004; Le Roux et al.,, 2005) and have been
recognized in boreholes drilled on the continental shelf
(Mordojovich, 1981; Gonzalez, 1989). Previous sedimento-
logical studies, mostly conducted on the Navidad Forma-
tion (~33°-34°S), generally refer to these units as
shallow-marine deposits (Etchart, 1973; Cecioni, 1978;
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Cecioni, 1980), though paleontological studies indicate
the occurrence of deep-water foraminifera and ostracodes
(Osorio, 1978; Martinez-Pardo and Valenzuela, 1979). In
addition, the published ages for these units are contradic-
tory (e.g. Tavera, 1968; Martinez-Pardo, 1990; Ibaraki,
1992).

We carried out detailed sedimentological and paleon-
tological studies on the Neogene marine successions of
south-central Chile to try to unravel the sedimentary
environment, age, and tectonic setting of these deposits.
We present the results of these studies and discuss their
implications with regard to the dynamics of the
forearc.
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2. Stratigraphy and sedimentology

Our sedimentological study focuses on the Navidad
Formation (~33°-34°S), considered a reference for the
marine Neogene of Chile (Cecioni, 1980; Martinez-Pardo,
1990; DeVries and Frassinetti, 2003). We supplement this
investigation with less detailed studies of the coeval Ran-
quil Formation (Garcia, 1968) at Arauco (~37°S) and the
Lacui Formation (Valenzuela, 1982) at Chiloé (~42°S)
(Fig. 1).

The Navidad Formation was first described by Darwin
(1846), who gave this name to the Neogene marine strata
that crop out in the coastal bluffs near the town of Navidad
(Fig. 1). More than a century afterward, several authors
proposed different stratigraphic schemes for the Neogene
successions of the Navidad area (e.g., Etchart, 1973; Ceci-
oni, 1978; Tavera, 1979). In this study, we follow the
scheme proposed by Encinas et al. (2006), who divide these
strata into the Navidad, Licancheu, Rapel, and La Cueva
formations.

The Navidad Formation is approximately 100-200 m
thick and overlies Upper Cretaceous marine strata of the
Punta Topocalma Formation (Cecioni, 1978) or the
Paleozoic granitic basement and underlies the Licancheu
Formation (Encinas et al., 2006). It comprises a basal con-
glomerate overlain by a succession of interbedded siltstone
and sandstone with minor conglomerate (Figs. 2 and 3).
The unit contains a diverse fossil biota that includes bival-
ves, gastropods, crabs, ostracodes, foraminifers, shark

teeth, leaf impressions, and pollen (Philippi, 1887; Tavera,
1979; Martinez-Pardo and Valenzuela, 1979; Méon et al.,
1994; Troncoso, 1991; Troncoso and Romero, 1993; Finger
et al., 2003; Sudrez et al., 2006).

2.1. Facies description

The basal conglomerate crops out at only a few localities
(Figs. 2 and 3). It is typically a few meters thick but some-
times absent and consists of granitic with minor schistose
and mafic basement clasts that are subrounded to angular
and range in diameter from a few millimeters to more than
a meter. Sometimes it displays alternating beds differenti-
ated by the wide range of clast sizes (from a few centimeters
to several meters). The rock is clast supported with an aren-
itic matrix and contains mollusks, solitary corals, whale-
bones, shark teeth, and neritic foraminifers (Table 1,
samples NVla and NV3a), as well as wood fragments
(some containing the ichnofossil Teredolites) and scarce
siltstone rip-up clasts. Locally the fossil content is very
abundant, forming coquinas dominated by fragments of
barnacles, oysters, and echinoderms. In some places, the
conglomerate is absent, and a succession of interbedded
sandstones and siltstones directly overlies a planar surface
carved on the granitic basement.

The most continuous basal succession crops out about
2 km south of Boca Pupuya. It begins with a 15 m thick,
clast-supported conglomerate overlying the granitic
basement comprising decimeter-sized, subrounded to
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Fig. 1. Location map with plots of foram sample localities cited in Tables 1 and 2. (a—c) Foram sample localities in the Navidad, Arauco, and Chiloé,
respectively. Samples labelled with the same name followed by letters (e.g., NV3a, NV3b) were collected from the same or proximal and correlative
sections; sample a is lowest. The Navidad, Ranquil, and Lacui formations of the Navidad, Arauco, and Chiloé areas are represented in grey. Extension of
the cited formations compiled from Ferraris and Bonilla (1981), Sernageomin (2002), and Lavenu and Encinas (2005).
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Fig. 2. Representative sections from Punta Perro (sections PPW1 and PPNW) and Nicolao (section CAND), Navidad area (see Fig. 1 for location of
sections). GS, grain size: (a) clay, (b) silt, (c) very fine sandstone, (d) fine s., (¢) medium s., (f) coarse s., (g) very coarse s., (h) gravel (granules), (i) gravel
(pebbles), (j) gravel (cobbles), (k) gravel (boulders). LT, lithology: (1) conglomerate, (2) breccia, (3) diamictite, (4) coquina, (5) sandstone, (6) siltstone, (7)
BC, basal conglomerate; SS, sedimentary structures; (8) massive, (9) parallel lamination, (10) Bouma cycles, (11) slides, (12) slumps, (13) convolute
lamination, (14) climbing ripples, (15) water-escape structures, (16) load structures, (17) flute casts, (18) sheared flames, (19) rip-up clasts, (20) calcareous
concretions, (21) pumice clasts, (22) floating clasts. F, fossils: (23) gastropods, (24) foraminifers, (25) ostracodes, (26) echinoderms, (27) solitary corals, (28)
shark teeth, (29) crustaceans, (30) plant fragments, (31) leaves. TF, trace fossils: (32) Chondrites, (33) Zoophycos, (34) Ophiomorpha, (35) Thalassinoides,
(36) Skolithos, (37) Diplocraterion, (38) Planolites. The top part of the PPNW section shows abrupt lateral facies changes in a few tens of meters, passing
from massive sandstones with minor conglomerates into a succession of breccia, diamictites, sandstones, and minor siltstones.



Fig. 3. Shallow marine basal conglomerate (bottom right) overlain by a
succession of deep marine interbedded sandstone and siltstone, Navidad
Formation. Coastal bluff is approximately 50 m high.

angular granitic clasts in an arenitic matrix. The con-
glomerate is overlain by a 15 m thick succession of pla-
nar cross-bedded, medium- to fine-grained sandstone
with abundant thin conglomerate lenses containing
well-rounded, centimeter-size clasts. Superjacent is a
24 m thick succession of sandstones similar to those of
the underlying unit but with fewer conglomerate lenses
and showing planar cross-bedding with foresets dipping
in different directions; trace fossils of Ophiomorpha
nodosa, Skolithos linearis, Thalassinoides isp., and Con-
ichnus conicus; as well as scarce escape traces. At the
top there is a 7 m thick succession of fine-grained sand-
stone with low-angle planar cross-stratification and
Macaronichnus segregates. This succession is in fault
contact with a succession of interbedded coarse and very
fine sandstones showing the ichnogenus Chondrites.

The basal conglomerate facies is interpreted as shallow
marine and, as the overlying succession confirms, marks
the beginning of a marine transgression. A coastal environ-
ment is supported by the occurrence of shallow-marine
foraminiferal assemblages in some of the samples. The
abundant fragments of barnacles, oysters, and echino-
derms that compose the coquina beds are interpreted as
products of wave reworking in the upper shoreface of a
rocky coastal area. Planar surfaces carved on the granitic
basement that occur in some areas are interpreted as
wave-cut benches. The alternation of beds with clast sizes
ranging from millimeters to meters, wood fragments, and
scarce siltstone rip-up clasts that occur in some localities
suggest these conglomerates were transported seaward
from the continental margin. They are interpreted as
wave-reworked delta fan conglomerates deposited in a
shallow-marine environment. The intercalation of beds
that differ widely in clast size suggests pulses of tectonically
induced deposition, though an alternation of storm and
fair weather conditions is another possibility.

The most complete section at Boca Pupuya reflects the
initial tectonic movements that initiated basin subsidence.

The basal succession of conglomerate and cross-bedded
sandstone is interpreted as deposited by alluvial fans. The
overlying, sandy succession with abundant planar cross-
bedding dipping in different directions and the ichnofacies
of Ophiomorpha nodosa, Skolithos linearis, Thalassinoides
isp., and Conichnus conicus indicates an upper-shoreface
environment and the beginning of marine transgression.
The top beds of low-angle, planar cross-bedded, very
well-sorted sandstone with Macaronichnus segregatis,
which is common of extremely high-energy conditions
(Pemberton et al., 2001), indicates a foreshore
environment.

2.2. Interbedded siltstone and sandstone, with minor
conglomerate

Overlying the basal conglomerate, and in some places
resting directly on the basement, is an interval of interbed-
ded sandstone and mudstone with minor conglomerate, in
which several facies can be distinguished: massive sand-
stones, conglomerates, interbedded sandstones and mud-
stones, parallel-laminated sandstones, siltstones, and
disrupted deposits (Fig. 2). Massive sandstones and inter-
bedded sandstones and mudstones are the most common
facies in this interval.

2.2.1. Facies 1, massive sandstone

This facies consists of light yellowish-brown, medium-
to coarse-grained massive sandstone. Beds are generally
more than 1 m thick and laterally continuous but in some
places pinch out or form very inclined and irregular con-
tacts with the underlying beds. They can have either erosive
or non-erosive basal contacts and sometimes exhibit load
structures and large but poorly defined flutes. They lack
well-defined grain-size variations and graded bedding.
The sandstones occasionally include intercalations of con-
glomerate and fossiliferous stringers, parallel-laminated
sandstones, thin siltstone layers, rip-up siltstone clasts
(more common at the base of the unit), and highly biotur-
bated horizons (Fig. 4). Also present but not as common
are pumice clasts (sometimes grouped in spherical balls),
water escape marks, sheared flames, armored mud balls,
and floating granules and clasts that range to more than
1 m in diameter. Ovoid calcareous concretions, which often
include fossils, are common and usually coalesce into con-
cretionary beds with irregular forms parallel to the bed-
ding. Fossils are generally scarce and consist of wood
fragments that are locally abundant and can reach more
than 1 m in length, mollusks, and shark teeth. Fossils are
generally well preserved, including some large and delicate
bivalves. The ichnotaxa Thalassinoides paradoxicus, Ophio-
morpha isp., and Skolithos linearis are common and in
some places extraordinarily abundant (Fig. 5).

Shanmugam (2000) discusses the intense debate among
sedimentologists regarding the mode of deposition of mas-
sive sandstone. We follow this author’s interpretation that
massive sandstones are deposited by sandy debris flows



Table 1

Benthic foraminifera and psychrospheric (cold, deep-water) ostracodes collected from coastal successions and offshore boreholes of south-central Chile

(~33°-45°S)
BATHYAL FORAMS WITH MINIMUM UPPER-DEPTH LIMITS PSYCHROSPHERIC
Upper Bathyal Upper Middle Bathyal LVB é;‘r’:’;; OSTRACODES
@
w @ b o= 5 alo 8 I g e
§r: B8, 5isfer Sfizeg. s: §s
s S e 8Elgesegs8s5 e 23|88 5slE 58 oy
fe8afcgasss illalissedeoglfady 28
T e 235 8EP.00 8585|5128 5glsoE2ane
f£8s58es|3s8ss55e2%g|esleese2ass?E g mINIMUM
§dys8egEdeteesssddsEsssslesnssgss
AREA SAMPLE |35 fS57¢Scuffff22aacdl§Sddlasads $&l DEPTH
LAS CRUCES AB1 X X X X X X lower bathyal
AB2 X X X X X X[ X X X lower bathyal
NVia (1) (Neritic species only) neritic
NV1b (2) X| X X X X X X X lower bathyal
NV2 X X X lower mid bathyal
NV3a (1), (3) (Neritic species only) neritic
NV3b (3) (Neritic species only) neritic?
NV3c X X X lower mid bathyal
NV3d X[ X X X X X X[ X X X|IX| X| X X[ X lower bathyal
NAVIDAD NV3e (3) ? bathyal
NV4 X X X upper mid bathyal
NV5 X[ X X[ X X[ X X X X X X X X|[X|[X] lower bathyal
NV6a X X| X X X X X X X X lower bathyal
NVéb X| X X X lower bathyal
NV6c X upper mid bathyal
NV7 X X X| X X| X X X lower bathyal
NV8 X| X X X| XX X X X X lower bathyal
CONCEPCION CP1(2) X X[ X X[ x X[ X x| |x] |x lower bathyal
AR1a X[ X X X[ X[ X X X lower bathyal
AR1b X X[ X|X X[ X X X| X[ X]|X]|X X[ X]|X lower bathyal
AR2 X[ X X[ X|X X[ X X X[ X[ X]X]| X X X X X lower bathyal
ARAUCO AR3 X x| |x X X|X|x[x|x| [x]|x]|x lower bathyal
AR4 X X X X X lower bathyal
AR5 X X X X X X X[ X] X X[ X lower bathyal
ARG (2) X X X X X X X lower bathyal
MN4 (163-343 m)  |(Neritic species only) neritic
MOCHA ISLAND MN4 (352-595 m) X X| X X X X| X X lower bathyal
MN4 (595-1118 m) Indeterminate
VALDIVIA H (216-883.9 m) X X X[ X X lower bathyal
CH1 X X X X upper mid bathyal
CH|LOE CH2 X| X[ X X X X X[ X X lower bathyal
CH3 X X X X X lower bathyal
CH4 X X| X X X X upper mid bathyal
TAITAO PENINSULA D1 (270-1356 m) X lower bathyal

Minimum depositional water depth indicated by benthic foraminifera (right column). Location of samples is indicated in Fig. 1. Samples labelled with the
same name followed by letters (e.g., NV3a, NV3b) were collected from the same or proximal and correlative sections; sample a is lowest. Samples in bold
letters belong to offshore and onshore (sample NV6a) ENAP boreholes. The names given by ENAP to these boreholes and their equivalences are as
follows: Navidad#5 (NV6a), Mocha Norte#4 (MN4), and Darwin#1 (D1). (1) Samples collected from the basal conglomerate/coquina. (2) Samples
collected from deep-marine sandstones and siltstones that directly overly a pre-Neogene basement or a very thin Neogene basal conglomerate. (3) Weak

assemblages.

with plastic rheology and a laminar state. The presence of
large floating clasts, sheared flames, and well-preserved del-
icate shells of mollusks suggest nonturbulent transport and
deposition. Intercalated siltstone, conglomerate, parallel-
bedded sandstones, and bioturbated horizons indicate
bed amalgamation and flow transformations. The carbon-

ate concretions formed during diagenesis by decomposition
of organic matter (McLane, 1995).

2.2.2. Facies 2, conglomerates
The conglomerates are much less common than massive
sandstones. They are clast- to matrix-supported and deci-



Fig. 4. Massive sandstone with abundant siltstone rip-up clasts at the
base, Navidad Formation. Some clasts are floating within the sandstone
(right of the photo).

Fig. 5. Selected trace fossils from the Navidad Formation. (a) Abundant
Thalassinoides isp. in medium- to coarse-grained massive sandstones
(above hammer). (b) Zoophycos isp. in very fine-grained sandstones. Coin
is 1.6 cm in diameter.

meters to meters thick, locally showing abrupt lateral vari-
ations in bedding thickness (Fig. 6). They can be coarsen-
ing- or fining-upward or ungraded. Clasts are subangular
to subrounded and range from millimeters to meters in size.
The conglomerates commonly include mollusks that are

Fig. 6. (a) Interbedded sandstones (darker beds) and siltstones (lighter
beds) in upper half of figure and massive conglomerate in lower half,
Navidad Formation. Hammer for scale and location of photo b is
encircled. (b) Detail of massive conglomerates. Interbedded is parallel-
laminated sandstone with sheared flames. Knife is 10 cm long.

usually well preserved and sometimes show a preferred
orientation. Siltstone and sandstone rip-up clasts are com-
mon and can range above 1 m in diameter. Basal contacts
can be sharp or deeply erosive and sometimes show load
structures. This facies locally shows intercalations of silt-
stones that are sometimes disrupted and fragmented, and
it generally grades vertically and laterally into massive
sandstone facies.

We interpret this facies as debris flow deposits on the
basis of the poor rounding and wide size range of clasts,
as well as the presence of matrix-supported conglomerates,
inverse grading, and large rip-up clasts (Nemec and Steel,
1984). The presence of intercalated siltstone and rip-up
clast layers indicate bed amalgamation.

2.2.3. Facies 3, thinly interbedded sandstone and mudstone
These beds are composed of medium- to coarse-grained
sandstone alternating with siltstone or very fine-grained
sandstone and range from centimeters to decimeters in
thickness (Fig. 6). Sandstones predominate and form par-
tial Bouma cycles in which Ta (massive), Tb (parallel-lam-
inated), and Tab are more abundant and Tbc (parallel-
laminated and asymmetric ripples) is scarcer. Rip-up clasts



are common; less common are load structures, dish and pil-
lar structures, pumice clasts, convolute lamination, and
climbing ripples. The basal contacts of these successions
are usually sharp but sometimes channeled. The ichnotaxa
Chondrites isp., Zoophycos isp., Lophoctenium isp., Diploc-
raterion parallelum, and Planolites isp. are common in silt-
stones and very fine-grained sandstones (Fig. 5).

This facies is interpreted as deposited by turbidity cur-
rents (Bouma, 1962; Lowe, 1982; Walker, 1992). The abun-
dance of basal Bouma cycle divisions (Ta, Tb, Tab) and the
predominance of sandstone indicate they are proximal
turbidites. The channeled basal contacts are interpreted
as formed by turbulent erosion prior to deposition.

2.2.4. Facies 4, parallel-laminated sandstone

This facies consists of yellow to white, medium- to
coarse-grained sandstone with upper flow regime parallel
lamination. Successions are up to 4 m thick and consist
of centimeter to decimeter thick beds. There are scarce
intercalations of massive sandstone, which are generally
coarser grained and show erosive contacts, and thin silt-
stone layers that are typically disrupted and transformed
into rip-up clasts. Well-rounded pumice clasts, burnt wood
fragments, and water-escape structures up to 1 m high are
very common. Leaf casts are extremely abundant in some
of the fine-grained sandstone intercalations.

We interpret this facies as deposited by turbidity cur-
rents (Bouma, 1962; Lowe, 1982; Walker, 1992). The unit
is composed of amalgamated beds formed predominantly
by Tb Bouma divisions. Abundant pumice clasts, burnt
wood fragments, and fossil leaves suggest the onset of cat-
astrophic pyroclastic flows that would have been channeled
along paleorivers originating on the flanks of volcanoes
(see Carey, 1991). These flows emptying into the marine
realm produced increased sedimentation rates on the plat-
form, causing turbidity currents down the continental slope
(see Fisher and Smith, 1991). The large fluid escape struc-
tures offer evidence of rapid deposition.

2.2.5. Facies 5, siltstone

Siltstone, mudstone, and very fine sandstone occur in
intervals ranging in thickness from one to several meters.
The beds are usually massive, but some outcrops show thin
bedding. Locally there are thin intercalations of coarse
sandstone and fossiliferous microconglomerate. Some dark
grey beds contain abundant foraminifers, ostracodes,
crabs, gastropods, and bivalves. White tuffaceous siltstone
and mudstone, with fewer or no fossils, also occur. Trace
fossils of Chondrites isp. and Zoophycos isp. are very
common.

This facies is interpreted as having being generated by
distal turbidity currents Tde(h) and hemipelagic deposition
Te(t) (Bouma, 1962; Lowe, 1982; Walker, 1992). The inter-
calation of coarse-grained sandstone and microconglomer-
ate indicates sporadic deposition by more proximal
turbidity currents and debris flows. Tuffaceous siltstones
indicate an explosive volcanic provenance.

2.2.6. Facies 6, disrupted deposits

These deposits can be subdivided into four types: brec-
cia, slides, slumps and diamictites. Breccia occurs as small
lenses within sandstone and as bedded intervals several
meters thick. The latter successions are associated with syn-
sedimentary faults and form fining- and thinning-upward
cycles that display a reduction in dip angle toward the
top of the succession. These beds contain clasts derived
from Facies 3 (interbedded mudstone and sandstone) that
range from a few centimeters to more than a meter in diam-
eter (Fig. 7). Small breccia lenses within sandstone are
formed by fragments of the underlying beds.

Synsedimentary slides of siltstone and mudstone, and
less commonly sandstone beds, are broken up into meter-
sized segments with variable dips that sometimes reveal
syndepositional thrusts and occasionally pass into intrafor-
mational breccias. They usually form thin successions in
which the bottom beds are deformed but become undis-
rupted upward. Some beds occur within sandstones and
show abundant sand injections entering bedding planes,
as well as local deformation and brecciation.

Slumped beds of siltstone and less frequently sandstone
occur either as locally folded, isolated strata within hori-
zontal beds of similar lithology or as laterally continuous
beds, a few meters thick, composed of intensely folded
strata of similar lithology to those of the underlying and
overlying beds (Fig. 8). Underlying strata usually have
sheared flame structures below the contact with the
slumped beds.

The diamictites comprise mixtures of angular fragments
of sandstone and siltstone ripped up from the underlying
units, angular to subrounded granitic clasts ranging in size
from granules to boulders, and scarce tree trunks up to
more than 1 m long. These clasts are mixed together within
a sandy matrix (Fig. 9). They sometimes form repetitive fin-
ing-upward successions that are a few meters thick with
erosional basal contact, which are overlain by diamictites
bearing abundant rip-up clasts that grade upward into
massive sandstones.

LI S

Fig. 7. Sedimentary breccia, Navidad Formation. Base of succession is at
bottom part of photograph. Note large clast of interbedded siltstone and
sandstone.



Fig. 8. Slump formed in interbedded siltstones and sandstones, Navidad
Formation. Encircled coin for scale is 2.7 cm in diameter.

Fig. 9. Diamictites formed by a mixture of coarse-grained sandstones,
siltstone intraclasts, and granite clasts, Navidad Formation.

Breccia, slides, and slumps consist of sediments formerly
deposited by turbidity currents and sandy debris flows that
were subsequently disrupted and displaced downslope.
Such movements probably were triggered by depositional
overloading or synsedimentary faults in an unstable setting
(Bell and Sudrez, 1995). Diamictites, slides, and breccia
within sandstones are interpreted as having been scoured
from underlying beds by sandy debris flows that would
have transported huge granitic blocks and tree trunks as
well.

With respect to the depositional architecture of these
six facies described, no clear upward grain size and strata
thickness variations are detected. Most beds are continu-
ous with planar contacts, though some pinch out or are
channel-shaped. In some places, they have highly inclined
basal contacts or show abrupt lateral changes in facies.
In some localities, it is possible to observe the presence
of firm grounds with abundant specimens of Thalassino-
ides isp., filled with material derived from the overlying
bed.

3. Paleontology

Foraminifers, ostracodes, and gastropods, primarily col-
lected from the Navidad, Arauco, and Chiloé areas, were
studied to determine the ages and depositional environ-
ments of the sedimentary successions.

3.1. Foraminifers and ostracodes

Foraminifers and ostracodes were extracted from silt-
stones and mollusk-bearing lenses within sandstones and
conglomerates at Las Cruces (33°30’S), Navidad (~34°S),
Concepcion (~36°30’S), Arauco (~37°S), and Chiloé
(~42°S). We examined core samples from hydrocarbon
exploration wells drilled on the continental shelf by ENAP
near Mocha Island (Mocha Norte #4 well), Valdivia (H
well), and Taitao Peninsula (Darwin #1 well). Microfossil
species of greatest utility in the interpretations are listed
in Tables 1 and 2, and the sample locations are plotted in
Fig. 1.

Most of the samples that we examined, particularly
those that are relatively well preserved, yield associations
of planktic foraminifers that indicate ages within the Tor-
tonian (late Miocene) to Zanclean (early Pliocene) interval,
represented by planktic foraminiferal zones N16-N19
(zonation of Blow, 1969, updated by Berggren et al.,
1995). Similar results were obtained for the Neogene suc-
cessions of the three ENAP wells.

Approximately 100 ostracode species have been identi-
fied. The vast majority are endemic to the Miocene of the
southeast Pacific, though some also occur in the
Caribbean and southwest Atlantic. Among the fauna are
species originally described from the Miocene and lower
Pliocene of Trinidad, the Miocene of Brazil, and the
upper Oligocene and lower Miocene of Argentina and
Tierra del Fuego.

The occurrence of a Late Cretaceous globotruncanid
and Catapsydrax dissimilis (middle Eocene—early Miocene)
in some study samples indicates reworking of older sedi-
ments. Ostracode species originally described from pre-
Tortonian deposits elsewhere and recognized in our sam-
ples at Chiloé Island may be the result of this phenomenon.

Most of the samples examined yield mixed associations
of littoral, neritic, and bathyal species of foraminifers and
ostracodes. The deepest dwelling taxa indicate minimum
depths of deposition at upper middle bathyal (500—
1500 m), lower middle bathyal (1500-2000 m), and lower
bathyal (2000-4000 m) depths (Table 1). Only three sample
localities, all from the Navidad area, yield assemblages
devoid of bathyal indicators: NVla, NV3a, and NV3b
(Table 1, Fig. 1). NV1a and NV3a correspond to the basal
conglomerate deposited in shallow water. In contrast,
NV3b is a succession of sandstone and siltstone with sedi-
mentary facies and trace fossils indicative of deep water,
but the recovered assemblage is too weak for depth analy-
sis. Samples CP1 and AR6 were recovered from siltstone or
sandstone facies that directly overlie the basement. Sample



Table 2

Planktic foraminifera collected from coastal successions and offshore boreholes of south-central Chile (~33°-45°S)

Biostratigraphic Data

PLANKTIC FORAM MARKERS

Miocene-Pliocene
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AREA SAMPLE |33 caacacas22225/g] ZONES AGE
AB1 (4) indeterminate Pliocene?
LAS CRUCES .
AB2 X X N9-N19 Langhian-Zanclean
NVia (1) indeterminate indeterminate
NV1b X[ X X N19 Zanclean
NV2 X| X X X N16-N19 Tortonian-Zanclean
NV3a (1), (3) indeterminate indeterminate
NV3b (3) indeterminate indeterminate
NV3c XX X N16-19 Tortonian-Zanclean
NV3d X[ X|X]| X X N19 Zanclean
NAVIDAD NV3e (3) indeterminate indeterminate
NV4 X N4b-N19 Miocene-Pliocene
NV5 X| X X X[ X N19 Zanclean
NV6a X X| X X N16 Tortonian
NVeéb X X N16 Tortonian
NVéc indeterminate indeterminate
NV7 indeterminate indeterminate
NV8 XX N4b-N19 Mioceno-Pliocene
CONCEPCION CP1(2) X N19 or older Miocene
AR1a XX X N19 Zanclean
AR1b X| X[ X[ X X| X X N19 Zanclean
AR2 X[ X]| X X N13-N16 Miocene
ARAUCO AR3 X|X| X N13-N19 Miocene-Pliocene
AR4 X X X N19 Zanclean
AR5 XX X X N16 Tortonian
ARG (2) X N16-N19 Tortonian-Zanclean
MN4 (163-343 m) (4) N19? Zanclean?
MOCHA ISLAND MN4 (352-595 m) X X| X N17-N18 Tortonian-Messinian
MN4 (595-1118 m) X P1 Danian
VALDIVIA H (216-883.9 m) X X N19 Zanclean
CH1 XX X X N16 Tortonian
. CH2 X| X X X N16 Tortonian
CHILOE - -
CH3 XX N4b-N19 Miocene-Pliocene
CH4 X N19 Zanclean
TAITAO PENINSULA D1 (270-1356 m) X X N19 Zanclean

Table contains most important planktic markers, foraminiferal zones of Blow (1969; updated by Berggren et al., 1995), and ages determined for each
sample. Location of samples is indicated in Fig. 1. (4) Ages suggested by benthic foraminifera. See Table 1 caption for additional information about

samples and numbers.

NV1b was collected from a massive siltstone that overlies
an only 0.5m thick basal conglomerate bearing neritic

foraminifers (sample NVla) (Table 1).

The upper-depth limits of several benthic foraminifers in
the Chilean Miocene are based on the depth distributions
of similar taxa currently living along the Pacific margin




of central South America (Bandy and Rodolfo, 1964;
Resig, 1981). Among the lower middle and lower bathyal
indicators in the Chilean Miocene are species of Bathysi-
phon, Melonis, Osangularia, Pleurostomella, Siphonodosa-
ria, and Sphaeroidina that are similar or identical to those
Van Morkhoven et al. (1986) classify as cosmopolitan
deepwater taxa. We consider paleodepth indicated by ben-
thic foraminifer species as fairly reliable for the following
reasons: (1) The modern pattern of ocean circulation began
in the middle Miocene in response to expansion of the ant-
arctic icecap. The introduction of cold, more oxygenated
waters into the ocean basins led to a turnover in benthic
foraminifera and the onset of most of the species that exist
today, which became bathymetrically restricted as deep-
ocean water became increasingly stratified (Kennet, 1982;
Lipps, 1993). Therefore, post-middle Miocene benthic
foraminifera are considered especially useful in paleodepth
interpretations (Lipps, 1993); (2) the presence in our sam-
ples of several lower middle and lower bathyal species that
live in different oceans of the world with different physical
and chemical parameters (temperature, pH, dissolved oxy-
gen, substrate, currents, food availability) indicate that the
water depth must be the most important factor controlling
their distribution, which makes paleodepth interpretations
based on these cosmopolitan species highly reliable; and (3)
upward transport of bathyal benthic foraminifers is dis-
missed because wind-driven upwelling currents off the west
coasts of continents take place at maximum water depths
of 100-200 m (Suess and Thiede, 1983; Colling, 2004),
and they are not in contact with the bottom boundary
except very near the coast (Suess and Thiede, 1983). There-
fore, this kind of current cannot transport middle to lower
bathyal (>500 m) benthic foraminifers, some of which
dwell within the substrate. In addition, if upwelling were
capable of transporting deep marine benthic foraminifers
upslope, the extant fauna restricted to deep water would
be found at shallower depths in the regions where these
currents occur.

As with the foraminifera, many of the Chilean Miocene
ostracode genera are extant in the southeast Pacific, south-
west Atlantic, Caribbean, and Southern oceans, and their
modern depth distributions suggest that most of our Mio-
cene assemblages are mixed depth associations resulting
from downslope displacement and deposition at bathyal
depths. Psychrospheric species, which Benson (1972a,b,
1975) distinguishes as belonging to a major global fauna
characterizing cold water masses that occur at a depth
greater than or equal to 500 m (Kennet, 1982), are recog-
nized in the majority of assemblages studied (Table 1).

3.2. Gastropods

Gastropods were recovered from outcrops of the Navi-
dad Formation and its equivalents, the Ranquil and Lacui
formations. These units have been long regarded as shal-
low-water deposits due to their coarse-grained sediments
and mollusk fauna, particularly the common gastropods

Lamprodomina, Olivancillaria, and Testallium (Watters
and Fleming, 1972; Vermeij and DeVries, 1997; Nielsen,
2004). The gastropod fauna includes many indicators of
nearby rocky shores (Nielsen et al., 2004), as well as many
exclusively or predominantly warm-water genera such as
Nerita, Strombus, Sinum, Distorsio, Ficus, Zonaria, Olivan-
cillaria, Terebra, Architectonica, and Heliacus (see Covace-
vich and Frassinetti, 1980; Nielsen et al., 2004).

Most of the mollusks first described from these units by
Sowerby (1846), Hupé (1854), and Philippi (1887) were
found in coarse-grained sandstones. However, the sand-
stones are intercalated with siltstones that contain an
entirely different and lesser known fauna that has few spe-
cies in common with those of the sandstones (Nielsen et al.,
2003, 2004).

We evaluated 200 gastropod species representing 110
genera from several localities in the Navidad, Arauco,
and Chiloé areas and recognized three primary associa-
tions. First, an association typical of rocky coasts is found
in conglomerates and very coarse sandstone beds and
includes the genera Fissurella, Nerita, Zonaria, and Austro-
cominella. Second, an association typical of shallow-water
sandy substrates occurs in fossiliferous lenses contained
in medium-grained massive sandstones and includes the
genera Astele, Ameranella, Sassia, Aeneator, Nassarius
and Austrotoma. Most of the species described from the
Navidad Formation belong to this association. Third, a
much less common, deepwater association includes callios-
tomatids (Otukaia; Nielsen et al., 2004), aporrhaids (Stru-
thiochenopus, Nielsen, 2005a), naticids (Falsilunatia),
cassids (Dalium), volutes (Adelomelon; Nielsen and Frassi-
netti, 2007), ptychatractids ( Exilia, Nielsen, 2005b), cancel-
lariids, conids (Borsonia, Borsonella), and turrids
(Bathytoma, Cochlespira, Nihonia). This association is
found exclusively in grey siltstone beds that contain abun-
dant bathyal foraminifera and ostracodes restricted to the
cold, deepwater masses. Neither shallow- nor warm-water
taxa occur in the deepwater mudstones. However, an
anomalous association, found in a thick siltstone bed at
Punta Perro (Fig. 1), includes deep-marine foraminifers
and the warm-water gastropod Xenophora (Nielsen and
DeVries, 2002). Although this stratum also yields several
shallow-dwelling indicators, its fauna probably is a com-
posite of parautochtonous and allochtonous taxa.

Associations 1 and 2 are shallow water assemblages
originally living at or near rocky and sandy coasts, respec-
tively. Because they are found in massive sandstones and
conglomerates (Facies 1 and 2) interbedded with siltstones
containing deep marine foraminifers and icnofacies, we
interpret these fossil associations as subsequently trans-
ported downslope by debris flows and ultimately deposited
at bathyal depths without significant mixing with other sed-
iments or mollusks. In contrast, Association 3 is a deepwa-
ter assemblage contained within siltstone beds (Facies 5).
Fossils in this association appear to have been deposited
in situ or experienced little transport, as evidenced by the
fine-grained sediments and the abundance of deep-marine



foraminifers and trace fossils. Yet it is not clear if the
coastal Associations 1 and 2 are contemporaneous with
this deepwater fauna or were reworked from significantly
older strata. Correlation of some shallow-water mollusk
species from the Navidad and equivalent formations with
those from confidently dated sequences in southern Peru
(DeVries and Frassinetti, 2003;Nielsen et al., 2003; Finger
et al., 2007) suggests a late Oligocene—early middle Mio-
cene age for at least part of the shallow-water component.

4. Depositional setting

The combination of sedimentological and paleontologi-
cal data obtained from this study allows a reconstruction of
the depositional environment of the studied successions.
The basal conglomerate and coquina are interpreted as
coastal facies that mark the beginning of a marine trans-
gression. The succession overlying the basal conglomerate
appears to have been deposited primarily by gravity flows
alternating with the settling of fine particles from suspen-
sion. The main depositional modes of transport were debris
flows and turbidity currents. Gravity flows and the mixed-
depth thanatocenosis of fossils, including foraminifers,
ostracodes, gastropods, and shark teeth (Sudrez et al.,
2006), indicate downslope transport of sediments and
deposition in deep water.

Deep-water deposition also is suggested by the occur-
rence of two distinct trace fossil assemblages (Fig. 5). The
first occurs in fine-grained sandstone and siltstone beds
and includes Chondrites isp., Zoophycos isp., Lophoctenium
isp., Diplocraterion parallelum, and Planolites isp. It is
dominated by feeding structures (Fodinichnia) that mainly
represent the activity of deposit-feeding organisms. This
association is ascribed to the Zoophycos ichnofacies, char-
acterized by low oxygen levels associated with high organic
detritus in quiet-water settings, and is typical for slope and
apron settings (Frey and Pemberton, 1984; Buatois et al.,
2002). The second trace fossil assemblage occurs mostly
in massive, medium- to coarse-grained sandstone and
includes Thalassinoides paradoxicus, Ophiomorpha 1isp.,
and Skolithos linearis. It is dominated by dwelling struc-
tures (Domichnia) and mostly records the activity of sus-
pension feeders. This assemblage characterizes the
Skolithos ichnofacies, which is typical of high-energy shal-
low-marine environments, but also has been widely
reported in deep-water settings, where it reflects local envi-
ronmental conditions such as high energy, sandy substrate,
high levels of oxygen, and an abundance of suspended
organic particles (e.g., Crimes, 1977; Crimes et al., 1981;
Buatois and Lopez-Angriman, 1992; Uchman, 1995). In a
deep-water environment, the Zoophycos ichnofacies would
predominate during calm, low sedimentation intervals,
whereas the Skolithos ichnofacies reflects short-term,
high-energy conditions associated with the sudden deposi-
tion of thick packages of massive sand. The presence of
firm grounds in strata of the Navidad Formation and
abundant bioturbation in massive sandstone and even in

brecciated successions indicates long, nondepositional
intervals between periods of sudden and rapid deposition.

We infer that sedimentation took place on a slope apron
because the deposits have (1) lower bathyal foraminifers;
(2) Zoophycos ichnofacies; (3) reduced sediment thickness
typical of slope aprons; (4) rare systematic vertical and lat-
eral trends in facies organizations that characterize slope
environments rather than more organized submarine fan
settings (Lomas, 1999); (5) abrupt lateral facies changes;
(6) disrupted, small-scale deposits that suggest downslope
movement of unstable material formerly deposited by tur-
bidity currents and debris flows, rather than the large
slumps and debris flows originating from major scarp fail-
ures (Bell and Suarez, 1995); and (7) low rates of sedimen-
tation indicated by intensive bioturbation and the presence
of firm grounds, which suggest that bypassing of sediments
was an important process in the basin.

Abundant plant debris and some freshwater gastropods
suggest a deltaic source area. Some layers have an abun-
dance of rounded pumice clasts, which indicates episodic
explosive volcanism in the arc domain to the east. The
abundance of sandstone and conglomerates and presence
of locally abundant basement clasts up to several meters
in diameter, as well as large tree trunks, suggest that the
depositional area was close to the continent and the conti-
nental shelf was rather narrow. The basal conglomerate/
coquina, which was deposited in a nearshore environment,
is generally not more than a few meters thick and overlain
by deep-water deposits, which in some places directly over-
lie the basement, indicating rapid subsidence of the basin.

5. Age

The age of the Navidad Formation and its correlative
units, the Ranquil and Lacui formations, has been a matter
of debate for several decades among paleontologists. Tave-
ra (1968, 1979) assigned a Burdigalian (early Miocene) age
to the Navidad Formation on the basis of correlations with
mollusks from the Patagonian of Argentina. Several work-
ers study foraminifers from this unit and obtain different
ages that include early Miocene (Dremel, in Herm, 1969),
middle Miocene (Martinez-Pardo and Valenzuela, 1979),
early-late Miocene (Martinez-Pardo, 1990), and late Mio-
cene (Martinez-Pardo and Osorio, 1964; Cecioni, 1970;
Ibaraki, 1992). In his study of ostracodes, Osorio (1978)
also assigns a probable late Miocene age to the Navidad
Formation. The Ranquil Formation has been ascribed to
the Miocene by Tavera (1942) and Garcia (1968) on the
basis of mollusks and foraminifers, respectively. The Lacui
Formation has been assigned to the late middle Miocene
on the basis of foraminifers (Sernageomin, 1998).

A thorough study of planktonic foraminifers recovered
from onshore exposures and ENAP core samples for this
work indicate that the age of the Navidad Formation
and equivalent onshore and offshore strata from south-cen-
tral Chile range between planktonic foraminifer zones N16
and N19 (late Miocene—early Pliocene) (Table 2, Fig. 1).



The occurrence of late Oligocene—early middle Miocene
gastropods (DeVries and Frassinetti, 2003) and late Oligo-
cene—early Miocene shark teeth (Sudarez et al., 2006) sug-
gests that these fossils were reworked from an older
stratigraphic unit that has not yet been identified in the
field.

6. Discussion
6.1. Miocene subsidence

The results of the sedimentological, paleontological, and
ichnological studies on Neogene exposures and offshore
boreholes of south-central Chile indicate the occurrence
of sedimentary successions deposited at bathyal depths
during the late Miocene—early Pliocene. Studies elsewhere
in Chile also indicate the presence of Neogene deep-marine
successions that crop out along the Coastal Cordillera and
Central Valley of this country. We cite, from north to
south, the published antecedents that refer to these
deposits.

Chile’s northernmost Neogene marine strata are located
about 80 km south of Iquique (21°S), attributed to the late
Miocene-Pliocene on the basis of diatoms (Padilla and
Elgueta, 1992). Near Antofagasta, at Caleta Herradura
de Mejillones (~23°S), Ibaraki (2001) correlates planktic
foraminifera within zones N7-N17 (early—-late Miocene),
and benthic foraminifera indicate bathyal to outer shelf
depths for the succession (Scott Ishman, pers. com.,
2004). At Caldera (27°S) and Carrizalillo (29°S), Neogene
successions are attributed to the middle Miocene—Pliocene
(Achurra, 2004; Gémez, 2003; Le Roux et al., 2005), and
benthic foraminifera indicate some of the deposits accumu-
lated at bathyal depths. It is interesting to note that in the
cited areas, middle Miocene ages are based on Sr isotope
data that were obtained only in the lowermost part of the
successions, whereas planktic foraminifera and Sr isotopes
indicate late Miocene—Pliocene ages for the rest of the suc-
cession. Farther south, Neogene strata crop out in the Cen-
tral Valley and the western flanks of the Main Andean
Cordillera between Temuco and Puerto Montt (38°30'-
41°30’'S). At Temuco, foraminifers recovered from the
ENAP Labranza#l borehole allow Osorio and Elgueta
(1990) to determine that this area reached a water depth
greater than 2000 m during the middle—early late Miocene
interval. However, a revision of the planktic foraminifers
listed by these authors shows the occurrence of Globigerina
druryi in some intervals, indicating a late Miocene age
(zones N16-N17). In the Valdivia and Osorno-Llanquihue
basins (~39°30'—41°30’S), a marine transgression initially
resulted in the development of estuarine peat swamps dur-
ing the late Oligocene—early Miocene, followed by deep
marine embayments during the middle Miocene, according
to Le Roux and Elgueta (2000) and Elgueta et al. (in press).
However, foraminifers listed for this area (Martinez-Pardo
and Zuniga, 1976; Martinez-Pardo and Pino, 1979; Mar-
chant and Pineda, 1988; Marchant, 1990) include Globige-

rina pachyderma, which has its first appearance in the late
Miocene at approximately 11 Ma, and Melonis pompilio-
ides, a cosmopolitan lower bathyal (>2000 m) indicator.
Farther south, Tavera et al. (1985) and Frassinetti (2001,
2004) cite the occurrence of marine deposits with a mollus-
can fauna similar to that of the Navidad Formation and
turbiditic facies between Chiloé and Taitao (~42°-47°S),
and Forsythe et al. (1985) find marine successions with late
Miocene planktic foraminifers at Golfo de Penas (47°-
48°S).

Our data and these aforementioned studies indicate that
the coastal area from north to south-central Chile was sub-
ject to a significant Neogene marine transgression. The sea
extended as far as the present eastern Coastal Cordillera
and Intermediate Depression between 38°30'S and
41°30’S (Osorio and Elgueta, 1990; Elgueta et al., 2000).
The marine transgression took place after a regressive per-
iod that lasted for most of the Oligocene (Garcia, 1968).
Because the water depth of some of these successions was
at least 2000 m, and maximum eustatic sea-level changes
are just on the order of a few hundred meters (Haq et al.,
1987), we attribute this marine transgression to a major
event of forearc subsidence.

Although constrained within the Neogene, the begin-
ning of subsidence appears to have a different age depend-
ing on the area. For example, subsidence commenced
during the early Miocene in Antofagasta, according to Iba-
raki (2001), but our dating, which is based in a thorough
sampling of planktic foraminifera (some recovered from
strata directly overlying the basement), reveals that it did
not begin in the Navidad, Arauco, and Chiloé areas until
the late Miocene—carly Pliocene. It is possible that subsi-
dence was not coeval along the coast of Chile. However,
the occurrence of reworked middle Eocene—early Miocene
foraminifers, late Oligocene—early Miocene shark teeth
(Suarez et al., 2006), and late Oligocene—early middle Mio-
cene gastropods (DeVries and Frassinetti, 2003) in the suc-
cessions of south-central Chile opens the possibility that
subsidence commenced in the late Oligocene—early Mio-
cene in this area as well. Perhaps deposition took place ini-
tially during the late Oligocene—early Miocene, and the
marine strata were subsequently eroded and their fossils
reworked and incorporated into the late Miocene—carly Pli-
ocene deposits. Whatever the case, and the age of com-
mencement of the subsidence in the forearc, the data
cited indicate that it is constrained to the Neogene for all
localities along Chile and that most of these areas experi-
enced a significant amount of subsidence during the late
Miocene.

Evidence for major subsidence during the Miocene has
been reported elsewhere around the Pacific, including
New Zealand (Buret et al., 1997), Costa Rica (Vannucchi
et al., 2001), Guatemala (Vannucchi et al., 2004), Japan
(Von Huene et al., 1982), and Peru (Von Huene and Suess,
1988). The occurrence of this important and widespread
event of subsidence around the Pacific suggests that it
was due to a common cause.



6.2. Possible causes of subsidence

What are the causes of this major Neogene subsidence
that affected the Chilean forearc? Important subsidence
of convergent margins can be produced by three main pro-
cesses, according to Von Huene and Scholl (1991): (1)
depression of the lower oceanic plate, (2) thinning of the
upper plate by extension and seaward sliding of the margin,
and (3) subduction erosion. Depression of the lower oce-
anic plate can be caused by loading of a growing accretion-
ary prism or an increase in the bulk density of the
subducting plate. Accretionary prisms, however, are very
small or absent along most of the Chilean margin (Bangs
and Cande, 1997; Von Huene et al., 1997, 1999), and they
could not have affected areas that are located many tens of
kilometers landward of the present accretionary prism
(Von Huene and Scholl, 1991). Plate reconstructions
(e.g., Pardo-Casas and Molnar, 1987), in contrast, show
that the age of the subducting plate, which is proportional
to its bulk density, is relatively young (maximum 48 Ma)
and progressively decreases due to the western motion of
the South American plate. Crustal thinning by massive-
scale sliding at convergent margins should generate regio-
nal-scale extension faulting and the translation of rotating
blocks from the continental margin to the trench (Von

Huene and Lallemand, 1990; Von Huene and Scholl,
1991). However, tectonic analysis of the Navidad area
(Lavenu and Encinas, 2005) and offshore seismic lines do
not show such large faulting (Mordojovich, 1981; Gon-
zalez, 1989; Bangs and Cande, 1997; Laursen and Nor-
mark, 2003).

Subduction erosion is the process by which the subduct-
ing plate removes the rock and sedimentary bodies from an
ocean margin. It is divided into frontal and basal erosion
(Von Huene and Lallemand, 1990). Frontal erosion loos-
ens and removes rock and sediment masses located at the
toe of the landward trench slope, causing a landward
migration of the trench axis. Basal erosion subcrustally
removes the underside of the upper plate, causing its thin-
ning and the subsidence of the margin (Von Huene and
Scholl, 1991). This process has been considered the cause
of Neogene subsidence of several Pacific margins, such as
those of Peru (Von Huene and Suess, 1988), Japan (Von
Huene and Lallemand, 1990), New Zealand (Buret et al.,
1997), Costa Rica (Vannucchi et al., 2001), and Guatemala
(Vannucchi et al., 2004). The most important arguments in
favor of subduction erosion-induced subsidence for some
of these margins are based on seismic lines and deep marine
drilling and include (Von Huene and Scholl, 1991) (Fig. 10)
(1) the absence of large accretionary wedges; (2) absence of
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Fig. 10. (a) Geologic section across the Japan margin showing the presence of an important unconformity separating Neogene from pre-Neogene strata.
The unconformity, originally carved near sea-level, is presently located at a depth of 4-5km in the proximity of the trench. Unconformity major
subsidence interpreted as produced by subcrustal tectonic erosion of the upper plate. (b) Detail of the Japan Trench, where the structural or depositional
fabric of older sedimentary rocks has been truncated above the subducting oceanic plate. Truncation is also ascribed to subduction erosion along the base

of the upper plate. Figures modified from Von Huene and Scholl (1991).



significant normal faults in the forearc; (3) presence of sub-
sided discordances, separating Neogene from pre-Neogene
successions, that were carved near sea level and presently
are at a depth of more than 4000 m; and (4) occurrence
of structural or depositional fabrics in the basal continental
plate that are truncated at the contact with the subducting
oceanic plate.

Considering these arguments, we regard subduction ero-
sion as the most probable cause for the major subsidence of
the Chilean margin during the Neogene (Fig. 11). This
cause would agree with the small size of the accretionary
wedges along most of its length (Bangs and Cande, 1997;
Von Huene et al., 1997, 1999) and the minor deformation
shown by Neogene successions (Mordojovich, 1981; Gon-
zalez, 1989; Bangs and Cande, 1997; Laursen and Nor-
mark, 2003; Lavenu and Encinas, 2005). Other causes
that imply a major extensional tectonic event, such as an
increment in the roll-back of the subduction hinge relative
to the advance of the overriding plate, are dismissed
because they would give way to the onset of widespread
extension that would affect not only the continental margin
but also the Main Andean Cordillera. On the contrary, sev-
eral researchers cite the onset of a major tectonic compres-
sive phase in the Main Cordillera and sub-Andean ranges
during the late Miocene (e.g., Jordan and Alonso, 1987;
Ramos, 1989; Noblet et al., 1996; Gregory-Wodzicki
et al., 1998). Tectonic erosion could account for major sub-
sidence in the continental margin coeval with important
uplift and compressive deformation in the Main Andean
Cordillera. Eroding continental margins are characterized

by thin trench sediments (Underwood and Moore, 1995;
Vanneste and Larter, 2002), which gives way to high shear
stresses along the plate interface in the subduction zone due
to the decrease in the lubricating effect that water-rich sed-
iments produce, resulting in intense Andean uplift (Lamb
and Davis, 2003). Compressive deformation would have
little effect in the margin because the forearc constitutes a
strong, cold, rigid geotectonic element that transfers, with
minimal internal deformation, the nonseismic component
of the convergence to the rheologically weakened regions
of the orogen (Tassara, 2003, 2005).

After deposition of deep marine successions, the margin
was uplifted during the Plio—Pleistocene, and marine
deposits emerged, locally elevated to a few hundred meters
above sea level. In some areas, as in Navidad, Pliocene
shallow-marine deposits overlie bathyal successions, indi-
cating that the basin remained at shelf depths prior its
definitive emergence (Encinas et al., 2003). Considering
that Neogene strata show very little deformation and no
evidence of significant tectonic shortening (Lavenu and
Encinas, 2005), we consider underplating of sediments the
most probable cause for margin uplift. By this mechanism,
subducted material is accreted at the base of the overriding
plate at an intermediate position between the magmatic arc
and the trench, leading to thickening and uplift of the con-
tinental plate without additional shortening (Cloos, 1989;
Underwood and Moore, 1995). A similar explanation has
been proposed to account for coastal uplift of the Coastal
domain in northern (Von Huene et al., 1999; Hartley et al.,
2000) and south-central Chile (Lohrmann et al., 2001).
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6.3. Relationship between tectonic erosion and magmatism

The proposed event of subduction erosion during the
Neogene is coincident with major eastward displacements
of the volcanic arc that took place in various parts of Chile
during this period (Cande and Leslie, 1986; Scheuber et al.,
2000; Kay et al., 2005). Various authors (i.e., Gill, 1981;
Jarrard, 1986; Tatsumi and Eggins, 1995) propose a fixed
vertical distance of approximately 110 km between the vol-
canic arc and the subducting slab. Assuming a constant
slab angle, the distance between the trench and the volcanic
front should remain constant. Volcanic front displacements
therefore are ascribed to tectonic erosion. One of the first
authors to consider the possibility of significant truncation
of the continental margin was Rutland (1971), who
invoked this explanation for the occurrence of a belt of
arc-igneous Jurassic rocks along the coast of northern
Chile. This belt lies approximately 200 km west of the mod-
ern arc, so the same amount of continental crust had to be
removed by subduction erosion (Rutland, 1971).

Arc displacement during the Neogene is evident in
northern Chile (20°-26°S), where a new volcanic arc devel-
oped about 30-100 km east of the former one at approxi-
mately 25 Ma (Scheuber et al., 2000) and shifted farther
east around 9 Ma (Worner et al.,, 2000). Eastward arc
migration also took place in central (33°-36.5°S) (Kurtz
et al., 1997; Kay et al., 2005) and southern (47°-53°S) Chile
(Cande and Leslie, 1986) during the Neogene. More com-
plex is the situation between approximately 39°S and
47°S, where apparently no major systematic change in
the location of the magmatic belt has taken place since
the Late Jurassic (Pankhurst et al., 1999). We therefore find
contradictory arguments for and against subduction ero-
sion in the cited latitudes during the Neogene: major fore-
arc subsidence and the lack of arc displacement. There are
two possible explanations for this apparent contradiction,
namely, either subsidence of this area was not caused by
subduction erosion or subduction erosion took place in this
area but the arc did not migrate. Major subsidence also
occurred along central and northern Chile, as well as in
Peru and other Pacific margins, where there is evidence
to suggest that subduction erosion caused this subsidence
(Von Huene and Suess, 1988; Von Huene and Lallemand,
1990; Buret et al., 1997; Vannucchi et al., 2001, 2004).
Therefore, we consider it unlikely that this area subsided
for a different reason. In addition, seismic reflection shows
the occurrence of a small accretionary wedge in south-cen-
tral Chile (~38°-40°S), which could have accumulated in
the last 1-2 m.y. and reveals that nonaccretion and possi-
bly erosion could have taken place in this margin prior to
the increase in sedimentation rates during the Pleistocene
glaciations (Bangs and Cande, 1997). Furthermore, inter-
pretation of single-channel seismic data by Von Huene
et al. (1985) suggests truncation of the continental margin
in the Isla Mocha region (~39°). A possible explanation
for the lack of displacement of the arc in this area during
the Neogene is that magmatism emplacement was con-

trolled by the strike-slip Liquifie Ofqui fault zone, as sug-
gested by Hervé (1994) and Cembrano et al. (1996), who
cite the deformed Mio—Pliocene plutonic rocks emplaced
into a highly deformed wall rock along this fault zone as
evidence of syntectonic intrusion.

Coeval with major shifts of the volcanic front in the
Neogene are important changes in magma geochemistry
that have been related to crustal contamination, as well
as the generation of adakitic rocks and formation of impor-
tant mineral deposits (Trumbull et al., 1999; Kay and
Mpodozis, 2002; Kay et al., 2005). Significant epithermal,
porphyry gold, and porphyry copper deposits were gener-
ated between 26° and 34°S (e.g., Clark et al., 1983; Mak-
saev et al., 1984). Of particular importance are the giant
upper Miocene-lower Pliocene porphyry copper deposits
located between 32° and 34°S, notably those at Los Pelam-
bres (~10 Ma) (Sillitoe, 1973; Mathur et al., 2001) and Rio
Blanco-Los Bronces and El Teniente (6.46-4.37 Ma)
(Deckart et al., 2003; Maksaev et al., 2003).

Crustal contamination-related changes in the chemistry
of magmas and generation of porphyry copper deposits
usually have been associated with crustal thickening and
uplift related to tectonic deformation (e.g., Kay et al.,
1991; Skewes and Holmgren, 1993). In contrast, adakitic
rocks have been ascribed to melting related to flat-slab sub-
duction (Gutscher et al., 2000; Reich et al., 2003). How-
ever, Stern (1991) and Stern and Skewes (2003) attribute
adakite formation, magmatic crustal contamination, and
ore generation in the Los Pelambres, Rio Blanco-Los
Bronces, and El Teniente deposits to the contamination
of magmas by subducted sediments and continental crust
transported into the mantle by subduction erosion. These
authors associate subduction erosion with the southward
migration of the aseismic Juan Fernandez Ridge and the
resultant decrease in subduction angle. However, according
to Kay and Mpodozis (2002), the El Teniente copper
deposit is located south of the area reasonably affected
by this ridge, which suggests that its influence was not
determinant. Considering that the timing of the cited mag-
matic changes in central Chile is approximately coincident
with the onset of major forearc subsidence, we speculate
that tectonic erosion of the margin could have played an
important role in the crustal contamination of magmas,
the generation of adakites, and the formation of economi-
cally important mineral deposits.

7. Conclusions

New sedimentological and paleontological studies of
Neogene sedimentary strata in coastal outcrops and off-
shore boreholes of south-central Chile (~33°-45°S) shed
new light on the geologic history of the region’s forearc.

Sedimentological studies show the occurrence of a thin
basal conglomerate, deposited in a shallow-marine envi-
ronment, overlain by a succession of sandstone, siltstone,
and minor conglomerate deposited by gravity flows, with
turbidity currents and sandy debris flows as the main



modes of deposition. Ichnological studies indicate the pres-
ence of abundant Chondrites isp. and Zoophycos isp., typ-
ical of slope settings. Paleontological studies reveal
bathymetric mixing of littoral, neritic, and bathyal species
of foraminifers, ostracodes, and gastropods, which indi-
cates downslope transport and deposition at minimum
water depths of approximately 2000 m. Planktonic foram-
inifera indicate that deposition of these successions took
place during the Tortonian (late Miocene, N16) to Zan-
clean (early Pliocene, N19).

The cited sedimentological and paleontological evidence
reveals that these marine successions were deposited on a
slope apron after a period of rapid and major forearc sub-
sidence. We ascribe the cause of this subsidence to an
important event of subduction erosion that would have
removed the underside of the upper continental plate and
caused its thinning.
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