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RESUMO 
 

Os biofilmes estão relacionados a maioria das doenças orais e os agentes antimicrobianos 

podem ser utilizados como tratamentos alternativos à remoção mecânica desses biofilmes. 

Diante da emergência de resistência microbiana frente ao uso de antimicrobianos 

convencionais, tem aumentado o interesse em terapias que tornem o surgimento de resistência 

improvável. Nesse contexto, a terapia fotodinâmica antimicrobiana e o uso dos plasmas de 

baixa temperatura, ambos baseados na formação de espécies reativas de oxigênio, podem ser 

utilizados.  Assim, o objetivo deste estudo foi analisar o uso de novas terapias no controle dos 

biofilmes orais. No primeiro capítulo foi realizado um experimento com a fototerapia sobre a 

formação de biofilme de Candida albicans (SN 425). O biofilme foi exposto a luz azul e 

vermelha (400-690 nm), duas vezes ao dia. Foram utilizados a Clorexidina 0,12% e o NaCl 

(0,89%) como grupos controle. As amostras desses biofilmes foram analisadas através da 

contagem das unidades formadoras de colônia (UFC), peso seco e polissacarídeos. A análise 

de peso seco dos biofilmes de C. albicans revelou uma redução significativa após o 

tratamento com luz vermelha e luz azul quando comparados aos grupos controle. Embora essa 

redução não tenha sido acompanhada pela redução na viabilidade das células, concluiu-se que 

o tratamento duas vezes por dia com luz azul e vermelha foi um mecanismo promissor para a 

inibição do desenvolvimento de biofilmes C. albicans. No segundo capítulo, foi realizado um 

experimento com o plasma de baixa temperatura com oito voluntários que utilizaram 

dispositivos intra-orais contendo blocos de esmalte bovino, tratados 10 vezes ao dia com uma 

solução de sacarose a 10% durante 7 dias. Decorrido o período experimental, os blocos de 

esmalte receberam tratamento durante 5 minutos de plasma, clorexidina 0,12%, gás argônio 

ou solução salina 0,89%. As amostras de biofilmes foram recolhidas e processadas para a 

detecção molecular das bactérias de interesse. Os resultados demonstraram que o tratamento 

dos biofilmes com plasma reduziu significativamente as concentrações de Streptococcus 

mutans, Lactobacillus acidophillus, Streptococcus mitis, Actinoomyces naeslundis e 

Bifidobacterium (p <0,05) em comparação com outros grupos de tratamento. As 

concentrações de Lactobacillus casei e Streptococcus gordonii não foram influenciados pelo 

tratamento com plasma de baixa temperatura. Este estudo forneceu resultados para uma 

melhor compreensão entre as diferenças nas microbiotas após diferentes tratamentos 

antimicrobianos sobre os biofilmes. Em conclusão, o uso dos plasmas de baixa temperatura e 

da fototerapia são terapias efetivas na inativação e/ou no desenvolvimento de biofilmes orais 

patogênicos associados a diversas doenças que atingem a cavidade bucal dos seres humanos.  
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ABSTRACT 
 

Biofilms are related to most diseases and antimicrobial agents can be used as alternative 

treatments to mechanical removal of biofilms. Faced with the emergence of microbial 

resistance versus the use of conventional antimicrobials, interest in therapies that make the 

emergence of resistance unlikely has increased. In this context, antimicrobial photodynamic 

therapy and the use of low temperature plasmas, both based on the formation of reactive 

oxygen species, can be used. Thus, the objective of this study was to analyze the use of new 

therapies in the control of oral biofilms. In Chapter 1, an experiment was carried out with a 

phototherapy on the biofilm formation of Candida albicans (SN 425). The biofilm was 

exposed to blue or red light (400-690 nm), without the use of photosensitizers, twice a day. 

Chlorhexidine 0.12% and NaCl (0.89%) were used as control groups. Biofilm samples were 

analyzed by counting the colony forming units (CFU), dry weight and polysaccharides. A dry 

weight analysis of the biofilm product of C. albicans revealed a significant reduction after 

treatment with blue and red light when compared to the control groups. Although it has not 

been accompanied by the reduction in viability of the cells and considering the growth of this 

microorganism in the form of hyphae, it was concluded that the treatment twice a day with 

blue and red light it is a promise therapy for inhibition of C. albicans biofilms. In the second 

chapter, a low-temperature plasma experiment was performed with volunteers using intraoral 

devices containing blocks of bovine enamel, treated 10 times daily with a solution of 10% 

sucrose for 7 days. After the experimental period, the enamel blocks were treated for 5 

minutes of plasma, Chlorhexidine 0.12%, argon gas or 0.89% saline solution. The biofilm 

samples were collected and processed for identification of the genes of the bacteria of interest. 

The results demonstrated that treatment of plasma biofilms significantly reduced 

concentrations of Streptococcus mutans, Lactobacillus acidophillus, Streptococcus mitis, 

Actinomyces naeslundi and Bifidobacterium group (p <0.05) compared to other treatment 

groups. As concentrations of Lactobacillus casei and Streptococcus gordonii were not 

influenced by treatment with low temperature plasma. This study provides results for a better 

understanding between the difference of microbiotes after different antimicrobial treatments 

in biofilms. In conclusion, the use of low temperature plasmas and photodynamic therapy are 

effective therapies in inactivation of bacteria and/or in the development inhibition of 

pathogenic oral biofilms associated with various diseases that generate the oral cavity of 

humans. 
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1 INTRODUÇÃO GERAL 
 

A grande maioria dos microrganismos na natureza é encontrado ligada às 

superfícies, onde crescem e formam biofilmes. Os biofilmes consistem em uma ou mais 

comunidades de microrganismos, embebidos em uma matriz, aderidos uns aos outros e/ou a 

superfícies ou interfaces (COSTERTON et al., 2005, FLEMMING et al., 2016). O biofilme 

oral compreende estruturas tridimensionais complexas, formado por comunidades de 

multiespécies microbianas sobre o tecido oral (HE, et al., 2015; HOJO, et al., 2009), 

incorporados em uma matriz de polissacarídeo extracelular (REESE; GUGGENHEIM B., 

2007). 

Geralmente, a dinâmica de formação de um biofilme ocorre em etapas distintas. 

Inicialmente temos a adesão dos organismos denominados colonizadores primários, que se 

aderem à superfície, comumente contendo proteínas ou outros compostos orgânicos. As 

células aderidas passam a se desenvolver, originando microcolônias que sintetizam uma 

matriz exopolissacarídica, que passa a atuar como substrato para a aderência de 

microrganismos denominados colonizadores secundários. Estes colonizadores secundários 

podem se aderir diretamente aos primários, ou promoverem a formação de coagregados com 

outros microrganismos (RICKARD et al., 2013). Assim, o biofilme corresponde a uma 

"entidade" dinâmica, pois, de acordo com os microrganismos que o compõem, teremos 

condições físicas, químicas e biológicas distintas. Estas alterações fazem com que cada 

biofilme seja único, de acordo com os microrganismos presentes. Nesse sentido, ao longo do 

tempo a composição microbiana dos biofilmes geralmente sofre alterações significativas 

(JENKINSON; LAPPIN-SCOTT, 2011).   

Um biofilme natural formado sobre a superfície dos dentes pela aderência de 

diferentes espécies de bactérias e de matriz extracelular com glucanos solúveis e insolúveis é 

chamada de placa dentária. Ela é afetada por diversos fatores externos, como a dieta, a 

composição da saliva e o fluxo salivar (MARSH, 2015). A placa dentária é o biofilme mais 

extensivamente pesquisado (KOLENBRANDER, 2010).  

Mais de 700 espécies de bactérias foram identificadas em amostras de biofilme 

oral (BLANC et al, 2014; KUTSCH, 2014), a composição de espécies bacterianas varia entre 

os indivíduos, os locais na cavidade oral, a dieta e o comportamento (BLANC et al., 2014; 

KUTSCH, 2014). Entre estes microrganismos, as espécies estreptococos compreendem a 

maioria da população (PRATTEN et al., 2013) que juntamente com Bacilos Gram Positivos 

são as primeiras bactérias a colonizar a película sobre a superfície do dente (MASH, 2014). 
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Os Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Streptococcus 

mitis, Actinomyces naeslundii, Fusobacterium nucleatum, Capnocytophaga ochraceae, 

Streptococcus mutans e Streptococcus sobrinus podem estabelecer quando existir 

disponibilidade frequente de sacarose, portanto, em função da dieta do hospedeiro (ROSANA; 

LAMONTB, 2000; ZIJNGE et al., 2010; RICKARD et al., 2013).  

O biofilme é composto por bactérias Gram-positivas e negativas, sofrendo 

interferências do fluxo salivar e dos componentes de defesa do hospedeiro, tornando-se 

patogênico para os tecidos periodontais e dentais em decorrência da susceptibilidade do 

hospedeiro. O biofilme pode ser encontrado na região supragengival ou subgengival. O 

biofilme supragengival caracteriza-se pela presença qualitativa de microrganismos Gram-

positivos que servem de substrato para a formação do biofilme subgengival em decorrência da 

sua permanência sobre a estrutura dental. S. mutans encontra-se no complexo microbiano 

relacionado ao biofilme supragengival enquanto Porphyromonas gingivalis relacionado ao 

biofilme subgengival (CREA, 2014). 

As bactérias associadas ao biofilme oral resistem dentro do biofilme 

supragengival, composto basicamente com bactérias aeróbias sacarolíticas (SOCRANSKY et 

al, 1998). A natureza dos biofilmes subgengivais é mais complexa compreendendo bactérias 

anaeróbias e proteolíticas tais como Porphyromonas gingivalis, Tannerella forsythia, 

Aggregatibacter actinomycetemcomitans, além de, Staphylococci (SOUTO et al, 2006).  

As espécies de Cândida albicans também são muito prevalentes, sendo um fungo 

normalmente encontrado no corpo humano sem, contudo, ocasionar um processo patológico 

em indivíduos saudáveis. Estes microrganismos podem facilmente ser recuperados da mucosa 

oral, trato gastrointestinal, vagina e pele em condições de saúde. Entretanto, sob certas 

circunstâncias, este microrganismo pode causar uma infecção, conhecida como candidose, 

que acomete principalmente pacientes imunodeficientes, podendo evoluir para infecção 

sistêmica (SENEVIRATNE et al, 2008). 

A incidência de infecções hospitalares por fungos tem aumentado 

expressivamente nas ultimas décadas. Até 60% dos óbitos oriundos de infecções hospitalares 

são causadas por fungos (TAMURA, 2007). Neste contexto, as espécies do gênero Cândida 

tem sido os agentes mais frequentemente encontrados, correspondendo a cerca de 80% das 

infecções fúngicas de origem hospitalar e são a quarta causa de infecção da corrente 

sanguínea, conduzindo ao óbito em torno de 25 a 38% dos pacientes que desenvolvem 

candidemia (EGGIMANN, 2015). O biofilme forma uma matriz complexa e, dada a 

extraordinária resistência dos organismos dentro do biofilme aos mecanismos de defesa do 
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hospedeiro, o primeiro passo para o controle destes microrganismos seria a remoção mecânica 

do biofilme (SOCRANSKY et al, 2002).  

As doenças orais relacionadas com biofilmes afetam a maioria da população 

mundial. Uma descoberta importante de relevância clínica em relação aos microrganismos 

que crescem sobre uma superfície é a sua maior resistência aos agentes antimicrobianos 

(CERI et al., 1999; GILBERT et al., 2012). Desde 1970 tem sido verificado um aumento 

significativo nessa resistência, resultante da utilização, algumas vezes indiscriminada, de 

agentes antimicrobianos (BRUNTON et al, 2010). Segundo Tobudic et al (2010) os 

microrganismos dos biofilmes podem ser de 10 a 1000 vezes mais resistentes aos antibióticos 

do que as bactérias geneticamente idênticas, isso ocorre devido a própria resistência mediada 

pela célula, como as mutações naturais evolutivas das bactérias e a transferência de genes de 

resistência homólogos (HOIBY et al, 2011). Ainda, segundo Diaz (2015), através da 

resistência mediada pela presença do biofilme que resulta  na deficiente penetração e na 

barreira de difusão dos antibióticos na matriz polissacarídica estável, através do crescimento 

lento e resposta geral ao stress, da heterogenicidade e do quorum sensing, que consite em um 

sistema de comunicação entre as bactérias, no qual sintetizam compostos sinalizadores de 

baixo peso molecular, os autoindutores bacterianos, que são excretados para o meio ambiente, 

as bactérias detectam a presença dos mesmos e respondem ativando ou reprimindo certos 

genes (MAH e O’TOOLE, 2001 e VIANA, 2016). 

Além disso, as células crescidas como biofilme expressam propriedades distintas 

das células planctônicas, uma das quais é uma resistência aumentada aos agentes 

antimicrobianos. Trabalhos indicam que a estrutura física e/ou química dos 

exopolissacarídeos ou outros aspectos da arquitetura do biofilme também podem conferir 

resistência da comunidade bacteriana. Os microrganismos cultivados em biofilme podem 

desenvolver um fenótipo resistente a biocidas específico. Devido à natureza heterogênea do 

biofilme, é provável que existam múltiplos mecanismos de resistência atuando em uma única 

comunidade. Pesquisas esclarecem sobre como e por que as comunidades microbianas ligadas 

à superfície desenvolvem resistência aos agentes antimicrobianos (MAH e TOOLE, 2001). 

Fatores que adicionalmente influenciam nessa resistência seriam a idade e a 

estrutura do biofilme, que podem restringir a penetração do agente antimicrobiano e a 

modificação do fenótipo, diferindo do seu estado planctônico, após formarem uma matriz de 

polissacarídeo extracelular, o que os tornam mais tolerantes aos antibióticos e às forças de 

atrito (MARSH, 2004).  

Diante disso, nenhum dos agentes antiplaca disponíveis atualmente no mercado é 
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totalmente eficaz contra biofilmes maduros, tornando necessário a adoção de métodos 

alternativos para o tratamento da placa dentária sem prejudicar os tecidos saudáveis, bem 

como para o tratamento das doenças bucais (WILLIANS, 2011). 

Os métodos alternativos desenvolvidos para erradicar bactérias indesejáveis 

incluem a terapia fotodinâmica antimicrobiana (TFA), fototerapia, antimicrobianos 

nanoparticulados, peptideos antibacterianos e de Plasma de Baixa Temperatura (PBT) (LINS 

et al., 2015; BROGDEN; BROGDEN, 2011; CARJA et al., 2009; HASAN; CRAWFORD; 

IVANOVA, 2013; REN et al., 2009).  

Nesse contexto, a fototerapia e o uso do plasma de baixa temperatura, ambos 

baseados na formação de espécies reativas de oxigênio, podem ser utilizados. A Terapia 

fotodinâmica antimicrobiana é uma fototerapia baseada na utilização de substâncias de origem 

endógena ou exógenas que são ativadas na presença da luz gerando espécies reativas de 

oxigênio (ROS) podendo sensibilizar sistemas biológicos (DONNELY, 2008). 

A utilização dessa terapia é conhecida em diversas áreas e de modo geral, atua 

promovendo uma desinfecção local pela associação de luzes com fotossenssibilizador (FS) 

endógeno ou exógeno de comprimento de onda complementar. A terapia fotodinâmica foi 

inicialmente idealizada para o tratamento do câncer e sua ação antimicrobiana só começou a 

ser efetivamente estudada nas últimas duas décadas, quando no casoda odontologia, começou 

a ser testada tendo como alvo as células bacterianas envolvidas no desenvolvimento das 

doenças bucais (FEUERSTEIN, 2015). 

A terapia fotodinâmica antimicrobiana pode ser indicada como alternativa 

adicional à terapia antimicrobiana convencional para matar bactérias orais (FEUERSTEIN, 

2015; XIA; KOO, 2010; HAMBLIN, 2004; ROMLING, 2012). Baseia-se no uso de 

fotosensibilizadores extrínsecos, moléculas absorventes de luz que iniciam uma reação 

fotoquímica quando expostas à luz de um comprimento de onda específico. Este processo de 

fotoquímica leva a formação de espécies de oxigênio reativo (ROS), o que pode causar danos 

irreversíveis aos compostos essenciais de células bacterianas e alterar o metabolismo celular, 

resultando em morte bacteriana (DOUGHERT, 1998). A maior limitação do TFD é a 

dificuldade de penetração do corante através das profundidades do biofilme, de modo que a 

fototerapia sem a utilização do corante pode ser uma alternativa a utilização da TFD. Assim, 

fototerapia com luz azul e vermelha (400-690 nm de comprimento de onda) parece ser uma 

alternativa promissora para o TFD, uma vez que excede esse desafio. Seu mecanismo 

antimicrobiano é semelhante ao TFD, no entanto, a morte bacteriana parece envolver a 

ativação de fotosendibilizadores endógenos em bactérias, como flavinas e citocromos, o que 
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pode levar à produção de ROS (FEUERSTEIN, 2015). 

Outra terapia emergente no controle das infecções orais e baseada na produção de 

espécies reativas de oxigênio é o uso do Plasma de Baixa Temperatura, uma recente 

tecnologia para o tratamento antimicrobiano, sendo uma alternativa de grande potencial aos 

tratamentos tradicionais, tais como antibióticos e atua também como um promotor de 

cicatrização de feridas, tornando-se uma ferramenta promissora em uma variedade de 

aplicações biomédicas, com particular importância ao combate de infecções (MAI-

PROCHNOWA et al., 2014). O Plasma é o quarto estado da matéria, é um gás ionizado neutro 

e pode ser gerado utilizando uma variedade de gases ou misturas de gases como: argônio, 

hélio, ozônio ou gás oxigênio. É constituído por partículas em interação permanente, como 

fótons, elétrons, íons positivos e negativos, átomos, radicais livres e moléculas excitadas e 

não excitadas (MOREAU; ORANGE; FEUILLOLEY, 2008), as quais podem contribuir para 

as suas propriedades antibacterianas.  

Em geral, existem dois tipos de plasma gasoso, que são classificados de acordo 

com as condições em que são criados, os plasmas térmicos são obtidos a alta pressão (≥105 

Pa) e precisam de um maior poder substancial (até 50 MW), a temperatura do gás é quase a 

mesma para todos os componentes do plasma e pode ser muito elevada (5 a 20 × 103 K). Os 

plasmas não térmicos ou de baixa temperatura são obtidos a pressões mais baixas e utilizam 

um menor poder substancial. Estes últimos são caracterizados por uma temperatura muito 

elevada dos elétrons mais do que a do gás (temperatura macroscópica) e consequentemente 

não apresentam um equilíbrio termodinâmico local (MAI-PROCHNOWA et al., 2014; 

SCHOLTZ et al., 2015). Pesquisas têm demonstrado que o tratamento com o Plasma à Baixa 

Temperatura (PBT) pode inibir completamente a formação de um biofilme rico em matriz 

(DUARTE et al., 2011). O Plasma surge como um tratamento físico eficaz com efeito 

antimicrobiano, para bactérias, parasitas, fungos, esporos e vírus (WU, 2013). 

As vantagens do PBT e da fototerapia, sobre terapias antibióticas são que eles 

podem ser utilizados para um tratamento localizado, fornecendo uma resposta bactericida 

rápida, o que torna a probabilidade do desenvolvimento de resistência bacteriana improvável, 

e essas terapias demonstram efeitos colaterais mínimos. Além disso, a temperatura é 

compatível com os tecidos mamíferos, o que incentiva a utilização in vivo (FLUHR et al., 

2012; PATTERCKE et al., 2012). Assim, essas tecnologias têm recebido crescente atenção 

como possíveis terapias para o tratamento e/ou prevenção de biofilmes.  

Até esta data, tem havido algumas investigações em relação ao tratamento de 

bactérias orais com PBT e com a fototerapia antimicrobiana (BIN et al., 2016). Ao contrário 
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dos efeitos antimicrobianos, ainda são incipientes dados sobre como o PBT afeta a estrutura e 

a formação do biofilme e da expressão gênica do mesmo. Da mesma forma, ainda há carência 

de informações de como essas novas terapias antimicrobianas atuam em biofilmes orais 
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2 PROPOSIÇÃO 
 

GERAL 

Analisar o uso de novas terapias aplicadas ao controle do biofilme oral. 

ESPECÍFICOS 

• Descrever os efeitos da fototerapia com a luz azul ou vermelha no desenvolvimento do 

biofilme de C. albicans. 

• Avaliar o efeito antimicrobiano do plasma de baixa temperatura sobre biofilmes orais 

formados in situ, através da identificação de parte da população microbiana. 
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3 CAPÍTULOS 
 

REGIMENTO INTERNO  

Esta tese está baseada no Artigo 46 do Registro Interno do Programa de Pós-Graduação em 

Odontologia da Universidade Federal do Ceará, que regulamenta o formato alternativo para 

dissertação de mestrado e tese de doutorado e permite a inserção de artigos científicos de 

autoria e co-autoria do candidato. Por se tratar de pesquisa envolvendo seres humanos, ou 

parte deles, o projeto de pesquisa deste trabalho foi submetido à apreciação do Comitê de 

Ética em Pesquisa da Faculdade de Medicina da Universidade Federal do Ceará via 

Plataforma Brasil, tendo sido aprovado sob Caae - 40975514.0.0000.5054 (ANEXO A). 

Assim sendo, essa tese de doutorado é composta por dois capitulos que contém dois artigos 

que serão submetidos para publicação nos periódicos “Laser in Medical Science” (ANEXO 

B) and “Clinical Oral Investigation” (ANEXO C).  

 

Capítulo 1: Effect of twice-daily red and blue light treatment on Candida albicans biofilm 

development 

“Laser in Medical Science” – qualis capes A2 

 

Capítulo 2: Antimicrobial effect of Low Temperature Plasma on oral biofilm formed in situ: 

molecular partial identification of microbial population 

“Clinical Oral Investigation” – qualis capes A1 
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3.1 Capítulo 1:   

 

Effect of twice-daily red and blue light treatment on Candida albicans biofilm development 

Paula Ventura da Silveira, Beatriz Helena Dias Panariello, Cecília Atem Goncalves de 

Araújo Costa, Shawn Maule, Shane Maule, Malvin Janal, Iriana Carla Junqueira 

Zanin, Simone Duarte 

 

Abstract 
 
Introduction: The use of blue light or red light has been proposed as a direct means of 
affecting local bacterial infections; however, the use of light to prevent the biofilm 
development of Candida albicans has received less attention. The aim of this study was to 
determine how the treatment with red and blue lights affects the development and 
composition of a matrix-rich Candida biofilm. 
 
Methods: Red and blue light treatment were applied to Candida albicans (SN 425) biofilms 
twice-daily for 48 h. All the experiments were repeated on five separate occasion with two 
replicaties. After 18 h biofilm formation, the biofilm was exposed to non-coherent blue light 
and red light (Luma- Care; 420 nm and 635 nm). The distance between the light source tip 
and the exposed sample was 1.0 cm and the parameters adopted were energy density of 72 J 
cm-2 and time exposure of 12. 56 min for blue light and 18 J cm−2 for 27.3 s, 35 J cm−2 for 1 
min, and 53 J cm−2 for 2 min for red light. Positive and negative control groups were treated 
twice-daily with 0.12% chlorhexidine (CHX) (1 min) and 0.89% NaCl (1 min), respectively. 
Biofilms were analyzed for colony forming units (CFU), dry-weight, and exopolysaccharides 
(EPS-insoluble and EPS-soluble). 
 
Results: C. albicans biofilms dry-weight were significantly reduced by the treatment with red 
and blue light. The EPS-soluble content was mainly reduced by twice-daily exposure to blue 
light while EPS-insoluble exhibited major reduction via twice-daily treatment with red light 
for 1 min.  
 
Conclusion: Twice-daily treatment with blue and red light is a promising mechanism for the 
reduction of matrix-rich C. albicans biofilm development.  
 
Keywords: Candida albicans, Biofilm, Red Light, Blue light, Phototherapy.  
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Introduction 

Candida albicans is the main specie associated with oral candidiasis and has 

been increasingly observed in both in immune-compromised and non-compromised 

individuals 1. In recent years, there has been a significant increase in the incidence of 

oral candidiasis. Several factors are thought to be responsible for this increase, 

including a growing incidence of diabetes, increased age life expectancies, the growth 

in HIV-infection and the AIDS epidemic, a widespread use of immunosuppressive 

therapy, the use of broad spectrum antibiotics and invasive clinical procedures such as 

solid organ or bone marrow transplantation. In this context, C. albicans is a frequent 

fungal biofilm-forming pathogen that can cause life-threatening infections by colonizing 

medical and dental devices (i.e. prostheses, implants and catheters) 2. Dimorphism is an 

important characteristic experienced by C. albicans in response to adverse 

environmental conditions, which increases its virulence. C. albicans can undergo from 

around yeast cells to long filamentous cells named hyphae 3.  The yeast form facilitates 

the colonization of different sites while the hyphal form has an important role in causing 

disease by invading epithelial cells and causing tissue damage 3. 

C. albicans attachment to mucosal tissues and to abiotic surfaces and the 

formation of biofilms are crucial steps for its survival and proliferation in the oral 

cavity4. It is estimated that most microorganisms in nature occur in biofilms 5. Biofilm 

growth starts when planktonic cells adhere to a surface and the proliferation of the yeast 

cells across the substrate surface starts, as well as the beginning of hyphal development. 

The final step of biofilm development is the maturation stage, in which yeast-like 

growth is repressed, hyphal growth is augmented, and extracellular matrix encases the 

biofilm 6. Exopolysaccharides (EPS), proteins, lipids, nucleic acids, lipoteichoic acids 

(LTA), and even lipopolysaccharides have been identified in the matrices of bacterial 

biofilms 6. The analyses of EPS matrix formation could advance the current 

understanding of the development process and structural organization of oral biofilms, 

which would be essential for designing novel and effective antibiofilm therapies. 

Furthermore, biofilm formation is one of the most important attributes for virulence in 

C. albicans species and contributes to increased resistance to the current antifungal 

agents, environmental stress and host immune mechanisms 7. It has been shown that C. 

albicans polysaccharides in the extracellular matrix are composed by β-1,6 glucan 

(EPS-insoluble) and α-mannan (EPS-soluble) that interact to form a mannan-glucan 
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complex (MGCx) 8;9. This exopolysaccharide interaction of C. albicans is essential for 

protection of the biofilm from drug treatment 10. 

The photodynamic antimicrobial chemotherapy (PACT) has been indicated as an 

alternative to conventional antimicrobial therapy to kill oral bacteria. It is based on the 

use of extrinsic photosensitizers, light-absorbing molecules that initiate a photochemical 

reaction when exposed to light of a specific wavelength 11. A previous study 

investigated the antimicrobial effect of blue (wavelength range, 400–440 nm) and red 

(wavelength range, 570–690 nm) light-emitting diode (LED) into different exposure 

times to active different concentrations of curcumin and toluidine blue on planktonic 

suspensions of Streptococcus mutans. It was observed that the LED device in 

combination with curcumin and toluidine blue promoted an effective photoinactivation 

of S. mutans suspensions at ultrashort light illumination times. However, the greatest 

PACT limitation is the challenge for the photosensitizer to penetrate through the depths 

of the biofilm35  

The phototherapy seems to be a promising alternative for PACT since it exceeds 

this challenge. Its antimicrobial mechanism is like PACT, however, the bacterial killing 

seems to involve the activation of endogenous photosensitizers in bacteria, such as 

flavins and cytochromes, that may lead to production of ROS (Reactive Oxygen 

Species). The antimicrobial effect of blue light alone has been demonstrated in S. 

mutans biofilms12; however, the effect of blue and red light in C. albicans biofilms has 

never been investigated. Therefore, the aim of this study was to determine how the 

treatment with blue light and red light affects the development and composition of a 

matrix-rich Candida biofilm. 

 

Methods 

 

Light Sources 

A noncoherent light was used (LumaCare LC-122 A, LumaCare Medical Group, 

Newport Beach, CA, USA). This device offers interchangeable flat probes (beam 

diameter=12 mm; spot area=113.1 mm2) at specific frequencies that are connected with 

a simple interlocking connection. To this study, two different fiber optic probes were 

used to cover the blue and red-light spectrum. The blue light (wavelength range, 400–

440 nm) with a central wavelength peak at 420±20 nm at power density of 95.5 mW 

cm−2 (set power=105 mW). The radiant exposures tested to this specific wavelength was 
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72 J.cm−2. Thus, the biofilms were irradiated for 12.5 min. The red light (wavelength 

range, 570–690 nm) provided an absorption spectrum with a central wavelength at 

635±10 nm with a power density of 1,460 mW cm−2 (set power =1,650 mW) and 18, 

35, and 53 J cm−2 of radiant exposures. The exposure time corresponding to each tested 

radiant were 2 min, 1 min and 27.3 s, respectively. A work distance of 5 mm between 

the light source and biofilms surface was applied as it is a safe distance to avoid heating 

sample36. 

 

Inoculum  

The biofilm was obtained from the strain C. albicans SN 425. The 

microorganism stored at -80ºC were seeded onto Petri dishes with SDA (Sabourand 

dextrose agar) culture and incubated at 37°C for 48h. Then, around 5 colonies of the 

microorganism were taken with a loop and added in YNB medium (Yeast Nitrogen 

Base- DIFCO, Detroit, Michigan, USA) supplemented with 100 mM of glucose. The 

pre-inoculum was incubated at 37°C. After 16h of incubation, the pre-inoculum was 

diluted with fresh YNB medium supplemented with 100 mM glucose (1:10 dilution). 

These inoculum cultures were incubated at 37°C until the strain reached the mid-log 

growth phase (8 hours, OD540nm͔ = ̃ 0.400 nm). Then, the inoculums were adjusted to 

reach 107 cells/mL.  

 

Biofilm formation and phototherapy 

One milliliter of the inoculum of each strain was added to the wells of a 24-well 

polystyrene plate. The culture plate was incubated at 37°C for 90 min (adhesion phase). 

After this period, the wells were washed twice with sterile 0.89% NaCl solution to 

remove non-adhered cells. Afterwards, one (1) mL of RPMI 1640 buffered with 

morpholinepropanesulfonic acid (MOPS) (Sigma-Aldrich, St. Louis, Missouri, USA) at 

pH 7 was added to each well.  After 18 hours of initial biofilm formation, the biofilm 

was exposed to red and blue light twice daily (9 am and 3pm), until 48 hours of biofilm 

formation. Positive and negative control groups were treated twice-daily with 0.12% 

chlorhexidine-CHX (1 min) and 0.89% NaCl (1 min), respectively. 

 

Biofilm analysis 

At the end of the experimental period, the biofilms were washed twice with 1 

mL of sterile 0.89% NaCl solution. For biofilm removal, 2 mL of sterile 0.89% NaCl 
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solution were added to the plates and the wells surfaces were gently scraped with a 

sterile spatula. The removed biofilms were added to sterile tubes. The tubes containing 

the removed biofilms were vortexed and an aliquot of 100 ml was separated for the dry-

weight13 and another aliquot of 100 µl was separated for colony forming units (cfu/mL). 

The remaining content was centrifuged (10000 rpm, 10 min). The supernatant had 1 mL 

collected for EPS-soluble analysis by phenol: chloroform method 14 and the biofilm 

pellet was resuspended and washed with milli-Q water; this procedure was repeated 

three times. Then, the biofilm pellet was resuspended with 1 mL of milli-Q water and 

this aliquot was used for the EPS-insoluble analysis by phenol: chloroform method 14. 

 

Statistical analyses 

All the experiments were repeated on five separate occasion with two replicates. 

The polysaccharide content was normalized by the dry-weight. Colony forming units 

was transformed to Log10.  Data was analyzed by two-way ANOVA and Tukey’s test. 

The p value was <0.05 for statistical significance.  

 

Results 

Figure 1 shows the results of Log10 CFU/mL of C. albicans. The First bar 

represents the negative control. Each group was compared with the negative and 

positive control. There was significant difference in Log10 CFU/ml between the 

negative and positive control samples (p<0.05). However, there was no significant 

difference between light groups and negative control (p>0.05). 
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Fig 1. Mean and standard deviations of Log10 CFU/mL of C. albicans. Comparison was 
made between the twice-daily light treatment and the controls-0.12% CHX (positive 
control) and 0.89% NaCl (negative control). The * points to significant differences 
(p<0.05) in comparison to the other groups. 
 

The figure 2 shows the results of the dry-weight (mg) of C. albicans biofilms 

after periodic light treatment. A significant reduction of the dry-weight in all light-

treated samples in comparison to the negative control was observed and the reduction 

values observed in the light-treated groups was statistically similar to the positive 

control.  

 
Fig 2. Mean and standard deviations of dry-Weight (mg) of C. albicans biofilm after the 
twice-daily treatment with red and blue light and with 0.12% CHX (positive control) 
and treatment with 0.89% NaCl (negative control). The * points to significant 
differences (p<0.05) in comparison to the other groups. 
 
 

Figure 3 shows the results of C. albicans EPS-soluble and -insoluble contents 

after the twice-daily treatment with red and blue light and with 0.12% CHX (positive 

control) and treatment with 0.89% NaCl (negative control). It was observed that twice-

daily light exposure to red light for 1 and 2 min and to blue light for 12 min 56 s 

numerically reduced the EPS- soluble in comparison to the negative control, mainly the 

blue light treatment. On the other hand, the EPS-insoluble content was numerically 

reduced by twice-daily exposure to red light for 1 min in comparison to the negative 

control, to the blue light and to the other periods of exposure to red light. Thus, there is 

a tendency of EPS-soluble reduction by twice-daily treatment with the blue light and a 

tendency of reduction of EPS-insoluble by twice-daily treatment with red light for 1 
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min. Further studies with the combination of the blue light for 12 min 56 s with the red 

light for 1 min for reduction of matrix-EPS in C. albicans infections could be 

performed. 
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Fig 3. Mean values and standard deviations of EPS-soluble and insoluble content in C. albicans biofilm (µg/mg of dry-weight) after twice-daily 
light treatment compared to twice-daily treatment with 0.12% Chlorhexidine (positive control) and twice-daily treatment with 0.89% NaCl 
(negative control). The * points to significant differences (p<0.05) in comparison to the other groups. 
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Discussion 

C. albicans is the most frequent specie isolated from superficial and systemic fungal 

infections and is associated with high rates of mortality37. There is an increasing number of strains 

of this microorganism that are resistant to antifungal agents38. Treatments of oral infections caused 

by Candida use topical antifungal medication, such as Nystatin15; and systemic antifungal 

medication, such as Fluconazole16. Due to the antifungal resistance and difficulties associated with 

the use of conventional medications, antimicrobial photodynamic chemotherapy (PACT) has been 

indicated for inactivating Candida and for the treatment of superficial fungal infections17;18;19. 

Studies have demonstrated that species of Candida present susceptibility to PACT 18. However, this 

method has limitations, such as non-selective antimicrobial characteristics and difficulty to 

penetrate to the depths of the biofilm, resulting in less effectiveness in biofilms39. As an alternative 

to PACT, a previous study described the use of blue light to prevent the biofilm development of 

Streptoccocus mutans in vitro12. The study found that that twice-daily treatment prevented in vitro 

S. mutans biofilm matrix development, being more effective in reducing the production of EPS-

insoluble than the ‘gold-standard’ anti-plaque 0.12% chlorhexidine 12. However, the effect of blue 

and red light in C. albicans biofilms has never been investigated. Therefore, the aim of this study 

was to determine how the treatment with blue light or red light affects the development and 

composition of a matrix-rich Candida biofilm. 

The light is an essential environmental cue for various organisms 20.  Light is the major 

source of energy in the biosphere, and an essential signal that controls growth, development, and 

behavior of many different physiological mechanisms in most organisms. Long term experience 

with phototherapy for the treatment of jaundice, cancer and dermatological conditions has 

demonstrated its safety as well as its effectiveness 24. LumaCare™ device is a source of light that 

produces the whole spectrum of visible light by changing different probes at specific wavelenghts 
37. The light source presents a high potency (1,460 mW cm−2) in the red wavelength, thus, the 

exposure of the biofilms to this light was short (2 min, 1 min and 27.3 s) 37. On the other hand, the 

blue LED (95.5 mW cm−2) has a lower penetration depth into the tissue compared to red light due 

to its low potency associated with scattering and absorption by biomolecules, resulting in longer 

illumination time (12.56 min) 37. 

Exopolysaccharides (EPS) are abundant polymers in the biofilm matrix of C. albicans 21;8. 

The Candida resistance to medications is multifactorial, being related to the physiological state of 

the cells, to the activation of drug efflux pumps and to the protective effect of the EPS of the 

extracellular matrix 33. β-glucans from the extracellular matrix of C. albicans biofilms (EPS-

insoluble) bind to fluconazole 22 and amphotericin B, preventing the diffusion of these drugs into 

the biofilm23. Because the ECM of C. albicans is composed by a complex interaction between 
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soluble (α-mannan) and insoluble (β-1,6 glucan) EPS, the present study focused of on these 

components. Results on the photodynamic degradation of individual components of Candida 

biofilm matrix are scarce.  

The present study observed a significant reduction of the total biomasses (dry-weight) of the 

biofilms after the treatments with red and blue lights (Figure 2). The total biomass is defined as the 

total weight of the biofilm after the treatments and the washes of the biofilm. By reducing the 

biomasses, the lights prevented biofilm development. On the other hand, the CFU count was not 

affect. Thus, the reduction of the biomasses happened because of the reduction of the matrix 

components. We observed a numerical reduction of EPS-soluble that might have influenced in the 

significant reduction of the biomasses. However, Candida matrix have other important components, 

such as eDNA and proteins40 that might have been affected by the photherapy but were not 

evaluated in this study. Thus, the limitation of our study is that we only evaluated EPS-soluble and -

insoluble from the matrix of C. albicans. Further studies should evaluate the effect of red and blue 

light in eDNA and proteins.  

In the present study, the twice-daily treatment with blue light resulted in a numerical 

reduction in the EPS-soluble content of C. albicans biofilms (Figure 3a). Moreover, the EPS-

soluble was numerically reduced by the application of red light for 1 min twice a day (Figure 3a). 

The decrease in the concentration of polysaccharides with the twice-daily treatment with blue light 

and red light for 1 min indicates that the light interactions with matrix components may affect the 

cohesiveness and stability of the EPS and the leakage of polysaccharides from the biofilm, without 

causing a significant effect of cell viability (Figure 1). The reduction of polysaccharides from the 

matrix of C. albicans biofilms is important since these components are related to the protection of 

the biofilm from antifungals8. Thus, the twice-daily treatment of oral candidiasis with blue light for 

12 min 56 and with red light for 1 min might function as an adjuvant to topic antifungal application, 

such as Nystatin.  

Our results demonstrated the effect of blue and red light on C. albicans biofilms. To our 

knowledge, this is the first report of twice-daily use of blue and red light to prevent C. albicans 

biofilm development. This exposure prevented C. albicans biofilm development by reducing the 

biomasses. Moreover, even though no statistically differences for EPS reduction were noted, there 

is a high tendency of reduction of EPS-soluble by blue light for 12.56 min and red light for 1 min.  

There was no cfu/mL reduction by the treatments, so the reduction of the biomasses occurred by the 

reduction of matrix components. Thus, future studies with red and blue light therapy should focus 

on another C. albicans extracellular matrix components besides EPS-soluble and-insoluble, such as 

eDNA and proteins.  
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Therefore, we conclude that C. albicans biofilms biomasses (dry-weight) were significantly 

reduced by the treatment with red and blue light. Moreover, the EPS-soluble content was mainly 

reduced by twice-daily exposure to blue light while EPS-insoluble exhibited major reduction with 

twice-daily treatment with red light for 1 min. This leads us to believe that light is a promising 

therapeutic approach for biofilm-related C. albicans diseases, such as oral candidiasis, indicating 

that twice-daily treatment of Candida biofilms with either blue light and red light can function as an 

adjuvant to topic antifungal application. 
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Abstract 

Objectives To evaluate the antimicrobial effect of tissue tolerable plasma on oral biofilms formed in 
situ through the molecular characterization of the microbial population.  
Material and methods For this in situ experiment, a single-blind split mouth design was used in two 
phases of 7 days each, in which 8 volunteers wore palatal devices containing six bovine enamel 
slabs, positioned in pair of three. At the end of the clinical phase, the device was randomly split and 
each half was allocated to one of the following treatments: Plasma (PLA); Argon (ARG); 
Chlorhexidine 0.12% (CHX) and Salina solution 0.89% (NaCl). In this way, at the end of the two 
clinical phases, biofilms form all volunteers were submitted to the four different treatments. 
Results A total of eight samples from each group were submitted to the RT-q PCR for the bacteria 
detection and quantification. Data of the gene expression of each bacterium were obtained. 
Statistical analysis were performed using the Sigma Plot program, using Anova test, followed by 
the complementary tests of Student t-test and Newman Keuls, with p <0.05.  In all the analyzed 
groups the presence of specific bacteria for each primer was observed, however some groups treated 
with plasma the bacterial expression of the bacteria was lower. Plasma treatment on biofilm sample 
presented significantly lowers concentrations of Streptococcus mutans, Lactobacillus acidophilus, 
Streptococcus mitis group, Bifidobacterium group and the Actinimyces naeslundii (p < 0.05) 
compared to other treatment groups. Concentrations of Lactobacillus casei groups and the 
Streptococcus gordonii were not significantly different before and after plasma treatment.  
Clinical relevance Considering that the information about the oral microbiota related to biofilm in 
situ status is relevant, this study provides insights to better understand the differences in the 
microbiotas between different treatments. 
Keywords Bacteria- biofilm- in situ- Quantitative polymerase chain reaction 

 
Introduction 

The impact of environmental factors on chronic diseases has been the focus of many studies, 

especially in the last couple of decades, along with an effort to understand the heterogeneity of the 

immunological parameters among individuals [1]. In between different environmental factors, one 

that stands out is the microbiota that may be defined as the sum of microbes residing in a habitat. 

The oral cavity is the habitat of several kinds of microorganisms, which form a complex community 

that can adhere to the teeth surface or to epithelial mucosa forming biofilms [2]. The microbiome is 

defined as the totality of genes of microbiota, in this case, of that oral microbiota [3]. In oral health, 

the oral cavity microbiome comprises billions of microbes. 

Oral microbial biofilms are three-dimensional structured bacterial communities [4] attached 

to a solid surface like the enamel of the teeth, the surface of the root or dental implants [5] and are 

embedded in an exo-polysaccharide matrix [6]. Oral biofilms are exemplary and served as a model 

system for bacterial adhesion [7,8] and antibiotic resistance [9]. The bacterial diversity in the oral 

cavity is estimated to be more than 700 different species and phylotypes, being that of these, 50% 

are cultivable and the rest indentifiable only by molecular biology [10]. Among these 

microorganisms, Streptococci species comprise the majority of dental plaque population [11]. The 

original mechanistic analyses revealed that the demineralization of the enamel was induced by the 

increasing acidity of the microenvironment surrounding the tooth. This acidity was mainly 
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generated by a selective group of bacteria [12]. The advent of molecular research that characterizes 

the oral microbiota in health and disease revealed the diversity of oral biofilms, introducing new 

candidates for disease-associated bacterial species [13]. Molecular approaches have revealed a 

greater variability of the oral microbiota associated to dental caries, including Streptococcus spp 

and bacteria of the genera Actinomyces, Bifidobacterium, Lactobacillus, Propionibacterium, 

Veillonella, Selenomonas, and Atopobium [14]. 

It is well know that the accumulation of bacterial biofilms on tooth surfaces results in some 

of the most prevalent bacterial-induced human diseases, caries and inflammatory periodontal 

diseases. Current treatment of subjects with plaque-related diseases involves mechanical removal of 

the biofilm and the use of antiseptics and antibiotics. Thus, the increased microbial resistance 

against commercially available antimicrobial drugs and substances have cooperated with the search 

for alternative treatments for the control of pathogenic biofilms involved with diseases that affect 

the body, including biofilm-dependent oral diseases [15, 16]. In this context, plasma may constitute 

a suitable process to combat both biofilm-related resistance and antimicrobial resistance.  

Plasma is a partially ionized gas generated by an electrical discharge, which creates a highly 

reactive environment with ions, electrons, excited atoms and molecules, vacuum ultraviolet and 

ultraviolet (UV) irradiation, free radicals, and chemically reactive particles [17]. It is also specific, 

targeting only the infected area. In addition, plasma is usually produced by low-toxicity gases and 

elaborates its activity by producing a mixture of products that decay within a few seconds after the 

treatment process [18] and the ability to achieve gas phase, without the need to reach high 

temperatures, allows its use in thermosensitive materials including cells and tissues [19]. The 

effectiveness of removing biofilms and inactivation of microorganisms with tissue tolerable plasma 

have been demonstrated [20]. 

In general, biofilms models may help us to accurately predict, in a controlled and simplified 

way, a clinical outcome which can lead us to preventive actions for diseases [21]. In this way, we 

decided to evaluate the effect of plasma under conditions more similar to those found in the mouth, 

using an in situ multispecies biofilm model. Method involves the use of devices that create 

conditions reproducing the process of biofilm formation in the oral cavity, serving as a link between 

the uncontrolled clinical situation and the highly controlled laboratory experiments.  

The primary purpose in this study is to evaluate the antimicrobial effect of tissue 

tolerable plasma on oral biofilms formed in situ through the molecular identification of the part 

microbial population.  
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Methods 

 

Ethics statement 

This study protocol was approved by the Research and Ethics Committee of the Federal 

University of Ceara, Brazil Medical School (Sisnep Caae - 40975514.0.0000.5054). All volunteers 

gave informed consent according to Resolution n0 196 of the National Health Council, Health 

Ministry, Brasilia, DF, from 10/03/1996. 

 

Experimental design 

For this in situ experiment, a single-blind split mouth design was used in two phases of 7 

days each, in which 8 volunteers wore palatal devices containing six bovine enamel slabs, 

positioned in pair of three. At the end of the clinical phase, the device was randomly split and each 

half was allocated to one of the following treatments: Plasma (PLA); Argon (ARG); Chlorhexidine 

0.12% (CHX) and Salina solution 0.89% (SAL) as described in Fig 1. In this way, at the end of the 

two clinical phases, all volunteers were submitted to the four different treatments. 

 

Figure 1. Description of the treatments in which the enamel slabs were treatds 

Groups Code Treatment 

Plasma PLA Plasma plume during 5 min 

Argon ARG Argon gas flow during 5 min  

Chlorhexidine 0.12% CHX 50 µL on each slab during 5 min 

Salina solution 0.89% SAL 50 µL on each slab during 5 min 

 
Tissue tolerable plasma 

The Atmospheric-Pressure Plasma (plasma jet kINPen med®) that was utilized in this study 

was developed by the Leibniz Institute for Plasma Science and Technology (Neoplas Tools – 

Kinpen, Greifswald, Germany) and consists of a hand-held unit (length = 170 mm, diameter = 20 

mm, weight = 170g) connected to a high-frequency power supply (frequency 1.82 MHz, 2–6 kV 

peak-to-peak, 8 W system power) for the generation of a plasma jet at atmospheric pressure. The 

handheld unit has a pin-type electrode (1 mm diameter) surrounded by a 1.6 mm quartz capillary. 

An operating gas consisting of argon at a flow rate of 5 slm (standard liters per minute) was used. 

The plasma plume emerging at the exit nozzle is about 1.5 mm in diameter and extends into the 

surrounding air for a distance of up to 10mm. The gas flow plume was targeted to all surface of 
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enamel slabs, and the tip-to sample distance (10 mm) was kept constant during application using a 

fixed holder. 

 

Specimen preparation 

Bovine teeth were used to perform this in situ study. The teeth were stored in 0.01% (v/v) 

thymol solution at 4°C for 30 days until used [21,22,23]. Enamel slabs with 4 x 4 x 2 mm were 

obtained using a water-cooled diamond saw and a cutting machine (IsoMet Low Speed Saw; 

Buehler, Lake Bluff, IL, USA).  The adjustment of the enamel and dentin to obtain flat plates was 

done with the aid of a low-speed polishing machine and 320 grit paper (Carbimet Paper Discs), 

under water-cooling. Afterwards, the specimens were polished using three different silicon carbide 

waterproof papers (320, 600, and 1,200-grit) as well as polishing cloths with 1 µm diamond paste 

(Buehler).  

 

In situ palatal devices 

The slabs were autoclaved (121 ºC, 15 min) [24] and stored in 100% humidity until being 

inserted into the palatal appliances. For each subject, two acrylic palatal devices were fabricated, in 

which two cavities (18 x 6 x 3 mm) were prepared on the left and right sides; three slabs were 

attached with wax in each cavity. In order to allow biofilm accumulation, and to protect it from 

mechanical disturbance, a plastic mesh was positioned on the acrylic resin, leaving a 1 mm space 

from the slab surface [25,26]. 

 

In situ study Population 

Eight healthy volunteers (5 women and 3 men), aged 19–34 years, able to comply with the 

experimental protocol, were selected to participate in this study. All participants received oral and 

written instructions about the experimental design. The inclusion criteria were normal salivary flow 

rate, normal buffering capacity of saliva and S. mutans colony-forming units (CFU mg-1) in 

biofilms of at least 105 after 36 h of oral hygiene suspension. Exclusion criteria included active 

caries lesions, use of antibiotics within the past 3 months prior to the study, use of fixed or 

removable orthodontic devices. The use of dentifrice containing any antibiotics was suspended 

during the experimental period.   

 

 

In situ biofilm formation 

During the lead-in period (7 d) and throughout the clinical phases (7 days each), the 

volunteers brushed their teeth with a fluoridated dentifrice [Sorriso Super Refrescante – a calcium 
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carbonate based dentifrice, 1,450 µg fluoride (F) g-1, as monofluorophosphate (MFP); Colgate-

Palmolive, São Paulo, SP, Brazil]. Also, the volunteers received oral and written instructions to 

wear the appliances at all times, including at night. They were allowed to remove the appliances 

only during meals, when consuming acid drinks, and when performing oral hygiene. When 

removed, the devices were kept moist in plastic boxes to keep the bacterial biofilm viable [23]. The 

cariogenic challenge was provided by the volunteers who dripped a 10% sucrose solution onto all 

the enamel slabs, 10 times a day, according to a predetermined schedule (at 08:00, 09:30, 11:00, 

12:30, 14:00, 15:30, 17:00, 18:30, 20:00, and 21: 30 h) [29]. Before replacing the palatal appliance 

in the mouth, a 5-min waiting time was standardized to allow diffusion of the sucrose into the 

dental biofilm. Brushing with the dentifrice was performed three times a day, after mealtimes when 

the volunteers habitually carried out their oral hygiene procedures. The appliances were brushed 

extra-orally, except for the slab area, and volunteers were asked to brush carefully over the covering 

meshes, to avoid disturbing the biofilm. All volunteers consumed fluoridated water (0.70 mg F 1-1), 

and no restriction was made with regard to the volunteers’ dietary habits.  

 

Plasma treatment of in situ biofilms 

The distribution of treatments on the palatal device in each intra-oral phase was determined 

randomly by raffle. All volunteers came in fasting, removed the device from mouth and one drop of 

10% sucrose was added to each slabs. Third minutes later the plastic meshes of the devices were 

removed with a scalpel blade (#15C), the biofilm formed in situ were exposed, and the treatments 

with PLA, ARG, CHX or SAL were performed. Biofilms were then scraped carefully, were and 

weighed and were suspended in RNAlater solution adding 5–10 volume. Samples were stored at 

room temperature overnigh and stored at -80 oC after that. 

 

Extraction of RNA 

The biofilm samples (8 samples / group) were initially thawed. The RNAlater solution was 

removed by washing with PBS and then transferred to threaded cryotubes (Axygen, Union City, 

CA, USA), which previously received 0.16 g of 0.1 mm diameter zirconia beads [30]. The tubes 

were shaken in a Beadbeater apparatus (Biospec Products Inc., Bartlesville, OK, USA) for two 30-

second periods, with a 60-second immersion of the tube on ice for each shaking period. This 

procedure aimed at breaking the bacterial cell wall and consequently releasing the nucleic acid 

molecules. 
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RNeasy Minikit  

After stirring at Beadbeater, 850 µl of a mixture of RLT (RNeasy Minikit ®) and 1% β-

mercaptoethanol was added to the biofilm sample, vortexed for 30 seconds and centrifuged for 2 

minutes (11000g / 4 ° C). Thereafter, 350 µl of the supernatant was removed for the continuation of 

the extraction procedure, while the other part was stored if further extraction was required. To the 

350 µl initially removed, 250 µl of pure ethanol was added and vortexed. Then, the contents were 

transferred to a RNeasy MiniKit column (Qiagen, Valencia, CA, USA) and centrifuged. After 

centrifugation, the contents that had passed through the column were discarded. 700 µl of RW 

(RNeasy Minikit ®) were added to the columm and again centrifugation (11000g / 20 ° C) for 30 

seconds was performed. The content that had passed through the column was discarded again. 

Thereafter, 500 µl of RPE (RNeasy Minikit ®) was added to the column and centrifuged again 

(11000g / 20 ° C) for 30 seconds. This step was performed twice. A centrifugation without addition 

of reagents (11000g / 20oC) for 2 minutes to remove all alcohol present on the column was 

performed. Subsequently, the column was placed in a capped eppendorf and 40 µl of RNAse free 

water was added and centrifuged again (11000g / 20 ° C) for 1 minute to elute. The eluate was 

pipetted and stored in a new labeled eppendorf. 

 

Treatment with DNase 

For each RNA sample obtained, 5 µl of the buffer and 5 µl of the Turbo DNase enzyme 

(Applied Biosystems, Ambiom, Austin, TX, USA) were added. After vortexing, the sample was 

allowed to stand for 15 minutes at 37 ° C, sufficient time for DNA degradation by DNAse. 

 

Purification of samples 

To purify the samples, 300 µl of RW buffer  (RNeasy Minikit ®) and 250 µl of pure ethanol 

were added to the column, vortexing and rapid spin were performed. The contents were transferred 

to a new RNeasy MiniKit column, centrifuged (11000g / 20oC) for 30 seconds, and what went 

through the column was discarded. Then the column 700 µl of RW was added, centrifuged again 

(11000g / 20 ° C) for 30 seconds and the contents passed through the column were discarded. 500 

µl of the RPE buffer was added to the sample, and the sample was again centrifuged (11000g / 20 ° 

C) for 30 seconds and the contents that passed through the column were discarded. This step was 

repeated twice. A further centrifugation was performed for 2 minutes so that excess ethanol was 

removed. After removal of excess ethanol, the column containing 30 ul of ultrapure water was 

transferred to a capped eppendorf tube and elution of the RNA by another centrifugation (11000g / 

20 ° C) for 1 minute was performed. Total extracted and purified RNA from the sample was stored 

on ice for immediate processing. 
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Dosage and integrity of total RNA 

The amount of total RNA extracted (ng/µl) was measured in Nanodrop spectrophotometer 

(Thermo Scientific, Wilmington, DE) (A260 / A280 ratio). Then, the integrity of this RNA was 

verified through an electrophoresis gel run. 

 

Reverse transcriptase reaction and cDNA uptake 

The cDNA was produced using the iScript ™ cDNA Synthesis kit (BioRad, Hercules, CA, 

USA). Reverse transcriptase reactions were prepared from a mixture containing 6 µl of the iScript 

5x reaction mix, 1 µl iScript reverse transcriptase, 1 µg of total RNA extracted from the biofilm 

sample and sufficient RNAse free water to complete a volume of 30 µl. Each prepared solution was 

vortexed for 5 seconds, incubated at 25° C for 5 minutes, heated at 42 ° C for 2 hours, and again 

heated at 85 ° C for 5 minutes in a Veriti Thermal Thermal Cycler (Applied Biosystems, Foster 

City, CA, USA). After all reactions, the cDNA concentration of all samples were adjusted to 10 ng / 

µl (Bezerra et al., 2016). 

 

Real-time polymerase chain reaction 

The quantitative real-time PCR technique (qRT-PCR) was performed using StepOneTM 

Real Time PCR System (Applied Biosystems, Foster City, CA, USA). Reactions were performed 

using 48-well plates coated with adhesive film (Applied Biosystems, Foster City, CA, USA). Each 

well was filled with a solution prepared with 5 µl of master mix SYBR Green (iQTM SYBR Green 

Supermix, Applied Biosystem, Foster City, USA), 2.4 µl of nuclease-free water, 0.3 µl of each 

primer F / R (table 1) 10 µM and 2 µl cDNA (20 ng) of each sample. The assays were performed in 

duplicate, and the final analyzes were based on the mean of the two reactions. Standard curves were 

performed for each primer (Table 1). The presence of genomic DNA contamination was determined 

by the accomplishment of control reactions without the addition of reverse transcriptase. 
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Table 1. Bacterial identification primers used in Qrt-PCR 

SPECIES TARGET SEQUENCE (5’ 3’) ANNEALING 

TEMPERATURE 

(°C) 

AMPLICON 

LENGTH 

(BP) 

Bacteria 16S 

rDNA 
BT 

F: TCCTACGGGAGGCAGCAGT 

R:GGACTACCAGGGTATCTAATCCTGT 57 466 

23S rRNA1 ST 
F: AGCTTAGAAGCAGCTATTCATTC 

R: GGATACACCTTTCGGTCTCTC 60 318 

Actinimyces 

naeslundii 
AN 

F:CTGCTGCTGACATCGCCGCTCGTA 

R:TCCGCTCGCGCCACCTCTCGTTA 62 144 

Bifidobacterium 

spp.1 
BB F: TCGCGTC(C/T)GGTGTGAAAG 

R: CCACATCCAGC(A/G)TCCAC	
58 243 

Lactobacillus 

acidophilus 
LA 

F: GATCGCATGATCAGCTTATA 

R: AGTCTCTCAACTCGGCTATG 60 124 

L. casei group2 LC F: GCGGACGGGTGAGTAACACG 
R: GCTTACGCCATCTTTCAGCCAA	 60 121 

Mitis group3 MG 
F:TAGAACGCTGAAGGAAGGAGC 

R: GCAACATCTACTGTTATGCGG 60 133 

Streptococcus 

gordonii 
SG F: CAGGAAGGGATGTTGGTGTT 

R: GACTCTCTTGGCGACGAATC	
60 136 

Streptococcus 

mutans 
SM 

F: AGCCATGCGCAATCAACAGGTT 

R: CGCAACGCGAACATCTTGATCAG 64 415 

 

1. Bifidobacterium longum, B. minimum, B. angulatum, B. catenulatum, B. pseudocatenulatum, B. dentium, B. ruminantium, 
B. thermophilum, B. subtile, B. bifidum, B. boum, B. lactis, B. animalis, B. choerinum, B. gallicum, B. pseudolongum 
subsp. globosum, B. pseudolongum subsp. pseudolongum, B. magnum, B. infantis, B. indicum, B. gallinarum, B. pullorum, 
B. saeculare, B. suis 
2. L . casei group: L. casei, L. paracasei, L. rhamnosus and L. zeae. 
3. Mitis group : Streptococcus mitis, S. oralis, S. pneumoniae, S. parasanguinis, S. australis 

 
Statistical analysis 

Based on the study by Arthur et al. (31,32), a sample of 8 units per study group was 

estimated, with a power of 90% and confidence of 95% (test t, www.Openepi 

.com/samplesize/ssmean.htm). Eight samples were used for each group and for each gene analyzed 

in this study.  Data were tabuleted in Microsoft Excel and exported to a statistical software Sigma 

Plot on the results were analyzed using the Kolmogorov-Smirnov test. Statistical was performed 

using the sigma plot program, using anova, followed by the complementary tests os student and 

Newman Kells, with p< 0,05. Data were expressed as the mean and standard deviation and 

compared between groups. For bacterial prevalence data, the values of the concentration of the 

bacterial species werw calculated as a percent of the total load. 
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Results 

A total of eight biofilm samples were collected for each treatments. Biofilm samples were 

divided into four groups: PLA (n = 8), SAL (n = 8), ARG (n=8) and CHX (n=8). The 

concentrations of each strain were obtained by normalization to total bacteria present in the same 

biofilm sample as determined using specific primers. Table 2 details the mean and median values of 

the prevalence of oral bacteria in each treatment. 

Plasma treatment on biofilm sample presented significantly minors concentrations of S. 

mutans, L. acidophillus, S. mitis group, A. naeslundis and the Bifidobacterium group (p < 0.05) 

compared to other treatment groups. Concentrations of L. casei groups and the S. gordonii were not 

affected by different treatments. In all the analyzed groups the presence of specific bacteria for each 

primer was observed, however some groups treated with plasma the bacterial expression of the 

bacteria was lower. 
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Table 2: Relative concentrations of oral bacteria in groups samples as determined by qPCR and 
normalized by total bacteria  
 
Oral	bacteria	 Groups	 Mean		 +SD	 Median		 p	Value	

	
S.	mutans	

PLA	 0.000000127	 7.51E-08	 -	 0.024*	
SAL	 0.000000517	 0.000000153	 -	
ARG	 0.000000223	 7.26E-08	 -	
CHX	 0.000000181	 0.00000027	 -	

L.	acidophillus	 PLA	 -	 0.00000277	 0.000000792	 0.021*	
	 SAL	 -	 4.1	 0.0000179	 	
	 ARG	 -	 0.00000262	 0.0000414	 	
	 CHX	 -	 0.000028	 0.00000507	 	
S.	mitis	group	 PLA	 0.24	 0.206	 -	 0.009*	
	 SAL	 4.507	 1.483	 -	 	
	 ARG	 1.684	 0.372	 -	 	
	 CHX	 1.12	 1.646	 -	 	
L.	casei	group	 PLA	 0.0288	 0.0297	 -	 0.511	
	 SAL	 0.288	 0.375	 -	 	
	 ARG	 0.312	 0.279	 -	 	
	 CHX	 0.349	 0.0306	 -	 	
Bifidobacterium	
spp	

PLA	 -	 0.0525	 0.00332	 0.042*	

	 SAL	 -	 0.357	 0.305	 	
	 ARG	 -	 0.0614	 0.0419	 	
	 CHX	 -	 0.0187	 0.028	 	
A.	naeslundii	 PLA	 -	 0.0000308	 0.00000393	 0.029*	
	 SAL	 -	 0.0000546	 0.0000364	 	
	 ARG	 -	 0.0000265	 0.00000852	 	
	 CHX	 -	 0.0000222	 0.0000237	 	
S.	gordonii	 PLA	 0.00000754	 0.0000128	 -	 0.606	
	 SAL	 0.0000221	 0.0000326	 -	 	
	 ARG	 0.00000622	 0.00000682	 -	 	
	 CHX	 0.00000298	 0.00000267	 -	 	
 

Additionally, the presence and absence of the bacteria of some groups are summarized in the 

figures 1, 2, 3, 4, 5, 6 and 7. 
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Figure 1: Relative concentrations of oral bacteria in groups to S. mutans as determined by qPCR 
and normalized by total bacteria. The * points to significant differences (p<0.05) in comparison to 
the other groups. 
 
 

 
 
Figure 2: Relative concentrations of oral bacteria in Mitis groups as determined by qPCR and 
normalized by total bacteria. The * points to significant differences (p<0.05) in comparison to the 
other groups. 
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Figure 3: Relative concentrations of oral bacteria in groups to Bifidobacterium as determined by 
qPCR and normalized by total bacteria.  The * points to significant differences (p<0.05) in 
comparison to the other groups. 
 
 
 
 
 

 
 
Figure 4: Relative concentrations of oral bacteria in groups to A. naeslundii as determined by qPCR 
and normalized by total bacteria. The * points to significant differences (p<0.05) in comparison to 
the other groups. 
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Figure 5: Relative concentrations of oral bacteria in groups to L. acidophillus as determined by 
qPCR and normalized by total bacteria. The * points to significant differences (p<0.05) in 
comparison to the other groups. 
 
 
 

 
 
Figure 6: Relative concentrations of oral bacteria in groups to S. gordoni as determined by qPCR 
and normalized by total bacteria. 
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Figure 7: Relative concentrations of oral bacteria in groups to L. casei group as determined by 
qPCR and normalized by total bacteria. 
 
 
Discussion 

The main finding of the present study is that plasma was effective against mature oral 

biofilm formed in situ, based of the gene expression being, in some cases, more effective in 

reducing bacterial viability than chlorhexidine, a well-known antimicrobial substance.  The oral 

biofilm containing pathogenic bacteria communities is one of the major factor associated with oral 

disease [33].  Consequently, the interest in new strategies to effectively inactivate pathogenic 

bacteria in oral biofilms has emerged in the scientific community and the use of plasmas is one of 

these new therapies due to its effectiveness against oral microorganisms [34, 35, 36, 37, 38, 39, 40]. 

This study quantified the gene expression in biofilm of the antimicrobial effect of several 

treatments on oral biofilms. CHX solution is the gold standard treatment to inactivate or prevent 

dental plaque formation [41] when compared to other chemical agents used in dentistry [42]. The 

main advantage of using CHX is its wide antimicrobial spectrum, acting on both Gram-positive and 

Gram-negative microorganisms and its prolonged and continuous effect even in the presence of 

blood and other body fluids [43]. However, the prolonged use of CHX can cause mucous peeling, 

stains on the teeth, alterations in the sense of taste, compromising of the healing process and 

reduction of fibroblast adhesion to radicular surfaces [44]. 

In our study, plasma treatment showed better results than CHX in gene expression of many 

bacterias, similarly found by the Koban et al. [45] in vitro using plasma treatment against oral 
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biofilms formed on titanium discs. Also, these results are in accordance with the literature in that a 

0.1% CHX solution is inefficient against mature oral biofilms [46]. 

Our findings indicate that S. mutans, L. acidophillus, S. mitis group, L. casei group, 

Bifidobacterium spp, A. naeslundii and S. gordoni are part of the viable microbiota. Gene 

expression analysis suggests that the quantification of this microoganisms may differ according to 

biofilm treatment. Despite the evidence of the presence of bacteria, its virulence may be affected by 

environmental changes and the diferent treatements [47,48]. 

Real-time PCR was the chosen method for this study, since the use of qPCR is an accepted 

technology for the quantitative analysis of bacteria from mixed samples. Furthermore, this 

methodology allows the microorganisms to be assessed more accurately than they can be by 

cultural analysis. Quantitative PCR has the potential to account for the uncultivable portion of the 

oral microbial community, as well as, species which are more difficult to culture [49]. However, it 

seems that this study presents important findings, since differences in the microbiotas of each 

tretament have not yet been elucidated, according to Takahashi & Nyvad [51]. 

Initial plaque formation starts with the deposition of a salivary pellicle on the tooth surface. 

Planktonic cells or aggregates of cells adhere to this pellicle via specialized adhesins on the 

bacterial cell surface that recognize pellicle proteins [52]. These phenomena may result in a 

scattered pattern of bacterial deposits [53,54] composed of initial colonizers like Actinomyces sp, 

Streptococcus sp, and Lactobacillus sp and it is reflected in the different biofilm types. 

Our findings indicate that presence of this microorganisms, however, the plasma treated 

groups identified a statistical difference for the Actinomyces naeslunddi, Streptococus mutans and 

Mitis and for the Acidophillus lactobacillus in comparison to the other treatments (Table 2), 

indicating important plasma performance in the basins that act of biofilm formation. 

Streptococcus mutans has been strongly implicated as the main etiological agent in human 

dental caries [55]. One of the important virulence properties of these organisms is their ability to 

form biofilms known as dental plaque on tooth surfaces [56]. Dental plaque is one of the best-

studied biofilms [55]. Dental plaque formation on tooth surfaces involves three distinct steps: (i) 

formation of the conditioning film or acquired pellicle on the tooth enamel, (ii) subsequent cell-to-

surface attachment of the primary colonizers, and (iii) cell-to-cell interactions of late colonizers 

with one another as well as with the primary colonizers [55].  

The colonization of tooth surfaces by S. mutans appears to result from two distinct 

processes: initial sucrose-independent attachment and enhancement of attachment by sucrose-

dependent mechanisms involving [57]. The role of sucrose and Gtfs in S. mutans biofilm formation 

has been well documented [58,47]. In addition, several other genes associated with biofilm 

formation have been reported in recent investigations [59]. 
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In our study, a significant difference was identified in the presence of S. mutans in the 

plasma treated group in relation to the other groups. According to what has been reported in relation 

to this bacteria, this is an important factor for the control of dental biofilm. 

The recent field of plasma medicine is a rapidly growing and innovative interdisciplinary 

endeavor encompassing plasma physics, life sciences, biochemistry, engineering and clinical 

medicine [60]. An important feature of non-equilibrium (cold) APP is its ability to produce a 

mixture of biologically active agents, such as reactive oxygen species (ROS) and reactive nitrogen 

species (RNS), while remaining close to ambient temperature, which enables its safe application to 

living cells and tissues.  

Like the S. mutans, it is known that the presence of Lactobacilli occurs in high numbers in 

superficial and deep caries [65]. Lactobacillus acidophilus are usually numerically dominant, 

although Lactobacillus paracasei, Lactobacillus Rhamnosus and Lactobacillus fermentum are also 

present. The findings in our study also identified a significant difference between the biofilm treated 

with plasma and the other treatments in the quantification of L. acidophilus. Lactobacillus 

acidophilus and Streptococcus mutans are common Gram-positive oral bacteria responsible for 

causing oral caries [66,67]. In a previous study, atmospheric plasma was found to be effective in 

deactivating bacterium when seeded on glass, filter paper, and PTFE supporting media [37]. 

Sladek et al. [40] reported on the feasability of the application of plasma to treat dental 

caries. They evaluated the temperature increase in the pulp of a tooth during plasma treatment, and 

the possibility of plasma as a substitute for rotary instruments.  The temperature increase in the 

pulpal chamber was ~2.3 C during the plasma treatment of the enamel surface. The same study 

group also confirmed the capability of the plasma device for killing bacteria [35]. Yang et al. [37] 

reported on the bactericidal effect of a non-thermal atmospheric pressure plasma brush on S. mutans 

and L. acidophilus, which are major pathogens in dental caries. Although plasma could not replace 

rotary instruments, it is expected that plasma will play important roles in the prevention and 

treatment of dental caries. 

The presence of Actinomyces naeslundii was identified in the biofilm samples that were 

studied. The presence of A. naeslundii is associated with biofilm formation. Several Actinomyces 

species belong to the resident oral microbiota of supra-gingival plaque, although studies based on 

culture, checkerboard hybridization, 16S rRNA gene libraries and FISH show significant 

differences in their proportions depending on the age of the biofilm [68, 54, 69, 70]. Dige et al [71] 

using a species-specific oligonucleotide probe confirms the checkerboard hybridization-based 

demonstration of A. naeslundii as a significant member of the initial colonizers of tooth surfaces 

and demonstrates that A. naeslundii preferentially occupies the inner part of early multilayered 

biofilms. In this Dige et al study (2009),  A. naeslundii was frequently observed in mixed groups 
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with streptococci and other bacteria. This observation supports the view that co-adhesion, in 

particular the co-adhesion processes involving A. naeslundii, streptococci and other bacteria, plays 

an important role in the early stages of colonization of dental surfaces [7,72, 2, 53,73]. This 

observation is further supported by the discovery of genotypically different bacteria located on the 

outer surface of the biofilm, indicating that the co-adhesion of saliva bacteria is a continuous 

process that increases the biomass of the developing biofilm. 

Actinomyces species can use lactate as a carbon source for growth [74, 75], whereby lactic 

acid is converted into weaker acids [76]. A pH-modulating activity of these species may, 

theoretically, occur also via degradation of urea [77]. Moreover, through its metabolism, 

Actinomyces species can remove oxygen from the environment and create an anaerobic milieu [51], 

suitable for the outgrowth of some other bacteria. Finally, recent observations demonstrate that co-

aggregation with A. naeslundii stabilizes arginine metabolism in S. gordonii and reduces its 

dependence on extracellular arginine, which is a limiting factor in the environment of the early 

colonizers [78,79]. Collectively, these properties make A. naeslundii an essential initial colonizer of 

tooth surfaces and particularly well adapted to live and survive in substrate-limited environments 

deep in the biofilm. The fixed metabolic activities of these bacteria may have a controlling effect on 

dental caries processes by reducing the acidogenic potential of the biofilm [51] Therefore, this 

finding in our study is very important because in our study the treatment of plasma was effective in 

relation to the other treatments regarding the identification of A. naeslundii in the samples.  

In addition, although members of the S. mitis group were previously detected in carious 

lesions [61,62], and in this study we found a diference between the groups, the S. mitis group have 

been frequently associated with health [63,64], making the contribution of these bacteria to biofilm 

inactivation. 

Cold plasma has emerged as a physical treatment with microbicidal effectiveness on 

bacteria, parasites, fungi, spores, and viruses [80]. In the present study, the antimicrobial effect of 

plasma was confirmed, since all plasma-treated samples exhibited significant lower viability than 

positive and negative controls. Delben [81] suggested that the reactive oxygen species (i.e. ozone, 

atomic oxygen, superoxide, peroxide, hydroxyl radical, and nitric oxide) produced by plasma 

generated oxidative effects in cellular biomacromolecules including DNA, lipids and proteins [18]. 

As a consequence, oxidative stress causes lipid peroxidation and oxidation of several amino acids of 

proteins, which compromises the function and integrity of membrane and cell wall [82,83]. In 

addition, membrane desestabilization affects the ability to maintain proper intracellular pH [84] and 

releases cellular contents in the surrounding environment [85]. It was also suggested that plasma 

species break down hydrogen, sulphide and peptide bonds of the proteins; leading to changes in 

protein structure and dramatically decrease of enzyme activity [86].  
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The inactivation of biological agents promoted by plasma may also result from 

deconstruction of the microorganism genetic material (DNA) by UV radiation produced with 

plasma and erosion of the microorganisms through intrinsic photodesorption. The photon-induced 

desorption results from the damage of chemical connections in the microorganism after being 

exposed to UV radiation, allowing its atoms to form volatile compounds [87,88]. However, the role 

of UV radiation in atmospheric-pressure plasma sterilization remains controversial [89]. According 

to some authors [88] even when no significant UV emission is present with low-temperature 

atmospheric-pressure plasma, the synergy of other species such as radicals and charged particles 

still plays a dominant role in sterilization. 

Considering that plasma is usually produced by low-toxicity gases and its activity involves a 

mixture of products that decay within a few seconds, this approach has been suggested as 

environmentally friendly with no harmful residues [81]. Thus, production of stable plasma at 

atmospheric pressure has attracted attention for treating living human cells and tissues without 

thermal damage [81]. However, studies of the biological safety of plasma are limited [81], 

particularly on oral mucosa [81]. In contrast to conventional therapy, literature suggests that a great 

benefit on using plasma is that antimicrobial resistance is less likely to occur because of its multiple 

modes of action and diversity of active agents [18,86]. 

The current results showed identification of the L. casei group in all groups, however it did 

not show significant difference, which was previously demonstrated by a study that verified these 

bacteria as dominant in carie lesions in adults [90]. Lactobacillus spp. have the ability to produce 

organic acids, promoting low levels of pH and being responsible for the decalcification of the 

dentinal matrix [91,114], which is a common situation in carie lesions.  Moreover, Lactobacilli 

have shown robust association with more advanced stages of caries in many studies 

[91,92,93,94,95,96,97] and have also been implicated in the initial stages of pulp infection [98], 

indicating that they present a pathogenic potential and play a crucial role in caries progression. 

In the in vitro study by Rutger (2014) [114] in which a microbiological analysis was 

performed after treatment with plasma, plasma treatment of the agar plates caused complete 

inhibition of the growth of E. coli and L. casei in irradiated surface areas. In this investigation it was 

demonstrated that a plasma is suitable for substantially reducing oral microorganisms on agar plates 

or adherent to dentin slices, as well as the bacterium E. coli. These results confirm previously 

published data on the efficacy of cold plasma jets for killing and removing of planktonic or 

adherent micro-organisms [100,35,101]. Parts of agar plates contaminated with a density of 6 log10 

CFU were nearly completely disinfected by plasma-jet treatment in the present study. Disinfection 

on directly irradiated areas was achieved at the shortest treatment time for E. coli, L. casei and C. 

albicans. For S. mutans, however, longer treatment periods were necessary. 
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In this study, the presence of S. gordonii was not significantly associated with treatment 

groups. The data is not consistent with those reported by Peterson et al. [109] in a dental plaque 

microbiome study in which S. gordonii was associated with caries and also with a metagenomic 

study that detected abundance of this species in individuals with caries [110]. The role of S. 

gordonii in dental biofilm is still undefined [111]. Despite being considered as a pioneer for dental 

plaque formation and associated with health [112], an in vitro study showed that these bacteria were 

able to increase their acid tolerance and acidogenicity when exposed to an acidic environment 

[113]. However, the contribution of S. gordonii on the dental biofilm remains unclear and deserves 

further investigation. 

Another potential cariogenic pathogen recently identified is Bifidobacterium dentium [102]. 

It is closely related to gut commensal bifidobacteria, but it has acquired genes for survival in dental 

plaque at low pH, and does not colonize the edentulous mouth [103]. These various discoveries 

widen the view of the causative agents of dental caries past the mutans streptococci. In this study 

there was a statistical difference between the treatments, with treatment with plasma in relation to 

identification of Bifidobacterium spp. Low proportions of Bifidobacterium spp. were detected in 

dentine lesions in the NEVES study [14], which is in accordance with a previous study on adult 

biofilm lesions [92]. Bifidobacteria have been detected in dentine carious lesions [92, 61,94,95], 

suggesting that these bacteria may be implicated in dental caries progression [103], since these 

species are acidogenic and aciduric and also known to produce lactate [103,104]. Additionally, 

another study showed spatial distribution of bacterial taxa in vivo with confocal microscopy, 

showing a bacterial invasion into the dentinal tubules of Bifidobacterium inside cavitated caries 

lesions [105]. 

The results demonstrate that treatment of biofilms with reduced plasma, such as 

concentrations of Streptococcus mutans, Lactobacillus acidophillus, Streptococcus mitis, 

Bifidibacterium group and Actinomyces naeslundis compared to other treatment groups. This study 

provided results for a better understanding of the differences in microbiots after different 

antimicrobial treatments on biofilms. Further understanding and standardization are required to 

control microbial response and avoid possible cytotoxic effects of plasma. In addition, although no 

visibly damage was observed, direct plasma effects on tissues should be further investigated. 
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4 CONCLUSÕES GERAIS 
 

Inicialmente, o tratamento com luz de comprimento de onda de 400-690 nm pode ser 

uma abordagem terapêutica promissora para infecções por C. albicans relacionadas aos biofilmes, 

tais como a candidíase oral. Os resultados desse trabalho indicam que o tratamento duas vezes por 

dia dos biofilmes de Cândida com luz azul ou com luz vermelha, pode funcionar como um 

adjuvante a terapia antifúngica tópica. 

Adicionalmente, a terapia utilizando um plasma de argônio de baixa temperatura foi 

eficaz em reduzir S. mutans, L. acidophillus, S. mitis, Bifidobacterium e A. naeslundis crescidas em 

biofilme oral maduro formado in situ. Com base na expressão gênica das bactérias presentes nas 

amostras, observou-se que o tratamento com o plasma foi mais eficaz para reduzir a viabilidade 

bacteriana do que a clorexidina, uma substância antimicrobiana padrão para a inibição da formação 

dos biofilmes.  
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ANEXO A– PARECER DE APROVAÇÃO DA PESQUISA  
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ANEXO B– NORMAS PARA SUBMISSÃO DE ARTIGOS REVISTA A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

73 

 
 

 

 

 

 

 

 

 

 



 

 
 

74 

 
 

 



 

 
 

75 
 

 
 



 

 
 

76 

 
 

 



 

 
 

77 
 

 
 



 

 
 

78 
 

 
 



 

 
 

79 
 

 
 



 

 
 

80 

 
 

 



 

 
 

81 

 
 



 

 
 

82 

 
 

 



 

 
 

83 
 

 
 



 

 
 

84 
 

 
 



 

 
 

85 

 
 

 



 

 
 

86 

 
 

 



 

 
 

87 
 

 
 



 

 
 

88 
ANEXO C– NORMAS PARA SUBMISSÃO DE ARTIGOS REVISTA B 
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