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RESUMO 

 

A população mundial de corais tem vindo a diminuir ao longo dos anos, tanto em 

abundância como em diversidade. Esta diminuição deve-se à sobre-exploração dos 

recursos marinhos, à poluição, à acidificação dos oceanos e ao aquecimento global 

(principal responsável pelo processo de lixiviação).  Sendo que aqueles organismos 

possuem grande importância ecológica e económica, o interesse no seu estudo tem vindo a 

aumentar, nomeadamente no que se refere à sua quimiotaxonomia   

Os hexacorais possuem seis ou menos eixos de simetria na sua estrutura corporal e 

somente uma linha única de tentáculos. Estes organismos são formados de pólipos 

individuais, que em algumas espécies vivem em colónias, formando recifes, e podem 

possuir um esqueleto cálcico rígido, distinguem-se dos octocorais por estes terem um 

esqueleto interno excretado pela mesogleia e pólipos com oito tentáculos.  

Entende-se por quimiotaxonomia o método de classificação biológica que se baseia na 

similaridade e/ou diferença no perfil de certos compostos e nas vias bioquímicas 

envolvidas na sua síntese, manutenção e obtenção. Estes compostos estudados podem ser 

proteínas, aminoácidos e lípidos, entre outros. Os lípidos constituem a base estrutural das 

membranas biológicas, podem atingir até cerca de 40% da biomassa seca de um coral e 

estão envolvidos numa série de processos bioquímicos e fisiológicos. Desta forma, 

alterações na composição lipídica reflectem alterações na ecologia, nutrição e saúde dos 

corais. Por exemplo, o catabolismo das ceras e triacilgliceróis pode fornecer a energia 

necessária para a respiração e crescimento do organismo quando a obtenção de alimento 

(ex. fitoplâncton, zooplânkton, matéria orgânica particulada) é reduzida.  
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Os ácidos gordos são os principais componentes dos lípidos e a sua composição é 

determinada, até um certo nível, pela predisposição genética de uma espécie para a sua 

biosintese. Apesar do perfil (composição) de ácidos gordos ser, de forma geral, específico 

de cada espécie de coral, este pode variar dependendo de condições ambientais, da 

disponibilidade e qualidade de alimento e da composição e presença de simbiontes 

(zooxantelas) e bactérias. 

As zooxantelas são algas, geralmente dinoflageladas, que vivem em simbiose com 

vários invertebrados marinhos, especialmente cnidários. Estas fornecem compostos 

(maioritariamente lipídicos) aos coraisenquanto usufruem de um meio de suporte onde 

subsistir. Os corais são organismos politróficos, ou seja, que obtêm os nutrientes essenciais 

à sua sobrevivência simultaneamente através de uma variedade de mecanismos. Assim 

sendo, é actualmente aceite que corais zooxantelados podem satisfazer as suas 

necessidades energéticas por via heterotrófica (plankton e matéria orgânica em suspensão) 

e autotrófica (produção primária das zooxantelas), esta particularmente valiosa em águas 

pobres em nutrientes, onde a densidade de plâncton é insuficiente para suportar 

uma cadeia trófica robusta.  

As zooxantelas podem apresentar uma composição de ácidos gordos diferente daquela 

o coral obtém através de outras fontes. Assim, corais zooxantelados e azooxantelados 

podem exibir diferenças significativas no que diz respeito à sua composição em termos de 

ácidos gordos. O carbono fixado fotossinteticamente pelas zooxantelas é rapidamente 

transformado em lípidos que, por sua vez, são transferidos para o tecido do hospedeiro na 

forma de triacilgliceróis, ceras, e ácidos gordos livres. Esta translocação é a principal fonte 

de ácidos gordos saturados, logo, a presença de ácidos gordos poli-insaturados é, 
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provavelmente, indicativo de uma fonte de alimentação externa, como de zoo- e 

fitoplâncton. 

 Muitas famílias de cnidários caracterizam-se pela presença de ácidos gordos pouco 

usuais. A composição de ácidos gordos é assim, útil em estudos de quimiotaxonomia neste 

grupo de organismos e torna possível uma clara distinção de espécimes de acordo com a 

sua ordem, família, e em alguns casos género.  

Com o objectivo de contribuir para uma melhor compreensão das relações 

quimiotaxonómicas de: i)hexacorais e octocorais, ii) corais zooxantelados e 

azooxantelados, iii) corais costeiros e do mar profundo, compilou-se primariamente (numa 

meta-análise) os dados disponíveis (literatura científica) referentes à composição de ácidos 

gordos de 27 espécies (35 espécimenes) de hexacorais e 39 espécies (47 espécimenes) de 

octocorais.Posteriormente, analisou-se o perfil de ácidos gordos de 34 outras espécies de 

hexacoral e octocoral oriundas do Brazil, México, Seychelles, Portugal e Vietnam, e 

adicionou—se essa informação à meta-análise. 

Numa primeira abordagem, compararam-se os perfis de ácidos gordos de hexa- e 

octocorais, obtendo-se uma clara separação entre estes dois grupos, principalmente 

através dos ácidos gordos 24:5n-6 e 24:6n-3, apenas presentes em octocorais. O ácido 

gordo 20:4n-6 também desempenhou um papel importante nesta separação, podendo ser 

adoptado como um marcador útil na quimiotaxonomia de hexa- e octocorais.  

De seguida realizou-se uma análise dos hexacorais numa perspectiva espacial e 

taxonómica (Ordem). Não se obteve qualquer separação; i.e., os ácidos gordos utilizados 

naquela não foram úteis no estudo daquimiotaxonomia deste grupo de corais. No entanto, 

um cenário diferente foi observado para os octocorais. Neste grupo foi obtida uma clara 

separação entre alcionários, penatulários e gorgónias. As gorgónias apresentaram-se mais 
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próximas dos alcionários, enquanto os penatulários formaram um grupo bem 

individualizado e mais distante. Os alcionários são, desta forma, bioquimicamente mais 

próximos das gorgónias, indicando uma evolução divergente mais recente. Uma separação 

espacial foi também conseguida, revelando as espécies de regiões temperadas em costas 

Oeste de alta produção primária marinha (Portugal e Califórnia) como detentoras de uma 

geralmente maior quantidade de 20:5n-3, ácido gordo originário de fitoplâncton, 

disponível em maiores quantidades nestas regiões. Como esperado, o ácido gordo 18:4n-3, 

um dos principais ácidos gordos encontrados em zooxantelas, geralmente presente em 

maior quantidade nos alcionários com zooxantelas, contribuiu para a sua separação 

relativamente aos alcionários azooxantelados.  

Por fim, uma separação espacial (incluindo a componente profundidade) foi 

conseguida com gorgónias. As gorgónias do mar profundo, quando comparadas com as de 

baixa profundidade da costa de Portugal, demonstraram uma menor percentagem 

quantitativa de todos os ácidos gordos estudados, confirmando que a temperatura, a 

ausência de luz e a disponibilidade de alimento afectam o perfil de ácidos gordos dos 

corais. Em conclusão, esta dissertação contribui significativamente para a compreensão da 

quimiotaxonomia de hexa- e octocorais oriundos de diferentes oceanos e tipos de habitat, 

incluindo diferentes zonas climáticas e batimétricas.  

 

 

 Palavras-chave:  

Quimiotaxonomia; ácidos gordos; biomarcadores; Hexacorallia; Octocorallia; 

Zooxanthellae; baixa profundidade; mar profundo. 
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ABSTRACT 

 

Corals have the ability to biosynthesize specific sets of fatty acids (FA) and their 

content is also known to be influenced by food intake, presence of symbiotic zooxanthellae 

and bacteria. Additionally, environmental conditions such as light intensity and water 

temperature were also shown to affect FA profiles of corals. To uncover differences in FA 

composition of corals from different climatic zones (e.g. temperate, subtropical and 

tropical) and distinct habitats (e.g. coral reefs, intertidal and subtidal zones, and deep-sea 

environments), we studied the FA profile of 41 species and performed a comparison with 

that of 66 species, available in the literature. Five (n-6) and five (n-3) PUFAs (18:2n-6, 

18:4n-3, 20:4n-6, 20:5n-3, 22:4n-6, 22:5n-6, 22:5n-3, 22:6n-3, 24:5n-6, 24:6n-3) were used 

for the meta-analyses and consequent multivariated tests, namely Principal Component 

Analyses (PCA). We show a clear separation between hexa- and octocorals (mainly due to 

20:4n-6, 24:5n-6 and 24:6n-3), but the selected PUFAs were not suitable for the separation 

of hexacorals at the order level (Zoanthidea and Scleractinia). On the other hand, a clear 

separation was achieved in octocorals. Within this group, gorgonians were placed closer to 

the other alcyonaceans because they are biochemically closer, indicating a recent 

evolutionary divergence within Octocorallia. Also, a clear separation between shallow and 

deep-sea gorgonians was achieved. The latter generally showed a lower content of the 

selected FAs, highlighting the different and scarcer sources of energy available to deep-sea 

organisms. Summing up, the present dissertation increased significantly the existing 

knowledge about the chemotaxonomy of corals, by expanding it to other oceanic regions 

(i.e. North and South Atlantic Ocean) and habitats (e.g. abyssal plains). 
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1. INTRODUCTION 

 

Lipids constitute the structural base of biological membranes and perform protective 

and signalling functions (Spector and Yorek, 1985). In corals, these compounds can make 

up to 40 % of the dry weight and, thus, constitute the main source of stored energy 

(Stimson, 1987; Harland et al., 1993; Yamashiro et al., 1999). The principal components 

(“building blocks”) of lipids - fatty acids (FAs; Fig. 1), are known to be involved in the 

majority of biochemical and physiological processes of those cnidarians (Ibarguren et al., 

2014).  

 

 

 

 

 

 

 

 

 

Figure 1. Chemical structure of saturated, mono- and polyunsaturated FAs 

 

Corals are polytrophic organisms, i.e. they simultaneously obtain nutrients through a 

variety of sources, including FA from: i) prey items (plankton), ii) particulate organic 

matter, iii) symbiotic photosynthetic dinoflagellates (zooxanthellae - Symbiodinium group), 
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iv) bacteria (Volkman et al., 1998) and v) de novo biosynthesis pathways occurring in their 

tissues (Imbs et al., 2007a). This FA biosynthesis occurs in parallel both in zooxanthellae 

(Fig. 2) and the host (Oku et al., 2003; Imbs et al., 2010a).  

 

 

 

 

 

 

 

 

Figure 2.  Photosynthetic symbiotic zooxanthellae in corals 

 

It is worth noting that most animals cannot synthesize longer chain polyunsaturated 

fatty acids (PUFAs); instead, they are produced by phytoplankton and some bacteria and 

are transferred through the food web to higher trophic levels (Volkman et al., 1998).  

There are certain differences in feeding behaviour between soft corals (mainly 

octocorals; Fig. 3) and reef-building corals (mainly hexacorals; Fig. 4), since soft corals, 

having a special anatomic structure, are believed to possess specific mechanisms of 

catching fine suspended food particles (Lewis, 1982; Imbs and Latyshev, 2012). These 

ecological dissimilarities can lead to differences in the FA profiles of hexa- and octocorals 

and, consequently, influence their chemotaxonomy classification. 
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Regarding the symbiosis, the diversity and quantity of zooxanthellae in a specificcoral 

taxonomic group depends on environmental factors such as solar irradiance and water 

temperature (Fabricius et al., 2004). Consequently, the presence/absence of zooxanthellae 

should lead to significant differences in FA composition among coral species  (Imbs et al., 

2007c). Photosynthetically fixed carbon is quickly converted into lipids, which are then 

carried into ‘host’ tissues in the form of ‘fat droplets’, consisting of triglycerides, wax esters 

and free fatty acids (Patton et al., 1983). These ‘fat droplet’ lipids are the main source of 

saturated fatty acids (SFA), while the presence of PUFA is most probably indicative of 

external food sources such as zoo- and phytoplankton (Kellogg and Patton, 1983; Latyshev 

et al., 1991). Thus, by knowing the origin of such FAs, they can be used as chemotaxonomic 

markers (Imbs et al., 2010b). 

Changes in the ecology, nutrition, food habits and health of corals, due to 

environmental pressures, for example, may become detectable through changes in FA 

composition. For instance, a decrease in temperature may cause changes in membrane 

fluidity. The integrity of living cells in response to thermal stress depends on the 

Figure 3. Example of octocoral Figure 4. Example of hexacoral 
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biomolecular lipid layer and the associated non-lipid components (Neidleman, 1987). In 

fact, the maintenance of appropriate cell membrane fluidity is of serious importance for the 

function and integrity of the cell, mobility and function of embedded proteins and lipids, 

diffusion of proteins and other molecules laterally across the membrane for signalling 

reactions, and proper separation of membranes during cell division (Kates et al., 1984; 

Hazel, 1988; Murata and Los, 1997). A fundamental biophysical determinant of membrane 

fluidity is the balance between saturated and unsaturated fatty acids. The general trend is 

an increase in unsaturated FA at lower temperatures and an increase in saturated fatty 

acids at higher temperatures. This compositional adaptation of membrane lipids, called 

homeoviscous adaptation (Fig. 5), serves to maintain the correct membrane fluidity at the 

new conditions (Sinensky, 1974). 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of decreased temperature in the structure of cellular membranes 

 

 It is recognized that in ectothermic animals an increase in the content of unsaturated 

FA (UFA) occurs in response to cold temperatures (Hall et al., 2002), suggesting that 
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differences in the PUFA profile of corals may occur in relation to different climate 

conditions and depths. 

Within this context, the aim of the present dissertation was to perform the most 

comprehensive examination of the chemotaxonomy of corals, by expanding the current 

knowledge on the subject, which is quite spatially limited (most species studied so far 

(85%) are from Vietnam, see Table 1). Here, I intended to uncover differences in FA 

composition of hexa- and octocorals from different climatic zones (temperate, subtropical 

and tropical) and distinct habitats (e.g. coral reefs, intertidal and subtidal zones, and deep-

sea environments). More specifically, I studied the FA profile of 41 new species (19 

hexacoral species from Mexico and Brazil, and 22 octocoral species from Azores Islands, 

Brazil, Portugal and also from Vietnam). 

 

Table 1: Database of the coral species used (with presence or absence of zooxanthellae), 

respective region and collection sites. 

 

Subclass Order Suborder Species Presence of 
zooxanthellae 

Region Collection site Reference 

Alcyonaria 
(Octocorallia) 

       

 Alcyonacea       
  Alcyoniina      
   Alcyonium digitatum Azooxanthellate Portugal Setúbal PS 
   Cespitularia sp. Zooxanthellate Vietnam Hong Island 1 
   Chironephthya variabilis Azooxanthellate Vietnam Nha Trang Bay 2 
   Cladiella laciniosa Zooxanthellate Vietnam Den Island 1 
   Dendronephthya aurea I Azooxanthellate Vietnam Cua Be Strait 1 
   II  Vietnam Den Island 1 
   Dendronephthya 

crystallina I 
Azooxanthellate Vietnam Cua Be Strait 1 

   II  Vietnam Den Island 1 
   Dendronephthya gigantea Azooxanthellate Vietnam Cua Be Strait 1 
   Dendronephthya aff. 

involuta 
Azooxanthellate Vietnam Maxfield Bank 1 

   Dendronephthya sp. I Azooxanthellate Vietnam Lon Island 1 
   Dendronephthya sp. II Azooxanthellate Vietnam Maxfield Bank 1 
   Dendronephthya sp. III Azooxanthellate Vietnam Maxfield Bank 1 
   Dendronephthya sp. IV Azooxanthellate Vietnam Maxfield Bank 1 
   Litophyton sp. Zooxanthellate Vietnam Den Island 1 
   Lobophytum cf. delectum Zooxanthellate Vietnam Tai Island 1 
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   Lobophytum pusillum Zooxanthellate Vietnam Den Island 1 
   Neospongodes atlantica Zooxanthellate Brazil Baía de Todos-

os-Santos  
PS 

   Paralemnalia thyrsoides Zooxanthellate Vietnam Nha Trang Bay 2 
   Sarcophyton acutum Zooxanthellate Vietnam Cua Be Strait 1 
   Sarcophyton buitendijki I Zooxanthellate Vietnam Den Island 1 
   II  Vietnam Den Island   1 
   Sarcophyton cinereum Zooxanthellate Vietnam Lon Island 1 
   Sarcophyton aff. crassum Zooxanthellate Vietnam Den Island 1 
   Sarcophyton elegans Zooxanthellate Vietnam Cua Be Strait 1 
   Sarcophyton 

trocheliophorum 
Zooxanthellate Vietnam Cua Be Strait 1 

   Sinularia cruciata Zooxanthellate Vietnam Den Island 3 
   Sinularia aff. deformis Zooxanthellate Vietnam Den Island 3 
   Sinularia densa Zooxanthellate Vietnam Den Island 3 
   Sinularia flexibilis Zooxanthellate Vietnam Den Island 3 
   Sinularia leptoclados Zooxanthellate Vietnam Den Island 3 
   Sinularia lochmodes Zooxanthellate Vietnam Den Island 3 
   Sinularia cf. muralis Zooxanthellate Vietnam Den Island 3 
   Sinularia notanda Zooxanthellate Vietnam Den Island 3 
  Calcaxonia      
   Ellisella plexauroides Azooxanthellate Vietnam Nha Trang Bay 2 
  Holaxonia      
   Acanthogorgia armata I Azooxanthellate Portugal 

- Azores 
Banco D. João 

de Castro 
PS  

   II  Portugal 
- Azores 

Furnas de Fora PS  

   Acanthogorgia isoxya Azooxanthellate Vietnam Nha Trang Bay 2 
   Bebryce studeri Azooxanthellate Vietnam Den Island 2 
   Echinogorgia sp. Azooxanthellate Vietnam Nha Trang Bay 2 
   Eunicea sp. I Azooxanthellate México Madagascar 

Reef, Yucatán 
Peninsula 

PS 

   II  México Puerto Morelos 
Reef, Mexican 

Caribbean 

PS 

   III  México Mahahual Reef, 
Mexican 

Caribbean 

PS 

   IV  Portugal Setúbal PS 
   Eunicella verrucosa I Azooxanthellate Portugal Setúbal PS 
   II  Portugal Setúbal PS 
   Gorgonia sp. I Azooxanthellate México Puerto Morelos 

Reef, Mexican 
Caribbean 

PS 

   II  México Mahahual Reef, 
Mexican 

Caribbean 

PS 

   Leptogorgia sarmentosa 
I 

Azooxanthellate Portugal Setúbal PS 

   II  Portugal Setúbal PS 
   III  Portugal Setúbal PS 
   Menella praelonga Azooxanthellate Vietnam Nha Trang Bay 2 
   Muricea sp. Azooxanthellate México Madagascar 

Reef, Yucatán 
Peninsula 

PS 

   Unidentified Azooxanthellate México Madagascar 
Reef, Yucatán 

Peninsula 

PS 

   Paramuricea biscaya Azooxanthellate Portugal 
- Azores 

Canal de S. 
Jorge 

PS  

   c.f. Placogorgia sp. Azooxanthellate Portugal 
- Azores 

Canal de S. 
Jorge 

PS  
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   Plexaurella sp. Azooxanthellate México Mahahual Reef, 
Mexican 

Caribbean 

PS 

   Pseudoplexaura sp. I Azooxanthellate México Madagascar 
Reef, Yucatán 

Peninsula 

PS 

   II  México Puerto Morelos 
Reef, Mexican 

Caribbean 

PS 

   Pseudopterogorgia sp. Azooxanthellate México Mahahual Reef, 
Mexican 

Caribbean 

PS 

   Rumphella aggregata Zooxanthellate Vietnam Nha Trang Bay 2 
  Scleraxonia      
   Acabaria erythraea Azooxanthellate Vietnam Nha Trang Bay 2 
  Stolonifera      
   Carijoa riisei Azooxanthellate Brazil Bahia Todos os 

Santos 
PS 

   Clavularia sp. Zooxanthellate Vietnam Tre Island 1 
 Pennatulacea       
  Sessiliflorae      
   Cavernularia obesa Azooxanthellate Vietnam Unknown PS 
   Pteroeides spp. Azooxanthellate Vietnam Unknown PS 
   Veretillum cynomorium I Azooxanthellate Portugal Sado Estuary 5 
   II  Portugal Sado Estuary 5 

   III  Portugal Sado Estuary 5 

   IV  Portugal Sado Estuary 5 

   V  Portugal Sado Estuary 5 

   VI  Portugal Sado Estuary 5 

   Renilla koellikeri Azooxanthellate U.S.A. Long Beach, 
California 

4 

Zoantharia 
(Hexacorallia) 

       

 Scleractinia  Acropora cerealis Zooxanthellate Vietnam Mun Island 6 
   Acropora florida Zooxanthellate Vietnam Thotyu Island 7 
   Acropora formosa Zooxanthellate Vietnam Mun Island 6 
   Acropora gemmifera Zooxanthellate Vietnam Mun Island 6 
   Acropora milepora I Zooxanthellate Vietnam Thotyu Island 7 
   II  Vietnam Tyam Island 7 
   Acropora nasuta I Zooxanthellate Vietnam Thotyu Island 7 
   II  Vietnam Tyam Island 7 
   Acropora nobilis Zooxanthellate Vietnam Nha Trang Bay 6 
   Acropora palifera Zooxanthellate Vietnam Mun Island 6 
   Acropora sp. Zooxanthellate Vietnam Nha Trang Bay 6 
   Agaricia sp. I Azooxanthellate México Madagascar 

Reef, Yucatán 
Peninsula 

PS 

   II  México Mahahual Reef, 
Mexican 

Caribbean 

PS 

   Caulastraea tumida Zooxanthellate Vietnam Den Island 1 
   Diploria sp. Azooxanthellate México Mahahual Reef, 

Mexican 
Caribbean 

PS 

   Diploria strigosa Azooxanthellate México Mahahual Reef, 
Mexican 

Caribbean 

PS 

   Echinophyllia orpheensis Zooxanthellate Vietnam Nha Trang Bay 6 
   Favia sp. I Zooxanthellate Vietnam Nha Trang Bay 6 
   II Zooxanthellate Vietnam Nha Trang Bay 6 
   Goniopora sp. I Zooxanthellate Vietnam Tyam Island 7 
   II Zooxanthellate Vietnam Tyam Island 7 
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   Montastraea annularis Azooxanthellate México Mahahual Reef, 
Mexican 

Caribbean 

PS 

   Montastraea sp. Zooxanthellate México Madagascar 
Reef, Yucatán 

Peninsula 

PS 

   Oculina sp. Zooxanthellate México Madagascar 
Reef, Yucatán 

Peninsula 

PS 

   Pocillopora damicornis I Zooxanthellate Vietnam Mun Island 6 
   II  Vietnam Thotyu Island 7 
   III  Vietnam Thotyu Island 7 
   Pocillopora verrucosa Zooxanthellate Vietnam Thotyu Island 7 
   Porites cylindrica Zooxanthellate Vietnam Mun Island 6 
   Porites lobata Zooxanthellate Vietnam Nha Trang Bay 6 
   Porites lutea Zooxanthellate Vietnam Thotyu Island 7 
   Porites nigrescens Zooxanthellate Vietnam Mun Island 6 
   Porites porites Azooxanthellate México Puerto Morelos 

Reef, Mexican 
Caribbean 

PS 

   Porites sp. Azooxanthellate México Mahahual Reef, 
Mexican 

Caribbean 

PS 

   Sandalolitha robusta Zooxanthellate Vietnam Nha Trang Bay 6 
   Scolymia cubensis Zooxanthellate Brazil Baía de Todos-

os-Santos  
PS 

   Scolymia sp. Azooxanthellate México Madagascar 
Reef, Yucatán 

Peninsula 

PS 

   Scolymia wellsi Zooxanthellate Brazil Baía de Todos-
os-Santos  

PS 

   Seriatopora caliendrum Zooxanthellate  Seychelles  Aldabra Island 7 
   Seriatopora hystrix Zooxanthellate  Vietnam  Mun Island 6 
   Stylophora pistillata I Zooxanthellate  Seychelles  Coetivy Island 7 
   II  Seychelles  Coetivy Island 7 
   III  Vietnam  Mun Island 6 
   IV  Vietnam  Thotyu Island 7 
   V  Vietnam  Tyam Island 7 

   Tubastraea coccinea I Azooxanthellate  Brazil  Baía de Todos-
os-Santos  

PS 

   II  Seychelles  Aldabra Island 7 
   Tubastraea micrantha Azooxanthellate  Seychelles  Aldabra Island 7 
 Zoanthidea       
   Epizoanthus gabrieli I Zooxanthellate Brazil Baía de Todos-

os-Santos  – I 
PS 

   II  Brazil Baía de Todos-
os-Santos  – II 

PS 

   III  Brazil Baía de Todos-
os-Santos  – III 

PS 

   Palythoa caribaeorum I Azooxanthellate México Madagascar 
Reef, Yucatán 

Peninsula 

PS 

   II  México Mahahual Reef, 
Mexican 

Caribbean 

PS 

   III  México Puerto Morelos 
Reef, Mexican 

Caribbean 

PS 

   Palythoa sp. Azooxanthellate México La Gallega Reef, 
Veracruz Reef 

System 

PS 

   Protopalythoa variabilis Zooxanthellate Brazil Baía de Todos- PS 
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os-Santos  
   Zoanthus sociatus I Zooxanthellate México La Gallega Reef, 

Veracruz Reef 
System 

PS 

   II  México Madagascar 
Reef, Yucatán 

Peninsula 

PS 

   Zoanthus sp. I Zooxanthellate Brazil Baía de Todos-
os-Santos  

PS 

   II  Brazil Baía de Todos-
os-Santos  

PS 

        

References: 1 - Imbs et al. 2007b; 2 - Imbs et al. 2009; 3 - Imbs and Latyshev 2011; 4 – Pernet et al.2002; 5 - Baptista et al. 

2012; 6 - Imbs et al. 2007a; 7 - Latyshev et al. 1991. 
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2. MATERIAL AND METHODS 

2.1. Sampling 
 

2.1.1. Shallow-living corals 

Specimens of shallow-living hexa- and octocorals were collected by scuba-divers in 

Mexico [La Gallega Reef (n=2 species); Madagascar Reef (n=10); Mahahual Reef (n=10); 

Puerto Morelos Reef (n=5)], Brazil [Baía de Todos-os-Santos (n=8)], Portugal [Setúbal 

(n=4)] and Vietnam (n=2) (Fig. 6) at depths between 0.5-6 m. Samples were placed in 

liquid nitrogen and, in the lab, stored at -80 °C. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Sampling sites of coral specimens used in the present study (Azores, continental Portugal, Brazil, 

Mexico and Vietnam, red circles and red triangle representing deep-sea species from Azores) and those from the 

literature (Vietnam, Seychelles and California, black  circles).  
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2.1.2.  Deep-sea corals 

Deep-sea gorgonian corals (n=4 specimens) were collected off the Portuguese Azores 

archipelago (Fig. 6; red triangle), namely in Furnas de Fora, Dom João de Castro Seamount 

and São Jorge Channel, at depths between 313-1077 m, with the working class ROV Luso 

model Bathysaurus XL (Fig. 7), operated from R/V Almirante Gago Coutinho. Following 

collection, samples were immediately stored in an on-board -80 °C freezer. Species 

belonging to the suborder Holaxonia, commonly designated as “gorgonians”, were analysed 

as one group (i.e. gorgonians) for the sake of clarity and to allow comparison with 

previously published data. 

 

 

 

 
Figure 7. ROV Luso model Bathysaurus XL. 

 

2.2. Biochemical (fatty acid) analysis 
 

Samples [145-301 mg for hexacorals and 300-301 mg for octocorals (dry mass)] were 

dissolved in 5 mL of acetyl chloride/methanol (1:19 v/v; Merck), shaken for 30 sec, and 

heated (80 °C; 1 h). After cooling in room temperature for at least 30 min, 1 mL of Milli-Q 

distilled water and 2 mL of n-heptane pro analysis (Merck) were added and samples were 
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shaken, for 30 sec, and centrifuged (3000 g, 3 min) until phase separation. The organic 

content of the upper phase was filtered using an anhydrous sodium sulphate (Panreac) and 

cotton column. The filtered content was evaporated under a constant flow of nitrogen. 

Afterwards, 100µl of n-heptane were added to each replicate. Following, an aliquot (2 μL) 

was injected onto a gas chromatograph (Varian Star 3800 Cp, Walnut Creek, CA, USA) 

equipped with an autosampler and fitted with a flame ionization detector at 250 °C for 

FAME analysis. The separation was carried out with helium as carrier gas at a flow rate of 1 

mL min−1, in a capillary column DB-WAX (30 m length × 0.32 mm internal diameter; 0.25 

μm film thickness; Hewlett– Packard, Albertville, MN) programmed at 180 °C for 5 min, 

raised to 220 at 4 °C min−1, and maintained at 220 °C for 25 min, with the injector at 250 

°C. FAME identification was accomplished through comparison of retention times with 

those of Sigma standards. Quantitative data were obtained with Varian software using 

C21:0 FA (Sigma) as internal standard. 

2.3. Meta-analysis 
 

2.3.1. Database compilation  

The FA profile of 27 hexacoral species (order Scleractinia) and 39 octocoral species 

(orders Alcyonacea, Gorgonacea and Pennatulacea) was compiled by means of a 

comprehensive search of primary literature (Latyshev et al., 1991; Pernet and Anctil, 2002; 

Imbs et al., 2007c; Imbs et al., 2009; Baptista et al., 2012; Imbs and Latyshev, 2012) (see 

Table 1). The taxonomic classification was performed following the World Register of 

Marine Species - WoRMS. Given that most authors only provide information on FAs 
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representing 0.2 % or more of total FA content, FA percent data below 0.2 % were not 

considered in the present study. 

2.4. Statistical analysis 
 

Principal component analysis (PCA) of FA profiles has been successfully applied to 

study the chemotaxonomy of hexacorals (Latyshev et al., 1991; Imbs et al., 2007a; Imbs et 

al., 2010b) and octocorals (Imbs et al., 2009; Imbs and Latyshev, 2012; Imbs, 2014). 

Moreover, it has also been shown that the use of a few selected PUFAs is more suitable for 

the determination of chemotaxonomic differences between corals than total FA matrix 

(Imbs et al., 2007a). Consequently, in the present study, PCA was applied in a FA matrix of 

ten PUFAs, namely, the five major n-3 series FAs (18:4n-3; 20:5n-3; 22:5n-3; 22:6n-3; 

24:6n-3) and the five major n-6 series FAs (18:2n-6; 20:4n-6; 22:4n-6; 22:5n-6; 24:5n-6). 

Additionally, differences in FA profile among coral groups were tested with analysis of 

variance (ANOVA) followed by multiple comparisons tests (Unequal N HSD). All statistical 

analyses were tested at 0.05 level of probability with the software STATISTICATM 12 

(Statsoft, Inc., Tulsa, 167 OK 74104, USA). 
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3. RESULTS 

 

A detailed overview of the coral species used in the present dissertation is provided in 

Table 1. The percentual content of the selected PUFAs for all species (present study and 

literature) is shown in Table 2. 

 

Table 2: Fatty acid composition of selected PUFAs (% of total fatty acids, values 

greater than 0.2 % are shown) 

 

Fatty Acids 
Alcyonium 
digitatum 

Cespitularia sp. 
Chironephthya 

variabilis 
Cladiella 
laciniosa 

Dendronephthya 
aurea I 

18:2n-6 0.20 1.90 1.37 2.30 0.90 
18:4n-3 0.33 7.40 - 7.40 1.10 
20:4n-6 0.85 15.80 40.43 12.90 29.40 
20:5n-3 0.53 4.40 1.90 3.60 3.30 
22:4n-6 - - 0.70 0.20 0.00 
22:5n-6 - - 0.70 0.90 1.90 
22:5n-3 0.76 - - - 0.50 
22:6n-3 0.32 6.10 1.37 6.00 3.90 
24:5n-6 - 5.40 12.33 4.30 11.60 
24:6n-3 - 0.50 1.30 1.30 4.30 

Fatty Acids 
Dendronephthya 

aurea II 
Dendronephthya 

crystallina I 
Dendronephthya 

crystallina II 
Dendronephthya 

crystallina III 
Dendronephthya 

gigantea 
18:2n-6 1.00 1.40 1.30 1.30 1.30 
18:4n-3 - 1.10 0.30 0.30 0.30 
20:4n-6 28.90 15.70 27.00 27.00 21.10 
20:5n-3 1.90 3.30 3.50 3.50 1.50 
22:4n-6 0.30 0.40 0.30 0.30 0.90 
22:5n-6 0.40 1.20 0.60 0.60 0.90 
22:5n-3 - - - - 0.30 
22:6n-3 0.90 4.10 2.30 1.30 2.10 
24:5n-6 12.90 9.60 9.40 12.40 12.50 
24:6n-3 2.30 3.60 2.20 4.70 2.40 

Fatty Acids 
Dendronephthya 

aff. involuta 
Dendronephthya 

sp. I 
Dendronephthya 

sp. II 
Dendronephthya 

sp. III 
Dendronephthya 

sp. IV 
18:2n-6 - 1.00 1.80 1.80 1.90 
18:4n-3 - 1.10 0.60 0.60 0.60 
20:4n-6 25.00 37.70 30.90 23.40 21.30 
20:5n-3 1.80 3.80 1.30 1.60 1.60 
22:4n-6 - 0.80 - - - 
22:5n-6 1.100 1.80 2.30 3.20 1.90 
22:5n-3 1.30 - 0.90 0.70 0.70 
22:6n-3 4.10 2.20 3.00 2.50 7.20 
24:5n-6 15.00 16.50 12.30 15.20 5.00 
24:6n-3 4.60 5.10 4.00 7.10 0.60 
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Fatty Acids Litophyton sp. Lobophytum cf. 
delectum 

Lobophytum 
pusillum 

Neospongodes 
atlantica 

Paralemnalia 
thyrsoides 

18:2n-6 - 1.60 0.50 0.66 1.55 
18:4n-3 5.70 0.60 4.10 9.54 2.85 
20:4n-6 15.00 30.40 18.40 12.39 25.55 
20:5n-3 6.70 0.20 1.30 3.66 2.75 
22:4n-6 - - - - 0.15 
22:5n-6 - 0.10 0.20 0.47 - 
22:5n-3 - 0.40 - - - 
22:6n-3 0.20 2.50 6.63 2.45 5.10 
24:5n-6 14.90 7.20 - 7.40 8.80 
24:6n-3 0.40 0.90 - 0.80 0.50 

Fatty Acids 
Sarcophyton 

acutum 
Sarcophyton 
buitendijki I 

Sarcophyton 
buitendijki II 

Sarcophyton 
cinereum 

Sarcophyton aff. 
crassum 

18:2n-6 0.50 - 0.30 - 0.30 
18:4n-3 8.90 4.70 8.10 4.80 2.40 
20:4n-6 21.10 16.30 24.80 12.60 15.10 
20:5n-3 5.00 2.20 5.20 1.50 1.00 
22:4n-6 - - - - - 
22:5n-6 0.20 - - - - 
22:5n-3 0.30 0.20 - - - 
22:6n-3 3.10 5.50 2.50 1.30 1.50 
24:5n-6 4.40 8.40 4.20 4.60 4.80 
24:6n-3 0.90 0.80 0.60 0.50 0.40 

Fatty Acids 
Sarcophyton 

elegans 
Sarcophyton 

trocheliophorum 
Sinularia 
cruciata 

Sinularia aff. 
deformis 

Sinularia densa 

18:2n-6 1.30 0.30 0.20 0.20 0.60 
18:4n-3 3.70 6.70 6.20 5.60 4.80 
20:4n-6 15.20 17.90 23.80 19.10 10.20 
20:5n-3 6.20 2.20 2.20 2.40 0.80 
22:4n-6 - 0.20 - - - 
22:5n-6 - - - - - 
22:5n-3 - - - - - 
22:6n-3 3.80 3.90 2.90 1.90 3.00 
24:5n-6 5.60 8.40 5.80 5.60 5.30 
24:6n-3 0.80 1.20 1.80 1.20 1.10 

Fatty Acids 
Sinularia 

leptoclados 
Sinularia 

lochmodes 
Sinularia cf. 

muralis 
Sinularia 
notanda 

Ellisella 
plexauroides 

18:2n-6 - - - - 0.90 
18:4n-3 1.10 4.40 4.50 5.20 - 
20:4n-6 23.20 21.20 18.10 19.10 39.30 
20:5n-3 1.00 2.30 1.50 2.20 1.97 
22:4n-6 - - - - 8.97 
22:5n-6 - - - - 0.90 
22:5n-3 - - - - 0.43 
22:6n-3 2.50 2.70 3.40 3.10 2.90 
24:5n-6 8.90 6.00 6.30 7.30 3.10 
24:6n-3 0.90 0.90 1.20 1.20 1.40 

Fatty Acids 
Acanthogorgia 

armata I 
Acanthogorgia 

armata II 
Acanthogorgia 

isoxya 
Bebryce studeri Echinogorgia sp. 

18:2n-6 0.51 0.70 1.03 0.70 0.70 
18:4n-3 0.19 0.38 - 0.30 - 
20:4n-6 - 10.54 38.77 21.70 47.60 
20:5n-3 1.30 1.48 3.27 2.00 2.20 
22:4n-6 - 0.64 3.83 1.10 0.40 
22:5n-6 0.49 0.19 1.13 4.20 0.20 
22:5n-3 - 0.71 - 0.50 - 
22:6n-3 1.77 1.24 2.53 3.50 0.80 
24:5n-6 3.21 1.10 7.50 7.20 8.90 
24:6n-3 1.17 0.39 2.40 0.50 2.60 
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Fatty Acids Eunicea sp. 
I 

Eunicea sp. 
II 

Eunicea sp. 
III 

Eunicea sp. 
IV 

Eunicella 
verrucosa I 

18:2n-6 0.62 1.27 1.42 0.81 0.90 
18:4n-3 1.76 0.74 0.69 0.60 1.11 
20:4n-6 7.83 10.25 9.97 19.37 22.94 
20:5n-3 1.75 1.67 2.24 2.66 3.02 
22:4n-6 1.37 0.90 1.07 1.69 2.06 
22:5n-6 0.29 0.31 0.24 0.57 0.79 
22:5n-3 0.86 0.58 0.58 0.63 0.63 
22:6n-3 3.66 3.86 3.97 1.29 2.32 
24:5n-6 1.71 3.16 2.89 8.68 12.92 
24:6n-3 0.44 2.21 2.15 1.74 2.92 

Fatty Acids 
Eunicella 

verrucosa II 
Gorgonia sp. I Gorgonia sp. II 

Leptogorgia 
sarmentosa I 

Leptogorgia 
sarmentosa II 

18:2n-6 0.92 2.06 2.94 0.75 0.82 
18:4n-3 1.01 3.94 2.17 0.67 0.54 
20:4n-6 21.49 12.38 - 18.67 17.19 
20:5n-3 3.47 2.74 2.92 3.13 1.75 
22:4n-6 2.03 0.29 - 2.76 2.81 
22:5n-6 0.75 0.24 - 0.90 1.16 
22:5n-3 0.66 0.22 0.21 0.49 0.50 
22:6n-3 2.38 2.98 9.83 2.07 1.82 
24:5n-6 11.38 4.66 3.10 9.53 11.46 
24:6n-3 2.91 0.80 1.74 3.17 2.22 

Fatty Acids 
Leptogorgia 

sarmentosa III 
Menella 

praelonga 
Muricea sp. Unidentified 

Paramuricea 
biscaya 

18:2n-6 0.70 0.83 0.49 0.76 1.78 
18:4n-3 0.70 0.27 2.28 2.64 1.12 
20:4n-6 19.61 39.70 10.42 6.27 7.21 
20:5n-3 2.68 3.67 2.80 1.19 1.76 
22:4n-6 3.48 3.93 0.43 0.23 - 
22:5n-6 1.15 1.27 0.60 0.45 0.55 
22:5n-3 0.86 0.35 0.47 - - 
22:6n-3 2.50 2.60 18.42 11.77 0.98 
24:5n-6 12.01 9.13 4.23 3.55 3.65 
24:6n-3 3.21 2.93 3.69 2.77 0.65 

Fatty Acids 
c.f. Placogorgia 

sp. 
Plexaurella sp. 

Pseudoplexaura 
sp. I 

Pseudoplexaura 
sp. II 

Pseudopterogorgia 
sp. 

18:2n-6 0.33 6.71 0.87 1.27 3.61 
18:4n-3 - 2.08 2.85 1.52 1.03 
20:4n-6 21.10 8.23 11.85 10.69 11.77 
20:5n-3 4.71 3.66 4.21 4.14 5.13 
22:4n-6 - 0.75 0.77 1.06 1.39 
22:5n-6 - - 0.29 0.32 0.64 
22:5n-3 - 0.81 0.82 0.88 2.03 
22:6n-3 0.43 4.31 8.07 7.08 8.38 
24:5n-6 7.46 1.78 2.42 2.23 2.94 
24:6n-3 0.36 0.66 1.39 0.79 2.13 

Fatty Acids 
Rumphella 
aggregata 

Acabaria 
erythraea 

Carijoa riisei 
Cavernularia 

obesa 
Pteroeides spp. 

18:2n-6 0.65 0.90 0.83 2.58 0.79 
18:4n-3 2.15 0.40 0.22 2.92 2.60 
20:4n-6 13.15 37.20 24.18 3.71 14.52 
20:5n-3 2.05 1.70 2.98 10.16 9.21 
22:4n-6 0.65 0.60 2.82 1.22 5.61 
22:5n-6 - 5.70 0.65 - 0.24 
22:5n-3 - 0.30 0.24 0.36 0.65 
22:6n-3 1.60 3.90 2.83 2.54 0.66 
24:5n-6 3.40 14.50 - - - 
24:6n-3 0.20 2.30 - - - 
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Fatty Acids Veretillum 
cynomorium I 

Veretillum 
cynomorium II 

Veretillum 
cynomorium III 

Veretillum 
cynomorium IV 

Veretillum 
cynomorium V 

18:2n-6 0.58 0.70 0.79 0.64 0.79 
18:4n-3 0.39 0.53 0.86 1.18 0.64 
20:4n-6 8.88 7.16 7.36 10.01 7.74 
20:5n-3 9.58 8.99 12.42 11.42 9.76 
22:4n-6 3.10 2.52 2.76 3.88 3.23 
22:5n-6 0.12 0.22 0.30 0.25 0.29 
22:5n-3 0.88 1.01 1.18 0.87 0.95 
22:6n-3 0.79 0.98 2.23 1.88 1.25 
24:5n-6 0.93 0.80 0.81 1.00 1.03 
24:6n-3 7.72 8.00 11.54 10.31 11.10 

Fatty Acids 
Veretillum 

cynomorium VI 
Renilla koellikeri Acropora cerealis Acropora florida Acropora formosa 

18:2n-6 0.87 0.80 0.90 1.30 1.00 
18:4n-3 0.77 - 1.40 5.10 1.80 
20:4n-6 6.22 36.65 6.70 11.00 14.70 
20:5n-3 9.56 11.35 16.50 6.90 9.50 
22:4n-6 2.78 3.75 5.50 6.30 7.20 
22:5n-6 0.28 - - 1.30 - 
22:5n-3 1.12 1.45 3.90 1.20 3.10 
22:6n-3 0.90 2.85 6.30 6.70 6.20 
24:5n-6 1.02 - - - - 
24:6n-3 11.16 - - - - 

Fatty Acids 
Acropora 

gemmifera 
Acropora 

milepora I 
Acropora 

milepora II 
Acropora nasuta 

I 
Acropora nasuta II 

18:2n-6 1.20 1.70 1.10 2.10 0.70 
18:4n-3 1.20 1.10 6.60 2.60 4.90 
20:4n-6 10.40 8.00 7.20 7.10 3.20 
20:5n-3 10.30 1.60 10.40 0.80 4.50 
22:4n-6 4.10 1.00 6.00 4.30 2.40 
22:5n-6 - - 0.60 - 0.30 
22:5n-3 2.60 0.50 3.00 0.90 1.30 
22:6n-3 4.90 10.40 12.60 10.80 8.80 
24:5n-6 - - - - - 
24:6n-3 - - - - - 

Fatty Acids Acropora nobilis 
Acropora 
palifera 

Acropora sp. Agaricia sp. I Agaricia sp. II 

18:2n-6 1.60 0.60 1.40 1.61 1.91 
18:4n-3 2.70 1.00 1.60 0.82 1.33 
20:4n-6 2.30 1.80 2.00 2.93 2.22 
20:5n-3 3.00 9.90 1.70 2.13 1.96 
22:4n-6 1.30 2.60 1.10 1.65 1.14 
22:5n-6 - - - - - 
22:5n-3 1.20 1.70 0.70 1.14 0.99 
22:6n-3 4.20 3.30 4.10 7.90 8.26 
24:5n-6 - - - - - 
24:6n-3 - - - - - 

Fatty Acids 
Caulastraea 

tumida 
Diploria sp. Diploria strigosa 

Echinophyllia 
orpheensis 

Favia sp. I 

18:2n-6 0.80 1.20 1.67 1.00 1.60 
18:4n-3 0.80 0.78 1.09 1.10 1.20 
20:4n-6 4.90 4.55 7.53 3.40 4.60 
20:5n-3 2.90 1.19 1.97 1.70 0.80 
22:4n-6 - 1.01 1.65 1.70 2.10 
22:5n-6 - - - - - 
22:5n-3 1.90 0.48 0.76 2.30 6.70 
22:6n-3 10.10 5.99 4.58 9.20 3.60 
24:5n-6 - - - - - 

24:6n-3 - - - - - 
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Fatty Acids Favia sp. II Goniopora sp. I Goniopora sp. II Montastraea 
annularis 

Montastraea sp. 

18:2n-6 3.00 2.20 1.60 1.58 1.37 
18:4n-3 1.10 2.30 4.30 0.88 2.17 
20:4n-6 3.70 13.30 21.90 3.75 3.11 
20:5n-3 1.00 4.10 4.60 1.72 2.40 
22:4n-6 2.00 3.30 6.00 1.27 1.25 
22:5n-6 - - - - - 
22:5n-3 6.20 1.00 0.80 0.71 0.46 
22:6n-3 2.90 15.70 11.50 6.10 5.18 
24:5n-6 - - - - - 
24:6n-3 - - - - - 

Fatty Acids Oculina sp. 
Pocillopora 

damicornis I 
Pocillopora 

damicornis II 
Pocillopora 

damicornis III 
Pocillopora 
verrucosa 

18:2n-6 1.18 1.30 1.70 1.80 1.20 
18:4n-3 4.09 2.10 2.20 0.80 3.30 
20:4n-6 5.37 3.90 2.10 2.00 1.80 
20:5n-3 4.54 3.00 1.80 1.40 3.20 
22:4n-6 4.67 2.60 1.30 0.90 1.30 
22:5n-6 2.58 - - - - 
22:5n-3 5.21 0.70 0.60 0.40 0.70 
22:6n-3 2.53 12.30 14.00 9.50 10.40 
24:5n-6 - - - - - 
24:6n-3 - - - - - 

Fatty Acids 
Porites 

cylindrica 
Porites lobata Porites lutea 

Porites 
nigrescens 

Porites porites 

18:2n-6 1.10 1.50 1.00 0.60 2.71 
18:4n-3 1.70 0.60 2.90 1.60 1.33 
20:4n-6 6.10 7.00 2.30 3.20 4.58 
20:5n-3 4.10 2.00 3.30 4.80 3.14 
22:4n-6 3.10 4.20 1.40 3.20 1.94 
22:5n-6 - - - - - 
22:5n-3 1.30 2.10 0.80 1.50 1.68 
22:6n-3 8.70 5.50 5.30 11.60 5.23 
24:5n-6 - - - - - 
24:6n-3 - - - - - 

Fatty Acids Porites sp. 
Sandalolitha 

robusta 
Scolymia 
cubensis 

Scolymia sp. Scolymia wellsi 

18:2n-6 0.92 1.40 2.58 0.58 2.57 
18:4n-3 1.54 0.10 1.22 0.30 1.67 
20:4n-6 4.08 4.20 7.73 3.50 8.72 
20:5n-3 3.71 1.60 3.30 1.05 2.97 
22:4n-6 2.15 1.40 2.87 - 3.26 
22:5n-6 - - - 0.34 - 
22:5n-3 1.14 0.70 1.42 4.81 1.54 
22:6n-3 8.74 2.60 7.28 - 6.42 
24:5n-6 - - - - - 
24:6n-3 - - - - - 

Fatty Acids 
Seriatopora 
caliendrum 

Seriatopora 
hystrix 

Stylophora 
pistillata I 

Stylophora 
pistillata II 

Stylophora 
pistillata III 

18:2n-6 1.70 0.50 1.70 0.80 0.60 
18:4n-3 1.70 1.20 1.30 1.90 1.80 
20:4n-6 4.80 3.50 4.30 7.60 5.10 
20:5n-3 2.60 1.80 2.00 7.70 1.80 
22:4n-6 1.50 1.20 1.80 3.80 1.90 
22:5n-6 - - - - - 
22:5n-3 1.20 1.10 1.30 4.50 1.10 
22:6n-3 16.90 13.30 16.40 14.40 13.20 
24:5n-6 - - - - - 
24:6n-3 - - - - - 
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Fatty Acids Stylophora 
pistillata IV 

Stylophora 
pistillata V 

Tubastraea 
coccinea I 

Tubastraea 
coccinea II 

Tubastraea 
micrantha 

18:2n-6 1.90 1.70 0.33 2.00 1.80 
18:4n-3 1.40 2.00 3.68 0.70 0.80 
20:4n-6 1.70 3.10 7.16 7.80 6.60 
20:5n-3 1.40 2.60 7.40 14.90 10.90 
22:4n-6 1.00 1.70 10.21 4.70 5.50 
22:5n-6 - - - - - 
22:5n-3 4.50 0.70 13.40 16.40 17.30 
22:6n-3 8.80 10.10 1.05 1.40 1.30 
24:5n-6 - - - - - 
24:6n-3 - - - - - 

Fatty Acids 
Epizoanthus 

gabrieli I 
Epizoanthus 

gabrieli II 
Epizoanthus 
gabrieli III 

Palythoa 
caribaeorum I 

Palythoa 
caribaeorum II 

18:2n-6 0.46 - - 0.84 1.14 
18:4n-3 2.11 - - 2.45 1.67 
20:4n-6 3.78 0.59 0.51 8.31 10.72 
20:5n-3 2.65 - - 2.27 1.98 
22:4n-6 1.96 - - 3.34 3.59 
22:5n-6 - 2.76 3.04 - - 
22:5n-3 9.84 - - 5.92 4.06 
22:6n-3 2.50 8.20 7.63 2.04 2.19 
24:5n-6 - - - - - 
24:6n-3 - - - - - 

Fatty Acids 
Palythoa 

caribaeorum III 
Palythoa sp. 

Protopalythoa 
variabilis 

Zoanthus 
sociatus I 

Zoanthus sociatus 
II 

18:2n-6 1.56 0.53 0.33 1.03 2.09 
18:4n-3 1.39 2.22 2.03 2.59 7.52 
20:4n-6 9.23 7.51 5.40 5.21 1.68 
20:5n-3 1.76 1.85 1.75 0.60 3.46 
22:4n-6 2.81 4.07 2.91 3.40 1.04 
22:5n-6 - - - - - 
22:5n-3 2.73 4.95 6.99 3.72 4.08 
22:6n-3 1.93 2.10 1.85 1.61 2.97 
24:5n-6 - - - - - 
24:6n-3 - - - - - 

Fatty Acids Zoanthus sp. I Zoanthus sp. II    
18:2n-6 1.69 3.78    
18:4n-3 0.54 -    
20:4n-6 8.08 3.46    
20:5n-3 5.89 0.24    
22:4n-6 7.34 1.88    
22:5n-6 - -    
22:5n-3 6.98 7.10    
22:6n-3 - 1.70    
24:5n-6 - -    
24:6n-3 - -    

Values are means. 
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3.1. General differences between hexa- and octocorals 
 

The results of the PCA (obtained with the 10 selected PUFAs) for the 45 hexa- and 59 

octocoral species from different world regions (namely Brazil, USA, México, Portugal, 

Seychelles and Vietnam) are shown in Figure 8. 
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Figure 8: Principal component analysis based on the content of 10 PUFAs (18:2n-6, 18:4n-3, 20:4n-6, 20:5n-

3, 22:4n-6, 22:5n-6, 22:5n-3, 22:6n-3, 24:5n-6, 24:6n-3) of 104 hexacoral and octocoral species (123 specimens). 

A) Principal component plot; B) Loading plot of FAs and their contribution to the spread along PC1 and PC2; C) 

D) E) F) G) H) and I) Percentual content of different FAs in eight coral groups. Values are means (±SD). Different 

superscript letters represent significant differences between groups (P<0.05). Numbers on the bars of the plot for 
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18:4n-3 represent number of species in each coral group. Legend of panel A: Octo Cal-N – azooxanthellae 

octocorals from California; Octo Pt-N – azooxanthellae octocorals from continental Portugal; Octo Viet-Y – 

zooxanthellae octocorals from Vietnam; Octo Viet-N – azooxanthellae octocorals from Vietnam; Octo Br-Y – 

zooxanthellae octocorals from Brazil; Octo Br-N – azooxanthellae octocorals from Brazil; Octo Mex-N – 

azooxanthellae octocorals from Mexico; Hexa Mex-Y – zooxanthellae hexacorals from Mexico; Hexa Mex-N – 

azooxanthellae hexacorals from Mexico; Hexa Viet-Y – zooxanthellae hexacorals from Vietnam; Hexa Br-Y – 

zooxanthellae hexacorals from Brazil; Hexa Br-N – azooxanthellae hexacorals from Brazil; Hexa Sey-Y – 

zooxanthellae hexacorals from Seychelles; Hexa Sey-N – azooxanthellae hexacorals from Seychelles; panel C, D, E, 

F, G, H and I: Scl-N – azooxanthellae scleractinians; Scl-Y – zooxanthellae scleractinians; Zoa-N – azooxanthellae 

zoanthidians; Zoa-Y – zooxanthellae zoanthidians; Pen-N – azooxanthellae pennatulaceans; Gorg-N – 

azooxanthellae gorgonians; Alc-N – azooxanthellae alcyonaceans; Alc – Y – zooxanthellae alcyonaceans. 

 

A clear separation was achieved between hexa- and octocorals along PC1 (explaining 

30.04 % of the variance), with the former group to the right and the latter to the left. This 

separation was mainly caused by 20:4n-6 and 24:5n-6 (Fig. 8B). In terms of 20:4n-6, the 

separation occurred because octocorals generally exhibited a higher content of this PUFA. 

Yet, such differences were not always observed among members of the two coral groups 

(Fig. 8D). Regarding 24:5n-6, it is worth noting that this FA was only present in octocorals 

(Fig. 8I). The separation within each group was mainly achieved along PC2 (explaining 

19,11 % of the variance). Among the hexacoral group, species belonging to the Tubastraea 

genera (from Seychelles and Brazil) were placed in an upper position relative to the other 

species. A similar result was observed in octocorals, where Veretillum cynomorium, Ellisella 

plexauroides and Renilla koellikeri were also placed in an upper position. Such differences 

were mainly driven by 20:5n-3 (Fig. 8E), 22:4n-6 (Fig. 8F) and 22:5n-3 (Fig. 8G). These 

PUFA were found in higher percentage in the above mentioned species. On the other hand, 
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A 

18:4n-3 (Fig. 8C) and 22:6n-3 (Fig. 8H) were mostly found in lower percentages on those 

species (Fig. 8B; Table 2).   

 

3.2. Differences among hexacorals 

 The results of the PCA of 44 species of Hexacorals (55 specimens belonging to 

Zoantharia and Scleractinia orders), from the different world regions (Brazil, México, 

Seychelles and Vietnam) are shown in Figure 9. 
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Figure 9: Principal component analysis based on the content of 10 PUFAs (18:2n-6, 18:4n-3, 20:4n-6, 20:5n-

3, 22:4n-6, 22:5n-6, 22:5n-3, 22:6n-3, 24:5n-6, 24:6n-3) of 44 hexacoral species (55 specimens). A) Principal 

component plot; B) Loading plot of FAs and their contribution to the spread along PC1 and PC2; C) D) E) F) and 

G) Percentual content of different FAs in three species (5 specimens) and other hexacorals. Values are mean 

(±SD), except in the case of the species (T. coccinea I, T. coccinea II, T. micrantha, E. gabrieli I and E. gabrieli II) 

where only one value is available. Legend of panel A: Viet-Y – zooxanthellae hexacorals from Vietnam; Br-Y – 

zooxanthellae hexacorals from Brazil; Br-N – azooxanthellae hexacorals from Brazil; Mex-Y – zooxanthellae 

hexacorals from Mexico; Mex-N – azooxanthellae hexacorals from Mexico; Sey-Y – zooxanthellae hexacorals from 

Seychelles; Sey-N – azooxanthellae hexacorals from Seychelles. Panel B: Scl-Y – zooxanthellae scleractininans; 

Scl-N – azooxanthellae scleractininans; Zoa-Y – zooxanthellae zoantharians; Zoa-N – azooxanthellae 

zoatharians. Panels D-G: Other Hexa – other hexacorals. 

 

Distinct spatial (Fig. 9A) and taxonomic separations (Fig. 9B) among hexacorals were 

not observed (even though both axis explained 50.36% of the variance). However, it is 

noteworthy that Tubastraea species (T. coccinea and T. micrantha) from Seychelles and 

Brazil (placed upwards) were placed to the leftmost position and two Epizoanthus gabrieli 

specimens, from Brazil, appeared in the rightmost position. The marginal placement of 

Tubastraea species occurred due to the higher contents of 20:5n-3, 22:4n-6 and 22:5n-3, 

and a lower content of 22:6n-3, when compared to most other hexacorals. The placement 

of E. gabrieli to the right, on the other hand, was caused due to a high concentration of 

F G 
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22:6n-3, closer to that found in other hexacorals, and the lack of 20:5n3, 22:4n-6 and 22:5n-

3.   

 

3.3. Differences among octocorals 

The results of the PCA with 58 octocoral species (65 specimens belonging to 

alcyonaceans, pennatulacenas and gorgonian alcyonaceans) from Brazil, México, Seychelles 

and Vietnam, are shown in Figure 10. Interestingly, clear separations in respect to sampling 

region (Fig. 10A), coral group (Fig. 10B) and presence/absence of zooxanthellae were 

achieved.  
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Figure 10: Principal component analysis based on 10 selected PUFAs (18:2n-6, 18:4n-3, 20:4n-6, 20:5n-3, 

22:4n-6, 22:5n-6, 22:5n-3, 22:6n-3, 24:5n-6, 24:6n-3) composition of 57 Octocoral species (66 specimens). A) 

Principal component plot showcasing different locations; B) Principal component plot showcasing different coral 

groups C) loading plot of fatty acids (FA) and their contribution to the spread along PC1 and PC2; D) E) F) G) H) 

I) Percentual content of different FAs in tree octocoral orders  J) K) L) M) Percentual content of different FAs in 

alcyonaceans. Values are means (+-SD), except in the case of L cf. delectum where only one value is available 

Different superscript letters represent significant differences between groups (P<0.05). Legend panel A: Viet-Y – 

zooxanthellae octorocals from Vietnam; Viet-N – azooxanthellae octocorals from Vietnam; Cal-Y – zooxanthellae 
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octocoral from California; Pt-N – azooxanthellae octocoral from Portugal; Br-y – zooxanthellae octocorals from 

Brazil; Br-N – azooxanthellae octocorals from brazil; Mex-N – azooxanthellae from Mexico. Panel B: Pen-N – 

azooxanthellae pennatulaceans; Alc-y – zooxanthellae alcyonaceans; Alc-N – azooxanthellae alcyonaceans; 

Gorg-Y – zooxanthellae gorgonians; Gorg-N – azooxanthellae gorgonians. Panels D-I: Pen – pennatulaceans; 

Gorg – gorgonians; Alc – alcyonaceans. Panels J-M: Zoo Alc – zooxanthellae alcyonaceans; Azoo Alc – 

azooxanthellae alcyonaceans. 

 

Regarding spatial origin, the octocorals sampled in México, Vietnam and 

Portugal/California were clearly separated along PC1 (explaining 30.27% of variance) and 

PC2 (explaining 24.51%). In respect to coral group, a clear individualization of the 

pennatulacean group occurred to the right. Additionally, while gorgonians were clustered 

in the central region, the alcyonaceans were placed to the left.  

Regarding PC1, pennatulaceans generally displayed higher percentages of 20:5n-3 (Fig. 

10E), 22:5n-3 (Fig. 10G), 22:4n-6 (Fig. 10F) and 24:6n-3 (Fig. 10I) and lower percentages of 

18:4n-3, 24:5n-6, as opposed to alcyonaceans (Figs. 10D,H). Gorgonians, on the other hand, 

displayed relatively average levels of the mentioned FAs, hence being placed in a central 

position between pennatulaceans and alcyonaceans. An azooxanthellate gorgonian, 

Pseudopterogorgia sp., was placed closer to pennatulaceans as it displayed a lower value of 

20:4n-6 and higher values of 20:5n-3 and 22:5n-3, when compared to other gorgonians (i.e. 

resembling the values showed by pennatulaceans).  

A separation between zooxanthellate and azooxanthellate alcyonacens was also 

achieved along PC2. This occurred because azooxanthellate alcyonaceans normally 

displayed higher contents of 20:4n-6 (Fig. 10K), 22:5n-6 (Fig. 10L) and 24:5n-6 (Fig. 10M) 

and a lower content of 18:4n-3 (Fig. 10J), in comparison to zooxanthellate alcyonaceans. 

One exception was Lobophytum cf. delectum, a zooxanthellate alcyonacean, which was 
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placed next to azooxanthellate ones (Fig. 10B). This positioning occurred because L. cf. 

delectum showed higher contents of 20:4n-6, 22:5n-6, 24:5n-6 and a lower content of 

18:4n-3, similarly to azooxantellate alcyonaceans. 

 

3.4. Differences among shallow-living and deep-sea gorgonians 

 

The results of the PCA with 21 gorgonian alcyonacean species (25 specimens from 

deep-sea and shallow water habitats) are shown in Figure 11. 
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Figure 11: Principal component analysis based on 10 selected PUFAs (18:2n-6, 18:4n-3, 20:4n-6, 20:5n-3, 

22:4n-6, 22:5n-6, 22:5n-3, 22:6n-3, 24:5n-6, 24:6n-3) composition of 21 gorgonian species (25 specimens). A) 

Principal component plot showcasing different sampling depths; B) loading plot of fatty acids (FA) and their 

contribution to the spread along PC1 and PC2; C) D) E) F) G) H) Percentual content of different FAs in shallow 

and deep sea gorgonians from different locations. Values are means (±SD). Different superscript letters represent 

significant differences between shallow and deep sea gorgonians from different locations (P<0.05). Legend panel 

A: Shallow Viet – shallow-living gorgonians from Vietnam; Deep sea Pt – deep-sea gorgonians from Azores 

(Portugal); Shallow Pt – shallow-living gorgonians from Portugal; Shallow Mex – shallow-living gorgonians 

from Mexico; panels C-H: Deep Azor – deep-se gorgonians from Azores; Shal Port – shallow-living gorgonians 
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from Portugal; Shal Mex – shallow-living gorgonians from Mexico; Shal Viet – shallow living gorgonians from 

Vietnam. 

 

Along PC1 (explaining 35.35% of variance), a clear separation between sampling 

regions was achieved. Concomitantly, a clear distinction between habitat depths was 

observed along the PC2 (explaining 19.04%). 

Shallow living gorgonians from Portugal and Vietnam (placed to the left) revealed 

higher contents of 20:4n-6, 22:4n-6 and 24:5n-6 (Figs. 11 D,E,F) than shallow water 

gorgonians from México, which showed higher contents of 18:2n-6, 18:4n-3 and 22:6n-3 

(Figs. 11 A,C). Also, shallow living gorgonians from Vietnam were separated from the ones 

from Portugal due to the higher contents of 20:4n-6 and 22:5n-6. 

The separation of deep-sea gorgonians (from Azores archipelago) was mainly caused 

by 22:6n-3 and 24:6n-3 (Figs. 11 G,H). Though not statistically significant, these deep-sea 

octocorals exhibited lower contents of 22:4n-6, 22:6n-3 and 24:6n3 (Figs. 11 E,F,H), in 

comparison with those from the shallow habitats from Vietnam, Mexico and Portugal (Fig. 

11A).  
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4. DISCUSSION 

4.1. Chemotaxonomical differences between hexa- and octocorals  
 

FAs have been used as chemotaxonomic biomarkers since the divergence of FA profiles 

between corals can be applied for the evaluation of the degree of biochemical variability 

between different taxonomical groups (Imbs et al., 2007b). As expected, hexacorals were 

separated from octocorals due to the lack of 24:5n-6 and 24:6n-3. In fact, these C24 PUFAs 

are the most useful biomarkers for the separation of these two coral groups (Svetashev and 

Vysotskii, 1998). Representatives from each group clustered together, with the exception of 

two hexacorals (Tubastraea coccinea II and Tubastraea micrantha) and three octocorals 

(Veretillum cynomorium, Ellisella plexauroides and Renilla koellikeri) which were placed 

away from other coral species. This separation occurred due to their generally higher 

contents of 20:5n-3, 22:4n-6 and 22:5n-3 and lower contents of 18:4n-3 and 22:6n-3. Both 

V. cynomorium (an azooxanthellate octocoral) and R. koellikeri (a zooxanthellate octocoral), 

were collected in coastal habitats located in marine temperate zones (Portugal and 

California, respectively). These areas, while subjected to upwelling events, often exhibit 

high levels of primary production and hence V. cynomorium and R. koellikeri are naturally 

expected to exhibit higher values of PUFAs deriving from phytoplankton and zooplankton 

intake, such as 20:5n-3 and 20:4n-6 respectively (Migne and Davoult, 2002; Palardy et al., 

2005), and higher values of 22:5n-3 and 22:4n-6, that originate from the previously 

mentioned PUFAs (Sprecher, 2000). Both T. coccinea II and T. micrantha, on the other hand, 

while originating from a region of lower primary productivity (name of region), contain 

zooxanthellae and are therefore also expected to contain a high content of 20:5n-3 
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(Dalsgaard et al., 2003; Imbs et al., 2010a). Finally, E. plexauroides is an azooxanthellate 

octocoral from Vietnam, where monsoons periodically produce eutrophication episodes 

that result in high primary production and therefore high amounts of phytoplankton, which 

might also explain the high levels of 20:5n-3.  

4.2. Hexacoral chemotaxonomy 
 

A clear separation between zooxanthellate and azooxanthellate hexacorals was not 

achieved with PCA. However, differences between these groups were more noticeable 

through individual FA analysis. Zooxanthellate hexacorals showed a generally higher 

content of 18:4n-3; 20:5n-3 and 22:6n-3 when compared to azooxanthellate hexacorals 

(Table 2). This result is in accordance with the findings of Imbs et al. (2010a) hence 

corroborating the usefulness of these FAs as biomarkers for the separation of hexacorals in 

regard to the presence of photosynthetic symbionts. Azooxanthellate hexacorals, on the 

other hand, showed a higher content of 22:5n-3 than zooxanthellate ones (see also 

Latyshev et al. (1991) and Bishop and Kenrick (1980)).  

Five species were placed away from the main cluster of hexacorals: T. coccinea I, T. 

coccinea II, T. micrantha, E. gabrieli I and E. gabrieli II. The species T. coccinea I (from 

Brazil) and T. coccinea II and T. micrantha (from Seychelles) do not contain zooxanthellae  

and were separated from other hexacorals as a result of exhibiting higher values of 20:5n-

3; 22:4n-6; 22:5n-3 and a lower value of 22:6n-3. This seems to indicate that phytoplankton 

is the preferred food source for these species.  Still, a significant difference in the contents 

of 20:5n-3 (Fig.3D) and 22:4n-6 (Fig. 3F) was observed between Tubastraea species from 

Brazil and Seychelles. Species from Brazil exhibited higher amounts of 22:4n-6 (originating 
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from 20:4n-6, a biomarker of zooplankton), while species from Seychelles contained higher 

values of 20:5n-3. An eventual higher availability of zooplankton in Baía de Todos-os-

Santos (Brazil) (Paredes et al., 1980) when compared to sampling-site-in-Seychelles may 

explain these findings. 

Epizoanthus gabrielli I and II, zooxanthellate hexacorals, displayed a content of 22:6n-3 

higher than that found in Tubastraea species. This FA is associated with dinoflagellates 

(Dalsgaard 2003) and hence E. gabrielli I and II should obtain this FA from the 

photosynthetic symbionts not present in Tubastraea species. Interestingly, 20:5n-3, 22:4n-

6 and 22:5n-3 were absent in Epizoanthus gabrielli I and II but present in Tubastraea 

coccinea, collected in the same geographical region even if in different areas of Baía de 

Todos-os-Santos reef. The absence of those FAs probably derives from phylogeny-related 

biochemical differences between those genera, but could also have occurred as a result of a 

bleaching event experienced by E. gabrielli I and II, for it is known that corals consume FAs 

when experiencing such events (Bachok et al., 2006).  

The PUFAs used in this study were not suitable to distinguish hexacorals at the Order level 

(a separation at this taxonomic level was, however, obtained for octocorals; see next 

section). Imbs et al. (2009) alleged that zooxanthellae from reef-building and soft corals are 

attributed to the same Symbiodinium group of dinoflagellates. However, genetic analyses 

based on ribosomal DNA have shown that zooxanthellae populations of Scleractinian 

(hexacorals) and soft corals are not homogeneous and contain different proportions of 

several symbiodinium phylotypes (Fabricius et al., 2004; Van Oppen et al., 2005). 

Moreover,  Mansour et al. (1999) have demonstrated a substantial variability in terms of 

FA profile of different species belonging to the same genus of the free-living dinoflagellates. 

Inter-individual and inter-populational variability are also expected since the diversity of 
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zooxanthellae in a specific coral taxonomic group can depend on environmental factors 

such as solar irradiance and water temperature (Fabricius et al., 2004). In fact, seasonal 

variations in the photosynthetic activity of zooxanthellae were shown by Pernet and Anctil 

(2002). Thus, we may argue that such biotic and abiotic sources of variability can help 

explain the lack of significant differences between zoo- and azooxanthellate hexacorals. 

4.3. Octocoral chemotaxonomy 
 

On the other hand, a clear spatial and taxonomical separation of octocorals as well as a 

separation in terms of presence/absence of zooxanthellae in respect to alcyonaceans was 

observed, mainly due to the variation of common FAs biomarkers for phyto- and 

zooplankton, 20:5n-3 and 20:4n-6, respectively, and 18:4n-3. The latter is related to the 

presence of zooxanthellae since this FA has been shown to be the general marker of 

zooxanthellae in corals (Bishop and Kenrick, 1980). 

 

4.3.1. Spatial (geographical) differences 

 

Octocorals from México and Vietnam showed a higher percentage of 18:4n-3, while 

those from Portugal (mainland) showed a higher content of 20:5n-3 and 22:5n-6. It is 

worth noting that Portuguese coastal (temperate) waters are more productive than those 

from Atlantic Mexican and Vietnamese (both tropical) coasts. In fact, the Portuguese 

western coast is situated in the Western Iberia Upwelling Ecosystem (WIUE), which 

comprises the northern limit of the Canary Current Upwelling System (one of the four 

major Eastern Boundary Currents of the world). The main feature of the region is the 

occurrence of coastal upwelling during spring and summer in response to the 
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intensification of northerly winds (Fiúza et al., 1982). As such, a significantly higher 

availability of phyto- and zooplankton is observed in the Portuguese coastal waters and 

higher levels of 20:5n-3 (biomarker of phytoplankton) and 22:5n-6 (originating from 

20:4n-6, a biomarker of zooplankton) are expected to occur in specimens inhabiting such 

waters. On the other hand, octocorals from Mexico and Vietnam may compensate for lower 

food availability with richer symbiotic relationships (e.g. greater diversity and/or 

abundance of symbiotic species). In line with this suggestion, prior studies showed that 

18:4n-3 (Sprecher, 2000) is one of the main PUFAs isolated from zooxanthellae of reef-

building corals (Bishop and Kenrick, 1980; Latyshev et al., 1991; Zhukova and Titlyanov, 

2003). The octocoral Renilla koellikeri (family Renillidae), collected at Long Beach, 

California, was placed near species from Portugal (family Veretillidae). The two 

geographical regions are found at similar latitudes, under temperate climate regimes and 

associated to upwelling systems. These common environmental features might explain the 

considerable degree of similarity in FA profiles. Thus, in this case, the close positioning of 

species from both regions appears to indicate that the food source contribution plays a 

more important role in the biochemical properties (i.e. FA profile) of these octocorals, than 

the genetic background and FA biosynthesis capability.  

 

4.3.2. Zooxanthellae and FA profiles 

 

Zooxanthellate alcyonaceans showed a significantly higher content of 18:4n-3 (5.27 ± 

2.34 % total FA, mean ± SD) than azooxanthellate alcyonaceans (0.49 ± 0.41 % total FA, 

mean ± SD). This FA is therefore a good biomarker for the distinction of alcyonaceans and 

http://www.marinespecies.org/aphia.php?p=taxdetails&id=266953
http://www.marinespecies.org/aphia.php?p=taxdetails&id=128487


38 
 

other octocorals in terms of zooxanthellae presence as already observed in previous 

studies (Bishop and Kenrick, 1980; Latyshev et al., 1991; Zhukova and Titlyanov, 2003). 

The species Lopophytum c.f. delectum, a zooxanthellae alcyonacean, was placed in the 

proximity of the bulk of azooxanthellate alcyonaceans mainly as a result of a lower content 

of 18:4n-3 and a higher content of 20:4n-6, 22:5n-6 and 24:5n-6, in respect to other 

zooxanthellate alcyonaceans. This result may indicate that even though L. c.f. delectum is a 

zooxanthellate species, it may acquire FAs from external food sources, especially 

zooplankton, the main source of 20:4n-6 (Palardy et al., 2005). The azooxanthellate 

gorgonian, Pseudopterogorgia sp., on the other hand, was placed closer to pennatulaceans 

as it displayed a lower value of 20:4n-6 and higher values of 20:5n-3 and 22:5n-3, when 

compared to other azooxanthellate gorgonians. Such result may derive from the fact that 

this Mexican species has greater access to microalgae rather than zooplankton.  

4.4. Shallow water and deep-sea gorgonians chemotaxonomy 
 

There is very little information available about the life strategies of deep-sea 

cnidarians. Here we showed, for the first time, that deep and shallow living octocorals 

(namely gorgonians) exhibit a certain degree of physiological similarity. Shallow living 

gorgonians from Portugal and Vietnam showed a higher content of 20:4n-6, 22:4n-6 and 

24:5n-6, while species from Mexico showed a higher content of 18:4n-3. The high content 

of 20:4n-6 (triggering the n-6 biosynthesis pathway and hence the production of 22:4n-6 

and 24:5n-6) in the Portuguese and Vietnamese gorgonians may be caused by the existence 

of an abundant zooplankton community (Dalsgaard et al., 2003) resulting from the high 

primary productivity occurring in those areas (discussed above). Mexican gorgonians 
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appear to supplement their FA requirements with a rich symbiotic relationship with 

dinoflagellates, for 18:4n-3 is a typical dinoflagellate marker (Dalsgaard et al., 2003). 

To further reduce the degree of variability and obtain a clearer notion on the effect of 

depth on gorgonian FA profiles, a comparison between deep-sea gorgonians (Azores 

archipelago) and shallow living ones (from the continental coast of Portugal) was 

performed. Deep-sea gorgonians were found to have a lower content of all selected PUFAs, 

especially 20:4n-6 (Fig. 11D), 22:4n-6 (Fig. 11F) and 24:5n-6 (Fig. 11G). The low content of 

these PUFAs may be related to the lower availability of food sources at greater depths, 

resulting from extremely low levels of primary productivity (i.e. chemoautotrophy) and 

reduced rates of particle deposition originating from the surface (Bühring and 

Christiansen, 2001). Deep-sea benthopelagic plankton depends predominantly on detritus 

and/or predation on other organisms. Moreover, the nutritional quality of deep-sea 

detritus depends on its origin, its sinking rate, water temperature and on the bacteria 

associated with the aggregate particles (Bühring and Christiansen, 2001). As such, a 

considerable lesser availability of PUFA sources is bound to impact PUFAs intake and, 

consequently, PUFA biosynthesis pathways in deep sea gorgonians.  

It is worth noting that a decrease in temperature may cause changes in membrane 

fluidity, and that the integrity of living cells in response to environmental stresses (such as 

temperature) depends on the stability of the biomolecular lipid layer and the associated 

non-lipid components (Neidleman, 1987). While an increase in saturated fatty acids (SFA) 

increases the rigidity of biological membranes, PUFAs increase the fluidity of the 

membranes (Papina et al., 2007). In other words, cold stress causes unsaturation of the 

membrane lipids. Mironov et al. (2012) and Hulbert (2003) also stated that highly 

polyunsaturated membranes are associated with adaptation to cold environments and the 
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effect of low temperatures slowing down physiological processes. Yet, it is worth noting 

that there is no clear empirical proof of the relation between unsaturated fatty acids and 

membrane fluidity in marine organisms (Hall et al., 2002). Still, within this context, one 

could expect an increase of PUFAs in gorgonians from the harsh and cold deep-sea habitats. 

This trend, however, was not noticed. It is possible that the perennial low PUFA availability 

in the deep sea environment does not allow for homeoviscous adaptation of cell 

membranes in these organisms. 

 

4.5. Fatty Acids challenging current taxonomic classification 
 

Our multivariate analysis and consequent taxonomical separation of octocorals 

corroborates the presently outdated taxonomic classification that contemplated the 

existence of a separated Gorgonacea order (Gerhart, 1983; Song and Won, 1997). 

Gorgonians displayed average FA concentrations in respect to those of the other otocorals 

and the placement of this group closer to alcyonaceans highlighted a biochemical similarity 

between these groups. Still, the bulk of gorgonians clustered away from alcyonaceans and 

this result may indicate a recent evolutionary divergence within Octocorallia. As a matter of 

fact members of Scleraxonia, Stolonifera, and Alcyoniina (suborders of the order 

Alcyonacea) can be found within both major clades of Octocorallia (Holaxonia-Alcyoniina 

and Calcaxonia-Pennatulacea). More, the suborder of Holaxonia (“gorgonians”) and 

Alcyoniina frequently appear as sister taxa (McFadden et al., 2010). 

Pennatullaceans (sea pens) were found to exhibit a lower content of 18:4n-3 and 

24:5n-6 and a higher percentage of 20:5n-3, 22:5n-3, 22:4n-6 and 24:6n-3 when compared 
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to gorgonians and alcyonaceans. Being the azooxanthellae octocorals examined in this 

study mostly from Portugal, the high content of 22:4n-6 may derive from increased 

zooplankton intake while the high content of 20:5n-3 and 22:5n-3 and 24:6n-3 (originating 

from 20:5n-3) may derive from increased phytoplankton intake. The main source of PUFAs 

in the phytoplankton are diatoms which biosynthesise mostly C20:5 (Volkman et al., 1998). 

On the other hand alcyonaceans were distinguished from the other octocorals due to higher 

contents of 18:4n-3 and 24:5n-6 and lower contents of 20:5n-3, 22:5n-3, 22:4n-6 and 

24:6n-3. The high content of 18:4n-3 may be related to the presence of zooxanthellae since 

that FA has been shown to be the general marker of zooxanthellae in corals (Bishop and 

Kenrick, 1980). In respect to 24:5n-6, the obtained results indicate a higher content of this 

FA as a discriminating trait of alcyonaceans. 
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5. Final remarks 

 

This study presents the most comprehensive meta-analysis (to date) on the 

chemotaxonomy of hexa- and octocorals (originating from different latitudes and 

longitudes). Despite the complexity and high number of variability sources, this study 

alsoprovides the first glance on the FA chemotaxonomical differences between shallow and 

deep-sea corals, but further studies are still needed on this topic. Still, a better 

understanding of the reproductive biology, symbiosis, bleaching events and lipid 

metabolism of corals is required in order to accurately interpret chemotaxonomical data in 

this lower branch of the marine tree of life. 
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