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Resumo

A biodiversidade apresenta um valor inestimável, dado que contribui directamente para o 

bem-estar da humanidade. No entanto, actualmente vive-se uma crise de biodiversidade 

sem precedente, estimando-se que as actuais taxas de extinção sejam cerca de 100 vezes 

superiores às verificadas no registo fóssil. Esta perda de biodiversidade reduz a capacidade 

dos ecossistemas fornecerem uma oferta estável e sustentável de bens e serviços à 

sociedade. As causas da actual acelerada extinção de biodiversidade são bem conhecidas, 

encontrando-se estreitamente relacionadas com a actividade humana e manifestando-se 

como uma consequência directa da globalização económica. 

Reconhecendo a importância da biodiversidade, mais de 180 países comprometeram-

se em implementar as medidas necessárias para travar a perda de biodiversidade até ao 

presente ano de 2010. No entanto, foi já reconhecido que esse objectivo não foi atingindo, 

sendo que as taxas de extinção e os factores de ameaça de muitas espécies continuam 

a aumentar. Torna-se assim imperativo definir medidas de conservação mais eficazes e 

eficientes. Para esse efeito, será necessário incrementar o conhecimento sobre os padrões 

de biodiversidade e os processos que os regulam, assim como implementar medidas de 

conservação mais eficientes do ponto de vista custo/benefício. 

Uma das principais estratégias necessárias para reduzir a perda de biodiversidade 

é a criação e gestão adequada de áreas protegidas. O Planeamento Sistemático para a 

Conservação (PSC) consiste num conjunto de metodologias de apoio a decisões estratégicas 

no âmbito da identificação de áreas e acções prioritárias para a conservação. De um modo 

geral, o objectivo deste ramo da ciência é o de identificar espacialmente um conjunto 

óptimo de áreas e acções para a conservação, orientadas por objectivos quantitativos de 

representação e sobrevivência a longo termo da biodiversidade, tendo em consideração 

constrangimentos socio-económicos.

Nas últimas três décadas tem-se assistido a um desenvolvimento crescente de 

metodologias e de ferramentas computacionais no âmbito da identificação de áreas 

prioritárias para a conservação. No entanto, existem ainda várias limitações metodológicas 

que necessitam de ser ultrapassadas e aperfeiçoadas por forma a tornar a abordagem 

mais eficiente e realista. Nesta tese de doutoramento procurou-se abordar alguns dessas 

limitações utilizando como caso-estudo a região Oeste da Bacia Mediterrânica, com 

particular enfoque nos anfíbios e répteis.

A região Oeste da Bacia Mediterrânica foi seleccionada dado tratar-se de uma das 

regiões a nível mundial que alberga maior concentração de espécies ameaçadas e endémicas, 
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sendo por isso considerada de elevada importância para a conservação da biodiversidade 

global. Acresce ainda que se trata de uma região com uma ocupação humana antiga e 

com crescentes pressões antropogénicas sobre a diversidade biológica. Trata-se ainda de 

uma região com características geográficas, climáticas e evolutivas muito peculiares, que 

lhe conferem o estatuto de “laboratório natural” para o estudo dos processos biológicos e 

evolutivos. Os anfíbios e répteis, em particular, apresentam uma diversidade notável nesta 

região, ocorrendo um elevado número de espécies endémicas e ameaçadas. Estes grupos 

constituem ainda modelos excepcionais para os estudos biogeográficos tendo em conta a 

sua fisiologia ectotérmica e a sua capacidade de dispersão relativamente limitada.

Assim, os objectivos específicos deste trabalho consistiam em: 1) incrementar o 

conhecimento sobre os padrões de distribuição dos anfíbios e répteis no Oeste da Bacia 

Mediterrânica, 2) avaliar qual o tipo de dados de distribuição das espécies mais adequados 

em diferentes circunstâncias para utilização no PSC; 3) desenvolver novas abordagens 

para a incorporação de processos evolutivos no PSC; 4) prever como a distribuição actual 

das diferentes espécies será afectada pelas alterações climáticas nas próximas décadas; e 

5) desenvolver novas abordagens para considerar a incerteza inerente à distribuição das 

espécies (actual e futura) no PSC, de forma a desenvolver estratégicas de conservação mais 

eficientes no tempo e no espaço. 

Dados sobre a distribuição dos anfíbios e répteis no Oeste da Bacia Mediterrânica 

encontram-se já publicados em atlas nacionais de Portugal, Espanha e Marrocos. No 

entanto, esses dados advêm de uma compilação de observações feitas por diferentes 

observadores, ao longo de diferentes décadas, sem que tenha sido aplicada uma metodologia 

de amostragem sistemática. Assim, grande parte dos dados dos atlas encontravam-

se significativamente enviesados, tendo sido mais amostradas áreas de fácil acesso e 

localizadas em áreas protegidas, e sendo que a Península Ibérica foi provavelmente alvo 

de um esforço de amostragem bastante mais intenso do que Marrocos. De forma a tornar 

estes dados de distribuição mais informativos para as estratégias de conservação, tornou-se 

necessário identificar as áreas potenciais de ocorrência de cada uma das espécies através de 

modelação estatística e completar a informação sobre a distribuição das espécies, através 

da realização de campanhas de amostragem em Marrocos.

A modelação estatística da distribuição das espécies permitiu identificar as áreas 

potenciais de ocorrência de cada uma das espécies, bem como identificar as principais 

variáveis ecológicas que mais se relacionam com a distribuição das mesmas. Esta 

informação é de extrema relevância para a compreensão dos requisitos ecológicos que 

permitem a persistência das espécies e prever a resposta das mesmas a perturbações 

ambientais. A identificação das áreas potenciais de distribuição das espécies permitiu 

ainda identificar as áreas provavelmente menos prospectadas, servindo de instrumento 

orientador de futuras amostragens. 

De forma a completar os dados de distribuição de anfíbios e répteis em Marrocos, 

diversas campanhas de amostragem foram realizadas durante o período compreendido 

entre 2001 e 2006. Nessas campanhas foram observadas nove espécies de anfíbios e 57 
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de répteis, totalizando 427 observações, em 159 locais. Estas observações corresponderam 

a um incremento em 7% do total de registos publicados no atlas de anfíbios e répteis de 

Marrocos. As observações efectuadas ampliaram a distribuição previamente conhecida das 

espécies Discoglossus scovazzi, Ptyodactylus oudrii e Spalerosophis dolichospilus. 

Foram realizadas diferentes simulações computacionais com o intuito de testar 

qual o tipo de dados de distribuição das espécies mais adequado para a identificação de 

áreas prioritárias para a conservação. Para o efeito, foram construídos diferentes bases 

de dados de distribuição das espécies contendo a) dados observados; b) dados potenciais 

probabilísticos; c) dados potenciais binários; e c) dados mistos (observados ou potenciais 

binários, de acordo com as características ecológicas de cada espécie e o seu nível de 

ameaça). As simulações foram efectuadas tendo em conta diferentes cenários nos quais 

se combinaram distintos níveis de conhecimento da distribuição das espécies, diferentes 

níveis pretendidos de representação das espécies e diferentes custos (em termos de área 

total a proteger). As simulações foram ainda realizadas de acordo com as duas principais 

abordagens matemáticas utilizadas para identificar o conjunto óptimo de áreas prioritárias: 

“área mínima” e “máxima cobertura”. Os resultados obtidos indicaram que a qualidade do 

desempenho obtido na selecção de áreas prioritárias varia com o tipo de dados utilizado, 

sendo que o tipo de dados mais eficiente depende sobretudo da abordagem matemática 

utilizada e do nível de conhecimento inicial sobre a distribuição das espécies. No entanto, 

os resultados obtidos quando se utilizaram dados potenciais binários e dados mistos 

superaram, em termos de eficiência, os resultados obtidos com os dados observados e 

potenciais probabilísticos na maioria dos cenários testados. 

O planeamento sistemático para a conservação tem-se centrado mais extensivamente 

no objectivo de representação das espécies em áreas protegidas, do que em assegurar 

a sua sobrevivência a longo prazo ou dos processos evolutivos que geram e mantêm a 

biodiversidade. A fundamentação para este facto centra-se na escassez de dados filogenéticos 

que permitam identificar padrões espaciais na diversidade genética para um número 

significativo de espécies. De forma a ultrapassar esta limitação, procurou-se desenvolver 

uma metodologia baseada na distribuição das espécies que permitisse incorporar critérios 

de representação dos dois eixos da diversidade genética: neutral e adaptativa. A abordagem 

desenvolvida consistiu na utilização de substitutos para estas duas componentes. Para 

a diversidade genética neutral, identificaram-se grupos de espécies com uma área de 

distribuição significativamente semelhante (elementos bióticos), enquanto que para a 

diversidade genética adaptativa, identificaram-se as principais componentes da variação 

ambiental, tendo em conta a área de estudo total e a área de distribuição ocupada por 

cada elemento biótico. Utilizando algoritmos de priorização espacial, identificaram-se as 

áreas prioritárias para a conservação em três cenários distintos: a) considerando apenas a 

distribuição das espécies; b) considerando a distribuição das espécies e a variação ambiental 

total da área de estudo; e c) considerando a distribuição das espécies e a variação ambiental 

intrínseca de cada elemento biótico. As áreas prioritárias encontradas nos diferentes 

cenários foram semelhantes em termos de área total seleccionada, no entanto, a sua 
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congruência espacial foi reduzida. Estes resultados enfatizam a necessidade de incorporar 

os processos evolutivos na identificação de áreas prioritárias para a conservação.

Um outro aspecto focado neste trabalho foi a questão da dinâmica da distribuição 

das espécies. A identificação de áreas prioritárias para a conservação geralmente assume 

que os padrões espaciais de biodiversidade são estáticos ao longo do tempo. No entanto, 

perturbações como a fragmentação do habitat e as alterações climáticas poderão causar 

alterações das actuais distribuições das espécies. Assim, pretendeu-se prever como os 

anfíbios e répteis endémicos ou quase endémicos da Península Ibérica irão alterar a sua 

actual distribuição tendo em conta diversos cenários de alterações climáticas até 2080. 

Os resultados obtidos indicam que a distribuição de diversas espécies poderá reduzir-se 

significativamente nas próximas décadas, sendo que 13 espécies poderão mesmo deixar de 

ter áreas bioclimáticas adequadas para a sua ocorrência na Península Ibérica. Os resultados 

indicam ainda que as espécies mais vulneráveis são aquelas que actualmente apresentam 

maiores afinidades às áreas de clima Atlântico, tais como Chioglossa lusitanica, Rana iberica e 

Vipera seoanei. Também as espécies que actualmente têm a sua distribuição restrita a elevadas 

altitudes, como Rana pyrenaica, Iberolacerta monticola, I. aranica, I. aurelioi, e I. bonnali, 

poderão ser severamente afectadas pelas alterações climáticas. Os resultados sugerem ainda 

que o período de maior impacto das alterações climáticas sobre a distribuição das espécies 

será a próxima década, o que reitera a necessidade urgente do desenvolvimento de medidas 

adequadas à conservação das espécies. No entanto, os resultados obtidos revestem-se de 

elevada incerteza, pelo que se tornou necessário desenvolver metodologias de identificação 

de áreas prioritárias para a conservação que tivessem em consideração esta incerteza. Para 

esse efeito, foram desenvolvidas metodologias inovadoras, tendo-se implementado uma 

abordagem logarítmica numa nova versão de uma aplicação computacional direccionada 

para a identificação de áreas prioritárias para a conservação. Esta nova abordagem permitiu 

identificar áreas prioritárias robustas à dinâmica da distribuição das espécies prevista, bem 

como à incerteza inerente a essas previsões. Os resultados obtidos indicam que a actual rede 

de áreas protegidas da Península Ibérica é insuficiente para assegurar a conservação dos 

anfíbios e repteis nas próximas décadas. As áreas actualmente não-protegidas identificadas 

como importantes para a conservação no futuro localizam-se sobretudo no Sudoeste de 

Espanha e na zona Centro-Este de Portugal.

Este trabalho contribuiu para o incremento do conhecimento sobre a biogeografia 

dos anfíbios e répteis no Oeste da Bacia Mediterrânica, principalmente através do 

desenvolvimento de metodologias inovadoras no âmbito do Planeamento Sistemático 

para a Conservação. Foram ainda identificados diferentes aspectos deste ramo das ciências 

biológicas que poderão vir a ser abordados e desenvolvidos no futuro. 

Palavras-chave: biodiversidade, anfíbios, répteis, Península Ibérica, Marrocos, 

planeamento sistemático para a conservação, modelos de distribuição de espécies, 

processos evolutivos, alterações climáticas, incerteza.







Summary 

Given the current global biodiversity crisis, prioritizing conservation areas that maximize 

species representation and enable persistence has been a major goal of systematic 

conservation planning. Despite the progresses in the field, there are still challenges 

needed to be overcome. This thesis aims to address some unresolved issues in conservation 

planning, by using the Western Mediterranean region as study area and the amphibians 

and reptiles occurring there as biological models. 

This thesis contributed to the knowledge and understanding of the distribution 

of amphibians and reptiles in the Western Mediterranean region. Field sampling in 

Morocco increased the number of known species occurrences. Species distribution models 

were developed to predict the occurrences in under-sampled areas, and to improve the 

understanding on relationships between species ranges and environmental conditions. 

The consequences of using different types of distribution data on the performance 

of reserve selection algorithms were analysed. Several scenarios were simulated, including 

variable proportions of species distribution data, conservation targets and costs. The 

recommended type of data to use varies according to scenarios, but data sets with 

both observed and predicted distributions generally provided good solutions in most 

circumstances. 

Novel approaches were developed to incorporate evolutionary processes into 

conservation planning, through surrogate use for both the neutral and adaptive 

components of genetic diversity. The comparison of the results when incorporating or 

not evolutionary processes showed reduced spatially congruence, which calls for a need 

of a paradigm shift in conservation planning.

Issues of how to prioritize areas for conservation while accounting for species range 

shifts and the uncertainty inherent to those predictions were tackled by developing 

innovative approaches. Priority areas for the conservation of amphibians and reptiles 

robust to both range shifts and uncertainty were identified.

Finally, future research prospects in the field of conservation planning were identified 

and discussed. 

  

Key words: biodiversity, amphibians, reptiles, Iberian Peninsula, Morocco, systematic 

conservation planning, species distribution models, evolutionary processes, climate 

change, uncertainty. 
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Chapter 1 

Introduction 

1.1 The biodiversity crisis

1.1.1 What is biodiversity and why it is important

The term biodiversity describes the overall variety of life and natural processes on Earth, 

including diversity and interaction within species, between species and ecosystems. 

Biodiversity underpins the functioning of ecosystems and their services, on which humans 

depend. Recently, the United Nations conducted the Millennium Ecosystem Assessment 

(http://www.millenniumassessment.org), ascertaining the outstanding contribution 

of biodiversity to human well-being, sustainable development, and poverty reduction. 

Among other things, biodiversity contributes directly or indirectly to human societies by 

provisioning services such as food, water, timber, and fiber; regulating climate, disease, 

wastes, and water quality; providing recreation and aesthetic enjoyment; and supporting 

services such as soil formation, photosynthesis, and nutrient cycling (Balvanera et al. 2006; 

Díaz et al. 2006; Díaz et al. 2005; Mace et al. 2005; Millennium Ecosystem Assessment 

2005). Moreover, biodiversity was declared as extremely important to mitigate global 

warming effects (Campbell et al. 2008).

1.1.2 The biodiversity crisis

Despite its importance, biodiversity is being lost worldwide at an escalating and 

unprecedented pace since the last mass extinction, 65 million years ago (Lovejoy 1980; 

May et al. 1995; Pimm et al. 1995). Current rates of extinction are estimated to be roughly 

100 times higher than typical rates in the fossil record (Millennium Ecosystem Assessment 
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2005). About 36% of the 47 966 assessed species were classified as threatened by the 

International Union for Conservation of Nature (IUCN 2010). The analysis encompassed 

only vertebrates and some plants thus the real number of threatened species is probably 

much higher. The taxonomic groups with higher number of threatened species are the 

amphibians and the birds. The scenario of biodiversity loss is similar when considering 

ecosystem trends as a considerable percentage of the world’s natural biomes have already 

been converted to humanized landscapes or damaged beyond repair (Millennium 

Ecosystem Assessment 2005).

The causes for the current escalating biodiversity loss are well documented. They 

are mostly human-induced and a primal consequence of economical globalization. 

Exponential human population growth and increased patterns of consumption have 

amplified the demand for ecosystem services, resulting in several drivers of biodiversity 

loss acting synergistically (Brook et al. 2008). Among the most important ones are 

overexploitation of biological resources, rapid conversion and fragmentation of natural 

habitats, accelerated climate change, increased dissemination of invasive species, pollution 

and genetic depletion (Davies et al. 2006; Ehrlich and Pringle 2008; Groom et al. 2006; 

Parmesan 2006; Purvis et al. 2000; Thomas et al. 2004).

As a consequence of biodiversity loss, approximately 60% of the Earth’s ecosystem 

services have been degraded in the last 50 years (Millennium Ecosystem Assessment 

2005). This degradation has been disrupting ecosystem functions and decreasing 

ecosystem’s resilience to disturbances, and is starting to have serious socio-economic 

impacts (TEEB 2008).

1.1.3 Protected areas

Governments and conservation organizations around the world recognize the urgent 

need to stop biodiversity loss. Over 180 governments have legally committed to conserve 

biodiversity by signing the Convention on Biological Diversity (CBD), and committed 

to achieve a significant reduction in the rate of biodiversity loss by 2010. However, it 

was already recognized that this target was not met (Secretariat of the Convention on 

Biological Diversity 2010) and recently reported indicators showed that biodiversity 

continues to decline rapidly, while pressures on biodiversity have increased (including 

resource consumption, invasive alien species, nitrogen pollution, overexploitation, and 

climate change impacts) (Butchart et al. 2010).

The CBD encourages governments to endorse in-situ conservation by establishing a 

system of Protected Areas (PAs). Protected areas are one of the most effective tools available 

for long-term biodiversity conservation (Possingham et al. 2006), and governments 

throughout the world have set aside fractions of their territory for conservation purposes. 

Although the global network of PAs has been increasing in the last decades, both on 
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terrestrial and marine environments (UNEP 2009) (Figure 1.1), it is still far from achieving 

sufficient coverage of vertebrate species (Rodrigues et al. 2003), and PAs are often 

ineffective in halting biodiversity loss (McDonald-Madden et al. 2009; Secretariat of the 

Convention on Biological Diversity 2010). Thus, if biodiversity loss is to be prevented, 

further conservation areas have to be designated and managed more efficiently. 

Designating new PAs is a complex task because there are several competing land-use 

options and considerable socio-economic costs associated with PAs implementation (James 

et al. 2001). For example, there are direct economical costs for purchasing land (Ando et 

al. 1998; Carwardine et al. 2008), managing protected areas and acquiring data (Grantham 

et al. 2008, 2009). In many cases there are also costs for compensating land owners and 

residents for forgone opportunities (Carwardine et al. 2008), or for forgone benefits from 

alternative land uses (Adams et al. 2010; Naidoo and Iwamura 2007). Because spatial and 

financial resources constrain PAs designation (James et al. 2001), a prioritization procedure 

is mandatory (Halpern et al. 2006a; Pearce 2007; Wilson et al. 2009b). 

Figure 1.1- Extent of nationally designated protected areas through time. Adapted from Secretariat of 

the Convention on Biological Diversity (2010).

Millions km2

1.2 The science of conservation planning

Conservation planning is the field of conservation science concerned with the processes 

of locating and designing conservation areas to promote biodiversity persistence in situ. 

These conservation areas include both strict reserves and off-reserve areas with planed 

management. 
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The last two decades have been fruitful in the field of conservation planning. 

Moving from defining protected areas ad-hoc or based on aesthetic or recreational 

criteria, conservationist practitioners started to use data on the spatial distribution of 

biodiversity or its surrogates (Ferrier and Watson 1997; Margules et al. 1988). A common 

strategy is to use scoring methods to rank areas according to a biodiversity index, or a 

combinations of indices, such as species richness, rarity, level of endemism or threat 

(e.g. Margules and Usher 1981; Pressey and Nicholls 1989; Smith and Theberge 1987; 

Williams et al. 1996). In some cases, other geographic, ecological, economic, and 

social indices are also included. Such strategies are applied worldwide by many nature 

conservancy agencies, resulting in the identification of several important areas for 

conservation (reviewed by Brooks et al. 2006). Global prioritization approaches include, 

for example, biodiversity hotspots (Myers et al. 2000), crisis ecoregions (Hoekstra et al. 

2005), key biodiversity areas (Eken et al. 2004) and Global 200 ecoregions (Olson and 

Dinerstein 2002). However, these diverse approaches have been criticized for identifying 

areas with limited consensus (Lamoreux et al. 2006; Orme et al. 2005; Prendergast et 

al. 1993), duplicating conservation efforts (Mace et al. 2000), excluding economic and 

social factors (Possingham and Wilson 2005) and, more importantly, for not establishing 

explicit conservation goals that can be translated into quantitative and operational 

targets towards which progress can be measured (Wilson et al. 2006). In face of such 

criticisms, a new field of systematic conservation planning has emerged (Margules and 

Sarkar 2007; Margules and Pressey 2000), as well as powerful and quantitative tools to 

address complex spatial prioritization problems that objectively inform the decision-

making process (Moilanen et al. 2009c).

1.2.1 Objectives and key principles of systematic conservation planning

Systematic conservation planning is a framework developed to efficiently identify 

conservation areas that assure species representation and persistence. The objective of 

achieving species representation requires that all relevant features of biodiversity are 

covered within the selected conservation areas with a desired target, while the objective 

of assuring biodiversity persistence involves covering and managing a variety of 

ecological and evolutionary processes. 

Systematic conservation planning has several distinctive characteristics. Probably 

the most defining one is the use of spatially explicit and quantitative objectives for 

representation and persistence of biodiversity features. This means that planners must be 

clear about what they intend to achieve and measure progress towards those objectives. 

Another important characteristic is being a process guided by a set of key principles 

described next (Possingham et al. 2006; Wilson et al. 2009a).
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Comprehensiveness and representativeness

A comprehensive set of conservation sites is the one that includes a portion of each 

biodiversity feature. The principle of representativeness is similar to comprehensiveness, 

but it defines representation at a finer scale. A representative set of conservation sites is 

the one that assures that each conservation feature is sufficiently represented, for example 

by including viable populations. 

Complementarity and efficiency 

These two principles are directly related to the economy of selected conservation sites. 

Comprehensiveness and representativeness could be achieved by selecting all the available 

sites, but such strategy is unfeasible in the real world where options are constrained by 

limited financial resources. Thus, an efficient set of conservation sites is the one that 

achieves comprehensiveness and representativeness at the lowest possible cost. The 

complementarity principle (see Justus and Sarkar 2002; Kirkpatrick et al. 1983; Vane-Wright 

et al. 1991) ensures that the sites selected complement each other in terms of the type 

and amount of conservation features that they cover. Thus, maximising complementarity 

allows identifying conservation areas that overall add as much biodiversity as possible to 

the complete set of selected conservation areas .

Flexibility and irreplaceability

Flexibility refers to the amount of possible combinations of conservation sites that can 

be selected to achieve the representation goals efficiently. Flexibility is desirable because 

it allows for negotiations with land-owners and stakeholders, and for reductions in socio-

economical conflicts. In contrast, irreplaceability refers to how essential a given site is to 

achieve representativeness. A site is highly irreplaceable when it includes at least one rare 

or endemic feature. Thus, irreplaceability identifies the non-negotiable conservation areas 

(Carwardine et al. 2006; Ferrier et al. 2000; Pressey et al. 1994). 

Adequacy

Adequacy refers to the ability of a set of conservation areas to promote persistence and 

continued evolution of all biological features represented. This principle is usually 

neglected probably due to a lack of adequate data or to the limited understanding of the 

ecological and evolutionary processes underlying species persistence. Common approaches 

of addressing adequacy include the setting of ecologically meaningful conservation targets 

and the incorporation of spatial configuration criteria. For example, targets can be set based 

on population viability analyses (Carroll et al. 2003; Soulé 1987) or using probabilities of 

persistence (Araújo and Williams 2000; Williams and Araújo 2000). Spatial configuration 

criteria can include reserve size, number of reserves, reserve proximity, connectivity 
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and shape, and rules about establishing core and buffer zones (Briers 2002; Williams 

et al. 2005a,b). Additionally, some authors have explicitly addressed ecological and 

evolutionary processes by identifying spatial surrogates. For example, targets have been 

set for edaphic and upland–lowland interfaces, for sand movement and inter-basin 

riverine corridors, and for macroclimatic gradients (Pressey et al. 2003; Rouget et al. 

2003). Others have used sub-catchments as planning units, thereby grouping priority 

areas along vegetated waterways (Klein et al. 2009). There have also been some attempts 

to integrate information on phylogenetic diversity directly (e.g. Faith et al. 2004; Forest 

et al. 2007).

1.2.2 Stages and conceptual framework of systematic conservation planning

An effective conservation planning approach follows a well defined series of steps. The 

original framework proposed by Margules and Pressey (2000) comprised six steps, however, 

it has been extended throughout time with main contributions from Cowling and Pressey 

(2003) and Pressey and Bottrill (2008) (Figure 1.2). 

Systematic conservation planning can be represented with a conceptual framework 

which can be divided into three main subgroups: objectives, constraints and solutions 

(Moilanen 2008) (Figure 1.3). Representation and persistence objectives require clear 

choices on how biodiversity is to be included in the process, which taxa should be targeted, 

which ecological and evolutionary processes are necessary to promote biodiversity 

persistence and which are the conservation targets. These tasks, in turn, imply compiling 

accurate data on the distribution of the conservation features and to apply appropriate 

statistical procedures to improve spatial consistency or derive surrogates. Data quality and 

accuracy are regulated by three interrelated concepts: uncertainty, dynamics and threats. 

Data uncertainty can arise from multiple sources, including data sampling and statistical 

uncertainty. Moreover, uncertainty can be exacerbated by shifts in species ranges with time, 

which in turn can be determined by ecological disturbances or anthropogenic threats. 

The “constraints” subgroup refers to the restrictions of possible conservation 

strategies and may include economical costs, unavailable lands and spatial configurations 

requirements. The “solutions” subgroup relates to the methods used to identify and 

implement a set of conservation actions required to achieve the conservation objectives. 

The identification of optimal solutions is guided by the set of key principles described 

above, which can be expressed in a mathematical manner and included in prioritization 

algorithms. However, the implementation of algorithmic solutions is also subject to a 

decision-making process that involves the opinions of experts, stakeholders and politicians, 

and is guided through socio-economical pressures. 
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1. Scoping and costing the planning process
Deciding on the boundaries of the planning region, 
planning team, budget, required funds, and approach 
to each step in the process

2. Identifying and involving stakeholders
Involving, communicating with, and building capacity 
for stakeholders who will influence or be affected by 
conservation decisions and implementation of 
conservation action 

3. Identifying the context for conservation areas
Assessing the social, economic and political context for 
the planning process, including constraints on and 
opportunities for establishing conservation areas

4. Identifying conservation goals
Progressively refining the values of stakeholders from a 
broad vision statement to specific qualitative goals that 
shape the rest of the process

5. Collecting data on threats and socio-economics
Collecting and evaluating spatially explicit data on 
tenure, extractive uses, costs, threats and existing 
management as a basis for planning decisions

6. Collecting data on biodiversity and other 
natural features
Collecting and evaluating spatially explicit data on 
biodiversity pattern and process, ecosystem services 
and previous disturbance to potential conservation 
areas

7. Setting conservation targets
Translating goals into quantitative targets that reflect 
the conservation requirements of biodiversity and other 
natural features

8. Reviewing target achievement in existing 
conservation areas
Assessing, by remote data and/or field survey, the 
achievement of targets in different types of existing 
conservation areas

9. Selecting additional conservation areas
With stakeholders, designing an expanded system of 
conservation areas that achieves targets while 
integrating commitments, exclusions and preferences

10. Applying conservation actions to selected 
areas
Working through the technical and institutional tasks 
involved in applying effective conservation actions to 
areas identified in the conservation plan

11. Maintaining and monitoring established 
conservation areas
Applying and monitoring long-term management in 
established conservation areas to promote the 
persistence of the values for which they were identified

Steps in Stage 3

3.1 Preparing a situation analysis

3.2 Assessing threats in the context of 
conservation areas

3.3 Identifying actions and mechanisms 
for addressing threats

3.4 Identifying urgent conservation 
needs on the advice of stakeholders

3.5 Reviewing the effectiveness of 
existing conservation areas

3.6 Assessing perceptions and attitudes 
to planning

3.7 Assessing the strength of governance 
systems

3.8 Identifying constraints on 
establishing conservation areas

3.9 Identifying opportunities for 
establishing conservation areas

3.10 Identifying actions necessary to 
complement conservation areas

Steps in Stage 10

10.1 Developing a strategy for the day-
to-day mechanics of implementation 

10.2 Allocating conservation actions to 
specific areas

10.3 Estimating the cost of applying 
conservation actions

10.4 Developing a strategy for 
scheduling conservation actions

10.5 Deciding how to deal with areas 
outside of the conservation plan

10.6 Mainstreaming the conservation 
plan for Stakeholders

10.7 Applying conservation actions to 
specific areas

10.8 Identifying lessons for locating and 
designing conservation areas

10.9 Reviewing progress in applying 
conservation actions

Figure 1.2 - An evolving framework for conservation planning with 11 main stages. Text under the 

heading for each stage summarizes the main issues to be addressed (see Margules and Pressey 2000 and 

Cowling and Pressey 2003 for more detail on most stages). For convenience, the process is depicted 

as a linear sequence, but in reality some stages are undertaken simultaneously and there are many 

feedbacks from later to earlier stages. The dashed rectangle contains the stages described by Margules 

and Pressey (2000). Shown on the right are the steps involved in stages 3 and 10. Adapted from Pressey 

and Botrill (2008).
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Figure 1.3 - A schematic overview of the systematic conservation planning process. Arrows show 

the direction of the relation between concepts. Green boxes represent analytical/ computational 

processes. Yellow boxes represent systematic conservation planning concepts underlying conservation 

prioritization algorithms. Based on Moilanen (2008) and Arponen (2009)
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1.2.3 Algorithms and computational tools for spatial prioritization

Conservation planning has made extensive use of computational tools to assist the decision 

making process. Their purpose is not to impose a course of action, but rather to inform 

decision-making (Possingham et al. 2001; Pressey and Cowling 2001). In general, there 

are two major classes of conservation prioritization problems: the “minimum set” and 

the “maximal cover” (see Cabeza and Moilanen 2001; Moilanen et al. 2009a; Sarkar et 

al. 2006; Williams et al. 2004 for reviews). In the “minimum set” problem, the objective 

is to minimize the total cost of selected sites such that each species is represented at or 

above a pre-determined target (Kirkpatrick 1983; Pressey 2002; Pressey et al. 1993). In the 

“maximal cover” problem, the objective is to find a reserve system that contains the largest 

number of species meeting their targets, subject to a limit on the total cost of the selected 

planning units (Arthur et al. 1997; Camm et al. 1996; Church et al. 1996). These problems 

can be mathematically formalized and solved using heuristics, meta-heuristics and optimal 

algorithms. (Possingham et al. 2000, 1993; Pressey et al. 1996, 1997; Rodrigues and Gaston 

2002b; Underhill 1994). Some of these mathematical approaches were implemented in 

computational tools, such as Marxan (Ball et al. 2009) and Zonation (Moilanen et al. 2009b). 

1.3 Challenges in conservation planning

Despite the immense progress that conservation planning has achieved in the last decades, 

there are still many challenges to overcome. The next paragraphs describe some of the 

issues addressed in this thesis.

1.3.1 Issues about species’ distribution data

Systematic conservation planning requires spatially explicit data on the distribution of 

natural features (Brooks et al. 2004; Ferrier 2002b; Margules and Pressey 2000). These natural 

features can include biodiversity in any of its forms (ecosystems, communities, species and 

genetic diversity), natural processes related to biodiversity origin and persistence (such as 

dispersion, migration, ecological and evolutionary refugia and disturbance regimes), or 

even ecosystem services (such as flood control from wetlands and carbon sequestration 

from forests). 

Our understanding of the spatial distribution of natural features has increased 

substantially in recent years. However, there is still limited knowledge on biodiversity 

levels since most species have not been formally described yet (the Linnean shortfall), 

and the geographical distributions for the majority of taxa are insufficiently understood 

(Wallacean shortfall) (Whittaker et al. 2005). On the other hand, the available data also 

poses some challenges because it is usually biased towards developed countries, charismatic 

species, easily accessible sites, field stations or areas close to major universities or museums 

(Grand et al. 2007; Harris and Froufe 2005; Possingham et al. 2000).These biases can 

affect the accuracy of conservation planning outcomes and introduce uncertainty and 

subjectivity into the planning process. 



Chapter 1 12

Prior to the planning process it is important to decide when the available data is 

sufficient and when investment in data acquisition is needed (Grantham et al. 2008, 2009). 

Nevertheless, the development of conservation plans should not be hindered by limited 

data on biodiversity (Pressey 2004) as conservation prioritization based on scarce data 

can be highly effective in representing species (Gaston and Rodrigues 2003), and several 

biodiversity surrogates can be used instead (Ferrier 2002a; Rodrigues and Brooks 2007). 

The emergence and the relatively fast progress of species’ distribution models (SDMs) 

have been paramount in conservation planning as ways to address the paucity and biases 

in species’ distribution data (Elith and Leathwick 2009a; Rodríguez et al. 2007). Species’ 

distribution models aim to determine and map the components of a species’ ecological 

niche through space by using spatial environmental data to make inferences on species’ 

limits and habitat suitability. Suitable environmental conditions for any given species 

may be characterized using either mechanistic or correlative approaches. Mechanistic 

models aim to incorporate physiologically limiting mechanisms in a species’ tolerance 

to environmental conditions. Such models require a detailed understanding of the 

physiological response of the species to environmental factors and are therefore complex 

to develop for all but the most well-studied species. Thus, correlative approaches are more 

widely used than mechanistic ones. Correlative SDMs are statistical or machine-learning 

tools that combine scattered, biased and incomplete observations of species occurrences 

or abundances with environmental variables to predict the complete distribution of the 

species (Elith and Leathwick 2009b; Guisan and Thuiller 2005; Guisan and Zimmermann 

2000). Correlative models have been developing at an accelerated pace, with several 

statistic methods emerging in the last two decades as well as evaluation procedures and 

computational tools (Franklin 2009) (Table 1.1). 

Differences between SDM methods rely mostly on the type of algorithm used to make 

the predictions, the type of occurrence data needed and the type of output prediction. SDMs 

also differ in their ability to predict uncertainty and to ensemble different predictions. 

However, one of the major distinctive characteristics of SDMs methods is the type of input 

data. Some algorithms operate by comparing sites according to the presence/absence of 

a species, although reliable absence data is usually not available. In contrast, presence-

only methods do not require absence data. While some of these presence-only methods 

require only presence records (such as BIOCLIM or ENFA), others require presence data 

and background points to contrast them (e.g. Maxent). In extreme, all presence-absence 

methods can operate by generating pseudo-absences, i.e. by assuming that some of the 

locations where the species is not known to occur are true absences. Another important 

characteristic is in the form of their output, with options usually being either a continuous 

probability of occurrence values (ranging from 0 to 1) or a binary prediction (0 or 1 values, 

standing for unsuitable or suitable environmental conditions, respectively). However, 

continuous probability outputs can be transformed into binary predictions by setting 

a threshold above which the environmental conditions would be assumed as suitable. 

There are several possible methods to set this threshold (e.g. Liu et al. 2005).
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Several studies have attempted to evaluate the performance of different methods 

for modeling species’ distributions and have demonstrated that discrepancies between 

different techniques can be very large (e.g. Elith et al. 2006; Elith and Leathwick 2009b; 

Hernandez et al. 2006; Segurado and Araújo 2004; Tsoar et al. 2007). The efficacy of the 

methods depends of several factors such as the quantity and quality of occurrence data, 

the choice of environmental predictors, the species’ ecological characteristics, the scale 

of analysis and the biotic interactions (Araújo and Luoto 2007; Costa et al. 2010; Franklin 

et al. 2009; Graham et al. 2008; Guisan et al. 2007a,b; Hernandez et al. 2006; Kriticos 

and Leriche 2010; Lassueur et al. 2006; Loiselle et al. 2008; McPherson and Jetz 2007; 

Peterson and Nakazawa 2008; Pöyry et al. 2008; Seo et al. 2009; Stockwell and Peterson 

2002; Syphard and Franklin 2009). No single method is currently considered to perform 

better in every condition, although some methods consistently outperform others. In 

general, methods with higher performance are able to identify complex relationships 

in the data including interactions between environmental variables. Among the best 

performing methods, Maxent has been one of the most used because it generally has 

high predictive performance even with a small number of occurrence records (Hernandez 

et al. 2006; Pearson et al. 2007; Wisz et al. 2008). Other advantages of Maxent include 

operating with presence-only data sets and allowing for category predictors (Elith and 

Leathwick 2009a). 

The application of SDMs in conservation planning goes beyond the prediction of 

current species’ ranges in data deficient situations (Guisan and Thuiller 2005). For example, 

SDMs allow the prediction of sites of different suitability within the predicted distribution 

of the species, which in turn can be used to select sites where the species persistence is more 

likely (Araújo and Williams 2000; Cabeza 2004). SDMs also allow the reconstruction of past 

species’ distributions (e.g Araújo et al. 2008; Carnaval and Moritz 2008) and the prediction 

of future species’ ranges (e.g. Coetzee et al. 2009; Hannah et al. 2007; Hole et al. 2009; 

Thuiller et al. 2005). SDMs can even be used to assist conservation of species that have not 

been described (Bini et al. 2006; Possingham et al. 2007). Indirect applications of SDMs to 

conservation planning include their ability to predict invasion and proliferation of exotic 

species (e.g. Jeschke and Strayer 2008; Roura-Pascual et al. 2008), to identify areas of possible 

expansion or reintroduction of endangered species (Cianfrani et al. 2010), to improve the 

sampling of rare species (Guisan et al. 2006), and to predict the expansion of vectors of 

wildlife diseases (e.g. Puschendorf et al. 2009). But despite the usefulness of SDMs, caution is 

needed in its application to conservation planning because all models contain some degree 

of mismatch between their predictions and the actual distribution of species. 

There are several sources of error that can lead to uncertainty in model predictions 

(Barry and Elith 2006; Elith et al. 2002). Occurrence samples can contain errors when 

species are misidentified, when there are inaccurate records of the geographic location of 

observations (Graham et al. 2008), or when using out-dated historical references (Hortal et 

al. 2008). Other frequently detected limitations related with occurrence samples is sample 
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size, since most modeling methods require a minimum number of occurrence samples to 

produce robust predictions. In general, the minimum number of records required depends 

on the complexity of the pattern being modeled (Barry and Elith 2006). Some methods 

also require a minimal number of true absences. Additionally, occurrence data is usually 

biased towards particular features (as discussed above) and do not cover the full range of 

the environmental gradients, which can induce biases in model fitting (Hortal et al. 2008). 

Uncertainty in SDM outcomes can also derive from the predictors used to fit the 

model, for example, when there is a lack of knowledge of which environmental factors 

constrain the distribution of a species. In addition, inaccurate predictions can arise 

when that knowledge exists but the required data are not available, are not mapped 

at an ecologically significant scale (Seo et al. 2009; Trivedi et al. 2008 ), or contain 

measurement errors (Graham et al. 2008). Finally, uncertainties related to ecological 

assumptions, such as biotic interactions, dispersion abilities, geographic factors (such 

as geographic barriers) or historical constraints can also induce inaccurate model 

predictions (Lomolino et al. 2005).

Because both observed occurrence and predicted species distribution data contain 

uncertainty, it is debatable which data type will be most suited to use in conservation 

planning. Advantages and disadvantages of using different types of occurrence data or 

SDMs predictions in conservation planning have been discussed previously (e.g. Freitag 

et al. 1996; Pressey et al. 1999; Rondinini et al. 2006; Underwood et al. 2010; Wilson 

et al. 2005). In theory, observed data contain higher confidence in validity of species 

occurrences, but a large proportion of false species absences, i.e. omission errors. When 

used for conservation planning, this type of data is more reliable because the selected 

priority sites will actually represent the species’ presence. However, there will be less 

options of possible sites combinations resulting in more selected areas, higher costs, and 

limited negotiation opportunities with stakeholders. In contrast, predicted distribution 

data contain a high proportion of false occurrences (commission errors), because models 

tend to over predict species’ distributions. Consequently, sites where species do not occur 

can be mistakenly selected for conservation. 

Several factors have been reported to influence the type of species’ distribution 

data chosen for conservation purposes. These include, for example, the amount of 

data availbale when the planning process starts (Freitag and van Jaarsveld 1998; 

Grand et al. 2007), the level of the representation target to be achieved (Justus et al. 

2008; Warman et al. 2004), and the size (Warman et al. 2004) and costs (Bode et al. 

2008) of the planning units. However, the impact of these factors to the conservation 

planning processes remains largely unknown. Thus, it is important to understand 

how sensitive the prioritization algorithms are to these factors and to variations in 

data type and quality .
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1.3.2 Incorporating evolutionary processes into conservation planning

Conservation planning has focused more on the biodiversity patterns (representation) 

than on the evolutionary processes that generate and maintain biodiversity (Pressey et 

al. 2007). However, it is essential to understand the processes that affect the amount and 

distribution of biological variability, and the ability of organisms to adapt and evolve 

(Crandall et al. 2000; Mace and Purvis 2008). Evolutionary tools can support conservation 

planning by discovering and documenting biodiversity, understanding the causes of 

diversification and evaluating evolutionary responses to ecological disturbances (Hendry 

et al. 2010 and references therein). 

Evaluating evolutionary distinctiveness and adaptation potential

Several methodologies have been suggested to address the representation of evolutionary 

history and processes using diverse biodiversity levels. One way to address evolutionary 

history is to consider that species are not discrete biologic units. Species differ substantially 

in the amount of unique evolutionary history they embody, reflecting the time and mode of 

divergence. Some biologic features are shared among species, while others are exclusive of a 

particular species. Thus, the principle of complementarity, which in conservation planning 

is usually applied to areas, can be extended to taxa (Faith et al. 2004). Evolutionary distinct 

taxa are expected to have a higher diversity of biological features, and consequently, to make 

a larger contribution to some overall measure of diversity. Thus, the extinction of a species 

in an old, monotypic or species-poor clade would result in a greater loss of biodiversity than 

that of a young species with many close relatives (Mace et al. 2003). The “uniqueness” of 

a particular taxa relative to the others can be measured and taxa with unique evolutionary 

histories should be given higher priority for conservation (Avise 2005). 

One of the most used diversity metric for measuring evolutionary distinctiveness is 

phylogenetic diversity (PD) (Faith 1992; Vane-Wright et al. 1991). Phylogenetic diversity is 

a biodiversity index that measures the length of the evolutionary pathways that connect a 

given set of taxa (Figure 1.4). In other words, PD represents the sum of the branch lengths 

of a phylogenetic tree containing a set of species and the root. 

Originally, PD was formulated to be measured on cladograms where distances 

between branches represented changes among phenotypic characteristics of distinct taxa. 

The procedure evolved to incorporate genetic differences among taxa given the advances 

in molecular ecology (e.g. Avise 2005; Crozier 1992). The rationale in using molecular 

divergence to build phylogenetic trees is the correlation of branch length with time since 

divergence, and the fact that phenotypic characters also change according to a clock-like 

anagenetic model (Moritz and Faith 1998). 

The complementarity principle of conservation planning can be applied to 

phylogenetic diversity by selecting a set of species that maximize PD using several algorithms 

developed for this purpose (e.g. Rodrigues and Gaston 2002a; Steel 2005). In general, in a 

balanced tree, PD would be higher if one selects a set of species from branches separated 
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by the main splits in the tree, i.e. by selecting sample taxa of the main phylogenetic 

lineages (Rodrigues and Gaston 2002a, Avise 1992). These main lineages are probably the 

result of extensive historical isolation periods, such as vicariance events, (Avise 1992). 

While this approach maximizes the representation component of conservation planning 

(by including the highest genetic diversity), it has been criticized on the grounds that it 

disregards important areas of recent diversification. These areas comprise highest adaptive 

genetic variation among populations, where phenotypes and ecological traits are more 

distinct. Therefore they are important for conservation because they influence fitness 

and population viability in current and future environments (Smith et al. 2000, 2005). 

Consequently, it has been recognized that both the neutral and the adaptive components 

of genetic diversity need to be preserved while targeting conservation of evolutionary 

processes (Brooks et al. 1992; Moritz 2002) (Figure 1.5). However, despite the growing 

body of literature focusing on conservation of evolutionary processes, few have objectively 

focused on these two aspects simultaneously. 

Identifying evolutionary processes in space

One of the challenges of integrating evolutionary processes in conservation planning 

resides on the fact that conservation planning is spatially explicit, making it necessary to 

spatially identify the two components of genetic diversity. Additionally, the selection of 

areas of conservation priority is constrained by combinations of co-occurring species (and 

corresponding genetic diversity). The aim of conservation planning should be to conserve 

the minimum set of areas that maximize representation of both neutral divergent and 

adaptive genetic variation. Hence, genetic diversity conserved by a given set of protected 

areas will depend on the structure of phylogenetic trees, on the spatial structure of genetic 

diversity, and on the relationships between the two.

Figure 1.4 - A hypothetical phylogenetic tree. The path connecting the four taxa (2,6,8 and 10) with 

maximum expected feature diversity is shown by the thickened lines. The number of transverse tick 

marks in this path is 28 indicating the relative feature diversity for the set. Adapted from Faith and 

Baker (2006).
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Figure 1.5 - Separation of genetic diversity into two components: adaptive variation that arises 

through natural selection, and neutral divergence due to vicariant evolution. The former is typically 

assayed through analysis of phenotypes and the later through molecular plylogeography. The areas 

in grey mean conditions where populations are likely to be considered as separate species under most 

concepts. Adapted from Moritz (2002).

Previous studies attempted to represent the neutral divergent component of genetic 

diversity in a spatial framework. For example, some authors (e.g. Moritz and Faith 1998; 

Smith et al. 2000) used comparative phylogeography to identify sets of species sharing 

a common vicariance history, and subsequently used Venn diagrams to identify areas 

representing unique lineages that were range-restricted (Figure 1.6). Another approach 

was to identify areas with higher concentrations of lineage breaks to reveal endemic areas 

at the subspecific level (Rissler et al. 2006). Other approaches combined phylogenetic 

diversity directly with other endemicity metrics (Faith et al. 2004; Posadas et al. 2001; 

Rosauer et al. 2009). On the other hand, the adaptive component of genetic diversity 

have been addressed by identifying areas where recently diverged endemic species co-

occur, as a proxy for rapid diversification areas or evolutionary hotspots (Davis et al. 2007; 

Vandergast et al. 2008). The two components of genetic diversity have only recently been 

taken into account by modelling relationships between environmental heterogeneity and 

genetic and phenotypic variation (Thomassen et al. 2010).
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 Spatial surrogates for genetic diversity

Most attempts to integrate genetic diversity into conservation planning have 

focused on a limited number of taxa. Although there has been a boom of phylogenetic 

studies in the last decades, the information is difficult to integrate in conservation plans 

when targeting multiple taxa. The main reason underlying this difficulty may be that 

the available molecular data for different taxa has often been collected using different 

molecular markers and statistical methods, hindering their integration into consensual 

phylogenies. Moreover, molecular data is still lacking or is insufficient for most taxa, and 

processes driving adaptive variation have only recently begun to be understood. Therefore, 

using surrogates for evolutionary processes is often necessary in conservation planning, as 

well as identifying their spatial components. 

Previous studies have called attention for multiple possible surrogates for 

evolutionary processes. For example, considering the neutral component of genetic 

diversity, Rodrigues et al. (2005) found that species richness was an adequate surrogate for 

phylogenetic diversity (PD) under a diversity of scenarios, particularly when taxonomy 

complementarity was accounted. A less explored surrogate for evolutionary processes 

is community structure. There is a growing recognition that evolutionary processes 

(speciation, vicariance, dispersal and extinction) interact with ecological processes 

(competition, predation and environmental filtering) to influence the distribution of 

species and traits in communities and vice versa (Cavender-Bares et al. 2009; Emerson 

and Gillespie 2008; Johnson and Stinchcombe 2007; Losos 1996; Vamosi et al. 2009; 

Figure 1.6 - Hypothetical phylogenetic tree for three alleles, each restricted to one area (A-C) with estimated 

branch lengths of v – z, and a corresponding Venn diagram indicating the components of branch length 

that are unique to areas or shared by one or more areas. Adapted from Moritz and Faith (1998)
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Webb et al. 2002; Wiens and Donoghue 2004). Most of these studies have not addressed 

the potential of comparative phylogeography to understand community structure, probably 

due to a lack of molecular data fo multiple species (Hickerson et al. 2010). Nonetheless, a 

consistent finding in comparative phylogeography is that species with similar ranges tend 

to be genealogically structured in similar ways (Avise 2000, 2009). The explanation for this 

finding is that emergence of geographic barriers, such as mountains uplifts or marine gaps 

derived from continental drift can induce vicariance and subsequent allopatric speciation in 

several taxa (Hickerson et al. 2010). Consequently, deeply separated phylogroups are often 

confined to biogeographical regions as identified from current species assemblages (Avise 

2000; Crisci et al. 2003). In other words, the vicariance model predicts that the ranges of 

the species originating by the same vicariant events will be, on average, more similar to 

each other (Hausdorf 2002). A classic example where genetic surveys have provided strong 

evidence for phylogeographic concordance is represented by the Mediterranean Peninsulas 

(Iberian, Italian and Balkan), which include several Pleistocene refugia for many taxa (Hewitt 

2000; Taberlet et al. 1998; Weiss and Ferrand 2006). Further evidence of the vicariance role 

in structuring biotas is revealed by the concordance of Pleistocene refugia with current 

biodiversity hotspots, which represent areas where several endemic species co-occur (Carnaval 

et al. 2009; Médail and Diadema 2009). Thus, in areas where vicariance events played an 

important role in structuring biotas, the identification of groups of species with significantly 

co-occurring ranges may surrogate for the neutral divergent component of genetic diversity. 

Regarding the adaptive component of genetic diversity, some studies used ecological 

and climatic gradients as surrogates, e.g, by identifying and targeting edaphic, upland–

lowland and macroclimatic gradients (Cowling et al. 2003; Rouget et al. 2003). The 

rationale to use these surrogates is that ecology plays a major role in speciation (e.g. through 

adaptive radiation) (Smith et al. 2005) and because environmental gradients facilitate 

genetic differentiation and character displacement (Doebeli and Dieckmann 2003). Thus, 

adaptive speciation is expected to be greatest along steep environmental transitions, such 

as ecotones (Smith et al. 2001), which often coincide with areas with high beta diversity 

where different species assemblages co-occur (Spector 2002). However, crossroads constitute 

marginal areas of species distributions, where overall genetic diversity within populations 

is generally lower (Emerson and Gillespie 2008). 

Ideally, conservation strategies should aim to preserve both neutral and adaptive 

components of genetic diversity. In face of inadequate molecular data, these could be 

achieved by protecting a proportion of all species assemblages and, within them, the 

contiguous habitats across major environmental gradients that potentially represent a 

variety of selective regimes, and guarantee maximum potential of species to respond to 

environmental changes (Moritz 2002; Smith and Grether 2008). However, such strategies 

have seldom been applied in conservation planning. 
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1.3.3 Dynamics in conservation planning: dealing with shifts in species’ ranges 
derived by climate change 

The conventional approach of systematic conservation planning assumes that both 

economic systems and biodiversity are static. Priority areas are often identified based 

on biodiversity distribution patterns at a given time and it is assumed that conservation 

implementation occurs immediately and that once implemented it will assure a 

perpetual persistence of biodiversity (Meir et al. 2004). However, a static approach 

may become inefficient (Leroux et al. 2007) because the attributes of the system may 

change between the planning and implementation phases, which is often the case in 

the currently complex and dynamic world (Drechsler 2005; Possingham et al. 2009; 

Pressey et al. 2007). 

Methods used to target areas for conservation often disregard land market dynamics 

(Armsworth et al. 2006; McDonald-Madden et al. 2008b), social dynamics such as 

political instability and corruption, financial opportunities and budget continuity 

(McBride et al. 2007). Moreover, several human-induced changes in the environment 

are threatening biodiversity, leading to a dynamic geographic rearrangement of species 

distributions and to extinctions (McCarty 2002; Root et al. 2003; Sala et al. 2000; 

Thomas et al. 2004; Walther et al. 2002). Thus, dynamic threats to biodiversity change 

conservation priorities through space and time (Pressey et al. 2007; Visconti et al. 

2010; Wilson et al. 2007)

Climate change as a driver of shifts in biodiversity distribution 

Climate change has been declared as one of the major threats to biodiversity (Jetz et 

al. 2007; Lee and Jetz 2008; Sala et al. 2000) and it is already driving changes in species 

distributions (Parmesan and Yohe 2003; Walther et al. 2005). Such changes pose major 

challenges to conservation planning, because it may cause species to shift their range 

away from current protected areas, and additional areas may become required to achieve 

sufficient species representation in the future (e.g. Araújo 2009; Araújo et al. 2004; Hannah 

et al. 2007; Lee and Jetz 2008). Thus, the scientific community is being asked to forecast 

changes in species distributions and to take proactive actions to facilitate biodiversity 

adaptation to climate change. 

Species distribution models (SDMs) (see topic 1.3.1) are the most commonly used 

tools for forecasting the potential impacts of climate change on species distributions 

(e.g. Hannah et al. 2002; Pearson and Dawson 2003). These tools assess species-climate 

relationships by relating current species distributions with present climate and then 

project those relations into future climate scenarios. This way, information on current 

and future distribution of species can be integrated into reserve selection algorithms and 

taken into account in conservation planning strategies.
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Uncertainties in projections of future species distributions

The ability of SDM to realistically predict future species distributions has been challenged 

to the point of jeopardizing its usefulness in informing conservation decisions. Criticisms 

to SDMs arise mostly from its multiple sources of uncertainty, which become particularly 

worrying in the context of climate change. The major sources of uncertainty can be 

categorized into three groups: climatic, biological, and statistical (Beaumont et al. 2008; 

Dormann et al. 2008; Heikkinen et al. 2006).

Climatic uncertainty arises from projections of future climate which are usually 

accomplished by integrating global circulation models (GCMs) with projections of 

greenhouse gas concentrations. GCMs are based on equations that describe physical 

processes of atmosphere or ocean dynamics and allow simulating the response of the 

global climate to increasing greenhouse gas concentrations. Several GCMs have been 

developed by distinct meteorological research centres with different parameterizations and 

performances (Randall et al. 2007). Conversely, future greenhouse gases concentrations 

are also uncertain with estimates based on different scenarios of driving forces such as 

demographic grow, socio-economical and environmental developments, and technological 

and energetic changes (Nakicenovic and Swar 2000). Hence, combinations of GCMs 

and storylines retrieve fairly different estimates of future climate conditions. Moreover, 

uncertainty in future climate conditions also arise from methods used to downscale 

climate scenarios and from uncertainties in current climate data (Beaumont et al. 2008).

Biological uncertainty is related to the insufficient knowledge on biodiversity 

distribution and with the way that different species will respond to climate change. Beyond 

biological uncertainties related with predicting current species distributions already 

discussed (topic 1.3.3), there are additional ones related with future predictions (Zurell et 

al. 2009).These include, for example, uncertainties in a) biotic interactions (Araújo and 

Luoto 2007); b) in interactions between population processes, and between demographic 

and landscape dynamics (Brook et al. 2009; Keith et al. 2008); c) in species ability to 

disperse (Thuiller 2004; Thuiller et al. 2008); and d) in species ability to adapt and persist 

(Thuiller et al. 2008; Williams et al. 2008).

If the outcome of SDMs is to be useful for decision-makers, uncertainty related to 

projections of future distributions needs to be understood and quantified (Pearson et al. 

2006). Recently, it has been argued that the use of multiple model techniques and several 

combinations of GCMs-storylines is recommended to achieve more robust forecasts 

(Araújo and New 2007; Araújo et al. 2005; Leutbecher and Palmera 2008). The approach 

consists in finding a consensus that summarizes the variability within the multiple 

predictions and is often referred to as ensemble forecasting. There are multiple ways to 

find a consensual forecast, for instance, averaging the predictions of multiple models 

was found to increase significantly the accuracy of predictions (Marmion et al. 2009). 

Using multiple SDMs and future climate scenarios also allows the determination of the  



Introduction23

variability between models, which can be used as a measure of uncertainty (Buisson et al. 

2010). In turn, uncertainty measurements allows the discrimination of the contribution 

of individual sources of variation entering the models (Diniz-Filho et al. 2009).

In general, SDMs’ predictions can be useful as indicators of species’ distribution 

trends, but they should be analyzed with other biological parameters such as physiological 

tolerance to temperature and precipitation extremes, geographical range sizes, local 

abundances, life cycles, behavioural and phenological adaptations, evolutionary potential 

and dispersal abilities (Bradshaw and Holzapfel 2006; Calosi et al. 2008; Isaac et al. 2008; 

Kearney and Porter 2009; Massot et al. 2008; Parmesan 2006, 2007; Thuiller 2004; Williams 

et al. 2008).

1.3.4 Dealing with uncertainty to improve conservation decisions

Several sources of uncertainty are associated with conservation planning, including 

uncertainty about the objectives, and the likelihood of success of conservation actions, 

uncertainty in costs, and in the impact of threats, and in biological data uncertainty (Game 

et al. 2008; Halpern et al. 2006b; Langford et al. 2009; McDonald-Madden et al. 2008a; 

Nicholson and Possingham 2007; Regan et al. 2009). Failure to acknowledge and treat 

uncertainty may lead to unsuccessful or sub-optimal conservation decisions or expensive 

failures. Only recently conservation planners have started to acknowledge the need to 

deal with uncertainty, although such practice has long been adopted in other fields such 

as engineering, finance and risk analysis. 

In some cases, uncertainty can be naturally resolved or removed, for example, by 

improving knowledge or gathering additional data, and by refining parameter estimates. 

However, this is not always feasible, such as when predicting future species distributions 

(see topic 1.3.3). In cases such as these, uncertainty analysis will be necessary to ensure 

reliable decisions. 

There are several methods available to treat uncertainty, including Monte-Carlo 

methods, interval analysis, sensitivity analysis, Bayesian analysis, info-gap decision theory 

and scenario analysis (reviewed by Regan et al. 2002, 2009). The choice of the appropriate 

method depends on the type and severity of uncertainty and the degree to which a system 

can be controlled. In conservation planning, info-gap uncertainty analysis and scenario 

analysis are most commonly used because they are the most appropriate to deal with severe 

uncertainty and uncontrollable systems (Peterson et al. 2003; Regan et al. 2009). 

An important question in conservation planning is how uncertainty will change 

decisions (Possingham et al. 2001). In general, uncertainty analysis evaluates trade-offs 

between conservation value and the certainty of the information. For example, areas that 

are certain to have high or low biological value do not pose decision challenges: the 

former are most important for conservation, while the later should be avoided. However, 

areas with high conservation value but also high level of uncertainty can potentially lead 
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to unsuccessful conservation investments (“negative surprises”) and thus these are the 

areas requiring uncertainty analysis. Conversely, areas with low conservation value and 

high uncertainty can potentially become good candidates for conservation investment 

(“positive surprises”) (Figure 1.7). 

Dealing with uncertainty becomes more complex when dealing with multiple species 

in a dynamic context. This can be the case, for example, when attempting to resolve the 

minimum set problem in a context where species distributions change throughout time 

and where there is severe uncertainty about the probabilities of occurrence of each species 

in each location and time. For instance, a site can have a high certainty that a species 

occurs at present,but high uncertainty that it will occur in the future. The same site can be 

highly uncertain regarding the current and future occurrence of other species. When the 

conservation planning problem involves thousand of sites and species, finding a robust 

set of sites that represents all species throughout time for a minimum cost is a massive 

challenge. Adequate solutions to face complex uncertainty problems have been slow to 

emerge, but recently there have been a few attempts to do so (e.g. Carroll et al. 2009; 

Fuller et al. 2008; Moilanen et al. 2006b). However, new strategies are still required to face 

uncertainty and to improve conservation decisions. 

Figure 1.7 - A categorization of four kinds of sites with different implications for conservation decision 

making. Adapted from Moilanen et al. (2006a)
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Chapter 2

Study Area

2.1 Current patterns of biodiversity in the Mediterranean region

The terrestrial Mediterranean Basin is one of the most biodiversity rich regions of the 

world, holding approximately 25000 plant species (13000 of each are endemic), and 

around 770 vertebrate species (235 of each are endemic) (Myers et al. 2000). 

The high biodiversity of the Mediterranean Basin is a consequence of paleogeographic, 

biogeographic and ecological events, along with human activities, which turn this 

region into a biogeographic crossroad and into a melting pot of biodiversity (Blondel 

and Aronson 1999). Several global conservation assessments recognize the Mediterranean 

Basin as priority for the conservation of the world’s biodiversity (Hoekstra et al. 2005; 

Myers et al. 2000; Olson and Dinerstein 2002; Shi et al. 2005). 

Biodiversity is unevenly distributed across the Mediterranean Basin. For example, 

several hotspots were identified within the Mediterranean Basin based on plant endemism 

and richness (Médail and Quézel 1997). For animal species, the International Union for 

Conservation of Nature (IUCN) has identified patterns of species richness for several 

groups, including crabs, dragonflies, freshwater fishes, freshwater amphibians, reptiles 

and mammals. Overall higher species richness was identified along the Italian Peninsula 

and the Alps, and other smaller areas on the Balkans and the Iberian Peninsula. Areas with 

highest number of threatened species were identified in the Iberian Peninsula and the 

Eastern Mediterranean coastal areas. (Figure 2.1).
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2.2 Amphibians and reptiles in the Western Mediterranean region 
– current patterns 

This thesis focuses on the amphibians and reptiles of the Western Mediterranean, and 

particularly on the Iberian Peninsula, for several reasons. The Western Mediterranean 

region was chosen as a study area because of its high conservation importance and 

because this region presents a remarkable rich geologic and biogeographic history. Indeed, 

multiple historical events caused changes in climate and in the physical environment 

since the Mesozoic, which turned it into a natural laboratory to study the influence of 

current and historical factors on the patterns of species distributions and its importance 

to conservation planning (De Jong 1998; Hewitt 1996; Weiss and Ferrand 2006). The 

amphibians and reptiles were chosen as focal groups because they represent a remarkable 

diverse group in the Western Mediterranean but, at the same time, several species are 

considered threatened. Moreover, amphibians and reptiles are suitable groups for 

modeling species distributions, since they have a tight relation with environmental and 

climatic variables due to their ectothermic physiology and low vagility (Zug et al. 2001). 

An additional reason to select these groups relies on the availability of comprehensive 

and reliable data set of species distributions in the Western Mediterranean (e.g. Bons and 

Geniez 1996; Loureiro et al. 2008; Pleguezuelos et al. 2002), along with availability of 

published phylogenies and phylogeographies for several taxa.

Approximately 106 amphibian and 355 reptiles species occur in the Mediterranean 

Basin, being 68 and 170 endemic of this region, respectively (Cox et al. 2006). However, 

spatial patterns of species richness are dissimilar among amphibians and reptiles, both 

when considering the total number of species occurring or only the ones classified as 

threatened (i.e. considered critical endangered, endangered or vulnerable by IUCN) 

(Figure 2.2). Such differences probably reflect contrasted ecology and physiology of 

the two groups, which constrains species occurrence to areas with favorable ecological 

characteristics. In general, amphibian species are more dependent on water, therefore, 

more species occur in humid regions, which are mainly represented at the western and 

northern portions of the Basin. In contrast, reptiles are well adapted to dry environments, 

Figure 2.1 – a) Species richness of crabs, dragonflies, endemic freshwater fishes, freshwater amphibians, 

reptiles and mammals, in the Mediterranean Basin. b) Species richness of threatened species of 

crabs, dragonflies, endemic freshwater fishes, freshwater amphibians, reptiles and mammals, in the 

Mediterranean Basin. Source: Cuttelod et al. (2008) 
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thus, the aridity gradient favors reptile species richness at the east and southern regions of 

the Mediterranean Basin (Blondel and Aronson 1999). 

The western part of the Mediterranean Basin, including the Iberian Peninsula and 

Morocco (Figure 2.3), holds a high number of species whose ranges are restricted to this 

region of the Mediterranean Basin, comprising 13 amphibian and 35 reptile endemics 

(Tables 2.1 and 2.2). 

This unique diversity probably derives from a current heterogeneous landscape and 

climate, and from an eventful and diverse geological and climatic history of the Western 

Mediterranean, which led to repeated isolation of the biota and provided opportunities 

for evolutionary divergence and speciation events (Blondel and Aronson 1999). 

Figure 2.3 - Spatial patterns of endemic amphibian and reptile species in the Western 

Mediterranean region. Maps based on data from Bons and Geniez (1996), Loureiro et al. (2008) 

and Pleguezuelos et al. (2002). 

2.3 The Western Mediterranean region: determinants of amphibian 
and reptile diversity

In the Western Mediterranean area, the historical processes that most affected the distribution 

of current herpetofauna, occurred in the past 35 Million Years (MY) (Rosembaum et al. 

2002). Some of the most important events included the formation and evolution of the 

Mediterranean Sea, the uplift of mountain ranges, the geologic dynamics around the Strait of 

Gibraltar and climatic oscillations. At present, the Western Mediterranean is a heterogeneous 

area, both topographically and climatically, which allows the coexistence of species with 

very different biogeographic affinities and evolutionary histories (Gómez and Lunt 2006). 
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Order Family Species END CS

Anura Alytidae Alytes cisternasii Boscá, 1879 X NT

Alytes dickhilleni Arntzen & García-París, 1995 X VU

Alytes maurus Pasteur & Bons, 1962 X NT

Alytes obstetricans (Laurenti, 1768) LC

Discoglossus galganoi Capula, Nascetti, Lanza, Bullini & 
Crespo, 1985 

X LC

Discoglossus jeanneae Busack, 1986 X NT

Discoglossus scovazzi Camerano, 1878 LC

Bufonidae Bufo brongersmai Hoogmoed, 1972 X NT

Bufo bufo (Linnaeus, 1758) LC

Bufo calamita Laurenti, 1768 LC

Bufo mauritanicus Schlegel, 1841 LC

Bufo viridis Laurenti, 1768 LC

Hylidae Hyla arborea (Linnaeus, 1758) LC

Hyla meridionalis (Boettger, 1874) LC

Pelobatidae Pelobates cultripes (Cuvier, 1829) NT

Pelobates varaldii Pasteur & Bons, 1959 X EN

Pelodytes punctatus (Daudin, 1802) LC

Pelodytes ibericus (Sánchez-Herráiz,Barbadillo, Machordom & 
Sanchiz, 2000)

X LC

Ranidae Pelophylax perezi (Seoane, 1885) LC

Rana saharica Boulenger, 1913 LC

Rana dalmatina Fitzinger in Bonaparte, 1838 LC

Rana iberica Boulenger, 1879 X NT

Rana pyrenaica Serra-Cobo, 1993 X EN

Rana temporaria Linnaeus, 1758 LC

Urodela Salamandridae Chioglossa lusitanica Bocage, 1864 X VU

Calotriton asper (Dugès), 1852 X NT

Lissotriton boscai (Lataste, 1879) X LC

Lissotriton helveticus (Razoumowsky, 1789) LC

Mesotriton alpestris (Laurenti, 1768) LC

Pleurodeles waltl Michahelles, 1830 NT

Salamandra algira Bedriaga, 1883 VU

Salamandra salamandra (Linnaeus, 1758) LC

Triturus marmoratus (Latreille, 1800) LC

Triturus pygmaeus Wolterstorff, 1905 NT

Table 2.1 – List of amphibian species occurring in the area comprised by the continental territories 

of Portugal, Spain and Morocco. Endemic species (END) to this region are marked with an “X” and 

conservation status (CS) according to Cox et al. (2006).
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Order Family Species END CS

Chelonia Bataguridae Mauremys leprosa (Schweigger, 1812) LC

Emydidae Emys orbicularis (Linnaeus, 1758) NT

Testudinidae Testudo graeca Linnaeus, 1758 LC

Testudo hermanni Gmelin, 1789 NT

Ophidia Boidae Eryx jaculus (Linnaeus, 1758) LC

Colubridae Coronella austriaca Laurenti, 1768 LC

Coronella girondica (Daudin, 1803) LC

Dasypeltis scabra (Linnaeus, 1758) LC

Hemorrhois algirus (Jan, 1863) LC

Hemorrhois hippocrepis (Linnaeus, 1758) LC

Hierophis viridiflavus (Lacépède, 1789) LC

Lamprophis fuliginosus (Boie, 1827) LC

Lytorhynchus diadema (Duméril, Bibron & Duméril, 1854) LC

Macroprotodon abubakeri Wade, 2001 DD

Macroprotodon brevis (Günther, 1862) NT

Macroprotodon cucullatus (Geoffroy Saint-Hilaire, 1827) LC

Malpolon insignitus (Geoffroy Saint-Hilaire, 1827) -

Malpolon moilensis (Reuss, 1834) LC

Malpolon monspessulanus (Hermann, 1804) LC

Natrix maura (Linnaeus, 1758) LC

Natrix natrix (Linnaeus, 1758) LC

Psammophis schokari (Forskål, 1775) LC

Rhinechis scalaris (Schinz, 1822) LC

Spalerosophis cliffordi Schmidt, 1939 -

Spalerosophis dolichospilus (Werner, 1923) DD

Telescopus guidimakaensis (Chabanaud, 1916) LC

Zamenis longissima (Laurenti, 1768) LC

Elaphidae Naja haje (Linnaeus, 1758) LC

Leptotyphlopidae Leptotyphlops macrorhynchus (Jan, 1862) LC

Viperidae Bitis arietans (Merrem, 1820) LC

Cerastes vipera (Linnaeus, 1758) LC

Daboia mauritanica (Duméril & Bibron, 1848) NT

Echis leucogaster Roman, 1972 LC

Vipera aspis (Linnaeus, 1758) LC

Vipera latastei Boscá, 1878 NT

Vipera monticola Saint Girons, 1954 X NT

Vipera seoanei Lataste, 1879 X LC

Sauria Agamidae Agama impalearis Boettger, 1874 LC

Trapelus mutabilis (Merrem, 1820) LC

Uromastyx acanthinura Bell, 1825 NT

Anguidae Anguis fragilis Linnaeus, 1758 LC

Hyalosaurus koellikeri (Günther, 1873) X LC

Blanidae Blanus cinereus (Vandelli, 1797) X LC

Blanus mettetali Bons, 1963 X LC

Blanus tingitanus Busack, 1988 X LC

Chamaeleonidae Chamaeleo chamaeleon (Linnaeus, 1758) LC

Gekkonidae Hemidactylus turcicus (Linnaeus, 1758) LC

Ptyodactylus oudrii Lataste, 1880 LC

Quedenfeldtia trachyblepharus (Boettger, 1873) X NT

Table 2.2 - List of reptile species occurring in the area comprised by the continental territories of 

Portugal, Spain and Morocco. Endemic species (END) to this region are marked with an “X” and 

conservation status (CS) are according to Cox et al. (2006).
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Order Family Species END CS

Quedenfeldtia moerens (Chabanaud, 1916) X LC

Saurodactylus brosseti Bons & Pasteur, 1957 X LC

Saurodactylus fasciatus Werner, 1931 X VU

Saurodactylus mauritanicus (Duméril & Bibron, 1836) LC

Stenodactylus petrii Anderson, 1896 LC

Stenodactylus sthenodactylus Lichtenstein, 1823 LC

Tarentola annularis (Geoffroy Saint-Hilaire, 1827) LC

Tarentola boehmei Joger, 1984 X LC

Tarentola chazaliae (Mocquard, 1895) LC

Tarentola deserti Lataste, 1891 LC

Tarentola ephippiata O’Shaughnessy, 1875 LC

Tarentola mauritanica (Linnaeus, 1758) LC

Tropiocolotes tripolitanus Peters, 1880 LC

Lacertidae Acanthodactylus aureus Günther, 1903 LC

Acanthodactylus boskianus (Daudin, 1802) LC

Acanthodactylus busacki Salvador, 1982 X LC

Acanthodactylus dumerilii Salvador, 1982 LC

Acanthodactylus erythrurus (Schinz, 1833) LC

Acanthodactylus lineomaculatus Duméril & Bibron, 1839 X LC

Acanthodactylus longipes Boulenger, 1918 LC

Acanthodactylus maculatus (Gray, 1838) LC

Algyroides marchi Valverde, 1958 X EN

Iberolacerta aranica (Arribas, 1993) X CR

Iberolacerta aurelioi (Arribas, 1994) X EN

Iberolacerta bonnali Lantz,1937 X NT

Iberolacerta cyreni (Müller & Hellmich, 1937) X EN

Iberolacerta martinezricai (Arribas, 1996) X CR

Lacerta agilis Linnaeus, 1758 LC

Lacerta andreanszkyi Werner, 1929 X NT

Lacerta bilineata (Daudin, 1802) LC

Lacerta monticola Boulenger, 1905 X VU

Lacerta pater Lataste, 1880 -

Lacerta schreiberi Bedriaga, 1878 X NT

Lacerta tangitanus (Boulenger, 1887) LC

Mesalina guttulata (Lichtenstein, 1823) LC

Mesalina olivieri (Audouin, 1829) LC

Mesalina pasteuri (Bons, 1960) DD

Mesalina rubropunctata (Lichtenstein, 1823) LC

Mesalina simoni (Boettger, 1881) LC

Ophisops occidentalis Boulenger, 1887 LC

Podarcis bocagei (Seoane, 1884) X LC

Podarcis carbonelli Pérez Mellado, 1981 X EN

Podarcis hispanica (Steindachner, 1870) LC

Podarcis muralis (Laurenti, 1768) LC

Podarcis vaucheri (Boulenger, 1905) LC

Psammodromus algirus (Linnaeus, 1758) LC

Psammodromus blanci (Lataste, 1880) NT

Psammodromus hispanicus Fitzinger, 1826 LC

Psammodromus microdactylus (Boettger, 1881) X EN

Teira perspicillata (Duméril & Bibron, 1839) LC

Timon lepida (Daudin, 1802) NT

Zootoca vivipara (Jacquin, 1787) LC

Table 2.2 (continued)
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Order Family Species END CS

Scincidae Chalcides bedriagai (Boscá, 1880) X NT

Chalcides colosii Lanza, 1957 X LC

Chalcides ebneri Werner, 1931 X CR

Chalcides lanzai Pasteur, 1967 X NT

Chalcides manueli Hediger, 1935 X VU

Chalcides mauritanicus (Duméril & Bibron, 1839) EN

Chalcides minutus Caputo, 1993 X VU

Chalcides mionecton (Boettger, 1873) X LC

Chalcides montanus Werner, 1931 X NT

Chalcides ocellatus (Forskål, 1775) LC

Chalcides parallelus Caputo & Mellado, 1992 EN

Chalcides polylepis Boulenger, 1896 X LC

Chalcides pseudostriatus Caputo, 1993 X NT

Chalcides striatus (Cuvier, 1829) LC

Eumeces algeriensis Peters, 1864 LC

Scincopus fasciatus (Peters, 1864) DD

Scincus albifasciatus Boulenger, 1890 LC

Sphenops boulengeri (Anderson, 1892) LC

Sphenops sphenopsiformis (Duméril, 1856) LC

Trogonophidae Trogonophis wiegmanni Kaup, 1830 LC

Varanidae Varanus griseus (Daudin, 1803) LC

Table 2.2 (continued)

2.3.1 Historical geography 

The physical geography of the area that nowadays corresponds to the Mediterranean 

Basin changed continuously throughout the geological history of Earth, due to the 

movement of tectonic plates and continental drift. The origin of the Mediterranean 

Basin resulted from tectonic interactions between the North African and the Eurasian 

plates (Mather 2009; Rosembaum et al. 2002). The Iberian Peninsula originated from 

multiple geologic events related to the convergence of the Eurasian and African plates 

in the upper Oligocene (28 MY ago) (Jolivet and Faccenna 2000; Mather 2009). In 

the Oligocene and Early Miocene, a wide zone in the interface between Africa and 

Europe extended, driven by subduction rollback. This resulted from a slower rate 

of convergence between the Eurasian and African plates starting about 30 MY ago 

(Rosembaum et al. 2002) (Figure 2.4 a). As a result of subduction rollback, extension 

in the Early Miocene led to the breakup and drifting of continental fragments formerly 

attached to southern France and Iberia, which are now scattered throughout the Western 

Mediterranean (the Betic region, in the Iberian Peninsula, the Rif in North Africa, and 

also the Balearic Islands, Sardinia, Corsica and part of the Italian Peninsula). The land 

mass currently forming the Betic and Rif regions eventually collided with South Iberia 

and North Africa during the Miociene  (Figures 2.4b and 2.5a).

The continuity of the tectonic dynamics of the Mediterranean area gave rise 

to successive periods where the African plate was connected to the Iberian Peninsula, 

intercalated with periods where it was disconnected. One of the most dramatic historical 
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Figure 2.4 – Reconstruction of Mediterranen area geography showing the convergence of the Eurasian 

and African plates during a) the Oligocene (35 MY ago) and b) the Miocene (25 MY ago). Adapted 

from Don Blakey, NAU Geology.

events was the Messinian Salinity Crisis (MSC), which triguered around 5.96 MY ago (Duggen 

et al. 2003; Hsü et al. 1977; Krijgsman et al. 1999; Rouchy and Caruso 2006). The MSC 

resulted from a complex combination of tectonic and glacio-eustatic processes which 

progressively reduced the seaways from deep sea to shallow waters (Braga et al. 2003; 

Krijgsman et al. 2000) and finally isolated the Mediterranean Sea from the Atlantic 

ocean (Krijgsman et al. 1999). This isolation occurred between 5.9-5.33 MY ago, with 

the complete formation of the Betic corridor (Figure 2.5b) (Duggen et al. 2003; Hsü et 

al. 1977; Krijgsman et al. 1999; McKenzie 1999; Rouchy and Caruso 2006). The closure 

of the Betic Strait endorsed a relatively fast drying of the Mediterranean Sea, resulting in 

subsequent several land connections between Africa and Europe, and allowing dispersal 

of terrestrial amphibians and reptiles from the Eurasian plate to the African and vice 

versa (Pleguezuelos et al. 2008) (Figure 2.5c). Around 5.3 MY ago, a new series of tectonic 

activity broke the land bridge between Africa and the Iberia, opening the current Strait 

of Gibraltar, and allowing the Atlantic ocean to surge into the Mediterranean (Hsü et 

al. 1977; Rouchy and Caruso 2006). After the refilling of the Mediterranean, the Strait 

of Gibraltar became once again a geographical barrier to the dispersal of Iberian and 

Moroccan biotas (Figure 2.5d).
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Figure 2.5 - A simplified schematic of the evolution of the Western Mediterranean region from the 

middle-Tortonian age (~7.2 MY) until present. (a) Middle-Tortonian age, arrows indicate the three 

corridors between Mediterranean and the Atlantic Ocean, with islands corresponding to the Betic 

and Rifian zone. (b) Close of the corridors, with estimated closing times of the three corridors. (c) 

Messinian salinity crisis, 5.9–5.33 MY, a period of wide land connections between Africa and Europe. 

(d) Present-day situation. For the Balearic and Corsica-Sardinia, the representation is not as accurate as 

for the Betic-Rif zone. Source: Paulo et al. (2008).

2.3.2 Current topography and hydrography

At present, the Western Mediterranean region is topographically and climatically 

heterogeneous. Several mountain ranges dominate the landscape, both in Iberia 

Peninsula and Morocco (Figure 2.6a). In Iberia, the Pyrenean separate the Peninsula from 

the remaining Europe. Most of the landscape is dominated by a central plateau known 

as the Central Meseta, with elevations ranging from 610 to 760 m. The Central System 

divides the Meseta into northern and southern sub-regions. The Meseta is rimed by high 

mountains on its northern (the Cantabric Mountain Range), eastern (the Iberian System), 

and southern regions (Morena mountains). The higher peak in the Iberian Peninsula is 

located in Sierra Nevada, in the Betic System, with 3478 m. 

Most mountain ranges in the Iberia Peninsula have a pronounced East-West direction, 

thus the main rivers flow to the west, including the Tagus, Douro, Guadiana, and the 

Guadalquivir. A major exception is the Ebro river, which flows to the East. There are 
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also several smaller rivers in the northwestern and northern coastal plains, which drain 

directly into the Atlantic Ocean. The smaller river Basins of the Mediterranean coast 

and southwestern Iberia are relatively narrow and most have seasonal water availability. 

Lowlands dominate southwestern landscapes as well as in most of the Ebro river Basin.

In Morocco, mountains ranges also dominate an important part of the territory, 

although there are extensive lowlands along the Atlantic Ocean coastal areas. The main 

mountain range is the Atlas mountain, which extends along North Africa, from Morocco 

to Algeria and Tunisia, separating the Atlantic and Mediterranean coastlines from the 

Sahara desert. The Atlas has a dominant southeast-northeast orientation, and is divided 

into separate ranges: the Middle Atlas, High Atlas, and Anti-Atlas. The highest peak in 

Morocco has an elevation of 4165 m, located in the High-Atlas range. Another important 

Mountain range is the Rif, which extends along the Mediterranean coast and was once 

connected to the Betic System in the Iberian Peninsula. Between the Atlases Mountains 

and the Atlantic coast there is a region of low plateaus and plains. Inland from the Atlases 

and throughout the southern part of Morocco, occurs the northern limits of the Sahara 

desert. Most of the Moroccan rivers flow from the Atlases to the Atlantic or Mediterranean 

coasts, including the Moulouya, Oued Sebou, Oum er Rbia, Tensift, and Sous. 

2.3.3 Current landcover

The current landcover of the Western Mediterranean is also fairly heterogeneous, 

reflecting, on one side, the diversity of natural habitats resulting from the topographic 

and climatic diversity, and on the other side, the profound transformations of natural 

habitats by human activities (Blondel 2006). Cultivated and managed areas represent 

around 40% of the region, mainly located in the Iberian Mesetas and southwestern plains, 

and in northwestern Morocco (Figure 2.6b).

Tree cover classes represent roughly 24% of the study area. However, the area 

comprising native forests species is fairly small as most of the forested areas are represented 

by plantations of non-native species, such as Eucaliptus (Eucalyptus sp.) and pinewoods 

(Pinus sp.). Native forests are reduced to small fragments occurring mostly along main 

mountains ranges. In northern Iberia, native forests are dominated by temperate broad-

leaved species, such as Fagus sylvatica, Castanea sativa, Quercus petraea and Quercus robur, 

while in northern and central mountains, formations of mountain conifers such as Pinus 

sylvestris, Pinus uncinata and Abies alba occur. In the south, and sporadically reaching 

central and eastern Iberia, main forests are dominated by typical Mediterranean species, 

such as Pinus pinaster, Pinus pinea, Pinus halepensis, Quercus ilex, Quercus suber, Quercus 

canariensis and Quercus faginea. Between the areas occcupied by temperate broad-leaved 

and Mediterranean forests, predominate sub-Mediterranean formations of Juniperus 

thurifera, Quercus pyrenaica, Quercus pubescens, Quercus faginea and Pinus nigra (Garzón et 

al. 2008). In Morocco, forested areas are mostly distributed along the Tangier Peninsula 
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(south to the Strait of Gibraltar), the Rif Mountains, the Middle Atlas, the northern slopes 

of the Anti-Atlas and the occidental extreme of the Anti-Atlas. The species occurring in 

the Tangier Peninsula are similar to those occurring on the northern part of the Strait of 

Gibraltar, with Quercus suber and Quercus canariensis dominanting at lower altitudes. In 

the Rif mountains, the dominating species are Cedrus atlantica, Quercus pyrenaica and Pinus 

pinaster (Ajbilou et al. 2006). In the Atlases, particularly in the Middle Atlas, pockets of 

remnant Cedrus forests can be found. The dominant species is Cedrus libani, which often 

occurs along with Juniperus foetidissima.

Herbaceous plants cover about 14% of the study area, occurring particularly in 

southwestern Iberia and northeastern Morocco and south to the Atlas mountains. Typical 

Mediterranean shrubs cover southern Iberian as well as parts of the Mediterranean coasts 

of Iberia and Morocco. Some of the representative species include Arbutus unedo, Erica 

arborea, Phillyrea spp., Viburnum tinus, Cistus spp., Pistacia lentiscus, and Myrtus communis. 

The southeastern slopes of the Atlas mountains are represented by semi-desertic steppes, 

making a transition to the most arid areas of Morocco. Vegetation is sparse and highly 

seasonal, and some representative species are Stipa tenacissima and Artemisia herba-alba. 

High altitude spiny xerophytes are found in altitudes up to 2000 m. 

About 12% of the study area is represented by bare areas, mostly occurring in southern 

Morocco, which constitutes the northern limit of the Sahara desert. These areas are mostly 

dominated by wide rocky plateaus, where vegetation is relatively rare (regs), and sandy 

systems (depressions or elevated sand dunes). In regs, the sparse vegetation is dominated by 

Acacia ehrenbergiana and Acacia raddiana. Sand systems can have vegetation comprised of tall 

shrubs (Retama raetam, Ziziphus lotus, Genista saharae, Calligonum comosum) and sometimes 

trees (Acacia raddiana, Pistacia atlantica, Tamarix aphylla, Calligonum azel and Calligonum arich).

2.3.4 Climate 

Historical Climate

Variations in Earth's orbit with periods of 10-100 thousand years, known as the 

Milankovitch oscillations, have led to recurrent and rapid climatic oscillations during the 

past 70 MY (Jansson and Dynesius 2002). Several paleoecological studies showed that such 

climatic shifts drove large changes in species’ geographical distributions, with consecutive 

contractions and expansions of species ranges, which contributed to the establishment of 

current patterns of species richness and endemism (Carnaval et al. 2009; Jansson 2003), 

by influencing evolutionary processes such as divergence, speciation and extinction 

(Hewitt 1996, 2000, 2004).

In the Mediterranean region, the past 2.5 MY in particular, had a decisive 

influence in shaping the composition and distribution of biotic communities (Blondel 

2009; Blondel and Aronson 1999). Cold conditions prevailed during most part of the 
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Quaternary period, with ice covering most part of Northern and Central Europe, but 

this climatic patterns was periodically interrupted by short periods of rapid climate 

warming, known as interglacials. During the most severe phases of the glacial periods, 

almost no arboreal vegetation survived north of the mountain chains bordering the 

northern  Mediterranean regions (such as the Alps, Pyrenees and Carpathian Mountains). 

Molecular evidence suggests that several European taxa contracted their range into the 

Mediterranean Peninsulas, where the climate was warmer and more humid (Hewitt 

1996; Taberlet et al. 1998; Weiss and Ferrand 2006). 

The Iberian Peninsula, in particular, was one of the most important glacial refugia 

in Europe for several plant and animal taxa (Gómez and Lunt 2006; Médail and Diadema 

2009), although several glaciers persisted in mountain tops (Hughes and Woodward 2008), 

(Figure 2.7). This fact created conditions to long isolation periods of several populations. 

Additionally, the high topographic and climatic heterogeneity of the Iberia Peninsula and its 

habitat diversity, favored the occurrence of multiple glacial refugia isolated from each other, 

potentiating allopatric speciation. These periods were followed by post-glaciation dispersion 

of population towards northern latitudes and lower altitudes (Hewitt 1996). For amphibians 

and reptiles, in particular, phylogeographic studies indicated refugia concordance for different 

species in the Iberian Peninsula, mainly located at the major mountain systems (Gómez and 

Lunt 2006; Teixeira 2007).

In northern Africa, the impact of Quaternary climate change was less severe. Although 

changes on species geographical distributions are poorly documented (but see Schleich et al. 

1996), there is evidence that several refugia existed for plant species, particularly in the Atlas 

and Rif Mountains (Médail and Diadema 2009, Cheddadi et al. 2009), which correspond to 

areas comprising currently higher number of amphibian and reptile endemics. However, it 

is possible that climate fluctuations have influenced species distributions in different ways. 

For example the humid climate during the glacial periods may have allowed Podarcis to 

range widely, whereas in the interglacial, range contractions into the mountains may have 

occurred, similar to present day conditions (Kaliontzopoulou et al. 2008).

Present Climate

The present Mediterranean climate is characterized by hot dry summers and mild wet 

winters, however, the climate gradient across the Mediterranean Basin is extreme. 

There is a gradient of aridity from west to east, and from north to south. In Western 

Mediterranean, the climate is mostly dictated by the proximity to the Atlantic Ocean 

but there are also climate heterogeneities influenced by altitudinal and inland gradients. 

Indeed, Iberian climate is more humid and mild along the northern and northwestern 

coasts, indicating direct influence of the Atlantic. Precipitation is higher in these areas, 

particularly in winter months. This climatic type is often referred to as Atlantic climate 

(Rivas-Martínez et al. 2004). In higher altitudes, along most of the Iberian and Moroccan 

mountain ranges, precipitation can be fairly high, winter mean temperatures are often 

negative and mountain peaks are snow capped throughout most of the year.



Study area57

Figure 2.7 – Annual mean temperature during the Last Glacial Maximum (~21,000 years ago) in the 

Western Mediterranean. Values represent averages of downscaled outputs from CCSM and MIROC 

global climate models. Black line indicates current limits of the study area. Data source Worldclim 

(http://www.worldclim.org/). Map shown in WGS84 projection.

The southern, eastern and central Iberian and northern Morocco (north of the Atlas 

mountains) are dominated by typical Mediterranean climate, with very warm and arid 

summers and mild wet winters. In inland and southern areas of Morocco, the weather is very 

hot and dry throughout most of the year, though temperatures can drop dramatically at night, 

especially in winter months. The extreme south and southeast have a hotter, drier, continental 

climate, and the southern parts are dominated by a very dry, saharian-type climate.

Future climate projections

There is overwhelming consensus within the scientific community that we are facing 

a rapid global warming due to anthropogenic activities (IPCC 2007). In the Mediterranean 

Basin, projections of future climate indicate an increase in climatic heterogeneity. In the 

south, a drier climate is more probable with intensified evaporation and accentuated 

droughts, while in the north, it is expected that climate become more contrasted with 

irregular rainfall in general, wetter winters and drier summers (MIO-ECSDE 2003). 

Averaged projections from three Global Circulation Models (CCCMA, HADCM3 and 

CSIRO), for two IPCC storylines (A2 and B2) (Nakicenovic and Swar 2000), predict a progressive 

decrease in precipitation and increase in temperature in the Western Mediterranean, from 

present until the year 2080 (Figure 2.8). Areas where a drop in total annual precipitation is 

expected to be higher include the Iberian and Moroccan mountain ranges, the central-southern 

Iberia and northern Morocco. Up to 200 mm precipitation drop per year are expected in the 

Pyreenees, Rif and Nevada mountains. Temperature increase is expected to be more pronounced 

in inland areas than coastal ones, and less pronounced in mountain ranges. In southeastern 

areas of Morocco, increases up to 5ºC of annual mean temperature are expected by 2080 while 

in the Atlantic coast it is expected an increase in temperature between 1.7 and 2.8 ºC.
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 2.4 Protected Areas Network

There are several protected areas established on the Western Mediterranean with different 

conservation categories, that can be divided into areas of international importance 

(Biosphere Reserves and Ramsar Wetlands of International Importance) and areas included 

in the National Protected Areas systems (with diverse designations and objectives) (Figure 

2.9). In the Iberian Peninsula there are also sites incorporated in the European Natura 

2000 network, including Special Protection Areas (SPAs) for birds and Special Areas of 

Conservation (SACs.) (Figure 2.10), but there is an extensive overlap between SPAs and 

SACs and between these and other Protected Areas.

Figure 2.9 - Distribution of Protected Areas in the Western Mediterranean. Large areas are represented 

in polygons and smaller areas are represented by its central point. National Park includes National Parks 

only. Natural Park include Natural Parks and Nature Parks. Nature Reserve include Nature Reserves, 

Integral Nature Reserves, Biological Reserves, Partial Nature Reserves, Botanical Reserves, Fluvial 

Reserves, Fauna Refugia, Microreserves, Marine Reserves and Wildlife Reserves. Protected Landscapes 

include Protected Landscapes and Natural Landscapes; Other Designations include Regional Parks, 

Rural Parks, Forest Sanctuaries, Barcelona Convention Sites, Hunting Reserves, Nature Areas, Nature 

Areas of National Interest, Parks, Natural Monuments and Sites of Ecological and Biological Interest. 

Sources: Instituto da Conservação da Natureza e da Biodiversidade (Portugal), Ministerio del Medio 

Ambiente y Medio Rural Y Marino (Spain), Haut Commissariat aux Eaux Forêts et à la Lutte contre la 

Désertification (Morocco), World Database on Protected Areas IUCN and UNEP-WCMC (2010). Map 

shown in WGS84 projection
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Figure 2.10  –  Distribution of Natura 2000 sites in the Iberian Peninsula: a) Special Areas of 

Conservation; b) Special Protection Areas. Maps based on data from Instituto da Conservação da 

Natureza e da Biodiversidade (Portugal), Ministerio del Medio Ambiente y Medio Rural Y Marino 

(Spain). Maps shown in WGS84 projection.

2.5 References

Ajbilou, R., Marañón, T., Arroyo, J., 2006. Ecological and biogeographical analyses of Mediterranean 

forests of northern Morocco. Acta Oecologica 29, 104-113.

Blondel, J., 2006. The ‘Design’ of Mediterranean Landscapes: A Millennial Story of Humans and 

Ecological Systems during the Historic Period. Human Ecology 34, 713-729.

Blondel, J., 2009. The Nature and Origin of the Vertebrate Fauna, In The physical geography of the 

Mediterranean ed. J.C. Woodward. Oxford University Press, Oxford.

Blondel, J., Aronson, J., 1999. Biology and wildlife of the Mediterranean region. Oxford University 

Press, Oxford, New York.

Bons, J., Geniez, P., 1996. Anfíbios y Reptiles de Marruecos (Incluindo Sáhara Occidental). 

Atlas Biogeográfico. (A.H.E.: Barcelona.).

Braga, J.C., Martín, J.M., Quesada, C., 2003. Patterns and average rates of late Neogene–Recent uplift 

of the Betic Cordillera, SE Spain. Geomorphology 50, 3-26.

Carnaval, A.C., Hickerson, M.J., Haddad, C.F.B., Rodrigues, M.T., Moritz, C., 2009. Stability predicts 

genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785–789.

Cheddadi, R., Fady, B., François, L., Hajar, L., Suc, J.-P., Huang, K., Demarteau, M., Vendramin, G.G., 

Ortu, E., 2009. Putative glacial refugia of Cedrus atlantica deduced from Quaternary pollen records 

and modern genetic diversity. Journal of Biogeography 36, 1361-1371.

Cox, N., Chauson, J., Stuart, S., 2006. The Status and Distribution of Reptiles and Amphibians 

of the Mediterranean Basin. The World Conservation Union (IUCN). Centre for 

Mediterranean Cooperation.

Cuttelod, A., García, N., D., A.M., H., T., Katariya, V., 2008. The Mediterranean: a biodiversity 

hotspot under threat, In The 2008 Review of the IUCN Red List of Threatened Species. eds J.C. 

Vié, C. Hilton-Taylor, S.N. Stuart. IUCN Gland, Switzerland.

De Jong, H., 1998. In search of historical biogeographic patterns in the western Mediterranean 

terrestrial fauna. Biological Journal of the Linnean Society 65, 99-164.

Duggen, S., Hoernie, K., van den Bogaard, P., Rupke, L., Morgan, J.P., 2003. Deep roots of the Messinian 

salinity crisis. Nature 422, 602–605.

Garzón, M.B., Dios, R.S., Ollero, H.S., 2008. Effects of climate change on the distribution of Iberian tree 

species. Applied Vegetation Science 11, 169–178.



Study area61

Global Land Cover 2000 database, 2003. European Commission, Joint Research Centre,  

http://www-gem.jrc.it/glc2000.

Gómez, A., Lunt, D.H., 2006. Refugia within refugia: patterns of phylogeographic concordance in the 

Iberian Peninsula, In Phylogeography of Southern European Refugia. eds S. Weiss, N. Ferrand, pp. 

155-188. Springer, Netherlands.

Hewitt, G., 2000. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913.

Hewitt, G.M., 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. 

Biological Journal of the Linnean Society 58, 247–276.

Hewitt, G.M., 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical 

Transactions of the Royal Society of London B 359, 183-195.

Hoekstra, J.M., Boucher, T.M., Ricketts, T.H., Roberts, C., 2005. Confronting a biome crisis: global 

disparities of habitat loss and protection. Ecology Letters 8, 23-29.

Hsü, K.J., Montadert, L., Bernoulli, D., Cita, M.B., Erickson, A., Garrison, R.E., Kidd, R.B., Mèlierés, F., 

Müller, C., Wright, R., 1977. History of the Mediterranean salinity crisis. Nature 267, 399 - 403.

Hughes, P.D., Woodward, J.C., 2008. Timing of glaciation in the Mediterranean mountains during the 

last cold stage. Journal of Quaternary Science 23, 575-588.

IPCC, 2007. Climate Change 2007: Synthesis Report. Intergovernmental Panel on Climate Change.

IUCN, UNEP-WCMC, 2010. The World Database on Protected Areas (WDPA): Annual Release [On-

line]. Available at: www.wdpa.orgm, accessed  03/05/2010. UNEP-WCMC, Cambridge, UK.

Jansson, R., 2003. Global patterns in endemism explained by past climatic change.  Proceedings of the 

Royal Society B: Biological Sciences 270, 583-590.

Jansson, R., Dynesius, M., 2002. The Fate of Clades in a World of Recurrent Climatic Change: 

Milankovitch Oscillations and Evolution. Annual Review of Ecology and Systematics 33, 741-777.

Jolivet, L., Faccenna, C., 2000. Mediterranean extension and the Africa-Eurasia collision. 

Tectonics 19, 1095-1106.

Kaliontzopoulou, A., Brito, J.C., Carretero, M.A., Larbes, S., Harris, D.J., 2008. Modelling the partially 

unknown distribution of wall lizards Podarcis in North Africa: ecological affinities, potential areas 

of occurrence and methodological constraints. Canadian Journal of Zoology 86, 992-1001.

Krijgsman, W., Garcés, M., Agustí, J., Raffi, I., Taberner, C., Zachariasse, W.J., 2000. The ‘Tortonian 

salinity crisis’ of the eastern Betics (Spain). Earth and Planetary Science Letters 181, 497-511.

Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J., Wilson, D.S., 1999. Chronology, causes and progression 

of the Messinian salinity crisis. Nature 400, 652-655.

Loureiro, A., Ferrand de Almeida, N., Carretero, M.A., Paulo, O.S. eds., 2008. Atlas dos Anfíbios e 

Répteis de Portugal. Instituto da Conservação da Natureza e da Biodiversidade, Lisboa.

Mather, A.E., 2009. Tectonic setting and landscape development, In The Physical Geography of the 

Mediterranean. ed. J.C. Woodward, pp. 5-32. Oxford University Press, Oxford.

McKenzie, J.A., 1999. From desert to deluge in the Mediterranean. Nature 400, 613-614.

Médail, F., Diadema, K., 2009. Glacial refugia influence plant diversity patterns in the Mediterranean 

Basin. Journal of Biogeography 36, 1333-1345.

Médail, F., Quézel, P., 1997. Hot-spots analysis for conservation of plant biodiversity in the Mediterranean 

Basin. Annals of the Missouri Botanical Garden 84, 112-127.

MIO-ECSDE, 2003. Climate change and the Mediterranean. Sustainable Mediterranean 32, 1-24.

Myers, N., Mittermeler, R.A., Mittermeler, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots 

for conservation priorities. Nature 403, 853-858.

Nakicenovic, N., Swar, R. eds., 2000. Special Report on Emissions Scenarios. A Special Report of Working 

Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, London.

Olson, D.M., Dinerstein, E., 2002. The Global 200: Priority ecoregions for global conservation. 

Annals of the Missouri Botanical Garden 89, 199-224.



Chapter 2 62

Paulo, O.S., Pinheiro, J., Miraldo, A., Bruford, M.W., Jordan, W.C., Nichols, R.A., 2008. The role of 

vicariance vs. dispersal in shaping genetic patterns in ocellated lizard species in the western 

Mediterranean. Molecular Ecology 17, 535-551.

Pleguezuelos, J.M., Fahd, S., Carranza, S., 2008. El papel del Estrecho de Gibraltar en la conformación 

de la actual fauna de anfibios y reptiles en el Mediterráneo Occidental. Boletín de la Asociación 

Herpetológica Española 19, 2-17.

Pleguezuelos, J.M., Márquez, R., Lizana, M., 2002. Atlas y Libro Rojo de los Anfíbios y Reptiles 

de España. Dirección General de Conservación de la Naturaleza - Asociación Herpetologica 

Española, Madrid.

Rivas-Martínez, S., Penas, A., Díaz, T.E., 2004. Bioclimatic Map of Europe: Bioclimates. 

University of León, Spain.

Rosembaum, G., Lister, G.S., Duboz, C., 2002. Reconstruction of the tectonic evolution of the western 

Mediterranean since the Oligocene. Journal of the Virtual Explorer 8, 107–130.

Rouchy, J.M., Caruso, A., 2006. The Messinian salinity crisis in the Mediterranean basin: a reassessment 

of the data and an integrated scenario. Sedimentary Geology 188-189, 35-67.

Schleich, H.H., Kastle, W., Kabisch, K., 1996. Amphibians and Reptiles of North Africa. Koeltz 

Scientific Publishers.

Shi, H., Singh, A., Kant, S., Zhu, Z., Waller, A.E., 2005. Integrating Habitat Status, Human Population 

Pressure, and Protection Status into Biodiversity Conservation Priority Setting. Conservation 

Biology 19, 1273-1285.

Taberlet, P., Fumagalli, L., Wust-Saucy, A.G., Cosson, J.F., 1998. Comparative phylogeography and 

postglacial colonization routes in Europe. Molecular Ecology 7, 453-464.

Teixeira, J., 2007. Biogeografia, Evolução e Conservação da Herpetofauna do Noroeste da Peninsula 

Ibérica. Combinação de técnicas de modelação bioclimática, filogeográficas e de genética da 

paisagem. Tese de Doutoramento. Faculdade de Ciências da Universidade do Porto, Porto.

Weiss, S., Ferrand, N. eds., 2006. The phylogeography of southern European refugia. Springer, Dordrecht.

Zug, G.R., Vitt, L.J., Caldwell, J.P. eds., 2001. Herpetology - an introductory biology of amphibians and 

reptiles. Academic Press, London.







“There is a sufficiency in the world for man's 
need but not for man's greed” 

Mohandas K. Gandhi

Photo: Vasco Flores Cruz





Objectives and overview of the thesis

Chapter 3

The broad objective of this thesis is to address some unresolved issues in conservation 

planning, by using the Western Mediterranean region as study area and the amphibian 

and reptile species occurring there as biological models. More specifically, the following 

objectives were pursued:

1. To contribute to the knowledge on the distribution of amphibians and reptiles in 

the Western Mediterranean: 

 1.1 To make field survey to complement published records of species distributions;

 1.2 To analyse relations between observed distribution patterns and environmental 

parameters, and to predict the overall potential range of each species;

2. To evaluate which type of species distribution data performs better when used to 

select priority areas for conservation;

3. To develop new approaches to integrate evolutionary processes into conservation 

planning when molecular data are not available;

4. To forecast how future climatic changes may affect the distribution of amphibians 

and reptiles in the Iberian Peninsula and to discuss implications for conservation planning.

5. To develop new approaches to account for uncertainty in current and future species 

distributions in order to improve conservation decisions in space and time. 

To accomplish these objectives, the thesis was organized into five sections, including 

nine chapters (Figure 3.1). Section I includes chapters 1 to 3. Chapter 1 consists of an 

introduction where current knowledge and challenges of conservation planning science 
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are contextualized. Chapter 2 describes features and history of the study area, relevant 

to shape current distribution patterns of amphibians and reptiles species and to their 

conservation strategies. Chapter 3, presents the objectives and the structure of the thesis.

Section II includes chapters 4 and 5 which address amphibian and reptile 

distribution data. Chapter 4 focuses on objective 1.1, reporting on field records collected 

in Morocco between 2001 and 2006. Those data were used throughout the following 

chapters, complemented with other published sources of species distribution records. 

Chapter 5 addresses objectives 1.2 and 2.  Species distribution models were produced and 

simulation procedures were conducted to analyse the effects of using different types of 

distribution data on the performance of reserve selection algorithms. For that purpose, 

several scenarios were constructed, including varying proportions of species distribution 

data (observed, predicted or a mixture of both), conservation targets and costs. Results 

from this chapter were taken into account in subsequent ones.

Section III includes chapter 6, which addresses objectives 1.2 and 3. Species 

distribution models were produced for several species and a novel approach was proposed 

to surrogate two important components of genetic diversity (the neutral and the adaptive), 

using predicted species distributions and environmental gradients. Subsequently, it was 

tested how reserve selection results differed when accounting or not for evolutionary 

processes.

Section IV includes chapters 7 and 8 which deal with objectives 4 and 5 respectively, 

while objective 1.2 is also addressed in both chapters. In this section, two relevant issues 

in conservation planning are analysed: dynamics and uncertainty. Chapter 7 focus 

on species distribution dynamics derived from climate change. Potential range shifts 

of 37 endemic and nearly endemic herptiles of the Iberian Peninsula were assessed by 

forecasting species distributions for three different times into the future (2020, 2050 and 

2080), using an ensemble of species distribution models and different combinations of 

species dispersal ability, emission levels and global circulation models. Chapter 8 builds 

on results obtained in chapter 7 and on predictions of the present and future distribution 

of remaining Iberian and reptile species, with the objective to analyse how uncertainty 

and dynamics in species distributions may affect decisions about resource allocation for 

conservation in space and time.

Section V concludes the thesis with chapter 9, where all results obtained are 

summarized, integrated and discussed, focusing on the implications for contemporary 

conservation planning in the western Mediterranean region and suggesting future 

investigation prospects. 



Objectives and thesis overview69

Figure 3.1 - Schematic overview of the thesis. Arrows indicate relations between sections and chapters, 

i.e., when outputs of one chapter are used to feed other chapters or sets of chapters. Sets of chapters 

are enclosed by dashed lines.
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Chapter 4

Data on the distribution of the terrestrial herpetofauna 
of Morocco: records from 2001-2006

James D. Harris, Miguel A. Carretero, José C. Brito, Antigoni Kaliontzopoulou, Catarina Pinho, 
Ana Perera, Raquel Vasconcelos, Mafalda Barata, Diana Barbosa, Vasco Batista, Silvia B. Carvalho, 
Miguel M. Fonseca, Guillem Pérez-Lanuza & Catarina Rato

Morocco is situated in the Northwest point of Africa, with an area of just over 400,000 

km2 (excluding Western Sahara). Together with Algeria and Tunisia it forms the Maghreb, 

a well defined geographic region within North Africa. Morocco has a great diversity of 

habitats, ranging from Mediterranean to Sahara, which are essentially separated by the Atlas 

Mountains range that traverses the country from Northeast to Southwest. Morocco has the 

highest diversity of herpetofauna of North Africa and of the Western Mediterranean region. 

Bons and Geniez (1996) accepted 104 species, with 23 endemic to Morocco, and several new 

taxa have been formally recognised since (e.g. Wade 2001). Additional analyses of genetic 

variation suggest that several widespread forms may actually be species complexes. 

Here we report on the findings of six years of field work carried out in Morocco, from 

2001 to 2006, totalling approximately 70 person/weeks of observations. Field trips were 

in most cases carried out during Spring, and a total of 427 observations of amphibian 

and reptile species were recorded. When a species was observed, the coordinates of the 

location where it was found were marked with a GPS. A total of 159 localities were sampled 

(Figure 4.1, Table 4.1), resulting in the observation of nine species of amphibians and 57 

species of reptiles, representing more than two thirds of the known species. Specimens 

are classified at the species level, but subspecific comments are supplied when relevant. 

Since the taxonomy of several Moroccan taxa is still unresolved, we implement some of 

the more stable nomenclatural changes since Bons and Geniez (1996), but also discuss 

recently suggested alternatives. 

4.1 Abstract
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4.2 Amphibia

4.2.1 Urodela

Family Salamandridae

Pleurodeles waltl Michahelles 1830, localities 5 and 36.

Locality 36, El Jadida (square S11 in Bons and Geniez 1996): between the northern 

(main) distribution area and the southern localities were the species was observed, namely 

Safi [Q15] and Essaouira island [N19], for which Bons and Geniez (1996) suggested the need 

for confirmation. Adults were found under stones during wet weather (locality 36, reported 

in detail in Carretero et al. (2004), juveniles in large, shallow temporary ponds (locality 5).

4.2.2 Anura

Family Discoglossidae

Alytes obstetricans (Laurenti 1768), only found in locality 19d. Currently referred to Alytes 

maurus (Fromhage et al., 2004; Gonçalves et al., 2007). Adult specimens were found under 

stones on a well-grazed, steeply sloping hillside.

Figure 4.1 - Map of the study area and the principal localities sampled.
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Table 4.1 - Localities sampled (coordinates in WGS1984; LAT D: Latitude, Degrees, LAT M: Latitude, 

Minutes, LONG D: Longitude, Degrees, LONG M: Longitude, Minutes). Due to the big number of 

localities sampled, localities that are close together are grouped together.

CODE LOCALITY NAME LAT D LAT M LONG D LONG M

1 Assilah 35º 28.264 -6º 1.873

1a Road Larache-Tetouan 35º 23.245 -5º 55.788

2 Chefchaouene 35º 10.023 -5º 15.145

2a 3km S of Derdara crossroad 35º 5.543 -5º 18.445

2b Bab Taza 35º 3.98 -5º 12.08

2c After Bab Taza 35º 3.669 -5º 6.965

3 Ketama 34º 52.694 -4º 36.652

4 Moulay Bousselhaim beach 34º 53.761 -6º 17.266

4a 1km before Moulay Bousselhaim 34º 53.27 -6º 15.5

5 Road to Moulay Bousselhaim 1 34º 46.24 -6º 5.195

5a Road to Moulay Bousselhaim 2 34º 41.799 -6º 1.552

6 Close to Basra 34º 47.483 -5º 43.533

7 5km after Had Kourt 34º 39.059 -5º 39.628

8 Zoumi 34º 48.026 -5º 20.416

8a Road to Zoumi 34º 46.102 -5º 30.971

8b 5km before Zoumi 34º 44.759 -5º 25.369

8c 15km before Zoumi 34º 46.102 -5º 30.971

8d 4,5km SE of Zoumi 34º 47.361 -5º 18.201

9 2km before Ouazzane 34º 47.759 -5º 33.543

9a Close to Ouazzane 34º 37.814 -5º 32.283

10 Taounate 34º 31.797 -4º 38.085

11 Mouth of oued Moulouya; 9km W of Saida 35º 7.243 -2º 19.981

12 3 km E of Moulouya River bridge 34º 52 -2º 36

13 Road to Taforalt 34º 50 -2º 25

13a 11km S of Berkane 34º 51.435 -2º 25.525

14 10km N of El Aioun 34º 38.666 -2º 26.471

15 Foret de la Mamora 34º 6.279 -6º 33.73

15a Kenitra (highway) 34º 12.264 -6º 33.715

16 Volubilis (Roman Ruins) 34º 4.532 -5º 33.445

17 Near Moulay Idriss 34º 3.867 -5º 21.337

18 Halouane 34º 6.791 -4º 7.283

19 Ras-El-Oued, Tazzeka 34º 9.249 -4º 0.556

19a 10km S of Taza 34º 7.829 -4º 1.751

19b 15km S of Taza - Taza Caves 34º 6.257 -4º 4.349

19c 30km S of Taza - P.N. Tazekka 34º 5.55 -4º 6.188

19d 35km S of Taza - P.N. Tazekka 34º 5.021 -4º 6.849

19e Canyons between Sidi Abdallah and Taza 34º 11.573 -4º 11.391

20 15km S of Saka 34º 29.801 -3º 19.564
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Table 4.1 (continued)

CODE LOCALITY NAME LAT D LAT M LONG D LONG M

21 From Taourirt to Debdou 34º 18.154 -2º 53.14

22 5km S of crossroad to Missour 34º 11.629 -3º 15.13

23 60km NW of Ain Benimathar 34º 1.502 -2º 36.34

24 Gaada de Debdou 33º 57.7 -3º 2.868

24a Gaada de Debdou 1 33º 58.476 -3º 1.876

24b Gaada de Debdou (Plateau du Rekkam) 1 33º 47.018 -3º 2.518

25 Rchida 33º 52.472 -3º 13.644

26 Zerzaia road S329 33º 45.765 -3º 29.688

27 Fritissa 33º 37.288 -3º 32.945

28 24km E of crossroad to Ain Benimathar 33º 33.761 -3º 22.456

28a 10km E of crossroad to Ain Benimathar 33º 30.446 -3º 32.244

28b 2km E of crossroad to Ain Benimathar 33º 20.214 -3º 34.962

29 Tirnest 33º 29.268 -3º 48.658

30 Outat-Oulad-El-Haj 33º 21.198 -3º 45.63

30a 30km N of Missouri 33º 15.927 -3º 48.243

31 Midelt to Taza 1 33º 44.549 -4º 49.911

31a Midelt to Taza 2 33º 29.666 -4º 51.754

31b Midelt to Taza 3 33º 15.043 -4º 41.229

32 15km N of Azrou (Balcon d’ Ito) 33º 32.562 -5º 19.014

32a 5km S of Azrou 33º 26.11 -5º 10.913

33 Mischliffen 33º 24.326 -5º 6.199

34 10km S of Timahdite 33º 9.313 -5º 4.096

34a 15km S of Timahdite 33º 6.788 -5º 1.652

35 N - Casablanca (highway) 33º 42.675 -7º 18.922

36 El Jadida 33º 12.725 -8º 33.058

37 Jorf Lasfar 33º 5.282 -8º 39.192

38 Moussa 32º 36.182 -9º 11.5

39 Mechra Ben Abhou; 110km NW of Marrakech 32º 36.099 -7º 48.66

40 El Ksiba 32º 34.511 -6º 2.109

40a El Ksiba Area 32º 33.599 -6º 4.135

40b Titt-n-Tazzart 32º 29.281 -6º 0.852

41 Kerrouchen 32º 48.106 -5º 19.386

41a Tizi-n’ Rechou 32º 47.062 -5º 13.508

42 Midelt 32º 40.972 -4º 44.568

43 Tamdafelt bridge 32º 52.471 -4º 15.916

44 25km S of Missour 32º 49.87 -4º 4.371

45 22km W of Talsinnt 32º 38.328 -3º 38.489

45a Unnamed village 30km W of Talsinnt 32º 35.158 -3º 45.631

45b 25km W of Talsinnt 32º 34.143 -3º 42.255

45c 18km S of Talsinnt 32º 22.545 -3º 25.897

45d 25km S of Talsinnt 32º 19.321 -3º 28.777
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CODE LOCALITY NAME LAT D LAT M LONG D LONG M

46 Ait Ichchou 32º 25.13 -3º 46.232

47 10km E of Gourrama 32º 21.063 -3º 57.967

47a Gourrama 32º 20.094 -4º 4.469

48 Ar-Rachidia (camping) 31º 51.922 -4º 17.17

48a 5km S of Source Blue de Merski 31º 50.935 -4º 15.308

48b Aoufouss 31º 47.087 -4º 13.525

49 Lake Tisli 32º 11.564 -5º 38.054

50 Erfoud 31º 26.215 -4º 13.264

50a 5km N of Erfoud 31º 30.012 -4º 12.11

50b 10km N - Erfoud 31º 31.098 -4º 11.56

50c 15km N - Erfoud 31º 31.205 -4º 11.533

50d 12km N of Erfoud 31º 32.343 -4º 11.152

51 5km W of Rissani 31º 16.217 -4º 21.865

52 Erg Chebbi 31º 4.356 -3º 58.173

53 2km E of Alnif 31º 7.117 -5º 8.577

53a 10km E of Alnif 31º 9.609 -5º 2.237

54 Merzouga to Ouarzazate desert road 1 31º 27.708 -5º 35.661

54a Merzouga to Ouarzazate desert road 2 31º 22.414 -5º 52.564

54b Merzouga to Ouarzazate desert road 3 31º 6.796 -6º 24.474

54c Merzouga to Ouarzazate desert road 4 31º 4.085 -6º 32.096

55 15km W of Tazzarine 30º 51.35 -5º 54.173

56 20km NW of Souk el Arba 30º 50.344 -6º 8.735

57 5km S of Ouarzazatte 30º 51.719 -6º 50.85

57a 10km S of Ouarzazatte 30º 49.302 -6º 46.161

58 3.5km NE of Tanannt 31º 53.201 -6º 54.85

59 Iminifri 31º 43.454 -6º 58.314

59a After Iminifri 31º 42.428 -6º 57.376

60 Road Ouarzazatte – Marrakech 31º 22.017 -7º 23.53

61 El Azib n-Iriri (Jbel Siroua) 30º 44.818 -7º 36.557

61a Amzdour 30º 46.617 -7º 37.229

61b W of Tachakoucht 30º 48.337 -7º 32.627

62 Oukaimeden 31º 12.058 -7º 51.322

62a 1km S of Oukaimeden 31º 12.757 -7º 50.874

63 High Reraia river: 2km S of Sidi Chamharouch 31º 5.254 -7º 55.148

63a High Reraia river: Sidi Chamharouch 31º 6.314 -7º 54.844

63b Reraia river 31º 6.041 -7º 54.867

64 15km S of Marrakesh (S501 to Tahannaout) 31º 29.172 -7º 59.022

65 Marrakech-Oulad Salas 31º 45.434 -7º 58.47

65a 10km NE of Marrakesh 31º 44.335 -7º 58.698

66 Oaddour 32º 4.014 -8º 13.158

67 Oulad Branim 32º 13.496 -8º 9.89

Table 4.1 (continued)
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CODE LOCALITY NAME LAT D LAT M LONG D LONG M

68 Oulad Brahim (Oued Tensift) 31º 45.148 -8º 44.06

69 An Nzala 31º 35.43 -9º 6.283

70 Moulay Bouzertoun beach 31º 38.161 -9º 40.432

71 Essaouira 31º 30 -9º 46

71a 7km S of Essaouira 31º 27.821 -9º 45.38

72 Gran Plateau des Ida-ou-Bouzia 30º 59.567 -9º 1.8867

73 Argana 30º 46.597 -9º 7.7717

73a 13km N of Bigoudine 30º 48.713 -9º 8.044

74 Lala Aziza 31º 6.223 -8º 42.523

74a Temporary pond by the track 31º 10.512 -8º 45.217

75 15 km S- Hazar road km 93 30º 54.028 -8º 19.888

75a Hazar 30º 56.928 -8º 15.853

75b Tizi-n-Test 30º 52.455 -8º 22.02

76 31km S - Asni 31º 5.413 -8º 7.765

77 Agadir, Tiznit road 30º 25 -9º 35

78 49km Tiznit 30º 6 -9º 33

79 Taroudant (Oued Massa) 29º 59.828 -9º 35.272

80 Bou Soun 29º 51.071 -9º 46.238

81 Oued Massa 29º 48.369 -9º 38.85

82 30km E of Foum Zguid 29º 52.81 -6º 42.714

82a 40km E of Foum Zguid 29º 51.042 -6º 37.318

83 Erg Mhazil - 80km E of Foum Zguid 29º 51.274 -6º 13.535

83a 112km E of Foum Zguid 29º 52.091 -6º 0.636

84 60km E of Tagounite 30º 11.096 -5º 8.796

85 60km W of Akka 29º 9.326 -8º 35.596

85a 80km SW of Akka 29º 5.1 -8º 41.391

86 3km E of Taggit 29º 3.177 -9º 22.431

86a 4km E of Taggit 29º 3.148 -9º 20.753

86b 6km E of Taggit 29º 3.362 -9º 20.093

86c 6km W of Taggit 29º 6.052 -9º 28.002

87 Tagant 29º 7.48 -9º 46.68

88 Tizi Mighert 29º 24.516 -9º 43.634

88a Morght 29º 24 -9º 43

88b km.49 Tiznit-Guelmine 29º 23.71 -9º 44.065

89 Guelmine 28º 59.87 -10º 3.164

90 15km E of Aoreora - Plage Blanche 28º 52.39 -10º 42.164

90a 25km S of Aoreora 28º 44.684 -10º 44.631

91 50km S of Tan-Tan Plage 28º 13.847 -11º 42.099

91a 60km S of Tan-Tan Plage 28º 11.514 -11º 49.47

Table 4.1 (continued)
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Discoglossus pictus Otth 1837, localities 2a, 18, 19d, 32, 35, 47a and 61. 

Currently referred to Discoglossus scovazzi (Fromhage et al., 2004; Zangari et al., 2006).

Locality 47a: Gourrama. Previously unreported from east of the Atlas Mountains, this 

extends the distribution into the drier region to the east (Figure 4.2A). Found in a variety 

of ponds, roadside ditches and marshy mountain meadows.

Family Bufonidae

Bufo bufo (L. 1758), localities 31b, 61, 61b, 62a and 73.

Bufo mauritanicus Schlegel 1841, localities 1, 3, 18, 19a, 19d, 24, 29, 31b, 34a, 38, 45a, 46, 

50, 57, 61, 69 and 73.

Bufo viridis Laurenti 1768, localities 24, 28b, 36, 45a, 58 and 68.

Bufo viridis appears to be a species complex (Stöck et al. 2006). Some of these new 

localities fill gaps in the known range of this widespread species.

Bufo brongersmai Hoogmoed 1972, only found in localities 58 and 74a. 

This new record connects the locations of Souss basin and south of High Atlas with 

the isolated observations in the Marrakech plain (Fig. 4.2B). Mature adult Bufo sp. were 

generally found under stones. Huge numbers of recent metamorphosed B. mauritanicus 

were observed in various regions of the Rif Mountains.

Family Hylidae

Hyla meridionalis Boettger 1874, localities 19d, 61, 61b and 62.

Typically found in reeds near more permanent streams and rivers. Unusual silver 

colored individuals were seen at Jebel Sirwah (locality 61).

Family Ranidae

Rana saharica Boulenger 1913, localities 3, 17, 19, 19a, 28b, 31b, 32, 43, 45a, 46, 47a, 61 and 73.

Proposed as a possible species complex by Bons and Geniez (1996), but analysis of 

mtDNA shows minimal variation across Morocco (Harris et al. 2003a). Common in a 

variety of water bodies throughout its range.

4.3 Reptilia

4.3.1 Chelonia

Family Testudinidae

Testudo graeca L. 1758, localities 7, 8c, 13a, 19d, 23, 24b, 32, 38, 40, 56, 59 and 65. 

Locality 56: There are few citations of T. graeca from the East of the Atlas Mountains. 

Extensive anthropogenic effects make it difficult to rule out artificial introductions, 

although this new locality is a long way from any large human settlements (Figure 4.2C).
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Family Bataguridae

 Mauremys leprosa (Schweigger 1812), localities 1a, 8b, 8d, 35, 59 and 87.

Although most specimens were found near large mountain streams and rivers, many 

were clearly of a temporal nature that were likely to be dry for much of the year.

4.3.2 Sauria

Family Agamidae

Agama bibroni Dúmeril & Dúmeril 1851, localities 2a, 2b, 3, 5, 8c, 10, 13a, 18, 19d, 20, 30, 

31, 32, 37, 44, 47, 47a, 54b, 59, 63b, 74, 75b, 79, 86c and 88b.

One of the most commonly seen species in Morocco, found in a wide variety of 

habitats but typically associated with rocks.

Trapelus mutabilis (Merrem 1820), localities 45d, 50a, 54a and 59a.

Uromastyx acantinurus Bell 1825, localities 20, 44, 47, 54, 54c and 85. 

Mitochondrial DNA analysis indicates all the Moroccan specimens form a clade 

within this species, although this includes a relatively high level of genetic variation 

(Harris et al. 2007). Although still quite common in the rocky desert areas, many 

specimens were road kills, and individuals were often observed sold in markets, 

indicating the dual threats to this species.

Family Anguidae

Ophisaurus koellikeri (Günther 1873).

Only found in locality 32, under stones in a broad-leaf forest. Currently referred to 

Hyalosaurus koellikeri (Macey et al., 1999).

Family Chamaeleonidae

Chamaeleo chamaeleon (L. 1758), localities 20, 54a and 91.

One specimen (locality 20) was found in a surprisingly open and arid area, walking 

along the ground.

Famiily Gekkonidae

Geckonia chazaliae Mocquard 1895, only found in locality 91a.

Currently referred to Tarentola chazaliae (Carranza et al., 2002).

Hemidactylus turcicus (L. 1758), only found in locality 11, within a ruined building. 

Analysis of mtDNA sequence variation indicates H. turcicus is probably introduced in 

Morocco (Carranza and Arnold 2006).

Ptyodactylus oudrii Lataste 1880, localities 43 and 45a.

Locality 43 (Tamdafelt bridge): This record extends the distribution area of the species 

further north into the Moulouya river valley. All specimens were found on large boulders. 

In locality 43 the specimen was on the underside of a rock above an irrigation channel.
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Quedenfeldtia moerens (Chabanaud 1916), localities 63, 72, 75 and 75b.

Quedenfeldtia trachyblepharus (Boettger 1874), localities 61 and 62.

Locality 61 (El Azib n-Iriri, Jbel Siroua) regarding forms: Most citations from this area 

are of Quedenfeldtia sp. only. This confirms the presence of Q. trachyblepharus from this area. 

Quedenfeldtia were active even when the sky was extremely overcast, and were usually 

found in very high densities when present. 

Stenodactylus sthenodactylus (Liechtenstein 1823), localities 20, 21, 22, 30, 44 and 89.

Localities 22 and 30: these lie between the northern and southern areas of distribution, 

making it more continuous through the Moulouya river (Figure 4.2D). A few specimens 

were found under rocks, but many more by digging out the small holes beneath thorn 

bushes, often also occupied by Acanthodactylus sp.

Saurodactylus mauritanicus (Dúmeril and Bibron 1836), localities 12, 13, 13a, 14 and 23.

Saurodactylus brosseti Bons & Pasteur 1957, localities 36, 58, 64, 65, 65a, 68, 71, 72, 74, 77, 

78, 81, 88a. 

Saurodactylus fasciaticus Werner 1931, localities 8a, 9a and 39. 

Locality 39 adds another southerly locality to the few isolated points known, and 

increases the range of sympatry between S. fasciatus and S. brosseti. Recent analyses suggest 

that Saurodactylus is paraphyletic (Rato and Harris, 2008), in which case future taxonomic 

changes to this group are likely.

Tarentola mauritanica (L. 1758), localities 1, 2b, 3, 4, 7, 8c, 11, 17, 19, 19b, 19e, 25, 29, 31, 

31b, 32, 32a, 33, 36, 39, 40, 42, 59, 61, 63b, 65, 65a, 67, 73, 75a and 76. 

Tarentola mauritanica appears to be a species complex, although the two accepted 

subspecies in Morocco do not seem to correspond to genetic lineages (Harris et al. 2004a, b). 

Tarentola mauritanica is extremely widespread in both natural habitats but especially in 

buildings.

Tarentola deserti Boulenger 1891, localities 50b and 50d. 

Found on clusters of large boulders. Superficially very similar to Tarentola mauritanica, 

but with a notably ochre-yellow iris.

Tropiocolotes tripolitanus Peters 1880, found only in locality 89, under rubbish in a small 

open area within the town of Gourrama.

Family Lacertidae

Acanthodactylus erythrurus (Schinz, 1833), localities 2b, 3, 19b, 24, 32, 32a, 33, 41, 

41a, 61, 65, 65a and 72.

Acanthodactylus lineomaculatus Dúmeril & Bibron 1839, localities 4, 4a, 15, 15a, 38, 70 and 71a. 

Evidence based on mtDNA do not support the distinction of this species from 

A. erythrurus (Harris et al. 2004c).

Acanthodactylus maculatus (Gray 1838), localities 14, 30a and 53a.

Acanthodactylus busacki Salvador 1982, localities 79, 81 and 90.

The morphological distinction of A. busacki has not always been accepted (see Harris 
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and Arnold 2000). Mitochondrial DNA sequence variation indicates considerable variation 

within an “A. pardalis species complex”, including A. pardalis, A. maculatus, A. busacki and 

A. mechriguensis (Fonseca et al. 2008). However, exact delimitation of species remains equivocal. 

Members of this species complex are extremely difficult to separate in the field. All, like the 

other Moroccan Acanthodactylus sp. are typically seen running over open areas between 

bushes where the animals take refuge in holes around the roots.

Acanthodactylus boskianus (Daudin 1802), localities 11, 20, 27, 28, 28a, 28b, 30, 45c, 46, 

47a, 48a, 48b, 53, 55, 82, 86, 86a and 86b.

Acanthodactylus dumerili (Milne Edwards 1829), localities 50c, 50d, 82a, 83a and 84.

Acanthodactylus longipes Boulenger 1921, localities 52 and 83.

Acanthodactylus aureus Günther 1903, localities 80 and 90a.

Lacerta tangitana Lataste 1880, localities 3, 6, 18, 19a, 19d, 24, 32, 32a, 34, 34a, 40a, 40b, 45a, 

45b, 61, 63a, 63b and 75. Currently referred to Timon tangitanus (Arnold et al. 2007), and 

may represent a species complex in Morocco (Paulo, 2001). While Debdou (locality 24) is 

within the range typically assigned to Lacerta pater, specimens from here are still L. tangitana.

Lacerta andreanszkyi Werner 1929, localities 62 and 63. 

Currently referred to Atlantolacerta andreanszkyi (Arnold et al. 2007). Found under rocks 

in the open high mountain meadow of Oukaimeden, with Podarcis hispanica and Scelarcis 

perspicillata on the larger rocks and walls surrounding the meadow.

Mesalina guttulata (Lichtenstein 1823), localities 25, 45a, 48, 54a, 54b and 86c. 

These new citations fill some gaps in the widespread distribution of this species.

Mesalina olivieri (Audouin 1829), localities 20, 24, 47 and 65a. 

The specimen from the last locality (10km NE of Marrakesh) corresponds to the 

subspecies M. o. simoni. All Moroccan Mesalina are small, shy species found in dry open 

areas running between small bushes used as refugia.

Ophisops occidentalis Boulenger 1887, found only in locality 23.

Podarcis hispanica (Steindachner 1870), localities 1, 2, 2b, 3, 8, 8c, 8d, 18, 19a, 19b, 19d, 

24, 32, 32a, 33, 34, 34a, 42, 61, 61a, 63b and 75.

Locality 61 (El Azib n-Iriri, Jbel Siroua): Most Moroccan and Southern Spanish 

populations are now referred to Podarcis vaucheri (Busack and Lawson 2005). Pinho et al. 

(2006, 2007) show that the populations from locality 61 are not related to other Moroccan 

populations, but rather to a Tunisian form of the Podarcis hispanica species complex. 

Generally Podarcis were found in areas with Mediterranean climate, and especially near 

water courses such as streams. However some populations, such as that from within the 

town of Midelt, were on walls in quite dry areas.

Psammodromus algirus (L. 1758), localities 2a, 2b, 3, 4, 7, 9a, 13a, 19, 19a, 19b, 19d, 19e, 

25, 31, 32, 32a, 33, 34, 40, 41a, 45b, 59, 59a and 61.

Locality 45b (25km W of Talsinnt): Two other Mediterranean species (P. vaucheri 

and S. perspicillata) have isolated records from this region. This adds another 

Mediterranean species to this isolated group. Scelarcis perspicillata was confirmed at 
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the same place, although P. vaucheri was not observed. The two accepted subspecies 

in Morocco do not appear to be genetically distinct based on analysis of mtDNA 

sequences (Carranza et al. 2006).

Scelarcis perspicillata (Dúmeril & Bibron 1839), localities 17, 19, 19a, 19b, 19e, 24, 31, 32, 

32a, 33, 40a, 45, 59, 61, 63b and 75.

Scelarcis perspicillata has three distinct morphological forms in Morocco. Considerable 

mtDNA variation was reported (Harris et al. 2003b), and a 100% coincidence of 

morphotypes and mtDNA lineages was observed at a contact zone of two forms near 

Taza (Perera et al. 2007), indicating a probable species complex with forms separated by 

perhaps 5.5 million years (Arnold et al. 2007). However, there are only two distinct genetic 

lineages, and in other areas populations with similar colour morphs do not coincide with 

these. Specimens were found predominantly on high cliffs and large rocks, often near 

running water, where their flattened morphology allows them to take refuge in very 

narrow crevices. Occasionally also seen climbing on trees.

Family Scincidae

Chalcides colosii Lanza 1957, only found in locality 2b.

Chalcides minutus (Caputo 1993), only found in locality 24a.

Chalcides mionecton (Boettger 1874), localities 15, 15a, 68 and 89.

Chalcides ocellatus (Forsskål 1775), localities 13a, 14, 20, 22 and 24. 

Chalcides polylepis Boulenger 1890, localities 19b and 36.

Chalcides pseudostriatus (Caputo 1993), only found in locality 2a.

All Chalcides specimens were found turning rocks. A recent extensive review suggests 

that future taxonomic changes for some species are likely (Carranza et al. 2008).

Eumeces algeriensis Peters 1864, localities 9a, 16, 19e, 28, 30, 36, 39, 59, 65a, 68 and 79. 

Eastern localities fall within an area where the form Eumeces (algeriensis) meridionalis 

could have been expected, but all samples corresponded to E. a. algeriensis.

Sphenops boulengeri (Anderson 1896), only found in locality 82.

4.3.3 Amphisbaenia

Family Amphisbaenidae (currently Blanidae following Kearney and Stuart, 2004)

Blanus mettetali Bons 1963, found only in locality 40.

Blanus tingitanus Busack 1988, localities 8c, 19a and 19b.

Currently two species of Blanus are recognised in Morocco, B. mettetali and B. 

tingitanus, and one in Iberia, B. cinereus. Vaconcelos et al. (2006) indicate that B. 

cinereus is a species complex, and that one individual was found in Taza (locality 19). The 

existence of this form in North Africa needs further investigation.



85 Herpetofaunal records from Morocco

Family Trogonophidae

 Trogonophis wiegmanni Kaup 1830, localities 1, 9a, 19e, 23, 35, 36, 38 and 59.

Mendonça and Harris (2007) reported the two localities for T. w. wiegmanni in the 

Moulouya river valley region, that link the northern and southern populations of this form 

in Morocco. They indicate that three genetic lineages exist in North Africa, corresponding 

to the accepted subspecies in Morocco plus an additional lineage in Tunisia. All the 

amphisbaenians observed were found under rocks or litter.

4.3.4 Serpentes

Family Colubridae (s.l.)

Hemorrhois hippocrepis L. 1758, localities 7, 9, 9a, 17, 19b, 19c, 24a, 31a, 32, 66 and 67. As 

with all the following colubrid snakes, many specimens were roadkills.

Hemorrhois algirus (Jan 1863), found only in locality 54.

Coronella girondica (Daudin 1803), localities 19d, 24, 49 and 63. 

Macroprotodon cucullatus (Geoffroy Saint-Hilaire 1827), localities 3, 9a, 19b, 19d, 26, 

30, 32 and 33.

In a recent morphological analysis Wade (2001) recognized four species of 

Macroprotodon, with three, M. cucullatus, M. mauritanicus and M. abubakeri in North Africa 

and M. brevis in North Africa and the Iberian Peninsula. Assessment of mtDNA variation 

indicates considerable variation in North Africa and a recent colonization of the Iberian 

Peninsula (Carranza et al. 2004, Vasconcelos and Harris 2006). However exact delimitation 

of genetic units in North Africa requires further analyses (Figure 4.2E).

Malpolon moilensis (Reuss 1834), found only in locality 85a.

Malpolon monspessulanus (Hermann 1804), localities 1a, 2c, 8c, 17, 18, 19d, 33, 61 and 65.

Natrix maura (L. 1758), localities 3, 5a, 8d, 10, 11, 46, 59 and 61. Several specimens were 

caught swimming in small ponds, streams or irrigation channels. All were collected very 

close to such water bodies.

Psammophis schokari (Forsskål 1775), localities 20, 45, 54b and 60. 

Although three colour morphs have been described for Morocco (Bons and Geniez, 

1996), all three form part of the same mtDNA genetic lineage (Rato et al. 2007).

Psammophis and Malpolon are the only non-viperid Moroccan snakes belonging to 

the Subfamily Psammophiinae. Since the recognition of Atractaspididae and Elapidae 

make traditional Colubridae paraphyletic according to the last molecular phylogenies 

(Lawson et al., 2005), this well defined group probably merits Family status.

Spalerosophis dolichospilus (Werner 1923), only found in locality 47a, currently the 

easternmost report in Morocco.
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Family Viperidae

Cerastes vipera (L. 1758), found only in locality 57a. A roadkilled specimen, without the

typical horns.

Macrovipera mauritanica (Gray 1849), localities 14, 73a and 20. 

Currently referred to Daboia mauritanica (Lenk et al., 2001). These new localities 

fill gaps in the range of this widespread species, particularly in the low Moulouya basin 

(Figure. 4.2F).

4.4 Acknowledgements

Fieldwork in Morocco was partially funded by grants from FCT, POCTI/1999/BSE/34547, 

POCTIJ2001/BSE/41912,POCTI/BIA-BDE/55596/2004 and POCTIlBIA-BDE/61946/2004, 

and from the National Geographic Society NGS7629-04. The authors acknowledge 

Bert Toxopeus and the International Institute for Geo-Information Science and Earth 

Observation (lTC, The Netherlands) for georeferenced information on the distribution of 

Moroccan amphibians and reptiles.

4.5 References
Arnold, E. N., Arribas, O. J., Carranza, S., 2007. Systematics of the Palaearctic and Oriental lizard 

tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. 
Zootaxa 1430, 1-8.

Bons, J., Geniez, P., 1996. Amphibians and Reptiles of Morocco. Asociación Herpetológica Española, Barcelona.
Busack, S. D., Lawson, D. P., 2005. Mitochondrial DNA, allozymes, morphology and historical 

biogeography in the Podarcis vaucheri (Lacertidae) species complex. Amphibia-Reptilia 26, 239-256.
Carranza, S., Arnold, E. N., 2006. Systematics, biogeography, and evolution of Hemidactylus geckos 

(Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Molecular Phylogenetics 
and Evolution 38, 531-545.

Carranza, S., Arnold, E.N., Geniez, P., Roca, J., Mateo, J.A., 2008. Radiation, multiple dispersal and parallelism 
in the skinks, Chalcides and Sphenops (Squamata: Scincidae), with comments on Scincus and Scincopus 
and the age of the Sahara Desert. Molecular phylogenetics and evolution 46, 1071-1094.

Carranza, S., Arnold, E. N., Mateo, J. A., Geniez, P. 2002. Relationships and evolution of the North 
African geckos, Geckonia and Tarentola (Reptilia: Gekkonidae), based on mitochondrial and nuclear 
DNA sequences. Molecular Phylogenetics and Evolution 23, 244-256.

Carranza, S., Arnold, E. N., Wade, E., Fahd, S., 2004. Phylogeography of the false smooth snakes, 
Macroprotodon (Serpentes, Colubridae): mitochondrial DNA sequences show European populations 
arrived recently from Northwest Africa. Molecular Phylogenetics and Evolution 33, 523-532.

Carranza, S., Harris, D. J., Arnold, E. N., Batista, V., González de la Vega, J. P., 2006. Phylogeography of 
the lacertid lizard, Psammodromus algirus, in Iberia and across the Strait of Gibraltar. Journal of 
Biogeography 33, 1279-1288.

Carretero, M. A., Harris, D. J., Pinho, C., Batista V., Perera, A., 2004. Pleurodeles waltl (Gallipato): nueva 
población meridional en Marruecos. Boletín de la Asociación Herpetológica Española 15, 13.

Fonseca, M., Brito, J. C., Rebelo, H., Kalboussi, M., Larbes, S., Carretero, M. A., Harris, D. J., 2008. Genetic 
variation among spiny-footed lizards in the Acanthodactylus pardalis group from North Africa. 
African Zoology 43, 8-15.

Fromhage, L., Vences, M., Veith, M., 2004. Testing alternative vicariance scenarios in West Mediterranean 
discoglossid frogs. Molecular Phylogenetics and Evolution 31, 308-322.



87 Herpetofaunal records from Morocco

Gonçalves, H., Martínez-Solano, I., Ferrand, N., Garcia-París, M., 2007. Conflicting phylogenetic signal 
of nuclear vs mitochondrial DNA markers in midwife toads (Anura, Discoglossidae, Alytes): deep 
coalescence or ancestral hybridization? Molecular Phylogenetics and Evolution 44, 494-500.

Harris, D.J., Arnold, E.N., 2000. Elucidation of the relationships of spiny-footed lizards, Acanthodactylus 
spp. (Reptilia: Lacertidae) using mitochondrial DNA sequence, with comments on their 
biogeography and evolution. Journal of Zoology 252, 351-362.

Harris, D. J., Batista, V., Carretero, M. A., 2003a. Diversity of 12S mitochondrial DNA sequences in Iberian 
and northwest African water frogs across predicted geographic barriers. Herpetozoa 16, 81-83.

Harris, D. J., Batista, V., Carretero, M. A., 2004c. Assessment of genetic diversity within Acanthodactylus 
erythrurus (Reptilia: Lacertidae) in Morocco and the Iberian Peninsula using mitochondrial DNA 
sequence data. Amphibia-Reptilia 25, 227-232.

Harris, D. J., Batista, V., Lymberakis, P., Carretero, M. A., 2004a. Complex estimates of evolutionary 
relationships in Tarentola mauritanica derived from mitochondrial DNA sequences. Molecular 
Phylogenetics and Evolution 30, 855-859.

Harris, D. J., Batista, V. , Carretero, M. A., Ferrand, N., 2004b. Genetic variation in Tarentola mauritanica 
(Reptilia: Gekkonidae) across the Strait of Gibraltar derived from mitochondrial and nuclear DNA 
sequences. Amphibia-Reptilia 25, 451-459.

Harris, D. J., Carretero, M. A., Perera, A., Pérez-Mellado, V., Ferrand, N., 2003b. Complex patterns of 
genetic diversity within Lacerta (Teira) perspicillata: preliminary evidence from 12S rRNA sequence 
data. Amphibia-Reptilia 24, 386-390.

Harris, D. J., Vasconcelos, R., Brito, J. C., 2007. Genetic variation within African spiny-tailed lizards 
(Agamidae: Uromastyx) estimated using mitochondrial DNA sequences. Amphibia-Reptilia 28, 1-6.

Kearney, M., Stuart, B. L., 2004. Repeated evolution of limblessness and digging heads in worm lizards 
revealed by DNA from old bones. Proceedings of the Royal Society of London 271, 1677-1683

Lawson, R., Slowinski, J. B., Crother, B. I., Burbrink, F. T., 2005. Phylogeny of the Colubroidea 
(Serpentes): New evidence from mitochondrial and nuclear genes. Molecular Phylogenetics and 
Evolution 37, 581-601.

Lenk, P., Kalyabina, S., Wink, M., Joger, U. 2001. Evolutionary relationships among the true vipers 
(Reptilia, Viperidae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and 
Evolution 19, 94-104.

Macey, J. R., Schulte II, J. A., Larson, A., Tuniyev, B. S., Orlov, N., Papenfuss, T. J., 1999. Molecular 
phylogenetics, tRNA evolution, and historical biogeography in Anguid lizards and related 
taxonomic families. Molecular Phylogenetics and Evolution 12, 250-272.

Mendonça, B., Harris, D.J., 2007. Genetic variation within Trogonophis wiegmanni Kaup 1830. Belgian 
Journal of Zoology 137, 239–242.

Paulo, O. S., 2001. Phylogeography of reptiles of the Iberian Peninsula. PhD Thesis. University of London.
Perera, A., Vasconcelos, R., Harris, D. J., Brown, R. P., Carretero, M. A., Pérez-Mellado, V., 2007. Complex 

patterns of morphological and mtDNA variation in Lacerta perspicillata (Reptilia, Lacertidae). 
Biological Journal of the Linnean Society 90, 479-490.

Pinho, C., Ferrand, N., Harris, D. J., 2006. Reexamination of the Iberian and North African Podarcis 
(Squamata: Lacertidae) phylogeny based on increased mitochondrial DNA sequencing. Molecular 
Phylogenetics and Evolution 38, 266–273. 

Pinho, C., Harris, D. J., Ferrand, N., 2007. Contrasting patterns of population subdivision and historical 
demography in three western Mediterranean lizard species inferred from mitochondrial DNA 
variation. Molecular Ecology 16, 1191-1205.

Rato, C., Brito, J. C., Carretero, M. A., Larbes, S. Shacham B., Harris, D. J., 2007. Phylogeography 
and genetic diversity within Psammophis schokari (Psammophiinae) in North Africa based on 
mitochondrial DNA sequences. African Zoology 42, 112-117.

Rato, C., James, D.H., 2008. Genetic variation within Saurodactylus and its phylogenetic 
relationships within the Gekkonoidea estimated from mitochondrial and nuclear DNA 

sequences. Amphibia-Reptilia 29,, 25-34.



88Chapter 4

Stöck, M., Moritz, C., Hickerson, M., Frynta, D., Dujsebayeva, T., Eremchenko, V., Macey, J.R., Papenfuss, 

T.J., Wake, D.B., 2006. Evolution of mitochondrial relationships and biogeography of Palearctic 

green toads (Bufo viridis subgroup) with insights in their genomic plasticity. Molecular Phylogenetics 

and Evolution 41, 663-689.

Vasconcelos, R., Carretero, M. A., Harris, D. J., 2006. Phylogeography of the genus Blanus (worm lizards) in 

Iberia and Morocco based on mitochondrial and nuclear markers: preliminary analysis. Amphibia-

Reptilia 27, 339-346.

Vasconcelos, R., Harris, D. J., 2006. Phylogeography of Macroprotodon: mt DNA sequences from Portugal 

confirm European populations arrived recently from NW Africa. Herpetozoa 19, 77-81.

Wade, E. 2001. Review of the False Smooth snake genus Macroprotodon (Serpentes, Colubridae) in Algeria 

with a description of a new species. Bulletin of the Natural History Museum London (Zoology) 

67, 85-107.

Zangari, F., Cimmaruta, F., Nascetti, G., 2006. Genetic relationships of the western Mediterranean painted 

frogs based on allozymes and mitochondrial markers: evolutionary and taxonomic inferences 

(Amphibia, Anura, Discoglossidae). Biological Journal of the Linnean Society 87, 515-536. 







“One thing is sure. We have to do something. We have to 
do the best we know how at the moment... if it doesn’t 

turn out right, we can modify it as we go along”

Franklin D. Roosevelt

Photo: Vasco Flores Cruz





5.1 Abstract

Sílvia B. Carvalho, José C. Brito, Robert L. Pressey, Eduardo J. Crespo & Hugh P. Possingham

Simulating the effects of using different types of 
species distribution data in reserve selection 

Chapter 5

In a perfect world, systematic conservation planning would use complete information on 

the distribution of biodiversity. However, information on most species is grossly incomplete. 

Two main types of distribution data are frequently used in conservation planning: 

observed and predicted distribution data. A fundamental question that planners face is – 

which kind of data is better under what circumstances? We used simulation procedures 

to analyse the effects of using different types of distribution data on the performance 

of reserve selection algorithms in scenarios using different reserve selection problems, 

amounts of species distribution known, conservation targets and costs. To compare these 

scenarios we used occurrence data from 25 amphibian and 41 reptile species of the Iberian 

Peninsula and assumed the available data represented the whole truth. We then sampled 

fractions of these data and either used them as they were, or converted them to modelled 

predicted distributions. This enabled us to build three other types of species distribution 

data sets commonly used in conservation planning: “predicted”, “transformed predicted” 

and “mixed”. Our results suggest that reserve selection performance is sensitive to the type 

of species distribution data used and that the most cost-efficient decision depends most 

on the reserve selection problem and on how much we have of the species distribution 

data. Choosing the most appropriate type of distribution data should start by evaluating 

the scenario circumstances. While there is no one best approach for every scenario, we 

discovered that using a mixed approach usually provides an acceptable compromise 

between species representation and cost. 
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5.2 Introduction

Systematic conservation planning (Margules and Pressey 2000; Possingham et al. 2006) 

is now a “text book” framework developed to identify protected area systems that will 

efficiently meet clearly defined objectives of species representation and persistence. Ideally, 

this framework would use complete information on the distribution of biodiversity within 

the planning region. Unfortunately, we never have complete information. Two main 

types of distribution data are frequently used in conservation planning: observed and 

predicted data, both offering advantages and disadvantages (Rondinini et al. 2006). Thus, 

fundamental questions that planners face include: Which sort of data is better under what 

circumstances? When should I bother building predictive models for species?

Observed distribution data of species are often compiled from museum and herbarium 

records as point location data, or from distribution atlases, usually in a grid format. These 

data usually contain uncertainty regarding the exact location of the records and, more 

rarely, mistakes in species identification (Graham and Hijmans 2006). However, the 

largest source of error with observed distribution data occurs if we assume that species are 

absent where we have no records for them. False species absences are common because 

data compilation is generally made from multiple author sources, using biased or ad-hoc 

surveys. Also, even where coverage of the landscape is comprehensive, false absences occur 

since some species have low probabilities of detection because they are rare or secretive 

(de Solla et al. 2005). These data sets usually do not indicate where species were searched 

for but not found (Bini et al. 2006). When used for conservation planning purposes, false 

absences in observed distribution data can increase the cost of the reserve system because 

false absences mean higher apparent rarity and missed opportunities for representation of 

co-occurring species (Pressey et al. 1999; Rondinini et al. 2006).

To overcome the limitations of using incomplete distribution data, researchers use 

ecological niche-based models to predict the distributions of species. However, these 

models are not free of uncertainty or error because: a) the distribution data on which 

they are based contain errors, as discussed above; b) they cannot take into account all 

environmental, ecological and historical factors, and the various interactions between 

them, that affect species distributions; c) there might be errors in the ecogeographical 

variables used to create the distribution models, either through measurement errors or 

as a consequence of the resolution at which environmental variables are mapped; and d) 

different statistical modelling methods have different predictive performances (Elith et 

al. 2006). These errors and uncertainties usually give rise to an overestimation of species 

distributions due to the limitations of modelling algorithms (Segurado and Araújo 2004) 

and because some suitable habitat is often not occupied as a consequence of historical 

factors, geographical barriers or biological restrictions not captured by ecogeographical 

variables (Lomolino et al. 2005). These commission errors - false positives - have an 

adverse impact on conservation planning decisions because areas where species do not 
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occur might be selected for conservation effort, resulting in both a waste of funds and an 

unrecognised failure to achieve a conservation target (Rondinini et al. 2006).  In extreme 

cases it is conceivable that we may think we have conserved an adequate fraction of 

the distribution of a species when, in reality, it is absent from the conservation network 

entirely.  Intuitively, false positives are more dangerous for conservation than false 

negatives (Rondinini et al. 2006).

Previous studies demonstrated that reserve selection results are sensitive to the type of 

species distribution data (Freitag et al. 1996; Wilson et al. 2005). However, reserve selection is 

a complex problem, relying on several factors that can influence the decision on which type 

of data to use. The interactions between these factors have not been addressed in previous 

studies. One of these factors is the choice of the underlying mathematical problem that we 

are trying to solve. Two different types of mathematical problems have been formulated 

in terms of reserve selection: the “minimum set”, and the “maximal cover” problems (see 

Cabeza and Moilanen 2001; Sarkar et al. 2006 for reviews). In the “minimum set” problem, 

the objective is to minimize the total cost of sites such that each species is represented at 

or above a pre-determined target. In the “maximal cover” problem, the objective is to find 

a reserve system that contains the most number of species that meet their targets, subject 

to a limit on the total cost of selected planning units. Other factors that may influence the 

performance of the different types of species distribution data are the amount of the species 

distribution that is known when the planning process starts (Freitag and van Jaarsveld 

1998; Grand et al. 2007), the level of the target (Justus et al. 2008; Warman et al. 2004), and 

the cost of  the planning units (Balmford et al. 2003; Bode et al. 2008). 

In this paper, we analyse the effects of using different types of species distribution data 

in reserve selection, and the sensitivity of reserve selection outcomes to the interaction 

of all the factors described above. The intent is to provide information to conservation 

planners about the pros and cons of different sorts of species distribution data in different 

situations and to contribute general guidelines to assist decisions about the manipulation 

of species distribution data before planning commences. We plan to answer these practical 

questions: Which sort of data is better under what circumstances? When should I bother 

building predictive models for species if their use is for spatial conservation planning? 

5.3 Methods

5.3.1 Study region

The study region is the continental Iberian Peninsula, situated in the extreme southwest 

of Europe (bounded by 9º32’ to 3º20’E and 35º56’ to 43º55’N). The Iberian Peninsula is 

included in the Mediterranean hotspot (Myers et al. 2000) and it includes many endemic 

species because it was one of the major glacial refugia in Europe during the Pleistocene 

(Hewitt 1996). This region has also acted as a centre of diversification (Gómez and Lunt 

2006) as indicated by cryptic species complexes (e.g. Pinho et al. 2007). 
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5.3.2 Species and distribution data

We conducted this study using the Iberian amphibians and reptiles because these groups 

are remarkably diverse in this region (Cox et al. 2006), with six endemic amphibian 

species occurring in the Iberian Peninsula plus two in the Pyrenees, and eight endemic 

reptile species plus two in the Pyrenees. Moreover, the observed occurrences of amphibian 

and reptile species are documented for the Iberian Peninsula in a comprehensive UTM 

grid format, which makes these taxonomic groups adequate subjects for the present study 

(Loureiro et al. 2008; Pleguezuelos et al. 2002).

We included in the analysis 66 species: 25 amphibians and 41 reptiles (see Appendix 5.1), 

defined according to the taxonomic list in Carretero et al. (2009) and Comisión de 

Taxonomía de la AHE (2005). However, we made three alterations to the list: (1) Triturus 

marmoratus and the recently described T. (marmoratus) pygmaeus were combined under 

Triturus marmoratus because distribution data for T. (marmoratus) pygmaeus were not 

available for Portugal; (2) all species from the genus Pelodytes were treated as one taxon, 

called Pelodytes sp., because the systematics of these populations are still uncertain; and 

(3) Iberolacerta monticola, I. cyreni and I. martinezricai were lumped as Lacerta monticola 

because these species are morphologically similar, are phylogenetic sister-taxa and have a 

very small range which hampered the development of accurate predictive models (Engler 

et al. 2004; Guisan et al. 2006; Stockwell and Peterson 2002).

Species distribution data were collected from the most recent herpetological atlases 

of Portugal (Loureiro et al. 2008) and Spain (Pleguezuelos et al. 2002), and referenced 

to the UTM grid of 10x10 km, in a total of 7687 grid cells. Each grid cell is hereafter 

referred to as a planning unit. We assembled these data in ArcGis 9.2 (ESRI 2006), to 

create a planning unit vs. species matrix where the value 1 was assigned to all planning 

units where each species was present, and the value 0 to all planning units where each 

species was absent. We used these data to build five sets of species distribution data: “real”, 

“observed”, “predicted”, “transformed predicted” and “mixed”.  The methods in which 

the five distribution data sets were assembled are described next.

“Real” and “observed” data sets

We assumed that our compiled data set of species distribution data had no omission or commission 

errors, and represented the complete species distributions. We refer to this as the “real” data set.  

We used the “create random selection” command from Hawth’s Analysis tools (Beyer 

2004) to randomly delete 50%, 75% and 90% of presence records of each species from the 

“real” data set, obtaining three different data sets that we call: “Observed 50”, “Observed 

25” and “Observed 10”, respectively. We assumed that these data sets represented the part 

of the species distribution that was known by the scientific community in three different 

scenarios. We used these “observed” data sets directly in the conservation planning process 

and for species distribution modelling. 
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“Predicted” data sets

For each of the three observed data sets (50%, 25% and 10%), we modelled the distribution 

of each amphibian and reptile species using a set of environmental variables. We assembled 

nine uncorrelated (r2< 0.750) ecogeographical variables (hereafter “variables”) of two types: 

climate variables (temperature seasonality, maximum temperature of warmest month, 

minimum temperature of coldest month, temperature annual range, annual precipitation, 

precipitation of wettest month, precipitation of driest month and precipitation seasonality) 

and a topographic variable (altitude). We downloaded all variables from the WorldClim 

database (Hijmans et al. 2005) which is a set of global climate layers generated through 

interpolation of climate data from weather stations on a 30 arc-second resolution grid. We 

changed the resolution of all variables to a grid cell size of 10x10 km to fit the planning 

units, using the average value of all values inside each planning unit.

We used the software Maxent v. 3.2.1 (Phillips et al. 2006; Phillips and Dudik 2008) 

to predict the distribution of each species from the “observed” data sets. Maxent uses a 

maximum entropy method to estimate the distributions of species with the constraint 

that the expected value of each variable (or its transform and/or interactions) should 

match its empirical average, i.e. the average value for a set of sample points taken from 

the target species distribution. We used Maxent because this method seems to perform 

better than other modelling methods for predicting species distributions (Elith et al. 

2006). We used the default “auto features” option, the recommended default values for 

the convergence threshold (10-5), the maximum number of iterations (500) and with the 

regularization value set to 1. We set the random test percentage to 20% to every species 

with more than 5 occurrences and for the others we did not reserve data for testing.  We 

used the logistic output, which assigns a probability of occurrence of each species to each 

cell in the study region. 

With the Maxent results, we built a species vs. planning unit matrix similar to the 

“observed” ones, but using probabilities of occurrence instead of data on “observed” 

occurrences. In this way we obtained three new data sets: “Predicted 50”, “Predicted 25” 

and “Predicted 10”. We evaluated the agreement between each model output and the 

“real” dataset by plotting a Receiver-Operating Characteristic Curve (ROC) (Zweig and 

Campbell 1993) and calculating the area under the curve (AUC) (see Appendix 5.1).

“Transformed predicted” data sets

For each of the three “predicted” data sets (50%, 25% and 10%), we transformed the 

Maxent output probabilities to a predicted absence/presence (0/1) matrix. For this 

purpose, we found a threshold probability for each species to balance commission and 

omission errors. Thus, we used the widely adopted method of choosing a threshold at 

the point on the ROC curve where the sum of the sensitivity and specificity is maximized 

and calculated an individual threshold for each model (Liu et al. 2005). Then, for each 

species, we transformed the probability value in each planning unit to 0 if it was lower 
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than the threshold and to 1 if it was equal to or higher than the threshold. In this way 

we obtained three new data sets: “Transformed Predicted 50”, “Transformed Predicted 25” 

and “Transformed Predicted 10”.

“Mixed” data sets

Because statistical models for some species are relatively unreliable, we also created a 

“mixed” data set that was a combination of “observed” and “transformed predicted” data 

sets. Commission (false positive) errors generated by uncertainty in species distribution 

models have consequences for conservation planning because areas where species do not 

occur might be mistakenly selected for conservation purposes. This error is more likely 

when dealing with restricted-range and threatened species. The typically low number 

of occurrence records of these species leads to predictive distribution models with low 

accuracy (Guisan et al. 2007; Stockwell and Peterson 2002) and consequently false presences 

are common. Too many false presences could dramatically compromise conservation 

outcomes for restricted range and threatened species by directing conservation toward 

areas where they are absent (Purvis et al. 2000). For these reasons, we used two criteria 

to select species that would be represented by “observed” data: a) distribution range 

less than 5% of the study area (measured in the “real” data set); and/or b) conservation 

status Endangered or Critically Endangered in at least one of the countries of the Iberian 

Peninsula. For all the species that did not fulfil at least one of these criteria, we used the 

data from the “transformed predicted” data sets. 

5.3.3 Reserve selection

We used two different approaches to select optimal sets of planning units necessary 

to achieve species conservation targets: “the minimum set” and the “maximal cover” 

approaches. In both we evaluated the performance of each of the 13 data sets described 

above in four different target scenarios and two cost scenarios in a total of eight combined 

cost-target scenarios.

 A common way to set species targets in conservation planning is to use a proportion 

of species distributions, usually 10% (Tear et al. 2005). Thus, in three of our target scenarios 

we set targets as a fixed proportion of “real” species occurrences. We used the 10% target 

because this is often used, and two additional scenarios with lower proportion (5% and 

1%), in order to analyse the sensitivity of our results to different target amounts. We refer 

to these scenarios as T10, T5 and T1, respectively. We also set another target scenario 

where we attributed different target proportions to different species according to their 

conservation status, geographic range and biological status (see Appendix 5.2 for details). 

We refer to this scenario as Tdif. For each target scenario, the number of occurrences 

targeted for the conservation of each species was therefore equal for all the data sets, 

regardless of the number of occurrence records actually present in the data sets. In this way 

the reserve selection algorithms were trying the achieve the same number of occurrences 
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for a given species when using data sets derived from different subsets of the “real” data 

(50, 25 and 10%). For “observed”, “transformed predicted” and “mixed” data sets, we 

had allocated species to planning units as simple presences so application of targets was 

straightforward. For the “predicted” data sets, we summed the probabilities to generate an 

expected number of occurrences and applied percentage targets to this number.

The two cost scenarios were set in a manner that, in one of them, all PUs had the 

same cost (Uniform cost scenario9, and, in the other, costs differed in different PUs (Log 

normal cost scenario). In the Uniform cost scenario we set the cost to 10 000 units in 

all PUs, since this is approximately the area of each PU (in ha). In the Log-normal cost 

scenario, we attributed a random cost to each PU using a Log-normal distribution with a 

mean of 10 000 units and a standard deviation of 2 500.   

The Minimum Set approach

We used the 13 species distribution data sets as input data in the Marxan software v1.8.10 

(Ball and Possingham 2000) with the eight combinations of cost and target. Marxan 

software delivers decision support for reserve system design by using a simulated annealing 

algorithm to choose a set of planning units that meets a suite of biodiversity targets for the 

lowest possible total cost.

For each run, we used the following recommended Marxan parameters (Ball et 

al. 2009): algorithm - simulated annealing; number of runs - 100; penalty cost for not 

achieving the target - 10 000; iterations per simulation - 1 000 000; temperature decreases 

per simulation - 10 000; initial temperature and cooling factor - adaptive. This approach 

produced 104 Marxan analyses each of which identified potential conservation areas 

across the study region based on different combinations of species distribution data (13), 

targets (4), and costs (2).

Reserve Selection Performance

For each of the Marxan simulations we chose the best of the 100 solutions, i.e., the 

one that achieved all the targets at lowest cost. For each of these best solutions we analyzed 

the performance in terms of species representation, cost and cost-efficiency. 

Species Representation

To evaluate the performance of each method of assembling distribution data when used 

for reserve selection purposes, we compared how the selected planning units represented 

the “real” distribution of each species, or in other words, how many occurrences of the 

“real” distribution of each species were covered by the Marxan best solution in every one 

of the 104 simulations. We called this measure the real species representation (R). We then 

calculated a biodiversity performance metric (BP), as the number of species that achieved 

targets (this metric values range from 0 to 65). We compared biodiversity performances 

across the 104 reserve solutions, incorporating types of distribution data, amounts of 

distribution data known, different targets and costs.
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Cost

For each scenario we calculated the cost of the best Marxan solution as the sum of the 

costs of all planning units selected in the best solution.  

Cost-efficiency

For each scenario, we derived a cost-efficiency metric to evaluate the relationship between 

biodiversity performance and cost:

CE= 1000000 BP/ Cost

The maximal cover approach

We used the 13 data sets as input data in the Zonation software v 2.00 (Moilanen 2007; 

Moilanen et al. 2005; Moilanen et al. 2009), using the eight combinations of cost and target 

described above. Zonation uses a gradient-like iterative heuristic, which gives a solution very 

close to globally optimal (van Teeffelen and Moilanen 2008) to produce a sequence of cell 

removal throughout the planning region. This output allows us to calculate how much of the 

“real” distribution of each species is covered in the solution for different maximum costs. We 

used the target-based planning removal rule because we wanted to find the best solution in 

which the maximum number of species met conservation targets. The target-based planning 

uses a particular benefit function in which species representations will approach the species-

specific targets from above by keeping the highest number of species above targets as long 

as possible (Moilanen 2007). At some point, the representation of one or more of the species 

falls below target. From that point on, the algorithm assumes that the remaining distribution 

of that species has no value for the reserve network. Thus removing cells where only this 

species occurs does not increase the loss of biological value from the network.

In the species file we set all species weights to 1 and the targets of each species were 

set to the same percentages of occurrences as in the minimum set scenarios (T1, T5, T10 

and Tdif).   We used the same two cost layers, one for each cost scenario (Uniform and 

LogNormal). We set the warp factor to 1, excluded the reserve network aggregation and 

allowed planning units to be removed from anywhere in the region. 

Reserve selection performance

To evaluate the performance of each type of data set using Zonation we identified the 

set of planning units with the highest ranks in which the sum of all the PU costs was 

under a given budget. We set six budgets based on a percentage (0.1, 0.5, 1.0, 2.5, 5.0 and 

7.5) of the cost of the whole system for each cost scenario. For each solution under each 

budget, we evaluated how many occurrences of the “real” distribution of each species 

were covered and attributed the value of 1 if target was achieved and the value 0 if it was 

not. We then calculated BP as the number of species that reached their targets. 
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5.4. Results

5.4.1 The minimum set approach

Our results do not show evidence that one type of data set alone can achieve better 

performance in every situation. In most scenarios, the type of data set that achieved 

higher biodiversity performance metric (BP) scores were the “observed”, followed by the 

“mixed”, the “predicted” and the “transformed predicted” (Figure 5.1). In some scenarios, 

the “observed” and the “mixed” data sets achieved a similar biodiversity performance 

to the “real” data set. This result was consistent, regardless of the target and the cost 

scenarios. However, reserve systems driven by “observed” data were much more expensive 

solutions than the ones found by the other types of data sets, and was more evident in 

scenarios where we knew less of the distribution of species (Figure 5.2).  

Cost efficiency analysis (Figure 5.3) revealed that, in most scenarios, the “mixed” data 

sets generated the highest cost-efficiency. However, these results seemed to be sensitive 

to the amount of species distribution known. For example the solution derived by the 

“transformed predicted” data sets had higher cost efficiency when we knew 10% of the 

species distribution. In contrast, “observed” data sets were the ones that generated the 

least cost-efficient reserve systems in many scenarios, particularly when we knew a small 

percentage of the species distributions. 

Figure 5.1 - Biodiversity performance (BP), i.e. number of species achieving conservation target, 

obtained by each type of distribution data set in different scenarios of percentage of distribution 

data known (10%, 25% and 50%), representation targets (T1, T5, T10 and Tdif) and costs (uniform 

and log-normal). Mix – ‘‘mixed”; Obs – ‘‘observed”; Pred – ‘‘predicted”; Real – ‘‘real”; Tpred – 

‘‘transformed predicted”.
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Overall, scores achieved using the “observed” data sets, both for representation, cost 

and cost efficiency seem to be more sensitive to the amount of species distribution known 

than when we use other data sets. Results of the different target scenarios suggest that the 

rank of the performance of each type of data set is more sensitive to the method of setting 

targets (equal proportions vs. different proportions) than to different amounts targeted 

(1% vs. 5% vs. 10%). Finally, the cost scenario did not seem to have a major influence in 

the performance rank of the different types of data sets.  

5.4.2 The maximum cover approach

Similar to the minimum set approach, in the maximum cover scenarios we did not find 

evidence that one type of species distribution data alone performed better than the others 

in every scenario. We also found that the best type of data set seems to be dependent 

on the cost threshold available for a given scenario. Biodiversity performance tends to 

increase for higher cost values until all species achieve targets (Figures 5.4 and 5.5). In a 

low target scenario (T1), all types of data sets are able to achieve all species targets at low 

costs. For higher target scenarios (T5 and T10), higher cost values are required to achieve 

targets for all species and differences in biodiversity performance achieved with different 

costs are more distinct.

In general, “observed” and “mixed” data sets achieved higher biodiversity 

performances in many scenarios, particularly for lower cost values, lower targets 

and where we knew a larger fraction of species distributions. This was true both in 

the uniform cost scenario (Figure 5.4) and the Log-normal cost scenario (Figure 5.5). 

However, if one just compares the costs thresholds where at least one of the data sets 

achieved targets for all species (BP = 65), “predicted” and “transformed predicted” data 

sets are the ones that achieved better biodiversity performance in some of the uniform and 

Log-normal cost scenarios, respectively, and particularly where there are high targets and 

we know little about species distributions. The cost scenario influences the biodiversity 

performances achieved by the “predicted” and the “transformed predicted” data sets most. 

5.5. Discussion

Within a conservation planning framework, conservation practitioners need to decide 

which type of species distribution data to use, when faced with incomplete knowledge. 

Our results suggest that for our particular data set no single type of species distribution 

data is better in every conservation planning situation. Different types of data sets have 

different sensitivities to different factors, and thus the decision process should start by 

analyzing the circumstances in which the planning process is being conducted. Our results 

show that the factors that most influence the best choice are the type of mathematical 

reserve selection problem to be addressed and how much we know about the distribution 

of the conservation features. Conservation plans derived from “observed” data are much 

more sensitive to how much we know about species distributions than conservation 
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Figure 5.4 Biodiversity performance (BP), i.e. number of species achieving conservation target, 

obtained, using the maximal cover approach, by each type of distribution data set in different scenarios 

of percentage of distribution data known (10%, 25% and 50%), representation targets (T1, T5, T10 

and Tdif) and cost thresholds in the uniform cost scenario. Mix – ‘‘mixed”; Obs – ‘‘observed”; Pred – 

‘‘predicted”; Real – ‘‘real”; Tpred – ‘‘transformed predicted”.

plans derived using the other types of distribution data sets. This is particularly important 

when we use a minimum set approach. With this approach, conservation plans using 

“observed” data met the most conservation targets because we assumed that “observed” 

data had no commission errors, and thus no chance of selecting reserves where species 

do not exist. When we used data derived from species distribution models, there was the 

chance that sites with false presences will be selected to conserve species and consequently 

conservation objectives may not be met during implementation. However, reserve 

systems driven by “observed” data were also much more expensive solutions than the 

ones found by the other types of distribution data and the cost was much higher when 

targets were a fixed proportion of the real data. This is because the minimum set approach 

applies an algorithm that forces the achievement of all targets. When only a fraction of 

a species distributions is known, the overlap between species distributions is less, fewer 
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Figure 5.5 - Biodiversity performance (BP) obtained, using the maximal cover approach, by each 

type of distribution data set in different scenarios of percentage of distribution data known (10%, 

25% and 50%), representation targets (T1, T5, T10 and Tdif) and cost thresholds in the log-

normal cost scenario. Mix – ‘‘mixed”; Obs – ‘‘observed”; Pred – “predicted”; Real – ‘‘real”; Tpred 

– ‘‘transformed predicted”.

species co-occur in planning units, and the number of selected planning units (and cost) 

increases. These results are consistent with those found by Grand et al. (2007) and Pressey 

et al. (1999).  The sensitivity of conservation plans derived from “observed” data to the 

amount of species distribution known was less obvious when we used the maximum cover 

approach because, in this case, we were not forcing the algorithm to achieve all targets 

and, for a given cost, there is a possibility of covering, by chance, localities where species 

do occur but are not known.

“Predicted” data sets produced conservation plans with generally higher biodiversity 

performances than those generated using the “transformed predicted” data, but at a 

higher cost. This may have occurred because, in the predicted data sets, the probabilities 

of occurrence are low in a considerable proportion of the area and this may lead to larger 

areas being selected to achieve targets. An alternative method for using the “predicted” 
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data sets would be to use an algorithm that favours planning units with higher probabilities 

(Game et al. 2008) instead of meeting a target by summing probabilities within different 

planning units.  In both the minimum set and the maximum cover approaches, including 

variable land costs did not have a major influence on which data set generated the best 

conservation plans. 

We recognize that our methodology has limitations and that a few of the assumptions 

made in this theoretical study need to be tested more broadly. One limitation is that we 

conducted this study in one region only and with one set of species. It plausible that the 

size of the region and relationships between the distributions of the species will affect the 

performance of reserve selection (Warman et al. 2004). The assumption that the “real” 

data set had no omission or commission errors may cause a bias in our ability to evaluate 

the performance of the data sets derived by the species distributions models (“predicted”, 

“transformed predicted” and “mixed”). It is possible that the use of these sorts of data 

yield a better performance than we found here because it is likely that areas where models 

predict species occurrences are in fact true presences. Additionally, it is also possible that 

the “observed” data set contains false presences. We chose not to introduce false positives 

because they are generally much rarer than false absences and in our particular data set 

we were very confident about the small number of false presences. This was because both 

the Portuguese and the Spanish atlases of amphibians and reptiles were produced recently 

(2008 and 2002, respectively) and the methodology used in both of them included field 

work, which confirmed a large proportion of the oldest records. Furthermore, uncertain 

records were reanalyzed and the most uncertain ones were removed from the database 

based on expert knowledge. However, we are aware that false presences can be an important 

source of error in some data sets. If we had simulated false presences in our “real” data, 

the biodiversity performance and cost-efficiency scores achieved by the different data 

sets could be slightly different. Thus, an interesting avenue of research would be to test 

the combined effects of different rates of both false presences and false absences in the 

“observed” data.

Knowing that complete and accurate distribution data are impossible to obtain in 

the real world we were able to simulate how the degree of data incompleteness influences 

the effectiveness of reserve selection by assuming that our data represented the truth. 

An alternative method to carry out this analysis would be to use virtual species but, 

in this case, we would be losing plausible statistical relationships between species and 

environmental variables, which will also create a bias in the outcomes of the predictive 

distribution models. 

One further limitation is that we used only one sample of the “real” data set to 

produce each of the “observed” subsamples (obs50, obs25 and obs10). Using replicates of 

the randomizations may have produced more robust outcomes, although we do not believe 

that it would have produced fundamentally different results. The modelling technique for 

creating species distributions might also influence the results, since different modelling 

techniques perform differently with respect to commission and omission errors with 
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different data (Segurado & Araújo 2004). Nonetheless, at present, Maxent is considered 

one of the most robust modelling techniques (Elith et al. 2006), even with small data sets 

(Hernandez et al. 2006; Pearson et al. 2007). This robustness was largely confirmed when 

we analysed the agreement between model outputs and the “real” data set. In general, 

our models had a good performance, with about half of them having AUC values higher 

than 0.9, and only 3% having poor performance (AUC values under 0.7) when we used 

half of the real data. The AUC values were only slightly lower for most species when we 

used smaller proportions of the “real” data to build the models. The better the models are, 

the better they are expected to perform in reserve selection. Thus, additional criteria for 

using “observed” data in the “mixed” data set for particular species could be the use of 

“observed” data where model performance is low (low AUC). However we did not do so 

because most of the species whose models did not perform well were widespread, which 

is a common case (Guisan et al. 2007). 

Another consideration is that there are a number of ways to select a threshold to 

convert “predicted” to “transformed predicted” data, all with different consequences (Liu 

et al. 2005). The consequences of how we chose the threshold has been discussed elsewhere 

(Wilson et al. 2005) and goes beyond the scope of the present work. The size chosen for the 

planning units is another factor known to influence reserve selection solutions (Pressey 

and Logan 1998; Warman et al. 2004). Smaller planning units are thought to deliver more 

cost-efficient reserve networks but some authors argue that groups of selected planning 

units should be large enough to support ecological processes (Pressey et al. 2003). In the 

present work by using a planning unit size equal to the grid size used in the models, we 

assured that we were comparing results under the most efficient reserve solution possible 

regarding our base data. However, it remains to be determined if our results would be 

different if we had used different sized planning units. 

We used two different reserve selection algorithms. In the minimum set approach, we 

used a simulated annealing algorithm, which delivers many sub-optimal solutions to the 

problem (Possingham et al. 2000). In the maximum cover approach, we used a gradient-

like iterative heuristic. The reason we used different algorithms is because Marxan software 

is designed to solve the minimum set problem and Zonation is best suited to solving the 

maximum cover problem by using a target-based analysis.

Finally, we emphasize that species representation is only one of the two objectives 

of conservation planning and, ultimately, conservation planning should aim for species 

persistence (Araújo and Williams 2000; Araújo et al. 2002; Cabeza and Moilanen 2001; 

Cowling et al. 1999; Pressey et al. 2007; Pressey et al. 2003). Moving from habitat models 

to persistence presents many challenges. Extinction risk is a complex metric, dependent 

on habitat suitability but also on population processes not captured by habitat models 

(Nicholson et al. 2006; Purvis et al. 2000; Tyre et al. 2001), and also in the possible shift 

in species distributions driven by climate change or habitat fragmentation. Exactly which 

sort of data and reserve selection algorithm is best remains an open problem which is 

almost impossible to test empirically. 



Chapter 5 108

5.6 Conclusion

Our results shed light on how conservation practitioners should decide which type of 

species distribution data to use in different spatial conservation prioritisation decisions. 

We recommend that the decision process should start by evaluating how much we know 

about the distribution of the conservation features. Clues can be found by identifying 

the well-sampled grid cells in the study area (see Hortal et al. 2007) or by building species 

distribution models and comparing the estimated and observed distribution ranges.

We can conclude that when there is very good unbiased distributional data, the 

“observed” distribution data is best for achieving representation goals in conservation 

planning. However, information on probabilities of occurrence allow planners to discern 

between occupied sites of different quality, which may be useful for achieving persistence 

goals (Araújo and Williams 2000). When species distributions are incomplete, the normal 

case, is not always clear which distribution data is best. 

If we formulate our conservation planning problem as a minimum set problem and if 

knowledge of species distributions is poor, our solutions will be costly. Where there are poor 

data we recommended that planners choose one of two options. The first option would be 

to use a “mixed” type of data set. Mixed data sets can achieve good cost-efficiency and have 

the advantage of reducing the risk of failing to protect vulnerable and rare species, while 

achieving all established targets. The second option would be to use the “observed” or the 

“mixed” data sets in a maximum cover approach if our distributional knowledge is poor, 

but not very poor, or the “transformed predicted” if it is extremely poor. However, using 

“transformed predicted” data requires care for several reasons. First, this approach does not 

guarantee that the plan will cover all species adequately, and the species that do meet their 

targets may be the ones of least conservation concern. Second, we recognize that our results 

are influenced by the particular correlation patterns of species in our study area. Since a 

considerable number of our species are widespread in the study area, the correlation between 

species distributions was high, and the chance of placing a reserve where several species co-

occur was also high. Thus, we believe that a fruitful avenue of research would be to repeat 

our analyses with data with different distributional relationships between species. A third 

option could be to invest in further data sampling, an option to which cost-efficiency was 

not evaluated in the present work. However, Grantham et al. (2008) found that investing 

in additional data might not be the most cost-efficient approach to conservation when 

implementation is gradual and accompanied by ongoing habitat loss. 
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, where i is the species.

Conservation Status 

Conservation status value of each species was calculated based on a three categorical 

variables model: Portuguese Red Book Status (PTRB), Spanish Red Book Status (ESRB) and 

European Conservation Status (EC). The first two variables refer to IUCN categories in each 

country red book (Pleguezuelos et al., 2002; Cabral et al., 2005), while EC refers to species 

classification according to European Habitats Directive (92/43/EEC). A conservation score 

was assigned to each category of each variable (table S.5.2.1).

Conservation Status of each species was calculated according to S.5.2.2, for species 

occurring both in Portugal and Spain, and according to equation S.5.2.3, for species 

occurring only in Spain.

Appendix 5.2

Description of the method used to assign species targets according to Tdif scenario

Species were ranked according their conservation priority and vulnerability. Three sets of 

variables were evaluated for each species: Conservation status (CS), Biological status (BS) 

and Geographic range (GR). These variables were combined in an index ranging from 

zero to 100. The main assumption of this method is that 100% target are likely required 

for highly endangered species, whereas 0% is probably sufficient for non endangered 

widespread species, because they are likely to persist even if any conservation 

effort is implemented. 

Following this principle, species were ranked according to an index which comprised 

conservation status, biological features and distribution ranges as a mean to determinate 

the percentage of species distribution that should be considered under protected areas 

according to equation S.5.2.2. A geometric transformation was made in order that most 

vulnerable species tended to have conservation targets of 100% of its distribution and less 

vulnerable species tended to have 0% targets.     

Rank

CS BS GR

CS BS GR
i

i i i

  =

+ +





+ +

















×3

3

100

5

5

max
equation S.5.2.1

CS

PTRB ESRB EC
i

i i
i

=

+ +
2
3

equation S.5.2.2

, where i is the species.
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CS ESRB EC
i

i i= +
2

equation S.5.2.3

, where i is the species.

Biological Status 

Biological startus value of each species was calculated base on an index with four 

categorical variables: Annual fecundity (AF), Age of female sexual maturity (AFSM), 

Trophic specialization (TS) and Mean Individual Biomass (MIB). Annual Fecundity refers 

to the mean number of eggs or young produced per year by adult females. Age of Sexual 

Maturity refers to minimum age of female reproduction. Trophic Specialization refers to 

species position on trophic chain and Mean Individual Biomass refers to mean biomass of 

males and females. To each category  a conservation score was assigned according to table  

S.5.2.1. All biologic data was collected from Salvador (1998) and García-París et al. (2004). 

Biological Status (BS) of each species was calculated according to equation S.5.2.4.

BS AF AFSM TS MIB
i = + + +

4
equation S.5.2.4

, where i is the species.

Geographic Range 

Geographic range value of each species was calculated based on an index with two 

variables: Global distribution (GD) and Iberian distribution (ID). These variables reflect the 

rarity degree of the species at global and Iberian scales. To each category it was assigned 

a conservation score according to table 1. The Geografic Range (GR) value of each species 

was calculated according to equation S.5.2.5.

GR GD ID
i

i i= +
2

equation S.5.2.4

, where i is the species.

Thus, he final targets assigned to each species according to Tdif method, ranging from 0 

to 100, are showed in table S.5.2.2. 
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Set Variable Category Score

Conservation 
Status
(CS)

Portuguese Red Book 
Status
(PTRB)

Critically endangered (CR)  100

Endangered (EN) 75

Vulnerable (VU) 50

Near threat (NT) 25

Least Concern (LC) 0

Data deficient (DD) 0

Not evaluated (NE) 0

Spanish Red Book 
Status
(ESRB)

Critically endangered (CR)  100

Endangered (EN) 75

Vulnerable (VU) 50

Near threat (NT) 25

Least Concern (LC)  0

Data deficient (DD) 0

Not evaluated (NE) 0

European Conservation 
Status
(EC)

Priority species 100

Species included in Annex II and IV 75

Species included in annex II 50

Species included in annex IV 25

Species not included in any annex 0

Biological Status
(BS)

Annual fecundity
(AF)

< 5 eggs or youngs 100

≤ 5 a ≤10  eggs or youngs 80

<10 a ≤ 15 eggs or youngs 60

<15 a ≤ 100 eggs or youngs 40

<100 a ≤ 1000 eggs or youngs 20

> 1000 eggs or youngs 0

Age of female sexual 
maturity
(AFSM)

> 5.0 years 100

3.5 – 5.0 years 80

1.5 – 3.5 years 60

1.0 – 1.5 years 40

0.2 – 1.0 years 20

< 0.2 years 0

Trophic specialization
(TS)

Omnivores 0

Secondary consumers 100

Mean Individual 
Biomass

(MIB)

> 500 g 100

100 – 500 g 80

30 – 100 g 60

15 – 30 g 40

10 – 15 g 20

< 10 g 0

Table S.5.2.1 - Method to determine species targets: sets, variables, categories and scores.
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Set Variable Category Score

Geographic range
(GR)

Global Distribution
(GD)

Iberian and/ or Pyrenean endemism 100

Species with 2/3 of its distribution in the Iberian 
Peninsula

75

Species from West Paleartic (includes North 
Africa and middle East)

25

Common species 0

Iberian Distribution
(ID)

Distribution range < 1.5% of Iberian Peninsula 100

Distribution range between 1.5 and 5.5% of 
Iberian Peninsula

75

Distribution range between 5.5 and 10.0% of 
Iberian Peninsula

50

Distribution range between 10.0 and 25.0% of 
Iberian Peninsula

25

Distribution range >25.0% of Iberian Peninsula 0

Table S.5.2.1 (continued)
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Amphibian species Tdif Reptile species Tdif

Chioglossa lusitanica 27.09 Acanthodactylus erythrurus 0.62

Euproctus asper 14.34 Algyroides marchi 27.09

Pleurodeles waltl 0.07 Anguis fragilis 0.08

Salamandra salamandra 0.08 Blanus cinereus 3.31

Mesotriton alpestris 0.57 Coronella austriaca 7.63

Lissotriton boscai 0.57 Coronella girondica 0.67

Lissotriton helveticus 0.04 Hemorrhois hippocrepis 5.67

Triturus marmoratus/ T. pygmaeus 0.08 Hierophis viridiflavus 7.63

Alytes cisternasii 1.70 Chalcides bedriagai 11.55

Alytes dickhilleni 0.57 Chalcides striatus 2.32

Alytes obstetricans 0.01 Chamaeleo chamaeleon 3.50

Discoglossus galganoi 9.65 Zamenis longissima 7.63

Discoglossus jeanneae 4.60 Rhinechis scalaris 4.13

Discoglossus pictus 1.39 Emys orbicularis 16.95

Pelobates cultripes 0.32 Hemidactylus turcicus 0.67

Pelodytes punctatus/ P. ibericus 0.00 Lacerta agilis 4.13

Bufo bufo 0.00 Lacerta aranica 74.38

Bufo calamita 0.01 Lacerta aurelioi 54.31

Hyla arborea 0.12 Lacerta bilineata 0.35

Hyla meridionalis 0.73 Lacerta bonnali 100.00

Rana dalmatina 6.27 Lacerta lepida 0.49

Rana iberica 4.60 Lacerta monticola 37.49

Rana perezi 0.16 Lacerta schreiberi 16.26

Rana pyrenaica 15.60 Lacerta vivipara 0.91

Rana temporaria 0.04 Macroprotodon brevis 2.47

Malpolon monspessulanus 0.91

Mauremys leprosa 10.56

Natrix maura 0.49

Natrix natrix 0.67

Podarcis bocagei 1.59

Podarcis carbonelli 6.27

Podarcis hispanica 0.35

Podarcis muralis 0.02

Psammodromus algirus 0.06

Psammodromus hispanicus 0.32

Tarentola mauritanica 0.91

Testudo graeca 50.87

Testudo hermanni 44.52

Vipera aspis 4.60

Vipera latastei 13.75

Vipera seoanei 59.81

Table S.5.2.2 - Targets assigned to each species according to the Tdif method.
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“Biology is the science. Evolution is the 
concept that makes biology unique” 
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6.1 Abstract

Incorporating evolutionary processes into conservation 
planning using species distribution data:

a case study with the Western Mediterranean herpetofauna

Sílvia B. Carvalho, José C. Brito, Eduardo J. Crespo & Hugh P. Possingham

Chapter 6

Aim: To incorporate evolutionary processes into conservation planning using current patterns 

of species distributions and environmental gradients as surrogates for genetic diversity.

Location: Western Mediterranean basin.

Methods: Distributions of 154 herpetological species were predicted using maximum 

entropy models, and groups of significantly co-occurring species (biotic elements) were 

identified. Environmental gradients were characterized for the complete area and for the 

area covered by each biotic element, by performing a Principal Component Analysis on the 

data matrix composed of nine environmental variables and categorising and combining 

the first two axes. In order to identify priority conservation areas, biotic elements and 

environmental categories were used as surrogates for the neutral and adaptive components 

of genetic diversity, respectively. Priority areas for conservation were identified under 

three scenarios: a) setting targets for species only; b) setting targets for species and for each 

environmental category of the overall area; and c) setting targets for each species and for 

each environmental category within each biotic element. 

Results: Nine biotic elements were identified, four for the amphibians and five for the 

reptiles. Priority areas identified in the three scenarios were similar in terms of amount of 

area selected, but exhibited low spatial agreement. 

Main Conclusions: Prioritisation exercises that integrate surrogates for evolutionary 

processes can deliver spatial priorities that are quite different to classical spatial 

prioritisations where only species representation is accounted. While new methods are 
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emerging to incorporate molecular data in spatial conservation prioritisation there is 

unlikely to be enough data for enough taxa for this to be practically useful in the near 

future. Here we develop an approach using surrogates for both the neutral and adaptive 

components of genetic diversity that may enhance biodiversity persistence when molecular 

data is not available or is not geographically comprehensive. 

6.1 Introduction

In the current global biodiversity crisis (Pimm and Raven, 2000), prioritising conservation 

areas that maximise species representation and enable persistence by maintaining key 

ecological and evolutionary processes has been a major goal of conservation biology 

(e.g. Brooks et al. 1992; Desmet et al. 2002; Margules and Pressey 2000; Moritz 2002; 

Rouget et al. 2003). However, conservation planning has tended to focus more on 

biodiversity pattern (representation) than on the evolutionary processes that generate and 

maintain biodiversity (Pressey et al. 2007). In order to maximise the probability of species 

persistence, conservation practitioners should incorporate knowledge on evolutionary 

processes and the distribution of genetic diversity in conservation planning (Crandall et 

al. 2000; Moritz 2002; Neel 2008). 

Several methodologies have been suggested to incorporate evolutionary history and 

processes in conservation planning. For example, phylogenetic diversity (PD) (Faith 1992; 

Vane-Wright et al. 1991) is a biodiversity index that measures the length of evolutionary 

pathways that connect a given set of taxa. By using appropriate algorithms (e.g. Rodrigues 

and Gaston 2002; Steel 2005), it is possible to choose a subset of taxa that maximizes 

representation of evolutionary distinctiveness. In general, in a balanced phylogenetic tree, 

PD diversity would be higher if one selects a set of taxa from branches separated by the 

main splits in the tree, i.e. by selecting sample taxa of the main phylogenetic lineages 

(Avise 1992; Rodrigues and Gaston 2002). These main lineages are probably the result of 

extensive historical isolation periods, such as vicariance events, derived from allopatric 

speciation (Avise 1992). While this approach would maximize the representation objective 

of conservation planning, by including maximum genetic diversity, it has been criticised 

on the grounds that it disregards areas of recent diversification, where adaptive genetic 

variation is highest, driving phenotypes or ecological traits, and therefore influencing 

retention of individual fitness and population viability (Smith et al. 2000, 2005). 

Consequently, it has been recognized that both the neutral and adaptive components 

of genetic diversity need to be preserved while targeting conservation of evolutionary 

processes (Brooks et al. 1992; Moritz 2002).

One of the challenges of integrating evolutionary processes in conservation planning 

derives from conservation planning being a spatially explicit process, which makes it 

necessary to spatially identify the neutral and adaptive components of genetic diversity. 

Previous studies have made progress to circumvent such challenge. For example, some 
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authors (e.g. Moritz and Faith 1998; Smith et al. 2000) used comparative phylogeography 

to identify sets of species sharing a common vicariance history, and subsequently used 

Venn diagrams to identify areas representing multiple range restricted unique lineages. 

Another approach identified areas with higher concentrations of lineage breaks to spatially 

reveal endemism at the sub-specific level (Rissler et al. 2006). In parallel, the adaptive 

component of genetic diversity has been addressed by identifying areas where recently 

diverged endemic species co-occur, as a proxy for rapid diversification areas or evolutionary 

hotspots (Davis et al. 2007; Vandergast et al. 2008). One important consideration about 

these studies is that they focused on a limited number of taxa, to which molecular data 

was available. However, molecular data is still lacking or is very incomplete for most 

taxa and available information is often collected using different molecular markers and 

statistical methods, which hinders integration into consensual phylogenies for multiple 

taxa. Therefore, using spatial surrogates for evolutionary processes is likely to be essential 

in conservation planning in the near future.

One of the possible surrogates for the neutral component of genetic diversity is 

community structure. Comparative phylogeography studies show that species with 

similar ranges often tend to be genealogically structured in similar ways (Avise 2000, 

2009). The explanation for this finding is that the emergence of geographic barriers can 

lead to vicariance and subsequent allopatric speciation of several taxa (Hickerson et al. 

2010). Consequently, deeply separated phylogroups are often confined to biogeographical 

regions as identified from current species assemblages (Avise 2000; Crisci et al. 2003). 

In other words, the vicariance model predicts that the ranges of the species originating 

by the same vicariant events, will be, on average, more similar to each other (Hausdorf 

2002). A classic example where genetic surveys have provided strong evidence for 

phylogeographic concordance is represented by the Mediterranean Peninsulas which 

constituted Pleistocene refugia for many taxa (Hewitt 2000; Taberlet et al. 1998; Weiss 

and Ferrand 2006). Thus, in areas where vicariance events played an important role in 

structuring biotas, the identification of groups of species with significantly co-occurring 

ranges may be a surrogate for the neutral component of genetic diversity.

Regarding the adaptive component of genetic diversity, some studies use ecological and 

climatic gradients as surrogates (e.g. Cowling et al. 2003; Rouget et al. 2003). The rationale 

for using these surrogates is that ecology plays a major role in speciation and adaptive 

radiation in many natural populations (Smith et al. 2005) because environmental gradients 

facilitate genetic differentiation and character displacement (Doebeli and Dieckmann 

2003). Thus, adaptive speciation is expected to be greatest along steep environmental 

transitions, such as ecotones (Budd and Pandolfi 2010; Smith et al. 2001), which often 

coincide with areas of high beta diversity, where different species assemblages co-occur 

(Spector 2002). However, crossroads constitute marginal areas of species distributions, 

where overall genetic diversity within species populations is generally lower (see Emerson 

and Gillespie 2008 for a comprehensive review). Thus, the recommended conservation 
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strategy is to protect contiguous habitats of sufficient area across major environmental 

gradients within the overall species assemblages, including core areas and crossroads 

(Araújo 2002; Moritz 2002; Smith and Grether 2008).

In this study we aim to incorporate evolutionary processes into conservation 

planning strategies using current patterns of species distributions and environmental 

gradients as surrogates. To do so, we identify groups of significantly co-occurring species – 

biotic elements (as surrogates for the neutral component of genetic diversity), characterize 

environmental gradients within such groups (as surrogates for the adaptive component), 

and use a reserve selection algorithm to identify priority areas for conservation. We 

compare the results with the ones obtained without incorporating evolutionary processes.

The study focuses on the herptiles of the Western Mediterranean region, because 

multiple historical events are claimed to have promoted vicariance events through 

changes in its climate and physical environment (Busack 1986; Busack and Lawson 2008; 

Hewitt 1996; Le Houérou 1997). Additionally, the phylogeography of several herptiles in 

this region have been studied using molecular tools, which allows making assumptions 

whether groups of significantly co-occurring species originated by vicariance. 

6.2 Methods

6.2.1 Study Region

The study region is located at the western part of the Mediterranean Basin (bounded 

by 13º9’W to 3º20’E and 27º38’’ to 43º49’N) and includes the continental territories of 

Portugal, Spain and Morocco (see Appendix 6.1). 

6.2.2 Species and environmental data sources

A total of 154 herpetological species are described as occurring in the study area 

(Appendix 6.2), of which 136 occur on only one side of the Strait of Gibraltar and 18 occur 

on both sides of the strait. Forty five species are endemic to the study region. 

Species distribution data were collected from the atlases of Portugal (Loureiro et al. 

2008), Spain (Pleguezuelos et al. 2002) and Morocco (Bons and Geniez 1996), other scientific 

publications (Carretero et al. 2004; Crochet et al. 2004b; Escoriza and Ortiz 2004; Fahd et 

al. 2005; Fahd and Pleguezuelos 2001; Guzmán et al. 2007; Martinez-Medina 2001) and 

fieldwork (Harris et al. 2008). The study area was divided into 12730 cells using a 10x10 km 

grid. Species distribution data were assembled in a geographical information system.

Climatic variables, such as temperature seasonality (TSEAS), maximum temperature 

of warmest month (TMAX), minimum temperature of coldest month (TMIN), temperature 

annual range (TAN), annual precipitation (PAN), precipitation of wettest month (PWET), 

precipitation of driest month (PDRY) and precipitation seasonality (PSEAS), and altitude (ALT) 

were downloaded from the Worldclim database (Hijmans et al. 2005). The resolution of all 

variables was converted to a grid cell size of 10x10 km to match with the species distribution 

data, using the average value inside each grid cell. 
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6.2.3 Species distribution modelling and patterns of species richness

Species distribution data from the study region may contain several biases. For example, 

the Iberian Peninsula was much more surveyed than Morocco, and within Iberia, 

protected areas and easily accessible regions have more data. Because of this sampling 

bias, and because the type of input data can influence the identification of significantly 

co-occurring species (Moline and Linder 2006), we used a maximum entropy modelling 

approach with software MAXENT (Phillips et al. 2006) to predict the distribution of each 

species in non-surveyed areas. This modelling technique requires only presence data as 

input, but consistently performed well in comparison to other methods (Elith et al. 2006).

To build the models, we selected nine variables (highest Pearson’s R was 0.75) known 

to be related to the distribution of amphibians and reptiles (e.g. Rodriguez et al. 2005; 

Soares and Brito 2007; Whittaker et al. 2007): TSEAS, TMAX, TMIN, TAN, PAN, PWET, 

PDRY, PSEAS, and ALT.

Given that the Iberian Peninsula was considerably more sampled than Morocco, we 

reduced the number of occurrences in the Iberian Peninsula for species occurring on both 

sides of the Strait of Gibraltar, in order to avoid sampling bias. A minimum convex polygon 

was drawn around each species’ occurrence in Morocco to calculate the occurrence density 

for each species. Then, presence data in the Iberian Peninsula was randomly selected to 

match the density in Morocco. 

To run Maxent, we used the default “auto features” option, the recommended values 

for the convergence threshold (10-5) and the maximum number of iterations (500). We 

set the random test percentage to 20% and the regularization value to 1. We used logistic 

output, which assigns a probability of occurrence of each species to each cell in the study 

region (Phillips and Dudík 2008). We ran the models 10 times for each species to avoid 

bias resulting from randomly splitting the data into training and testing and selecting 

background points. The final model for each species was an average of the 10 models, a 

method considered to increase significantly the accuracy of species distribution models 

(Marmion et al. 2009).

We evaluated the accuracy of each model by plotting a Receiver-Operating 

Characteristic curve (Zweig and Campbell 1993) and calculating the area under the curve 

(AUC). We reclassified MAXENT outputs (relative probability of each species occurrence 

in each grid cell) to zero (species absence) or one (species occurrence) by determining a 

species-specific threshold. The threshold was calculated according to the 10 percentile 

method, i.e. the threshold value corresponds to the model probability where 90% of the 

occurrence records with the highest model probabilities are considered as presences. 

To avoid over-prediction, for all species that only occur at one side of the Strait, we 

converted the probability of occurrence to zero at the side where they are not known to 

occur. Distributions of species with less than 20 occurrence records were not modelled and 

only observed records were used in subsequent analysis. 

After predicting the potential distribution of each species, we intersected the individual 

species maps to derive maps of potential species richness for amphibians, reptiles and total species.
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6.2.4 Biotic elements

We identified significantly co-occurring species groups of amphibians and reptiles in 

the Western Mediterranean region by using the biotic elements methodology proposed 

by (Hausdorf 2002). Biotic elements are defined as groups of species whose ranges are 

significantly more similar to each other than to those of taxa of other groups. It is 

recognized that such groups probably have similar ecological traits and are also likely 

to share a common biogeographic history (Hausdorf 2002; Morrone 2001). 

The biotic elements methodology is implemented in the program package 

prabclus v 2.1.2 (Hennig and Hausdorf 2008), which is an add-on package for the 

software R (R Development Core Team 2008). We first tested if there is a significant 

non-random congruence of species ranges using the function prabtest. This function 

applies an algorithm which tests if the observed degree of clustering of ranges can be 

explained by the varying number of taxa per cell and the spatial autocorrelation of the 

occurrences of a taxon alone (Hausdorf and Hennig 2003). Clustering of ranges means 

that dissimilarities between ranges of the same cluster are small, whereas the distances 

between ranges of different clusters are large. We used the statistic T (Hausdorf and 

Hennig 2003) to test if the distances between ranges of the same biotic element are 

significantly smaller than the distances between ranges of different biotic elements. 

The value of this statistics ranges from 0 to 1 and it is expected to be smaller for 

clustered data than for homogeneous data.

If there was a significant clustering, we determined species biotic elements by 

using the function prabclust. This function calculates a distance matrix using one of 

five available methods and then produces a Multidimensional Scaling (MDS) from 

the distances. Subsequently, it uses a model-based Gaussian clustering with “noise” 

approach to define the clusters. Support to determine the meaningful number of 

clusters is provided by the Bayesian Information Criteria. The prabclust function also 

integrates an initial estimation of noise, allowing identifying species whose ranges 

cannot be assigned to any biotic element. To calculate the distance matrix, we used the 

Kulczynski index because it is the most appropriate for data sets characterized by large 

differences in species ranges (Hennig and Hausdorf 2004; Moline and Linder 2006). 

The number of nearest neighbours to determine the initial noise estimation was set to 

one for the amphibians and to four for the reptiles, in order to be proportional to the 

number of species in each dataset (as suggested by Hennig, personal com).

6.2.5 Environmental gradients within biotic elements

To identify environmental gradients within each biotic element and the overall study area, 

we performed a Principal Component Analysis on the data matrix composed of the nine 

environmental variables used to build the species distributions models and the grid cells 

covered by the overall distribution of the species attributed to each biotic element. This 
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way, we decreased the variability of the nine variables to two principal components (PC), 

explaining a relatively high proportion of total environmental variability. Each component 

was then classified into four categories, according to quartiles of each axis. Subsequently, 

each grid cell was classified according to the combination of the categories obtained in 

PC1 and PC2, resulting in 16 categories for each biotic element. The classification codes 

were composed of two digits, which coded PC1 and PC2’s categories respectively. For 

example, code “12” stands for the combination of category one on the first axis and 

category two on the second axis of the PCA.

6.2.6 Priority areas for conservation

In order to indentify priority areas for conservation we used software Marxan (Ball and 

Possingham 2000; Ball et al. 2009). Marxan uses a simulated annealing algorithm to 

configure areas that minimize the sum of the cell’s costs while ensuring that targets set 

for each conservation feature are met. We identified priority areas for conservation under 

three scenarios: setting targets for species only (Scenario Sp); setting targets for species and 

for each environmental category of the overall area (Scenario SpEnv); and setting targets 

for each species and for each environmental category within each biotic element (Scenario 

SpEnvBE). In each scenario we aimed to represent 10% of the area covered by each species 

and/or environmental category while minimizing the total area needed to achieve those 

targets. Scenario SpEnvBE aims to assure that representation of species distributions within 

biotic elements is distributed across the environmental variability of each biotic element, 

and thus targets both the neutral and adaptive components of genetic diversity.

In each scenario, we run a preliminary sensitivity analysis in order to determine 

the minimum species penalty factor (spf) that would assure that all targets were met. We 

set this value as five for scenarios Sp and SpEnv and as 10 for scenario SpEnvBE. We also 

conducted a sensitivity analysis in order to identify a boundary length modifier (BLM) 

value that would retrieve solutions with a reasonable level of compactness. We set BML 

to five in all scenarios after visual inspection of results obtained with BLM ranging from 

one to 10. Iterations per simulation were set to 10 000 000, temperature decreases per 

simulation to 10 000 and the initial temperature and cooling factor to adaptive. 

Because Marxan retrieves near optimal solutions, we run it 100 times for each scenario 

and identified the best out of the 100 solutions as the one achieving lowest score for the 

Marxan objective function. We also identified the number of times that each cell was 

selected out of the 100 runs, hereafter called selection frequency as it is a measure of how 

frequently a cell is amongst the 100 good solutions the Marxan algorithm found. 

We analysed congruence between solutions by calculating the Pearson correlation 

coefficient between selection frequencies obtained with each pair of scenarios. We also 

evaluated agreement between the best solutions found in each scenario. To do so, we 

classified each grid cell in one of two categories (selected/not selected) and calculated 
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Cohen’s kappa coefficient of agreement (k) between pairs of scenarios, using package 

“psy” in software R (R Development Core Team 2008). If pairs of scenarios are in complete 

agreement then k value equals one. If k value is less than 1, it means less than perfect 

agreement between pairs of scenarios. If k is negative, it indicates that the pair of scenarios 

agrees less than would be expected by chance.

6.3 Results

6.3.1 Predicted species richness

The AUC values obtained in 123 individual-species models ranged between 0.72 and 

1.00 (Appendix 6.2). Predicted species richness was unevenly distributed in the study 

area (Figure 6.1). Higher total richness (amphibians plus reptiles) was predicted for south-

western and north-western Iberia, the Iberian Central System and the Morena Mountains 

in the Iberian Peninsula. In Morocco, higher total richness was predicted for the Rif 

and Atlas Mountains and along the Atlantic coast. The correlation between predicted 

amphibian and reptile richness was low (Pearson R=0.074, p< 0.01) indicating that 

distribution patterns of richness differs among taxonomic groups: Iberia was richer in 

amphibians and Morocco was richer in reptiles.

Figure 6.1 Species richness calculated from the predicted distribution model of each individual species 

for (a) total amphibians and reptiles, (b) amphibians-only, and (c) reptiles-only. In each map, species 

richness is classified in five classes and natural breaks were selected in order to maximise the difference 

between the classes. Maps shown in WGS 84 projection.
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6.3.2 Biotic elements

We found that distribution areas of amphibians and reptiles were significantly clustered. 

The statistic T was significantly smaller than expected under the null model for amphibians 

(p = 0.001, based on 500 simulations) and for reptiles (p= 0.008, based on 250 simulations). 

We determined four biotic elements for amphibians (clusters A1 to A4) and five for 

reptiles (clusters R1 to R5), and a noise component for each taxonomic group (Figure 6.2). 

Although clustering was significant, a relatively high proportion of amphibians (53%) and 

a smaller fraction (7%) of reptiles were not assigned to any biotic element.

The amphibian biotic elements (Figure 6.3a; Appendix 6.3) included one element 

comprising species that occur strictly in Morocco (cluster A1) and three elements 

comprising species that only occur in the Iberian Peninsula (clusters A2, A3 and A4). The 

Iberian biotic elements overlapped to some extent, particularly A2 and A4. However, the 

core areas of A2 were mainly located in western Iberia while the core areas of A4 were 

mainly in south-western and central Iberia.

The reptile biotic elements included three groups comprising species distributed at 

both sides of the Strait of Gibraltar (R1, R2 and R5) and two groups exclusively in Morocco 

(clusters R3 and R4) (Figure 6.3b; Appendix 6.3). Cluster R1 was largely represented by 

widespread species, including most of the species with Iberian-Moroccan range. Cluster 

R2 comprised mostly species distributed along the high altitude Iberian mountains and 

also Rif in Morocco. A considerable amount of spatial overlap occured between clusters 

R3 and R5, but cluster R3 had its core area in high altitudes, including the Rif and the 

Atlas Mountains and the Moroccan Atlantic coastal strip, while cluster R5 included 

predominantly lower altitude species along Atlantic and Mediterranean coastal areas. 

Cluster R4 was characterised by species occurring mainly in south-eastern Morocco.

Figure 6.2 Multidimensional scaling of the distribution data of (a) amphibians – four dimensions used, 

only first two dimensions shown. Four biotic elements were identified (1-4) plus a noise component 

(N); and (b) reptiles –three dimensions, used, only first two dimensions shown. Five biotic elements 

were identified (1-5) plus a noise component (N).
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6.3.3 Environmental gradients within biotic elements

The environmental variability within each biotic element and of the total area was reduced 

to 16 environmental categories (Figure 6.4). The total variance explained by the two axes 

was higher than 75% in all cases (Appendix 6.4). 

6.3.4 Priority areas for conservation

The cells identified as priority for conservation differed among scenarios, both with respect 

to the best solution and to the selection frequency map (Figure 6.5). 

Cells with higher selection frequency identified when targeting only species (scenario 

Sp) were mainly located along the Tagus river valley, mountains of Peneda-Gerês, 

Cantabrian, eastern Pyrenees, Guadarrama, Betic system, and the western section of the 

Central Mountain System, in the Iberian Peninsula, and along the Moulouya, Ziz, Drâa 

and Souss river valleys, in particular sections of the Atlases and Rif Mountains and other 

scattered transition areas in Morocco. Spatial patterns of selection frequency found when 

targeting species and overall environmental gradients (scenario SpEnv), were relatively 

similar to those found with scenario Sp, but cells around the Tagus river valley and the 

south-western section of the High and the Anti-Atlas mountains obtained lower selection 

frequency values, while a section of the Guadiana river valley (east to Merida) and 

Guadarrama mountains obtained higher selection frequency values. Spatial patterns of 

selection frequency obtained when targeting species and environmental variability within 

biotic elements (scenario SpEnvBE), were considerable different from those found with Sp 

and SpEnv (highest Pearson correlation coefficient was 0.51, table 6.1). Cells with high 

selection frequency scores were located along coastal northern Portugal, the Esla river 

valley, northern Iberian System, Rif Mountains and several other smaller regions. Lower 

selection frequency scores are mainly located along the Tagus river valley, northeast of 

the Iberia, the Moulouya river valley and the western sections of the Atlases Mountains. 

The best solutions found were surprisingly dissimilar between scenarios (figure 4) 

(the maximum Cohen’s Kappa coefficient is 0.07, table 6.1), although the number of grid 

cells selected was fairly similar (1134 grid cells in SP, 1188 in SpEnv and 1288 in SpEnvBE). 

Sp SpEnv SpEnvBE

Sp 1 0.07 0.05

SpEnv 0.73 1 0.06

SpEnvBE 0.47 0.51 1

Table 6.1 - Cohen’s kappa coefficients for the pairs of best solutions (upper matrix) and Pearson 

correlation coefficient for pairs of selection frequency solutions (Iower matrix).
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6.4 Discussion

This study demonstrates how we can use species distribution and environmental data to 

account for evolutionary processes in conservation planning. Despite earlier recommendations 

to explicitly address these processes in conservation strategies (Brooks et al. 1992; Crandall et 

al. 2000; Moritz 2002), they are generally disregarded (but see e.g. Desmet et al. 2002; Klein et 

al. 2009; Rouget et al. 2003), probably due to difficulties in identifying spatial surrogates for 

evolutionary processes. 

In the present study, we identified biotic elements and environmental gradients 

as surrogates for the neutral and the adaptive components of genetic variability, 

respectively. Our results showed that spatial prioritisation exercises that explicitly 

integrate such surrogates retrieve fairly different solutions from the planning in which 

we only account for species representation. The most important question here is, how 

effective are these surrogates?

The usefulness of biotic elements as surrogates for neutral genetic diversity is limited, 

because biotic elements can also originate due to post-vicariance dispersal or by other 

speciation modes (Hausdorf and Hennig 2004). Thus, caution is needed interpreting our 

results and it would be useful to integrate them with other biogeographical knowledge. 

There is evidence in our results that vicariance was not the only process underlying 

current distribution patterns because: a) the range of different biotic elements overlaps 

extensively and b) a large numbers of amphibian species could not be assigned to any 

biotic element. Still, the biotic elements found in the present study are fairly consistent 

with the most important vicariance events believed to have determined genetic 

patterns in some of the species (see Appendix 6.5 for interpretation of biotic elements). 

Thus, current species distributions are probably derived from an interplay of vicariance 

and dispersal events and biotic elements are a relatively good surrogate for the neutral 

component of genetic diversity.

Cladistic methods based on current species distributions, such as biotic elements 

or parsimony analysis of endemicity, have been criticized for creating misleading 

interpretations about historical events influencing current species ranges (e.g. Garzón-

Orduña et al. 2007; Szumik and Goloboff 2004). However, in the case of biotic elements, its 

usefulness goes beyond the identification of groups of species with common biogeographic 

histories. Determining areas of significantly co-occurring species is relevant from the 

ecological point of view because it allows recognition of groups of species that share 

similar niches and respond similarly to ecological disturbances (Azeria et al. 2009; Marquet 

et al. 2004). Additionally, it allows identification of the core area for the niche of such 

species, and transitional areas. Such identification is important because environmental 

characteristics enhancing the probability of persistence, as well as the type and degree 

of disturbances, differ between biotic elements and thus management and conservation 

strategies should also differ. For example, species identified under A3 probably have a 
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strong dependence on water, since their range is restricted to areas of high precipitation, 

while species identified under R4 are probably adapted to xeric conditions. By targeting 

populations along environmental gradients within biotic elements, we ensure that the 

overall ecological variability of each niche is preserved, which enhances the probability of 

persistence under ecological disturbances such as climate change (Pyke and Fischer 2005). 

Additionally, targeting ecological gradients among biotic elements forces the Marxan 

algorithm to choose grid cells that incorporate both: 1) core areas where populations’ 

densities are generally higher and more stable and thus more resistant to stochastic 

threats; and 2) crossroads where the genetic differentiation and the adaptation potential 

are usually higher.

Despite the evidence that environmental gradients facilitate genetic differentiation 

(Doebeli and Dieckmann 2003), particularly differentiation of fitness-related traits 

(Smith et al. 2005), further explicit molecular, morphological and behavioural studies 

would be required to test such assumptions for all the species targeted in this study and 

to fully understand spatial patterns of genetic diversity. However, there is evidence that 

ecological gradients may have influenced speciation. For example, the Iberolacerta genus 

probably diverged from Podarcis due to ecological segregation derived from competition, 

with Iberolacerta adapting to high altitudes and Podarcis to the lowlands (Crochet et al. 

2004a). There is also evidence that recent lineages of the Podarcis species complex may 

have originated from ecological speciation (Carretero 2008). Other correlative evidence 

of genetic and morphological variation with ecological gradients have been reported for 

many species, mainly justified by postglacial dispersion towards environmental gradients 

after climate amelioration (e.g. Alexandrino et al. 2007)

One of the most important challenges in conservation planning for evolutionary 

process is setting representation targets with ecological meaning. Without explicit 

molecular data, there is a big challenge to determine how many populations of a species 

are required to adequately capture within-species diversity (Neel and Cummings 2003). 

In this study we applied the widely used approach of targeting 10% of each feature 

distribution. Yet, this method does not specify how many populations (or landscape 

patches) are necessary for delivering adequate conservation, and does not assure that all 

populations marked for conservation are viable. The question of how much is enough is 

central in conservation planning but remains largely unresolved (Tear et al. 2005).

A second important issue concerns connectivity between conservation sites. 

Connectivity facilitates range shifts, gene flow and recolonisation after local extinction 

(Neel 2008). However, connecting naturally isolated populations could also result in 

outbreeding, which may not be desirable from a conservation perspective. Additionally, 

it has been recently argued that quantifying benefits of connectivity is plagued with 

uncertainty (for example, uncertainties in species dispersal abilities) and that connectivity 

can be improved by targeting other metrics such as habitat area and quality (Hodgson 

et al. 2009). Planning for connectivity is probably superfluous in our case because 

amphibians and reptiles have low vagility and the total study area is relatively large. 
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We recognize that this study could be improved by incorporating other prioritisation 

criteria, such as threats, other ecological processes and socio-economic features. However, 

our goal was not to identify priority areas to be implemented on the ground, but instead 

to demonstrate that it is possible to integrate evolutionary criteria into conservation 

planning, and that those criteria can deeply influence the selection of the priority sites. 

Given the urgent need to make conservation decisions (Grantham et al. 2009), 

approaches such as the one demonstrated in this study are useful because they enhance 

the probability of capturing evolutionary processes when molecular data are unavailable 

or not geographically comprehensive. However, we note that such approaches do not 

constitute an alternative to studies incorporating molecular data. Recently, there have 

been several attempts to incorporate evolutionary processes at the sub-specific level using 

molecular data. The neutral component has been addressed, for example, by delimitating 

evolutionarily significant units (Moritz 2002), measuring evolutionary distinctiveness 

(Faith et al. 2004; Forest et al. 2007; Posadas et al. 2001), or identifying Pleistocene refugia 

(Carnaval et al., 2009). The adaptive component has been addressed by identifying areas of 

rapid diversification or evolutionary hotspots (Davis et al. 2007; Vandergast et al. 2008) or 

modelling relationships between environmental heterogeneity and genetic and phenotypic 

variation (Thomassen et al. 2010). However, a comprehensive methodology of how to 

spatially optimize conservation areas using molecular data for multiple species remains 

an open challenge (but see Diniz-Filho and Telles 2006; Rissler et al. 2006), particular in 

what refers to taxonomically complex groups of organisms, generally characterized by the 

presence of uniparental lineages and reticulate evolution (Ennos et al. 2005). 

The Western Mediterranean is the ideal region to extend spatial conservation 

prioritisation methodologies incorporating molecular data because, particularly for 

herptiles, there is already an extensive set of available molecular data at the sub-

specific level and an interesting evolutionary history dominated by successive cycles of 

fragmentation, expansion and subsequent admixture of populations. Consequently, in 

this region we can find multiple examples of species with exceptionally divergent lineages 

(e.g. Alexandrino et al. 2007), species complexes with incipient speciation (e.g. Perera 

et al. 2007; Pinho et al. 2007). The challenge is to integrate this dispersed and disparate 

data, collected in a multitude of geographical scales and using distinct molecular markers, 

and to find coherent spatial patterns of evolutionary processes that could be useful for 

conservation planning.
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Appendix 6.1

Map and description of the study area

The study region has relatively high climatic, topographic and habitat diversity, including 

three distinct climatic types (Atlantic, Mediterranean and Saharan), an altitude range from 

0 to 4000 meters, and habitat diversity ranging from Euro-Siberian forests to sand dune 

deserts. This heterogeneity allows the coexistence of species with diverse biogeographic 

affinities such as Palearctic, Western-European, Mediterranean and Saharo-Sindian 

(Sindaco and Jeremcenko 2008), resulting in high herpetological species richness: 32 

amphibian and 122 reptile species.

Figure S.6.1.1 – Map of the study areas illustrating elevation and main rivers. Map shown in WGS84 

projection.
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Species Biotic elment

Alytes dickhilleni N

Alytes obstetricans N

Bufo brongersmai N

Bufo bufo N

Bufo calamita N

Calotriton asper N

Chioglossa lusitanica N

Discoglossus jeanneae N

Hyla meridionalis N

Mesotriton alpestris N

Pelodytes punctatus N

Pelophylax perezi N

Pleurodeles waltl N

Rana dalmatina N

Rana iberica N

Rana pyrenaica N

Salamandra salamandra N

Alytes maurus A1

Bufo mauritanicus A1

Bufo viridis A1

Discoglossus scovazzi A1

Pelobates varaldii A1

Rana saharica A1

Salamandra algira A1

Discoglossus galganoi A2

Hyla arborea A2

Lissotriton boscai A2

Triturus marmoratus / T. pygmaeus A2

Lissotriton helveticus A3

Rana temporaria A3

Alytes cisternasii A4

Pelobates cultripes A4

Table S.6.3.1 – List of amphibian species assigned to each biotic element

Appendix 6.3 

 List of amphibian and reptile species assigned to each biotic element
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Table S.6.3.2 – List of reptile species assigned to each biotic element

Species Biotic element

Acanthodactylus maculatus N

Agama impalearis N

Chalcides ocellatus N

Coronella girondica N

Mesalina olivieri N

Naja haje N

Psammodromus algirus N

Psammophis schokari N

Acanthodactylus erythrurus R1

Blanus cinereus R1

Chalcides bedriagai R1

Emys orbicularis R1

Hemidactylus turcicus R1

Hemorrhois hippocrepis R1

Macroprotodon brevis R1

Malpolon monspessulanus R1

Mauremys leprosa R1

Natrix maura R1

Psammodromus hispanicus R1

Rhinechis scalaris R1

Tarentola mauritanica R1

Vipera latastei R1

Algyroides marchi R2

Anguis fragilis R2

Chalcides striatus R2

Coronella austriaca R2

Hierophis viridiflavus R2

Iberolacerta aranica R2

Iberolacerta aurelioi R2

Iberolacerta bonnali R2

Iberolacerta cyreni R2

Iberolacerta martinezricai R2

Lacerta agilis R2

Lacerta bilineata R2

Lacerta monticola R2

Lacerta schreiberi R2

Natrix natrix R2

Podarcis bocagei R2

Podarcis carbonelli R2

Podarcis hispanica R2

Podarcis muralis R2

Testudo hermanni R2

Timon lepida R2

Vipera aspis R2
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Species Biotic element

Vipera seoanei R2

Zamenis longissima R2

Zootoca vivipara R2

Acanthodactylus aureus R3

Acanthodactylus busacki R3

Acanthodactylus lineomaculatus R3

Bitis arietans R3

Blanus mettetali R3

Blanus tingitanus R3

Chalcides colosii R3

Chalcides ebneri R3

Chalcides lanzai R3

Chalcides manueli R3

Chalcides montanus R3

Chalcides polylepis R3

Chalcides pseudostriatus R3

Dasypeltis scabra R3

Hyalosaurus koellikeri R3

Lacerta andreanszkyi R3

Lamprophis fuliginosus R3

Macroprotodon cucullatus R3

Podarcis vaucheri R3

Psammodromus microdactylus R3

Quedenfeldtia moerens R3

Quedenfeldtia trachyblepharus R3

Saurodactylus brosseti R3

Saurodactylus fasciatus R3

Scelaris perspicillata R3

Sphenops sphenopsiformis R3

Tarentola chazaliae R3

Timon tangitanus R3

Vipera monticola R3

Acanthodactylus boskianus R4

Acanthodactylus dumerilii R4

Acanthodactylus longipes R4

Cerastes cerastes R4

Cerastes vipera R4

Echis leucogaster R4

Hemorrhois algirus R4

Leptotyphlops macrorhynchus R4

Lytorhynchus diadema R4

Malpolon moilensis R4

Mesalina pasteuri R4

Mesalina rubropunctata R4

Mesalina guttulata R4

Ptyodactylus oudrii R4

Scincus albifasciatus R4

Spalerosophis dolichospilus R4

Spalerosophis cliffordi R4

Sphenops boulengeri R4

Table S.6.3.2 (continued)
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Species Biotic element

Stenodactylus petrii R4

Stenodactylus sthenodactylus R4

Tarentola annularis R4

Tarentola boehmei R4

Tarentola deserti R4

Tarentola ephippiata R4

Telescopus guidimakaensis R4

Trapelus mutabilis R4

Tropiocolotes tripolitanus R4

Uromastyx acanthinura R4

Varanus griseus R4

Chalcides mauritanicus R5

Chalcides minutus R5

Chalcides mionecton R5

Chalcides parallelus R5

Chamaeleo chamaeleon R5

Daboia mauritanica R5

Eryx jaculus R5

Eumeces algeriensis R5

Lacerta pater R5

Macroprotodon abubakeri R5

Malpolon insignitus R5

Mesalina simoni R5

Ophisops occidentalis R5

Psammodromus blanci R5

Saurodactylus mauritanicus R5

Testudo graeca R5

Trogonophis wiegmanni R5

Table S.6.3.2 (continued)
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Axis % var. ALT PANN PDRY PSEAS PWET TANN TMAX TMIN TSEAS

A1 1 53.32 0.40 0.04 0.35 -0.38 -0.05 0.41 0.23 -0.42 0.41

2 26.06 0.16 0.60 0.23 -0.02 0.57 -0.16 -0.40 -0.18 -0.16

A2 1 47.75 0.17 -0.42 -0.22 -0.03 -0.42 0.46 0.35 -0.21 0.45

2 37.39 -0.44 -0.08 -0.45 0.49 0.03 -0.03 0.35 0.47 -0.08

A3 1 53.18 0.34 -0.25 0.21 -0.40 -0.34 0.40 -0.01 -0.40 0.42

2 33.42 0.33 0.45 0.45 -0.06 0.31 -0.16 -0.55 -0.23 -0.10

A4 1 51.72 0.37 -0.30 0.25 -0.38 -0.37 0.33 -0.02 -0.43 0.37

2 30.36 0.17 0.24 0.46 -0.29 0.18 -0.37 -0.58 -0.16 -0.29

R1 1 39.16 0.44 0.03 0.24 -0.38 -0.09 0.38 0.01 -0.51 0.43

2 37.50 0.02 0.45 0.43 -0.23 0.39 -0.34 -0.49 -0.09 -0.23

R2 1 47.36 0.02 -0.43 -0.32 0.07 -0.41 0.44 0.41 -0.07 0.42

2 37.26 0.47 -0.01 0.37 -0.47 -0.13 0.15 -0.25 -0.52 0.21

R3 1 58.39 0.38 0.16 0.35 -0.37 0.07 0.41 0.23 -0.41 0.41

2 21.15 0.14 -0.66 0.10 -0.15 -0.71 0.01 -0.03 -0.04 -0.01

R4 1 54.55 0.40 0.19 0.33 -0.37 0.06 0.38 0.25 -0.43 0.40

2 31.48 0.12 0.51 0.20 -0.16 0.53 -0.29 -0.47 -0.07 -0.26

R5 1 55.04 0.39 0.10 0.34 -0.36 0.02 0.42 0.24 -0.42 0.42

2 22.10 -0.07 0.68 0.09 0.01 0.69 -0.10 -0.18 -0.01 -0.02

SA 1 45.67 0.11 -0.42 -0.35 0.18 -0.4 0.42 0.45 -0.03 0.34

2 35.35 -0.46 -0.13 -0.32 0.43 -0.03 -0.25 0.09 0.54 -0.34

Table S.6.4.1 – Percentage of variance explained (% var.) within the first and second axis of the 

Principal Components Analysis within each biotic element (A1 to A4 and R1 to R5) and the overall 

study area (SA), and the weight of each variable in each axis.

Appendix 6.4 

Results of the Principal Components Analysis
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Appendix 6.5 

 Comparison between biotic elements identified and phylogeographic patterns

The Strait of Gibraltar is claimed to be a geographic barrier for amphibians and reptiles, 

and to have promoted vicariance of many species (Busack 1986; Busack and Lawson 2008; 

De Jong 1998). Consequently, according to the vicariance models, we would expect biotic 

elements to be mainly identified at one side of the Strait of Gibraltar only. Such pattern was 

verified in our results: all biotic elements except R1, R2 and R3 comprised species occurring 

at only one side of the Strait. However, we also identified assemblages with species (mostly 

reptiles) occurring in both sides of the Strait, which denotes that dispersal may have also 

occurred across the geographical barrier. This assumption is also consistent with molecular 

studies indicating that some species dispersed in different historical periods from Iberia 

to Morocco and vice-versa. Species that may have dispersed from Morocco to Iberia 

include Acanthodactylus erythrurus (Fonseca et al. 2009), Blanus cinereus (Albert et al. 2007), 

Malpolon monspessulanus, Hemorrhois hippocrepis (Carranza et al. 2006a), Macroprotodon 

brevis (Carranza et al. 2004b), Chamaeleo chamaeleon (Paulo et al. 2002a) and Testudo graeca 

(Alvarez et al. 2000 ), and from Iberia to Morocco, Psammodromus algirus (Carranza et 

al. 2006b), Mauremys leprosa (Fritz et al. 2006), Podarcis hispanica (Pinho et al. 2006) and 

Vipera latastei (Brito et al. 2008). The majority of these species probably dispersed during 

periods when there was a terrestrial land bridge between Africa and the Iberian Peninsula, 

which occurred after the formation of the Betic Strait at end of the Tortonian (7.2-7.6 MY 

ago) (Duggen et al. 2003; Krijgsman et al. 2000), during the formation of the Rif belt (6.7 

– 6 MY ago) (Krijgsman et al. 2000) and during the Messianic Salinity Crisis (6.7 – 6 MY 

ago) (Hsü et al. 1977; Krijgsman et al. 1999). However, trans-marine dispersal (Carranza 

et al. 2006b) and anthropogenic introductions (Carranza and Arnold 2003; Paulo et al. 

2002b) were also reported. 

Within the Iberian Peninsula, we identified three assemblages for amphibians and 

two for reptiles, although one of the reptile groups contained a significant number of 

species also present in Morocco. It is often assumed that climate oscillations during the 

Quaternary induced range contractions in many species into refugia which triggered 

vicariance events (Hewitt 2004; Wronski and Hausdorf 2008). Consequently, it is expected 

that species originating in the same refugia may have currently similar ranges. However, 

contrary to this expectation, assemblage patterns found in the Iberian Peninsula were not 

easily justified based only on putative localities suggested for Pleistocene refugia (see Gómez 

and Lunt 2006; Teixeira 2007). In fact, there was no clear overlap between these and the 

core areas of assemblages. This lack of congruence might be explained by other vicariance 

events that are known to have occurred in Iberia and by post-vicariance dispersal. Indeed, 

species included in the same assemblage were frequently involved in common vicariance 

events. For example, three historical events have influenced vicariance of many species 
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including the northwest and northern coast assemblages (A2, A3 and R2): 1) the uplift of 

the Pyrenean Mountains is claimed to have caused vicariance events for major lineages 

of Discoglossus (e.g. Fromhage et al. 2004), Triturus and Calotriton (Carranza and Amat 

2005), and Podarcis (Carretero 2008); 2) the Tortonian and the Messianic Salinity crises, 

characterised by global aridity (Krijgsman et al. 2000) triggered range fragmentation of 

many taxa included in R2, such as Iberolacerta (Carranza et al. 2004a), Podarcis (Pinho 

et al. 2006), Lacerta (Paulo et al. 2001) and Coronella austriaca (Santos et al. 2008), and 

the subsequent dispersal of these species towards higher altitudes and latitudes, where 

climate was more humid; 3) dispersal from refugia after climate amelioration is assumed 

to have occurred for many species with refugia in western and central Iberia (northwest 

mountains, Montemuro, Buçaco and Caramulo mountains, Central mountain system 

mountains and Southwest Mountains; Gómez and Lunt 2006) with an predominant 

direction from south to north (Teixeira 2007). Species with such dispersal patterns 

include Lissotriton boscai (A3) (Martínez-Solano et al. 2006), Lissotriton helveticus, Lacerta 

schreiberi (Paulo et al. 2001), Podarcis bocagei, P. carbonelli and P. hispanica (R2) (Pinho et 

al. 2007). Thus, northwards range expansion of these species may explain the current 

range concordance. For south-western assemblages (A4 and R1), the land bridges formed 

during the Tortonian and the MSC between the Iberian Peninsula and Morocco, and 

trans-marine dispersals, are related to the dispersion of many African taxa into this area, 

as already described above. Thus, these events seem to be more relevant in shaping 

current species assemblages than Pleistocene glaciations.

Within Morocco, our results are partially consistent with the major historical events usually 

claimed to have caused vicariance within Moroccan taxa: 1) almost all species known as having 

radiated due to the opening of the Strait of Gibraltar were grouped in R3 (e.g. Timon tangitanus, 

Chalcides pseudostriatus, Blanus tingitanus, Podarcis vaucheri, Acanthodactylus lineomaculatus) 

although they clustered together with most of Moroccan mountain endemics (Appendix 6.3), 

which probably originated by distinct vicariance events. Indeed, the origin of the high number 

of Moroccan mountain endemics is not completely clear, but the recent estimated time of 

divergence of many species, and the fact that most of them have an allopatric distributions, 

suggests that they probably originated under climate oscillation events (Carranza et al. 2000); 

2) the Atlas Mountains separated coastal (R1, and R5) from desert (R4) assemblages, which is 

consistent with the theory that the formation of this mountain range caused vicariance events 

(Brown et al. 2002; Fritz et al. 2006); and 3) species occurring in desert areas also form a distinct 

assemblage, which concurs with the hypothesis that the climatic fluctuations during the past 

10 MY produced repeated changes in habitat, from heavily vegetated land to desert and vice 

versa, promoting rapid changes in distribution and speciation by vicariance (Douady et al. 

2003). That would have been the cause of divergence for example between different Chalcides 

(Carranza et al. 2008) and Acanthodactylus clades (Fonseca et al. 2008, 2009), and the radiation 

of desert forms within Tarentola (Carranza et al. 2002), Sphenops, Scincus (Carranza et al. 2008), 

and Mesalina (Kaplia et al. 2008). 
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From the previous paragraphs, we substantiate that the non-random distribution 

of species is derived from both vicariance and dispersal events. Indeed, dispersal events 

probably accounted for the great number of amphibian species being classified in the noise 

component. Many of the amphibians were classified in the noise component probably 

due to complex dispersal routes that resulted in present dissimilar species distributions, 

which mask previous vicariant events. The difficulty in finding strong biogeographical 

patterns for the amphibians in the Iberian Peninsula has been reported before (Busack 

and Jaksic 1982; Vargas et al. 1997), although it was attributed to a hypothesised low 

ecological specialization of the group (Busack and Jaksic 1982). However, Sillero et al. 

(2009) revealed that both specialist and generalist amphibian species occur in this area, 

which refutes that hypothesis.

For reptiles, we were able to classify almost all species in significant clusters and to 

relate them to a few important vicariance events. However, we also found that species 

within the same genera tended to be classified within the same biotic element, which 

contradicts the vicariance hypothesis. In fact, species of genera Iberolacerta, Lacerta and 

Podarcis were predominantly classified in R2, of genera Blanus in R3, and Acanthodactylus, 

Mesalina, Spalerosophis, Stenodactylus and Tarentola in R4. This fact suggests that either 

distinct speciation mechanisms other than vicariance are related to species divergence 

or that post-vicariance dispersal occurred. Nevertheless, molecular studies available to 

support any of these assumptions are scarce (but see e.g. Fritz et al. 2006).
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”It is not the strongest of the species that survive, nor the 
most intelligent, but the one most responsive to change”

Charles Darwin
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From climate change predictions to actions: 

conserving vulnerable animal groups in hotspots at a regional scale

7.1 Abstract

Current climate change is a major threat to biodiversity. Species unable to adapt or move 

will face local or global extinction and this is more likely to happen to species with narrow 

climatic and habitat requirements and limited dispersal abilities, such as amphibians 

and reptiles. Biodiversity losses are likely to be greatest in global biodiversity hotspots 

where climate change is fast, such as the Iberian Peninsula. Here we assess the impact of 

climate change on 37 endemic and nearly endemic herptiles of the Iberian Peninsula by 

predicting species distributions for three different times into the future (2020, 2050 and 

2080) using an ensemble of bioclimatic models and different combinations of species 

dispersal ability, emission levels and global circulation models. Our results show that 

species with Atlantic affinities that occur mainly in the North-western Iberian Peninsula 

have severely reduced future distributions. Up to 13 species may lose their entire potential 

distribution by 2080. Furthermore, our analysis indicates that the most critical period for 

the majority of these species will be the next decade. While there is considerable variability 

between the scenarios, we believe that our results provide a robust relative evaluation of 

climate change impacts among different species. Future evaluation of the vulnerability of 

individual species to climate change should account for their adaptive capacity to climate 

change, including factors such as physiological climate tolerance, geographical range 

size, local abundance, life cycle, behavioural and phenological adaptability, evolutionary 

potential and dispersal ability.

Chapter 7
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7.2 Introduction

Anthropogenic driven climate change is evident and for the next two decades a warming of 

at least 0.2°C per decade is projected (IPCC 2007) with associated changes in precipitation 

patterns. Throughout the history of Earth, climate has changed and species have coped 

and adapted to these changes, but current climate change is threatening biodiversity 

because it is fast compared to most past changes (Thomas et al. 2004). Current climate 

warming was considered the second most important threat to terrestrial biodiversity, only 

exceeded by land-use change (Sala et al. 2000).

Climate change have been reported to affect many aspects of populations: 

physiology, distribution, phenology, behaviour and propensity for local extinction 

(Hughes 2000; McCarty 2002; Parmesan 2006; Root et al. 2003; Walther et al. 2002). 

Species may be able to adapt to climatic changes via ecological (Root et al. 2005) or 

evolutionary processes (Bradshaw and Holzapfel 2006; Skelly et al. 2007). However, 

species unable to achieve a sufficient level of adaptation will likely face local or global 

extinction and this is more likely to happen to species with restricted climate and 

habitat requirements, limited dispersal abilities and ectothermal physiology (Massot 

et al. 2008; Walther et al. 2002; Thomas et al. 2004). 

Amphibians and reptiles are considered one of the most vulnerable taxonomic 

groups to climate change (Araújo et al. 2006; Carey and Alexander 2003; Gibbons et al. 

2000; Wake 2007). Climate warming is projected to induce a) changes in abundance; b) 

fragmentation of suitable habitats; c) changes in the timing of life-cycle events, such as 

hibernation, aestivation and breeding (Blaustein et al. 2001; Chadwick et al. 2006) and 

d) the spread of agents of infectious diseases such as the chytridiomycete fungus (Bosch 

et al. 2007; Pounds et al. 2006; Wake 2007). The interaction of these impacts causes 

disruptions in population and metapopulations dynamics, which ultimately may lead to 

changes in distributions. 

The impact of global warming on biodiversity is likely to be more severe in regions 

rich in endemic species that are also predicted to be affected by dramatic climatic changes. 

The Mediterranean Basin is a particularly susceptible region: it is a biodiversity hotspot 

holding many endemic species (Médail and Quézel 1999; Mittermeier et al. 2005; Myers et 

al. 2000) and climate predictions for this region include a substantial rise in temperature 

and a drastic drop in rainfall, contributing to desertification (MIO-ECSDE 2003). The 

synergistic effect of climate change with other threats to biodiversity makes this region 

one of the most vulnerable in the world (Sala et al. 2000).

The Iberian Peninsula, in particular, is a Mediterranean sub-region with many 

endemic species. The high biodiversity derives from the fact that this area was one of the 

major glacial refugia in Europe during the Pleistocene (Hewitt 1996) and a diversification 

centre afterwards (Gómez and Lunt 2006; Pinho et al. 2007). Biodiversity richness in this 
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area is also influenced by the climatic heterogeneity, since the climate transition between 

Atlantic and Mediterranean allows the co-occurrence of species with African and 

Euro-Siberian affinities, which means that the Iberian Peninsula is a biogeographic 

crossroad (Spector 2002). 

In face of climate change challenges, conservation organizations are being asked to 

take proactive measures to mitigate impacts on biodiversity. To select appropriate measures 

we need to be able to predict the impact of climate change on biodiversity and evaluate 

the ability of biodiversity to adapt to those impacts. The combination of this information 

can be used to determine biodiversity vulnerability, which in turn becomes the basis for 

prioritizing species and defining management strategies (Kareiva et al. 2008).

Species distribution models (SDMs) are frequently used to assess the impacts of 

climate change on species distributions (e.g. Araújo et al. 2006). These statistical tools 

relate present day distributions with current environmental conditions and then use 

future potential climate conditions to predict future species distributions (Pearson and 

Dawson 2003). Predicting the impacts of climate change on species is a challenging 

task because SDMs include parameters with many sources of uncertainty (Webster et al. 

2002) mostly related to: a) the statistical tool used for modelling species distributions; 

b) the global circulation models used to predict future climate conditions (Beaumont 

et al. 2008; Pearson et al. 2006; Thuiller 2004); and c) uncertainty derived from 

scale effects (Seo et al. 2009). Recently, advances in SDMs have made it possible to 

significantly reduce prediction uncertainties. For example, several robust statistical 

modelling methods have been developed to predict species distributions (see Elith et 

al. 2006 for review), while advanced methodologies in ensemble forecasting allow us 

to overcome the problem of variability in predictions made by different modelling 

techniques or different global circulation models (Araújo and New 2007; Marmion et 

al. 2009; Pearson et al. 2006). Additionally, climate predictions have been improved at 

smaller spatial scales (Hijmans et al. 2005). 

In this study, we will evaluate potential impacts of climate change on the distribution 

of amphibians and reptiles in the Iberian Peninsula. We focus on endemic and nearly 

endemic species, the later defined as species that have aproximatelly more than two thirds 

of their entire range in the Iberian Peninsula. We then use information about species 

adaptability and vulnerability to make conservation recommendations.

Araújo et al. (2006) identified the Iberian Peninsula as one of the areas in Europe 

where amphibians and reptiles are likely to undergo major contractions in their ranges. 

Therefore, a detailed analysis of the Iberian Peninsula at a scale appropriate for establishing 

management strategies is urgently needed. We complement Araújo et al.’s (2006) European-

wide research by providing a more detailed analysis of the impact of climate change on 

amphibian and reptile’s distribution within the Iberian Peninsula. In particular, we used 
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the most recent distribution data which are geographically more detailed than the one 

used in Araújo et al. (2006) (10x10 km in opposition to 50x50km) and incorporate recent 

taxonomic discoveries, that significantly increases the number of endemics (21 species 

vs. 12 species). Additionally, we project species ranges to three times in the future (2020, 

2050, 2080 instead of 2050 only), which may assist conservation decision making in terms 

of prioritizing the allocation of conservation funds through time. 

We provide specific recommendations to conservation practitioners for enhancing 

the probability of species persistence by answering the following questions: In the Iberian 

Peninsula, which endemic and nearly endemic amphibian and reptile species are predicted 

to lose and gain suitable habitat in the future? For species predicted to lose suitable habitat, 

is the loss rate constant throughout time or are there more critical periods? Which areas 

will be more impacted by species loss? Which species should be under priority conservation 

action? Which conservation measures are most likely to increase the probability of species 

persistence? 

7.3 Methods

7.3.1 Study area

The study region is the continental Iberian Peninsula, situated in the extreme southwest 

of Europe (bounded by 9º32’ to 3º20’E and 35º56’ to 43º55’N). With an area of 582 860 

km2, it includes the continental territories of Portugal and Spain. It is bordered to the 

south and east by the Mediterranean Sea and to the north and west by the Atlantic Ocean. 

The Pyrenees and the Strait of Gibraltar separate most of the region from the remainder 

of Europe and Africa, respectively (Figure 1). The dominant climate type of the region 

is Mediterranean, but the north and northwest of the Iberian Peninsula and the major 

mountain systems are characterised by an Atlantic climate. 

7.3.2 Species and distribution data

Distribution data for 37 endemic and nearly endemic species (15 amphibians and 22 

reptiles) were collected from the most recent herpetological atlases of Portugal (Loureiro 

et al. 2008) and Spain (Pleguezuelos et al. 2002), which are referenced to the UTM grid of 

10x10 km. Taxonomy was defined according to the most recent revision of the taxonomic 

list in Carretero et al. (2009). We excluded from our analysis records from the Portuguese 

atlas for Triturus marmoratus because that data does not distinguish between Triturus 

marmoratus and T. pygmaeus. We followed the same method for Portuguese records of 

Pelodytes punctatus because they represent two species: Pelodytes punctatus and P. ibericus. 

Our data contained only two records of Iberolacerta martinezricai so we were unable to 

develop a plausible predictive model. 
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7.3.3 Climate data

Current bioclimatic data were downloaded from WorldClim database (Hijmans et al. 2005) 

which is a set of global climate layers generated through interpolation of climate data from 

weather stations. We used nine variables that were not tightly correlated with each other (with 

a Pearson correlation coefficient between them lower than 0.75): temperature seasonality, 

maximum temperature of warmest month, minimum temperature of coldest month, 

temperature annual range, annual precipitation, precipitation of wettest month, precipitation 

of driest month, precipitation seasonality and altitude. All variables were downloaded in a 2.5 

arc-minute resolution. We converted these data to match with the same grid format as the 

species distribution data by averaging the variable’s values inside each grid cell. 

We used future climate data for three Global Circulation Models (GCM) (CCCMA, HADCM3 

and CSIRO) and two IPPC 3rd assessment storylines (A2 and B2). The IPCC storylines 

describe the relationships between the forces driving greenhouse gas and aerosol emissions 

such as demographic, social, economic, technological, and environmental developments 

(IPCC-TGICA, 2007). The two storylines used for this study assume regionally oriented 

economic growth, with population and economic growth being higher in A2 than B2. 

Future climate data were downloaded from WorldClim, for three different future years 

(2020, 2050 and 2080) creating six storyline-GCM combinations for each future year. 

We downloaded monthly averages of maximum and minimum temperatures and total 

precipitation and calculated the bioclimatic variables according to the same methodology 

used to calculate them for current climate conditions (Hijmans et al. 2005).

Figure 7.1 Location and map of the Iberian Peninsula depicting elevation and major geographic 

features. Elevation is represented in a range of grey colours where darker areas represent higher altitude.
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7.3.4 Species distributions: current predictions and future projections

We used a set of nine modelling techniques to predict the distribution of each of the 37 

species in four different times (current, 2020, 2050 and 2080): Maximum Entropy (MXT), 

Generalised Linear Models (GLM), Generalised Additive Models (GAM), Classification 

Tree Analysis (CTE), Artificial Neural Networks (ANN), Generalised Boosting Models 

(GBM), Breiman and Cutler’s random forest for classification and regression (RF), Mixture 

Discriminant Analysis (MDS) and Multiple Adaptive Regression Splines (MARS). 

To produce Maximum Entropy models we used Maxent software (Phillips et al. 2004). 

Maxent estimates the range of a species with the constraint that the expected value of 

each variable (or its transform and/or interactions) should match its empirical average, 

i.e. the average value for a set of sample points taken from the species-target distribution 

(Phillips et al. 2006; Phillips and Dudík 2008). We used the default “auto features” option, 

logistic output, the recommended default values for the convergence threshold (10-5) and 

the maximum number of iterations (500).

The remaining eight models were built within BIOMOD (Thuiller et al. 2009). BIOMOD 

is a collection of functions running within the R software v. 2.8.1 (R Development Core 

Team 2006) for ensemble forecasting of species distributions and a summary of model 

statistics is described in Thuiller et al. (2009). The majority of model-techniques requires 

data about presences and absences, thus we determined pseudo-absences for each species 

by using the “random strategy” in BIOMOD. The number of selected pseudo-absences 

for each species was equal to the number of its occurrences, whenever possible. In cases 

where the number of locations where species was not recorded was less than the number 

of occurrences, we selected all non-occurrences as pseudo-absences. All models were 

produced using default BIOMOD parameters where possible (Thuiller et al., 2009). Further 

parameters were as following: GLMs were generated using quadratic terms and a stepwise 

procedure with the AIC criteria. GAMs were generated with a spline function with 4 

degrees of smoothing. ANNs were produced with two cross-validations. BIOMOD allows 

evaluation of model performance on different data split runs and then allows using 100% 

of the data to make a final calibration of the models for prediction. Thus, we randomly 

assigned 80% of occurrence data to train the model with the remaining 20% for testing. 

Each model was run ten times to avoid bias resulting from randomly splitting the data 

into training and testing.

To evaluate the performance of individual models from each technique, we calculated 

the area under the receiver operating characteristic curve (AUC) (Fielding and Bell 

1997; Zweig and Campbell 1993). For each of the 37 species we produced nine models 

for the current time and climate (with different modelling techniques) and 54 models 

(combination of nine modelling techniques, three GCM and two storylines) for each of 

the three times in the future (2020, 2050 and 2080), in a total of 171 models per species. 
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For each year in the future (2020, 2050 and 2080) we calculated an ensemble 

forecast for current time and for each IPCC scenario for the future (A2, and B2). 

For this purpose, we used weighted average consensus method based on AUC 

values, because this method is considered to significantly improve the predictive 

accuracy of single models (Marmion et al. 2009). Thus, AUCs values of each model 

technique were assigned the weights of the weighted average in order to enhance 

contributions of those models with higher model performance values (equation 7.1). 

where i is the index of the grid cell, m is the model technique and p is the probability of 

occurrence of the species (according to model m in grid cell i). 

To investigate if species ranges were predicted to contract or expand, we needed to 

convert the consensus forecasted probabilities of occurrence in each year to a binary value 

of predicted presence/absence. For each model technique, we calculated the threshold 

of the receiver operating characteristic curve that maximizes both correctly predicted 

presences and absences, relative to the evaluation data (Liu et al. 2005). Subsequently, we 

determined a consensus threshold (CT) by calculating the weighted average threshold, 

assigning the AUC value of each model as a weight (equation 7.2).

where m is the model technique and tm is the optimised threshold of model m.

Potential range shifts of each species and time period were measured under two 

extreme dispersion scenarios: unlimited dispersal (scenario D), assuming that species can 

disperse to any grid cell with suitable habitat, and no dispersal (scenario ND), assuming 

that species are not capable to disperse even if suitable habitat is available. To predict 

species presence under the D scenario, we transformed the consensus probability value in 

each grid cell into 0 if it was lower than CT and to 1 if it was equal to or higher than CT. 

To predict species presences under the ND scenario, we transformed predicted presences 

to absences in grid cells where species is not presently predicted to occur. We evaluated the 

degree of uncertainty of projections for each year and scenario by calculating the standard 

deviation of predicted occurrence of species by grid cell.

Subsequently, we calculated predicted species richness in each grid cell for the 

three future periods. Future species richness was estimated by summing the number of 

species predicted to occur in each grid cell under each of the storylines and the dispersion 

scenarios. Species turnover (T) is the dissimilarity index between the present and future 

species composition of a given area. It accounts both for species gain and losses and its 

CT
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where SR is the current predicted species richness.

7.4 Results

Model predictions within different modelling techniques, GCMs, and storylines showed 

high variability in the projection of range shifts, with most species being projected to 

both lose and gain suitable habitat, depending on the scenario (Appendix 7.1). However, 

when analysing the ensemble model results (Tables 7.1 and 7.2), we found that 46% of 

the species are consistently predicted to have a smaller distribution in both storylines (9 

amphibian species and 8 reptile species), 28% of the species are consistently predicted to 

have a larger distribution (3 amphibian species and 8 reptile species) and the remaining 

species show increases and decreases depending in the time period and storyline. For 

example Algyroides marchi is predicted to have a smaller distribution until 2050 and 

then increase its distribution by 2080, while, Alytes cisternasii and Lissotriton boscai are 

predicted to have a larger distribution until 2020 and then have a smaller distribution. 

Several species are predicted to lose a significant fraction of their current range (Figure 7.2) 

and 10 species are predicted to lose their entire suitable distribution at some time in both 

storylines. Three other species are predicted to lose all suitable range in one of the storylines 

only (Table 7.3). Surprisingly 5 to 10 of the 13 species that are predicted to lose all their 

suitable distribution, lose it by 2020 (Table 7.3). Additionally, 9 of these species are also 

threatened by other causes, and currently considered “critically endangered”, “endangered” 

or “vulnerable”, in Portuguese or Spanish red data books (Tables 7.1 and 7.2).

If we assume that species have no ability to disperse, 34 species are predicted to 

contract their distribution and 10 species are predicted to completely lose their entire 

distribution in both storylines.

It is noteworthy that for species predicted to have a smaller distribution in the future, 

both the magnitude of contraction and the rate of contraction differ between species 

(Figure 7.3). While for most contracting species, the rate of range contraction is greater 

relation to the overall number of species occurring in the grid cell in present and future. 

Thus, a turnover value of 0 indicates that the predicted assemblage in the future would 

be the same as the current assemblage, whereas a turnover value of 100 indicates that 

the assemblage would be completely different under climate change. To determine it, 

we first calculated the number of species lost (L), i.e., the number of species predicted to 

lose suitable habitat in each grid cell, and the species gain (G), i.e., the number of species 

predicted to gain suitable habitat in each grid cell. Percentage of species turnover by grid 

cell was then calculated according to equation 7.3.

T x
L G
SR G

= +
+

100 (equation 7.3)
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now (until 2020), for some species there is almost a constant rate of predicted distribution 

loss (e.g. Rana iberica), while for a minority of species the period of greatest contraction is 

later (e.g Psammodromus algirus).

Predicted patterns of species richness are substantially different between the two 

dispersion scenarios, but higher species richness was commonly predicted in South-western 

Iberian Peninsula, the Central System Mountain range and Morena Mountains (Figures 7.4 

and 7.5). Major species gain, in the unlimited dispersion scenario, was predicted for the 

Central Plateaus, the Central-western coast of the Iberian Peninsula, and the Cantabrian 

Mountains (Figure 7.6). Major loss of species ranges is predicted for the Atlantic climate 

regions, mostly along the northwest of the Iberian Peninsula and the main mountain 

ranges, such as the Central System and the Morena Mountains (Figure 7.6). Spatial patterns 

of predicted species richness are similar in both storylines, although storyline B2 predicted 

slightly higher species losses for 2020 and storyline A2 predicted higher species loss for 

2080 (Figures 7.4 and 7.5). 

Figure 7.2 Number of species predicted to gain or lose suitable habitat under different dispersion 

assumptions (unlimited dispersal and no dispersal) and storylines (A2 and B2), categorized by the 

percentage of range contraction or expansion relatively to present (x axis). Endemics and non endemics 

species are represented separately, with endemics representing species strictly endemic to the Iberian 

Peninsula and species endemic to the Pyrenean Mountains. Black columns represent species predicted 

to lose suitable habitat while white columns represent species predicted to gain suitable habitat.
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7.5 Discussion

7.5.1 Main findings and relation with previous projections

Our results suggest that climate change might have serious impacts on the distribution 

patterns of the endemic and nearly endemic amphibians and reptiles of the Iberian 

Peninsula, particularly for species with Atlantic climate affinities such as Chioglossa 

lusitanica, Rana iberica and Vipera seoanei and particularly high altitude species with 

Atlantic climate affinities such as Rana pyrenaica, Iberolacerta monticola, I. aranica, I. aurelioi, 

and I. bonnali. It is also possible that other species may be more affected by climate change 

than predicted by the models, such as Iberolacerta cyreni. This species is an endemic with 

a current range restricted to the Gredos Mountains in Spain. However, the ensemble 

model for this species predicted a current range much larger than probably the one 

where the species actually occurs. This indicates that predicted future range may also 

be overestimated. On the other side, models for Pelodytes ibericus, Triturus marmoratus 

and T. pygmaeus were built only based on Spanish records, although they also occur in 

Portugal. This methodological caveat may have conduced to an under estimation of 

current and future ranges of those species.

Our analysis indicates that the most critical period for the majority of these species 

will be the next decade. This result emphasises the need for immediate conservation 

action in the Iberian Peninsula to ameliorate the impact of climate change.

Species 2020 2050 2080

Alytes dickhilleni* A2/B2 B2 A2/B2

Calotriton asper** - A2 A2/B2

Chioglossa lusitanica* B2 - -

Discoglossus galganoi** - - A2

Iberolacerta aranica** A2/B2 A2/B2 A2/B2

Iberolacerta aurelioi* A2/B2 A2/B2 A2/B2

Iberolacerta bonnali** A2/B2 A2/B2 A2/B2

Iberolacerta monticola* B2 A2/B2 A2/B2

Podarcis bocagei* B2 B2 A2

Rana iberica* - - A2

Rana pyrenaica** A2/B2 A2/B2 A2/B2

Triturus marmoratus B2 A2/B2 A2/B2

Vipera seoanei* B2 A2/B2 A2/B2

Table 7.3 Species predicted to completely lose distribution range in the Iberian Peninsula until each 

of the periods (2020, 2050 and 2080) according to storylines (A2, B2 or both) and under the unlimited 

dispersal scenario. * indicates species strictly endemic to the Iberian Peninsula.** indicates species 

endemic to the Pyrenean Mountains.
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Figure 7.4 Spatial distribution of predicted current and future (2020, 2050 and 2080) species richness 

and turnover percentage according to storylines A2 and B2 and under the unlimited dispersion scenario.

Figure 7.5 Spatial distribution of predicted current and future (2020, 2050 and 2080) species richness 

and turnover percentage according to storylines A2 and B2 and under the no dispersion scenario.
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Previous macroscale studies have called attention to the vulnerability of biodiversity 

in the Mediterranean Basin. This region was considered one of the most vulnerable in 

the world (Sala et al. 2000) and one of the biodiversity hotspots likely to undergo major 

losses due to climate change, along with the Cape Floristic Region, the Caribbean, Indo-

Burma, Southwest Australia, and the Tropical Andes (Malcolm et al. 2006). The Iberian 

Peninsula is considered the Mediterranean sub-region most likely to be affected by future 

climate change (EEA 2004). Our analysis confirm the vulnerability of species occurring 

in the Iberian Peninsula to climate change, but curiously, species with Atlantic climate 

affinities were predicted to be more affected by climate change than the Mediterranean 

ones. The Atlantic climate region is much more restricted in the Iberian Peninsula than 

the Mediterranean. Due to predicted drops in precipitation and temperature raise it 

is likely that the all Iberia became dominated by a Mediterranean climate. Thus, it 

seems logical that Atlantic species become more affected by climate change than the 

Mediterranean ones. Climate change impacts on Atlantic species was exacerbated by the 

region being a peninsula so dispersal out of the region to other Atlantic climate regions 

is restricted. Similar patterns should be found in other Mediterranean Peninsulas that 

present different climatic types (e.g. the Italian Peninsula and the Balkans).

Our results are consistent with those found by Araújo et al. (2006), in the sense 

that climate change is predicted to cause a major contraction in the distribution of 

Figure 7.6 Spatial distribution of predicted gain (under the unlimited dispersion scenario) and loss 

(in both dispersion scenarios) of number of species in the future (2020, 2050 and 2080) according to 

storylines A2 and B2.
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a considerable number of amphibian and reptile species in the Iberian Peninsula. 

However, our results revealed that major losses for endemic and nearly endemic species 

will occur in substantially different areas than the ones predicted by Araújo et al. (2006) 

for the all amphibians and reptiles. We predict that the north-west of the region, the 

Central System and the Morena Mountains will lose many species in contrast to their 

results where there is expected to be species gain. The reasons for this difference may be 

our focus on endemic and nearly endemic species rather than all species, but it could 

also be differences in spatial scale or methods used to construct the ensemble models. 

Dissimilarities in areas predicted to gain species may also be related to the colonization 

of non endemic or nearly endemic species and non Iberian species not included in our 

analysis. These divergent results highlight the importance of finer-scale analyses for 

areas identified as vulnerable in broader continental-scale studies.

Interestingly, a previous study of climate change threats to plant diversity in 

Europe (Thuiller et al. 2005) also identified the Iberian Peninsula as one of the European 

regions likely to undergo major species loss. Garzón et al. (2008) identified the north 

and northwest of the Iberian Peninsula and the main mountain ranges, as the Iberian 

areas likely to have the highest tree species loss, which is partially coincident with our 

results. Thus, if changes in vegetation communities are also predicted, it means that 

amphibians and reptiles will face a synergistic impact of climate and habitat change, 

which ultimately will also be coupled with the impact of changes in biotic interactions 

resulting from changes in the community of species. These results also suggest that the 

impacts of climate change on species ranges might be similar across different biodiversity 

groups that occur in the same area, which calls for the need to evaluate possible climate 

change impacts on those groups.

7.5.2 From predicted impacts (models) to vulnerability 

Our dramatic predictions should be interpreted with caution given all the uncertainties 

in the process: the statistical methods used for modelling species distributions, the global 

circulation models used to predict future climate conditions (e.g. Araújo and New 2007, 

Beaumont et al. 2008), the scale of the analysis (Seo et al. 2009), and specific dispersal abilities. 

Additionally,  species distribution models disregard important biological parameters that 

ultimately are the determinants of species capability to adapt to climate change.

Different modelling techniques, GCM and storylines provided fairly different results 

for the number of predicted occurrences of a species. The ensemble methodology allows 

us to distinguish the strongest signal emerging from the noise associated with different 

model outputs but it is not immune from uncertainty. Taking uncertainty into account, 

for example by using as an uncertainty measure the standard deviation of the total 

number of occurrences predicted by the different models for each species (appendix 7.1A 
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and 7.1B), the most likely impact of climate change will be on species whose ranges 

are predicted to contract more (relatively to their current extent), or to become more 

restricted (considering their future absolute extent) with less uncertainty. For example, 

analysing only the year 2020 projections for storyline A2, species that fulfil both criteria 

are Discoglossus galganoi (considering the species whose ranges are predicted to contact 

more) and Iberolacerta aranica, (considering the species whose ranges are predicted to 

become more restricted or disappear). 

The scale of analysis may also be a relevant limitation in determining the impact 

of climate change, because the scale used does not account for microhabitat variability 

within sites. This constraint is quite relevant in the case of amphibians and reptiles because 

they might find suitable habitat, for instance, in small ponds, water tanks, below stones or 

underground (Kearney and Porter 2009). Also, the scale of the analysis probably obscures 

altitudinal microclimatic gradients which might allow species to move towards future 

suitable habitats without the need to disperse long distances. 

Specific dispersal abilities may strongly determine the impacts of climate change on the 

future distribution of species. However, given that this parameter is difficult to determine 

for every species, we predicted future distributions under the assumptions of maximal and 

minimal possible dispersal ability for each species. We recognize that both of these assumptions 

are unrealistic, but they allow us to predict the largest and smallest possible future ranges. A 

more realistic prediction would probably be somewhere in the middle of these two extremes, 

but we cannot make an exact prediction with high level of certainty. 

Assuming these limitations we do not argue that species predicted to completely lose 

their distribution under our analysis will go extinct. Rather, we consider that the degree, the 

certainty and the time of predicted range contractions provides a relative measure of the 

magnitude of the impact of climate change on each species. Ultimately, the vulnerability 

of a species to a given impact will depend also on the species resistance, i.e. the ability of 

a species to withstand an environmental perturbation, and resilience, i.e. the ability of a 

species to adapt and recover from a perturbation (Isaac et al. 2008; Williams et al. 2008). 

Thus, prioritizing species for management actions would require a further analysis of the 

specific factors that determine resistance and resilience. In general, the species traits that 

are predicted to promote species resistance to climate change are physiologic climatic 

tolerance (Calosi et al. 2008), geographical range size and local abundance.

Overall, reptiles are usually considered more resistant to global warming effects 

than amphibians because they have evolved a set of adaptations to water scarcity, such 

as eggs with calcareous shells (while amphibian eggs are enclosed by simple gelatinous 

membranes), and the excretion of metabolic wastes in the form of urea or uric acid, which 

is an adaptation to retain body-water (Gibbons et al. 2000). Additionally, most reptiles 

are not dependent on water for reproduction. Although more specific climatic tolerances 

might be difficult to determine, they may be inferred by morphological traits or by the 

complete climatic envelope of species. Also, the climatic envelope of phylogenetic related 
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species might provide some clues, if one considers niche conservatism (Hawkins et al. 

2007). For example, species belonging to clades that evolved under warm environments 

may be more tolerant to global warming. 

Species with restricted ranges are relatively more vulnerable to climate change because 

contractions of their small range will not be balanced elsewhere. From this point of view, 

species with very restricted distributions predicted to completely lose suitable habitat in 

the Iberian Peninsula such as Iberolacerta aranica, I. aurelioi, and Rana pyrenaica may be 

more impacted by climate change than more widespread Iberian species such as Lissotriton 

boscai or Chalcides bedriagai.

Demographic parameters are also important factors in determining resistance to 

climate change (Keith et al. 2008). Species with restricted ranges but with high local 

abundance may have more chances to adapt because genetic variation and potential 

response to selection pressures are positively correlated with population size. Thus, 

biological traits that regulate abundance, such as reproductive rates, age of female sexual 

maturity and life span length are also relevant. Discoglossus galganoi and Podarcis bocagei 

are species predicted to completely lose their range in the Iberian Peninsula but have high 

abundance and reproductive rate, and consequently will probably be less impacted by 

climate change than the others will. 

The adaptive capacity (or plasticity) of a species describes the intrinsic ability of a 

species to adapt to changing conditions. Species might be able to adjust their behaviour 

and phenology by switching periods of daily activity, aestivation and hibernation towards 

more favourable climatic conditions (Parmesan 2007). Species might also be able to evolve 

traits that allow them to adapt to different climatic conditions (Bradshaw and Holzapfel 

2006; Harte et al. 2004). Adaptation ability may be species-specific, however, the current 

knowledge is insufficient to determine which species are more able to adapt and further 

studies and monitoring are required to fully understand it. 

Species might also adapt to novel climate conditions by dispersing to other areas 

(Massot et al. 2008; Thuiller 2004). Dispersion ability has been identified as one of the 

most decisive parameters in determining species resilience to climate change as species 

with greater dispersion ability may be able to track climate transitions. However this 

parameter is also one of the most difficult to determine. A growing body of literature 

proposes a vast collection of complex models to predict dispersion ability (reviewed by 

Thuiller et al. 2008) but these require detailed data on an array of ecological processes that 

usually are unavailable for large numbers of species. 

A preliminary analysis of the model results and previous considerations indicate 

that species requiring more conservation attention under a climate warming perspective 

may be Rana pyrenaica, Rana iberica and Calotriton asper, within the amphibians, and 

Iberolacerta aranica, Iberolacerta aurelioi, Iberolacerta bonnali and Iberolacerta monticola 

within the reptiles. However, this does not mean that these are the most vulnerable species 

to extinction, because this evaluation is only based on vulnerability to climate change, 

and does not account for other threats or the interaction of climate change with other 
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threats (Brook et al. 2008). Particularly, climate change is likely to induce further habitat 

changes and fragmentation (due to shifts in plant species distribution and an increase in 

fire incidence) and the spread of agents of infectious diseases such as the chytridiomycete 

fungus which is already across the Iberian Peninsula (Garner et al. 2005). These factors are 

already considered the primary threats to amphibians and reptiles, along with pollution, 

invasive species, road kills and genetic depression.

7.5.3 From vulnerability to conservation actions 

Recommendations to address climate change impacts on biodiversity include a wide 

variety of measures, with the most popular being monitoring species (with emphasis on 

the physiological, behavioural and demographic response), restoring habitats and system 

dynamics, expanding reserve networks, performing assisted dispersal (Hoegh-Guldberg 

et al. 2009), reducing other threats and increasing connectivity between suitable habitats 

(Heller and Zavaleta 2009; Lawler 2009). Probably the most important questions for 

management are whether species will be able to adapt to future climate conditions without 

the need to disperse or, if not, if they will be able to disperse. Because these questions are 

difficult to answer with current knowledge, novel management tools that promote flexible 

decision-making are emerging, such as adaptative management (Kareiva et al. 2008). 

Following this methodology, we recommend that monitoring should be directed at the 

most vulnerable species identified by our research. To infer species-specific conservation 

measures, the monitoring parameters should include: a) physiological changes in thermal 

tolerances; b) phenological adjustments, such as changes in aestivation and hibernation 

periods along the year; c) behavioural thermoregulation changes, such as burrowing 

or adjustments in daily activity periods; d) quantification of dispersal rates; e) changes 

in population parameters, such as abundance, fertility and mortality; f) incidence of 

infectious diseases and g) species interactions.

If species are not able to disperse, then management measures will be needed in order 

to assist local adaptation. Habitat restoration has been proposed as a proactive measure 

to enhance amphibian resilience to climate change. In particular, a denser network of 

ponds and water tanks has been recommended for amphibians (Blaustein et al. 2001) in 

Mediterranean areas. This measure, along with a careful control of river flow and water 

quality may increase the probability of amphibians to find suitable habitats during climate 

warming. Availability of freshwater habitats will be particularly important in the regions 

predicted to have high species loss, the northern Iberian Peninsula and main mountain 

systems, but also in extreme southern regions (Beja and Alcazar 2003). 

Assisted colonisation has been suggested, as a measure to assist climate change 

adaptation (Mueller and Hellmann 2008). This triggered intense debate (McLachlan et al. 

2007) because translocation of species originated catastrophic impacts in many existing 

cases. However, assisted dispersal is particularly relevant for amphibians and reptiles 

due to their low dispersal ability, and therefore we cannot disregard this management 

possibility under an extreme probability of extinction scenario. However, we agree with 
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(Hoegh-Guldberg et al. 2008) in that assisted dispersal should only be considered for a 

given species if at least one of a set of assumptions is met, namely: a) the species should 

be in immediate risk of extinction; b) species should have low dispersal ability; and c) 

the species range should be highly fragmented. Moreover, those authors suggest that 

translocations should only be undertaken within biogeographic regions, i.e., regions that 

share similar species composition, and an assessment of translocation risks should be 

performed previously, including ecological and socio-economical risks. Translocation risk 

should subsequently be balanced against those of extinction and safeguarded by detailed 

scientific understanding. 

Protected areas have long been considered one of the most effective tools to conserve 

biodiversity (Rodrigues et al. 2004), but their effectiveness in securing species under rapid 

climate change is uncertain (Araújo et al. 2004). However they contribute to minimising 

threats such as, habitat destruction and fragmentation, road kills and pollution, which 

ultimately may assist to protect species threatened by climate warming. Therefore, it is 

important to evaluate if present protected areas would be effective in securing species 

given their predicted range shifts and whereas there is habitat connectivity between 

current and future species distributions. This could be achieved using reserve selection 

algorithms (e.g. Moilanen, 2009), which allow the identification the minimum set of areas 

necessary to represent all species at a given target. Ultimately, the ability of species to 

adapt to climate change within nature reserves will depend on the management actions 

undertaken in each of them. Reserve selection algorithms may also assist in identifying 

areas within nature reserves where the return of the management investment will be 

greater for a higher number of species. 

If species are able to disperse to new habitats, than management actions will 

be needed to facilitate dispersal, including the increase of habitat connectivity, in 

particular of freshwater habitats.

Finally, biodiversity conservation can only be successful under climate change scenarios 

if socio-economical and environmental policies are integrated and if governments cooperate. 

Although climate change is a global issue, there is a tendency for actions to be taken by 

governments individually or by local administration, even with a common European 

environmental policy. It is recommended that the Portuguese and the Spanish governments 

embark on joint efforts to conserve Iberian biodiversity, particularly Iberian endemics.
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“Nothing is more difficult, and therefore 
more precious, than to be able to decide”

Napoleon Bonaparte 

.

Photo: Vasco Flores Cruz





Chapter 8 

Conservation Planning Under Climate Change:

Accounting for uncertainty in predicted species distributions to 
increase confidence in conservation investments in space and time

Sílvia B. Carvalho, José C. Brito, Eduardo J. Crespo, Matthew E. Watts & Hugh P. Possingham

8.1 Abstract

Climate warming challenges our approach to building systems of protected areas because 

it is likely to drive accelerating shifts in species distributions, and the predictions of 

future species distributions are uncertain. There are two important sources of uncertainty 

intrinsic to using species occurrence predictions for reserve system design: uncertainty in 

the number of occurrences captured by any reserve selection solution, and uncertainty 

arising from the different approaches used to fit predictive models. Here we used the 

present and future predicted distributions of Iberian herptiles to analyze how dynamics 

and uncertainty in species distributions may affect decisions about resource allocation 

for conservation in space and time. We identified priority areas maximizing coverage of 

current and future (2020 and 2080) predicted distributions of 65 species, under mild and 

severe uncertainty. Next, we applied a return-on-investment analysis to quantify and 

make explicit trade-offs between investing in areas selected when optimizing for different 

times and with different uncertainty levels. Areas identified as important for conservation 

in every time frame and uncertainty level were the ones considered to be robust climate 

adaptation investments, and included chiefly Iberian mountains. Areas identified only 

under mild uncertainty were considered good candidates for investment if extra resources 

are available and were mainly located in northern Iberia. However, areas selected only in 

the severe uncertainty case should not be completely disregarded as they may become 

climatic refugia for some species. Our study provides an objective methodology to deliver 

“no regrets” conservation investments.
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 8.2 Introduction

Systematic conservation planning (Margules and Pressey 2000; Margules and Sarkar 

2007; Moilanen et al. 2009c) is a framework developed to identify efficient conservation 

areas with clearly stated quantitative objectives of species representation and persistence. 

Reserve selection algorithms used within this framework are computational tools that 

seek to efficiently allocate limited resources available for conservation (see Moilanen 

et al. 2009b for review). 

Reserve selections algorithms tacitly assume that observations or predictions of 

species occurrences are complete and certain (e.g. Gaston and Rodrigues 2003; Grand et 

al. 2007; Wilson et al. 2005) and that species distributions are static in space and time 

(Drechsler et al. 2009; Possingham et al. 2009). However, none of these assumptions are 

realistic. Observed data on current species distributions are frequently incomplete and rely 

on multiple sources of uncertainty (see Carvalho et al. 2010b; Regan et al. 2009; Rondinini 

et al. 2006 for ideas and discussion). Ideally, areas selected for conservation should be 

locations combining high conservation value with low uncertainty (Moilanen et al. 

2006a). Despite this, uncertainty in species distributions was seldom taken into account 

in reserve selection studies (but see Carroll et al. 2009; Fuller et al. 2008; Halpern et al. 

2006; Hodgson et al. 2009; Langford et al. 2009; Moilanen et al. 2006b), probably because 

of methodological complexity. Moreover, human-induced changes are leading to a more 

dynamic geographic rearrangement of biodiversity and to species extinctions (McCarty 

2002; Root et al. 2003; Sala et al. 2000; Thomas et al. 2004; Walther et al. 2002). Climate 

warming, in particular, has been recently declared as a major challenge to conservation 

planning, because several studies predicted that it will cause species to shift their range 

away from current protected areas (e.g, Araújo 2009b; Araújo et al. 2004; Hannah et al. 

2007), while areas that are unprotected now may become more important for conservation 

actions if we are to achieve adequate and representative species conservation in the future 

(Barry and Elith 2006; Buisson et al. 2010).

To overcome the problem of data incompleteness and to predict future species 

ranges, Species Distribution Models (SDMs) are frequently used. SDMs are statistical tools 

that quantify the relationship between observed species occurrences and their habitat 

(Franklin 2009; Guisan and Zimmermann 2000). This statistical relationship is then used 

to predict species occurrences in sub sampled locations or under future climate scenarios. 

Although several advantages of using SDMs predictions in conservation planning have 

been acknowledged (e.g. Araújo 2009a; Elith and Leathwick 2009a), they should be used 

with caution as they also introduce uncertainty when used in reserve selection algorithms.

One important source of uncertainty derived by SDM predictions is the variance in 

the expected number of occurrences for a species resulting from the use of probabilities of 

occurrence (Moilanen and Cabeza 2005). SDMs predictions usually describe the probability 
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of a species being present in a given location, with values ranging from zero to one. This 

probabilistic information allows planners to discern between sites of different habitat 

quality, which may be useful for achieving persistence goals (Araújo and Williams 2000). 

However, the straightforward use of probabilities of occurrence adds statistical uncertainty 

to the reserve selection problem. For example, if we select two planning units each of which 

with a 50% chance of containing the species, and those probabilities are independent, 

then, on average, one occurrence of the species is conserved, but there is a 25% chance 

we fail to conserve the species. In contrast, if we select two planning units where in one 

of them the probability of occurrence of the species is 100% and the other is 0%, on 

average, one occurrence of the species is conserved also, but in this case there is 100% 

certainty that one occurrence is conserved. Generally, reserve selection algorithms aim to 

capture the average number of species occurrences, ignoring uncertainty. Consequently, 

solutions found may often contain many sites that have intermediate probabilities, and 

high uncertainty (Moilanen and Cabeza 2005). 

SDMs predictions are also subject to considerable uncertainty arising from the different 

possible mathematical approaches used to fit the models – the probabilities themselves 

are uncertain (Araújo and New 2007; Elith et al. 2006; Elith and Leathwick 2009b). This 

limitation is even more evident when predicting future species distributions under climate 

change because, in this case, uncertainty also arises from models used to predict future 

climatic conditions (Beaumont et al. 2008; Buisson et al. 2010; Pearson et al. 2006; Thuiller 

2004), and from uncertainty in species dispersal abilities (Hodgson et al. 2009; Pearson 

and Dawson 2003). Distinct SDM predictions would produce considerably different 

solutions when used in a reserve selection algorithm and this prediction variability 

compromises their usefulness in guiding conservation decisions (Araújo and New 2007). 

Thus, quantifying and accounting for uncertainty in predictions about the distribution 

of species is critical for natural resource managers to effectively integrate climate change 

considerations into spatial conservation priority setting (Moilanen et al. 2006a; Moilanen 

et al. 2006b; Regan et al. 2009). 

There are different tools to account for uncertainty in making decisions and several 

of them have been applied in the conservation field (Halpern et al. 2006; Regan et al. 

2009). For instance, scenario analysis (Peterson et al. 2003) assists decision-makers in 

testing different management scenarios and making strategic decisions. When coupled 

with a return-on-investment analysis, scenario analysis highlights the benefits of 

alternative investment options and can be used to strategically maximize conservation 

gains (Murdoch et al. 2007).

Amphibians and reptiles are taxonomic groups believed to be very vulnerable to climate 

change (Araújo et al. 2006; Carey and Alexander 2003; Gibbons et al. 2000; Wake 2007). This 

is particularly true for the Iberian Peninsula where several species are predicted to have their 

future distribution entirely or severely reduced (Araújo et al. 2006; Carvalho et al. 2010a). 
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However, predictions of the distributions of species were significantly variable among 

different modeling techniques when different future climatic predictions were 

assumed and even more variable when different dispersal scenarios were considered 

(Araújo et al. 2006; Carvalho et al. 2010a). These critical but uncertain projections 

pose considerable challenges to conservation. In face of uncertainty, some recommend 

that the best strategy is the one that assumes the worst case scenario (Cooney 2004; 

Steele 2006). However, this approach may prevent us from investing in species 

predicted to completely lose their range (Bottrill et al. 2008) and defining exactly 

what is “worst case” is problematic. Such a strategy would need to be very confident 

that the predictions about future distributions are really true. Conversely, deciding to 

invest conservation efforts in a valuable but uncertain location may result in a waste 

of resources. Thus, the best decision should be a trade-off between the predicted range 

of conservation values of each location over a particular time period, and the certainty 

of the models and data. 

Because decision-makers need to choose how best to invest limited climate adaptation 

resources, the aim of this study is to illustrate a methodology to account for uncertainty in 

species distributions and make trade-offs in investment options explicit. What will be the 

gain and loss if one decides to allocate resources to high value but risky areas rather than 

areas where we are very certain of the information? The most confident investment will 

be in areas that are 1) consistently identified as belonging to a near-optimal investment 

option across different scenarios (Moilanen et al. 2006a); and 2) identified as maximizing 

the return of investment in most scenarios.

To achieve our goals, we developed a modified version of the software Marxan (Ball 

et al. 2009), which is a decision support tool for spatial conservation prioritization. This 

modified version deals with uncertainty in the expected number of occurrences, assuring 

that species’ occurrence targets are met with a selected level of confidence - e.g. a species 

meets its conservation target with a 90% chance. Subsequently, we use scenario analysis 

to identify important areas for conservation under different uncertainty assumptions and 

for multiple times. Finally, we use return-on-investment thinking to evaluate the relative 

benefits of competing investment options.

8.3 Methods

8.3.1 Study area

The study region is the continental Iberian Peninsula (Appendix 8.1), situated in the 

extreme southwest of Europe (bounded by 9º32’ to 3º20’E and 35º56’ to 43º55’N). With 

an area of 582 860 km2, it includes the continental territories of Portugal and Spain.

The study area was divided into 7 603 ten square kilometer grid cells, hereafter referred as 

planning units (PUs). 
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8.3.2 Protected areas data

The location of protected areas is essential for evaluating the existing reserve system, 

and identifying gaps in protection. Data on existing protected areas was compiled from 

three digital sources: a) the world data base on protected areas (IUCN and UNEP-WCMC 

2010); b) Instituto da Conservação da Natureza e da Biodiversidade (ICNB), for Portuguese 

protected areas (http://portal.icnb.pt) and c) Spanish Ministerio de Medio Ambiente y 

Medio Rural y Marinho (http://www.mma.es), for Spanish protected areas. Protected areas 

missing from all cited sources were digitized from topographical maps.  Spain has many 

kinds of conservation tenure.  In this study, only National Parks, Nature Parks, Regional 

Parks, Nature Reserves, Integral Nature Reserves, Microreserves, Partial Nature Reserves, 

Wildlife reserves and Natura 2000 sites were considered. 

8.3.3 Scenarios and species distribution data sets

We built eight data sets containing species probabilities of occurrence under six scenarios, 

combining three times - present, 2020 and 2080 - with two uncertainty levels – Mild and 

Severe (Figure 8.1). Methods used to assemble the eight data sets are described next.

To predict the probability of occurrence of each species in each planning unit in 

the present time and for the years 2020 and 2080, we used SDMs for 37 endemic and 

nearly endemic Iberian amphibian and reptile species described in Carvalho et al. (2010). 

We applied the same methodology to make similar predictions for the remaining 28 

amphibian and reptile species occurring in that area (see Appendix 8.2 for the complete list 

of species). Species distributions for the present time were predicted using nine modeling 

techniques (Figure 8.1). Species distributions for the years 2020 and 2080 were predicted 

by projecting present relationships between species distributions and current climatic 

conditions determined by each of the nine model techniques for six future climatic 

scenarios, combining two IPCC storylines (A2 and B2) and three Global Circulation 

Models (CCCM3, CSIRO and HADCM3), leading to a total of 54 (= 9×2×3) predictions of 

each species’ distribution. 

Probabilities of occurrence for a species in each PU and time can be quite similar or 

fairly different when predicted with different modeling techniques, Global Circulation 

Models and storylines. The highest and the lowest probability of occurrence for a species 

in each planning unit for a given time, frame an uncertainty interval. The higher the 

difference between the two extremes, the higher the uncertainty in the prediction of 

probability of occurrence. Ensemble forecasting attempts to reduce uncertainty in these 

multiple predictions by calculating a consensual solution (Araújo and New 2007), and 

methods based on average function algorithms are believed to increase significantly the 

accuracy of species distribution predictions (Marmion et al. 2009). Thus, we build the 

“Mild uncertainty” scenarios by calculating the weighted average consensus based on AUC 

values (Marmion et al. 2009). However, these average predictions do not consider how 

far the average is from the extremes. Hence, to account for extent of variation between 
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Figure 8.1 - Schematic representation of the methodology used to build the species distribution data 

sets used to selected priority areas for conservation under six combined time-uncertainty scenarios. 

Complete present distributions of 65 species were predicted from observed occurrences and current 

climatic conditions, using nine modeling methods. Future distributions were predicted by projecting 

the predictive models to the years 2020 and 2080 under six different climatic scenarios combining two 

IPCC storylines and three Global Circulation Models. Predicted distributions were ensembled for each 

time and under two uncertainty scenarios –Mild and Severe uncertainty. 

models in each time, we built a second scenario, which we called “Severe uncertainty”, 

where the probability of occurrence of a species in a planning unit was reduced by the 

uncertainty in that probability (following the distribution discounting methodology 

proposed by Moilanen et al. 2006b). As a measure of uncertainty, we used one standard 

deviation of the probabilities of occurrence predicted by model in each planning unit. 

Ensembles of future species distributions were first made separately for storylines A2 

and B2. These predictions were joined in order to obtain only one data set for each time. 

Hence, data sets for 2020 and for 2080 contained two predictions for each species (one for 

storyline A2 and another for B2), thereby creating a total of 130 conservation features that 

need protection. The rationale underlying this procedure was to ensure that the solutions 
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attained by the reserve selection algorithm achieved species targets in each time-scenario 

regardless of the storyline. We also built other data sets containing all five predictions for 

each species, in each uncertainty scenario: one prediction for the present, two predictions 

for 2020 and two predictions for 2080. Accordingly, the rationale to produce these data 

sets was to ensure that solutions attained by the reserve selection algorithm achieved 

conservation targets for all species at all three times, regardless of the storyline.

This way, we obtained eight data sets containing the predicted probability of 

occurrence of each species in each planning unit: six with predictions for a given time 

and separately for different levels of uncertainty (Mild-Present, Mild-2020, Mild-2080, 

Severe-Present; Severe-2020 and Severe-2080) and two with predictions for the three times 

simultaneously and separately for different uncertainty levels (Mild-All and Severe-All) 

(Figure 8.1). 

8.3.4 Identifying near-optimal investment options within and across scenarios

We used a “minimum set” approach (Moilanen et al. 2009a) to identify the near-optimal 

set of areas for conservation investment for each of the eight species distribution data sets.

Predictions of probabilities of species occurrences were used as input data into a modified 

version of the software Marxan (Ball et al. 2009), developed to deal with uncertainty in 

the variance in the expected number of occurrences. The main difference of the modified 

version is that it has a new term on the objective function which penalizes solutions that 

do not achieve the occurrence target with a desired level of certainty. The new term in 

the objective function also includes a weighting factor which allows balancing penalties 

for not achieving level of certainty against the other terms of the objective function. This 

weighting factor is hereafter referred as “probability weighting” (see Appendix 8.3 for 

details on modified version of Marxan).

In the present study, we set species occurrence targets as 10% of the number of planning 

units where each species is currently predicted to occur and the level of certainty of reaching 

that target at 50% for all species. To run Marxan, we used the following parameters: algorithm 

- simulated annealing; number of runs - 100; penalty cost for not achieving the occurrence 

target - 1; iterations per simulation – 10 000 000; temperature decreases per simulation – 10 

000; initial temperature and cooling factor - adaptive. Probability weight was set to 100 and 

the boundary length modifier to 0.1 after a preliminary sensitivity analysis.

Species conservation and management will be more efficient in the future if we are able 

to allocate resources to intensively managed existing protected areas instead of managing 

areas outside them or designating new ones. Thus, in order to favour the selection of 

currently protected planning units, we set the cost of protected planning units as half that 

of the non protected ones. We considered a planning unit protected if it had more than 

10% of its area inside a currently designated protected area or a Natura 2000 site. 

For each of the eight species distribution data sets, we identified the best set of 

planning units selected out of the 100 Marxan runs. Sunsequently, we overlapped the 

planning units found in those best solutions in order to identify those planning units 
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selected in multiple solutions. We used this procedure to find planning units selected 

concurrently in present, 2020 and 2080 scenarios (which we refer to as the T1 set) and 

concurrently in 2020 and 2080 scenarios (which we refer to as the T2 set). We used this 

procedure separately for each of the uncertainty scenarios, resulting in four solutions: 

overlap T1M and overlap T2M for the Mild uncertainty scenarios, and overlap T1S and 

overlap T2S for the Severe uncertainty scenarios. We also identified planning units 

selected in both uncertainty scenarios in each of the three times separately (we refer to 

these as the overlap UPresent, U2020 and U2080) and for the three times simultaneously 

(overlap UAll). Finally we identified those planning units selected concurrently in both 

uncertainty scenarios and in all three times (overlap T1U), and planning units selected in 

both uncertainty scenarios and in both 2020 and 2080 scenarios (overlap T2U). 

8.3.5 Evaluating the relative benefits of competing investment options

In order to evaluate the relative benefits of investing conservation resources in a particular 

solution, we analyzed the overall performance of each solution in achieving all species 

targets, and the performance in achieving each species target individually.

We started by evaluating the cost-effectiveness of different solutions by measuring 

two metrics:

 a) Summed probability of achieving occurrence target (Sp) – measures the 

probability of each species meeting the occurrence target, summed across all species. For 

data sets where we had more than one prediction per species per planning unit (scenarios 

2020, 2080 and All), we calculated the average probability of each species meeting the 

target. The value of Sp approaches the number of species (65) when all species achieve their 

level of certainty, and approaches zero when no species achieve their level of certainty; 

Sp S Pj

j

j

j

= = −
= =

∑ ∑
1

65

1

65

1( ) (expression 8.1)
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XCi i
i

=
∑

7603
(expression 8.2)

 , where j is the index for species and Pj is the probability of species j not achieving the 

occurrence target.

 b) Efficiency (E) – measures the efficiency of any solution by dividing Sp by its cost:.

 ,where j is the index for the planning units, Xi = 1 if a planning unit is in the Marxan best 

solution (zero otherwise) and Ci is the cost of planning unit i.

These metrics allow us to identify the best possible investment in each scenario, if 

we knew correctly which uncertainty scenario, Mild or Severe, will occur in the future. 

Thus, because we are considering two uncertainty scenarios, to make a smart decision, we 

need to minimize the waste of resources if an alternative scenario to the one planned for 
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takes place. Thus, the questions we need to answer are: Which species and how much of 

their ranges will we be covering if we optimize the selected planning units for a specific 

uncertainty scenario and the alternative takes place? In essence, how wrong could we be?

To answer these questions, we evaluated the performance of the planning units 

selected when optimizing the solution for a given uncertainty level (Mild or Severe 

uncertainty) assuming that the alternative occurs (Figure 8.2). We expect to achieve 

better performances when the scenario optimized for, and the scenario that actually 

occurs, are the same.

We can think of a “no regrets” or robust strategy as one where we invest in planning 

units that are selected in all six scenarios (every combination of time and level of 

uncertainty).  It is interesting to see which species are adequately conserved in a “no-

regrets” solution. To answer this question we analyzed the performance of the Overlap 

T1U solution in achieving targets for species individually. This approach allows decision-

makers to identify which species would be covered by conservation investment if they 

decided to invest in sites over which that there is no doubt they are valuable. Also, the 

knowledge of which species are covered by this solution and the ones which will only 

be covered by investments that are less certain, will allow decision makers to favor, or 

otherwise, particular species in conservation management once the “no regrets” actions 

are taken. Thus, for the Overlap T1U solution, we analyzed the probability of each species 

meeting the level o certainty (Sj). We repeated the same approach for the extra planning 

units only selected when optimizing for the Mild uncertainty scenario, and for the extra 

planning units only selected when optimizing for the Severe uncertainty scenario. Similarly 

to the evaluation we made for the overall solution, we calculated the probability of each 

species achieving the occurrence target, first assuming that the uncertainty scenario that 

we optimized the solution is the one that will occur, and subsequently assuming that the 

opposite scenario is the one that will occur (Figure 8.2).

8.4 Results

8.4.1 Identifying near-optimal investment options within and across scenarios

We identified priority areas for conservation of amphibians and reptiles in the Iberian 

Peninsula for each of the eight data sets (Figure 8.3). The number and location of 

planning units selected varied between scenarios. The number of planning units 

required to achieve targets increased through time, i.e, more planning units were 

selected in the 2080 scenarios than in the present and 2020 scenarios. Also, the number 

of currently non protected planning units selected increased considerably through 

time (Figure 8.4). The number of planning units necessary to simultaneously achieve 

targets in all of three times was about twice the number needed to achieve targets in 

the present, both in the Mild and Severe uncertainty scenarios. 
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Figure 8.2 - Schematic example of the methodology used in the evaluation procedure. The performance 

of the solutions attained when optimizing for the Mild uncertainty scenario were evaluated assuming 

that the Mild uncertainty scenario will occur or that the Severe uncertainty scenario will occur. The 

same method was applied to the solution found when optimizing for the Severe uncertainty scenario. 

The numbers in the figure are hypothetical predicted probabilities of occurrence of a species and grey 

shadows represent hypothetical selected Pus.

A large number of planning units (1155) were selected in every scenario (overlap T1U) – the 

“no-regrets” planning units. These planning units were mostly located in mountains such 

as the Cantabrian, Central System, Morena, Nevada, Burgos, Peneda-Gerês, Alvão, and 

Montesinho (Appendix 8.1). There were other less mountainous areas with concentrations 

of “no regrets” planning units, such as Southwestern Portugal, Southern Spain (around the 

Strait of Gibraltar) and Northeastern Portugal (along the border with Spain). A substantial 

proportion of the planning units selected in overlap T1U were already protected (1079 PUs) 

including the large nature parks of study area, Sierra de Aracena y Picos de Aroche, Doñana, 

Los Alcornocales, Sierras de Andújar, Sierras de Cazorla, Segura y Las Villas and Baixa Limia-

Serra do Xurés (in Spain) and Peneda-Gerês, Vale do Guadiana and Sudoeste Alentejano e 

Costa Vicentina (in Portugal) (Appendix 8.1).

Planning units selected in the Mild uncertainty scenarios but not in the Severe uncertainty ones, 

were chiefly located along Northern Iberian Peninsula (red areas in Figure 8.3), while planning 

units selected in the Severe uncertainty scenarios but not in the Mild ones were mainly located 

on the Northwestern and southern Iberian Peninsula (around the Strait of Gibraltar) and some 

scattered planning units along the Southeastern and Northern coasts (yellow areas in Figure 8.3).
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Figure 8.4 - Number of protected and non protected planning units selected in each time (present, 

2020 and 2080) and in all times simultaneously (All).

8.4.2 Evaluating the relative benefits of competing investment options

The performance of the selected planning units varied through time and uncertainty 

scenarios (Figure 8.5).

The planning units selected attained good performance in terms of probabilities of 

achieving occurrence targets for the present climate, as Sp values (our measure of protected 

area performance) were close to 65 (the maximum possible value). However, such good 

performances were not achievable with the solutions found for the 2020 and the 2080 

scenarios. The performance was even worse if we assumed that the severe uncertainty 

scenario is the one that will occur.

As expected, Sp values were always equal or higher when the uncertainty scenario 

that we optimize for and the one actually occurring were the same than when they 

were different. For example, assuming that the Mild scenario occurs, Sp values when 

we optimized the Marxan solution for the Mild uncertainty were similar to the ones 

obtained when optimizing for the Severe uncertainty scenario. Differences between 

performances achieved by the solutions were more pronounced when we assumed that 

the Severe uncertainty scenario will occur: we always achieved higher Sp values when 

we optimized for the Severe uncertainty scenario than when we optimized for the Mild 

one. However, efficiency results indicate that solutions obtained when we plan for the 

Mild scenario are always more cost-efficient, as E achieved higher values, regardless of 

the uncertainty scenario occurring.
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8.4.3 Evaluating which species would be covered and which would be missed

If we only conserve the no-regrets planning units (overlap T1U) then most species 

achieve their occurrence targets with high probability assuming their distribution 

does not change in the future (Figure 8.6). The only exceptions were C. lusitanica and 

T. hermanni (for both uncertainty scenarios) and T. graeca (if the Severe uncertainty 

scenario occurs). However, if we consider future predicted distributions, with the “no 

regrets” planning units, most species will not meet their occurrence targets with a high 

probability. For example, if we consider species distribution predictions for 2020, 19 

species will have a less than a 50% chance of reaching their occurrence targets with the 

no-regrets solution, in both Mild and Severe uncertainty scenarios. Moreover, 27 other 

species will also have less than a 50% probability of achieving the occurrence target if 

the Severe uncertainty scenario occurs. The performance of the “no regrets” solution 

is even more reduced when we consider species distributions predictions for 2080, 

since 21 species will have very reduced probability of achieving the occurrence target 

(prob<0.5) regardless of the uncertainty scenario that occurs. If the Severe uncertainty 

scenario is the one that occurs, only five species will have a better than 50% chance of 

achieving their occurrence target in 2080.

It is noteworthy that even the concurrent solution to all time-scenarios in each 

uncertainty scenario (overlaps T1M and T1S) are not enough for all species to achieve the 

occurrence target with high probability, particularly considering species distributions 

predictions for 2020 and 2080. Examples of species with reduced probabilities of 

achieving occurrence targets (prob < 0.5) are: C. lusitanica, M. alpestris, L. helveticus, R. 

dalmatina, R. temporaria, L. bilineata, Z. vivipara, P. bocagei and V. seoanei. 

Another interesting result is that the expected representation of each species varies 

Figure 8.5 - Values obtained by summed probability of achieving occurrence target (Sp) and Efficiency 

(E) in each time scenario (Present, 2020, 2080 and All) assuming that a given uncertainty scenario will 

occur (M-Mild and S-Severe).
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Figure 8.6 - Probability of each species meeting the occurrence target (Sj) in each time scenario and 

assuming that a given uncertainty scenario will occur: a) Mild and b) Severe. For each species it is 

represented the probability of achieving the occurrence target by the planning units selected when 

optimizing both for the Mild and Severe uncertainty scenarios and by the planning units selected 

exclusively when optimizing for one of those scenarios.
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according to the scenario that we optimized the solution for and according to the scenario 

that actually occurs. For example, if the Mild uncertainty scenario is the one that actually 

occurs, species such as A. dickhilleni, H. arborea, R. iberica, R. pyrenaica, A. marchi, A. fragilis, 

Z. longissima, I. monticola, P. bocagei, P. muralis, T. graeca, T. hermanni and V. aspis achieve 

significantly higher probabilities of meeting the occurrence targets with the concurrent 

solution optimized for the Mild scenarios (overlap T1M) than with the concurrent solution 

optimized for the Severe uncertainty scenario (overlap T1S). However, other species reach 

higher probabilities of meeting the targets with units selected concurrently in present, 

2020 and 2080 scenarios under the Severe uncertainty scenario overlap T1S (D. galganoi, 

H. turcicus, I. aranica and I. bonnali). Curiously, if the Severe uncertainty scenario is the one 

that actually occurs, the concurrent solution when optimizing for the Mild uncertainty 

scenario (T1A) achieves better performance for several species. For example, considering 

the 2020 predictions, L. boscai, A. obstetricans, B. calamita, P. perezi, C. austriaca, C. 

girondica, M. monspessulanus, P. hispanica, P. algirus and V. latasti achieve significant higher 

probabilities of meeting the occurrence targets with overlap T1M then with overlap T1S. 

A similar result was observed for S. salamandra, C. girondica, C. striatus and P. hispanica, 

considering species distributions predicted for 2080. 

8.5 Discussion

In this study we used the Iberian herptiles present and future predicted distributions 

to analyze how uncertainty in species distributions may affect decisions about resource 

allocation for conservation in space and time. Our approach allowed us to quantify and 

make explicit trade-offs between investing in different locations, optimized according to 

three time frames and two levels of uncertainty.

Our findings indicate that the current protected areas are nearly sufficient to 

cover 10% of the current distribution of all studied species, however, a different result 

is expected under future climates. Indeed, contractions and rearrangements of species 

distributions due to climate warming will make the current protected areas ineffective in 

achieving representation goals. Our results indicate that to continue representing 10% 

of the distribution of the amphibians and reptiles in the future decades, we will need to 

make the protected area estate 1.4 to 2.0 times bigger. However, even if current protected 

areas are expanded that much, it will not be possible to meet occurrence targets for some 

species because their distribution in the Iberian Peninsula is predicted to contract to less 

than 10% of their current range.

Predictions that an increase in protected areas will be necessary to maintain species 

representation targets in the future have been reported in other studies, focusing on 

different species and places (e.g, Araújo 2009b; Coetzee et al. 2009; Hannah et al. 2007; 

Hole et al. 2009). Investment in protection of such large areas is probably an impractical 

objective within the current economical and social context. Thus, identifying and 

prioritizing investment options within these areas is mandatory (Murdoch et al. 2007). 
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Priority of investment should be given to those areas are more robust to uncertainty 

and deliver the largest return on investment. From this point of view, planning units 

selected consistently in both uncertainty scenarios and at any future time offer less 

investment risk (areas represented by overlap T1U in Figure 8.3). Most of these areas are 

already protected areas but investment can be directed to conservation actions within 

those areas, such as monitoring or habitat restoration. However, these areas are not 

sufficient to represent all species, and investment conservation in places where there is 

no certainty about our return is important.

Our results indicate that investing in the areas selected only under the Mild 

uncertainty scenario will be a more cost-efficient investment if the Severe uncertainty 

scenario occurs than vice versa. This result shows that disregarding uncertainty and 

applying the precautionary principle would not be best strategy in this case. This result 

was probably attained because several species are predicted to have their distribution 

severely or completely reduced under the Severe uncertainty scenario, and consequently 

they are not accounted for in the Marxan optimized solution. We consider that areas 

selected under the Mild uncertainty scenario would be good candidates for investment, 

subject to the implementation of a dynamic management plan that considers shifting 

actions from actively managing species and habitats to surveying species abundances or 

halting conservation investment according to the probabilities of the species targeted 

being extant (Chadès et al. 2008). Despite being less cost-efficient, we do not suggest that 

areas selected only in the Severe uncertainty scenario be completely disregarded from 

conservation efforts because those areas may become climatic refugia for some species, 

including species from other taxonomic groups (Pyke and Fischer 2005). 

Our study shows how to account for uncertainty in predicted future species distributions. 

The return-on-investment analysis based on different uncertainty scenarios provides 

decision-makers with the knowledge and tools to support robust investment options. 

For the sake of simplicity, we constrained the number of uncertainty scenarios arising 

from the different possible mathematical approaches used to fit the models to two (Mild 

and Severe), but there are many possibilities between and beyond the bounds of these two. 

Similarly, we used only one level of desired probability of achieving species occurrences 

targets (we set the level o certainty in Marxan to 0.5). Additionally, we did not account 

for uncertainty in all variables that can affect future species distributions. Where possible, 

we attempted to minimize the influence of other sources of uncertainty in our results. For 

example, we aimed to minimize the uncertainty arising from the storylines assumed in future 

climate change predictions. To do so, we identifed priority areas for the future by replicating 

the possible distribution of each species in each of the two storylines considered in this 

study. This approach may have induced an overestimation of the selected areas needed to 

meet representation targets in the future. Ideally, uncertainty derived from all storylines 

described in the Special Report on Emissions Scenarios (Nakicenovic and Swar 2000) should 

be considered individually in the reserve selection exercise. Another important source of 
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variability and uncertainty that we attempted to minimize was the dispersal ability of each 

species. We used only the worse-case scenario regarding dispersal, i.e., we assumed that 

species could not disperse and therefore future ranges must be contained within current 

ranges. This is a cautious approach that acknowledges many herptiles have low dispersal 

capacity. However, dispersal uncertainty is a very important issue in the identification 

of priority areas for conservation under climate change, particularly with respect to the 

connectivity of priority conservation areas (Halpern et al. 2006; Hodgson et al. 2009; 

Williams et al. 2005). If we had assumed unlimited dispersal ability most species ranges 

would be predicted to be larger that our predictions (data not shown), consequently the 

probability that more species would co-occur in planning units would increase and the 

areas selected by Marxan for the 2020 and 2080 scenarios would be smaller. 

Uncertainty in future species distributions can also derive from uncertainty in other 

variables not accounted for in this study. For instance, the rate of habitat fragmentation 

and degradation (Burgman et al. 2005; Polasky et al. 2008), uncertainty in habitat 

variables, errors in distributional data and uncertainty in metapopulation parameters, 

such as abundance, reproduction and mortality rates.

There are other methodological aspects that if approached differently could have 

returned dissimilar results. For instance, we used the number of protected and non-

protected areas selected as a surrogate for cost. We used this simple approach to reduce 

the complexity of our study, but a more realistic estimate of the cost of conservation 

could consider acquisition, transaction, damage and opportunity costs (Adams et al. 2010; 

Naidoo et al. 2006), the cost of conservation actions (Carwardine et al. 2008; Naidoo et al. 

2006), or the cost of other ecosystem services (Naidoo and Ricketts 2006). Additionally, 

we measured the benefits as the number of species meeting occurrence targets with at 

least 50% probability, and we set the same relative target for all species (10% of present 

range). By doing this, we considered all species has having equal value. However, it is 

reasonable to think that some species could be valued higher than others, for instance, 

the endemics, the ones with most concerning conservation status, or the ones that are 

more phylogenetically distinct (Faith 1992; Vane-Wright et al. 1991) could have been 

valued higher. Thus, we encourage conservation authorities of this area to set their own 

conservation objectives and evaluation metrics instead of simply assuming that the areas 

identified in this work are the only possible and optimal solution.

There is still a long way until we are able to deal with the extreme complexity of 

the biological systems, the parameters regulating their persistence and their intrinsic 

uncertainty, the dynamics of species distributions in space and time, the difficulty in 

incorporating realistic costs and making decisions involving multi objectives. However, 

this case study illustrates one method of making spatially explicit robust investment 

options for conservation despite multiple uncertainties.
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8.6 Conclusion

Dealing with uncertainties in climate change and species distribution model is a major 

challenge for the spatial prioritization of conservation investment. This study identifies a 

set of sites in the Iberian Peninsula where conservation investment is prudent regardless 

of how the globe warms and how the climate changes distributions of amphibian and 

reptile species – these are “no regrets” sites for conservation. Additionally, we identified 

those species that will require extra investment if the no-regrets solution is implemented. 

We showed that investing beforehand in a precautionary strategy may not be the best 

option. Instead, scenario analysis coupled with return-on-investment thinking may lead 

to more efficient conservation investments. 
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Appendix 8.1 

Figure S.8.1.1 - Map of the study area, altitude and protected areas, highlighting features referred in 

the text. Map shown in WGS84 projection.
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Class Order Family Species END CS

Amphibia Anura Alytidae Alytes cisternasii Boscá, 1879 X NT

Alytes dickhilleni Arntzen & García-París, 1995 X VU

Alytes obstetricans (Laurenti, 1768) LC

Discoglossus galganoi Capula, Nascetti, Lanza, Bullini 
& Crespo, 1985 

X LC

Discoglossus jeanneae Busack, 1986 X NT

Bufonidae Bufo bufo (Linnaeus, 1758) LC

Bufo calamita Laurenti, 1768 LC

Hylidae Hyla arborea (Linnaeus, 1758) LC

Hyla meridionalis (Boettger, 1874) LC

Pelobatidae Pelobates cultripes (Cuvier, 1829) NT

Pelodytes punctatus (Daudin, 1802) LC

Ranidae Pelophylax perezi (Seoane, 1885) LC

Rana dalmatina Fitzinger in Bonaparte, 1838 LC

Rana iberica Boulenger, 1879 X NT

Rana pyrenaica Serra-Cobo, 1993 X EN

Rana temporaria Linnaeus, 1758 LC

Urodela Salamandridae Calotriton asper (Dugès), 1852 X NT

Chioglossa lusitanica Bocage, 1864 X VU

Lissotriton boscai (Lataste, 1879) X LC

Lissotriton helveticus (Razoumowsky, 1789) LC

Mesotriton alpestris (Laurenti, 1768) LC

Pleurodeles waltl Michahelles, 1830 NT

Salamandra salamandra (Linnaeus, 1758) LC

Triturus marmoratus (Latreille, 1800) LC

Reptilia Chelonia Bataguridae Mauremys leprosa (Schweigger, 1812) LC

Emydidae Emys orbicularis (Linnaeus, 1758) NT

Testudinidae Testudo graeca Linnaeus, 1758 LC

Testudo hermanni Gmelin, 1789 NT

Ophidia Colubridae Coronella austriaca Laurenti, 1768 LC

Coronella girondica (Daudin, 1803) LC

Hemorrhois hippocrepis (Linnaeus, 1758) LC

Hierophis viridiflavus (Lacépède, 1789) LC

Macroprotodon brevis (Günther, 1862) NT

Malpolon monspessulanus (Hermann, 1804) LC

Natrix maura (Linnaeus, 1758) LC

Natrix natrix (Linnaeus, 1758) LC

Rhinechis scalaris (Schinz, 1822) LC

Table S.8.2.1 - List of amphibians and reptiles species. End – endemic species to this region are marked 

with an “X”. CS – Conservation status according to Cox et al. (2006).

Appendix 8.2 
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Zamenis longissima (Laurenti, 1768) LC

Viperidae Vipera aspis (Linnaeus, 1758) LC

Vipera latastei Boscá, 1878 NT

Vipera seoanei Lataste, 1879 X LC

Sauria Anguidae Anguis fragilis Linnaeus, 1758 LC

Blanidae Blanus cinereus (Vandelli, 1797) X LC

Chamaeleonidae Chamaeleo chamaeleon (Linnaeus, 1758) LC

Gekkonidae Hemidactylus turcicus (Linnaeus, 1758) LC

Lacertidae Acanthodactylus erythrurus (Schinz, 1833) LC

Algyroides marchi Valverde, 1958 X EN

Iberolacerta aranica (Arribas, 1993) X CR

Iberolacerta aurelioi (Arribas, 1994) X EN

Iberolacerta bonnali Lantz,1937 X NT

Iberolacerta martinezricai (Arribas, 1996) CR

Lacerta  andreanszkyi Werner, 1929 x NT

Lacerta agilis Linnaeus, 1758 LC

Lacerta bilineata (Daudin, 1802) LC

Lacerta monticola Boulenger, 1905 X VU

Lacerta schreiberi Bedriaga, 1878 X NT

Podarcis bocagei (Seoane, 1884) X LC

Podarcis carbonelli Pérez Mellado, 1981 X EN

Podarcis hispanica (Steindachner, 1870) LC

Podarcis muralis (Laurenti, 1768) LC

Psammodromus algirus (Linnaeus, 1758) LC

Psammodromus hispanicus Fitzinger, 1826 LC

Timon lepida (Daudin, 1802) NT

Zootoca vivipara (Jacquin, 1787) LC

Scincidae Chalcides  lanzai Pasteur, 1967 X NT

Chalcides bedriagai (Boscá, 1880) X NT

Chalcides striatus (Cuvier, 1829) LC

Table S.8.2.1 - (continued)
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Appendix 8.3 

Marxan delivers decision support for reserve system design by minimizing a combination 

of the cost of a set of selected planning units and the boundary length of the entire system 

whilst representing a set of features with a given number of occurrences (occurrence target) 

(Ball et al. 2009). 

Mathematically, we can define the representation of feature j in a set of planning 

units as

R x x r x ij i ij

i

N

i

S

( ) ,= ∈ { } ∀∑           0 1

where rij is the occurrence level (for instance, abundance or number of populations) of 

feature j in planning unit i, and xi is a control variable with value 1 for planning units 

selected in the set, and value 0 for planning units that are not selected. 

The mathematical problem that Marxan resolves can be defined as:

Minimize xC b x x cvi i i h

h

Nf

i

Ns

i

N

ih

S

   + −∑∑∑ ( )1

subject to the constraint that all features meet representation targets 

where Ci is the cost of planning unit i, Ns is the total number of planning units, 

Nf is the number of conservation features, Tj is the occurrence target of feature j and b 

is the boundary multiplier which determines the cost of the overall selected planning 

units relative to the penalty to its spatial configuration. The matrix CV is the connectivity 

matrix with elements CVih, which reflects the cost of the connection (such as a boundary) 

shared by planning units i and h. 

Marxan uses a simulated annealing algorithm to evaluate an objective function that 

combines expressions 2 and 3. The objective function in Marxan assures that all features 

meet their occurrence target by penalizing planning units’ configurations where condition 

(3) is not satisfied. Hence, SPFj represents the penalty paid for any feature j that does not 

meet its occurrence target (Tj). The penalty for not achieving conservation targets are 

generally to be large enough that no targets are unmet. Once the target is met the penalty 

is zero. There is also a penalty for planning units configurations with larger borders, which 

is weighted with the boundary length modifier (BLM) and an optional term that penalizes 

solutions exceeding a given cost t, with a penalty (CTP).
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where pij represents the probability of occurrence of feature j in planning unit i.

Consequently, the variance in the representation of each feature is:  
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Var E R x r p x pj ij i
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According to the central limit theorem, the mean of a sufficiently large number of 

independent random variables, each with finite mean and variance, will be approximately 

normally distributed. Thus, the probability of each feature failing to meet the desired 

occurrence target (Pj) is given by the proportion of the normal curve that is below the 

desired target Tj. When the variance in the representation of each feature is higher than 

zero, Z-scores for each feature are calculated according to:

Z
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j j
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Finally, Pj  is calculated according the rule
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if  
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where f is a function that converts the normal deviate into a proportion of a normal 

curve. 

In the modified Marxan version used in the present study there is now a penalty 

for not meeting a conservation target with the required level of certainty rather than a 

penalty for meeting the target or not.







“In the end we will conserve only what we 
love. We will love only what we understand. 

We will understand only what we are taught”

Baba Dioum

Photo: Vasco Flores Cruz





Chapter 9 

The broad objective of this thesis was to address some unresolved issues in conservation 

planning, by using the Western Mediterranean region as study area and the amphibian 

and reptiles species occurring there as biological models. In the first part of this discussion, 

two main aspects are addressed: 1) key findings are summarized and integrated; 2) their 

implications for conservation planning science and for the conservation of amphibians 

and reptiles in the Western Mediterranean region are discussed. The second part of this 

chapter focuses on future research prospects.

9.1 Summary and key findings

9.1.1 Contribution to knowledge on the distribution of amphibians and reptiles in 
the Western Mediterranean

This thesis contributes significantly to the knowledge and understanding of the distribution 

of the amphibians and reptiles in the Western Mediterranean region. 

Data on the distribution of amphibians and reptiles in the study area was already 

available in a spatial referenced form, since distribution atlases were available for 

Portugal (Loureiro et al. 2008), Spain (Pleguezuelos et al. 2002), and Morocco (Bons and 

Geniez 1996). However, those data sources comprised records collected from several 

observers, along several decades, and thus a systematic sampling was not applied. 

Hence, there was no information on the sampling effort and it was not know which 

grid cells were not sampled at all.

General Discussion

Chapter  
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Species distribution models (SDMs) are potential useful tools to locate relatively 

under-sampled sites and direct field survey efforts (maximizing their efficiency and 

efficacy), and ultimately assisting in locating unknown populations of rare species 

(Guisan et al. 2006; Guisan and Thuiller 2005; Williams et al. 2009). In chapters 5, 6, 7 

and 8, SDMs were used to predict the potential distribution of each species in the study 

area, although the methods applied, the area and the species under focus differed. 

For example, in chapter 5, the maximum entropy method (Phillips and Dudík 2008; 

Phillips et al. 2004) was used to predict potential distributions of each amphibian and 

reptile species in the Iberian Peninsula, but, because the aim was to test the sensitivity 

of reserve selection algorithms to different proportions of species occurrence data, 

only fractions of the overall records were used as input data. In chapter 6, the same 

maximum entropy method was used to predict the overall occurrence of amphibians 

and reptile species in Iberian Peninsula and Morocco, this time using all occurrence 

records, except to those species occurring both in the Iberia and Morocco. For those 

species, the number of occurrences in Iberia was reduced in order to match the density 

of records within the minimum convex polygon formed by all Moroccan records. In 

chapter 7, we used an ensemble of nine SDMs methods to predict the distribution 

of each amphibian and reptile species in the Iberian Peninsula, both for present and 

different future climatic conditions.

Figure 9.1 represents the observed and predicted species richness as calculated with 

the methodology used in chapter 6 (the only chapter where both Iberia and Morocco 

were considered). Differences between observed and predicted species were predominantly 

higher in Morocco than in Iberia, indicating that sampling effort in Morocco was 

probably lower. There are however, few areas in Iberia where observed species richness 

was higher than predicted. One of the possible explanations may be the threshold used to 

transform probabilities of occurrence into presence/absence data. The threshold applied 

to each species was the one where 90% of the occurrence records with the highest model 

probabilities were considered as presences. This means that 10% of the observed records 

are considered absences, accounting for possible “false presences” in the observed data. 

Differences between observed and predicted richness indicate that future sampling efforts 

should be directed preferentially to Morocco, and particularly to the coastal areas and 

higher altitudes. The lower sampling effort in Morocco in comparison with the Iberian 

Peninsula highlights the importance of chapter 4. Indeed, the 427 new records added 

correspond to an increment in 7% relative to the total number of occurrences of the 

terrestrial species published in the atlas of amphibians and reptiles of Moroco (Bons and 

Geniez 1996). These new records extended the known distribution of several species such 

as, Discoglossus scovazzi, Ptyodactylus oudrii and Spalerosophis dolichospilus, while feeling 

gaps within the known range of other 63 species. 
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Figure 9.1 - Distribution of observed and predicted amphibian and reptile species richness in the 

Western Mediterranean.

A second advantage of the use of SDMs is that they allow identifying the environmental 

factors which contribute the most to explain species distributions (Guisan and Thuiller 

2005). The variables “annual precipitation” and “precipitation of driest month” were 

the ones which had higher contribution for most individual species models, both for 

amphibians and reptiles (Figure 9.2). These two variables alone contributed more than 90% 

to the models of Leptotyphlops macrorhynchus, Mesalina pasteuri and Tripiocolotes tripolitanus 

(annual precipitation) and Iberolacerta aranica and Iberolacerta aurelioi (precipitation of 

driest month). Understanding the affinities of species distributions with environmental 

variables is critical to understand how they may respond to environmental disturbances.

9.1.2 Contribution to Conservation Planning Science 

Along this thesis, several of the stages of the systematic conservation planning process 

were analyzed as well as their influence in identifying priority areas for conservation. 

Figure 9.2 - Number of species to each variable had the maximum contribution (Max) or achieved 

a given percentage of contribution (10 to 90%) to the distribution model.
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The main focus was given to the “objectives” subgroup (Figure 1.3). Novel approaches 

were proposed to deal with data limitations and uncertainty, dynamics of the spatial 

distribution of conservation features and the incorporation of evolutionary processes. 

This work contributed to enhance comprehensiveness and confidence on the process and 

to boost the chance of getting increased benefits for conservation actions. 

One of the most important findings of this thesis was that data on spatial distribution 

of conservation features is decisive to the prioritization process, as it will have a strong 

influence in setting conservation targets and objectives, and ultimately, in the prioritization 

outcomes. Understanding the biological and economic consequences of data limitations 

can both improve the choice of conservation priorities based on such data and guide 

efforts to collect additional data.

In chapter 5, it was shown that the type of species distribution data (observed, 

predicted, transformed predicted or mixed) have a strong influence on the cost-

effectiveness of the solutions found. Additional results not shown in this thesis also 

demonstrated that congruence between areas selected as priority for conservation when 

using different data sets was low. These results concur with the ones found in a recent 

study (Underwood et al. 2010). Also in chapter 5, it was found that, when the prioritization 

process starts, the degree of knowledge on species distributions has deep consequences on 

priority areas identified. This finding is in agreement with previous results (Grand et al. 

2007), but in this thesis the analysis was extended in order to understand interactions 

between data completeness, data type, conservation targets and the mathematical problem 

statement. Although no single type of species distribution data outperformed the others (in 

terms of cost-efficiency) in every situation, it was possible to make recommendations for 

particular combinations of these four factors. For example, it was noticed that the use of 

observed data is not recommended in data-poor circumstances and particularly when using 

the minimum set approach, because, in such cases, flexibility in solutions is reduced, leading 

to expensive solutions. Hence, planners are recommended to first identify the circumstances 

that the conservation planning is being carried in terms of knowledge of the distribution of 

conservation features. A second assumption that emerged was that predicted probabilistic 

data is generally less cost-efficient than mixed and transformed predicted data in most data-

knowledge circumstances. Limitations of using probabilistic data are exacerbated by adding 

uncertainty to the reserve selection problem, as explained in chapter 8. On the other hand, 

using probabilistic data may be advantageous when planning for persistence because it 

allows discerning between occupied areas of different suitability (Araújo and Williams 

2000) and it allows circumventing a subjective choice for the threshold used to convert 

probabilities into binary data (Liu et al. 2005). These reasons motivated the development 

of a new version of the decision-support software Marxan, which deals with the variance in 

expected number of occurrences captured by a set of selected areas (chapter 8). Although 

it was not tested here whether solutions found using probabilistic predicted data in the 

modified version of Marxan performs better in terms of cost-efficiency than it does on the 

classic version, ongoing research suggests that it may be the case. 



General Discussion231

The importance of species distribution data to the prioritization process was further 

explored in chapter 9, where it was shown that predicted dynamics in species distributions 

derived from ecological disturbances, such as climate change, may strongly influence 

decisions about which areas should be preserved and when. A novel approach was 

developed to integrate both dynamics and uncertainty in species distributions, and two 

types of uncertainty were targeted: the variance in the expected number of occurrences for 

a species resulting from the use of probabilities of occurrence, and uncertainty arising from 

the different possible mathematical approaches used to fit species distribution models. As 

mentioned previously, a new version of the decision support tool Marxan was developed 

for this purpose. It was evidenced that accounting for uncertainty subjacent to current 

and future predictions of species distributions may be helpful to increase confidence in 

conservation investments. These developments are a step forward in turning the systematic 

conservation approach more comprehensive and realistic. 

Another aspect related to the “objectives” subgroup addressed in this thesis was 

the incorporation of evolutionary processes into conservation planning. Evolutionary 

processes are extremely important both for generating biodiversity and for enhancing 

persistence chances of the existing one. Targeting evolutionary processes in conservation 

planning has been fully acknowledged in scientific literature but rarely implemented. In 

chapter 6, a novel approach was developed to find surrogates for both the neutral and the 

adaptive components of genetic diversity. It was found that priority areas for conservation 

identified when targeting evolutionary process were significantly different from the ones 

identified while targeting species representation only. While new methods are emerging 

to incorporate molecular data on conservation prioritization, most regions still lack 

genetic variation information. Thus, given the urgency of making conservation decisions, 

approaches such as the one developed in this thesis are useful because they enhance the 

probability of capturing evolutionary processes without requiring molecular data. 

The emerging result transversal to chapters 5, 6, and 8 was that priority areas identified 

when addressing different conservation planning issues separately were fairly different. 

For example, priority areas identified in the Western Mediterranean were distinct when 

including surrogates for evolutionary processes from solutions found when not including 

them (chapter 6). Priority areas identified also varied when incorporating predicted shifts 

in species distributions and accounting for data uncertainty (chapter 8). Moreover, priority 

areas identified in the Iberian Peninsula when planning for the all Western Mediterranean 

(chapter 6) were quite different from the ones identified when planning exclusive for 

the Iberian Peninsula (chapter 8). These results demonstrate that prioritization problems 

do not have an exclusive answer, which reiterates the role of systematic conservation 

planning as a decision support tool instead of a decision-making tool (Margules and 

Sarkar 2007). Hence, results obtained when using reserve selection algorithms should not 

be accepted uncritically. They should be interpreted in the context in which they were 

obtained and addressing methodological limitations. The challenge is to evaluate in each 
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situation which elements are worth including and which only add complexity without 

any substantial improvement in outcomes. Furthermore, prioritization results should be 

integrated as a part of the full decision process which should also incorporate stakeholders 

and expert opinions, and be encapsulated by the social economic context (Figure 1.3). 

Conservation planning should be a dynamic process, where implemented conservation 

actions are monitored and evaluated, and providing feedback for future decisions.

9.1.3 Implications for the conservation of amphibians and reptiles in the Western 
Mediterranean

Although the main objectives of this thesis were more related with analysis and development 

of methodologies in conservation planning, there were few insights emerging with direct 

conservation application.

Foremost, it was evidenced in that climate change in the next decades may have severe 

effects on amphibian and reptiles distribution in the Iberian Peninsula, particularly on the 

endemic species with Atlantic climatic affinity such as Chioglossa lusitanica, Rana iberica 

and Vipera seoanei, and particularly in altitude species such as Rana pyrenaica, Iberolacerta 

monticola, I. aranica, I. aurelioi, and I. bonnali. Results indicated that the next decade, in 

particular, will be a critical period for most of these species, which calls for immediate 

conservation action. In chapter 8, priority areas for conservation were identified taking 

into account potential range contraction of the species. Previous studies have attempted 

to identify priority areas for conservation of amphibians and reptiles in the Iberian 

Peninsula, but without accounting for potential range shifts, and usually using a coarser 

scale of analysis (e.g. Araújo et al. 2007; Lobo and Araújo 2003). Thus, the present work 

represents a relevant progress in the conservation context of the Iberian Peninsula.

Noteworthy, most of the priority areas identified when accounting exclusively for 

predicted distributions for present time are already protected (Figure 9.3a). The few 

exceptions are areas adjacent to Douro Internacional, Malcata and Doñana sites, and the 

extreme northeast of the Iberian Peninsula. If considering the “discounted uncertainty” 

scenario, additional areas were also identified between Donãna and Vale do Guadiana 

sites, west to Los Alcornocales and some other scattered areas mostly along the northern 

coast of the Iberian Peninsula and central-east Portugal. However, several additional areas 

to the current protected ones were identified as priority for conservation when accounting 

for future species distributions (Figure 9.3b). Gaps between priority areas identified and 

currently protected areas were mostly located in Southwestern Spain (area comprised 

between the southern border of Portugal and Spain and the Strait of Gibraltar) and in 

Central-Eastern Portugal, between Douro Internacional, Serra da Estrela, Tejo Internacional, 

Malcata and São Mamede protected areas. Additionally, several areas identified in only 

one of the uncertainty scenarios are neither currently protected, such as the coastal areas 

of Asturias province and the Northwest of the Peninsula, in Galicia province. 
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As found in chapter 8, given the uncertainty in future species distributions, it will 

probably be more cost-efficient to extend protection to areas identified under the “average 

uncertainty” scenario than the ones identified under the “discounted uncertainty 

scenario” (see chapter 8 for methodological details). However, areas identified under 

the “discounted uncertainty” scenario may become important climatic refugia for many 

species with Atlantic climate affinities, particularly Chioglossa lusitanica and Rana iberica. 

Ideally, all areas identified as priority for conservation in Figure 9.3b should be protected 

in order to secure, with certainty, the majority of amphibian and reptile species in the next 

century. However, it should be outlined that in this study only amphibians and reptiles 

were accounted in the selection of priority areas and other spatial configurations may prove 

more efficient to protect several biodiversity groups simultaneously. Nonetheless, it is 

likely that climatic change affect different biodiversity groups in similar ways, particularly 

by shifting ranges northwards and towards higher altitudes (e.g. Feehan et al. 2009). For 

example, Garzón et al. (2008) predicted that the temperate broad-leaved tree species will 

be relegated to the northern mountains of the Iberian Peninsula, and that their current 

range will be substituted by sub-mediterranean tree species. These results concur that the 

North of the Iberian Peninsula and the Mountain tops will probably become climatic 

refugia for several species, mostly the ones with Atlantic climate affinities.

It is important to note that priority areas identified in chapter 8 did not objectively 

account for economical costs, as only the parameter “area” was used as surrogate for 

cost. This consideration is extremely important given that a considerable proportion 

of priority areas identified were located in areas of economical importance and urban 

pressure, such as coastal regions. Therefore, attempting to conserve these areas may result 

Figure 9.3 - Priority areas for conservation common to solutions obtained when optimizing for 

amphibians and reptiles distributions predicted for a) present time and in each uncertainty scenario; 

and b)  2020 and 2080 and in each uncertainty scenario. Black dots identify planning units that 

currently have more than 10% of its area inside a currently designated protected area or a Natura 2000 

site. See chapter 8 for methodological details.
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in serious conflicts of interests on land-use. However, it is also relevant to point out that 

those areas are likely to undergo severe habitat fragmentation in upcoming years due to 

urban development, if not preserved. Thus, it is advisable to combine the results of future 

potential distributions with socio-economic, land-use and environmental models, to 

derive data that can be integrated into decision-making (e.g. Verboom et al. 2007), and to 

evaluate the effects of different land-use policies on biodiversity (e.g. Louette et al. 2010).

Another important consideration regarding the priority areas identified in chapter 

8, is that it was assumed a “no dispersion” scenario, meaning that priority areas were 

identified based on areas where species are most likely to persist without dispersal, and 

potential areas to where they might disperse and find suitable habitat in the future were 

disregarded. This implicates that if species are able to disperse and expand their current 

range, it may be possible to find more efficient spatial configurations of priority areas, since 

there will probably be more combination possibilities. It also means that connectivity 

between priority areas, and particularly between current and future potential priority 

areas, would have to be accounted.

It is also relevant to mention that priority areas identified in chapter 8 did not account 

for species predicted to completely lose suitable climatic habitat in the future. However, 

given the uncertainty in model predictions and in species adaptation abilities, predicting 

complete loss of suitable climatic niche does not necessarily mean that species will actually 

go extinct. In fact, if those species are able to persist, they may become the priority ones 

for conservation action. Once there is not absolute certainty of how species will respond 

to climate change, the implementation of a monitoring program is recommended to track 

species range shifts and/or behavioural, and physiological adaptation. Species predicted to 

completely lose suitable climatic niche in the Iberia Peninsula, and particular the endemic 

ones, should be the principal candidates to be included into monitoring programs. Such 

species comprise Alytes dickhilleni, Calotriton asper, Chioglossa lusitanica, Discoglossus 

galganoi, Iberolacerta aranica, Iberolacerta aurelioi, Iberolacerta bonnali, Iberolacerta monticola, 

Podarcis bocagei, Rana iberica, Rana pyrenaica, Triturus marmoratus and Vipera seoanei.

The monitoring locations should also be stratified according to current climatic 

variability and they should cover, in particular, areas with steep climatic gradients, such 

as mountain ranges. Mountain ranges played a very important role as biodiversity refugia 

centres in historical climatic events and it is likely that they also play an important role 

in species persistence in future decades. An extra reason for monitoring in mountains 

is because the scale of the analysis used in this work is not detailed enough to capture 

microclimates along slopes and valleys. Further attention should also be devoted to areas 

with expected high rates of turnover, because changes in assemble composition may 

conduct to ecosystem disruption. Such considerations should be accounted in broader 

monitoring programs, such as the ongoing SIMBION project aimed to monitor biodiversity 
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in Northern Portugal. Monitoring parameters should include: a) physiological changes 

in thermal tolerances; b) phenological adjustments, such as changes in aestivation and 

hibernation periods along the year; c) behavioural thermoregulation adjustment, such as 

burrowing or adjustments in daily activity periods; d) quantification of dispersal rates; e) 

changes in population parameters, such as abundance, fertility and mortality f) incidence 

of infectious diseases, and g) species interactions.

Different configurations of priority areas were identified in chapter 6, where the study 

area was extended to include Morocco, and targets were set for surrogates of evolutionary 

processes in addition to species presence. Given the different methodology used, the 

priority areas identified were fairly different from the ones identified in chapter 9. It would 

be interesting to investigate which areas would be selected as conservation priority if both 

species range shifts, uncertainty and evolutionary processes were included simultaneously. 

It would also be interesting to evaluate how areas selected using surrogates for evolutionary 

processes would actually preserve more of the genetic diversity and particularly to test if 

genetic diversity has phenotypic expression in traits relevant to adaptation to climate 

change. For example, for species predicted to be severely affected by climate change, and 

which have diversified lineages, such as Chioglossa lusitanica, it would be interesting to 

investigate if different lineages have different physiological tolerances of phenologies.

9.2 Future prospects

Despite the exponential growing of systematic conservation planning in the last three 

decades (Moilanen et al. 2009; Pressey and Bottrill 2008), there are still important unresolved 

issues at every stage of the process, including the topics focused along this thesis. 

9.2.1 Biodiversity data 

Data paucity is still one of the most challenging issues in conservation planning, but 

conservation decisions have to be made in spite of bias and gaps in species information. 

Along this thesis, the focus was given to individual species distributions and SDMs were 

systematically used to circumvent the problem of biologic data paucity. However, species 

distributions models are not uncertainty-free. Model limitations should be accounted for 

when interpreting conservation prioritization results derived from predicted data and 

uncertainty should be fully acknowledged. The field of species distribution modeling 

has been evolving rapidly, and new emerging approaches are promising for conservation 

planning, particularly the ones developing from the Bayesian and machine learning fields 

(Elith and Leathwick 2009). Also promising is the link of correlative with mechanistic 

models (e.g. Kearney and Porter 2009), or with population models (Keith et al. 2008), and 

the inclusion of biotic interactions into the distribution models (Araújo and Luoto 2007).
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There are other possible approaches to the individual species modeling to circumvent 

the data paucity limitation. Using surrogates for biological data is a common practice 

and there are several possibilities (Ferrier and Watson 1997; Rodrigues and Brooks 2007; 

Sarkar et al. 2005; Williams et al. 2006). For example, often a subset of species or other 

taxa are used as surrogates for all of them. Another option is to use environmental-

based surrogates, because environmental variables are easier to obtain, particularly from 

satellite image data. A third option is using a synecological approach (Hortal and Lobo 

2006), which consists in using composite biodiversity variables such as species richness, 

rarity, endemism, community composition or community composition turnover (either 

observed or estimated). Community–level approaches are claimed to be cheaper, quicker 

and easier to obtain than species-based ones (Ferrier et al. 2009; Margules and Sarkar 2007), 

conferring significant benefits for applications involving very large numbers of species and 

coarse areas, and particularly in data-poor regions. However, little effort has been directed 

to comparing the relative performance of species-based with community-based approaches. 

Nonetheless, in a recent prioritization approach developed to work with community-

based data, maximization of complementary richness, attained reasonable levels of species 

representation (Arponen et al. 2009). Such results reveal a highly promising strategy for cost-

effective conservation prioritization but this assumption needs to be tested more broadly.

There are still also opportunities for improving observed species distribution data 

sets, even because accurate model predictions depend critically on the quality of observed 

biological data (Graham et al. 2008; Lobo 2008). Recently, the conservation society has 

been putting a large amount of effort in compiling species distribution data and providing 

online gateways for dissemination (Bisby 2000; Graham et al. 2004; Guralnick et al. 2007). 

Of noteworthy mention is the Global Biodiversity Information Facility (http://www.gbif.

org/), which currently contains nearly 7 500 collections representing more than 150 

million occurrence records. However, these databases have some limitations that need 

to be overcame in order to become more useful for conservation planning. Some of the 

limitations have been discussed previously (e.g. Graham et al. 2004; Guralnick and Hill 

2009; Guralnick et al. 2007; Hortal et al. 2007) and can be summarized as follows:

a) some records lack geographic accuracy and many are presented in the form of 

a textual locality description, which hinders its direct application in geographical 

information systems (Yesson et al. 2007);

b) data is geographically and taxonomically biased (Yesson et al. 2007);

c) most areas lack a realistic assessment of the survey effort (Soberón et al. 2007)

d) there is vast uncertainty in many records regarding the date of collection 

(Guralnick et al. 2007); 

e) there are taxonomic misidentifications and there is no estimative of its proportion 

(Guralnick et al. 2007; Lozier et al. 2009);

f) a substantial percentage of records were collected prior to major alterations of 

native landscapes.
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Nonetheless, biodiversity informatics is starting to gain impetus as a scientific 

discipline (Sarkar 2007). The parallel development of data portals and analysis tools, 

together with increased internet speed, are promising for creating new avenues of 

development in the biodiversity informatics field. Practical ways to overcome limitations 

and to create a unified global map of biodiversity have been suggested:

a) develop automated processes to convert textual or other locality format data to 

geographic coordinates (Guo et al. 2008; Hill et al. 2009); 

b) link online taxonomic catalogues such as the Catalogue of Life (http://www.

catalogueoflife.org/search.php) with species occurrence data bases, to provide valid 

taxonomic names to species records (Guralnick and Hill 2009; Sarkar 2007);

c) employ efforts to identify species accurately through DNA barcoding (Hajibabaei 

et al. 2007);

d) increase the detail of species occurrences to finer resolutions (Soberón et al. 2007);

e) evaluate the degree of completeness of occurrence data (Hortal et al. 2007; Soberón 

et al. 2007);

f) promote the use of social networks for exchange and upload of biodiversity 

records such as Scratchpads (http://scratchpads.eu/) or Biodiversity 4 all (http://www.

biodiversity4all.org/) (Guralnick and Hill 2009);

g) develop and disseminate online the results of species distribution models (Guralnick 

and Hill 2009);

h) predict potential distributions of currently non-described species (Bini et al. 2006; 

Possingham et al. 2007).

9.2.2 Evolutionary Processes

In chapter 3, a new approach was developed to integrate evolutionary processes into 

conservation planning when molecular data is not available or is not geographically 

comprehensive, which is the common case. However, in recent years the body of information 

of phylogenetic relationships between taxa has been growing exponentially, as well as new 

approaches to bridge the fields of molecular ecology and biogeography (Hendry et al. 2010; 

Kozak et al. 2008). There are, however, some challenges that the scientific community face 

in order to make that information useful for conservation prioritization.

One of the major challenges is to integrate molecular data produced by different 

authors, using different molecular markers and statistical methods, to the handling 

of very large datasets, and the integration of different levels of genomic information 

(Guralnick and Hill 2009; San Mauro and Agorreta 2010). However, in the next years, 

a massive amount of molecular information will probably become available for a vast 

array of taxa. Some projects are underway with this purpose, such as the TreeBase 

(http://www.treebase.org), which is an online repository of phylogenetic information, 
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with the objective to assemble a single inclusive tree of all life on Earth. There are also 

some online tools such as the PhyLoTA browser (http://phylota.net) (Sanderson et al. 

2008) intended to systematize data available on molecular data bases such as GenBanK 

(http://www.ncbi.nlm.nih.gov/genbank). 

Another challenge is to use such molecular data into conservation prioritization. 

Developing new metrics and approaches to use phylogenetic information to prioritize 

taxa for conservation has received a large attention lately. Several phylogenetic 

diversity (PD) metrics have been proposed (reviewed by Redding et al. 2008), and the 

PD approach has also been extended to include species threats and extinction risks, 

(Faith 2008 ; Isaac et al. 2007; Redding and Mooers 2006; Steel et al. 2007), endemicity 

(Faith et al. 2004; Posadas et al. 2001; Rosauer et al. 2009) population abundances 

(Cadotte and Davies 2010; Cadotte et al. 2010), spatial gradients of PD (Graham and 

Fine 2008) and even to incorporate the expected contribution of a taxa to future 

phylogenetic diversity (Steel et al. 2007). These approaches have been accompanied by 

the development of computational tools such as Phylocom (Webb et al. 2008), Picante 

(Kembel et al. 2010), and Biodiverse (Laffan et al. in press).

Another research topic deserving future attention is developing theoretical 

frameworks to explicitly incorporate targets for the representation and persistence 

of genetic diversity of multiple species. Currently, reserve selection algorithms rely 

on setting targets for discrete conservation features – species or vegetation types. 

Using phylogenies as conservation features poses new challenges in developing 

methodologies to cope with continuous conservation features (Diniz-Filho and Telles 

2006). The challenge is exacerbated when dealing with cryptic species, generally 

characterized by the presence of uniparental lineages and reticulate evolution (Ennos 

et al. 2005), because in such cases lineages are often not spatially structured. Thus, 

developing suitable computational tools to deal with continuous conservation features 

in conservation prioritization is still an open challenge.

Frontiers of research have also been focusing on better understanding evolutionary 

processes that generate and maintain genetic diversity, allowing adaptation to global 

environmental changes. Special attention is particularly growing on the influence of 

environmental variation in driving genetic divergence at the intra specific level as 

well as in evolution of morphological, physiological and behavioural traits (Kozak 

et al. 2008; Smith and Grether 2008; Thomassen et al. 2010). Combining species 

distribution models with coalescence models is one of the possible ways to achieve 

understanding of the factors that contribute to the formation of population genetic 

structure (Carstens and Richards 2007; Waltari et al. 2007). Such understanding 

is critical for conservation prioritization because it will allow the identification of 
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hotspots of evolutionary potential (e.g. Davis et al. 2007; Vandergast et al. 2008), as well 

as areas maximizing overall genetic diversity within populations (e.g. Rissler et al. 2006). 

It may also contribute to explain how species niches evolve which, in turn, will allow 

enhancing predictions of species range shifts under climate change (see topic below). 

Another relevant research topic for conservation planning is the understanding of 

how phylogenetic relationships among species drive community assemblage (e.g. 

Cavender-Bares et al. 2009; Webb et al. 2002). 

9.2.3 Dynamics in conservation planning

Chapters 7 and 8 focused on one type of dynamic process in conservation planning: 

change in species distributions derived from climate change. Predicting future species 

ranges and understanding the mechanism that may facilitate adaptation to different 

climatic conditions is one of the primal challenges in conservation nowadays (e.g. Brooke 

2009; Huntley 2007; Lawler 2009; Mawdsley et al. 2009). However, the complexity of 

the biological systems, which include parameters such as environmental niches, biotic 

interactions, extinction risks, dispersal abilities and evolutionary potentials, calls for 

methodological improvements if it is to guide conservation decisions (Sinclair et al. 2010).

Species distributions models have been the chief methodology employed to predict 

species ranges shifts derived from climate change (e.g. Araújo et al. 2006; Pearson and 

Dawson 2003; Thuiller et al. 2005). However, the accuracy of such approach has been 

questioned because they do not incorporate dispersal, demographic processes nor biotic 

interactions explicitly (Zurell et al. 2009). Additionally criticism relies on the fact that 

precise validation of biological models is difficult or even impossible (Araújo et al. 2005; 

Oreskes et al. 1994), particularly when predictions are made for relatively distant future 

times. Such questions are reasonable, but despite no clear answer can be given, better 

understanding on how species respond to climate change can be improved in several ways 

(e.g Botkin et al. 2007; Nogués-Bravo 2009). 

Advances in forecasting species distributions under climate change have been 

proposed recently, such as incorporating species interactions (Araújo and Luoto 2007), 

landscape characteristics (Vos et al. 2008) and species traits (Pöyry et al. 2008). It is likely 

that in upcoming years, and with sophistication of computational power, statistical tools 

and data availability, several of these parameters may be included simultaneously in model 

calibration. Additionally, several statistical approaches are being developed to reduce and 

assess the uncertainty of the methods and data used (e.g. Diniz-Filho et al. 2009).

Understanding how species adapted and evolved in response to past climatic 

extremes provides essential clues to predict how they will respond to future climatic 

changes (Cordellier and Pfenninger 2009). The outstanding advancement of molecular 

biology and bioinformatics (San Mauro and Agorreta 2010) has supplied researchers with 
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powerful tools for testing hypothesis about how past climate changes have affected species 

distributions (Scoble and Lowe 2010). For example, locating past climatic refugia based 

on phylogeographic analysis may prove concordance with projections made with species 

distribution models for the past (e.g. Carstens and Richards 2007; Waltari et al. 2007). 

Molecular biology may also provide useful insights to test a fundamental assumption 

of species distribution models: that species’ niche remains stable over time and thus it 

is sensible to transfer projections of species distribution models in time (Nogués-Bravo 

2009; Varela et al. 2009). Niche conservatism theory has gained supporters (e.g. Wiens 

and Donoghue 2004; Wiens and Graham 2005) as it has been revealed for several taxa. 

However, further analysis is required to unveil the extent to which it represents a general 

and consistent pattern (Pearman et al. 2008), as several studies have evidenced the opposite 

trend, i.e. niche diversification (e.g. Broennimann et al. 2007; Knouft et al. 2006). Recent 

studies showed evidence that niche diversification can arise as a result of genetic divergence 

of traits related to climatic fitness (Skelly et al. 2007). This controversy jeopardizes 

confidence in species distribution models predictions for past and future times. Thus, 

future research should aim to improve understanding of how environmental conditions 

influence niche dynamics and evolution of climatic traits, such as physiological thermal 

tolerance. Particular emphasis should be directed to evaluate how this influence varies 

with the spatial and temporal scales, the focal clade, and the size of the phylogenetic trees 

(Pearman et al. 2008). Additionally, it was recently proposed the use of a multi-temporal 

approach to validate temporal transferability (Nogués-Bravo et al. 2008). 

Molecular tools may also prove helpful in understanding meta-population dynamics, 

by identifying aspects of the landscape that hinder dispersal and disrupt gene flow (Scoble 

and Lowe 2010; Storfer et al. 2007). This information can be used to better understand 

current barriers and assess species dispersal limitations. Molecular approaches have 

been misused in the context of incorporating meta-population parameters in species 

distribution models. Nonetheless, other approaches such as using spatially explicit 

stochastic population models have recently emerged (Brook et al. 2009; Keith et al. 2008). 

Understanding meta-population dynamics, and particularly dispersal mechanisms, is 

paramount to predict species responses to a set of synergistically threats such as climate 

changes, habitat fragmentation, invasive species and the spread of infectious diseases (e.g. 

Brook et al. 2008; Chazal and Rounsevell 2009; Sala et al. 2000). Recently, a greater amount 

of attention has been placed into the synergistic interactions among different threats 

(e.g. Jetz et al. 2007; Opdam and Wascher 2004; Spangenberg 2007), but such processes 

remain poorly understood, hampering appropriate conservation decisions. Thus, future 

research should focus on how climate change will interact with other main drivers of 

species extinctions and in how biodiversity will respond to such cascading effects. 

In terms of selecting priority areas for conservation, climate change poses important 

challenges, once shifts in species ranges may render current protected areas inefficient 

in representing biodiversity (Araújo et al. 2004; Hannah 2010; Hannah et al. 2007). 
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Additionally, in order to assure species persistence, a paradigm shift is required in the 

way that protected areas are planned and managed (Araújo 2009; Baron et al. 2009). 

Recently, Araújo (2009) suggested that conservation planners should start reconsidering 

the classic “SLOSS” debate (Diamond 1975) arguing that in face of climate change, smaller 

conservation areas tracking pertinent climatic gradients might be preferable to large 

conservation areas occupying uniform climatic gradients. He suggested that at least three 

types of areas need to be targeted for conservation to tackle biodiversity persistence:

a) range retention areas - where species are most likely to survive despite climate changes;

b) displaced refugia – where species will be able to find suitable habitats after they 

have been displaced by climate change; and

c) corridors connecting range retention areas and displaced refugia – areas of high quality 

habitat that facilitate species dispersal between present and future climatic suitable areas. 

There are several research opportunities regarding how these three types of areas 

should be identified and optimally arranged in space. While species distribution 

models may be helpful to identify range retention areas and displaced refugia, 

extended approaches in prioritization algorithms are required to apply the principles 

of complementarity, efficiency, flexibility and adequacy and to optimize connectivity. 

Some work has started to be done in that direction, for example, by using reserve 

algorithms that account for dynamics in conservation features throughout time 

(Drechsler et al. 2009; Game et al. 2008b; Moilanen and Cabeza 2007) or optimize 

connectivity corridors (e.g. Cerdeira et al. 2010; Phillips et al. 2008), but much remains 

to be done. 

9.2.4 Uncertainty

Uncertainty is a ubiquitous issue in conservation planning. In chapter 9, a new approach 

was developed to boost conservation decisions in face of two types of uncertainty. Novel 

and robust statistical methods have been developed and integrated in computation tools 

in the conservation planning area, but opportunities for innovations remain to deal more 

explicitly with uncertainty (e.g. Regan et al. 2009). 

Statistical treatment of uncertainty allows for the enhancement of confidence in 

conservation decisions, but it does not eliminate uncertainty. Thus, complementarity 

approaches are being advised, such as turning conservation planning more adaptive 

(Wilson et al. 2009). The purpose of adaptive conservation planning is to explicitly address 

uncertainty through learning, and subsequently adapt conservation strategies, decision 

frameworks and actions to reflect improved knowledge (Grantham et al. 2009). 

Monitoring plays a central role in adaptive conservation because it generates new 

knowledge about how the system responds to conservation actions. This new knowledge 

provides, in turn, the feedback loop to complete the adaptive conservation cycle (see 

Figure 1.3) (Lyons et al. 2008). Generally, monitoring is applied to evaluate the success 
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of implemented conservation actions, which has been seen as a passive learning process. 

Long-term monitoring of the conservation outcomes is desirable, but it is often hindered 

by the lack of financial and human resources, and because most of the times conservation 

action outcomes are only visible outside project’s time-frames (Kapos et al. 2008). 

Recently, some proposals were made to boost the speed of learning. For example, it has 

been argued that learning can be improved by balancing the requirements of management 

with the need to learn about the effects of conservation actions by experimenting different 

actions (McCarthy and Possingham 2007). This approach has been called “active adaptive 

management” and has been considered as a desirable practice, although several challenges 

have to be overcame in order to be applied, (Grantham et al. 2009). 

Another set of proposals to boost learning focus on evaluating the past actions and 

comparing outcomes of conservation actions of different projects around the world. 

However, an important required step forward in this direction is to better report on 

situations where conservation actions implemented were unsuccessful in achieving 

conservation objectives (Ferraro and Pattanayak 2006). Negative outcomes of conservation 

actions are often under-reported as reported failures may lead to reductions in future 

funding and to professional discredit or reputation damage (Redford and Taber 2000). 

Until recently, the analysis of conservation actions effectiveness was also obscured by 

the lack of unified framework for evaluating conservation outcomes and managing 

information on existing conservation experience. However, this caveat has been recently 

circumvented by the development of specific tools by the Cambridge Conservation Forum 

(CCF) (Kapos et al. 2008). CCF tools provide a standardized framework that serves as a 

useful basis for assembling, managing, and using information about project outcomes 

and existing conservation experience. Potentially, with wider application, such tools may 

boost learning and help to circumvent uncertainties about how biodiversity will respond 

to conservation actions. Additionally, it may help identifying factors that affect the success 

of conservation activities (Kapos et al. 2009).

9.2.5 Frontiers of conservation planning

A question emerging from results obtained along this thesis is how interactions between the 

several stages and concepts of systematic conservation planning may affect conservation 

decisions. Chapters of this thesis focused on analyzing different possible approaches for 

a single stage or closely related stages at a time, disregarding which approaches would be 

followed in other stages. Due to the high complexity of the overall systematic conservation 

process, focusing on single or few stages has been the benchmark of scientific literature. 

For example, several papers have focused on: 

a) prioritizing taxa and setting conservation targets (Arponen et al. 2005; 

Carwardine et al. 2008; Justus et al. 2008; Vane-Wright et al. 1991);

b) analyzing the performance of different surrogates (Rodrigues and Brooks 

2007; Sarkar et al. 2005; Williams et al. 2006); 
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c) testing the performance of different types of species distribution data sets 

(Grand et al. 2007; Underwood et al. 2010; Wilson et al. 2005b);

d) incorporating ecological and evolutionary processes (Desmet et al. 2002; 

Klein et al. 2009; Rouget et al. 2003);

e) incorporating biodiversity threats and vulnerability (Game et al. 2008a; 

Wilson et al. 2005a);

f) planning for persistence (Cabeza and Moilanen 2001; Game et al. 2008b; 

Nicholson et al. 2006);

g) dealing with dynamics in species distributions and threats (Carroll et al. 2009; 

Visconti et al. 2010);

h) treating uncertainty in species distributions (Fuller et al. 2008; Langford et al. 

2009; Moilanen et al. 2006a; Moilanen et al. 2006b; Nicholson and Possingham 2007);

i) incorporating costs (Adams et al. 2010; Bode et al. 2008; Carwardine et al. 

2008; Naidoo et al. 2006);

j) integrating spatial configuration and connectivity (Briers 2002; Cabeza 2003; 

Van Teeffelen et al. 2006);

k) planning for implementation (Knight et al. 2006);

l) evaluating outcomes of conservation actions (McDonald-Madden et al. 2009).

These aspects do not stand alone in the conservation planning process but interact with 

each other.  Thus, the way that each stage is addressed in the process may synergistically 

influence the outcomes (Figure 1.3). Future work should focus on how to address the 

complexity inherent to combining several of these issues. 

One outstanding challenge in conservation planning is zoning areas within and 

beyond protected areas to reflect particularly land uses or specific conservation actions. 

This is because several protected areas are not exclusively devoted for conservation, but 

allow several human activities. Determining how different land-uses can take place in 

order to optimize conservation, economical and social outcomes is an issue of the utmost 

importance. Pioneer works have been done in integrating spatially-explicit biologic and 

economic models to identify trade-offs between conservation and economic benefits 

(e.g. Polasky et al. 2008; Wilson et al. 2010). Progress have also been made in developing 

computational tools to evaluate the consequences and trade-offs of alternative zoning 

configurations (Watts et al. 2009). 

Onother interesting aspect is to integrate different types of conservation actions 

in order to optimize overall benefits. Conservation planning has been focusing on 

identifying priority areas for conservation. However, after priority areas have been 

identified, conservation practitioners may invest in a diverse array of actions, such as fire 

management, control of invasive species, predator control, revegetation or monitoring. 

Thus, recent approaches to conservation prioritization aim to prioritize between 

different conservation actions in space and time (Wilson et al. 2009). The prioritization 

of conservation actions proceeds in a similar framework to the identification of priority 
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areas, balancing conservation objectives, costs and the likelihood of success of each action. 

New research is revealing innovative approaches to systematically planning multiple 

actions for multiple species (e.g. James et al. 2001; Wilson et al. 2007). Recently, the 

new concept of generalized complementarity was proposed, defined as the benefits of all 

conservation actions across the landscape evaluated jointly and how they account for the 

long term consequences of interactions between actions (Moilanen 2008). Theoretically, 

the generalized complementarity concept can be extended to a broader prioritization 

scheme, for example to prioritize actions benefiting the overall ecosystem services (Chan 

et al. 2006). Conversely, to move in that direction, global ecosystem service assessments 

must generate better maps of where ecosystem services are produced, flows between 

services need to be better understood, concordance between areas that produce ecosystem 

services and those that support biodiversity require further evaluation, and the likelihood 

of converting land uses and ecosystem services needs to be quantified (Naidoo et al. 

2008). Additionally, it has been pointed out that there is still lack of understanding of 

how different types of interventions improve ecosystem services and human-well-being.  

Different authors suggested ways forward to integrate different disciplines, embrace the 

divide between ecosystems and social systems and to examine the impact of different 

decisions on the future supply of the whole range of ecosystem services (Carpenter et al. 

2009; Hancock 2010; Mooney 2010 ; Steffen 2009).

Future progress in conservation planning is likely to integrate optimization in 

representation of biodiversity and evolutionary processes while accounting for dynamics 

in species distributions and landscapes, and optimizing the benefits for both biodiversity, 

economic activities and ecosystem services. 
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