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Abstract

Marine organisms have occupied hard substrates since the Archaean. Shells, rocks, wood and sedimentary hardgrounds offer

relatively stable habitats compared to unconsolidated sediments, but the plants and animals which inhabit them must develop

means to gain and defend this premium attachment space. Hard substrate communities are formed by organisms with a variety

of strategies for adhering to and/or excavating the substrates they inhabit. While mobile grazers, organically attached and even

soft-bodied organisms may leave evidence of their former presence in ancient hard substrate communities, a superior fossil

record is left by sessile encrusters with mineralised skeletons and by borers which leave trace fossils. Furthermore, encrusters

and borers are preserved in situ, retaining their spatial relationships to one another and to the substrate. Spatial competition,

ecological succession, oriented growth, and differential utilisation of exposed vs. hidden substrate surfaces can all be observed

or inferred. Hard substrate communities are thus excellent systems with which to study community evolution over hundreds of

millions of years. Here we review the research on modern and ancient hard substrate communities, and point to some changes

that have affected them over geological time scales. Such changes include a general increase in bioerosion of hard substrates,

particularly carbonate surfaces, through the Phanerozoic. This is, at least in part, analogous to the infaunalisation trends seen in

soft substrate communities. Encrusting forms show an increase in skeletalisation from the Palaeozoic into the Mesozoic and

Cenozoic, which may be a response to increasing levels of predation. Hard substrate communities, considering borers and

encrusters together, show a rough increase in tiering through the Phanerozoic which again parallels trends seen in soft substrate

communities.

This extensive review of the literature on living and fossil hard substrate organisms shows that many opportunities remain

for large-scale studies of trends through time at the community and clade levels. Palaeontologists will especially benefit by

closer integration of their work with that of neontologists, particularly in aspects of ecology such as larval recruitment,

competition and succession.
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1. Introduction

Modern and ancient marine environments abound

in substrates that are sufficiently firm and consoli-

dated to be bored and encrusted. These hard substrates

range in scale from coarse sand particles, to vast
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expanses of lithified seabed. They include the skel-

etons of living and dead organisms as well as rock

clasts. Areas of otherwise barren seabed may be

opened up for colonisation by a diverse array of

organisms when hard substrates are present. Nowhere

is this more vividly illustrated than by the rich

communities developing on shipwrecks and other

artificial ‘reefs’ which prove so attractive to recrea-

tional divers. Naturally occurring hard and firm sub-

strates lie at the nucleus of many benthic com-

munities, both at the present day and in the geological

past. In turn, the skeletal remains of organisms living

in these communities are used as hard substrates by

other organisms in a process known as ‘taphonomic

feedback’ (Kidwell and Jablonski, 1983). Hard sub-

strates play crucial roles in numerous marine bio-

logical and geological processes, including initial

colonisation of the seabed and sedimentation.

From the perspective of palaeoecology, studies of

hard substrate assemblages offer the important advant-

age that the organisms cemented to and boring into

hard substrates generally retain their original positions

on the substrate after fossilisation. Therefore, it is

possible to investigate the living spatial distributions

and orientations of organisms from their fossil

remains. For example, distributions of species can

be quantified relative to exposed and hidden surfaces,

and their orientations compared with inferred current

directions. Furthermore, the relationships between

different colonisers on the same hard substratum can

be studied, allowing interpretations of ecological

succession and competitive interactions to be made.

For example, careful investigation of an encrusted and

bored brachiopod shell may yield information on the

autecology of the brachiopod, including life orienta-

tion, feeding current patterns and symbionts, as well

as the sequence of colonisation by borers and encrus-

ters before and after the host’s death, their preference

for particular locations on the host shell, and how they

interacted with one another during life. Hard sub-

strates provide unique opportunities for observing

competition between individuals in fossil material

and for tracing competition between clades over geo-

logical timescales (McKinney, 1995a).

This review sets out to summarise the main areas

of research on the palaeoecology of marine hard

substrates. The literature on this topic is far too

extensive for a comprehensive review and our cover-

age is consequently weighted towards our personal

interests and expertise in hardgrounds, bioerosion, and

bryozoans. We have paid particular attention to related

studies on modern hard substrate communities which,

although often neglected by palaeontologists who

may not have easy access to marine biological jour-

nals, offer important insights into processes that must

have operated in the geological past, as well as

underscoring constraints on the extent to which

ancient hard substrate communities can be interpreted.

While the present, as always, provides an essential

key to the past, the fossil record of hard substrate

communities opens a unique window into the long-

term evolution of such communities, especially epi-

bionts (Lescinsky, 1996b), and permits investigation

of how they have responded to such important global

changes as mass extinctions and the switch between

aragonite and calcite seas.

After a general introduction to the diversity of

marine hard substrates and the lifestyles of organisms

colonising them, we go on to discuss: (1) terminology;

(2) communities on biotic substrates; (3) ecological

patterns and processes in modern hard substrate com-

munities; (4) the geological history of hard substrate

communities; (5) palaeoecological themes; (6) evolu-

tionary trends; and (7) the geological utility of hard

substrate communities.

2. Hard substrate diversity

Modern marine hard substrates include biogenic

(shells, wood, bones) and abiogenic materials (rocks

of various origins), and anthropogenic structures such

as wharves, boat hulls, concrete shore defenses, ‘arti-

ficial reefs’ usually created for fishery purposes (e.g.,

Collins and Jensen, 1996; Lam, 2000; Svane and

Petersen, 2001), and plastic debris drifting in the

ocean (e.g., Winston et al., 1997). Ancient hard

substrates are nearly the same, with some historical

changes in abundance and distribution of substrate

types, such as with wood, shells and hardgrounds,

and, of course, the lack of anthropogenic objects.

2.1. Biogenic hard substrates

‘‘Shells’’ as understood here include any mineral-

ised tissues of invertebrates, whether external in life
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Fig. 1. Abiotic and biotic hard substrates exhibiting different modes of faunal colonisation. (A) Field photograph of a hardground encrusted by

oysters and bored; coin is about 25 mm in diameter; Jurassic, Bathonian, White Limestone Fm., Foss Cross Quarry, Gloucestershire, England.

(B) Decalcified specimen of the coral Pleurodictyum containing the sinuous mould of the embedded ‘worm’ Hicetes that grew at the same time

as the coral; � 2.8; Devonian, Daun, Eifel, Germany.
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(e.g., bivalves, gastropods and brachiopods) or inter-

nal (e.g., echinoderms, some bryozoans and cephalo-

pods). External shells can be encrusted or bored while

the host animal is still alive (e.g., Ward and Thorpe,

1991; Berkman, 1994). In addition, shell growth

around another living organism may lead to embed-

ment (Fig. 1B). A living host introduces several

elements into the structure of a shell-dwelling hard

substrate assemblage. The host may be infaunal for

part or all of its life history, reducing the opportunities

for colonisation. Some shelled animals are partially

infaunal, leaving one portion of the shell exposed to

encrustation and boring: Watson (1982) and Keough

(1984) discuss Jurassic and Recent examples, respec-

tively. Some animals have an organic membrane over

the outer parts of the shell, such as the molluscan

periostracum, which may dissuade epizoans by phys-

ical or chemical means (Bottjer, 1981). Some organ-

isms are sessile benthic, providing a relatively stable

substrate, whereas others are vagrant benthic or nek-

tonic, forcing any successful colonisers to adapt to

movement of the host (see Schmitt et al., 1983;

Landman et al., 1987). Even shells remaining after

the death of the shell-producer host can still biotically

move if they are secondarily inhabited by another

organism, such as when a hermit crab occupies a

gastropod shell (Stachowitsch, 1980; Al-Ogily and

Knight-Jones, 1981; Brooks and Mariscal, 1986). We

may expect to find hard substrate communities on the

exposed portions of shells which had still-living hosts

or secondary occupants, but not on internal shells of

living animals or on shells of sediment-dwellers.

Shells which are ‘‘dead’’ and not secondarily

occupied can be encrusted and bored on all exposed

surfaces, including those once on the interior of the

animal or otherwise covered by flesh (Fig. 2B). The

existence of an encruster or boring initiated on an

interior surface is a strong indication that the shell

producer was dead at the time of colonisation, as

discussed by McKinney (1995b). Dead shells begin to

decompose physically, producing changes in the hard

substrates available to colonisers. Many aragonitic

bivalve shells, for example, lose their external lustre

and become ‘‘chalky’’ in time after death, producing

changes in the substrate which may be expected to

attract or repel particular encrusting and boring spe-

cies. Dead shells are also easily disturbed in high-

energy environments and quickly buried under high

sedimentation conditions, so hard substrate commun-

ities may have only limited opportunities to colonise

them. Shells in soft-sediment environments can serve

as important ‘‘benthic islands’’ for hard substrate

communities (Hattin, 1986; Zuschin and Pervesler,

1996; Zuschin et al., 1999).

Wood is a special type of organic hard substrate

(Fig. 2F,G). In the marine realm wood can be: (1)

living and in situ, as with the roots and trunks of

mangrove trees (Sutherland, 1980); (2) in situ and

dead (submerged forests, for example); (3) floating,

and potentially hosting a characteristic driftwood

community of encrusters and borers (see Noda,

1981; Wignall and Simms, 1990; Evans, 1999); or

(4) waterlogged and submerged. Different types of

wood will have varying consistencies and resistances

to decomposition, producing varying boring and

encrusting assemblages. Woody substrates, like

shells, also change significantly with time after

death. The removal of bark, for example, dramati-

cally modifies the surface available for colonisation.

Plant-derived amber is an unexpected marine hard

substrate. Nevertheless, several instances of amber

bored by pholadid bivalves in marine environments

are known (Bandel et al., 1997; Jeffery, personal

communication).

Fig. 2. Examples of bored, encrusted and grazed hard substrates. (A) Fragment of an Ordovician hardground upper surface with numerous

Trypanites borings and sparse encrusting bryozoans and pelmatozoan holdfasts (top); � 0.7; Arenig, Volkhov Fm., Zheltjaki Unit, Kolchanovo,

nr Volkhov, Russia. (B) Internal surface of Pliocene bivalve shell densely encrusted after death by bryozoans, oysters and Spirorbis; � 1;

Pliocene, Nukumaru Limestone, Nukumaru Beach, nr Wanganui, New Zealand. (C) Part of the underside of a stromatoporoid encrusted by a

cryptic fauna including bryozoans (e.g., Ceramopora, upper left) and the cemented brachiopod Liljevallia (top right), � 1.1; Silurian, Wenlock,

Upper Visby Beds, Lickershamn, Gotland, Sweden. (D) Bored and encrusted hiatus concretion; � 0.9; Upper Ordovician, Kope Fm., Newport,

KY, USA. (E) Heavily bioeroded ventral valve of the brachiopod Epithyris; grazing by echinoids has destroyed the shell entirely in one area,

exposing the white sediment infill, while leaving a small crescent (top left) of unaffected shell; � 1.4; Jurassic, Bathonian, White Limestone

Fm., Gilbraltar Quarry, Oxfordshire, England. (F) Oysters encrusting a log of fossil wood; � 0.4; Eocene, London Clay, Wokingham, Berkshire,

England. (G) Sectioned piece of fossil wood riddled with the bivalve boring Teredolites, many lined and some filled with sediment but others

with calcite; � 0.3; Eocene, London Clay, Kent, England.
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Bones and teeth are the internal skeletal elements of

vertebrates. Bones, of course, vary in their structure

and composition, which affects the organisms attempt-

ing to colonise these surfaces. There have been rela-

tively few studies of marine communities colonising

vertebrate remains, notable exceptions being: Allison

et al. (1991) on organisms encrusting Recent whale

bones; Grange and Benton (1996) on Jurassic croco-

dile bones; Underwood et al. (1999) on microborings

in Cretaceous fish teeth; and Kues (1983) on a bryo-
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zoan encrusting a Cretaceous ceratopsian dinosaur

skull. White (1978) even figures an auloporid tabulate

coral encrusting the bony head of a Devonian fish.

Bioerosion of bird bones is discussed by Davis (1997),

and Hutchinson and Frye (2001) describe pitting on

the surfaces of Cenozoic turtle shells which may be

induced by fouling bacteria, fungi or metazoans.

Reefs are a special type of biogenic hard substrate

community. We use here the broad definition of reefs

as ‘‘discrete organic carbonate structures that develop

topographic relief upon the sea floor’’ (Wood, 2001a,

p. 162), and recognise that they promote in situ

carbonate production at a higher rate than the sedi-

ments which surround them (Wood, 1999). Reef

systems are complex and have a spectacular geo-

logical history. We cannot cover them in detail here,

but fortunately they have been well reviewed in the

past two decades. Good general palaeoecological

Fig. 3. Borings and a ‘pseudoboring’ (bioclaustration). (A) The facultative bivalve boring Petroxestes pera in an Upper Ordovician limestone

hardground from southern Ohio, USA (see Wilson and Palmer, 1988); coin is 1.9 cm in diameter. (B) Casts of the boring Palaeosabella exposed

on the inner shell of the bimineralic bivalve Caritodens demissa, Upper Ordovician, northern Kentucky, USA; the borer cut through the outer

calcitic shell layer into the inner aragonitic layer, ending its excavation; the boring later became filled with calcite cement and the aragonite shell

layer dissolved away, leaving these casts; borings are approximately 1 mm wide at their widest points. (C) Stellate pits of the bioclaustration

Catellocaula vallata hosted by the trepostome bryozoan Amplexopora persimilis from the Upper Ordovician of Ohio, USA (see Palmer and

Wilson, 1988); � 2.5. (D) Plan view of Gastrochaenolites anauchen, possibly a bivalve boring, in a limestone cobble from the Upper

Carboniferous of Arkansas, USA; the rough texture of the surface between the large G. anauchen borings was produced by numerous

acrothoracican barnacle borings (see Wilson and Palmer, 1998); full coin is 1.9 cm in diameter. (E) Vertical section through a carbonate

hardground penetrated by Trypanites borings (infilled by paler sediment) and encrusted on its upper surface by a thick trepostome bryozoan;

Upper Ordovician of northern Kentucky, USA; � 1.
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references include the books by Fagerstrom (1987)

and Wood (1999); recent discussions of the history of

reefs are summarised in Wood (2001b); the value of

diverse reef types for palaeoclimatic studies is

assessed by Kiessling (2001); and coral reef ecology

is reviewed by Knowlton and Jackson (2000). Many

of our following discussions of bioerosion and encrus-

tation on hard substrates will include materials from

reefs of many ages and kinds.

2.2. Abiogenic hard substrates

Natural abiogenic marine hard substrates comprise

rocks of diverse origin, composition, shape and size.

The simplest are rocky shelves and subtidal cliffs,

including caves and other cavities with rocky walls.

These surfaces remain in situ until broken up by

erosion. They are referred to in the literature as

‘‘rockgrounds’’ and more broadly as ‘‘rocky shores’’.

Ecological zonation on modern rocky shores has been

well studied (Lewis, 1964), while Johnson and co-

workers have led research on ancient rocky shores

(see Johnson, 1988a,b, 1992; Johnson and Baarli,

1999, for discussion and review). Virtually every

major rock type is exposed somewhere in the open

ocean. A very important distinction for encrusting and

boring organisms is between limestones (primarily

calcium carbonate) and other rock types. Limestones

can be more easily reduced or modified by chemical

means, especially by various borers using acids and

chelating agents. Besides chemical composition, the

friability of rock surfaces is important to colonising

organisms. A loosely cemented sandstone, for exam-

ple, erodes easily, making an unstable attachment

surface. Other rocks may contain high concentrations

of heavy metals, particularly copper, which may

potentially discourage colonisation. Whereas the

majority of rocks are colonised on the seabed, floating

pumice can be colonised by corals, pedunculate bar-

nacles and other organisms (Jokiel, 1989; Donovan,

1999).

Hardgrounds (Figs. 1A, 2A and 3A,E) are in situ

rocky surfaces formed by the contemporaneous sub-

marine cementation of seafloor sediment (see Wilson

and Palmer, 1992, for review). They are usually

limestones, although some are carbonate-cemented

quartz sandstones. Most hardgrounds today are

cemented by aragonite, whereas most in the geo-

Fig. 4. Genesis of bored and encrusted clasts based on studies of Upper Jurassic carbonates in Poland. After Chudzikiewicz and Wieczorek

(1985).
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logical past had low-magnesium calcite as the primary

cement. Hardgrounds are most common in tropical

and subtropical shallow carbonate environments (Dra-

vis, 1979; Wilson and Palmer, 1992). However, they

are also known in deep-water chalks and other carbo-

nate oozes (Kennedy and Garrison, 1975a; Bromley

and Gale, 1982). Organisms encrust and bore carbo-

nate hardgrounds much as they would any exposed

limestone. Exposed beachrocks are often encrusted

and bored, and they are sometimes described as

‘‘hardgrounds’’ (e.g., Clari et al., 1995), but since

they are not synsedimentarily cemented on the sea-

floor, they are better classified as rockgrounds. ‘‘Firm-

grounds’’ may be precursors of hardgrounds or may

remain of intermediate consistency and hence colo-

nisable by both boring and burrowing organisms (e.g.,

West et al., 1990, Fig. 13). Related to hardgrounds are

reworked concretions (Fig. 2D), a subset of which are

hiatus concretions showing evidence of exhumation,

encrustation and/or boring, followed by burial with

renewed growth of the concretion. The complex

genetic history of some hard substrates (Fig. 4) offers

opportunities for multiple generations of different

colonists.

Hydrothermal vents on spreading centres produce a

special type of rocky substrate. Exhalations of min-

eral-rich super-heated water form chimneys of various

metal sulfides, often many meters high. These chim-

neys, and the surrounding seafloor basalts, can sup-

port a distinctive hard substrate community dominated

by large tubeworms and ultimately sustained by

chemosynthetic bacteria (see Tunnicliffe, 1991; Little

et al., 1998). Regions of shallow water hydrothermal

vents may also harbour rich communities of sessile

organisms: Morri et al. (1999) recorded a total of 212

species at sites ranging from 2 to 90 m depth asso-

ciated with such vents in the Aegean.

Methane hydrates can form rocky seafloors by the

cementation of sediment in a matrix of water ice and

methane (see Hovland et al., 1987). Bacterial decom-

position of the methane under certain geochemical

conditions can lead to the precipitation of carbonate

cements and crusts. These substrates form around gas

seeps in near-freezing temperatures at depths exceed-

ing 500 m. They are sometimes termed ‘‘cold seeps’’

and can support hard substrate communities, some-

times similar to those formed around hydrothermal

vents (e.g., Barry et al., 1996). Carbonate chimneys

associated with cold seeps at about 220 m depth off

southeastern New Zealand grow up to 90 cm in height

and support hard substrate communities including

encrusting bryozoans and borers (Orpin, 1991). Meth-

ane hydrates are extraordinarily common in deeper

shelf environments. Current estimates are that they

contain more stored carbon than all other fossil and

living reservoirs combined (Paull et al., 1992). Cold

seep deposits and faunas are now well known in the

rock record (Beauchamp et al., 1989; Campbell and

Bottjer, 1993; Campbell et al., 1993; Kelly et al.,

1995).

All rocky substrates, including cliff faces, hard-

grounds, hydrothermal vent chimneys and methane

hydrates, can be fragmented by erosion. The loose

pieces then become clasts of varying mobility,

depending on their sizes and the energy of their

depositional environments. The movement of these

clasts, of course, dramatically affects the hard sub-

strate communities attempting to colonise them (Wil-

son, 1985, 1987; Lee et al., 1997, Wilson and Taylor,

2001a,b). Large clasts in soft-sediment environments,

such as dropstones from icebergs, can, like isolated

shells, serve as benthic islands for encrusters

(Oschmann, 1990).

3. Colonisation of hard substrates

Fossil hard substrate assemblages preserve mostly

the sessile (fixed) components of the original com-

munities, particularly encrusting and boring organ-

isms. Encrusters living on these substrates were

attached by cementation during life. In modern organ-

isms, cementation is achieved using various organic

compounds, including glycoproteins, polysaccharides

and mucopolysaccharides (Abbott, 1990; Langer,

1993, p. 243). However, mineral cements can also

contribute significantly to fixation on hard substrates.

For example, Harper (1992, 1997) has shown how the

crystallisation of spherulitic calcite between the peri-

ostracum of bivalves and the substrate binds the shell

to the substrate. This ‘extrapallial cement’ may super-

ficially resemble a diagenetic precipitate in morphol-

ogy. Some encrusting bivalves switch from organic

fixation to cementation during their development

(e.g., Harper and Palmer, 1993). The durability of

cementation to hard substrates varies—while some
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Table 1

Major taxonomic groups of animals containing species with mineralised skeletons that encrust fossil hard substrates

Taxonomic group Range (as encrusters) Remarks References

Foraminiferans Ordovician–Recent Various genera of calcareous and agglutinating benthic

foraminiferans encrust hard substrates. Most are

post-Palaeozoic, although it is likely that some

problematical Palaeozoic encrusters (e.g., Allonema)

are foraminiferans. Loosely attached foraminiferans

may also be found (e.g., Cossey and Mundy, 1990).

Adams, 1962; Wilson, 1986b;

Langer, 1993

Sponges Cambrian–Recent Sponges are undoubtedly under-represented as encrusters

in the fossil record; however, forms with fused or closely

interlocked spicules, or with mineralised basal skeletons

(e.g., archeocyathans, stromatoporoids, chaetetids) can be

common.

Wood et al., 1992; Molineux,

1994; Rigby and Mapes, 2000

Corals Cambrian–Recent Most major groups of corals include encrusting

representatives. Coralliths are formed by encrusting

corals that encapsulate rolling substrates (e.g., Dullo and

Hecht, 1990).

Marek and Galle, 1976;

Webb, 1993; Miller, 1996;

Young, 1999; Helm, 2000

Brachiopods Ordovician–Recent Cementation has evolved independently in several groups

of brachiopods, both inarticulates and articulates.

Encrusting articulates include the tiny thecideans of the

post-Palaeozoic as well as diverse larger Palaeozoic genera.

Cowen and Rudwick, 1967;

Pajaud, 1974; Bassett, 1984;

LaBarbera, 1985; Brunton and

Mundy, 1988; Copper, 1996

Bryozoans Ordovician–Recent Palaeozoic encrusting bryozoans comprise mainly

trepostomes and cystoporates, with occasional cyclostomes;

post-Palaeozoic examples comprise cheilostomes

and cyclostomes.

Taylor, 1984b; Lee et al., 1997;

Taylor, 1999

Hederellids Silurian–Carboniferous This predominantly Devonian group of runner-like colonial

encrusters is commonly assigned to the cyclostome

bryozoans but their true affinity is problematical.

Sparks et al., 1980; Wilson and

Taylor, 2001b

Bivalves ?Carboniferous–Recent Several groups of bivalves have independently evolved

a cemented habit, including the oysters (Ostreidae) and at

least 9 other families. Most encrusting bivalves range

from the Jurassic onwards.

Nicol, 1978; Harper, 1991;

Harper and Palmer, 1993;

Harper et al., 1996; Damborenea,

2002

Gastropods Cretaceous–Recent Vermetids are the main group of encrusting gastropods

and are common in the Neogene. Vermiform ‘gastropods’

from the Palaeozoic may not be true molluscs

(Weedon, 1990).

Morton, 1965; Savazzi, 1999a

Unstalked

barnacles

Eocene–Recent Verrucomorph barnacles are present in the Cretaceous,

but the main group of ‘acorn’ barnacles—balanomorphs—

does not become common until the Upper Eocene.

Schram, 1986; Foster, 1987;

Foster and Buckeridge, 1987;

Donovan, 1988

Serpulid/

spirorbid worms

Ordovician–Recent Polychaetes with calcareous tubes first become abundant

in the Mesozoic. The true affinities of Palaeozoic

examples, notably supposed Spirorbis often recorded

from the Silurian and Devonian, remain unclear.

Rzhavsky, 1994; Weedon, 1994;

Savazzi, 1999c

Cornulitids Ordovician–

Carboniferous

The taxonomic affinity of these tubular, serpulid-like

encrusters is not known.

Richards, 1974a,b

Sphenothallids Cambrian–Permian These attached tubes are either phosphatic or

carbonaceous. The affinities of the worm-like organisms

which formed them are unknown.

Bodenbender et al., 1989;

Van Iten et al., 1992; Neal and

Hannibal, 2000

Edrioasteroids Cambrian–

Carboniferous

Edrioasteroids had limited mobility but occur in

assemblages of permanently cemented encrusters.

Bell, 1976; Smith, 1983;

Meyer, 1990

Pterobranch

hemichordates

Cambrian–Recent Several Palaeozoic groups of pterobranchs, including

crustoids, form encrusting colonies, as does the

long-ranging extant genus Rhabdopeura.

Chapman et al., 1995;

Mitchell et al., 1993

P.D. Taylor, M.A. Wilson / Earth-Science Reviews 62 (2003) 1–103 9



Table 2

Ichnogenera associated with hard substrates

Ichnogenus Range Remarks References

Calcidelatrix

Mägdefrau, 1937

Jurassic–Cretaceous Lobed rosette-like boring. Kennedy, 1970; Plewes, 1996

Caulostrepsis Clarke,

1908

Devonian–Recent Pouch-shaped or ear-shaped borings or embedments

produced by a gallery bent in a U-shape; single

entrance. Modern spionid (polydorid) polychaetes

make incipient Caulostrepsis.

Bromley and D’Alessandro,

1983; Aitken and Risk, 1988;

Fürsich et al., 1994; see also

Sato-Okoshi and Okoshi, 2000

for spionid boring mechanism

Centrichnus

Bromley and

Martinell, 1991

Cretaceous–Recent Byssal etchings of anomiid bivalves. Bromley and Martinell, 1991

Cicatricula Palmer

and Palmer, 1977

Ordovician–Jurassic Radiating etched canals; canals subdivide and

anastomose, producing a net-like pattern. Usually

found on hardgrounds and possibly made by sponges.

Palmer and Palmer, 1977;

Fürsich, 1979

Clionoides Fenton

and Fenton, 1932

Devonian Tubular borings with irregular branching; attributed

to sponges.

Sparks et al., 1980;

Fagerstrom, 1996

Clionolithes

Clarke, 1908

Ordovician–

Carboniferous

Rosette boring branched from elongate origin. Clarke, 1921; Plewes, 1996

Dendrina Quenstedt,

1849

Ordovician–

Cretaceous

Rosette trace with a single point of origin; branches

anastomose.

Hofman and Vogel, 1992

Dictyoporus Mägdefrau,

1937

Ordovician–

Cretaceous

Network of anastomosing branches. Mägdefrau, 1937; Plewes, 1996

Entobia Bronn, 1838 Jurassic–Recent Single or numerous chambers excavated in calcareous

substrates; connected to surface by apertures. Made

at the present day by clionid sponges.

Bromley, 1970; Bromley and

D’Alessandro, 1984, 1989;

Mikulás, 1992; Fürsich et al.,

1994

Feldmannia Casadı́o

et al., 2001

Eocene Small, teardrop-shaped cavities connected by

irregular tunnels on oyster valves; likely an

embedment structure and not a boring.

Casadı́o et al., 2001

Filuroda Solle, 1938 Devonian–Jurassic Irregular tubes with rare branching and

anastomosing.

Plewes, 1996

Gastrochaenolites

Leymarie, 1842

Ordovician–Recent Clavate borings; aperture narrower than main chamber

and may be circular, oval, or dumb-bell shaped; main

chamber may vary from subspherical to elongate.

Usually made by bivalves which may be preserved in

situ (see Savazzi, 1999b).

Kelly and Bromley, 1984;

Wilson and Palmer, 1988;

Ekdale and Bromley, 2001

Globodendrina Plewes

et al., 1993

Jurassic Fan-like branching tubes from one side of globular

chamber; main chamber with agglutinated chimney;

a foraminiferan boring.

Plewes et al., 1993 (see

Vénec-Peyré, 1996 for a

general review of bioeroding

foraminiferans; and Vogel et al.,

1987 for other rosette borings)

Gnathichnus Bromley,

1975

Triassic–Recent Stellate, often pentameral scrape marks made by some

species of regular echinoids.

Bromley, 1975; Michalı́k, 1977

(as the junior synonym

Roderosignus); Nicosia, 1986;

Breton et al., 1992

Helicotaphrichnus Kern

et al., 1974

Eocene–Recent Helical borings made by spionid (polydorid)

polychaetes in the columella of gastropod

shells occupied by hermit crabs.

Kern et al., 1974; Kern, 1979

Leptichnus Taylor

et al., 1999

Cretaceous–Recent Groups of closely spaced small, shallow and typically

elliptical pits excavated in calcareous substrates.

Attributable examples are made by cheilostome

bryozoans, each pit corresponding to a single zooid.

Taylor et al., 1999
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encrusters are effectively bonded permanently to their

substratum (and typically remain attached in fossil

material), others may fall off before (e.g., Igic, 1984)

or after burial and fossilisation (e.g., Walker, 2001, p.

144). Such loss of encrusters must be borne in mind

when undertaking palaeoecological studies of hard

substrates. Many invertebrate phyla include encrust-

ing species with mineralised skeletons. These are

summarised in Table 1. Traces of soft-bodied encrus-

ters are occasionally preserved in the fossil record

Table 2 (continued)

Ichnogenus Range Remarks References

Maeandropolydora Voigt,

1965

Cretaceous–

Pleistocene

Long, sinuous to contorted galleries with two

or more apertures.

Bromley and D’Alessandro,

1983; Zı́tt and Mikulás, 1994

Oichnus Bromley, 1981 Cambrian–Recent Circular or subcircular predatory borings in shells;

made by gastropods, octopods or unknown predators.

Bromley, 1981, 1993; Nielsen

and Nielsen, 2001

Palaeosabella Clarke,

1921

Ordovician–

Cretaceous

Unbranched, cylindro-clavate borings. Clarke, 1921

Petroxestes Wilson and

Palmer, 1988

Ordovician–Miocene Shallow to deep boring with elongate outline

and rounded base.

Wilson and Palmer, 1988;

Pickerill et al., 2001

Podichnus Bromley and

Surlyk, 1973

Carboniferous–Recent Pedicle etchings of articulate brachiopods comprising

a circular cluster of small holes increasing in size

and obliqueness outwards.

Bromley and Surlyk, 1973;

Michalı́k, 1977; Vogel et al.,

1987; Alexander, 1994

Radulichnus Voigt, 1977 Jurassic–Recent Parallel sets of straight to curved scrape marks

forming scoop-like depressions. Incipient examples

at the present-day represent gnawing traces made

by the radulae of chitons and gastropods.

Voigt, 1977; Kase et al., 1998

Ramosulcichnus Hillmer

and Schulz, 1973

Cretaceous ‘Worm’ borings in belemnites. Hillmer and Schulz, 1973

Rogerella Saint-Seine,

1951

Devonian–Recent Pouch-shaped borings produced at the present day

by acrothoracican barnacles. Other names applied

to acrothoracican borings are Brachyzapfes,

Simonizapfes and Zapfella.

Lambers and Boekschoten,

1986; Baird et al., 1990;

Abletz, 1993

Ropalonaria Ulrich, 1879 Ordovician–

Cretaceous

Ramifying tunnels with periodic expansions and

openings to the surface putatively made by ctenostome

bryozoans. Various other ctenostome borings have been

named, some as trace fossils but others as body fossils,

including Iramena, Orbignyopora, Penetrantia,

Pennatichnus, and Pinaceocladichnus. The total range

of ctenostome borings is Ordovician–Recent.

Pohowsky, 1978; Vogel et al.,

1987; Smyth, 1988; Mayoral,

1988b, 1991

Spirichnus Fürsich et al.,

1994

Jurassic Cylindrical spiral borings (0.5 mm wide) branching at

irregular intervals.

Fürsich et al., 1994

Talpina von Hagenow,

1840

Devonian–Recent Narrow curved, branching tunnels connected to the

surface by apertures. Attributed to colonial species

of phoronid worms.

Voigt, 1975; Bromley and

D’Alessandro, 1987; Abletz,

1994; Fürsich et al., 1994

Teredolites Leymerie,

1842

Jurassic–Recent Tubular, clavate borings in wood, sometimes with

calcareous linings. Some contain the shells of the

trace-making bivalve.

Bromley et al., 1984; Kelly

and Bromley, 1984; Savrda

et al., 1993; Savrda and Smith,

1996; Evans, 1999

Tremichnus Ordovician–Jurassic Circular to elliptical parabolic embedment pits in

crinoid columnals, commonly with associated

swelling of the stem.

Brett, 1985; Feldman and

Brett, 1998

Trypanites Mägdefrau,

1932

Cambrian–Recent Cylindrical, unbranched boring; length up to 50 times

width. Some Ordovician examples described by Kobluk

and Nemcsok (1982) contain scolecodonts suggesting

that the borings were made by polychaete worms.

Bromley, 1972; Kobluk et al.,

1978; Kobluk and Nemcsok,

1982; Kelly and Bromley,

1984; Cole and Palmer, 1999

Vermiforichnus Cameron,

1969

Devonian–Jurassic Arcuate to sinuous cylindrical borings with

protuberances where direction changes; senior

synonym of Cunctichnus.

Cameron, 1969; Sando, 1984;

Lescinsky, 1995; Plewes, 1996
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through the processes of bioimmuration (overgrowth)

and epibiont shadowing (Section 8.5).

Non-encrusting organisms can be cemented to hard

substrates in the same way as encrusters, as in some

scleractinian cup corals which have a small basal

attachment supporting a predominantly erect growth

(e.g., Hillmer and Scholz, 1991). Alternatively, they

may be organically attached using specific structures,

e.g., many bivalves are anchored by the byssus and

brachiopods by the pedicle. Mussels have byssal

threads with sticky tips containing adhesive proteins

known as ‘Mytilus foot proteins’ (Floriolli et al.,

2000). Organically attached forms are prone to drop-

ping-off the substrate during fossilisation but occa-

sionally leave trace fossils indicating their former

presence, notably Podichnus produced by brachiopod

pedicles (Bromley and Surlyk, 1973). Instances of

organically attached animals being fossilised more-or-

less in life position have also been recorded (e.g.,

Richards, 1972; Walker and Diehl, 1985; Harland and

Pickerill, 1987; Hattin and Hirt, 1986; Harper and

Pickerill, 1996; Peters and Bork, 1998). Cemented

holdfasts anchor many echinoderms, arborescent

bryozoans and octocorals to hard substrates; some

are provided with diverging root-like prolongations,

others having a more simple dimple- or volcano-shape

after loss of the erect parts (e.g., Franzén, 1977;

Palmer and Palmer, 1977; Brett, 1981; Zı́tt and

Nekvasilová, 1993). There are also numerous instan-

ces of organisms which initially cement to small

substrates and rapidly outgrow these substrates, as in

the case of some corals (Scrutton, 1998) serpulid

worms (Savazzi, 1999c) and bryozoans (Rosso,

1996) that adopt free-living or free-lying ecologies.

Boring organisms inhabiting holes in hard sub-

strates are sedentary but not always strictly sessile in

that many are able to move about freely within their

borings. As noted below, boring is accomplished by

secretion of low pH chemicals and/or mechanical

rasping. The hole left by the boring organism is an

ichnofossil, although in some groups (e.g., clionid

sponges, ctenostome bryozoans) where the borer

remains stationary within this hole, the boring so

exactly moulds the external shape of the organism

that it has been treated as a body fossil (e.g., Pohow-

sky, 1978). In some cases, a body fossil of the boring

organism is present within the ichnofossil, especially

bivalve shells preserved in the boring Gastrochaeno-

lites. Radtke et al. (1997) provided a comprehensive

bibliographical overview of borers and bioerosion,

while Vermeij (1987, Table 5.2) tabulated the taxon-

omy and geological ranges of mobile rock boring

animals. Table 2 summarises the main ichnogenera of

macroscopic borers that have been named (see also

Fig. 5. Scanning electron micrographs of fossil grazing traces. (A) Gnathichnus, a superimposed complex of stellate traces inferred to have been

made by the radula of an echinoid on a brachiopod shell; � 24; Jurassic, Bathonian, White Limestone Fm., Daglingworth, Gloucestershire,

England. (B) Radulichnus, parallel scratches inferred to have been made by the radula of a gastropod or chiton on a bivalve shell; note ungrazed

but bored area of shell on the right; � 45; Pliocene, Waccamaw Formation, Shallotte, near Wilmington, NC, USA.
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Perry and Bertling, 2000, Table 1). Related to borings

are embedment fossils where the growth of a host

skeleton is distorted by the presence of another

organism (e.g., Radwanski and Baluk, 1997).

A third major component of hard substrate com-

munities is vagile (mobile) animals. These include

permanent residents that cling to and move across the

surface of the substrate (e.g., chitons), and temporary

visitors such as fishes. Direct evidence for the pres-

ence of these animals in fossil communities is poor

compared to encrusters and borers, although some

vagile animals leave trace fossils on the surfaces of

hard substrates, notably the ichnogenera Gnathichnus

(Bromley, 1975; Figs. 2E and 5A) and Radulichnus

(Voigt, 1977; Fig. 5B) produced, respectively, by the

grazing activities of echinoids and molluscs (chitons

and gastropods; Fig. 6), and homing scars of gastro-

pods (Bongrain, 1995). The combination of grazing

and boring can be a potent bioerosional force account-

ing for the destruction of significant volumes of hard

substrates (Fig. 7). Body fossils of vagile animals can

sometimes be found loose in the sediments associated

with hard substrates, together with those of organi-

cally attached members of the hard substrate com-

munity (e.g., Johnson and Ledesma-Vázquez, 1999).

Communities of animals and plants living attached

to hard substrates in the sea are often referred to as

fouling (or biofouling) communities (see Wahl, 1989).

Most fouling organisms colonise hard substrates via a

free-living juvenile or larval stage which develops

into the sessile adult through metamorphosis. Larval

settlement on hard substrates should be distinguished

from recruitment, a term used to describe only those

individuals surviving metamorphosis, i.e., settling

larvae minus individuals suffering early mortality.

Clustering or aggregation of organisms recruited to

hard substrates is often observed in the Recent and in

the fossil record (Section 8). Aggregation is a pattern

which can be produced by a variety of different

processes, including differential early mortality of

those individuals settling more distantly from others,

variations in the surface topography of the substratum

which attract larvae to particular areas, limited sub-

strate availability, and active selection by larvae of

sites close to adults of the same species. The last of

these processes is referred to as gregarious behaviour,

a term frequently misused in the palaeontological

literature for aggregation arising from any process.

Aggregation plays a key role in the formation of

certain types of reefs founded on hard substrates

(e.g., Bosence, 1979b).

Living space is often at a premium in hard sub-

strate communities and represents the limiting

resource for population growth in many species.

Active competition for space commonly results in

the overgrowth of one individual by another (Section

6.2). Fossil hard substrate assemblages reveal skeletal

overgrowths, some of which may be due to competi-

tion between two living individuals, but others to a

living individual growing over the surface of a dead

individual. Overgrowths are of two main types: (1)

lateral overgrowth occurs when two individuals con-

tact each others’ edges as they grow across the

Fig. 7. Mean bioerosional rates by borers and grazers in different

environments at Lizard Island on the Great Barrier Reef, Australia.

After Kiene and Hutchings (1994).

Fig. 6. Bioerosion of a carbonate substrate resulting from a

combination of boring by endoliths and grazing by a molluscan

radula. After Schneider and Torunski (1983).
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substratum; (2) fouling overgrowth results from the

settlement of the larva of one individual on the

surface of an another, previously established individ-

ual. It may be difficult to distinguish these two types

of overgrowth in fossils if the exact point of origin of

the overgrowing individual cannot be ascertained,

e.g., when the material being studied consists of a

section which is unlikely to intersect the precise

origin of the overgrowing encruster. Overgrowth

may cause the death (mortality) of the overgrown

organism or may be non-fatal. For example, over-

growth of the exoskeletal tube of a serpulid worm

need not cause death of the worm if the aperture

remains open to allow continued access by the

tentacle crown of the worm to the water column,

and the bases of erect organisms are sometimes

overgrown with no obvious detrimental effects on

the erect parts (e.g., Fletcher and Day, 1983). Survival

in these circumstances is sometimes referred to by

marine biologists as epizooism. Colonial animals

typically exhibit partial mortality—death of some

individuals (zooids) in the colony but survival of

the colony as a whole. Incomplete overgrowth of a

colony is a common cause of partial mortality.

Stratigraphic principles (e.g., Choi, 1984; Gibson,

1992) can be applied to the analysis of spatial relation-

ships and short-term ecological succession among

encrusters and borers, particularly as seen in vertical

sections through hard substrate assemblages. The

principle of superposition means that encrusters at

the bottom of the pile (i.e., close to the substratum) are

older than those above them. Vertically oriented thin

sections are often used to reveal superposition sequen-

ces (e.g., Hölder, 1972; Taberner and Bosence, 1985).

The caveat to this method is that underlying encrus-

ters, especially colonial animals, may have continued

to live at the substratum surface elsewhere (off the

plane of section) and can therefore be partly contem-

poraneous with overlying encrusters. Consequently, it

is more accurate to state that overlying encrusters

cannot be older than those beneath (unless under-

cutting and encrustation of cavity roofs has occurred).

Continuing the stratigraphical analogy for borers,

these are equivalent to igneous intrusions in that they

crosscut the sequence of encrusters. An important

difference, however, is that intrusions are normally

emplaced from beneath whereas borings tend to

penetrate from above, having entered the substrate

from the exterior. Nevertheless, the relative chronol-

ogy of encrusters and borers can be easily determined

using the principles applied in geology, e.g., a borer

cutting encruster A but covered by encruster B must

postdate encruster A but antedate encruster B. Good

examples of such relationships between borers and

encrusters can be found in Hölder (1972) and Wilson

et al. (1998a,b). Sometimes alternating layers of

individuals belonging to two different encrusting

species resemble cyclic sedimentary strata and prove

contemporaneity between the species concerned

which lived in symbiosis (e.g., Powell, 1991).

4. Terminology

A large number of terms have been used to

categorise organisms colonising hard substrates, some

Table 3

Terminology for organisms colonising hard substrates

Substrate Colonist

Animal (sclerozoan) Plant (sclerophyte) Any organism (sclerobiont)

Rock lithozoan epilithozoan lithophyte epilithophyte lithobiont epilithobiont

endolithozoan endolithophyte endolithobiont

Wood xylozoan epixylozoan xylophyte epixylophyte xylobiont epixylobiont

endoxylozoan endoxylophyte endoxylobiont

Plant phytozoan epiphytozoan phytophyte epiphytophyte phytobiont epiphytobiont

endophytozoan endophytophyte endophytobiont

Animal (living) zoozoan epizoozoan zoophyte epizoophyte zoobiont epizoobiont

endozoozoan endozoophyte endozoobiont

Any organic hard part skeletozoan episkeletozoan skeletophyte episkeletophyte skeletobiont episkeletobiont

(dead or alive) endoskeletozoan endoskeletophyte endoskeletobiont

See text for explanation of how the terms are derived.
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depending on the type of substrate colonised (e.g.,

animal, plant, rock), others describing the spatial

location of colonist on or in the substrate, and yet

others alluding to whether the colonist is an animal or

a plant. With such a plethora of possibilities (see West,

1977; Walker and Miller, 1992), including plurals,

adverbs and terms which refer collectively to two or

more of the categories, it is hardly surprising that

considerable inconsistency of usage has developed,

particularly between palaeontologists and neontolo-

gists. The terms in common use tend to be compounds

of two roots, as in ‘epizoan’ in which ‘epi-’ refers to

the position (surface) and ‘-zoan’ to the type of

organism (animal). Even with such a straightforward

term as this, however, there is potential for confusion

because the ‘-zoan’ part of the name could signify that

either the colonising organism or the substrate it

colonises is an animal. Nomenclatorial confusion is

often traceable to such subject vs. object inconsisten-

cies.

For the purpose of this review, a set of terms (Table

3), first proposed by Taylor and Wilson (2002), is

applied as far as possible. Each of the terms consists

of a compound derived from two or three roots, the

last always referring to the identity of the colonising

organism (i.e., animal = ‘zoan’, plant = ‘phyte’, or

either = ‘biont’). Preceding this is a root derived from

the type of substrate: rock = ‘litho’, wood = ‘xylo’,

living plant = ‘phyto’, living animal = ‘zoo’, and any

organic hardpart of unknown or uncertain status,

living or dead = ‘skeleto’. A prefix can be added to

indicate the spatial location of the colonist, either on

the surface (‘epi’) or within the substrate (‘endo’). A

new collective term—sclerobiont—is coined for all

organisms inhabiting any kind of hard substrate. The

term encompasses encrusters adpressed closely to the

surface of the substrate, sessile organisms which are

cemented or organically anchored to the substrate

surface but grow away from it into the water column,

borers which enter the substrate from its perimeter and

penetrate to various depths within, and vagile organ-

isms living on or habitually visiting the surface of the

hard substrate. Sclerozoans are animal sclerobionts,

and sclerophytes plant sclerobionts.

Certain terms commonly encountered in the liter-

ature on hard substrates deserve comment. Epizoan is

generally used by neontologists, along with the syn-

onymous epizoite (e.g., Hughes, 1979), for organisms

(animal or plant) attached to a living host animal, a

habit referred to as ‘epizooism’. Palaeontologists

have, however, often designated as epizoans organ-

isms attached to demonstrably dead animal substrates,

to plant substrates (e.g., Brasier, 1975; De Burgh and

Fankboner, 1979; Ivany et al., 1990), or even to

inorganic substrates (e.g., Baird, 1981). The term

epizoobiont here replaces epizoan. Epiphyte is the

plant equivalent of epizoan for any organism using a

plant as its substrate. It has been used in marine

settings for organisms encrusting kelp or seagrasses,

and in terrestrial environments for ferns, orchids etc

growing on the branches of living trees. Even if the

host plant is not preserved, fossil marine epiphytes

are occasionally recognisable by the impression

(substratum bioimmuration, see Section 8.5) of the

host plant on their attachment surfaces. Misuse of the

term epiphyte includes application of ‘-phyte’ to the

colonising organism rather than the substrate (e.g.,

Ghosh, 1997). The term epiphytobiont here replaces

epiphyte.

Walker and Miller (1992) used the term epibiont

for organisms, respectively, fouling the surface of

organic substrates and endobiont for organisms boring

into organic substrates, regardless of whether the

substrate was dead or alive at the time of colonisation.

These terms remain useful as long as it is appreciated

that they are object-based, ‘biont’ in this case referring

not to the coloniser but to the substrate (cf., for

example, Gutt and Schikan, 1998). However, it should

be noted that marine biologists (e.g., Wahl, 1989)

typically restrict the term epibiont to organisms

attached to surfaces of living hosts. Cryptobiont is a

positional term describing organisms colonising hid-

den surfaces such as concave undersides of bivalve

shells or cavities in rocks and reefs. Assemblages of

cryptobionts have been referred to as ‘cryptos’ (e.g.,

Wood et al., 1996). Coelobiont is used almost synon-

ymously with cryptobiont (e.g., Kobluk, 1981a).

Basibiont is occasionally used to describe a living

substratum hosting a fouling community (e.g., Wahl,

1989; Laudien and Wahl, 1999).

Symbiosis is a term for any permanent or semi-

permanent association between two individuals of

different species. Because many sclerobionts are ses-

sile, they are prone to forming symbioses with other

sclerobionts that colonise the same substratum, as well

as with the host substrate if this is a living animal or
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plant. Symbioses can be subdivided into three types

according to the relative effects of the symbionts on

one another: (1) parasitism is when one symbiont

benefits (often trophically) by living in association but

the other loses; (2) mutualism is when both symbionts

benefit; and (3) commensalism is when one benefits

but the other incurs neither a loss nor a benefit.

Biologists measure benefits and losses in terms of

either fecundity (reproductive output) or relative pop-

ulation growth when the symbionts are in and out of

association. Neither of these measures is available to

palaeontologists working on fossil symbioses. Con-

sequently, as discussed by Darrell and Taylor (1993),

when describing fossil symbioses the terms parasit-

ism, mutualism and especially commensalism should

be used with extreme caution or avoided altogether.

The fossil record can provide good evidence on the

antiquity and longevity of symbioses (e.g., Darrell and

Taylor, 1993, for corals; Savazzi, 2001, for bivalves),

as well as specificity and obligacy, but not on their

overall beneficial or detrimental effects. Specificity

refers to the identity of the taxa involved, with a

species specific association indicating that only one

species is colonised by the symbiont, and obligacy to

whether the species concerned is found in symbiosis

exclusively (obligate), preferentially (facultative) or

only occasionally (incidental). Wahl and Mark (1999)

concluded that most marine zoobiotic and phytobiotic

relationships were non-obligatory and non-specific.

Some symbioses involve a host species transporting

the other symbiont, a phenomenon called phoresis

(e.g., Lawn, 2002).

5. Communities on biotic substrates

5.1. Phytobiota

Macroalgae and seagrasses (marine angiosperms)

today often support diverse phytobiotic (‘epiphytic’)

communities of animals and plants. Some members of

these communities possess mineralised—and conse-

quently fossilisable—skeletons. Nevertheless, phyto-

biotic assemblages are seldom recognised in the fossil

record. This can be explained by the typical non-

fossilisation of the plant substratum (e.g., Brasier,

1975) which not only means that the nature of the

original substratum must be inferred but also that the

phytobionts lose their support and are prone to trans-

port and destruction. Adaptations of the phytobionts

themselves for coping with the hazard of breaking

when the plant substratum flexes include weak or

incomplete mineralisation (e.g., Hayward, 1980), fur-

ther diminishing their fossilisation potential. Con-

versely, other adaptations of phytobionts may have

potential utility in recognising their identity as epi-

phytes, e.g., bryozoans with frontal tubercles (Voigt,

1993a) and basal stilts (Voigt, 1993b). The skeletons

of phytobionts found on beached drifts of floating

Sargassum contribute significant amounts of carbo-

nate sediment to shoreline deposits in Bermuda (Pes-

tana, 1985). There is good reason to believe that

careful study of some ancient beach deposits may

reveal fossils of phytobiotic species. Attachment to

floating algae is potentially important in the dispersal

of phytobionts at the present day (Highsmith, 1985)

and was likely so in the geological past.

Although we are unaware of any studies of ancient

phytobiont assemblages of fleshy macroalgae, a brief

mention of research on modern communities is

included here to illustrate some more general points

about encrusters and their relationships to living

substrates. Seed and O’Conner (1981) have thor-

oughly reviewed the ecology of macroalgal phyto-

bionts. These communities are more common in the

low intertidal and shallow subtidal than they are in the

high intertidal, their diversity tends to be higher on

brown algae (e.g., Fucus, Macrocystis, Sargassum)

and red algae (e.g., Solieria, Bryothamnion) than on

green algae (Hayward, 1980; Winston and Eiseman,

1980), and phytobiont abundance is greatest in

regions of high water flow and turbulence but low

silt loading. Microhabitat differentiation can be evi-

dent on individual algal fronds (Hayward, 1980), with

some species of phytobionts recruiting preferentially

in troughs or on concave surfaces. Furthermore,

zonation of phytobionts along the length of the frond

is common, paralleling gradients in frond flexibility,

ambient current velocity and age of the frond surface.

Brumbaugh et al. (1994) showed that preferential

recruitment of the bryozoan Membranipora membra-

nacea to the younger, proximal part of kelp fronds

was apparently cued by the relatively undamaged

condition of the algal tissues in this region. Because

distal parts of fronds are constantly lost by erosion,

colonies recruiting in proximal areas could reach an
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ultimate size three orders of magnitude greater than

distal recruits. Low levels of specificity by macro-

fauna for particular algal species were found in an

Arctic fiord by Lippert et al. (2001).

Competition for space can result in complex net-

works (Seed and O’Conner, 1981; Fig. 2). Various

types of interaction are possible between phytobionts

and their macroalgal host substrates. Photosynthetic

activity of the alga may be depressed by the presence

of phytobionts (Oswald et al., 1984; Cancino et al.,

1987), frond deterioration accelerated (Dixon et al.,

1981), and fronds damaged by fish and echinoid

preying on the phytobionts (Bernstein and Jung,

1979; Scheibling et al., 1999). In addition to using

macroalgae as substrates for attachment, some phyto-

bionts have been shown to take up organic carbon

from their hosts, suggesting a trophic interaction (De

Burgh and Fankboner, 1979).

Phytobiotic communities of high diversity (e.g.,

Borowitzka et al., 1990) often develop on modern

seagrasses. Some of these phytobionts have been

shown to influence the growth of their host signifi-

cantly. For example, encrustation by the bryozoan

Calpensia causes rhizomes of the Mediterranean sea-

grass Posidonia to grow faster and higher above the

sediment while weakening them and potentially

increasing the probability of breakage (Romero Col-

menero and Sánchez Lizaso, 1999). Foraminifera

living on seagrass in Western Australia show micro-

zonation along the leaves, with some species being

aggregated close to serpulid worm tubes (Semeniuk,

2000).

Fossilised seagrasses from the Eocene of Florida

are encrusted by the polychaete worm Spirorbis

together with foraminiferans, barnacles and bryozoans

(Ivany et al., 1990). Silicified stems and roots of

seagrasses in the Maastrichtian of the Netherlands—

among the oldest examples of seagrasses in the fossil

record (den Hartog, 1970)—support a biota domi-

nated by bryozoans (Voigt, 1981). Although the

leaves are never silicified, unequivocal evidence of

encrustation of leaves is present in the form of

substratum bioimmurations (Taylor, 1990)—impres-

sions of the venation patterns of the leaves are

preserved as natural moulds on the undersides of the

phytobionts. Other examples of seagrass phytobionts

identified entirely from the existence of bioimmured

impressions come from the Neogene of central Amer-

ica (Cheetham and Jackson, 1996) and the Eocene of

the Paris Basin (Taylor and Todd, 2001). Langer

(1993) described similar patterns on the undersides

of Recent foraminiferans adhering to seagrasses.

A good example of fossil phytobionts preserved in

situ on their plant substrates has been described by

Kelber (1987) from the German Triassic. Here, ter-

restrial plants in a non-marine setting are encrusted by

small coiled worm tubes attributed to Spirorbis.

Calcareous algae include two groups of rhodo-

phytes—solenoporaceans and corallinaceans—with

extensive fossil records. Examples of phytobionts

associated with these algae at the present day include

diatoms and foraminiferans (Freiwald, 1993). Rhodo-

liths (sometimes called ‘‘maërl’’) are free-living struc-

tures formed by non-geniculate coralline algae (see

Foster, 2001, which is an excellent recent review).

Rhodoliths are often found in thick beds, and they are

distributed through a variety of shallow marine envi-

ronments, including tropical, temperate and even

polar. Some rhodoliths are made completely of coral-

line algae, whereas others nucleated on hard objects,

such as broken pieces of coral, shells, pebbles, or

fragments of other rhodoliths (Freiwald and Henrich,

1994), enveloping the substrate as they grew (e.g.,

Akpan and Farrow, 1984, pl. 1). Often more than one

species of algae forms the rhodolith framework.

Rhodoliths and rhodolith-like forms have a long fossil

record, going back as far as the Cambrian (Copper,

1994), although they are uncommon before the Cen-

ozoic when coralline algae rose in importance. They

are useful for palaeoenvironmental interpretations

because their shapes can be related to hydraulic

energy (Bosence, 1983), with the caveat that other

environmental factors may be involved (Marrack,

1999). The slow, laminar growth of rhodoliths makes

them potentially valuable isotopic recorders of climate

change over time (Frantz et al., 2000).

Microbes of various types can form elevated

features on hard substrates, especially extensive rock-

grounds and hardgrounds. Stromatolites are microbial

structures (microbialites) with internal laminations;

thrombolites are microbial masses with clotted inter-

nal textures (Aitken, 1967; see also Riding, 1999;

Shapiro, 2002). Stromatolites were especially com-

mon on the exposed upper surfaces of intertidal and

subtidal rockgrounds in the Precambrian, extending

back to 3.3–3.5 billion years ago (Byerly et al.,
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1986). The bacterial mats which formed stromatolites

flourished in the Precambrian, apparently because of

a combination of distinctive physical conditions

(Melezhik et al., 1997) and a lack of grazers (Sei-

lacher, 1999). Stromatolites today are found only in

highly restricted environments, such as hypersaline

bays (Seilacher, 1999). Thrombolites range from the

Neoproterozoic (Aitken and Narbonne, 1989) to the

Recent (Moore et al., 1984). They were common in

the Cambrian and Ordovician (Kennard and James,

1986) and the Devonian (Shapiro, 2002), but rarer

though present in every other Phanerozoic system.

Thrombolites have a much more varied environmen-

tal distribution than stromatolites, being found in

cryptic spaces such as cavity walls (e.g., Taylor and

Palmer, 1994) as well as on exposed surfaces (Riding,

2000). Phosphatic microbial mats originally attributed

a bryozoan origin have been described from the

Ordovician by Niedermeyer and Langbein (1989).

Microbial buildups commonly incorporate metazoans

which contribute to the overall structure (e.g., Crow-

ley and Zenger, 1975; Pisera, 1996).

5.2. Xylobiota

Wood occurs in marine environments as terrestri-

ally derived logs transported out to sea and as in situ

mangroves. Both types may be colonised by encrust-

ing and boring xylobionts. In the case of transported

logs, colonisation can occur when the wood is floating

or after it has become waterlogged and sunk to the

seabed. It is also possible for colonisation of xylic

substrates to occur after burial and re-exposure prior

to coalification of incipient coal seams (Bromley et

al., 1984).

The most spectacular examples in the fossil record

of colonisation of floating wood are provided by

Pentacrinus from the Lower Jurassic. Aggregations

of this pseudoplanktonic crinoid are inferred by

Simms (1986) to have hung down from large pieces

of floating driftwood, although Brett et al. (1997) have

argued that the occurrence of multiple generations of

crinoids points to colonisation of sunken logs on the

sea floor.

Two groups of pholadacean bivalves—teredinids

(‘shipworms’) and pholadids (‘piddocks’)—are well

known for boring into wood in Mesozoic–Recent

marine environments (Fig. 2G). Boring may be exclu-

sively for the purpose of creating a protected domicile

for the suspension feeding bivalve, or to obtain

nutrition through digestion of the cellulose (see Turner

and Johnson, 1971). Calcite linings are often present

in teredinid borings (Savrda and Smith, 1996) and

sometimes these are all that remains in fossil material

after taphonomic decay of the wood substrate and loss

of the aragonitic shells (Evans, 1999).

Fig. 8. Mould bioimmurations of mangroves on the attachment

areas of oysters. (A) Concave attachment area of the French Eocene

oyster Ostrea uncifera. (B) Detail of mangrove root impression on

the attachment area of a Recent mangrove oyster from New

Caledonia. After Plaziat (1970).
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Oysters sometimes foul wood (Fig. 2F), especially

mangrove wood. Fossil and subfossil examples of

mangrove oysters have been recognised in the fossil

record in the absence of the mangrove themselves by

the natural moulds (substratum bioimmurations) of

the wood preserved on the attachment areas of the

oysters (Plaziat, 1970; Kendrick and Morse, 1990;

Fig. 8).

5.3. Zoobiota

The term zoobiont, equivalent to epizoan plus

endozoan as used by previous authors, here refers to

animals and plants which colonise living animals. In

the context of the fossil record, zoobionts are invar-

iably associated with hosts possessing exoskeletons.

An important problem when dealing with these fossils

is how to determine whether the host was alive or

dead at the time of colonisation. Criteria for distin-

guishing between living and post-mortem colonisation

are discussed below (Section 5.4). However, it is clear

that in many fossils this issue will be unresolvable or

at the very least contentious. For these cases, the more

neutral term skeletobiont, applicable to encrusters and

borers colonising any organic hard substrate, animal

or plant, dead or alive, should be used.

Present-day zoobionts are known in association

with a wide range of marine animal hosts. Those

attached to unmineralised parts of host animals, such

as sea snakes and whales (see Key et al., 1995 and

references therein), are of less direct palaeontological

relevance and will not be considered further. Among

marine vertebrates, modern turtle carapaces often host

a range of zoobionts, including algae, hydrozoans,

bivalves, barnacles and tunicates (e.g., Frazier et al.,

1992). However, loss of the epidermal scutes to which

the zoobionts are attached would jeopardise any

potential fossil record of in situ turtle zoobionts

(encrusting oysters and echinoid grazing traces (Gna-

athichnus) have been recorded as post-mortem asso-

ciates on Jurassic turtle carapaces by Meyer, 1994).

Ephemeral substrates, including tunicates, sponges

and octocorals, support rich and diverse assemblages

of zoobiotic bryozoans off southern Australia (Hage-

man et al., 2000). Such substrates do not usually

survive into the fossil record but the basal attachment

structures of the bryozoans involved may provide

diagnostic evidence of their former presence.

The extent to which modern animals ‘tolerate’ or

are able to rid themselves of zoobionts and phyto-

bionts varies. Some host animals produce bioactive

chemicals—antifouling substances—to prevent or dis-

courage fouling (e.g., Thompson, 1985), whereas

others are able to shed outer layers of their body

tissue in order to rid themselves of fouling organisms

(e.g., Barthel and Wolfrath, 1989; Winston and

Håkansson, 1989) or react by proliferating skeletal

tissue to embed the fouler. Colonisation by zoobionts

and phytobionts, however, is not always disadvanta-

geous to the host (Wahl, 1989) and in some instances

their presence is actively encouraged by host behav-

iour (e.g., decorator crabs) or morphology (e.g., the

bivalve Spondylus, see Section 5.3.2). Here, the

presence of a fouling community may function in

defence of the host against predators. From a palae-

ontological perspective, such beneficial interactions

serve to underscore the danger of concluding that

zoobionts are necessarily a burden to the living host

and therefore parasitic.

5.3.1. Brachiopod-hosted communities

Zoobionts on living brachiopods have been studied

from several modern environments and provide

important evidence for the interpretation of the

encrusters and borers which can be extremely com-

mon on fossil brachiopods (see Section 5.4.4). Among

inarticulate brachiopods, Lingula may be colonised by

a zoobiotic community of barnacles, algae, anemones,

bryozoans and polychaetes (Hammond, 1984).

Almost all of these are located at the anterior end of

the shell, the only site readily available for settlement

in this infaunal brachiopod, and occur equally on

Fig. 9. Relationship between the distribution of attached foramin-

iferans and feeding currents of the Recent brachiopod Tichosina

floridensis Cooper from Florida. After Zumwalt and Delaca (1980).
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dorsal and ventral valves. Tubes of the worm Poly-

dora open adjacent to the inhalant setal funnel of the

host Lingula in a position where poaching of the

brachiopod’s food is a possibility. Damage to and

distortion of the anterior commissure, potentially

recognisable in fossils, was observed in two thirds

of the colonised Lingula shells studied by Hammond

(1984).

Articulate brachiopods are more commonly cited

as hosts for zoobionts (e.g., d’Hondt, 1984; Fager-

strom, 1996). Mapping of seven species of foramin-

iferans encrusting the Floridian brachiopod Tichsina

floridensis by Zumwalt and Delaca (1980) revealed a

concentration close to the commissure but statistically

indistinguishable numbers in the inhalant and exhalent

areas of the host (Fig. 9). Consequently, although

feeding by the foraminiferans may benefit from

increased current velocities and particle flux near the

brachiopod commissure, there is no evidence of food

poaching. Barnes and Clarke (1995) have described

mainly sponges, bryozoans and polychaetes encrust-

ing the Antarctic brachiopod Liothyrella uva. The area

covered by these zoobionts increased from less than

20% on the smallest to more than 50% on the largest

hosts, and species richness also increased with bra-

chiopod size, while the average area of shell encrusted

decreased slightly with depth of collection. These

high coverage values were attributed to the long

lifespan of the host brachiopods. Some evidence

was found of encrusting bryozoans growing across

the commissure, blocking feeding, and apparently

causing brachiopod mortality.

5.3.2. Mollusc-hosted communities

The shells of living epifaunal molluscs form impor-

tant substrates for many zoobionts. The diversity and

density of these ‘molluscobiotic communities’ varies

according to host species and environment. Among

bivalves, oysters and scallops are particularly prone to

biofouling, and this can be a major problem for

commercial shellfisheries (e.g., Korringa, 1954; Igic,

1972; Thangavelu and Sanjeevaraj, 1988), especially

through the shell weakening effects of boring sponges

and spionid polychaetes. While the periostracum of

the mollusc shell is known or believed to deter fouling

in some species (Bottjer, 1981), damage to this often

thin organic covering is common and may account for

the existence, for example, of heavily fouled individ-

uals of the gastropod Astraea heliotropium on the

Otago Shelf, New Zealand (PDT, personal observa-

tion). As with other sclerobiotic communities (see

Section 6.1), nutrient levels have been hypothesised

to play an important role in determining the degree of

fouling of living molluscs (Voight and Walker, 1995).

Research on zoobiotic communities colonising

bivalve shells has provided insights into the effects

fouling organisms can have on living hosts. Observa-

tions of in situ Mytilus edulis showed that unfouled

shells were preferred as prey by the starfish Asterias

rubens, with shells fouled by hydrozoans and algae

better protected against predators than barnacle-fouled

shells (Laudien and Wahl, 1999). Conversely, zoo-

bionts on mussels (M. edulis and M. californianus)

can increase drag forces and therefore lead to dislodg-

ment and death (Witman and Suchanek, 1984). A

dramatic illustration of the effect of frondose algae on

living host substrates is the report by González et al.

(2001) of the stranding of more than two million

individuals of the scallop Agropecten on a Chilean

beach in March 1999. The stranding took place during

a period of strong wave action and was facilitated by

the algae which increased the probability of dislodge-

ment. However, such catastrophic effects may only

apply to large zoobionts such as kelp and barnacles;

zoobionts which do not increase vertical relief appre-

ciably may have no appreciable influence on dislodge-

ment. Another study (Laihonen and Furman, 1986)

found that encrustation by barnacles had no signifi-

cant effect on the growth rate of M. edulis. The

barnacles themselves, however, grew faster on living

than on dead shells, suggesting a commensal relation-

ship with the host mussel.

The Queen Scallop (Chlamys opercularis) is

encrusted by the sponge Suberites in an apparently

mutualistic association. Sponge encrustation protects

the bivalve from predation by starfish, probably by

reducing the adhesion of the tube feet, and the sponge

in return is protected from predatory nudibranchs by

the mobility of the swimming mollusc (Pond, 1992;

see also Bloom, 1975). Another scallop (Chlamys

varia) is encrusted by a different, much larger sponge

(Halichondria) which also hinders starfish predation,

in this case not only through its effects on tube foot

adhesion but also by making the valve margins almost

inaccessible beneath the enveloping sponge (Forester,

1979). There is also speculation that sponges encrust-
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ing scallops provide additional predator deterrence as

a result of their toxicity, while crellid sponge encrus-

tation of Chlamys asperrima apparently prevents

endolith infestation and allows the scallop to secrete

a thinner shell than that found in individuals lacking a

sponge covering (Pitcher and Butler, 1987). Survival

in natural habitats of sponge-encrusted individuals of

C. asperrima has been shown to be greater than

unencrusted individuals (Chernoff, 1987). Individuals

of the Antarctic scallop Adamussium colbecki are

often encrusted by the hydroid Hydractinia angusta

which can eat the tube feet and pedicellariae of

echinoids grazing algae on the shell surface. The

hydroid may thereby limit the damage caused to the

shell of its host by grazing (Cerrano et al., 2000).

In the spinose bivalve Spondylus americanus,

which is preyed upon by gastropods, crustaceans

and fishes, Feifarek (1987) presented experimental

evidence that the spines alone are not effective against

predators but that they encourage shell colonisation by

a sponge-dominated zoobiotic community which does

provide protection against predators. Enhanced foul-

ing has been reported for a second species of Spon-

dylus (S. regis), whereas ribbed bivalves show no

effect (Jones, 2001). However, naturally rugose shells

of another bivalve (Chama pellucida) attract a greater

coverage of encrusters than do smooth shells of the

same species (Vance, 1978). Removal of the dense

zoobiotic covering on C. pellucida increases predation

by Pisaster giganteus which is less able to detect

encrusted individuals.

Fouling of the periwinkle Littorina littorea, partic-

ularly by algae, may increase drag on the snail and

decrease growth rate, possibly because the snail has to

expend more energy holding onto the substrate (Wahl,

1996). Conversely, fouling by the bryozoan Alcyoni-

dium of another gastropod, the whelk Burnupena

papyracea, has a beneficial effect on the host, protect-

ing it from predation by rock lobsters (Barkai and

McQuaid, 1988). Cerith gastropod shells from sea-

grass meadows in Brazil are rarely colonised by

zoobionts when empty, whereas shells of living gas-

tropods and shells occupied by hermit crabs are more

often colonised, the former usually by oysters and the

latter by polychaetes (Creed, 2000). Shells of living

molluscs can provide rare hard substrates on muddy

seabeds for corals and other sclerobionts (e.g., Nishi-

hira, 2001).

Shells of living Nautilus often support zoobiotic

communities (Landman et al., 1987), with up to 92%

of shells colonised, although the low surface cover-

age ( < 1%) is not thought to present a significant

problem for the host cephalopod. Among the com-

monest encrusters are bryozoans, foraminiferans,

serpulids, barnacles and the tubular scyphozoan

Stephanoscyphus. Whereas bryozoans are the princi-

pal zoobionts on N. belauensis, serpulids dominate

on two other species, N. pompilius and N. scrobicu-

latus. The umbilicus appears to be the preferred site

of colonisation, possibly because of the high flow

into this region of water containing entrained larvae

and planktonic food particles when the animal is

swimming. The black area and apertural margin are

generally free of zoobionts, as might be predicted

given the presence of soft tissues here, and the thick

periostracum of N. scrobiculatus seemingly deters

zoobionts. Colonisation of live animals contrasts

with that seen in drift shells where density of

encrustation may be much greater and distributions

more random.

5.3.3. Arthropod-hosted communities

The mobility of most arthropods, together with the

periodic shedding of the exoskeleton (ecdysis) and the

complexity of the exoskeleton, make zoobiotic com-

munities colonising arthropods of special interest.

As they pass beyond the age of final moulting,

horseshoe crabs accumulate ‘‘a striking variety of

hitchhikers’’ (Grant, 1998, p. 14), including barnacles,

bryozoans, oysters, sponges and serpulid worms.

Many of these zoobionts must become submerged in

the sediment when the crabs burrow during rest

periods, although the barnacles may occupy an ele-

vated position on the crown of the carapace. Several

studies—most recently Key et al. (2000) and Patil and

Anil (2000)—have found greater encrustation of male

than female individuals of the horseshoe crab Tachy-

pleus gigas, possibly because females spend more of

their time burrowing, including egg laying. Encrusting

bryozoans are more common in this species on the

dorsal than the ventral surface, and on the prosoma

than the opisthosoma. Whereas 77% of T. gigas

individuals were found by Key et al. (1996) to be

bryozoan-encrusted, another horseshoe crab (Carci-

inoscorpius rotundicauda) from Singapore was

unfouled, a pattern attributed to the fact that the
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second species spends more time in brackish waters.

A detailed analysis (Dietl et al., 2000) of the zoobionts

on Limulus polyphemus showed that different taxo-

nomic groups had very different patterns of distribu-

tion. This was explained by variations in larval

settlement behaviour often influenced by current flow

over the crab’s body. Few zoobionts were present on

smooth-surfaced areas prone to abrasion during move-

ment of the host through sediments. Apertures of the

serpulid worm Filograna are predominantly oriented

posteriorly, facing into a zone of current eddies which

may have facilitated their ability to capture food

particles.

Populations of true crabs may support diverse

communities of zoobionts. For example, Colodey et

al. (1980) recorded 53 taxa living on only 7 crabs

(Cancer irroratus) from the Gulf of St Lawrence.

Predictably, newly moulted crabs were less encrusted,

and larger individuals hosted greater numbers of

zoobionts. The distribution of zoobionts on this crab

was determined mostly by the presence or absence of

setae: few zoobionts occur in setose areas apparently

because these are sites where detritus accumulates.

Barnacles encrusting another crab (Carcinus maenus)

are found only in the grooves and depressions on the

Fig. 11. Massive encrusters on gastropod shells known or inferred to have been occupied by hermit crabs. These colonial bryozoans and

hydrozoans completely envelop the shell, sometimes growing long branches (Kerunia, Janaria and Hippoporidra) and extending the

helicospiral coiling of the gastropod shell (Heteropora). After Walker (1992).

Fig. 10. Orientation of barnacles on the carapace of the Recent crab

Carcinus maenus from Wales. The cirral nets of the barnacle face

predominantly backwards, towards the exhalent respiratory currents

of the crab. After Heath (1976).
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dorsal carapace, sites of preferential larval settlement

(Heath, 1976). Non-random orientation of the bar-

nacles is evident, with the cirral nets face predom-

inantly backward towards the flow of exhalent

respiratory currents generated by the host crab (Fig.

10). Another study (Cadée, 1991) of zoobionts on the

same crab found a strong preference of the bryozoan

Conopeum reticulum for the cryptic, ventral side of

the shell, a weak dorsal preference by the bryozoan

Electra pilosa, and no preference by barnacles. The

presence of zoobionts in the eyes and their sockets

may lead to eye loss or overgrowth, both obviously

harmful to the host. Key et al. (1996) recorded more

foulers on the ventral than dorsal surface in the blue

crab (Callinectes sapidus), and confirmed the greater

fouling of female than male crabs which is probably

because female crabs spend a longer time in deeper

waters of more fully marine salinity.

Hermit crabs are a group of crustaceans which

typically inhabit the shells of dead gastropods but may

also be found living a mobile existence in serpulid

tubes, scaphopods, and man-made objects, as well as a

sessile life in fixed worm tubes (Schuhmacher, 1977;

Gherardi, 1996). Because they are unable to maintain

tenanted shells in the same way as an animal secreting

its own shell, a very different and frequently dense

and diverse community of zoobionts may live in

association with hermit crabs, some species encrusting

the shell surface, some boring into the shell and yet

others cohabiting the shell lumen with the hermit crab

(e.g., Jensen and Bender, 1973; Stachowitsch, 1980).

‘Pagurized’ shells occupied by hermit crabs show

several characteristic features (Walker, 1988, 1992,

1995). These include massive encrustation (Fig. 11)

extending evenly over the external shell surface and

into the shell interior, the presence of distinctive

zoobionts in the region of the shell aperture, and

abrasion marks (‘pagurid facets’) on the base of the

shell caused by dragging along the substratum. Com-

munities colonising hermitted shells may be more

diverse than those on vacant shells (Fig. 12). This is

because the crabs prevent shells from being buried

and hence allow a greater time for the fouling com-

munity to develop (Conover, 1979). In some in-

stances, tangible benefits have been demonstrated

for both the hermit crabs and its symbionts. For

example, the stinging cells of sea anemones and

hydroids living on hermitted shells protect the crabs

from predatory octopus (e.g., Brooks and Mariscal,

1985), while by living with a hermit crab the ane-

mones and hydroids receive protection from attacks

by echinoids and polychaetes (Brooks and Gwaltney,

1993), i.e., the symbiosis is mutualistic. However,

another study (Buckley and Ebersole, 1994) showed

that the presence of symbiotic hydroids actually

increased the vulnerability of hermit crabs to preda-

tion by blue crabs. The contrasting results of studies

Fig. 12. Differences in skeletobiont colonisation of Olivella

biplicata shells (25–30 mm size class) containing living gastropods

and those occupied by the hermit crab Pagurus granosimanus, from

Bodega Harbor, California, USA. Immergentia is a boring

ctenostome bryozoan, Hippothoa (more correctly Celleporella) an

encrusting cheilostome bryozoan, and Clytia a hydrozoan. After

Walker (1988).

Fig. 13. Overgrowth of bryozoan Puellina fouling a corallite of the

Recent Mediterranean scleractinian Hoplangia, unequivocal evi-

dence that the two were life associates. After Harmelin (1990).
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Table 4

Criteria for distinguishing between life and post-mortem skeletobiont colonisation of biotic hard substrates (see also Lescinsky, 1995, Table 1)

Criterion Inferred

condition

of host

Reliability Remarks Examples

Skeletal intergrowth

and interlayering

Living Absolute Skeletal intergrowth and interlayering

both indicate unequivocally that the

host was live at the time of colonisation.

‘Caunopores’—intergrowths between

stromatoporoids and tabulate corals

(Young and Noble, 1989); fouling

barnacles overgrown by gastropods

(Boekschoten, 1967); cornultids

and gastropods (Morris and Felton,

1993); solitary scleractinian corals

embedded in cheilostome bryozoan

colonies (Cadée and McKinney, 1994)

Distortion or other

reaction of host

skeleton

Living High Cornulitids are often reported to have

caused damage to host brachiopod shells.

Ammonites (Merkt, 1966); brachiopods

(Schumann, 1967; Chatterton, 1975;

Sparks et al., 1980; Peters, 1995);

crinoids (Franzén, 1974; Feldman and

Brett, 1998)

Encruster growth

halting at a growth

line in host

Living High Termination of encruster growth is inferred

to have occurred because of the same

perturbation which caused the host to

produce a growth check.

Brachiopods (Ager, 1961; Lescinsky,

1995)

Preferred orientation or

distribution of

skeletobionts relative

to host morphology

Living Variable While such patterns may indeed signify

a response to the activities of a living

host, it is also possible that they are

post-mortem features caused by the

orientation of a dead substrate to

ambient flow regimes and to the

sediment/water interface.

Hosts: cephalopods (Baird et al., 1989);

bivalves (Trueman, 1942; Morris and

Rollins, 1971; Bottjer, 1982; Hattin,

1986; Villamil et al., 1998);

brachiopods (Schumann, 1967; Morris

and Rollins, 1971; Richards, 1974a,b;

Alexander and Scharpf, 1990; Meyer,

1990; Gibson, 1992; Fagerstrom, 1996);

crinoids (Brett and Eckert, 1982; Peters

and Bork, 1998); Corals (Sando, 1984)

Size distribution of

skeletobionts

along host

Living High Skeletobionts attached to a living and

growing host will show a pattern of

average size increase towards the older

part of the host as this was available

for colonisation first.

Gabbott (1999)

Modified skeletobiont

growth pattern

Living High Unusual, candelabra-like growth of

branching auloporid corals on brachiopod

shells is evidence of concurrent growth

of encruster and host (Fig. 15).

Alvarez and Taylor, 1987 (see also

Pitrat and Rogers, 1978, text-Fig. 1)

Denser colonisation

of older parts of host

Living Variable Being available for a longer period of time

should lead to denser colonisation of older

parts of living hosts.

Bordeaux and Boyajian, 1991

Skeletobionts colonising

internal and/or soft

tissue surfaces of host

Dead High Skeletal surfaces invested by soft tissues

are usually inaccessible to skeletobionts

(Fig. 2B).

Belemnite guards (Pugaczewska, 1965;

Hölder, 1972); brachiopods (Pitrat and

Rogers, 1978)

Host specificity Living Variable Skeletobiont larva using a biological cue

to settle on a living host, or only those

individuals settling on such hosts

successfully recruiting.

Gastropods: Baird et al., 1990;

ammonites: Seliacher, 1982
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such as these provide a salutary warning to palae-

ontologists attempting to infer the advantages and

disadvantages experienced by participants in fossil

associations. Sometimes a single phytobiont or zoo-

biont monopolises the entire surface of the substrate

provide by the hermitted shell. In such cases, the

symbiont may not only produce a very thick encrus-

tation which strengthens the shell, but can also grow

outwards from the shell aperture in the form of a

helicospiral tube, mimicking the shape of the gastro-

pod shell and providing an enlarged chamber for the

hermit crab to occupy (Taylor, 1996). Modern exam-

ples of this type of symbiont are known among

coralline red algae (Zuschin and Piller, 1997), sponges

(Sandford and Kelly-Borges, 1997), hydrozoans

(Cairns and Barnard, 1984) and bryozoans (Taylor,

1994) (Fig. 11). It has been hypothesised that these

bulky symbionts benefit the hermit crab by protecting

it against various types of predators as well as

removing the necessity for shell exchange as the crab

outgrows its home.

Key and Barnes (1999) investigated fouling of

Antarctic Glyptonotus antarcticus, a large marine

isopod of particular interest as a trilobite analogue.

Just under half of the individuals in their sample were

fouled by bryozoans and/or serpulids, with as many as

12 bryozoan colonies per host isopod. No significant

differences were found between encrustation of dorsal

and ventral surfaces but fouling was greater on

particular parts of the host, especially the fused pleon

and telson. Bryozoans evidently use their isopod hosts

as a refuge from the ice scour that renders rock

surfaces in these shallow water habitats a less attrac-

tive option as a substrate.

5.3.4. Other zoobiotic communities

Large and diverse zoobiotic communities are typ-

ically associated with colonial corals in tropical reefs,

and also deep-water corals such as Lophelia (Jensen

and Frederiksen, 1992; Zabala et al., 1993; Freiwald

and Wilson, 1998). A colonial lifestyle with its

inherent plasticity in growth and form, together with

the incidence of partial mortality, especially in older

parts of colonies where a ‘dead zone’ or necromass

may be developed, explains the widespread colonisa-

tion of colonial corals by zoobionts. Plasticity allows

for zoobionts to be accommodated within the structure

of the colony, while partial mortality permits zoo-

bionts to overgrow or bore into individual corallites or

groups of corallites without bringing about death of

the colony as a whole.

A cool-water, solitary scleractinian coral—Caryo-

phyllia—commonly attaches to the calcareous tubes

of the free-living polychaete Ditrupa (Wilson, 1976).

The majority of corals settle on the concave side of the

curved tube, at first living symbiotically with the host

but ultimately killing the host as the weight of the

coral forces the tube into the sediment and buries the

tube aperture. However, the coral itself survives while

the tube progressively disintegrates through the action

of boring algae and fungi. Harmelin (1990) described

two solitary scleractinian corals from Mediterranean

caves which become fouled and overgrown by

sponges, bryozoans and serpulids but are able to

extend their tissues basally to envelop these epizoans

in new skeleton (Fig. 13). Likewise, healthy, active

parts of the deep-water colonial coral Lophelia are

able to respond to fouling organisms by enveloping

them in layers of sclerenchyme, whereas older and

Criterion Inferred

condition

of host

Reliability Remarks Examples

Growth from one valve

to another across the

commissure of a

bivalved host

Dead Very high This pattern of skeletobiont growth

would seal the valves shut and prohibit

host feeding.

Lack of growth

across commissure

Living Variable Gaping of the shells after death is possible,

diminishing the applicability of this criterion.

Brachiopods (Ager, 1961)

Dense/heavy

skeletobiont

colonisation

Dead Variable Different hosts are able to tolerate different

degrees of skeletobiont colonisation but

relatively few survive heavy fouling.

Table 4 (continued )
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inactive parts of colonies acquire a biofilm associated

with Fe–Mn precipitation and host a diverse zoobiotic

community of encrusters and borers (Freiwald and

Wilson, 1998).

Stebbing’s (1971) study of the zoobionts (‘epi-

zoites’) of the seaweed-like bryozoan Flustra from

Wales demonstrated zonation of species along the

flattened branches of the host, with some zoobionts

apparently favouring the basal (oldest) parts of

branches and others the terminal (youngest) parts.

Modern bryozoans with large, erect colonies can

support very high diversities and biomasses of zoo-

bionts (e.g., Rao and Ganapati, 1980; Bradstock and

Gordon, 1983). These are frequently concentrated in

the basal parts of colonies, regions which may con-

stitute inactive necromass or be exoskeletal and hence

vulnerable to colonising zoobionts. Similarly, Barnes

(1994) found zoobionts to be significantly commoner

on the rear, exoskeletal surfaces of two Antarctic

bryozoan species. He also demonstrated differences

in species composition of the zoobiotic community

between: (1) the front and rear surfaces; (2) the two

host species; and (3) according to depth, with the area

colonised by zoobionts being a factor of six or more

greater in shallow (40 m) than deep water (150 m). A

detailed study of the spatial distributions of epibionts

colonising the branches of the erect, articulated bryo-

zoan Cellaria in the Adriatic Sea was undertaken by

McKinney and Jaklin (2000). Young (distal) branches

were found to be characterised by foraminiferans,

algae and sponges, intermediate branches by hydroids,

annelids, ctenostome bryozoans and ascidians, and

old (proximal) branches by cheilostome and cyclo-

stome bryozoans. Larval settlement behaviour may be

responsible for at least some of this patterning. The

sessile vermetid gastropod Serpulorbis squamigerus

recruits preferentially onto the surfaces of encrusting

cheilostome bryozoans belonging to several species in

southern California (Osman, 1987). While the gastro-

pods may obtain benefit during early growth stages

from the bryozoans in the form of camouflage against

predators and a refuge from competitors for space, no

measurable disadvantage could be detected for the

fouled bryozoans.

5.4. Fossil skeletobionts

Shells and other invertebrate skeletons belonging

to various taxonomic groups are the most common

hard substrates encountered in the fossil record. Many

of these skeletobiotic assemblages developed while

the host was still alive, i.e., they are zoobiotic. Others,

however, represent post-mortem colonisation of the

shells of dead animals, and yet others are mixtures of

organisms that colonised when the host was alive and

after it had died. Distinguishing between life and post-

mortem skeletobiotic associations has been a major

focus of many palaeoecological studies. Several cri-

teria with varying degrees of certainty can be used to

infer whether colonisation occurred before or after

death of the host (see Holland, 1971; Lescinsky,

1995). These are summarised in Table 4.

5.4.1. Sponge-hosted skeletobionts

Fossil sponges are often found to support assemb-

lages of skeletobionts. These communities can be rich

and diverse. For example, Palmer and Fürsich (1981)

identified more than 40 species encrusting the Middle

Jurassic sponge Platychonia magna from a reef in

Normandy, France. Palaeozoic stromatoporoids com-

monly served as hard substrates for bryozoans,

‘worms’, cemented brachiopods, corals and crinoids,

and often contain the boring Trypanites (e.g., Ker-

shaw, 1980; Nield, 1986b; Copper, 1996; Lebold,

2000; Figs. 2C and 14). The undersides of Carbon-

iferous chaetetid sponges may host cryptic skeleto-

Fig. 14. Skeletobionts colonising a high dome-shaped stromatop-

oroid from the Silurian Upper Visby Beds of Gotland, Sweden.

After Nield (1986b).
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bionts, including cemented brachiopods (Sinuatella),

bryozoans, foraminiferans, Spirorbis, and the borings

Caulostrepsis and Rogerella (Suchy and West, 1988;

Brunton and Mundy, 1988).

5.4.2. Cnidarian-hosted skeletobionts

Among corals, both solitary (e.g., Baird and Brett,

1983; Sando, 1984) and colonial (e.g., Housa and

Nekvasilová, 1987; Oschmann, 1989; Manceñido and

Damborenea, 1990; Bertling, 1994; Copper, 1996)

forms can be bored and/or encrusted. Several groups

of bivalves bore into post-Palaeozoic corals, the best

known of which belong to the genus Lithophaga (see

Kleemann, 1994b). A tube-forming ‘worm’, Hicetes

(Fig. 1B), lives within the coralla of the Devonian

coral Pleurodictyum, almost 100% of corals from the

Hamilton Group containing one such tube (Brett and

Cottrell, 1982). The phosphatic conical shells of

conulariids, generally regarded as scyphozoan cnidar-

ians, occasionally hosted skeletobionts (Harland and

Pickerill, 1987).

5.4.3. Bryozoan-hosted skeletobionts

Large erect or semierect bryozoans are frequently

encrusted and bored. Fouling of basal parts of such

colonies commonly takes place while the colony is

still alive—such regions were often devoid of actively

feeding zooids and are poorly defended. Palaeozoic

trepostome and cystoporate bryozoans sometimes

contain the boring Trypanites, especially conspicuous

in dome-shaped colonies (e.g., Kobluk and Nemcsok,

1982). Arborescent bryozoans were also utilised as

substrates by organically attached skeletobionts (e.g.,

Richards, 1972; Harper and Pickerill, 1996). Accord-

ing to Thomsen (1977), encrusting bryozoans from

Danian mounds in Denmark preferred to attach to

erect bryozoans with smooth rather than ridged sur-

faces. Pozaryska and Voigt (1985) made a detailed

study of fistulose foraminiferans attached to erect and

vagile bryozoans of Upper Cretaceous and Palaeocene

age. They concluded that attachment could occur to

both dead and living bryozoans, the foraminiferans

benefiting from the provision of a sheltered substrate

in high-energy environments.

5.4.4. Brachiopod-hosted skeletobionts

As epifaunal suspension feeders, it is not surprising

that brachiopods frequently play host to assemblages

of other suspension feeders, both borers and encrus-

ters (Fig. 15). This is particularly true in the Palae-

ozoic where brachiopods are major components of the

marine fossil record (e.g., Ager, 1961; Hoare and

Steller, 1967; Schumann, 1967; Richards, 1972;

Hurst, 1974; Chatterton, 1975; Pitrat and Rogers,

1978; Anderson and Dimitracopoulos, 1980; Kesling

et al., 1980; Sparks et al., 1980; Spjeldnaes, 1984;

Alvarez and Taylor, 1987; Alexander and Scharpf,

1990; Meyer, 1990; Brice and Mistiaen, 1992; Gib-

son, 1992; Lescinsky, 1995, 1996a, 1997; Peters,

1995; Fagerstrom, 1996; Roark, 1997). However,

skeletobionts can also be found on Mesozoic (e.g.,

Brookfield, 1973; Michalı́k, 1977) and Cenozoic (e.g.,

Fig. 15. Candelabra-like growth pattern of the tabulate coral Aulocystis commensalis on the brachiopod Spinocyrtia clintoni, the coordinated

growth of encruster and host almost certainly signifying a life association (see Alvarez and Taylor, 1987). Devonian, Traverse Group, Michigan,

USA. After Pitrat and Rogers (1978).
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Brunton and Hiller, 1990; Taddei Ruggiero, 1999)

brachiopods.

In a predominantly disarticulated population of the

Devonian brachiopod Spinocyrtia from the Hamilton

Group, Brett and Bordeaux (1990) found ‘fresh’

encrusters to be less abundant on the most corroded/

abraded shells, leading them to conclude that degree

of encrustation is not necessarily a good indicator of

shell residence time on the seabed. A related study

(Bordeaux and Brett, 1990) showed substrate specif-

icity for particular brachiopod taxa by skeletobionts:

brachiopods having non-punctate shells without

spines or frills were found to be the most heavily

encrusted. Alexander and Scharpf’s (1990) detailed

study of encrusters on Ordovician brachiopods from

the Dillsboro Formation of Indiana also demonstrated

substrate selectivity, with punctate and coarsely ribbed

brachiopods being less favoured by at least some

species of epibionts. In common with some other

studies, species of large brachiopods were found to

be more often encrusted than small species. Surface

area considerations as well as host longevity can often

explain this kind of pattern.

The distributions of encrusters on Palaeozoic bra-

chiopod shells have been used by many palaeontolo-

gists to infer the life attitudes and feeding current

patterns of the host animals. For example, cornulitids

which disturbed shell growth in the host brachiopod

Paraspirifer bownockeri, and were therefore life asso-

ciates, grew preferentially towards the lateral commis-

sure. This has been taken to indicate that the

incurrents of the brachiopod, potentially of benefit

to the cornulitid, approached the shell laterally rather

than medially (Peters, 1995).

5.4.5. Mollusc-hosted skeletobionts

By virtue of the good preservation potential of their

shells and their typically epifaunal habit, calcitic

bivalves, especially oysters and pectinids, provide

among the most preservable hard substrates for fossil

skeletobionts. Examples of bivalve-hosted skele-

tobionts have been described from the Palaeozoic

(Trueman, 1942), Mesozoic (Seilacher, 1954; Pugac-

zewska, 1970; Taylor, 1979b; Mayoral and Sequeiros,

1981; Bottjer, 1982; Hattin, 1986; Hary, 1987; Hol-

lingworth and Wignall, 1992; Fürsich et al., 1994;

Villamil et al., 1998; Bien et al., 1999; Fürsich and

Pandey, 1999; Moosleitner, 2000) and Cenozoic

(Boekschoten, 1967; Miller and Alvis, 1986; Aitken

and Risk, 1988; Watkins, 1990a,b; Bishop, 1988,

1994; Mayoral and Reguant, 1995; Velcescu, 1999).

These include not only sessile species but also occa-

sional examples of bioerosional traces left by associ-

ated motile species. For example, traces made by

capulid gastropod on pectinid shells have been

reported from the Miocene onwards (Bongrain, 1995).

An interesting example has been described by

Baird et al. (1990) of a Devonian platyceratid gastro-

pod (Naticonema), presumed to have been a coproph-

agous symbiont of crinoids, bored by acrothoracican

barnacles and encrusted by bryozoans. Relative chro-

nology is given by the observation that the bryozoans

sometimes overgrew the borings, but were more often

cut by them. Platyceratids from the Ordovician of

Cincinnati were fouled by cornulitids during life, as

indicated by reciprocal overgrowth (Morris and Fel-

ton, 1993), and some also appear to have barnacle

borings (Felton, personal communication).

Fossil cephalopods with external shells occasion-

ally support sclerobionts which either colonised the

shells while the host animal was alive or after it died.

A good example of inferred life associations occurs

between the Ordovician–Devonian orthoconic nauti-

loids and colonial bryozoans (notably Spatiopora),

problematica (Reptaria) and corals (Alveolites)

described by Baird et al. (1989). Distinct orientation

patterns, with apertures pointing forwards, may be

present in Reptaria colonies encrusting nautiloids.

Orthoconic nautiloids from the Ordovician of South

Africa were colonised by inarticulate brachiopods and

cornulitids (Gabbott, 1999), and Prokop and Turek

(1983) described a Silurian orthocone with no fewer

than 17 attached crinoids. An unusual example of a

hydrozoan (Delheidia) totally enveloping a small

nautiloid was described from the French Miocene by

Lozouet and Maestrati (1992). It is unclear whether

this represents growth on a dead but floating shell, or

on a shell that had rolled along the seabed.

Merkt (1966) has described Jurassic ammonites

fouled by oysters and serpulids on one side and

evidently responding by adjusting the trajectory of

shell growth in order to maintain a vertical attitude in

the water column. A Triassic Ceratites studied by

Meischner (1968) was colonised by the cemented

bivalve Placunopsis in several phases, partly while

the ammonoid was still alive and partly after death.
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Seilacher (1982) has argued that ammonites and

nautiloids from the Early Jurassic Posidonia Shale of

Germany were colonised by sessile organisms both

when the host animal was alive, and while the dead

shell was floating in a vertical orientation. This view

contrasts with Kauffman’s (1981) interpretation of the

same material as representing benthic islands colon-

ised on a muddy sea floor. Support for Kauffman’s

hypothesis is from ammonites bearing encrusters on

one side only (the upper side). A comparable problem

of benthic vs. planktonic colonisation is posed by

spheroidal colonies of the ?hydrozoan Parkeria from

the mid-Cretaceous which totally envelop ammonite

substrates (Wilmsen, in preparation). This is well seen

in the magnificent illustrations of Carpenter and

Brady (1869) who, however, regarded Parkeria as

an arenaceous foraminiferan and the ammonite sub-

strate as the early chambered test. Some Upper Creta-

ceous ammonite shells bear the ‘home scars’ of

limpets that apparently colonised living host animals

(Kase et al., 1994, 1998), and fed on algae growing on

the shell surface, leaving grazing traces (Radulich-

hnus). The clearest examples of entirely post-mortem

colonisation of fossil cephalopods can be seen when

moulds rather than shells themselves are encrusted

and bored (e.g., Macchioni, 2000). Post-mortem bor-

ing and grazing of ammonites and nautiloids has been

well described in a Maastrichtian fauna from Western

Australia (Henderson and McNamara, 1985), and in

Jurassic faunas in Tunisia (Rakús and Zı́tt, 1993) and

Italy (Nicosia, 1986).

Boring and encrustation of belemnite guards (e.g.,

Pugaczewska, 1965; Hölder, 1972; Hillmer and

Schulz, 1973; Mariotti, 2002) was also a post-mortem

phenomenon, although Seliacher (1968) has argued

that some acrothoracican barnacles bored into living

belemnites through a thin covering of soft tissue that

invested the guard. An unusual occurrence of small

solitary corals attached to belemnite guards has been

described from the Jurassic of Sicily by Mariotti

(2002). Many of the belemnite guards are coated by

a black film (?manganese) which is lacking on the

corals, suggesting that the guards may have been

buried and exhumed prior to their colonisation by

the corals.

Hyoliths, a problematical group included here

among molluscs for convenience, may host skeleto-

bionts. Marek and Galle’s (1976) study of the Devon-

ian hyolith Pterygotheca from the Czech Republic

provides the best example. Most specimens of Pter-

ygotheca have their more convex sides covered by a

tabulate coral, Hyostragulum. The presence of this life

associate led Marek and Galle to interpret hyoliths as

sedentary animals which rested with the convex side

of the shell uppermost (dorsal). Specificity of encrus-

tation of Hyolithes by prasoporid bryozoans has also

been observed in the Ordovician Trenton Group of

New York and Lexington Limestone of Kentucky

(Brett, personal communication, 2002).

5.4.6. Arthropod-hosted skeletobionts

Trilobites are not noted for hosting epibionts, but a

few examples have been recorded (see Brandt, 1996).

For example, Taylor and Brett (1996) described

articulated examples of the Silurian trilobite Arctinu-

rus with the dorsal exoskeleton colonised by micro-

communities of small encrusters and pedically

attached brachiopods that apparently associated with

the living trilobite. Brandt (1996) found that encrus-

tation on a sample of Flexicalymene from the Cincin-

nati area occurred only on the largest trilobites which

probably represent individuals in their terminal moult

stage. Schumacher et al. (1998), working with the

same Ordovician trilobite genus, interpreted as sym-

bionts some encrusting bryozoans, cornulitids and

inarticulate brachiopods, with ramose bryozoan colo-

nies seemingly taking advantage of the feeding cur-

rents of the host. Small crinoid holdfasts and an

inarticulate brachiopod were found attached to a

fragmentary specimen of Selenopeltis (Budil and

Saric, 1995) and bryozoans to the exuvia of Dalma-

nitina (Kácha and Saric, 1995), both from the Ordo-

vician of Bohemia, while the bryozoan Corynotrypa

has been described encrusting a cephalon of the

trilobite Calyptaulax from the Irish Ordovician

(Clarkson and Tripp, 1982).

5.4.7. Echinoderm-hosted skeletobionts

Crinoid stems may be encrusted or bored either

during life or after death (Donovan and Lewis, 1999;

Klikushin, 1996; Kovacsik, 1997; Feldman and Brett,

1998). Colonisation of the stem during life may elicit

renewed growth of stereom, producing swollen or

distorted columnals (e.g., Franzén, 1974; Peters and

Bork, 1998). In the case of stem encrustation, a life

association can sometimes be inferred by symmetrical

P.D. Taylor, M.A. Wilson / Earth-Science Reviews 62 (2003) 1–103 29



growth of the fouling organism around the entire

circumference of the stem (Hudson et al., 1966; Brett

and Eckert, 1982; Peters and Bork, 1998; Wyse

Jackson et al., 1999), indicating that the stem was

upright when fouled. For example, Hudson et al.

(1966) described columnals of Irish Carboniferous

crinoids encrusted circumferentially by two tabulate

corals (Cladochonus and Emmonsia) which lived

attached to the stems of the living hosts. On the other

hand, encrustation of articulation facets points to post-

mortem association (e.g., Rakús and Zı́tt, 1993;

McGee and Watkins, 1994; Feldman and Brett,

1998). Skeletobionts attached to the stems of living

crinoids may have benefited from access to higher

suspension feeding tiers (Peters and Bork, 1998).

Skeletobionts are common on some post-Palae-

ozoic echinoids (e.g., Müller, 1969; Nebelsick,

1996; Nebelsick et al., 1997). Most apparently repre-

sent post-mortem colonisation, although the robust

spines of regular echinoids can become densely

encrusted while the host animal is still alive. A

significant proportion of irregular echinoids in the

Upper Cretaceous Chalk of northwest Europe, espe-

cially the genus Echinocorys, is encrusted by bryo-

zoans, sponges, foraminiferans, serpulids, bivalves

and craniid brachiopods (e.g., Schmid, 1949; Müller,

1969; Cross and Rose, 1994). As the host echinoids

were infaunal during life, tests bearing skeletobionts

had to be exhumed onto the seabed and colonised

before disarticulation.

5.5. Conchicole symbionts

Vermeij (1987) used the term conchicole to refer to

animals inhabiting empty shells, particularly of gas-

tropods. The best-known conchicoles at the present

day are hermit crabs, although several other groups

have also been recorded living in mollusc shells (see

Vermeij, 1987, Table 8.1). The fossil record of in situ

hermit crabs and other conchicoles is meagre; how-

ever, inhabited gastropod shells may support distinc-

tive assemblages of skeletobionts which are of value

in showing: (1) that the shell was occupied by a

conchicole and was not vacant or still inhabited by

the gastropod maker; and (2) the likely taxonomic

identity of the conchicole.

A large number of symbionts are associated with

some Recent hermit crab species; for example, McDer-

mott (2001) found 31 symbionts living with Pagurus

longicarpus. Massive encrustations distributed evenly

over surfaces of fossil gastropod shells have been

recorded back to the early Palaeozoic. Examples are

found among hydrozoan cnidarians (Allman, 1872;

Douvillé, 1908; Olivero and Aguirre-Urreta, 1994),

anthozoan cnidarians (Kase, 1986; Darrell and Taylor,

1989) and bryozoans (e.g., Buge and Fischer, 1970;

McNamara, 1978; Morris et al., 1991; Aguirre-Urreta

and Olivero, 1992; Taylor, 1994; Kidwell and Gyllen-

haal, 1998). By analogy with modern symbioses

between bryozoans and gastropods or between bryo-

zoans and hermit crabs (see Taylor, 1994, p. 168),

those examples in which the encruster either grows

over the lips of the gastropod shell and onto internal

surfaces normally covered by mantle tissue when the

gastropod is alive, or extends outwards from the

aperture to form a helicospiral tube-like extension to

the gastropod living chamber, are likely to have been

tenanted by a conchicole. Given the dominance today

of hermit crabs as conchicoles, coupled with the fact

that hermit crab body fossils range back to the Lower

Jurassic, there is a reasonable probability that any

post-Triassic examples of such encrusters will have

been hermit crab symbionts. Supporting evidence for

symbiosis with a hermit crab is sometimes available

from the knowledge that modern examples of the

same taxa are obligate hermit crab symbionts (e.g.,

the bryozoan Akatopora circumsaepta in New Zea-

land, see Taylor, 1994), from the occurrence of other

associates (especially the trace fossil Helicotaphrich-

nus, see below), and wear facets on the base of the

shell caused by dragging (e.g., Palmer and Hancock,

1973; Kidwell and Gyllenhaal, 1998). For Palaeozoic

examples, the identity of the conchicole/s is unclear,

although other groups of arthropods and worms,

including sipunculans, are likely candidates (e.g.,

Morris et al., 1991).

Boring skeletobionts may be associated with con-

chicole-occupied gastropod shells. The trace fossil,

Helicotaphrichnus commensalis Kern et al., 1974, is

a groove-like excavation in the columella produced

by a spionid polychaete which is an obligate sym-

biont of hermit crabs. This ichnogenus has been

recorded from Eocene to Recent (Kern et al., 1974;

Kern, 1979; Darrell and Taylor, 1989; Walker, 1992;

Taylor, 1994; Kidwell and Gyllenhaal, 1998). Cte-

nostome bryozoan and acrothoracican barnacle bor-
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ings, as well as cheilostome bryozoan etchings (Lep-

ptichnus, see Taylor et al., 1999), frequently infest

fossil gastropod shells inferred to have been occupied

by hermit crabs; Walker (1992) gives a comprehen-

sive review.

‘Recycling’ of fossil gastropod shells by Recent

hermit crabs (Walker, 2001; Barnes, 2001) compli-

cates palaeoecological interpretation in that fossil

conchicoles potentially may have been associated

not only with different shell occupants, but also with

occupants that lived at widely different times.

6. Ecology of modern hard substrate communities

The literature on the ecology of modern hard

substrate communities is vast. In part, this is not only

because of their economic significance (e.g., as sour-

ces of commercial shellfish) but also because hard

substrates, particularly in the intertidal, have formed

important experimental sites for ecological studies of

recruitment and community succession (Underwood,

2000). It is impossible here to do justice to the work

on modern hard substrate ecology. Rather, we focus

on aspects having a bearing on palaeoecological

studies of fossil hard substrates, giving a few exam-

ples to illustrate these points. An important lesson to

be learned from the Recent is that a myriad of physical

and biological factors influence the development of

modern hard substrate communities, some fairly pre-

dictable in their effects but others more obscure. Not

only are many of these factors ‘invisible’ to the

palaeoecologist, but complex interactions between

individual factors may render it impossible to infer

the processes that actually structured ancient hard

substrate communities. Some appreciation of the ecol-

ogy of modern hard substrates is absolutely essential

for palaeontologists embarking on studies of ancient

hard substrates.

Important review papers covering this topic or

dealing with specific aspects, include: Jackson

(1983), Branch (1984), Buss (1986), Woodin and

Jackson (1979), Bishop (1989), Menge and Branch

(2000), Witman and Dayton (2000) and Knowlton and

Jackson (2000).

6.1. Settlement and recruitment

Hard substrates in the sea are usually colonised

through the settlement of free swimming larvae from

the plankton. As already mentioned above (Section 3),

the term recruitment refers to the organisms which

survive immediate post-settlement mortality (see

Keough and Downes, 1982; Osman and Whitlatch,

Fig. 16. Bimonthly averages (logarithmic scale) of larval abundance of Membranipora membranacea plus recruited colony densities of this

bryozoan on the kelp Macrocystis pyrifera in California. After Yoshioka (1982).
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1995), potentially becoming established in the com-

munity. Because individuals suffering such early mor-

tality are rarely fossilised, studies on ancient hard

substrate communities effectively deal with recruits

and recruitment patterns rather than settlers and set-

tlement patterns. The significance of recruitment to

subsequent community development and structure is

evident in such studies as that of Bingham (1992) who

examined the epifauna growing on red mangrove

roots in Florida. Differential larval recruitment was

found to be more important in determining species

distributions than the physical factors acting upon

either larvae or adults. Butler’s (1991) work on sessile

invertebrates colonising Pinna shells, pier pilings and

settlement panels in South Australia showed that

communities were structured more by the heavy

recruitment of poor competitors than by subsequent

dominance of substrate space by good competitors.

The enormous variability in rates of recruitment (e.g.,

Yoshioka, 1986) are at least partly responsible for the

heterogeneity or patchiness characteristic of many

hard substrate communities. Jackson (1984) found

that cryptic communities on the undersides of indi-

vidual corals in Jamaica developed largely independ-

ently of one another.

The importance of variations in larval supply

(‘supply-side ecology’) to community composition

and development is becoming increasingly evident

(see Caley et al., 1996, and references therein). Sub-

stantial variations in larval abundance occur in time

(Fig. 16) and at all spatial scales. Many benthic

invertebrates have seasonal patterns of reproduction,

releasing large numbers of larvae at particular times.

Mass spawning is a well-known characteristic of reef

corals, with multiple species displaying short, coordi-

nated pulses of egg and sperm release and hence

peaks in larval abundance (Richmond, 1997). Com-

monly, invertebrate larvae cannot feed (i.e., they are

non-planktotrophic, see Jablonski and Lutz, 1983) and

are incapable of spending more than a day or so in the

plankton before they are forced to settle. Therefore,

recruitment of particular species onto hard substrates

may take place for only a limited period of time

during each year (e.g., Maturo, 1959), with different

species showing different peak times of recruitment

(e.g., Brown and Swearingen, 1998). Recruitment

may also occur at different rates depending on when

the substrate first becomes available for colonisation

(e.g., Igic, 1972). In many settlement panel studies,

the season of panel deployment has been shown to

have a large effect on which species recruit, in turn

profoundly influencing subsequent community devel-

opment (e.g., Sutherland and Karlson, 1977; Van

Dolah et al., 1988; Nandakumar, 1996; Lam, 2000).

Superimposed on annual variations are variations

between years. For instance, Haderlie (1970) found

dramatic differences in the density of barnacles

recruiting onto settlement panels in two successive

years in Monterey Harbor, California. Such findings

caution against palaeontologists attempting to explain

differences in species patterns on ancient hard sub-

strates in terms of substantial environmental changes

through time.

Spatial variations in recruitment may be equally

dramatic. Again, the short interval of motility of many

larvae is an important factor causing spatial hetero-

geneity in recruitment. The presence of a source

population of adults close to a newly available hard

substrate will greatly increase the likelihood of

recruitment onto that surface. The proximity of natural

hard bottom habitats plays an important role in the

colonisation by sessile organisms of ships’ hulls sunk

off South Carolina and, a factor is even more impor-

tant than the amount of time the ships had been

available to colonisers Georgia (Wendt et al., 1989).

Carter et al. (1985) found that distance from hard

bottom areas providing the source of colonisers

appeared to be an important factor in community

development on artificial reefs. Lack of a nearby

source population may explain some instances in the

fossil record where shells apparently suitable for

colonisation are neither encrusted nor bored.

Oceanographic factors can have a major effect on

larval abundance. For example, during periods of high

upwelling, larval abundance (and recruitment) may

decline both in barnacles (Roughgarden et al., 1988)

and bryozoans (Yoshioka, 1982). Note, however, that

high biomasses of suspension feeders often develop in

phytoplankton-rich, upwelling regions, (Witman and

Dayton, 2000) and correlate with increased nutrient

levels (e.g., Huang et al., 1999). Making simple

correlations between suspension feeders and nutrient

levels is as unwise in the fossil record as it is at the

present day unless supported by independent evi-

dence. On a regional scale (South Carolina–northern

Florida), Wenner et al. (1983) found that the inverte-
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brate community diversity of hard bottoms showed no

clear pattern according to depth or latitude but seemed

to depend on habitat complexity.

The work of Judge and Craig (1997) using tapered

pipes placed in the subtidal off Long Island, New

York, showed increases in both recruitment and

growth of barnacles and the hydroid Obelia over a

5-month period in fast compared to slow flow. In

contrast, a rare study of deep-water hard substrates

(Mullineaux, 1988) deployed manganese nodules at a

depth of 1240 m in the Santa Catalina Basin off

southern California. After 7 weeks, the nodules had

been colonised by a fauna dominated by foraminifer-

ans, with a greater settlement of larvae on surfaces in

low flow regimes. Recruitment patterns may also be

influenced by shading. Baird and Hughes (2000)

studied the differences in recruitment on settlement

panels placed beneath fronds of the tabular coral

Acropora hyacinthus and those placed in the open at

Lizard Island, Great Barrier Reef. Corals, filamentous

algae and coralline algae recruited less often on the

plates placed beneath the corals, whereas bryozoans

recruited four times more abundantly on the shaded

plates. The reduction in ambient current velocity,

increased sedimentation and lower light intensity

associated with understory kelp environments influ-

ence recruitment patterns of sessile animals in varying

ways (Duggins et al., 1990).

Larval behaviour can be another major factor

determining recruitment patterns. Many larvae show

very specific preferences in where they settle depend-

ing on such factors as the physical and chemical

condition of the substrate surface (e.g., Roberts et

al., 1991), the presence of existing colonisers (both of

microscopic and macroscopic scale), colour (Pomerat

and Reiner, 1942), and especially orientation. Marine

hard substrates vary in wettability (the tendency to

induce spreading of a liquid on the surface), with

materials such as glass being wettable and wax unwet-

table. Larvae often prefer non-wettable over wettable

substrates (e.g., Mihm et al., 1981). Glasby (2000)

deployed settlement panels of sandstone, concrete and

wood in Sydney Harbour to investigate the effects of

panel composition and orientation on fouling com-

munities. Assemblages developing on the wooden

panels were always found to be significantly different

from those on the lithic panels. The uniqueness of the

communities on the wooden panels was partly but not

entirely due to the presence of the wood-boring

bivalve Bankia. Among lithic substrates, composition

can influence larval settlement. For example, Baves-

trello et al. (2000) found that planulae of the hydroid

Eudendrium settled preferentially on carbonate rather

than quartzose substrates. In contrast, Connell (2000)

found that pontoon composition (sandstone or con-

crete) did not affect the communities developing in

Sydney Harbour. Recruitment of sessile species to

hard substrates may depend on the heterogeneity and

structure provided by existing colonists. This was

demonstrated experimentally by Bros (1987) using

settlement panels in Tampa Bay, Florida: the presence

of barnacle shells (living or dead) increased recruit-

ment significantly.

Wahl (1989) recognised four main stages in the

establishment of fouling communities on hard sub-

strates (Fig. 17). During the first stage, which can

occur within a minute of the substrate being im-

mersed, dissolved macromolecules are adsorbed onto

the substrate surface, causing biochemical condition-

ing. Bacterial colonisation follows after about an hour,

and is succeeded within about a day by unicellular

eukaryotes, including diatoms, which secrete mucus

as a cement. Finally, larger, multicellular organisms

colonise the surface, often after about 1 week of

immersion.

The presence of biofilms has a significant influence

on recruitment (Wieczorek and Todd, 1998; Hamer

and Walker, 2001). For example, larvae of the bryo-

Fig. 17. Schematic development of marine biofouling communities

with time. A macromolecular film develops first on newly immersed

substrates which are then colonised successively by bacteria,

diatoms and the larvae and spores of larger organisms. Based on

Wahl (1989).
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zoan Bugula preferentially settle on substrates coated

by primary films of detrital particles, bacteria and

diatoms rather than clean substrates (Brancato and

Woollacott, 1982; Kitamura and Hirayama, 1987).

Successful recruitment by corals may require the

presence of crustose coralline algae (Morse et al.,

1996). Larvae of some species are gregarious (e.g.,

Patzkowsky, 1988; Toonen and Pawlik, 2001), exhib-

iting a tendency to settle close to adult conspecifics in

response to a chemical cue. In other instances, aggre-

gation is due to different factors. For example, Keen

(1987) showed that aggregated settlement of larvae of

the scyphozoan Aurelia aurita was not due to grega-

rious behaviour but was related to substrate hetero-

geneity: locations where hydrodynamic shear stress

was low attracted more settlers. Depressions and

elevations on the surface of the substrate very often

influence recruitment, with some species recruiting

in greater numbers into crevices and others onto

mounds. Walters and Wethey (1991), for example,

found preferential recruitment of the larvae of arbor-

escent ascidian and bryozoan species in crevices on

algal fronds. They attributed this to the protection

provided against predators and dislodgement by phys-

ical disturbance during the vulnerable early phases of

growth immediately after settlement. However, a

co-occurring species of encrusting bryozoan settled

preferentially on elevations, a behaviour possibly

explained by the height advantage so gained in spatial

competition. A study of the distributions of common

encrusting bryozoan species on disarticulated bivalve

shells off the Isle of Man showed considerable overlap

between species, although some species did exhibit

tendencies to occur more commonly on rough instead

of smooth shell surfaces (Ward and Thorpe, 1989).

Numerous studies (see references in Glasby and

Connell, 2001, p. 132) have demonstrated that sub-

strate orientation has an extremely strong effect on

recruitment patterns. In an early study, Pomerat and

Reiner (1942) found that two bryozoan species settled

in greatest numbers on undersides of glass plates,

whereas a barnacle showed no preference. Maturo

(1959) also found greater settlement of bryozoans

onto undersides of ceramic tiles which he attributed

to the silting of upper surfaces. Coralline algae dom-

inate upper surfaces of rocks in the intertidal and

subtidal of Signy Island, Antarctica, whereas encrust-

ing animals are almost entirely restricted to undersides

(Barnes et al., 1996). For most bryozoan species in

this community, the proportion of colonies on upper

rock surfaces initially increased with depth, possibly

reflecting decrease in light intensity and hence the

likelihood of overgrowth by coralline algae, before

diminishing with greater depth as silting of upper

surfaces became important in the lower current flow

regimes pertaining here. Fairfull and Harriott (1999)

found conspicuous differences between the organisms

colonising upper and lower surfaces of settlement

panels placed in 7 m of water in a subtropical setting

in eastern Australia. Upper panel surfaces were domi-

nated by algae, whereas lower surfaces were domi-

nated by bryozoans, ascidians and sponges.

Differential recruitment of spirorbid worms to shaded

lower surfaces may result from the negative response

of the larvae to light (Saunders and Connell, 2001).

Horizontal and gently sloping surfaces throughout the

rocky subtidal tend to be covered by macroalgae in

contrast to vertical surfaces where suspension-feeding

invertebrates dominate (Barnes, 1995; Witman and

Dayton, 2000). Reasons for this contrast, which may

be greater in temperate than tropical environments,

include differences in light levels, sedimentation rates,

and degree of protection from physical and biological

disturbance. With respect to the last factor, for exam-

ple, grazing echinoids are known to experience diffi-

culty attaching to steep faces, making invertebrate

communities on these surfaces less susceptible to

being grazed (Sebens, 1985). Bivalve shells com-

monly show major differences in encrustation and

boring patterns on the convex and concave surfaces

(e.g., Bosence, 1979a, pl. 52, Figs. 9 and 10).

McKinney (2000) studied bryozoans encrusting dis-

articulated bivalves from the Adriatic and found that

species with large, sheet-like colonies were commoner

on convex outer surfaces whereas species with small

colonies tended to settle on concave inner surfaces

that provided cryptic habitats.

6.2. Competition

Sessile organisms colonising hard substrates poten-

tially compete with one another for living space, for

food and, in the case of plants and zooxanthellate

corals harbouring photosymbionts, for light (Buss,

1986). Many biologists (e.g., Paine, 1984) consider

competition to be very important in community ecol-
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ogy whereas others (e.g., Simberloff, 1982) question

its role. Most research on hard substrate communities

has been directed towards spatial competition because

this is relatively easy to observe and quantify (Buss,

1990; Nandakumar and Tanaka, 1993). Spatial com-

petition is also of most relevance to the palaeoecolo-

gist as its results can be preserved as ‘frozen

behaviour’ in fossil material (see Section 8.3).

An early review of competition in sedentary marine

animals was published by Knight-Jones and Moyse

(1961, p. 72) who noted that: ‘‘The great majority of

such animals are plankton feeders and their competi-

tion for food is rather like the competition of land

plants for carbon dioxide’’. In other words, competi-

tion for food does not occur as this is a superabundant,

non-limiting resource. While possibly true in some

habitats, there is now good evidence that organisms

on hard substrates can reduce the food resources

available to their competitors (see Okamura et al.,

2001). For example, working with experimental boxes

deployed at 40 m depth on a Jamaican reef, Buss and

Jackson (1981) found that high densities of sessile

suspension-feeders caused a measurable depletion in

planktonic food resources. There is also evidence that

competition for food along the margins of neighbour-

ing encrusting suspension feeders may retard the

growth rates of competitors less able to acquire food

particles, thereby making them more likely to lose in

competition for substrate space (Buss, 1980; McKin-

ney, 1992, 1993). Zajac et al. (1989) presented evi-

dence that adults and juveniles of resident species are

able to deplete the food available to new colonists and

hence lower recruitment rates.

Substrate space is very often a limiting resource for

sessile organisms. Even when there is uncolonised

space available on the substrate, the growth of neigh-

bouring organisms may bring them into direct contact

and force a competitive encounter. Competition for

space occurs both within (intraspecific) and between

(interspecific) species. There are several possible out-

comes, most notably: (1) complete overgrowth by a

superior spatial competitor, generally resulting in

death of the inferior competitor; (2) incomplete over-

growth by a superior competitor; (3) stand-off in

which no clear competitive dominant emerges but

both competitors potentially have their further growth

impeded; (4) reciprocal overgrowth with one compet-

itor winning along part of the line of contact but the

other winning elsewhere. Incomplete overgrowth (2)

often entails the death of some but not all zooids in a

colonial animal (partial mortality), with a potential

reduction in reproductive fitness. Individuals of the

worm Spirorbis may be incompletely overgrown by

bryozoans leaving the aperture protruding through the

bryozoan colony and the worm still able to feed

(Stebbing, 1973a; Keen and Neill, 1980; Lopez

Gappa, 1989). Stand-offs (3) between species are

frequent in some hard substrate communities. For

example, the majority of encounters between four

species of colonial ascidians growing on settlement

panels in Langston Harbour, England, resulted in

stand-offs (Schmidt and Warner, 1986). Among

encrusting sponges, which cover in excess of 40%

of substrate space in a New Zealand rock wall

community studied by Ayling (1983), stand-offs were

the most frequent spatial interactions. Similarly, Aerts

(2000) found standoffs to be more common than

overgrowths in coral–sponge interactions. Instances

have also been recorded of complete overgrowth

resulting in a period of enforced dormancy of the

overgrown organism followed by renewed activity

after detachment of the overgrowing organism

(Sebens, 1986; Todd and Turner, 1988).

Mechanisms for winning and/or defending sub-

strate space from conspecific and allospecific com-

petitors are diverse (see Lang, 1973; Buss, 1986).

They include morphological adaptations, many

reflected in the skeleton and hence fossilisable, and

chemical adaptations which are unlikely to leave any

clear trace in the fossil record. Important morpholog-

ical correlates of competitive success are growth rate,

spinosity (Stebbing, 1973b), size and thickness. Abil-

ity to lift growing edges off the substrate (Stebbing,

1973b), to undercut (as in the bivalve Anomia) or to

crush competitors, production of outgrowths (e.g.,

bryozoan stolons), and tentacular contact in cnidar-

ians (Bruno and Witman, 1996) can also be impor-

tant. Namikawa et al. (1992) showed that colonies of

the hydroid Stylactaria living on gastropod shells

developed polymorphic zooids (tentaculozooids)

more frequently when in contact with the bryozoan

Celleporella. Touching the tentaculozooids elicited

retraction of bryozoan lophophores, possibly because

of nematocyst discharge, and was hypothesised to

have aided the hydroid during competition for sub-

strate space. The inarticulate brachiopod Discinisca
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living in the intertidal zone of Panama uses modified

lateral setae as well as movements of the shell to

abrade the tissues of adjacent sponges and bryozoans

competing for space (LaBarbera, 1985).

In an early study of chemical factors, Jackson and

Buss (1975) extracted homogenates from the tissues

of 11 sponge and colonial ascidian species from a

coral reef in Jamaica. Many of the homogenates had

deleterious effects on four species of bryozoans with

which they were tested but not on two serpulids, a

brachiopod and a bivalve. These effects included

inhibition of bryozoan feeding, death of zooids and

of entire colonies. Such allelopathic reactions may

have a role in competition for substrate space. Allel-

opathy was also demonstrated by Bak and Borsboom

(1984) who found that exudates of the Antillean reef

anthozoan Condylactis significantly reduced algal

biomass accumulating on experimental glass slides.

A study of competition for space between two species

of scleractinian corals and three of ‘soft corals’

(alcyonacean octocorals) on the Great Barrier Reef

found that allelopathy was manifested by tissue nec-

rolysis induced by species of each group on the other

(Sammarco et al., 1985).

The ability of larvae to recruit onto spatial refuges

where their probability of being overgrown is dimin-

ished can be important. For example, Rubin (1985)

found that the serpulid Pomatoceras triqueter readily

overgrew colonies of the 32 bryozoan species which

recruited onto settlement panels he deployed off Ply-

mouth, England. Many of the bryozoan species,

however, were able to avoid overgrowth by preferen-

tially settling onto serpulid tubes or by growing onto

them as adults. Therefore, serpulid tubes functioned as

refuges for these bryozoans. Small-sized shells form

refuges from intraspecific competition for hydroids

living symbiotically with hermit crabs (Buss and

Yund, 1988). By virtue of their reduced surface area,

small substrates are more likely to be completely

covered by a species before superior competitors can

settle. Grosberg (1981) found that the colonial asci-

dian Botryllus won the majority of competitive

encounters for space with other sessile animals at

Woods Hole, MA, and that larvae of subordinate

competitors consequently settled preferentially away

from Botryllus. Subordinate spatial competitors grow-

ing on the giant kelp in California may settle on older

blades and thereby avoid competition with the dom-

inant bryozoan Membranipora which mainly grows

on younger blades (Bernstein and Jung, 1979). Con-

versely, a potent competitor in reefal environments,

the hydrozoan Millepora, actively detects and over-

grows neighbouring gorgonians (Wahle, 1980). Buss

(1981b) showed how gregarious behaviour by larvae

of the bryozoan Bugula turrita resulted in aggrega-

tions of colonies which were better able to compete

for space with another bryozoan.

Factors not always directly controlled by the

organisms may also influence competitive interac-

tions, notably the angle of encounter between the

growing edges of competitors (Jackson, 1979). Poorly

defended lateral flanks of bryozoan colonies are

vulnerable to overgrowth compared with distal grow-

ing edges where active budding takes place; some

colonies may even redirect their growth in order to

encounter competitors ‘head-on’ (Buss, 1981a). Sym-

bionts can also have an important effect on the

performance of sessile organisms competing for

space. Osman and Haugness (1981) demonstrated

dramatic improvements in the success of colonies of

the bryozoan Celleporaria brunnea in overgrowth

interactions with other species when the C. brunnea

colonies hosted the symbiotic hydroid Zanclea which

could sting competing species (and predators).

Another bryozoan, Rhynchozoon larreyi from the

Red Sea, similarly benefits in winning substrate space

by harbouring Zanclea as a symbiont (Ristedt and

Schuhmacher, 1985).

At the community level, the complexities of com-

petition for substrate space mean that relationships are

not always expressible as simple competitive hierar-

chies, i.e., species A overgrows both species B and C,

and species B overgrows species C, thereby defining a

simple ranking in competitive ability from A to B to

C. Instead, they may take the form of a competitive

network (Buss and Jackson, 1979) in which no single

species is dominant: i.e., species A overgrows species

B, species B overgrows species C but species C

overgrows species A. For example, Sebens’ (1986)

study of sessile communities on subtidal vertical rock

walls in Massachusetts over a 2-year period revealed a

basically hierarchical competitive structure compli-

cated by some reversals and numerous standoffs.

Lopez Gappa (1989) also found an essentially hier-

archical structure between encrusting bryozoans on

settlement panels, as did Barnes and Lehane (2001)
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for South Atlantic boulder communities. In contrast,

an example of a competitive network was found by

Rinkevich et al. (1993) in a study of sessile inverte-

brates on a Red Sea reef. Four common species (a

scleractinian coral, an alcyonarian coral, a hydrocoral

and a sponge) formed a network in which overgrowth,

allelopathy, necrosis and bleaching reactions were all

involved. Russ (1982) explained competitive hierar-

chies in terms of backloops in essentially hierarchical

systems arising from the absence of clear competitive

dominance. The term ‘transitivity’ has been used to

indicate the extent of deviation from a perfect com-

petitive hierarchy and is quantifiable using an index of

transitivity (Rubin, 1982; Tanaka and Nandakumar,

1994). Jackson (1981), in a review of competitive

interactions between bryozoans and other organisms,

underlined how subtle and complex interactions can

be, and advised caution in the interpretation of even

the simplest patterns.

Intraspecific spatial competition more often results

in stand-offs or ties than interspecific competition

(e.g., Karande and Swami, 1988), presumably because

of the matching competitive abilities of the two

protagonists. Indeed, in the case of colonial animals

the tissues of the two individuals may even fuse to

form a chimaera (e.g., Craig, 1994). Such fusion

between different individuals is termed ‘autosyn-

drome’ in contradistinction to ‘homosyndrome’ refer-

ring to fusion between different parts of one

individual. Barnes and Rothery (1996) found that

intraspecific competition for space in an Antarctic

bryozoan community was more likely to result in

overgrowth when the competing colonies were on

the upper than lower surfaces of rocks. They explained

this pattern by the greater likelihood of colonies on

undersides being closely related because of the weaker

currents not carrying sibling larvae away.

The bryozoan M. membranacea produces stolons

when competing for space with conspecifics (Harvell

and Padilla, 1990; Padilla et al., 1996). These out-

growths are induced by the presence of neighbouring

conspecifics and act to slow their rate of growth.

Unmineralised stolons are also effective in blocking

interspecific overgrowths among various other bryo-

zoans (Osborne, 1984; Tzioumis, 1994).

The results of numerous studies of interspecific

competition for space have revealed a general com-

petitive hierarchy according to major animal group in

the sequence: colonial tunicates (ascidians) and spon-

ges>bryozoans>serpulid worms and barnacles (e.g.,

Gordon, 1972; Russ, 1982; Keough, 1999; Barnes and

Lehane, 2001). Some studies have found an overall

competitive dominance of colonial over solitary

encrusters, whereas others have shown the reverse to

be true. According to Jackson (1977) colonial animals

are superior competitors for hard substrate space

because their indeterminate growth permits continu-

ous lateral substrate occupation and also because they

are less prone to fouling.

A latitudinal cline in relative overgrowth domi-

nance between cheilostome and cyclostome bryozo-

ans has been suggested by Barnes and Dick (2000b).

Whereas cheilostomes win most encounters in low

and mid latitudes, cyclostomes fare better in high

latitudes.

A recent review of competition between sponges

and algae on coral reefs (McCook et al., 2001) noted

that static observations are often made of algae over-

growing corals but that these do not necessarily prove

that the algae are killing the corals. Instead, they may

be overgrowing coral tissues damaged by predators,

sedimentation, bleaching, etc. Aerts (2000) found that

damage (lesions) in reef corals increased their sus-

ceptibility to overgrowth by sponges.

The intuitively attractive notion of a strong positive

correlation between competitive ability and abun-

dance is not always supported. Poor competitors for

substrate space sometimes dominate on ephemeral

and disturbed hard substrates because they often

exhibit higher rates of recruitment than better spatial

competitors (e.g., Jackson and Winston, 1982).

Sebens (1986) found that cleared areas were colonised

first by species which ranked low in the competitive

hierarchy. Karande and Udhayakumar (1992) studied

five species of cheilostome bryozoans colonising

settlement panels suspended in Bombay Harbour over

periods of 30 and 60 days. Overgrowth ability did not

correlate with species abundance; in fact, the two least

competitive species were the most abundant. Simi-

larly, for bryozoans encrusting rocks in Alaska, the

most abundant species were found to be low- or mid-

ranked competitors (Barnes and Dick, 2000a), while

the dominant bryozoan species in an Antarctic

encrusting community wins fewer than 20% of inter-

actions for space with other species (Barnes and

Clarke, 1998). At Signy Island in the Antarctic,
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tunicates and sponges are the dominant competitors

but bryozoans and polychaete worms are the most

abundant encrusting groups present (Barnes et al.,

1996).

Competitive interactions between encrusters and

borers are poorly understood. Smyth (1988), however,

noted the susceptibility of the boring ctenostome bryo-

zoan Penetrantia to overgrowth by coralline algae.

6.3. Biofouling

The living surfaces of sessile organisms are often

settled upon by the larvae (or other dispersal prop-

agules) of other organisms. Such biofouling can be

followed by successful growth of the settler across the

surface of the host, sometimes completely smothering

and killing the host. Therefore, organisms often

exhibit strong reactions against being fouled, employ-

ing both mechanical and chemical defences. Mechan-

ical mechanisms may also be used. These include

mucus production in corals and the pincer-like struc-

tures found in echinoderm pedicellaria and some

bryozoan avicularia (see Wahl, 1989). Many marine

animals produce biologically active chemicals, some

potentially having an anti-fouling function. The sur-

vey conducted by Uriz et al. (1991) on Mediterranean

species showed the highest levels of such activity in

sponges, bryozoans and tunicates. Antifungal and

antibacterial activity was regarded as particularly

important in discouraging fouling. If the formation

of a bacterial film is prevented, then settlement of

larvae of larger organisms which preferentially settle

on such films may also be prevented. In this con-

nection, a study of antibacterial activity through

secondary metabolite production and fouling in four

bryozoan species from Tasmania (Walls et al., 1993)

showed that the two bryozoans with the highest levels

of antibacterial activity were the least fouled. Despite

the existence of potent antifouling defences, biofoul-

ing is often observed, especially on exoskeletons (e.g.,

Rubin, 1985), on lesions (e.g., Palumbi and Jackson,

1982), and on older parts of colonial animals where

the zooids are senescent. Fungal fouling of bryozoan

colonies has been hypothesised to stimulate self-over-

growth in some species (Sterflinger and Scholz,

1997).

Wahl and Mark (1999) concluded that most macro-

fouling species were facultative and non-specific

rather than obligate, species-specific colonisers of

living substrates. Among the most conspicuous bio-

foulers in temperate environments is the small poly-

chaete worm Spirorbis. This genus is also often

recorded in the fossil record as a biofouler (e.g.,

Gibson, 1992). Keen and Neill’s (1980) study of

encrusting communities on concrete blocks in the

intertidal of Vancouver, Canada, found that even

though blocks displayed a large amount of unoccu-

pied primary space, Spirorbis recruited in consider-

ably higher densities onto the surfaces of existing

colonists, such as bryozoans and other serpulids, than

it did on unoccupied substrate space. The biofouling

ability of Spirorbis is counterbalanced by its tendency

to be overgrown by spatial competitors (e.g., Gordon,

1972).

6.4. Disturbance, grazing and predation

Disturbance effects nearly all marine hard substra-

tum communities and can be caused by physical or

biological agents including predation. It has long been

recognised that disturbance can act to regulate diver-

sity by preventing a competitively dominant species

from achieving a total monopoly (e.g., Paine, 1971).

Sousa (1979a,b) undertook a now classic study of the

effects of disturbance on communities inhabiting

boulders subject to overturning through wave action.

He found that small boulders which were overturned

frequently supported low diversity communities,

large, infrequently overturned boulders also had low

diversities, whereas boulders of intermediate size

exhibited the highest diversity in accordance with

the ‘‘intermediate disturbance hypothesis’’. Two types

of disturbance (Connell and Keough, 1985) of differ-

ent severity are recognised by marine ecologists: Type

I disturbances where the damaged patch remains

surrounded by survivors belonging to the original

community, and Type II disturbances where the

patch becomes isolated from existing communities.

Whereas patches resulting from Type I disturbances

can be recolonised by vegetative growth of the

organisms around, Type II disturbance patches tend

to become recolonised by opportunistic species,

mostly through larval recruitment.

Physical disturbance can be caused by storms,

most notably hurricanes and typhoons which have

devastating effects on tropical benthic communities

P.D. Taylor, M.A. Wilson / Earth-Science Reviews 62 (2003) 1–10338



(see Knowlton and Jackson, 2000, p. 403). Ice scour

is another agent of disturbance impacting on shallow

subtidal habitats in Arctic latitudes (Barnes, 1999).

Grazing predators are an important source of dis-

turbance in many hard substrate communities. Breit-

burg’s (1985) research using caged and uncaged

settlement panels off Santa Barbara, CA, showed

how only algal crusts, diatom/cyanobacterial films

and short-lived filamentous algae became abundant

on substrates exposed to high levels of grazing by

echinoids and asteroids. On ungrazed substrates, other

algae and sessile invertebrates were also common and

overall diversity was higher. Grazing not only reduced

diversity by physically removing species, but it also

favoured some tolerant species which inhibited the

recruitment of other species. For example, grazer-

resistant coralline algal crusts precluded recruitment

of bryozoans and polychaetes (Breitburg, 1984). A

very different effect of herbivorous grazers (limpets

and chitons) was found by Van Temelen (1987) in a

rocky intertidal community in California. Here

removal of algae by the grazers was important in

allowing recruitment of barnacles. Day’s (1983) study

of settlement panels on the Great Barrier Reef showed

how grazing on filamentous algae by herbivorous

fishes also scraped off sessile animals and allowed

the faster-growing algae to monopolise space. Grazing

fishes significantly altered the composition of bioer-

oding communities of sponges and ‘‘worms’’ without

changing the total rate of bioerosion on dead corals

from the Great Barrier Reef (Sammarco et al., 1987).

Kiene and Hutchings’ (1994) bioerosional experi-

ments led them to hypothesise that grazing modifies

the ecological succession of endoliths by constantly

exposing bare substrate that can be colonised by early

successional boring species, thereby preventing the

development of a ‘mature’ community of borers.

The rock lobster Jasus lalandii was identified by

Barkai and Branch (1988) as a ‘keystone’ species

controlling the communities developing on hard sub-

strates in southern Africa. Exclusion of this crustacean

allows mussels to dominate the community whereas

an algal cover develops when it is present. Early

successional cyclostome bryozoans were preyed upon

by the asteroid Patiria in southern California, causing

acceleration in the rate of succession towards a

community diverse in the competitively dominant

cheilostome bryozoans (Day and Osman, 1981).

Among numerous studies of the interplay between

grazing predators and competitors in shaping hard

substrate communities, Russ (1980) studied settlement

panels placed in the subtidal of Victoria, Australia,

leaving some of the panels accessible to grazing fishes

but caging others to exclude the fishes. Caged panels

became dominated within 7 months by two highly

competitive ascidian species, whereas removal by

fishes of newly settled ascidians led to higher diver-

sities on the uncaged panels. The polarity of compet-

itive dominance in overgrowth between two coralline

algae is reversed by depth-related differences in the

intensity of grazing by limpets (Steneck et al., 1991).

6.5. Succession

The pattern of ecological succession on hard sub-

strates is determined by the interplay of recruitment,

competition and disturbance (including predation). In

a pioneering study, Osman (1977) identified five

major factors important in the development and dis-

tribution of hard substrate communities on rocks: (1)

larval selectivity; (2) seasonal fluctuations in larval

abundance; (3) interactions within and between spe-

cies; (4) substrate size; and (5) disturbance (rock

overturning). Much interest has been focused on the

extent to which succession is predictable, and whether

it ever converges on a single, stable ‘climax commun-

ity’ as in the classic models developed for terrestrial

vegetation (see Greene and Schoener, 1982; Turner

and Todd, 1993).

Sutherland and Karlson (1977) deployed ceramic

settlement panels off Beaufort in North Carolina and

found that panel undersides converged towards an

equilibrium diversity of 10 species after 21/2 to 31/2

years. However, the pattern of succession varied

greatly according to when the panels were first sub-

merged, both on monthly (i.e., seasonally) and yearly

(i.e., interannually) scales. Larval recruitment patterns

were variable, and established colonists tended to

inhibit (e.g., McGuinness, 1988) rather than pave

the way for later colonists. Most colonists lived for

less than a year and were usually replaced by different

species. Sutherland and Karlson contrasted this pat-

tern of succession with the classical succession seen in

terrestrial plant communities, attributing the differ-

ences to: (1) the short-lived adults; (2) the fact that

the colonists do not prepare the substrate for later
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arrivals; and (3) the lack of stored seeds of succes-

sional species. Longer-term findings from the Beau-

fort study prompted Sutherland (1981) to develop the

concept of multiple stable points: resident commun-

ities which succeed in resisting recruitment over the

short term may be ephemeral over the longer term

because of the continued recruitment of other species,

overgrowth, sloughing off and senility.

In contrast to the results of Sutherland et al.,

Keough and Butler (1983) found no evidence of an

equilibrium species diversity among animals attached

to shells of the bivalve Pinna at Edithburgh, South

Australia. Here, the variance in number of species on

individual shells was extremely high. A study by

Turner and Todd (1993) using settlement panels at

intertidal sites in NE Scotland for 5–6 month periods

found no evidence of a predictable order of colonisa-

tion; rather, the changing patterns of species on the

panels appeared to be the result of seasonal variations

in the availability and abundance of larvae (i.e., due to

supply-side variability).

A study of settlement panel colonisation in Puget

Sound, Washington showed a clear species–area

effect, larger panels supporting a greater number of

species (Schoener and Schoener, 1981). Diversity on

individual panels was found to increase steeply for the

first ten weeks of immersion, during which time

extinction rates were negligible, before leveling-off

for the next 80 weeks of study (Fig. 18). Other studies

of species–area effects on hard substrates include

McGuinness (1987) and Maughan and Barnes (2000).

Superior spatial competitors, not surprisingly, may

increase through time at the expense of early, poorly

competitive colonists. For example, Jackson (1977)

deployed settlement panels in cryptic settings in

Jamaica and showed how initial dominance by ser-

pulids, which are poor spatial competitors in this

habitat, changed to sponge dominance after 14 months

of immersion.

Garcia and Salzwedel (1995) used asbestos panels

to study the succession of fouling organisms in the

Caribbean off Colombia, focusing particularly on the

Fig. 19. Species colonisation curves for solitary and colonial species

on settlement panels in the Bay of Santa Marta, Colombian

Caribbean. After Garcia and Salzwedel (1995).

Fig. 20. Area colonisation curves for solitary and colonial species

on settlement panels in the Bay of Santa Marta, Colombian

Caribbean. Total coverages of more than 100% are possible because

of epizooism. After Garcia and Salzwedel (1995).

Fig. 18. Species colonisation curves for settlement panels of three

different sizes deployed at about 1 m below sea level in Puget

Sound, Washington, USA, showing a strong species-area effect.

After Schoener and Schoener (1981).
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relative colonisation by colonial and solitary species.

Diversity on the panels reached a plateau of about 25

species after 10–16 weeks of submergence, a level

maintained for the 52 weeks of the study. The diver-

sity plateau was attained more rapidly by solitary

species than it was by colonial species (Figs. 19 and

20). The sessile epibenthic species colonising lava

fields of different ages (17, 55 and several thousand

years) around a volcano in the Kuril Islands were

studied by Oshurkov and Ivanjushina (1992). They

found an increase in species richness between the 17-

and 55-year lavas but a slight decline between the

latter and the ancient lava.

In contrast to findings from the tropics, studies in

temperate environments (Shin, 1981; Schoener and

Schoener, 1981; Greene and Schoener, 1982) have

usually shown a switch during succession from colo-

nial to solitary species (Fig. 21). This pattern is largely

explained by the fact that individuals of the solitary

species are typically longer-lived, and are able to form

dense aggregations through gregarious larval settle-

ment (Greene et al., 1983).

Depth can be an important correlate of successional

variations. Hirata (1987) studied the colonisation over

3 years of settlement panels placed at depths of 1, 2.5,

4 and 5.5 m in Nabeta Bay, Japan. Three successional

stages could be recognised: Stage 1 was characterised

by the barnacle Balanus and spirorbid worm Dexio-

spira, Stage 2 by the ascidian Diplosoma, and Stage 3

by the oyster Crassostrea. Panels at the deepest

station failed to reach stage 3 during the 3-year period

of study. Diversity rose steeply for 2 to 6 months after

panel immersion to about 10 species and then leveled

out in panels from the two shallower depths whereas it

declined somewhat in the two deeper stations. Pisano

and Boyer (1985) found that colonisation by bryozo-

ans of settlement panels placed at 15 m in the Ligurian

Sea followed a similar pattern but was slower than

panels deployed at 3 m depth. In contrast, colonisation

rates were found to be lower in shallow (5–8 m) than

in deeper (25 m) water sites off Signy Island in the

Antarctic (Stanwell-Smith and Barnes, 1997; Fig. 22).

Relative to temperate and tropical environments (Fig.

23), low recruitment and slow growth in the cold-

waters of the Antarctic meant that after 15 months an

Fig. 22. Changes in the percentage cover of organisms during two

years on settlement panels deployed at two different depths off

Signy Island, Antarctica. After Stanwell-Smith and Barnes (1997).

Fig. 21. Trends in the relative coverage through time of solitary and

colonial species on settlement panels deployed at 1–1.3 m below

sea level at Bremerton, WA, USA. After Greene and Schoener

(1982).

Fig. 23. Differences in the colonisation of sublittoral settlement

panels deployed in the Antarctic compared with temperate and

tropical stations. After Stanwell-Smith and Barnes (1997).
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average of less than 2% of the surface of panels

submerged at 5 m were covered, and less than 6%

of those submerged at 25 m. Depth also played a

significant role in succession on 8 year old lava

grounds at Jan Mayen where Gulliksen et al. (1980)

found that communities at depths of less than 15 m

resembled those of old lava grounds more than did

communities from deeper sites. This they attributed to

the more severe physical conditions limiting commun-

ity complexity in shallow waters.

Seabed characteristics may influence the composi-

tion of hard substrate communities, at least those

developing on settlement panels. In a 1-year study

off South Carolina, Van Dolah et al. (1988) found that

colonial species (colonial ascidians and hydroids)

dominated on panels placed above hard bottoms

whereas solitary species (solitary ascidians and bar-

nacles) were dominant on panels above sandy bot-

toms. It is not unreasonable to surmise that natural

substrates, including ancient examples, will show

similar patterns.

The effect of a single taxon on substrate character-

istics and future development is well illustrated by

Gulliksen’s (1980) work in a fiord in Norway. After a

heavy settlement of the large solitary ascidian Ciona

in 1974, sediment accumulation on the rock surface

increased and with it the abundance of infaunal

organisms to the detriment of epifaunal species.

A study of shallow marine bioerosion off Rhodes

(Bromley et al., 1990) deployed marble blocks. These

were rapidly colonised by endolithic algae which

attracted grazing chitons and echinoids. Boring

sponges did not become visible until year 2 of the

study, and after 5 years the blocks were deeply

bioeroded.

7. Ancient hard substrate communities

7.1. Precambrian communities

Precambrian hard substrate communities are sur-

prisingly common, although of the expected low

diversity.

7.1.1. Encrusters on inorganic hard substrates

Many stromatolites were initiated on intertidal and

subtidal rocky substrates. An example would be the

3.3–3.5 Ga stromatolites of the Fig Tree Group in

South Africa, which formed directly on silicified

komatiitic lava flows (Byerly et al., 1986). The

bacterial mats adhered very closely to the contours

of the surfaces, forming structures which mirrored

surface irregularities for at least the first few layers.

Precambrian stromatolites grew luxuriously, probably

in part because there were few if any macroinverte-

brate grazers to limit their distribution (Seilacher,

1999). Butterfield (2000, p. 387) described late Mes-

oproterozoic bangiacean red algae which grew as

filaments attached to ‘‘firm’’ and possibly hard sub-

strates in a shallow marine sequence of the Hunting

Formation of Somerset Island, Arctic Canada. These

algae may be the earliest known examples of complex

multicellularity; they possess holdfasts and stood erect

above the substrate.

7.1.2. Encrusters on organic hard substrates

The earliest known example of epibiosis (biofoul-

ing) is found in stromatolites of the Mesoproterozoic

Gaoyuzhuang Formation in northern China (Seong-

Joo et al., 1999). These are coccoid microfossils of

chamaesiphonalean cyanobacteria which settled in

large numbers on the cyanobacterial sheaths of the

stromatolite builders. Seong-Joo et al. (1999) suggest

that this epibiosis represents either an early adaptation

to competition for attachment space, or it is evidence

for a specialised mutualism between the host and

epibiotic bacteria.

7.1.3. Cryptic hard substrate communities

Turner et al. (1993) describe reefs from the Neo-

proterozoic formed of calcareous microfossils. From

the roofs of cavities within these structures hung a

clotted micritic organism similar to Renalcis.

7.1.4. Bioerosion

Fossils of endoliths have only recently been dis-

covered in Precambrian rocks (Campbell, 1982; Knoll

et al., 1986, 1989; Zhang and Golubic, 1987; Al-

Thukair and Green, 1988; Green et al., 1988). These

are, in all cases, microorganisms which have exca-

vated very small cavities in sedimentary grains such

as ooids or in the laminae of stromatolites. Some of

them appear to have been photosynthetic, much like

many modern microbial endoliths (Golubic et al.,

1975). The first apparent predatory borings are
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described from the late Precambrian (Bengtson and

Zhao, 1992). These are simple round holes in the

tubular mineralised skeletons of Cloudina.

7.2. Cambrian communities

Hard substrate communities in the Cambrian are

considerably more diverse than those of the Precam-

brian, but they are still impoverished compared to

Ordovician and later assemblages. Stromatolites are

still present on hard surfaces, as they will be through-

out the Phanerozoic under environmental conditions

which generally excluded grazers (Monty, 1981). Late

Cambrian encrusting communities show a jump in

diversity, albeit small, with the appearance of early

adherent echinoderms.

7.2.1. Encrusters on inorganic hard substrates

Frykman (1980) briefly described ‘‘crater-like’’

encrusters, early pelmatozoans of some type, from

Middle Cambrian hardgrounds in Greenland. From

the same hardgrounds, Palmer (1982) recorded inde-

terminate acrotretid brachiopods. Brett et al. (1983)

described an upward-facing hardground community

from the Upper Cambrian of Montana and Wyoming

which includes abundant pelmatozoan holdfasts

(probably of a single crinoid species), a Renalcis-like

alga, and isolated plates of an edrioasteroid, a carpoid,

and two other unidentifiable echinoderms.

7.2.2. Encrusters on organic hard substrates

Episkeletobionts are rare in the Cambrian. There

are a few inarticulate brachiopods and eocrinoids

found on arthropod fragments (Lescinsky, 2001).

Daley (1996) described solute echinoderms attached

to trilobite fragments which may themselves have

been cemented into the seafloor.

7.2.3. Cryptic hard substrate communities

Lower Cambrian cryptic communities are surpris-

ingly common and diverse. The cryptic spaces are

found in archaeocyath and radiocyath reefs, within

calcified microbial mounds, in pockets underneath

early cemented carbonate sediments, and underneath

skeletal debris (Kobluk and James, 1979; Kobluk,

1981a,b,d, 1985; Rees et al., 1989; James and Grave-

stock, 1990; Fröhler and Bechstädt, 1992; Wood et al.,

1993; see for review the paper by Zhuravlev and

Wood, 1995). These early cryptic biotas included

cyanobacteria, archaeocyaths, sponges, possible

sponge borings, and various problematica, many of

which are found only in cryptic spaces. Cambrian

cavities tend to be smaller than those found in later

systems, and they were quickly filled with sediment

and early cements. Nevertheless, the diverse cryptic

inhabitants showed possible competition for space

(through overgrowths) and significant taxonomic

and structural differences from their counterparts on

exposed surfaces. Among the archaeocyaths, for

example, exposed surfaces have solitary ajacicyathids

and numerous irregular, branching forms, whereas the

crypts have solitary irregulars and solitary chambered

forms (Zhuravlev and Wood, 1995). Presumably,

these early cryptic organisms were exploiting the

same advantages of cavity-dwelling as modern cryp-

tobionts: refuge from most predators and reduced

environmental stresses in general.

7.2.4. Bioerosion

Bioerosion in the Cambrian consisted almost

entirely of small, simple, rounded holes excavated

into skeletons and hardgrounds. These traces are

rare, implying that bioerosion was an insignificant

geological process in the Cambrian. Conway Morris

and Bengtson (1994) reviewed the array of borings

known in Cambrian skeletons, demonstrating that

some, especially those in brachiopods, were almost

certainly excavated by predators. Microborings in

Middle Cambrian trilobite cuticle, apparently formed

by boring algae and cyanobacteria, are illustrated and

briefly discussed by Geyer and Malinky (1997).

Runnegar (1985) described microscopic, long,

unbranched tunnels and short vertical holes in Cam-

brian mollusc shells which appear to have been

excavated by photosynthetic endolithic algae. The

cylindrical macroboring Trypanites is known from

numerous Lower Cambrian hardgrounds, but is

strangely rare in Middle and Late Cambrian and

Early Ordovician hard substrates (James et al.,

1977; Palmer, 1982). Chow and James (1992, p.

120) briefly described and illustrated ‘‘Trypanites-

like borings’’ which truncate cement crystals in an

Upper Cambrian hardground in Newfoundland, but

the full shape and size of these excavations is

unknown. Kobluk (1981b) described microscopic

scalloped-shaped excavations and associated carbo-
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nate chips in archaeocyathan cavity walls in the

Lower Cambrian of southern Labrador. These are

similar to traces made by endolithic sponges, such as

the modern Siphonodictyon and Cliona.

7.3. Ordovician communities

The Ordovician was a golden age for epizoans on

hard substrates, at least for those which left skeletal

evidence. Much of the increased abundance and

diversity of Ordovician hard substrate organisms is

due to the increase in hard substrate availability since

the Cambrian.

7.3.1. Encrusted inorganic hard substrates

Carbonate hardgrounds reach their peak abundance

in shallow marine environments largely due to the

prevailing Calcite Sea conditions which facilitated

early aragonite dissolution and synsedimentary calcite

cementation (see for review Wilson and Palmer,

1992). Even rocky shores can be well preserved in

Ordovician deposits (Jones and Pugh, 1950; Mergl,

1983; Harland and Pickerill, 1984; Kobluk, 1984;

Johnson and Baarli, 1987, 1999; Johnson et al.,

1988; Johnson and Rong, 1989; Fig. 24). Hard-

grounds often support diverse communities (Fig.

25). Many bryozoan genera encrusted hardgrounds

Fig. 24. Stratigraphic transect across a Late Ordovician rocky shoreline near Churchill, Manitoba, Canada, showing biotic zonation. After

Johnson et al. (1988).

Fig. 25. Reconstruction of an Ordovician hardground community from near Kirkfield. Ontario, Canada. After Brett and Liddell (1978).
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and associated cobbles, especially cyclostomes (see,

for example, Wilson, 1985; Taylor and Wilson, 1994)

and trepostomes (see, for examples, Brett and Brook-

field, 1984; Wilson, 1985). Encrusting echinoderms

also dramatically increase in diversity and abundance

on Ordovician hardgrounds (Guensburg and Sprinkle,

1992). These include edrioasteroids (Brett and Lid-

dell, 1978; Palmer, 1982; Wilson, 1985; Guensburg,

1988; Meyer, 1990), crinoids (Brett and Liddell,

1978; Guensburg, 1984, 1992) and other pelmatozo-

ans (Guensburg, 1991; Guensburg and Sprinkle,

1992; Wilson et al., 1992). Additional encrusting

organisms on Ordovician hardgrounds, cobbles and

other rocky substrates are sphenothallid worms (Bod-

enbender et al., 1989; Neal and Hannibal, 2000),

cornulitids (Wilson, 1985), corals (Palmer, 1982;

Johnson and Baarli, 1987; Johnson et al., 1998; Elias

and Young, 2000), articulate and inarticulate brachio-

pods (Palmer, 1982), crustoid graptolites (Mitchell et

al., 1993), and problematica (Mergl, 1984, for which

see Taylor, 1984a).

7.3.2. Cryptic hard substrate communities

Ordovician cryptic encrusting and boring commun-

ities have been well described. The most common

cavities are within bryozoan reefs (Cuffey, 1974;

Kobluk, 1980, 1981c) and underneath hardground

ledges (Brett and Liddell, 1978). These cavities are

considerably larger than their Cambrian counterparts,

and in many cases they appear to have remained open

for long periods. Encrusters include numerous bryo-

zoans, stalked echinoderms and calcareous algae.

Many cavities also housed worm-like endolithic

organisms which produced the boring Trypanites

(Fig. 3E). Interestingly, the Ordovician cryptic com-

munities are remarkably similar to those found on the

adjacent exposed hard substrates, showing at best only

a weak polarity between these environments.

7.3.3. Encrusted organic hard substrates

Hard substrates provided by shells are more com-

mon in Ordovician deposits than in their Cambrian

equivalents (Kidwell, 1994). The encrusting taxa on

these organic hard substrates are virtually the same as

those on hardgrounds, cobbles and rocky shores. The

most commonly encrusted shells are those of brachio-

pods (Morris and Rollins, 1971; Richards, 1972,

1974a; Alexander and Scharpf, 1990; Lescinsky,

1995; Lescinsky, 1996a) and trilobites (Clarkson and

Tripp, 1982; Kácha and Saric, 1995; Brandt, 1996;

Budil and Saric, 1995; Taylor and Rozhnov, 1996).

Because most mollusc shells were aragonitic in the

Ordovician, encrusters are often found on their early

cemented internal and external moulds (Waddington,

1980; Palmer et al., 1988; Wilson and Palmer, 1992;

Gabbott, 1999), but some are found on calcitic

bivalves (Morris and Felton, 1993). The skeletons of

rugose corals are also often encrusted (Elias and

Buttler, 1986; Harland and Pickerill, 1987). Articulate

brachiopods have been found attached to trepostome

bryozoans (Richards, 1972; Harper and Pickerill,

1996) and conulariids (Harland and Pickerill, 1987),

and inarticulate brachiopods are found on algae and

graptolites (Botting and Thomas, 1999). Soft-bodied

encrusters of the Ordovician have been preserved

through epibiont bioimmuration (see Section 8.5) on

mollusc shells. Ordovician epibiont bioimmurations

include what appear to be hydroid cnidarians (Wilson

et al., 1994). Also in the Ordovician of upper midwest-

ern North America are cavities in trepostome bryozoan

skeletons formed when the bryozoan grew up and

around an encrusting, soft-bodied, stoloniferous ani-

mal, forming the trace fossil Catellocaula through

bioclaustration (Palmer and Wilson, 1988; Fig. 3C).

7.3.4. Bioerosion

Ordovician bioerosion was more common, and the

bioeroders more diverse, than their Cambrian counter-

parts. Nevertheless most Ordovician borings are sim-

ple, small holes. Trypanites (Fig. 2A and 3E) is the

most common boring ichnogenus, found abundantly

in hardgrounds (Byers and Statsko, 1978; Kobluk et

al., 1978; Brett and Liddell, 1978; Palmer and Palmer,

1977; Palmer, 1982; Wilson and Palmer, 1992; Dro-

nov et al., 1996), cobble-size reworked concretions

(Wilson, 1985, 1987), rocky shores (Desrochers and

James, 1988), and massive skeletons such as those of

trepostome bryozoans (Opalinski and Harland, 1980;

Kobluk and Nemcsok, 1982) and rugosan corals

(Elias, 1980, 1986). Probable sponge borings have

also been recorded from the Ordovician, but they are

rare (Palmer and Palmer, 1977; Lindström, 1979;

Kobluk, 1981c; Pickerill and Harland, 1984). The

first bivalve borings (Petroxestes, formed by mytil-

ids) are also known from the Ordovician, but they are

thus far only locally common in the upper midwest of
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North America (Pojeta and Palmer, 1976; Wilson and

Palmer, 1988; Fig. 3A). An unusual macroboring,

representing the first occurrence of the ichnogenus

Gastrochaenolites, has been recently described by

Ekdale and Bromley (2001) (see also Ekdale et al.,

2002) from Ordovician (Volkhovian) hardgrounds in

Sweden. This vase-shaped trace (G. oelandicus) is

thus far found in only one formation. The trace-

maker is unknown, but it almost certainly was not

a bivalve.

Felton (personal communication to M.A.W.) has

recently found what appear to be acrothoracican

barnacle borings in Ordovician platyceratid gastro-

pods almost identical to those described from the

Devonian by Baird et al. (1990). Durophagy is known

from the Ordovician, such as the shell breakage

recorded from the Cincinnatian (Alexander, 1986),

but predatory borings have been difficult to distin-

guish. Lescinsky and Benninger (1994) pointed out

how pressure solution can produce structures resem-

bling predator traces, and the ubiquitous Trypanites

borings sometimes cut through shells in cemented

sediments, forming holes easily mistaken for predator

drillings (see Bucher, 1938; Kaplan and Baumiller,

2000, with alternative interpretations given respec-

tively by Richards and Shabica, 1969; Wilson and

Palmer, 2001; the borings in Cameron, 1967, are also

not likely to have been those of predators). Carriker

and Yochelson (1968) attribute a particular type of

round hole in Ordovician brachiopod shells to a soft-

bodied epibiont, not a predator.

Ctenostome bryozoan borings are a special type of

ichnofossil in which the zooids of the colony

immersed themselves in a calcareous shell through

etching. These borings are very common on shallow

marine shells in the Ordovician, particularly on stro-

phomenid brachiopods (Pohowsky, 1974, 1978; May-

oral, 1991). Microbioerosion is also known from

Ordovician shells (Hessland, 1949; Kobluk and Risk,

1977; Olempska, 1986; Elias and Lee, 1993), skeletal

grains (Klement and Toomey, 1967) and limestones

(Kobluk, 1984; Podhalanska, 1984; Podhalanska and

Nõlvak, 1995).

7.4. Silurian communities

Hard substrate communities in the Silurian contin-

ued the themes from the Ordovician. Encrusters were

still dominated by bryozoans and echinoderms, par-

ticularly crinoids, and borings were mostly simple

Trypanites.

7.4.1. Encrusted inorganic hard substrates

Encrusting communities have been described from

carbonate hardgrounds (Halleck, 1973; Franzén,

1977; Cherns, 1980), cobbles (Kissling, 1973; Jones

et al., 1979), and rocky shore substrates (Bridges,

1975; Cherns, 1982; Johnson and Baarli, 1987; Keel-

ing and Kershaw, 1994; Rong and Johnson, 1996;

Calner and Säll, 1999; Rong et al., 2001; Johnson et

al., 2001). They differ little from their Late Ordovi-

cian counterparts, except that encrusting tabulate

corals are more diverse and foraminiferans first

appear upon them (Palmer, 1982; Wilson and Palmer,

1992).

7.4.2. Encrusted organic hard substrates

Encrusted organic hard substrates include abun-

dant shells (see, for examples Franzén, 1974; Hurst,

1974; Watkins, 1981; Liddell and Brett, 1982; Prokop

and Turek, 1983; Spjeldnaes, 1984; Turek, 1987;

Watkins and McGee, 1998; Lebold, 2000) and stro-

matolites (Cherns, 1982). Silurian episkeletobionts

are most commonly reported from crinoids (Franzén,

1974; Brett and Eckert, 1982; Liddell and Brett, 1982;

Watkins and McGee, 1998; Peters and Bork, 1998),

molluscs (Holland, 1971; Prokop and Turek, 1983;

Turek, 1987), bryozoans (Taylor and Brett, 1996),

brachiopods (Hurst, 1974; Watkins, 1981), stroma-

toporoids (Kershaw, 1980; Nield, 1986a,b; Carthew,

1987; Segars and Liddell, 1988; Lebold, 2000) and

trilobites (Taylor and Brett, 1996). Episkeletobionts

are also reported as bioclaustrations in crinoids (Brett,

1978; Eckert, 1988). The first cementing articulate

brachiopods appear on Silurian shells (Cowen and

Rudwick, 1967; Nield, 1986a).

7.4.3. Cryptic hard substrate communities

The cryptic faunas of the Silurian are similar to

those of the Ordovician (Scoffin, 1972; Spjeldnaes,

1975; Kershaw, 1980). Bryozoans dominate the

communities (Fig. 2C), which are most commonly

found on the undersides of stromatoporoids, tabulate

corals, and larger bryozoans, but articulate brachio-

pods and cornulitids may also be prominent encrus-

ters.
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7.4.4. Bioerosion

Bioerosion in the Silurian was also similar to that

of the Ordovician. Macroborings consist primarily of

Trypanites excavated into hardgrounds (Halleck,

1973; Cherns, 1980; Pemberton et al., 1980) and

stromatoporoids (Kershaw, 1980; Nield, 1984; Segars

and Liddell, 1988). Petroxestes, originally known

only from the Upper Ordovician of the North Amer-

ican midwest, has recently been described in Lower

Silurian stromatoporoids in eastern Canada (Tapanila

and Copper, 2002). Microbioerosion is represented by

endolithic rhodophytes and eubacteria (Kazmierczak

and Golubic, 1976; Campbell et al., 1979; Campbell,

1980; Bundschuh et al., 1989; Bundschuh and Balog,

2000) and microborings in mollusc shells (Liljedahl,

1986).

7.5. Devonian communities

7.5.1. Encrusted inorganic hard substrates

Encrusted and bored inorganic hard substrates are

less common in the Devonian than they were in the

Silurian and Ordovician, but they are still present.

These surfaces include carbonate hardgrounds

(Hecker, 1935, 1983; Koch and Strimple, 1968),

pebbles and cobbles (Fannin, 1969; Tucker, 1971,

1973; Baird, 1976, 1978, 1981; Landing and Brett,

1987) and rocky shores (Dvorak, 1957; Playford and

Lowry, 1966).

7.5.2. Encrusted organic hard substrates

Devonian encrusting communities are better

known on shells than any other hard substrate. These

communities are no longer dominated by bryozoans

and echinoderms, although they are still common (see

Solle, 1968; Koch and Strimple, 1968; Franzén, 1974;

Alvarez and Taylor, 1987; Brice and Mistiaen, 1992;

Gibson, 1992). ‘Spirorbid’ worms, hederellids and

tabulate corals are more abundant as encrusters on

shells (Ager, 1961; Hoare and Steller, 1967; Kiepura,

1965, 1973; Marek and Galle, 1976; Brassel, 1977;

Pitrat and Rogers, 1978; Kesling et al., 1980; Sparks

et al., 1980; Bonem, 1982; Brett and Cottrell, 1982;

Alvarez and Taylor, 1987; Bordeaux and Brett, 1990;

Brice and Mistiaen, 1992; Grimm, 1998). Stromatop-

oroids provided large surfaces for encrusters (Cock-

bain, 1984). Encrusting brachiopods and bryozoans

have recently been noted on Devonian oncoids in

western North America (Rodriguez and Gutschick,

2000).

7.5.3. Cryptic hard substrate communities

Few Devonian cryptic assemblages are thus far

definitely known. Liddell and Brett (1981) described

Spirorbis, Hederella and the brachiopod Heteralosia

encrusting the undersides of coral heads from the

Middle Devonian of Michigan. Copper (1996)

described cemented atrypid brachiopods from under-

neath tabulate corals and stromatoporoids. It is also

possible that the Trypanites borings, preserved in

solution-opened joints at the Silurian–Devonian dis-

conformity in Ontario, are Devonian in age (Kobluk et

al., 1977).

7.5.4. Bioerosion

Devonian macroborings are still relatively small

and dominated by Trypanites (Pemberton et al., 1980,

1988) and the similar but distally clavate Palaeosa-

bella (Cameron, 1969; Thayer, 1974). Acrothoracican

barnacles borings make their appearance in the shells

of platyceratid gastropods (Baird et al., 1990) and

brachiopods (Rodriguez and Gutschick, 1977); they

are also known in oncoids (Rodriguez and Gutschick,

2000). Ctenostome bryozoan borings are described in

brachiopod shells by Richards (1974b), Pohowsky

(1978) and Vogel et al. (1987). ‘‘Sponge’’ borings in

shells and carbonate rocks are reported in older

literature (Fenton and Fenton, 1932; Solle, 1938)

and in Vogel et al. (1987), but their origins are still

unclear. Microborings in the Devonian are still mostly

attributed to algae and/or fungi (Kobluk and Risk,

1974; Vogel, 1987; Vogel et al., 1987). What are

almost certainly predatory borings, attributed to gas-

tropods, have been reported in Middle Devonian

brachiopod shells (Rodriguez and Gutschick, 1970;

Smith et al., 1985; Leighton, 2001) and blastoids

(Baumiller, 1993). For a review of Phanerozoic pred-

atory boring, see Kowalewski et al. (1998, 2000),

Harper et al. (1998, 1999), and Leighton (2001).

7.6. Carboniferous communities

Until recently, encrusting and boring organisms

were considered relatively rare on hard substrates in

the Carboniferous (Wilson and Palmer, 1992; Alvarez

and Taylor, 1987). Lescinsky (1997), however, made
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the point that common and low-diversity Carbon-

iferous hard substrate communities may have been

overlooked in favour of the rare ‘‘spectacular’’ exam-

ples, although low primary productivity could have

contributed to a genuine scarcity (Lescinsky, 1994).

According to Nicol (1978), the first cemented bivalves

appeared in the Early Carboniferous.

7.6.1. Encrusted inorganic hard substrates

Encrusting tabulate corals have been described on

Upper Carboniferous rockgrounds (Webb, 1993) from

Arkansas, and Lower Carboniferous edrioasteroids are

known from cobbles in Britain (Smith, 1983) and

hardgrounds in Kentucky (Sumrall, 2001). Dix and

James (1987) described bryozoan/microbial bioherms

on a karstic limestone surface. Palmer (1982) recorded

from Carboniferous carbonate hardgrounds encrusting

foraminiferans, rugose corals, tabulate corals, ‘‘worm’’

tubes, bivalves, fenestellid and fistuliporid bryozoans,

hederellids, blastoids, edrioasteroids and crinoids.

Carbonate hardgrounds, though, are rare in the Car-

boniferous.

7.6.2. Encrusted organic hard substrates

Epibionts in particular are now well known from

this interval. Spiriferid brachiopod substrates in North

America are often encrusted by trepostome, fenestellid

and ctenostome bryozoans, hederellids, cornulitids,

edrioasteroids, foraminiferans, and brachiopods (Nel-

son and Bolton, 1980; Powers and Ausich, 1990;

Lescinsky, 1997). Legrand-Blain and Poncet (1991)

describe a similar assemblage of encrusters on brachio-

pods from Algeria, with the addition of calcareous

algae and tabulate corals. Demosponges served as hard

substrates for bryozoans, ‘‘worm’’ tubes, rugose corals

and articulate brachiopods (Gundrum, 1979). Demo-

sponges were themselves significant epibionts in some

muddy substrates where shells provided the only hard

substrate (Molineux, 1994). Attached vermiform gas-

tropods, which appear to be convergent with vermetids,

make their first appearance on Lower Carboniferous

stromatolites in Great Britain (Burchette and Riding,

1977). Note, however, that Weedon (1990) considered

these fossils not to be gastropods. Cemented bivalves

appear first in the Lower Carboniferous (Nicol, 1978).

Episkeletobionts are also known on crinoid stems

(Powers and Ausich, 1990; Donovan and Lewis,

1999; Wyse Jackson et al., 1999), rugose corals (Con-

dra and Elias, 1944; Sando, 1984; Nakazawa, 2001),

bivalves (Trueman, 1942; Kammer et al., 1987), bel-

lerophontids (Taylor, 1985), brachiopod spines (Bill-

ing, 1991), fenestrate bryozoans (Condra and Elias,

1944) and cephalopods (Seilacher, 1963). A ‘‘loosely

attached’’ and apparently mobile foraminiferan is

known from biogenic substrates in England (Cossey

andMundy, 1990) and North America (Toomey, 1972).

7.6.3. Cryptic hard substrate communities

Bonem (1977) describes a diverse Pennsylvanian

cryptic community in biohermal cavities. It again

contains abundant, diverse bryozoans, along with

rugose and tabulate corals and Trypanites borings.

Suchy and West (1988) found numerous attached

brachiopods, bryozoans, calcareous worm tubes,

rugose corals, and the borings Rogerella and Caulos-

trepsis underneath the overhangs of Pennsylvanian

chaetetid colonies.

7.6.4. Bioerosion

Borings are also more common in Carboniferous

hard substrates than were originally estimated (Wilson

and Palmer, 1992). Predatory borings and other signs

of predation in brachiopod shells, probably produced

by gastropods, are now well known (Ausich and

Gurrola, 1979; Alexander, 1981; Baumiller et al.,

1999), as are ‘‘non-predatory’’ holes made by platy-

ceratid gastropods in crinoids (Baumiller, 1990).

Acrothoracican barnacle borings are common in bra-

chiopod shells (Ettensohn, 1978; Lescinsky, 1997)

and limestone cobbles (Webb, 1993, 1994). The ear-

liest known Gastrochaenolites, apparently constructed

by mytilid bivalves, is found in the Upper Carbon-

iferous rockgrounds in Arkansas (Webb, 1994; Wilson

and Palmer, 1998; Fig. 3D), and Caulostrepsis is

present in Upper Carboniferous rockgrounds of Utah

(Loope, 1994) and Kansas (West and Palmer, 1983).

Microborings are thus far not common in the Carbon-

iferous; the ichnogenera Eurygonum and Scolecia,

probably produced by cyanobacteria, are possibly

known from the Lower Carboniferous of Utah (Vogel,

1991; Glaub et al., 1999).

7.7. Permian communities

Hard substrate communities are poorly known in

the Permian.

P.D. Taylor, M.A. Wilson / Earth-Science Reviews 62 (2003) 1–10348



7.7.1. Encrusted inorganic hard substrates

Carbonate hardgrounds have yet to be documented

in the Permian (Wilson and Palmer, 1992). A rocky

shore with encrusting bryozoans has been described

by Herrmann (1956), and Runnegar (1979) described

a shelly fauna probably associated with a rocky shore.

7.7.2. Encrusted organic hard substrates

Rare encrusters on Permian shells include cyclo-

stome bryozoans (Taylor, 1985), serpulids, producta-

cean brachiopods and ‘‘oyster-like bivalves’’ (Newell

and Boyd, 1970).

7.7.3. Cryptic hard substrate communities

Calcified microbial layers have been reported from

cavities in Permian Tubiphytes bioherms (Flugel,

1977), and foraminiferans and calcareous algae are

found on cements within reef framework cavities

(Mazzullo and Cys, 1979; Toomey and Cys, 1979).

Wood et al. (1994, 1996) dramatically challenged

current images of the Permian Capitan Reef of Texas

and New Mexico by showing that most of the calca-

reous sponges formed pendants in cavities rather than

upright exposed pillars. These cavities also contained

bryozoans, rugose corals, crinoids, and calcareous

algae.

7.7.4. Bioerosion

Permian borings described in the literature were

produced by barnacles (Schlaudt and Young, 1960;

Simonsen and Cuffey, 1980), thallophytes (Balog,

1996; Weidlich, 1996), cyanobacteria/cyanophyta

(Glaub et al., 1999; Vogel et al., 1999), sponges (Wei-

dlich, 1996), polychaetes (Teichert, 1945; Newell and

Boyd, 1970), brachiopod pedicles (Alexander, 1994),

and predatory gastropods (Kowalewski et al., 2000).

7.8. Triassic communities

Triassic hard substrate communities are scarcely

more diverse and abundant than their Permian coun-

terparts, and stand in marked contrast to the diverse

mollusc-dominated assemblages of the Jurassic and

Cretaceous.

7.8.1. Encrusted inorganic hard substrates

Encrusters, such as bivalves, crinoids, bryozoans,

serpulids and brachiopods, are known primarily from

carbonate hardgrounds (Jahnke, 1966; Wendt, 1970;

Hagdorn and Mundlos, 1982; Hagdorn and Simon,

1983; Zwenger, 1987, 1988) and cobbles (Kostecka,

1978).

7.8.2. Encrusted organic hard substrates

Brachiopod (Michalı́k, 1976, 1977; Taylor and

Michalı́k, 1991) and mollusc shells are found en-

crusted in the Triassic (Kieslinger, 1925; Seilacher,

1954; Meischner, 1968; Aigner, 1977, 1979; Ziegler

and Michalı́k, 1980; Duringer, 1985; Marquez-

Aliaga et al., 1986; Blendinger, 1991), but they

are rarely common. Stiller (2001) recorded a

Middle Triassic fauna from China that includes

encrusting serpulids and bivalves associated with

crinoids.

7.8.3. Cryptic hard substrate communities

There appear to have been no descriptions of

Triassic cryptic communities. They certainly must

have been present in Triassic reefs.

7.8.4. Bioerosion

Triassic borings are rare compared to those in other

systems, although they do include the type species of

the ubiquitous ichnogenus Trypanites (Mägdefrau,

1932; Müller, 1956; Bertling, 1999a). Triassic reefs

have bivalve borings (Kleemann, 1994a). A brachio-

pod fauna in Slovakia is bored by acrothoracican

barnacles and ‘‘worms’’ (Taylor and Michalı́k,

1991), and it has the echinoid grazing trace Gnathich-

nus (Michalı́k, 1977). Microborings which were prob-

ably produced by cyanobacteria or algae are found in

a variety of shell substrates (Schmidt, 1990, 1992,

1993; Glaub and Schmidt, 1994; Balog, 1996; Vogel

et al., 1999).

7.9. Jurassic communities

Hard substrate communities return to the fossil

record in great abundance and diversity during the

Jurassic, and they are very different from their

Palaeozoic equivalents. Fossils on hard substrates

have not been this common since the Late Ordovi-

cian. This flowering of encrusters and borers is due

in part to the proliferation of carbonate hardgrounds

during these Calcite Sea times (Palmer et al., 1988;

Wilson and Palmer, 1992). Taphonomy plays a role
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as well with the new abundance of thick, attaching

bivalves and deep bivalve borings which are more

easily preserved (and discovered) than their earlier

counterparts. Coral, sponge, bivalve and microbial

reefs also become important in shallow, warm Juras-

sic seas, providing abundant attachment space for

hard substrate organisms (Wood, 1993; Fürsich et

al., 1994; Fookes, 1995; Bertling and Insalaco,

1998).

7.9.1. Encrusted inorganic hard substrates

Carbonate hardgrounds provided extensive marine

hard substrates in the Jurassic, and thus show the

highest diversity of encrusters and borers. Cementing

oysters and oyster-like bivalves, such as Eopecten,

and Plicatula, become very common on all marine

hard substrates (see, for example, Merkt, 1966; Kauff-

man, 1978, 1981; Harper and Palmer, 1993; Villamil

et al., 1998; Wilson et al., 1998a,b). Oysters and

oyster-like bivalves are particularly common on many

Jurassic hardgrounds (Fig. 1A), often producing thick

crusts (Palmer and Fürsich, 1974; Andersson, 1979;

Fürsich, 1979; Gruszczynski, 1979, 1986; Fürsich and

Oschmann, 1986; Kershaw and Smith, 1986; Valen-

zuela et al., 1992; Garcia, 1993; Harper and Palmer,

1993; Wilson and Palmer, 1994). Encrusted and bored

rockgrounds are also fairly common in the Jurassic.

Some of the best known are the Carboniferous lime-

stone substrates that formed rocky shorelines during

the Jurassic in southern Wales and England. The

eroded upper surfaces are encrusted by corals and

oysters, and contain the borings Gastrochaenolites

and Trypanites (Johnson and McKerrow, 1995; Cole

and Palmer, 1999). Similarly encrusted and bored

Jurassic karst surfaces in limestones are known in

northwestern Germany (Helm, 1998) and Scotland

(Farris et al., 1999). Encrusted and bored carbonate

pebbles and cobbles, including exhumed concretions,

are also described from the Jurassic (Voigt, 1968a;

Hallam, 1969; Kazmierczak, 1974; Baird and Fürsich,

1975; Andersson, 1979; Fürsich, 1979; Kelly, 1980;

Chudzikiewicz and Wieczorek, 1985; Palmer and

Wilson, 1990; Fürsich et al., 1992; Hesselbo and

Palmer, 1992).

7.9.2. Encrusted organic hard substrates

Encrusted shells are very common in the Jurassic.

The encrusters are nearly the same is on the inor-

ganic hard substrates, including foraminiferans,

sponges, serpulids, oysters, and oyster-like bivalves

(e.g., Schindewolf, 1934; Adams, 1962; Pugaczew-

ska, 1970; Hölder, 1972; Taylor, 1979b; Fürsich,

1980; Hary, 1987; Machalski, 1989; Palmer and

Wilson, 1990; Feldman and Brett, 1998; Ziegler

and Michalı́k, 1998). The trepostome bryozoans of

the Palaeozoic have given way to cyclostomes (e.g.,

Taylor, 1979b; Sequeiros and Mayoral, 1980; May-

oral and Sequeiros, 1981; Taylor and Wilson, 1999),

and attaching echinoderms are now reduced to

locally abundant crinoids (e.g., Nicosia, 1986; Rakús

and Zı́tt, 1993). Soft-bodied fossils preserved

through epibiont bioimmuration are becoming

increasingly better known from the Jurassic. These

include ctenostome bryozoans and probable hydroids

on oyster valves (Todd, 1993), and ctenostomes on

wood substrates (Evans and Todd, 1997).

7.9.3. Cryptic hard substrate communities

Jurassic hardgrounds and other lithologic hard

substrates were sometimes partially dissolved,

cracked, dissected, bored, or undercut on the ancient

seafloor, forming a variety of marine cryptic spaces.

The ceilings and walls of smaller cavities, such as

those formed beneath undermined hardground slabs,

on cobble bases or in exhumed burrows, supported a

distinctive cryptic encrusting fauna of sponges, ser-

pulids, oysters, plicatulids, bryozoans, and thecideide

brachiopods (Palmer and Fürsich, 1974; Fürsich and

Palmer, 1975; Kershaw and Smith, 1986; Palmer and

Wilson, 1990; Wilson, 1998; Baker and Wilson,

1999). Cryptic faunas similar to those on inorganic

substrates are found on the interiors of mollusc shells

(e.g., Gaillard and Pajaud, 1971), within caves in coral

reefs (e.g., Taylor and Palmer, 1994), on the under-

surfaces of sponge reefs (Palmer and Fürsich, 1981),

and on coral fronds (Manceñido and Damborenea,

1990; Bertling, 1994).

7.9.4. Bioerosion

Bioerosion also gradually takes on a modern

aspect in the Jurassic (Fürsich et al., 1994). Reefs

show high degrees of bivalve boring, with increasing

levels of ‘‘worm’’ and sponge boring (Pisera, 1987;

Garcia et al., 1989; Bertling, 1999b), and mollusc

shells are bored by polychaetes, sponges and bivalves

(Hillmer and Schulz, 1973; Mayoral and Sequeiros,
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1981). Carbonate hardgrounds are primarily bored by

bivalves (Wilson and Palmer, 1992; see also Neto de

Carvalho and Farinha, 2001). Numerous predatory

borings in Jurassic shells have also been described

(see Harper and Wharton, 2000; Kowalewski et al.,

1998). Limestone rockgrounds are bored by bivalves

and ‘‘worms’’ in Britain (Johnson and McKerrow,

1995; Cole and Palmer, 1999) and Poland (Radwan-

ski, 1959). The first wood-boring bivalves appear in

the Jurassic (Kelly, 1988; Evans, 1999; Schlirf,

2000). Microborings in Jurassic shells and coral

skeletons are well described (Gatrall and Golubic,

1970; Gehring, 1986; Glaub, 1988, 1994; Glaub and

Schmidt, 1994; Glaub and Bundschuh, 1997; Hary,

1987; Kolodziej, 1997; Vogel et al., 1999). Shells

heavily grazed by echinoids can be found in the

Jurassic (Fig. 2E).

7.10. Cretaceous communities

Cretaceous hard substrate communities are similar

in structure to their antecedents in the Jurassic, but

they are even better known because of the wider

variety of hard substrates found encrusted and bored.

The same taphonomic advantages of Calcite Sea

preservation, thick calcitic bivalve shells, and deep

borings, continue into the Cretaceous from the Juras-

sic.

7.10.1. Encrusted inorganic hard substrates

Encrusted and bored cobbles and rockgrounds are

especially common in the Cretaceous. Igneous and

silicic metamorphic rock substrates, which were

exposed in high-energy, shallow marine settings

(Fig. 26), are described as heavily encrusted by

serpulids, oysters, rudistids, spondylids, cyclostome

and cheilostome bryozoans, scleractinian corals, fora-

miniferans, sponges, and thecideide and craniid bra-

chiopods (Záruba, 1948; Pietzsch, 1962; Pianovskaya

and Hecker, 1966; Surlyk and Christensen, 1974; Zı́tt

and Nekvasilová, 1989, 1990, 1991a–c, 1992, 1993,

1994, 1996; Nekvasilová, 1982, 1986; Crampton,

1988; Hercogová, 1988; Nekvasilová and Zı́tt, 1988;

Asgaard and Bromley, 1991; Lescinsky et al., 1991;

Zı́tt, 1992a; Johnson and Hayes, 1993; Johnson et al.,

1996; Sanders, 1997; Stilwell, 1997; Zı́tt et al.,

1997a,b, 1999; Wilson and Taylor, 2001a). Limestone

rockgrounds are encrusted as heavily as their igneous

and metamorphic rock counterparts, and are in addi-

tion bored by bivalves, barnacles, worms, and clionid

sponges (Gonzalez-Donoso et al., 1983; Ellis, 1983;

Mikulás, 1992; Zı́tt, 1992b; Voigt et al., 1994).

Phosphatic rockgrounds, hardgrounds and cobbles

are similarly encrusted and bored (Kennedy and

Garrison, 1975a,b; Delamette, 1989, 1990; Pomoni-

Papaioannou and Solakius, 1991; Bryan, 1992;

Pomoni-Papaioannou, 1994; Zı́tt and Mikulás,

Fig. 26. Reconstruction of the Late Cretaceous rocky shoreline community at Ivö Klack, Sweden. Boulders of Precambrian gneiss are encrusted

by a variety of sclerobionts. These are zoned, with serpulids predominating on boulder undersides and spondylid bivalves on uppermost

surfaces. After Surlyk and Christensen (1974).
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1994). Carbonate hardgrounds are abundant in the

Cretaceous, extending from shallow-water, high-

energy limestones (see Palmer, 1982; Wilson and

Palmer, 1992; Tripathi and Lahiri, 2000) to deep-

water, low-energy chalks (see Bromley, 1967, 1968;

Bromley and Gale, 1982). Encrusting and boring

communities on these hardgrounds are virtually iden-

tical to those on rockgrounds, especially limestone

rockgrounds (Voigt, 1959, 1974; Lewy, 1985; Garri-

son et al., 1987).

7.10.2. Encrusted organic hard substrates

Shell-encrusting faunas in the Cretaceous are

mostly described from large bivalve shells, particu-

larly oysters and inoceramids, as well as belemnite

guards and ammonites. The encrusters include chei-

lostome and cyclostome bryozoans, oysters and ser-

pulids (see, for example, Pugaczewska, 1965; Carter,

1968; Cuffey et al., 1981; Bottjer, 1982; Hattin, 1986;

Lehmann and Wippich, 1995). Cryptic Cretaceous

faunas, as described below, have been found on the

undersurfaces of rudistid bivalves and corals (Housa

and Nekvasilová, 1987), and semi-cryptic encrusting

foraminiferans are known from bryozoan substrates

(Pozaryska and Voigt, 1985). Sponge-on-sponge

encrusting has been described from Cenomanian lith-

istid sponge mounds (Kauffman et al., 2000). Preser-

vation of soft-bodied encrusters by bioimmuration is

becoming increasingly better known from the Creta-

ceous. The bioimmured fossils include hydroids (Tay-

lor, 1988; Jarms and Voigt, 1994), ctenostome

bryozoans (Voigt, 1968b; Todd et al., 1997), and even

seagrass (Voigt, 1981).

7.10.3. Cryptic hard substrate communities

The hard substrate fauna on calcareous cobbles is

often polarised between a high-energy assemblage on

the exteriors and a low-energy assemblage on the

interiors of borings (Wilson, 1986a,b; Pitt and Taylor,

1990). Cryptic faunas, primarily cyclostome and chei-

lostome bryozoans, foraminiferans, serpulids and the-

cideide and craniid brachiopods, are found in

cemented and exhumed thalassinoid burrow systems

(Hofker, 1965; Voigt, 1973b, 1987, 1988).

7.10.4. Bioerosion

Borers include the by now common acrothoracican

barnacles, bivalves, clionid sponges, polychaetes, and

bryozoans (Joysey, 1959; Schlaudt and Young, 1960;

Voigt, 1973a; Ghare, 1982; Henderson and McNa-

mara, 1985; Bien et al., 1999). Drill holes, probably

made by from predatory gastropods, into bivalve and

gastropod shells are described from the Albian by

Taylor et al. (1983). Similar borings occur in Santo-

nian echinoids (Cross and Rose, 1994) and Cretaceous

brachiopods (Harper and Wharton, 2000; Fig. 27).

Some unusual features associated with bioerosion on

Cretaceous shells are the traces of limpet grazing on

ammonites (Akpan et al., 1982; Kase et al., 1994,

1998) and foraminiferans clustered around the papil-

lae of clionid sponges (Bromley and Nordmann, 1971;

Voigt and Bromley, 1974). An interesting controversy

has developed around perforations in the conchs of

Cretaceous ammonites: are they bite marks from

mosasaurs (Kauffman and Kesling, 1960; Tsujita

and Westermann, 2001) or limpet homing scars (Kase

et al., 1998; Seilacher, 1998)? We believe that the case

is stronger for the mosasaur bite interpretation. Micro-

borings are well described from Cretaceous shells

(Taylor, 1971; Glaub and Bundschuh, 1997; Hofman,

1996; Hofman and Vogel, 1992) and even fish teeth

(Underwood et al., 1999). Podichnus, the boring

produced by brachiopod pedicles, is found on some

Cretaceous shell surfaces (Bromley and Surlyk, 1973;

Nekvasilová, 1975, 1976), as is the echinoid grazing

trace Gnathichnus (Breton et al., 1992). Wood-boring

Fig. 27. Location of predatory boreholes in ventral valves (VV) and

dorsal valves (DV) of British Cretaceous brachiopods from the

Maastrichtian of Trimingham, Norfolk, and the Albian/Cenomanian

of Warminster, Wiltshire. After Harper and Wharton (2000).
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bivalves diversify and increase in abundance in the

Cretaceous (Bromley et al., 1984; Kelly, 1988;

Crampton, 1990; Savrda and King, 1993; Mikulás,

1993; Mikulás et al., 1995; Evans, 1999), all forming

borings of the ichnogenus Teredolites.

7.11. Cenozoic communities

Hard substrate fossil assemblages of the Cenozoic

resemble very closely those of the Holocene.

7.11.1. Encrusted inorganic hard substrates

The most prominent Cenozoic hard substrate

communities in the literature are those of carbonate

rocky shores, which are often intensely bored and

occasionally encrusted. These assemblages are well

studied because they provide critical information

about sea level changes in the climatically volatile

Tertiary and Quaternary. Clionid sponge, bivalve,

polychaete worm and barnacle borings have been

well described from carbonate littoral cliffs and

ramps in the Eocene of Poland (Roniewicz, 1970),

the Eocene of Iraq (Hanna and Al-Radwany, 1993),

the Miocene of Poland (Radwanski, 1964, 1965,

1967, 1968a,b, 1969, 1970, 1977; Baluk and Rad-

wanski, 1977), the Miocene of Spain (Martin et al.,

2001), the Miocene of Bulgaria (Koyumdzhsieva,

1976), the Miocene of the Czech Republic (Mikulás

and Pek, 1995), the Miocene of Brazil (Fernandes

and Assis, 1980), the Miocene and Pliocene of

Portugal (da Silva et al., 1999), the Pliocene of

Egypt (Aigner, 1983, but see Hamza, 1983, for

reasons why it may be post-Pliocene), the Pliocene

of southern California (Watkins, 1990a,b), the Plio-

cene of Greece (Bromley and Asgaard, 1993a,b),

the Plio-Pleistocene of Italy (Bromley and D’Ales-

sandro, 1983, 1984, 1987), the ‘‘post-Pliocene’’ of

Egypt (Hamza, 1983), and the Pleistocene of Mex-

ico (Libbey and Johnson, 1997). Rocky shore bor-

ings and encrusters are also described from non-

carbonate substrates, such as Miocene and Pliocene

Gastrochaenolites in slates in Australia (Bolger and

Russell, 1983; note that they termed the borings

Trypanites), vermetid gastropod and bryozoan bio-

stromes on Miocene dacites in Spain (Betzler et al.,

2000), serpulid, bryozoan and foraminiferal bio-

stromes on metamorphic basement in the Miocene

of Austria (Friebe, 1994), pholadid bivalve borings

in Pliocene siltstones of Mexico (Ledesma-Vazquez

and Johnson, 1994), and various Late Pleistocene

encrusters and borers on andesites in Mexico (John-

son and Ledesma-Vázquez, 2001). For a review of

Upper Pleistocene rocky shores, see Johnson and

Libbey (1997); for a review of rocky shores in the

Phanerozoic, see Johnson and Baarli (1999). Asso-

ciated with rocky shores are cobble and boulder

beds, which were often bored and encrusted in the

Cenozoic (e.g., Domènach et al., 2001). Pebbles and

cobbles of limestones and calcareous sandstones are

found heavily bored by bivalves and polychaetes in

the Eocene of Croatia (Babic and Zupanic, 2000). A

late Eocene basaltic pebble and cobble rockground in

New Zealand was described by Lee et al. (1997).

These clasts are encrusted by an extraordinary diver-

sity of skeletal organisms, including coralline algae,

serpulids, bivalves, foraminiferans, brachiopods, and

over 70 species of cheilostome and cyclostome

bryozoans. Carbonate cobbles and boulders are heav-

ily bored by clionid sponges and bivalves in the

Miocene of Spain (Doyle et al., 1998). Cuffey and

Johnson (1997) found andesite pebbles and cobbles

thickly encrusted with a cheilostome bryozoan in

the Pliocene of Mexico, and Kidwell and Gyllen-

haal (1998) described similar cheilostome encrusta-

tion of Pliocene gastropod shells and crystalline

rock clasts. Aguirre and Jiménez (1997) assessed

hard-substrate encrusters and borers from diverse

boulders in the Plio-Pleistocene of Spain. Johnson

and Ledesma-Vázquez (1999) described a fauna of

encrusting oysters, corals and coralline red algae on

andesite and granite boulders in the Pleistocene of

Mexico.

7.11.2. Encrusted organic hard substrates

Encrusters on Cenozoic shells are very common,

but published studies of them are surprisingly few.

Notable examples include foraminiferans on Eocene

shells (Adams, 1962); cyclostome bryozoans on

Eocene bivalves, echinoids and brachiopods (McKin-

ney et al., 1996); bryozoans, barnacles and serpulids

on Oligocene bivalves (Velcescu, 1999); oysters on

Miocene gastropods (Hladilová and Pek, 1998); bryo-

zoans and barnacles on Pliocene gastropods and

bivalves (Boekschoten, 1967); bryozoans, serpulids

and barnacles on Pliocene bivalves (Mayoral and

Reguant, 1995); cheilostome bryozoans on Plio-Pleis-
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tocene disarticulated bivalve shells (Bishop, 1988,

1994); barnacles on numerous Plio-Pleistocene hard

substrates (Donovan, 1988, 1989); calcareous algae,

bryozoans, foraminiferans and serpulids on Pleisto-

cene corals (Martindale, 1992); barnacles, bryozoans,

serpulids and corals on Pleistocene molluscs (Miller

and Alvis, 1986); and cheilostome bryozoans, fora-

miniferans, tubiculous polychaetes and small borings

in Late Cenozoic articulate and inarticulate brachio-

pods (Brunton and Hiller, 1990).

7.11.3. Cryptic hard substrate communities

Curiously, published studies on Cenozoic fossil

cryptic faunas are rare. Martindale (1992) examined

‘‘calcified epibionts’’ in Pleistocene coral reef cav-

ities, and Barrier et al. (1996) described encrusting

communities on the sides and undersides of boulders

in Pleistocene deep-sea environments.

7.11.4. Bioerosion

Bored shells are very common in the Cenozoic,

with the main culprits being clionid sponges, bivalves,

polychaetes, phoronids, ctenostome bryozoans and

acrothoracican barnacles. Notable studies describe

borings in Eocene mollusc shells (Abletz, 1993,

1994), Oligocene–Miocene corals and molluscs from

the West Indies (Pleydell and Jones, 1988), molluscs in

the Polish Miocene (Baluk and Radwanski, 1977) and

Argentine Miocene (Farinati and Zavala, 2002), Mio-

cene capulid gastropod scars on pectinids in France

(Bongrain, 1995), Pliocene polydorid borings in

bivalves in Japan (Watanabe and Noda, 1995), gastro-

pod ‘‘homing scars’’ on other gastropods (Noda,

1991), lithophagid bivalve borings in Eocene and

Oligocene corals of Florida and the Caribbean

(Krumm and Jones, 1993; Krumm, 1999), ctenostome

bryozoan borings in Pliocene bivalve shells in Spain

(Mayoral, 1988a,b), echinoid grazing traces on shells

and limestone pebbles in the Pliocene of Spain (Mar-

tinell, 1982); plus a variety of borings in Pliocene

corals (Bromley and D’Alessandro, 1990) and bra-

chiopods (Taddei Ruggiero, 1999), lithophagid

bivalve borings in Pleistocene corals in the British

West Indies (Jones and Pemberton, 1988), sponge,

bivalve and polychaete borings in Pleistocene corals

on Jamaica (Perry, 2000), sponge, bryozoan, poly-

chaete and gastropod borings in Pleistocene mollusc

shells (Miller and Alvis, 1986), and diverse borings in

Pleistocene brachiopods (Taddei Ruggiero and Annun-

ziata, 2002) and early Holocene bivalve shells (Marti-

nell and Domènech, 1981). The monograph by Radtke

(1991) is a thorough analysis of Palaeogene micro-

borings in a variety of hard substrates. Wood-boring

bivalves reached their full diversity by the Cenozoic

(Hoagland and Turner, 1981; Evans, 1999). Numerous

studies of Cenozoic wood-boring bivalves and their

traces include Palaeocene teredinids in Iraq (Elliot,

1963) and North America (Cvancara, 1970; Savrda,

1991; Savrda et al., 1993), Eocene Teredolites in

England (Hugget and Gale, 1995), and Miocene

wood-boring bivalves in Korea (Noda and Lee,

1989). Predatory borings and examples of durophagy

are commonplace in Cenozoic molluscan shells. Drill-

ing behaviour entered what Kowalewski et al. (1998)

call the ‘‘Cenozoic Phase’’ in the Late Cretaceous.

Gastropods are the primary drillers, and they have a

significant effect on the morphology and distribution

of their prey. Examples of published studies include

gastropod predation on Eocene echinoids (Gibson and

Watson, 1989), stomatopod predation on gastropods in

the Miocene (Baluk and Radwanski, 1996), drilling

predation on Miocene molluscs (Kelley, 1988; Hoff-

meister and Kowalewski, 2001; Verde, 2001), duroph-

agous and drilling predation among Pliocene molluscs

(Boekschoten, 1967), and naticid gastropod drilling of

bivalves, gastropods, and barnacles in the Pleistocene

(Miller and Alvis, 1986).

8. Palaeoecology of ancient hard substrate

communities

8.1. Spatial distributions

Numerous studies have focused on the spatial

distributions of organisms colonising fossil hard sub-

strates ranging in scale from single brachiopod shells

to large expanses of rockgrounds and hardgrounds. It

is a relatively simple matter to map sclerobiont dis-

tributions, especially on flat, two-dimensional surfa-

ces (e.g., Surlyk and Christensen, 1974, Figs. 3 and 4;

Fürsich, 1979, Fig. 17; Nebelsick et al., 1997, Fig.

2A), or to record frequencies of skeletobionts within

defined sectors of regularly shaped biotic substrates,

such as brachiopod shells (e.g., Sparks et al., 1980;

Alvarez and Taylor, 1987; Alexander and Scharpf,
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1990). Statistical tests can then be applied to deter-

mine whether the distribution is random or non-

random (i.e., spaced or clumped), and to quantify

the proportion of the surface occupied by particular

taxa of sclerobionts. Variations in the distributions of

sclerobionts on different surfaces of a single substra-

tum can also be evaluated; for example, quantitative

or qualitative differences in colonisation of upper and

lower surfaces can be investigated.

Aggregation has been shown for putative spirorbid

worms (Nield, 1986b) and the cemented brachiopod

Liljevallia (Nield, 1986a) encrusting Silurian stroma-

toporoids from Gotland, with individual brachiopods

often found to foul the remains of disarticulated

conspecifics from earlier generations. Palmer and

Palmer (1977) mapped the surface of an Ordovician

hardground in Iowa and found strongly clumped

distributions in several of the taxa colonising the

upper hardground surface. In the case of Trypanites,

individual borings were found to be clustered on low

hummocks and present in much lower densities on the

surrounding flat regions (see also Brett and Brook-

field, 1984). The oyster Nanogyra was found to have

a clustered distribution on a Jurassic hardground

mapped by Kershaw and Smith (1986). Clustering

has also been reported by Fürsich (1979) on European

Jurassic hardgrounds.

Gibson (1992) found that the Devonian worm

Spirorbis laxus showed a strong preference for low

areas between grooves on brachiopod shells. Mapping

of skeletobionts on Upper Cretaceous bivalve shells

from Delaware revealed non-random patterns of dis-

tribution, notably with the borings Entobia and Gas-

trochaenolites concentrated on parts of shells of high

relief where sediment cover was likely to be minimal

(Bien et al., 1999). Bishop’s exemplary study of

encrusting bryozoans on the concave inner surfaces

of disarticulated Pliocene bivalves showed that Cri-

brilina puncturata recruited preferentially to what

would have been the highest point of the shell interior

when the shell was resting in a stable, convex-up

position on the sandy sea floor (Fig. 28). This pattern

could be explained by the geonegative bryozoan

larvae creeping up the inside of the shell until they

reached the highest position before becoming fixed

and undergoing metamorphosis. In this location, clog-

ging of the tentacle crowns and mechanical damage

by entrained particles of sediment would be mini-

mised. Sando’s (1984) analysis of epibiont distribu-

tion on horn-shaped rugose corals demonstrated the

preference of most species for concave sides and

distal parts of their hosts. This pattern was taken to

support the notion that such horn corals lived prostrate

on the seabed with the concave surface uppermost.

Bryozoans were recorded by Brandt (1996) as pref-

erentially encrusting the sagittal axis of the semi-

infaunal Ordovician trilobite Flexicalymene. This is

the highest part of the dorsal exoskeleton and was

probably held above sediment surface during life.

Polarisation of sclerobionts between upper and

lower surfaces has been discussed by Palmer and

Fürsich (1981) with particular reference to their own

work on a Jurassic sponge reef in Normandy, France.

Plates of the large demosponge P. magna hosted on

their undersides a diverse encrusting fauna of smaller

sponges, serpulids, cemented bivalves, thecidean bra-

chiopods and bryozoans. In contrast, sponge upper

surfaces were almost entirely encrusted by one

bivalve, Atreta retifera. The main factor inferred by

Palmer and Fürsich (1981) to have caused such strong

polarisation was the difference in sedimentation,

mostly in the form of faecal pellets, with encrusters

on lower surfaces being those unable to cope with

sediment. Other Jurassic sponges show a similar

Fig. 28. Recruitment pattern of the bryozoan Cribrilina puncturata

on the concave interiors of small (27–31 mm high) and large (43–

47 mm high) shells of the bivalve Glycymeris from the Pliocene Red

Crag of Brightwell, Suffolk, England. Note the concentration of

bryozoan colonies in areas of the shell which would have been

highest above the seabed in shells oriented convex upwards. After

Bishop (1988).
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polarisation of encrusting skeletobionts, with the dis-

tributions of thecideans and bryozoans strongly biased

towards undersurfaces (e.g., Pajaud, 1974, Table 1).

Martindale (1992) described Recent and Pleistocene

reefs in Barbados where exposed surfaces have thick

crusts of coralline algae whereas cryptic surfaces are

covered by thin algal crusts, bryozoans, foraminifer-

ans and serpulid worms. The lower, oral surface of

both Miocene and Recent dead echinoid tests is more

densely encrusted than the upper, aboral surface

(Nebelsick et al., 1997).

Hardground faunas also commonly show polarisa-

tion. In Jurassic hardgrounds, the upper surface is

generally dominated by cemented bivalves, erect bryo-

zoans, the crinoid Apiocrinus and the foraminiferan

Nubeculinella, whereas underhangs are colonised by

serpulids, calcareous sponges, thecidean brachiopods

and encrusting bryozoans (Fürsich, 1979). Palmer and

Fürsich (1974) have described a particularly good

example of polarisation on a hardground from the

Bathonian of Bradford-on-Avon, England. The num-

ber of species recorded from the upper surface and

cavity roofs of this hardground is exactly the same but

their identities are mostly different. The biomass on the

upper surface is much greater because many of the

species here are large arborescent animals which fed at

higher tiers (‘silvide layers’) than the exclusively low-

level (‘crustose layers’) suspension feeders on the

cavity roofs. Another British Middle Jurassic hard-

ground containing precementational burrows was

found to show differences between colonisation of

Fig. 29. Reconstruction of an early Cretaceous cobble dwelling

community from Faringdon, England. Robust encrusters, including

the oyster Exogyra and bryozoan Reptoclausa, encrust exposed

outer surfaces, whereas the cryptic habitats provided by borings

(Gastrochaenolites and Trypanites) support more delicate encrus-

ters, such as foraminiferans and the runner-like bryozoan Stoma-

topora. After Wilson (1986a).

Fig. 30. Genesis of ostreoliths (free-lying oyster balls) from the Middle Jurassic Carmel Formation of Utah, USA. Frequent rolling ensured no

faunal polarisation. After Wilson et al. (1998a,b).
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the upper hardground surface, burrow floors and

burrow roofs (Kershaw and Smith, 1986). Oysters

and borings covered the upper hardground surface,

burrow roofs were occasionally densely encrusted by

serpulids, but floors were devoid of encrusters. Exam-

ples of polarisation may also be seen in pebble- and

cobble-encrusting biotas (e.g., Bryan, 1992). Striking

differences in the biotas colonising exposed outer

surfaces of cobbles and cryptic interiors of vacant

borings were recorded by Wilson (1986a) in a study

of hard substrates in a high energy Cretaceous environ-

ment (Fig. 29). The lack of polarisation in other such

biotas has been inferred to indicate rolling of the clasts

(e.g., Lee et al., 1997). Extreme cases of distributional

homogeneity are represented by rolling hard substrates

that became totally encapsulated by a single species of

encrusting sclerobiont. Examples include rhodoliths

formed by coralline algae (e.g., Bosence, 1983), cor-

alliths by corals (e.g., Glynn, 1974; Dullo and Hecht,

1990), ectoproctoliths (or bryoliths) by bryozoans

(e.g., Nebelsick, 1996), and ostreoliths by oysters

(e.g., Wilson et al., 1998a,b; Fig. 30).

Palaeozoic stromatoporoids and similar large, free-

lying colonial organisms may show differences in the

encrusters and borers colonising the exposed upper

and cryptic lower surfaces. Kershaw’s (1980) study of

non-reefal Silurian stromatoporoids from Gotland

revealed the presence of delicate encrusters on the

gently concave undersides, cryptic surfaces made

available for colonisation by sediment scouring.

Upper surfaces contained a profusion of Trypanites

borings, generally more robust encrusters and crinoid

holdfasts (Fig. 31). In another study of Silurian

stromatoporoids, Lebold (2000) found that number

of epibiont occurrences decreased inwardly from the

outer edges of the stromatoporoids on both upper and

lower surfaces.

Concavo-convex Palaeozoic brachiopods often

show different degrees of encrustation of the two

valves. In a Devonian assemblage, Bordeaux and

Brett (1990) found that convex valves, which they

supposed to have rested on the seabed when the host

was alive, were more heavily encrusted than the

concave valves, possibly reflecting reorientation after

death of the brachiopod. An extensive analysis by

Lescinsky (1995) of epibiont distributions on con-

cavo-convex brachiopods (excluding productids) from

the Ordovician and Devonian showed that epibionts

were more common on convex than concave valves.

Many of the brachiopods could be shown to have

been alive when encrusted, leading Lescinsky to

suggest that living brachiopods rested on the seabed

with the convex valve uppermost, the opposite of

conventional wisdom (but see Leighton, 1998; note

also that encrusters commonly grow towards the

brachiopod commissure, supporting a concave-

upwards life orientation as growth downwards

towards the sediment seems less likely). Biconvex

brachiopods may also show differential encrustation

patterns apparently reflecting the life orientation of the

host, as in the case of the Devonian species P.

bownockeri where encrusters are commoner on bra-

chial valves that are thought to have been oriented

upwards after pedicle atrophy (Kesling et al., 1980).

The distribution of Podichnus, a trace fossil made

by brachiopod pedicles, on the surfaces of individuals

of the Carboniferous brachiopod Leiorhynchoidea

was studied by Alexander (1994). Most Podichnus

were located close to the anterolateral incurrent

regions of their hosts and none were observed on

the shell posterior. The beaks of the living host shells

were interpreted to have been buried in sediment and

fouled by larvae that behaved rheotaxically. A com-

parison can be made with trigoniid bivalves, some of

which are semi-infaunal leaving only the posterior-

posteroventral region of the shell exposed for colo-

nisation (Villamil et al., 1998). Watson (1982)

Fig. 31. Polarisation of skeletobionts encrusting and boring the

exposed upper surface and cryptic underside of a hypothetical

stromatoporoid, shown in vertical section, from the Silurian of

Gotland, Sweden. After Kershaw (1980).
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described clustering of attached individuals of the

inarticulate brachiopod Discinisca around the poste-

rior margins of the bivalve Dacryomya from the

Jurassic. The brachiopods are interpreted to have

exploited the feeding currents of their semi-infaunal

hosts by attaching in this location above the sedi-

ment–water interface.

Wignall and Simms (1990) have described an

example of polarisation of xylobionts attached to a

plank of Jurassic driftwood. There is a marked con-

trast between the upper surface of the wood, colonised

by small numbers of oysters and serpulids, and the

lower surface where serpulids in particular are much

more abundant (Fig. 32). Both floating wood and

drifting ammonite shells sometimes preserve sclero-

bionts (bivalves, brachiopods, crinoids and lepado-

morph barnacles) which hung pendently from their

undersides (Wignall and Simms, 1990).

A Cretaceous rocky shore in southern Sweden

contains large boulders of gneiss which show a clear

vertical zonation of encrusters (Surlyk and Christen-

sen, 1974). Boulder undersides are dominated by

serpulids, vertical faces by oysters and an inarticulate

brachiopod (Crania), and upper faces by a cemented

spondylid bivalve (Fig. 26). Barrier et al. (1996)

studied a deep-sea section in the Pleistocene of Italy

containing encrusted boulders. Upper surfaces of

these boulders were found to be either devoid of

encrusters or colonised by isolated gorgonian and

scleractinian corals, whereas the sides of the boulders

were densely encrusted, especially by serpulids and

bryozoans.

Non-random spatial distribution patterns on a

larger scale can be seen in some ancient rocky shore

deposits. This is well illustrated by the study of

Fig. 32. Polarisation of xylobionts attached to a 3.5-m-long piece of

Upper Jurassic driftwood from the Kimmeridge Clay of Dorset,

England. The sparsely colonised upper surface contrasts with the

more densely colonised lower surface where the serpulid worm

Dorsoserpula runcinata is particularly abundant. After Wignall and

Simms (1990).

Fig. 33. Orientations with respect to the vertical of the thecideidine brachiopod Rioultina triangularis and the bivalve Atreta retifera encrusting

fronds of the sponge Platychonia magna from a Middle Jurassic sponge reef at St. Aubin-sur-Mer, Normandy, France. After Palmer and Fürsich

(1981).
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Johnson and Ledesma-Vázquez (1999) on a Pleisto-

cene rocky shore in Mexico where both lateral and

vertical variations are apparent. For example, a high-

energy outer rocky shore habitat contained an upper

zone colonised by Modiolus and a lower zone by

Codakia. A small outcrop of diorite in Inner Mongolia

formed an island in the Silurian sea, fringed by rocky

shoreline deposits which, only on the inferred leeward

side of the island, contain stromatoporoids in growth

position, many cemented directly to the diorite sub-

strate (Johnson et al., 2001).

8.2. Orientations

Non-random orientation of sclerobionts on hard

substrates is often evident. Alignment of encrusters

may occur with respect to: (1) other encrusters; (2)

way-up; (3) topological features on the surface of the

substrate; and (4) in biotic substrates, functionally

important morphological features of biotic substrates.

Strongly preferred orientations with respect to the

vertical were found, in the study mentioned above

(Section 8.1), by Palmer and Fürsich (1981) for a

bivalve (A. retifera) and a brachiopod (Rioultina

triangularis) encrusting inclined plates of the Jurassic

reef-building sponge P. magna. In both cases, the

dorsoventral axis pointed downslope (Fig. 33),

thereby decreasing the likelihood of sediment entering

the valves. Fürsich (1979) reported a similar down-

slope orientation for Atreta on inclined hardground

surfaces (e.g., pseudoanticlines formed by warping

during cementation), whereas flat hardgrounds usually

failed to show any evidence of a preferred orientation

in this bivalve. Another cemented bivalve, Spondylus,

shows a clear pattern of orientation on Cretaceous

rockgrounds and boulders in Bohemia (Zı́tt and Nek-

vasilová, 1994, 1996), with umbones positioned in the

upper left quadrants of the encrusted substrates.

Boulders in Sweden colonised by Late Cretaceous

encrusters include inarticulate brachiopods showing

strong downslope orientation (Surlyk and Christen-

sen, 1974). Jurassic thecidean brachiopods cemented

to conical corals are oriented with their commissures

directed towards the base of the corals (Housa and

Nekvasilová, 1987; Fig. 34). Downslope orientation

has also been noted in the bivalve Placunopsis mater-

cula cemented to the large bivalve Plagiostoma

[Lima] lineata in the German Triassic (Seilacher,

1954), and in the inarticulate brachiopod Orbiculoi-

dea papyracea pedically attached to ammonites from

the German Lower Jurassic (Seilacher, 1982). Perhaps

the oldest occurrence of downslope orientation,

termed ‘slopelet line docking’ by Struve (1980),

occurs in the Silurian brachiopod Liljevallia gotland-

ica encrusting the undersides of stromatoporoids

(Nield 1986a).

Upward growth of encrusters on dead echinoid

tests has been observed by Nebelsick et al. (1997),

while diverse orientation patterns on tests from the

Cretaceous were shown by Schmid (1949). A bimodal

pattern was found by Simms (1986) for the orientation

of small cemented bivalves (Plicatula) encrusting the

stems of Jurassic Chladocrinus: most of the bivalves

had their commissures facing towards or away from

the crown of the host crinoid, with fewer oriented

laterally.

In Palaeozoic orthoconic nautiloids, Baird et al.

(1989) documented growth of the colonial problem-

Fig. 34. Orientation of thecideidine brachiopods cemented to a

Jurassic coral from the Tithonian of Stramberk, Czech Republic.

Arrows point posteriorly along the median septum. After Housa and

Nekvasilová (1987).
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aticum Reptaria towards the shell aperture, and align-

ment of the monticules of the bryozoan Spatiopora

parallel to the long axis of the cephalopod shell. These

patterns were interpreted as responses of the encrus-

ters to water flow induced by swimming of living

hosts.

Clustered individuals of the edrioasteroid Staltico-

discus milleri attached to cobbles in the Carboniferous

of England exhibit a parallel orientation of their

anterior–posterior axes at 90j to the inferred ambient

current direction (Smith, 1983). Unlike most encrust-

ing sclerobionts, edrioasteroids were not strictly

immobile but could apparently swivel and reorient

themselves after attachment, raising the possibility of

an active response to changes in current direction or

host orientation.

Cornulitids frequently grow in subparallel or fan-

like orientations towards the commissures of the

brachiopods or bivalves which they encrust, often

following the grooves in the shell surfaces (e.g.,

Schumann, 1967; Morris and Rollins, 1971; Hurst,

1974; Fig. 35). The usual explanation for this pattern

is that the cornulitids benefited from the feeding or

respiratory currents of the living host.

Duringer (1985) documented radially oriented

growth in densely spaced populations of the Triassic

encrusting bivalve Placunopsis ostracina. Four-leafed

clover patterns (Fig. 36), in which the umbones of

four individuals are touching, were found to be

common. It was inferred that such radial patterns

developed when the density of larval recruits was

high because the bivalves reoriented themselves to

maximise perimeter/area ratio. In contrast, low recruit-

ment densities caused bivalves to become oriented

with respect to ambient current flow, thereby resulting

in parallel alignment.

Non-random distributions and orientations of skel-

etobionts on Cretaceous Inoceramus were inferred by

Hattin (1986) to indicate that living individuals of

these large bivalves formed important habitat islands

on a soupy sea floor. Elongation of encrusting oysters

towards the commissure of the host, and alignment of

acrothoracican barnacle borings along growth lines of

the host, were both observed.

8.3. Competition

Direct competition among species can be difficult

enough to demonstrate among living species (see

Section 6.2), and it is often nearly impossible to

Fig. 36. Four-leaved clover pattern of growth in the cemented

Triassic bivalve Placunopsis ostracina from the Muschelkalk of

eastern France. After Duringer (1985).

Fig. 35. Growth of cornulitids between the folds and towards the anterior commissure of the host brachiopod Mucrospirifer reidfordi from the

Upper Devonian of Canada. After Schumann (1967).
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Fig. 37. Scanning electron micrographs showing examples of skeletal overgrowths and fouling among Cenozoic bryozoans and other encrusters.

(A–E) Pliocene, Nukumaru Limestone, Nukumaru Beach, nr Wanganui, New Zealand. (A) cheilostome bryozoan Chaperiopsis (bottom)

overgrowing another cheilostome Micropora (top), � 28. (B) Cyclostome bryozoan Liripora fouling the surface of cheilostome bryozoan

Emballotheca, � 33. (C) Cheilostome bryozoan Escharoides (top left) overgrowing cyclostome bryozoan Liripora (bottom right), � 13. (D)

Internal surface of cemented valve of disarticulated oyster fouled by Spirorbis (centre) and cheilostome bryozoan Celleporella (lower right), and

overgrown by cyclostome bryozoan Desmediaperoecia (upper left) and a cheilostome (top), � 13. (E) Cyclostome bryozoan Desmediaperoecia

(top) overgrowing cheilostome bryozoan (bottom), � 18. (F) Interactions between three genera of cheilostome bryozoans encrusting a shell;

Aplousina (lower left) is beginning to overgrow Escharina (top centre) and Puellina (right), whereas the contact between Escharina and

Puellina suggests a stand-off with neither genus overgrowing the other; � 5; Pliocene, Waccamaw Formation, Shallotte, nr Wilmington, North

Carolina, USA.
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deduce in most fossil assemblages. There are distinct

advantages, however, in studying competition on hard

substrate communities. One of the primary limiting

resources for these communities was often living

space, and sessile skeletal encrusters, and to some

extent borers, can show competitive interactions

through overgrowths, raised margins, changed growth

directions, and other features preserved in fossils

(Figs. 37 and 38). Encrusting and boring communities

have an easily discernible stratigraphy (see Section 3)

where we can at least establish a sequence of biotic

and physical events. The actual timing of these events,

though, and whether they represent living interactions

are the primary difficulties palaeontologists face when

attempting to sort out ancient competitive and succes-

sional systems.

In this review of competition in the fossil record of

hard substrate communities, we are not including

various symbiotic relationships such as those noted

between Silurian corals and stromatoporoids (Ker-

shaw, 1987; Young and Noble, 1989), Devonian

worms, chaetetids and stromatoporoids (Zhen and

West, 1997), Cretaceous worms and scleractinian

corals (Voigt and Lafrenz, 1973), Mesozoic and Ter-

tiary hydroids and serpulids (Scrutton, 1975), Mio-

cene polychaetes and scleractinian corals (Baluk and

Fig. 38. Scanning electron micrographs of skeletal overgrowths among fossil bryozoans and other encrusters. (A) Reciprocal overgrowth at the

junction between colonies of two cheilostome bryozoans, Floridina (top) and Trypostega (bottom); left of the arrow Floridina overgrows

Trypostega whereas right of the arrow Trypostega overgrows Floridina, a relationship which proves that the two bryozoans were alive at the

same time; � 10; Pliocene, Waccamaw Formation, Shallotte, nr Wilmington, North Carolina, USA. (B–D) Pleistocene, Kupe Fm, Mowhanau,

nr Wanganui, New Zealand. (B) Arrow indicating position of non-preserved sclerobiont, around part of the perimeter of which two cheilostome

bryozoan colonies (top right and top left) have formed a rampart, � 13. (C) Cheilostome bryozoan Ellisina (top right) progressively

overgrowing individuals of Spirorbis, � 18. (D) older part of the same colony of Ellisina with a Spirorbis almost entirely overgrown apart from

the tube aperture, suggesting that the worm may have remained alive (‘epizooism’), � 28.
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Radwanski, 1997), and Neogene scleractinian corals

and cheilostome bryozoans (Cadée and McKinney,

1994). We are also not including intraspecific com-

petition such as that described by Kidwell and Gyl-

lenhaal (1998) on Pliocene ectoproctoliths.

The most common spatial relationship between

potentially competing encrusters on hard substrates is

the growth of one over the other. The dilemma is

trying to deduce whether the two organisms were

alive at the time one overgrew the other (live–live

interaction), and thus potentially competitive.

McKinney (1995a,b) and Fagerstrom et al. (2000)

have each provided useful discussions of the ways in

which live–live interactions can be discerned in

fossil material. The most conclusive evidence con-

sists of: (1) changes in the skeletons (such as raised

margins, spine development, or altered growth direc-

tion) at the margins where the organisms interacted,

followed with lesser confidence by (2) skeletal

modifications in only one of the organisms, and (3)

lack of erosion or sediment between the top of the

overgrown and base of the overgrower. Reciprocal

overgrowth (e.g., Lescinsky, 1993, Figs. 2F and

38A) is another sure indication that both organisms

were alive but such ‘draws’ provide no information

on competitive dominance unless the areas over-

grown by each competitor are compared. Extant hard

substrate encrusters are known to compete for space

without leaving clear evidence for it in their skel-

etons (Fagerstrom et al., 2000), dead encrusters can

have pristine skeletons when encrusted by later

organisms, and overgrowing encrusters can develop

skeletal modifications to the physical characteristics

of the substrate they are covering that do not indicate

a live– live interaction. Unequivocal competitive

interactions among encrusters are seldom demonstra-

ble in the fossil record; see the arguments in

McKinney (1995a,b) and the study of recent epi-

bionts on live and dead scallop shells by Lescinsky

(1993). Fagerstrom et al. (2000, p. 20) reached a

similar conclusion: ‘‘Prudence suggests that without

skeletal distortion in one or both competitors, live–

dead association is more probable than competition.’’

This may be true for encrusters on long-lived sub-

strates but it is less likely for more ephemeral

substrates where colonising organisms have roughly

equivalent lifespans to the age of the substrate.

Statistically significant overgrowth patterns where

some taxa are consistently more overgrown than

others may be used in a probabilistic way to deter-

mine competitive dominance (McKinney, 1995b)

even if specific interactions cannot be categorised

with certainty as either live–live or live–dead. This

is because overgrowth of dead organisms adds noise

to the data that can diminish the degree of domi-

nance of one taxon over another but does not reverse

the direction of competitive dominance.

Three studies provide good evidence of competi-

tion in the fossil record. Liddell and Brett (1982)

studied the interactions of Silurian bryozoans on the

calyces of crinoids. Inflated growth forms and

upturned margins among these bryozoans are an

Fig. 39. Skeletal overgrowths observed among four common

encrusters on shells of the brachiopod Anathyris phalaena from

the Lower Devonian of NW Spain. Arrows point towards the

overgrown taxon, and numbers indicate the observed frequency of

overgrowth. After Alvarez and Taylor (1987).

Fig. 40. Constancy through geological time in the proportion of

cheilostome overgrowths of cyclostomes as shown by data from 24

fossil assemblages. After McKinney (1995a).
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indication of direct competition for space. Taylor

(1984b) demonstrated again with Silurian encrusting

bryozoans a variety of growing-edge effects as the

results of competition. Thirdly, Lescinsky (1993), in a

study of Carboniferous epibionts on brachiopods,

showed a few competitive interactions among

encrusting bryozoans and worms. Several other stud-

ies have recorded skeletal overgrowths between spe-

cies (Palmer and Palmer, 1977; Taylor, 1979b;

Alvarez and Taylor, 1987; Hollingworth and Wignall,

1992) or stand-offs (Alexander and Scharpf, 1990;

Kidwell and Gyllenhaal, 1998). Network diagrams

can be used to express the realationships found (Fig.

39). Wilson (1998) studied overgrowths among spe-

cies encrusting Jurassic hardground cavities and

found an inverse correlation between overgrowth

index and the coverage of substrate space, a relation-

ship also seen in some modern communities (see

Section 6.2).

A unique and outstanding study of long-term com-

petition among encrusters is McKinney’s (1995a)

analysis of overgrowths between cyclostome and chei-

lostome bryozoans. McKinney looked at 24 Albian–

Holocene assemblages, each with 50 or more skeletal

overgrowths involving a cyclostome and a cheilos-

tome, and found that, regardless of geological age,

cheilostomes won approximately two-thirds of their

encounters with cyclostomes (Fig. 40). Therefore,

there has been no escalation in the competitive dynam-

ics between these two clades through 100 million years

of geological time.

Putative adaptations for dealing with competition

for substrate space are mentioned above (Section 6.2).

Two basic strategies may be distinguished: confronta-

tional and fugitive. An example of these contrasting

strategies can be seen among Jurassic encrusting

cyclostome bryozoans. Most of these belong either

to the confrontational form-genus Berenicea, or the

fugitive genus Stomatopora (Taylor, 1979a; Bertling,

1994). The former has compact, subcircular colonies

with a circumferential growing edge able to engage

spatial competitors and potentially overgrow them,

whereas the latter has branching colonies which bud

zooids over a wide area of the substrate but are prone

to overgrowth of the undefended branch flanks. A

runner-like, fugitive colony-form is also epitomised

by the Palaeozoic tabulate coral Aulopora (see Helm,

2000).

8.4. Succession

‘‘Succession’’ in palaeoecology is used for two

different concepts. One is a biologically controlled

(or autogenic) ecological succession in which the

species composition and structure of a community

changes over time within the same physical environ-

ment. The classic succession on a cleared field, from

grasses to forest, represents an autogenic succession if

the physical environment has remained the same.

Autogenic successions are controlled by recruitment,

competition, predation, etc. A physically controlled

(allogenic) succession is one in which the community

changes in response to a changing environment. The

succession of an intertidal community into a subtidal

one with a gradually increasing sea level would be an

example of allogenic succession. Recruitment and

competition still play strong roles in allogenic succes-

sions, but the primary controls are environmental

changes.

Autogenic successions are very difficult to dem-

onstrate in the fossil record because we can rarely be

certain that the environments have remained constant

(see McCall and Tevesz, 1983; Walker and Diehl,

1986, for discussions). Fossil assemblages on hard

substrates, however, are again useful because these

Fig. 41. Disturbance and community development on cobbles from

the Upper Ordovician Kope Formation of Kentucky, USA. Unless

cobbles are disturbed by overturning, a competitive dominant, the

bryozoan Amplexopora, eventually monopolises substrate space.

After Wilson (1985).
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organisms have been preserved in situ and often with

some aspects of colonisation sequences through over-

growths. Wilson (1985) demonstrated an autogenic

succession of encrusters on Ordovician cobbles sitting

on top of a muddy substrate (Fig. 41). The cobbles

were occasionally overturned by storm currents, kill-

ing the encrusters on the top surfaces and exposing

new space for encrusters on the bottoms. The result

was a collection of cobbles with various frequencies

of overturning, and thus various stages of an auto-

genic succession of encrusters. In this case, runner-

type cyclostome bryozoans like Corynotrypa and

Cuffeyella were the opportunistic early colonisers,

followed by cornulitids, crinoids, ceramoporid bryo-

zoans, and a final massive trepostome bryozoan

(Amplexopora) which was apparently the climax

form, or at least the last preserved climax form.

Working with the epibiota on the Devonian bra-

chiopod Spinocyrtia iowensis, Ager (1961) was able

to determine a colonisation sequence of the worm

Spirorbis followed by the colonial problematicum

Hederella, then the sheet-like bryozoan Paleschara,

and finally the tabulate coral Aulopora. Some Tuni-

sian Jurassic ammonites encrusted by foraminiferans,

worms and crinoid holdfasts were later bored by

acrothoracican barnacles, as indicated by the occur-

rence of borings into articulation facets of disarticu-

lated, dead crinoids (Rakús and Zı́tt, 1993). The

epibionts of Jurassic crinoids from the Crimea showed

a typical colonisation sequence of small oysters,

followed in turn by serpulid worms, bryozoans,

sponges and corals, and algal crusts (Klikushin,

1996). In a study of encrusted shells of the bivalve

Pycnodonte from the Cretaceous of Arkansas, Bottjer

(1982) inferred a colonisation sequence of: (1) the

worm boring Trypanites plus Pycnodonte juveniles;

(2) the sponge boring Entobia plus the foraminiferan

Bullopora; and (3) cheilostome bryozoans. Hattin and

Hirt (1986) studied the epibionts attached to Turonian

Inoceramus shells from Kansas and were able to infer

a sequence of colonisation of: (1) bivalves (Pseudo-

operna and ?Placunopsis); (2) serpulids; (3) scalpel-

lomorph barnacles; and (4) acrothoracican barnacles

and bryozoans. Mayoral and Reguant’s (1995) study

of Pliocene bivalves from Spain showed how the

predominantly infaunal bivalve Glycymeris insubrica

was colonised during life by worms, producing the

ichnogenera Caulostrepsis and Maeandropolydora,

followed after death by bryozoans and boring sponges

(Entobia), and finally a more diverse community

containing bryozoans barnacles, serpulids, and boring

bivalves and phoronids.

Allogenic successions are much more common in

the fossil record of hard substrate communities. For

example, hardground communities can develop

through several stages in response to early diagenetic

cementation of the substrate (Goldring and Kazmierc-

zak, 1974; Gruszczynski, 1979, 1986; Walker and

Diehl, 1986; Goldring, 1995), cave faunas can change

over time with increasing sedimentation and restric-

tion of the environment (Wilson, 1998), and reefs and

bioherms respond to changes in sea levels and climate

(Toomey and Cys, 1979; Crame, 1980; Williams,

1980; Nakazawa, 2001). Physical changes primarily

control these successions, but biotic interactions such

as larval recruitment strategies and competition are

still critical. The complex nature of the physical and

biological factors, though, makes it nearly impossible

to distinguish one set from another. The interaction of

colonisation and physical abrasion on bored clasts has

been modelled by Babic and Zupanic (2000).

8.5. Bioimmuration, xenomorphism and epibiont

shadowing

Bioimmuration, preservation resulting from organic

overgrowth, provides a window into the soft-bodied

and weakly mineralised components of hard substrate

communities which are normally not fossilised (see

reviews by Taylor, 1990; Taylor and Todd, 2001). The

most basic type of bioimmuration—an epibiont mould

bioimmuration—consists of an imprint of an over-

grown epibiont on the underside of the organism that

lived on the same substratum and overgrew it (Fig. 42),

for example, a hydroid impression on the attachment

scar of an oyster. Epibiont cast bioimmurations may

be produced if the epibiont mould between the over-

growing organism and its substrate is infilled with

diagenetic minerals. Fouling organisms with hard

skeletons may carry a mouldic impression of the

substrate on their attached surfaces, known as a

substratum bioimmuration. A final type of bioimmu-

ration is a bioclaustration (Palmer and Wilson, 1988)

or pseudoboring, formed when a soft-bodied fouling

organism becomes embedded in the skeleton of its

host. In contrast with other bioimmurations, bioclaus-
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trations have sometimes been given ichnotaxonomic

names. For example, Radwanski and Baluk (1997)

erected the ichnotaxon Clavatulicola evaephilus for

bioclaustrational furrows in the Miocene gastropod

Clavatula which were formed in response to the

presence of a soft-bodied symbiont. Parabolic embed-

ment pits—Tremichnus (Brett, 1985; Feldman and

Brett, 1998)—in crinoids are also bioclaustrations.

Chatterton (1975) described, as Burrinjuckia spirifer-

idophilia, open-ended tubes formed within the bra-

chial valves of some Devonian brachiopods

apparently in response to the presence of a suspen-

sion feeding symbiont. These too can be classified as

bioclaustrations.

Attachment areas of oysters, bryozoans, foramin-

iferans and serpulids may carry impressions of plant

substrates that prove their origin as phytobionts

( = epiphytes) (e.g., Langer, 1993). Sclerobionts that

colonised diagenetically unstable substrates, notably

aragonitic mollusc shells, or substrates prone to decay

(e.g., wood; Evans and Todd, 1997), otherwise lost to

the fossil record, can also be preserved if bioimmured.

However, most interest in bioimmuration has focused

on soft-bodied epibionts. Examples of bioimmured

ctenostome bryozoans, hydroids and pterobranch

hemichordates (Rhabdopleura) are common in the

Jurassic and Cretaceous rocks of northwest Europe

particularly (see Taylor, 1990; Todd et al., 1997).

These colonial animals make good subjects for bio-

immuration because their small-sized zooids can be

rapidly overgrown before post-mortem deterioration.

Each bioimmured fossil records the condition of the

colony over a period of time as zooids become

progressively overgrown. Upright structures, such as

peristomes and erect branches, are flattened down

against the substrate parallel to the local direction of

overgrowth. Permineralisation of soft parts by pyrite

or phosphate often accompanies bioimmuration (e.g.,

Todd and Taylor, 1992), possibly facilitated by the

enclosed microenvironment of the sandwiched epi-

biont. Exceptional preservation of articulated animals

(stalked barnacles) and soft parts of skeletonised

organisms (e.g., brachiopod setae) may also result

from bioimmuration (Taylor and Todd, 2001).

Because the process of bioimmuration resembles the

action of a moving flatbed scanner in making an

incremental recording, it is potentially possible to

use bioimmurations to investigate short-term succes-

sion on hard substrates: the youngest parts of the

bioimmurer sample the sclerobiont community at an

earlier successional stage than the older parts.

Xenomorphism is the term given to replication of

substrate topography on the upper surface of encrus-

ters. Most examples of xenomorphism have been

described in cemented bivalves (e.g., Lewy, 1972;

Hary, 1987; Lehmann and Wippich, 1995; Dambor-

enea, 2002, text-fig. 45) and brachiopods (e.g.,

Richards, 1972, pl. 1, Figs. 2 and 3; Sparks et al.,

1980, pl. 11, Fig. 4; Baird and Brett, 1983, Fig. 4F;

Bassett, 1984). In the case of diagenetically unstable

aragonitic substrates, the xenomorph may represent an

identifiable replicate of the substrate. Xenomorphism

in bivalved encrusters is dependent on the upper valve

maintaining a constant distance during growth from

the lower, cemented valve so that a tight fit between

the valves is conserved at the shell margin. Therefore,

any features on the substrate which are replicated in

Fig. 42. The formation of bioimmured fossils as illustrated

diagrammatically by the overgrowth of a soft-bodied, runner-like

bryozoan (centre diagram). The bioimmuring organism (e.g., an

oyster) carries a mould bioimmuration of the bryozoan on its

underside (upper diagram). A cast bioimmuration may be left

adhering to the substrate after removal of the bioimmurer if the

mould of the bryozoan has been filled by diagenetic minerals (lower

diagram). After Taylor and Todd (1990).
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negative by the lower valve are passed on in positive

relief to the upper valve.

The term ‘epibiont shadow’ was introduced by

Palmer et al. (1993) for the subtle outlines of soft-

bodied encrusters which occasionally remain on the

substrate surface after loss of the encrusters them-

selves. These result from the effects that the encrusters

have on the substrates they cover. Epibiont shadows

of soft-bodied ctenostome bryozoans from the Upper

Jurassic are formed because the bryozoan zooids

protected the shell substrate beneath them from attack

by microendoliths whereas the shell all around the

zooids was bored and is noticeably whiter in the

fossils. Small-scale erosion of the bored shell may

leave the shadows upstanding.

8.6. Taphonomy

Palaeontologists should always be aware of those

parts of the record they are not seeing. Rasmussen and

Brett (1985) examined the modern cryptic encrusting

biotas in submarine caves and on the undersides of

ledges offshore of St. Croix, Virgin Islands. They

showed that, at least with modern communities, large

taphonomic losses occur on the way to preservation.

Up to 85% of original area covered is lost, and up to

62% of original species richness. It is not only the

non-preservation of soft-bodied forms which accounts

for this deficit, but later successional forms may erase

traces of the earlier colonists. In addition, the early

successional species in this community tended to have

mineralised skeletons whereas later species did not.

Therefore, the fossil record would be biased towards

the former. A taphonomic study by Zuschin et al.

(1999) (see also Zuschin and Pervesler, 1996) in the

Adriatic demonstrated the expected loss of organisms

such as ascidians, anemones and demosponges in the

death assemblage, as well as vagile forms with articu-

lated skeletons. Another study in the Adriatic (Nebel-

sick et al., 1997) modeled the taphonomic processes

effecting the tests of dead echinoids and noted how

soft-bodied hydrozoans, sponges and ascidians would

be lost to the fossil record.

Of the 30 invertebrate and algal species inhabiting

a modern rocky intertidal environment in Mexico,

70–80% were found to have the requisite mineralised

skeletons to become fossilised (Hayes et al., 1993). In

the case of encrusted pectinid shells collected from

near San Juan Island, Washington, Lescinsky (1993)

found that external surfaces of live bivalves were

dominated by sponges and agglutinated worms, both

having a low preservation potential, plus some bar-

nacles. Little indication of these symbionts is likely to

survive into the fossil record. By contrast, the encrust-

ing biota on dead shells consisted predominantly of

serpulid worms and bryozoans having good preserva-

tional potentials. McKinney (1996) studied encrusters

on disarticulated bivalve shells from Bogue Sound,

North Carolina, recording the species identifiable

before and after hypochlorite treatment which

removed those species not expected to survive fossil-

isation. Bleaching reduced the 23 taxa to 8, with the

loss not only of encrusting sponges but also of erect

species which formed the highest tiers of suspension

feeders in the living community. The area of valve

encrustation declined by up to 25%.

Phases of erosion which commonly effect hard-

grounds will remove encrusters with thin skeletons

and truncate borings (Fürsich, 1979). Encrusting

bivalves and brachiopods normally lose their upper

valves after death (e.g., Zı́tt and Nekvasilová, 1996),

taking with them any fouling organisms. Babic and

Zupanic (2000), in a study of Croatian Eocene clasts,

have highlighted the erosional loss of shallow borings

in high-energy environments and its effect on the

preserved endolithic assemblage.

Very little experimental taphonomy has been con-

ducted using epibionts, although an abstract by

Michel (1986) did report differential loss of particular

groups when subjected to physical and chemical

destruction.

9. Phanerozoic trends in hard substrate

communities

Since hard substrate communities have a fossil

record extending far back into the Precambrian, we

can outline a series of trends in their composition and

ecology. There are distinct advantages for this type of

analysis with these fossils because they are almost

entirely in situ, at least with respect to their substrates.

The attached skeletal fossils retain their spatial rela-

tionships within the community, although their tem-

poral relationships are often in doubt (see, for

example, Wilson and Taylor, 2001a). The encrusted
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and bored hard substrates themselves are generally

consistent through the Phanerozoic, although they

change in relative abundances. Most of the hard

substrate communities in the fossil record are on

calcareous shells and carbonate hardgrounds, with a

small number on siliciclastic and silicate rockgrounds,

wood, and (rarely) methane hydrate-cemented sedi-

ments.

9.1. Bioerosion intensity and style

The first recorded bioerosion consists of very small

cavities excavated by microbial endoliths in ooids and

stromatolites. They are in many cases almost identical

to the microborings produced by modern bacteria

(Golubic et al., 1975). These earliest endoliths were

at least in part photosynthetic like their recent counter-

parts, and so they favoured exposed substrates in

shallow waters. Microboring communities change in

composition over time, but they retain a remarkable

uniformity in their physical expression and ecological

requirements.

Macroborings, on the other hand, have changed

dramatically through the Phanerozoic. Domichnial

(dwelling) borings appear in Lower Cambrian as

the simple, cylindrical Trypanites, which was prob-

ably produced by many worm-like organisms over

time (Kobluk et al., 1978). These borings are the

most common in the Palaeozoic, penetrating calca-

reous shells, hardgrounds, and carbonate rockgrounds

(Palmer, 1982; Wilson and Palmer, 1992). Other

borings appear in the Palaeozoic, such as Petroxestes

(Fig. 3A), Palaeosabella (Fig. 3B), Rogerella, Gas-

trochaenolites (Fig. 3D) and various ‘‘sponge’’ bor-

ings, but they are rare. Mesozoic macroboring is very

different in intensity and style. Bivalve borings,

especially Gastrochaenolites, are abundant on carbo-

nate hard substrates from the Jurassic to the Recent,

as are sponge borings such as Entobia and grazing

traces like Gnathichnus. Borings become so common

that the substrates themselves are rapidly degraded,

especially in tropical and subtropical environments

(see for Jurassic examples Andersson, 1979; Chudzi-

kiewicz and Wieczorek, 1985; Gruszczynski, 1986;

Garcia et al., 1989; Fürsich et al., 1994; Wilson and

Palmer, 1994; Bertling, 1999b). This infaunalisation

on hard substrates may be a response to the rise of

predators known as the Mesozoic Marine Revolution

(Vermeij, 1977, 1978, 1987). The equivalent infaun-

alisation within soft substrates has been thoroughly

discussed (Stanley, 1977; Thayer, 1979, 1983), but

this hard substrate pattern in the Mesozoic needs

further elucidation (Morton, 1990; Wilson and

Palmer, 1992). In the Cenozoic, bioerosion rates are

especially high on carbonate substrates, with the

main borers being bivalves (Kleemann, 1996),

sponges (see Bromley and D’Alessandro, 1984) and

polychaete worms (see Bromley and D’Alessandro,

1983). Perry and Bertling (2000) examined Mesozoic

to Recent trends in macroboring in coral reefs,

concluding that overall intensity of boring has

increased through time. They also described marked

changes in the composition of boring communities:

bivalves and ‘worms’ initially dominated (at least

until the Late Cretaceous) but were of secondary

importance to sponges from the Early Miocene

onwards. For additional information on marine bio-

erosion through the Phanerozoic, see Bromley (1994)

and Kiessling et al. (1999).

Putative predatory borings are a more complex

story through time because they are not always clearly

distinguished from other borings. The first reported

predatory borings are simple round holes in Cloudina

skeletons of the Late Precambrian (Bengtson and

Zhao, 1992). There are similar holes in Cambrian

brachiopod shells which appear to be predatory (Con-

way Morris and Bengtson, 1994). It has proven very

difficult to distinguish predatory from domichnial

borings in the Ordovician (see Richards and Shabica,

1969; Kaplan and Baumiller, 2000; Wilson and

Palmer, 2001). In fact, the earliest post-Cambrian

predatory borings may be the work of naticid-like

gastropods in the Devonian (see Leighton, 2001).

Predatory borings increase in abundance and diversity

in the Carboniferous (Baumiller et al., 1999), a trend

which continues through the Mesozoic and Cenozoic.

For a review of Phanerozoic predatory boring and the

associated controversies, see Kowalewski et al.

(1998), Kowalewski (2000), Harper et al. (1998,

1999), Hoffmeister and Kowalewski (2001), and

Leighton (2001).

9.2. Encrusters

As would be predicted, encrusting assemblages on

organic and inorganic hard substrates increase dra-
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matically in diversity, niche utilisation, and abundance

from the Cambrian into the Ordovician, and even

more so from the Early to the Middle Ordovician

(Palmer, 1982; Palmer and Wilson, 1992; Lescinsky,

2001). Thereafter, encrusters show two distinct peaks

of diversity and abundance. Those on upward-facing,

shallow water carbonate hardgrounds peaked in diver-

sity and abundance in the Late Ordovician and the

Jurassic–Cretaceous (Palmer, 1982; Palmer and Wil-

son, 1992). These peaks are coincident with the

bimodal abundance of hardgrounds during ‘‘calcite

sea’’ times and so may represent a significant sam-

pling bias. Encrusters on organic hard substrates peak

in species richness during the Silurian–Devonian and

the Jurassic. Lescinsky (2001) points out that this

pattern may be biased by preferential description of

high-diversity assemblages during these intervals, but

nevertheless it accords with our experience in the

field. More work is necessary to better delineate these

diversity patterns. We especially need detailed studies

of encrusting assemblages in the Carboniferous, Per-

mian and Triassic.

Carbonate hardground encrusters show an increase

in external skeletalisation from the Palaeozoic through

the Mesozoic (Palmer, 1982; Wilson and Palmer,

1992). Examples include trends in the dominant

bryozoans (from groups like trepostomes, where the

colony surface was invested by soft tissues, to most

cyclostomes and cheilostomes with mineralised outer

walls), in the reduction of adpressed echinoderms

such as edrioasteroids, and in the appearance of

abundant and well-skeletalised encrusting bivalves,

brachiopods and serpulid worms in the Mesozoic.

This increase in skeletal protection may have been a

response to rising levels of predation, especially dur-

ing the Mesozoic Marine Revolution. Hardground

communities also show a rough increase in tiering,

especially if borings are considered. Later Palaeozoic

hardgrounds, for example, have more erect bryozoans

such as fenestrates than their middle and early Palae-

ozoic equivalents. Jurassic and Cretaceous hard-

grounds, though, have fewer erect forms and tend to

be dominated by low encrusters like oysters and

plicatulids. These same hardgrounds, however, also

often have deeper tiers of diverse borings than any

preceding them.

Lescinsky (2001) has provided the best summary

of historical trends in epibiont communities, most of

which are consistent with those outlined above on

hardgrounds. Epibionts on shells are better known

than hardground encrusters in the crucial intervals of

the later Palaeozoic–early Mesozoic and the Ceno-

zoic. Lescinsky (1997), for example, showed that with

careful study of many bulk samples, diversity trends

can be delineated. He postulated that peaks in epibiont

diversity may be related to high levels of nutrient

supply and hence productivity. Taylor and Michalı́k

(1991), in a rare study of Triassic skeletobionts,

demonstrated that most of the common encrusting

groups of the Mesozoic appeared by at least the Late

Triassic.

9.3. Cryptic hard substrate communities

Marine cryptic hard substrate communities have

been in existence nearly as long as their exposed hard

substrate counterparts. Cryptic spaces provide addi-

tional living space and a refuge from most predators

and physical disturbance. The price cryptic organisms

pay for this habitat includes less light and sometimes

lower levels of nutrients (Gischler and Ginsburg,

1996). Cryptic spaces have varied in their type,

availability and abundance over time, and thus cryptic

fossil communities will have irregular distributions

through the geologic record. Cambrian crypts were

most often in archaeocyath reefs and algal mounds,

and they tended to be small and ephemeral. Ordovi-

cian through Early Carboniferous cavities were pri-

marily formed under hardgrounds and large, massive

skeletons like those of tabulate corals and stromatop-

oroids. Pennsylvanian and Permian reefs provided a

large amount of cryptic space within their frame-

works, hosting a significant portion of their total

diversity. The Middle and Late Mesozoic showed

again the importance of hardgrounds for providing

cryptic space on carbonate shelves. Modern coral

reefs today may have between 30% and 75% of their

volume taken up by cavities, and the surface area of

these cavities may be two to three times that of the

exposed portions of the reef (Logan et al., 1984;

Kobluk and van Soest, 1989; Gischler and Ginsburg,

1996). An endoscopic study of cavities in Red Sea

reefs revealed a sponge-dominated community of

filter feeders that had a far greater biomass than the

community of filter feeders on the reef surface

(Richter et al., 2001). Cryptic organisms are thus
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prominent in the history of hard substrate commun-

ities.

One of the most interesting historical questions to

ask about cryptic communities is whether they have

served as ecological refuges for formerly open-dwell-

ing organisms. That is, have they housed relict forms

which have disappeared from exposed environments?

That may be the case with modern ‘‘hypercalcified’’

sponges, which are sometimes thought to be relicts

from the Mesozoic (Vacelet, 1983, 1991). Taylor and

Palmer (1994) described the preserved sessile fauna

on the walls of exhumed Jurassic caves in western

France. They found thrombolitic structures and abun-

dant calcified demosponges, calcisponges, thecidei-

dine brachiopods, serpulids, cyclostome bryozoans,

and cemented bivalves. The microbes which formed

the thrombolites in the Jurassic were present in open

and cryptic spaces; today they are confined to caves,

meaning they could be considered relict. The other

organisms, though, may have always been cryptic and

thus not truly relict today. Thecideidine brachiopods,

for example, were common in Jurassic caves and

other cavities (Taylor and Palmer, 1994; Wilson,

1998) and are just as common today in similar

habitats (Harmelin et al., 1985).

9.4. The effects of calcite and aragonite seawater

chemistry

It is now clear that some ancient seas had signifi-

cantly different chemistries with respect to calcium

carbonate dissolution and precipitation. Some inter-

vals in the past, notably the early Palaeozoic and the

middle to later Mesozoic, were characterised by low-

magnesium calcite inorganic precipitation (‘Calcite

Seas’), which contrasts with the aragonite and high-

magnesium calcite inorganic precipitation (‘Aragonite

Seas’) we see from the middle Palaeozoic through the

early Mesozoic and the Cenozoic (Wilkinson et al.,

1985; Wilkinson and Given, 1986; Morse and Mack-

enzie, 1990; Lowenstein et al., 2001). The signifi-

cance for this review is that Calcite Sea conditions

facilitated the rapid and widespread formation of

carbonate hardgrounds as well as the contemporane-

ous dissolution of aragonitic shells in shallow tropical

seas (Palmer, 1982; Palmer et al., 1988; Wilson and

Palmer, 1992; Wilson et al., 1992; Cherns and Wright,

2000; Fig. 43).

9.4.1. Abundance of carbonate hardgrounds over

time

Carbonate hardgrounds formed rapidly and exten-

sively in shallow, warm seas during Calcite Sea times,

especially the Ordovician and the Jurassic (Palmer,

1982; Wilson and Palmer, 1992). In contrast, Aragon-

ite Sea intervals have very few carbonate hard-

grounds. There are at least 100 papers describing

carbonate hardgrounds from the Ordovician, for

example, and not a single paper about a Permian

carbonate hardground.

There is a correlation between the rapid increase

in the abundance and extent of carbonate hard-

grounds in the Early Ordovician and the evolution

of attaching echinoderms (Wilson et al., 1989, 1992;

Guensburg and Sprinkle, 1992; Wilson and Palmer,

1990, 1992; Rozhnov and Palmer, 1996). It is pos-

sible that the pervasive lithification of carbonate

sediment seafloors at this time provided a selective

pressure for echinoderms which could attach to hard

substrates, and thus the hardgrounds dramatically

widened the hard substrate niche long before shelly

substrates became common. The echinoderm stereom

structure also promoted rapid substrate cementation.

There may be a similar story for the Early Ordovician

radiation of bryozoans. Some of the earliest bryozo-

ans have large attachment bases (Hu and Spjeldnaes,

1991); Wilson and Palmer (1992) suggested that

these bases are adaptations for attachment to hard-

grounds.

Fig. 43. Early diagenetic cementation, aragonite shell dissolution

and encrustation of moulds typical of Calcite Seas. After Palmer et

al. (1988).
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9.4.2. Skeletal biomineralogy and taphonomy

The invertebrate faunas recovered from Calcite Sea

intervals are dominated by those with calcitic skele-

tons (Stanley and Hardie, 1998, 1999; Wilkinson,

1979) or aragonitic skeletons with outer calcite layers

(Harper et al., 1997). It is difficult to test the hypoth-

esis that the invertebrate shelly fauna in Calcite Seas

had evolved calcitic shells as an adaptation to the

prevailing seawater chemistry because their arago-

nitic-shelled contemporaries were preferentially dis-

solved and thus not often preserved (and see also the

‘‘thermal potentiation’’ argument of Carter et al.,

1998). We can note, though, that many of the arago-

nitic molluscs we do find from Calcite Seas were

infaunal and/or had thick periostraca (e.g., Pojeta,

1971), meaning that their shells were somewhat

protected from the aragonite-dissolving seawater.

One taphonomic advantage of Calcite Sea geo-

chemistry occurs when a calcitic epibiont encrusts

an aragonitic shell with a soft-bodied encruster

between them. The soft-bodied organism may be

bioimmured within the base of the calcitic epibiont

and then revealed when the aragonitic host shell is

dissolved (Wilson et al., 1994). Many soft-bodied

encrusters are now known only through bioimmura-

tions in overlying skeletons (see Taylor, 1990, for

review).

10. Geological utility of hard substrate

communities

Extensive exposed hard substrates, such as hard-

grounds and rockgrounds, often represent significant

breaks in the sedimentary record. Their recognition,

then, is important to sedimentological and strati-

graphic studies. When there are few lithological

differences above and below such a horizon, as in a

carbonate sequence with hardgrounds, palaeontolog-

ical criteria are often the only indicators of the hiatus.

10.1. Recognising sequence boundaries

Carbonate hardgrounds are commonly formed

when sedimentation rates are very low and bioturba-

tion is at least temporarily diminished (Wilson and

Palmer, 1992). These conditions may occur near the

end of a transgressive cycle in a carbonate sequence,

producing a hardground as the maximum flooding

surface. Fürsich et al. (1991, 1992) showed that

hardgrounds and reworked concretions were critical

to understanding the basinal history of a Jurassic

sequence in western India. Fookes (1995) used such

hardgrounds to sort out the sequence stratigraphy of

an Upper Jurassic reef complex in eastern France. He

could recognise the surfaces because they were ‘‘per-

forated’’ by ‘‘cylindrical bioerosions’’ (probably Try-

panites), and because of pervasive mineralisation by

what appears to be authigenic glauconite (Fookes,

1995, p. 136). Wilson et al. (1998a,b) used a similar

bioeroded and encrusted surface (though not a hard-

ground) to detect an otherwise unknown interglacial

eustatic sea-level change in Late Pleistocene (Eemian)

coral reefs of the Bahamas. This disconformity had

gone unrecognised because the sediments and fossils

are so similar above and below it; it was only revealed

when blasting exposed large Gastrochaenolites. Hes-

selbo and Palmer (1992) demonstrated that a regional

discontinuity within Lower Jurassic marine mud-

stones was marked by bored and encrusted septarian

concretions. The hiatus associated with these hard

substrates included three ammonite subzones. The

same horizon has been the subject of a recent debate

as to whether or not they represent a sea level fall

(Hallam, 1999; Coe et al., 2000). Siggerud et al.

(2000) demonstrated the utility of bored limestone

pebbles for interpreting wave-ravinement surfaces

within an Eocene transgressive systems tract in north-

eastern Spain.

10.2. Identifying and estimating magnitudes of sea

level change

Hard substrate communities, particularly on bio-

eroded carbonate rocky shores, are very useful for

estimating the magnitude of sea level changes. Wilson

et al. (1998a,b) showed that an erosional surface and

subsequent reef developed upon it indicated a sea

level fall and rise of several meters in the Late

Pleistocene. Various workers have deduced numerous

tectonically produced local sea level changes in the

Holocene by examining patterns of bioerosion and

encrustation, particularly by light-sensitive coralline

algae (Laborel, 1979a,b; Papageorgiou et al., 1993;

Laborel and Laborel-Deguen, 1994, 1995; Pirazzoli et

al., 1994, 1996; Laborel et al., 1994, 1999; Sartoretto
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et al., 1996). Such work in the Mediterranean has been

especially important for detecting and estimating the

magnitude of historical seismic events (Papageorgiou

et al., 1993; Pirazzoli et al., 1994), which has imme-

diate applications in archaeology. Distinctive assemb-

lages of sessile organisms, including barnacles, can be

used to recognise the positions of ancient intertidal

zones and hence to chart sea-level changes (Baker et

al., 2001).

11. Summary

Hard substrates of organic and inorganic origin are

locally abundant in the geological record. Many pre-

serve components of the ancient communities which

colonised them, especially encrusters that were

cemented permanently to the surface of the substrate

and borers excavating holes into the substrate. These

fossil sclerobionts are preserved in situ, retaining their

original spatial relationships to the substrate and to one

another, thereby eliminating one major factor—dis-

placement—constraining any research that attempts to

interpret ancient ecology from fossil evidence. Most

studies of hard substrate palaeoecology have been

concerned with material from a single stratigraphic

horizon and locality. The literature base that has

accumulated over approximately the past 50 years is

very scattered and tends to be somewhat anecdotal in

scope. As a rule, little or no reference is made to

neontological work on the ecology of modern hard

substrates. Consequently, hard substrate palaeoecol-

ogy contains few of the insights that knowledge of

modern communities can potentially provide.

This review of hard substrate palaeoecology has

revealed various general themes, several worthy of

further study. While many strategies for utilising hard

substrates have long geological histories, the taxa

employing these strategies have changed through

time, and the relative importance of different modes

of life (e.g., encrustation vs. boring) have also varied.

The details of such temporal patterns are not well

documented, nor has there been much testing of the

causal processes responsible for the patterns.

Future research on hard substrate palaeoecology

should also include bed-by-bed sampling to document

geologically short-term changes in sclerobionts and

their interactions with one another. This appears not to

have been previously attempted, even though such

studies could address important issues of long-term

(in an ecological sense) stability of in situ commun-

ities and the changing dynamics of ecological in-

teractions through intervals of geological time.

Extinction, survival and restructuring of hard substrate

communities during mass extinctions deserves partic-

ular attention in view of interest concerning the extent

to which mass extinctions have shaped the evolution

of life on Earth.
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within the phaeophytic kelp belt. Facies 29, 133–148.

Freiwald, A., Henrich, R., 1994. Reefal coralline algal build-ups

within the Arctic Circle: morphology and sedimentary dynamics

under extreme environmental seasonality. Sedimentology 41,

963–984.

Freiwald, A., Wilson, J.B., 1998. Taphonomy of modern deep,

cold – temperate water coral reefs. Historical Biology 13,

37–52.

Friebe, J.G., 1994. Serpulid–bryozoan– foraminiferal biostromes

controlled by temperate climate and reduced salinity: Middle

Miocene of the Styrian Basin, Austria. Facies 30, 51–62.
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Jahrbuch für Geologie und Paläontologie, Abhandlungen 177,
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buch für Geologie und Paläontologie, Abhandlungen 162,

332–351.

Hagdorn, H., Simon, T., 1983. Ein Hartgrund im unteren Muschel-

kalk von Göttingen. Aufschluss 34, 255–263.

Hageman, S.J., James, N.P., Bone, Y., 2000. Cool-water carbonate

production from epizoic bryozoans on ephemeral substrates.

Palaios 15, 33–48.

Hallam, A., 1969. A pyritised limestone hardground in the Lower

Jurassic of Dorset (England). Sedimentology 12, 231–240.

Hallam, A., 1999. Evidence of sea-level fall in sequence stratigra-

phy: examples from the Jurassic. Geology 27, 343–346.

Halleck, M.S., 1973. Crinoids, hardgrounds, and community suc-

cession: the Silurian Laurel-Waldron contact in southern Indi-

ana. Lethaia 6, 239–252.

P.D. Taylor, M.A. Wilson / Earth-Science Reviews 62 (2003) 1–10382



Hamer, J.P., Walker, G., 2001. Avoidance of dried biofilms on slate

and algal surfaces by certain spirorbid and bryozoan larvae.

Journal of the Marine Biological Association of the United

Kingdom 81, 167–168.

Hammond, L.S., 1984. Epibiota from the valves of Recent Lingula

(Brachiopoda). Journal of Paleontology 58, 1527–1531.

Hamza, F.H., 1983. Post-Pliocene transgressive phase along the

northern part of the Nile Valley, Egypt. Neues Jahrbuch für
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da. Geological Journal 19, 271–298.

Harland, T.L., Pickerill, R.F., 1987. Epizoic Schizocrania sp.

from the Ordovician Trenton Group of Quebec, with com-

ments on mode of life of conulariids. Journal of Paleontology

61, 844–849.

Harmelin, J.-G., 1990. Interactions between small sciaphilous scler-

actinians and epizoans in the northern Mediterranean, with par-

ticular reference to bryozoans. Pubblicazioni della Stazione

Zoologica di Napoli. I, Marine Ecology 11, 351–364.

Harmelin, J.-G., Vacelet, J., Vasseur, P., 1985. Les grottes sous-

marines obscures: un mileu extrème et remarquable biotope

refuge. Tethys 11, 214–219.

Harper, E.M., 1991. The role of predation in the evolution of the

cemented habit in bivalves. Palaeontology 34, 455–460.

Harper, E.M., 1992. Post-larval cementation in the Ostreidae and its

implications for other cementing bivalves. Journal of Molluscan

Studies 58, 37–47.

Harper, E.M., 1997. Attachment of mature oysters (Saccostrea cu-

cullata) to natural substrata. Marine Biology 127, 449–453.

Harper, E.M., Palmer, T.J., 1993. Middle Jurassic cemented pecti-

nids and the missing right valves of Eopecten. Journal of Mol-

luscan Studies 59, 63–72.

Harper, D.A.T., Pickerill, R.K., 1996. Mid Ordovician commensal

relationships between articulate brachiopods and a trepostome

bryozoan from eastern Canada. Atlantic Geology 32, 181–187.

Harper, E.M., Wharton, D.S., 2000. Boring predation and Mesozoic

articulate brachiopods. Palaeogeography, Palaeoclimatology,

Palaeoecology 158, 15–24.

Harper, E.M., Radley, J.D., Palmer, T.J., 1996. Early Cretaceous

cementing pectinid bivalves. Cretaceous Research 17, 135–150.

Harper, E.M., Palmer, T.J., Alphey, J.R., 1997. Evolutionary re-

sponse by bivalves to changing Phanerozoic sea-water chemis-

try. Geological Magazine 134, 403–407.

Harper, E.M., Forsythe, G.T.W., Palmer, T.J., 1998. Taphonomy

and the Mesozoic marine revolution; preservation state masks

the importance of boring predators. Palaios 13, 352–360.

Harper, E.M., Dulai, A., Forsythe, G.T.W., Fürsich, F.T., Kowalew-
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Implications pour les reconstitutions de paléoenvironments. Bul-
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Muschelkalk von Jena. Paläontologische Zeitschrift 14, 150–

160.

Mägdefrau, K., 1937. Lebensspuren fossiler ‘Bohr-Organismen’.
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logia 3, 13–22.

Mayoral, E., 1991. Actividad bioerosiva de briozoos ctenostomados

en el Ordovı́cico Superior de la Zona Cantábrica del Macizo
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der tethyalen und germanischen Trias (Beschreibung, Vergleich,

bathymetrische Interpretation). Frankfurter Geowissenschaft-

liche Arbeiten, Serie A 12, 1–228.

Schmidt, H., 1993. Mikrobohrspuren in makrobenthonten des Obe-

ren muschelkalks von SW-Deutschlands. In: Hagdorn, H., Sei-

lacher, A. (Eds.), Muschelkalk. Schöntaler Symposium, vol.
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Hardgrounds a techo de ciclos de somerización y ralentización

en una rampa carbonatada del Lı́as de Asturias. Geogaceta 11,

70–73.

Van Dolah, R.F., Wendt, P.H., Knott, D.M., Wenner, E.L., 1988.

Recruitment and community development of sessile fouling as-

semblages on the continental shelf off South Carolina, USA.

Estuarine, Coastal and Shelf Science 26, 679–699.

Van Iten, H., Cox, R.S., Mapes, R.H., 1992. New data on the

morphology of Sphenothallus Hall: implications for its affin-

ities. Lethaia 25, 135–144.

Van Temelen, P.G., 1987. Early successional mechanisms in the

rocky intertidal: the role of direct and indirect interactions. Jour-

nal of Experimental Marine Biology and Ecology 112, 39–48.

Vance, R.R., 1978. A mutualistic interaction between a sessile ma-

rine clam and its epibionts. Ecology 59, 679–685.

Velcescu, M., 1999. Epizoans of the Rupelian bivalves Pycnodonta

(Pycnodonta) gigantica gigantica (Sol.) level: their relationships

to their host. Acta Palaeontologica Romaniae 2, 483–488.
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Zı́tt, J., Nekvasilová, O., 1993. Octocoral encrusters of rock sub-

strates in the Upper Cretaceous of Bohemia. Journal of the

Czech Geological Society 38, 71–78.
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