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PREFACE 

The chemical evolution of the Earth is one of the most essential 

problems of geochemistry. The subduction zone is the major site where the 

chemical differentiation of the Earth has occurred. Principal differentiation 

processes occurring in subduction zones are dehydration and/or partial 

melting of the subducted lithosphere. Through these processes, the released 

aqueous fluid/melt metasomatize the overlying mantle wedge and induce 

arc magmatism. Further, the subduction zone would be the region where 

the continental materials are recycled into the Earth's interior. This recycling 

should have significant effect on the chemical evolution of the Earth's 

mantle, and would be responsible for causing the chemical heterogeneity 

within the deep mantle reservoir documented in oceanic island basalts. 

Therefore, evaluating of the elemental inventory in the downgoing slab 

based on geochemistry of subduction related lavas provides a key to 

understanding of the chemical evolution of the Earth. 

The radiogenic isotopes, such as Pb, Nd, Sr, Be, etc., provide strong 

constraints for better understanding of the geochemical consequence of 

subduction zone magmatism, because these isotopic ratios are invariant 

during processes both of melting and differentiation which drastically change 

concentrations of elements. Moreover, the radiogenic isotopic ratios reflect 

the time integrated parent and daughter nuclide ratios, and are not only the 

basis of the absolute age determinations but also the tags of the distinctive 

geochemical reservoirs. In these points of view, isotopic data for arc lavas 

have contributed significantly to understanding of the genesis of subduction 



zone magmas. Among these radiogenic isotopes, Pb isotopic compositions 

are most powerful tracers for evaluating the recycling of continental crustal 

material during subduction processes, because continental crust-derived 

sediments have both Pb-isotope ratios and concentrations quite distinct 

from mantle rocks. 

In this thesis, I reestablish analytical procedures for determination of 

Pb isotopic compositions, and apply this method to the Setouchi volcanic 

rocks from the SW Japan arc in order to examine the genesis of these 

magmas. I also analyzed Nd and Sr isotopic compositions along with major 

and trace elements compositions for these rocks. These geochemical data 

together with the previous petrological data enable to provide constraints 

on the recycling process of crustal materials and the nature of slab-derived 

subduction component. Further, based on the temporal/spatial variations of 

Pb isotopic compositions of the Setouchi volcanic rocks, I will discuss the 

geochemical evolution of the sub-Setouchi mantle wedge during a mega­

tectonic event of the opening of the Japan Sea. 
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Abstract 

In order to clarify the role of subducted sediments in determining the 

geochemical characteristics of subduction-related magmas and to evalULate 

the effect of the Japan Sea opening on the geochemical evolution of the 

mantle wedge, Pb, Sr and Nd isotope studies, along with major and trace 

element analyses have been carried out for Miocene volcanic rocks from 

the Setouchi volcanic belt, SW Japan. Pb isotopic compositions of the 

Setouchi volcanic rocks lie between those of the Japan Sea floor basalts 

and local sediments with much higher values than the NHRL (Northern 

Hemisphere Reference Line). Nd-Sr isotopic compositions, on the other 

hand, fall within the mantle array. Among those samples, high-magnesian 

andesites (HMAs) have distinctively higher Pb, Sr and lower Nd isotopic 

compositions than basalts. Trace element compositions of HMAs also show 

systematically higher Pb, K and Rb concentrations than basalts. These 

geochemical features may be best explained by the different amounts of 

added slab-derived subduction component (SDSC). Further, the HFSE (Hiigh 

Field Strength Elements) systematics, including higher Nbffi02 and Zrffi02 

ratios of HMAs than those of basalts, suggest that the SDSC is not an 

aqueous fluid but a partial melt. The major component of SDSC would be 

derived mainly from subducted terrigenous sediments; however, the minor 

contribution of the altered MORB crust-derived component is indispensable 

to explain both isotopic and chemical compositions. The Pb isotopic 

compositions clearly exhibit secular variation; they had changed from 
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enriched to relatively depleted with decreasing ages. A plausible 

interpretation of this isotopic compositional change may be due to the 

replacement of the original mantle wedge with an enriched geochemical 

signatures by the laterally injected asthenospheric materials with depleted 

geochemical signatures which may relate to the south-ward migration of 

the SW Japan arc sliver and the Japan Sea opening. 
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Introduction 

The subduction zone, where the oceanic crust descends into the mantle, 

is one of the major sites causing the chemical differentiation of the Earth. 

The major differentiation processes occurring in subduction zones are 

dehydration and/or partial melting within the subducted lithosphere. The 

distinctive arc magma chemistries, i.e., LILE enrichment relative to HFSE, 

a steeper array in a Pb-Pb diagram, negative or positive correlation in a 

Nd-Sr diagram, etc., have been attributed to the overprinting of SDSC to 

the original mantle wedge throughout these reactions (e.g. Gill, 19 81; 

Hawkesworth et al., 1993; Pearce and Peate, 1995; Tatsumi and Eggins, 

1995). However, the distinct nature and the particular origin of SDSC s:till 

lie at the heart of recent debates on the processes responsible for isotope 

and trace element geochemistry of subduction related magmas. 

The combination of the isotopic ratios, the trace element compositions 

and the ~0 concentrations of subduction zone lavas may provide a key 

constraint on the above problems, because these would suggest the sources 

of SDSC, processes of SDSC generation and the amount of added SDSC to 

the arc magma source, respectively. In this point of view, the Setou.chi 

volcanic rocks would be the most suitable samples to constrain above 

problems, because primitive HMAs and basalts, which formed with different 

~0 contents, had erupted simultaneously at the same region (e.g. Tatsumi 

1982). 

Japan Sea is a back-arc basin situated behind the SW and NE Japan 
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arcs. Based on paleomagnetic and K-Ar age data, Japan Sea is inferred to 

be formed during 20-13 Ma, accompanying the rapid rotational movement 

of the SW Japan arc sliver at the late stage of spreading, i.e., 15-13 :Ma 

(e.g., Otofuji et al., 1983, 1985, 1987, 1991; Kaneoka et al 1990, 1992; 

Ishikawa et al., 1996). The geochemical influence of Japan Sea opening 

upon magmatism on the NE Japan arc were extensively studied (e.g., Nohda 

and Wasserburg, 1986; Nohda et al., 1988; Tatsumi et al., 1988, 1990, 

1994). These authors concluded that the chemical characteristics of the 

mantle wedge beneath the back-arc side of the NE Japan arc changed from 

less to more depleted during the back-arc opening which would be caused 

by injection of depleted asthenospheric mantle materials into mantle wedge. 

SW Japan arc sliver had drifted southward about 600 km for about only 1 

Ma (Otofuji and Matsuda, 1987; Ishikawa et al., 1996). This drastic movement 

would change the mantle structure beneath SW Japan arc. Nevertheless, the 

effect of this mega-tectonic event upon the mantle wedge beneath SW 

Japan have not been investigated. It has been suggested that magmatism in 

the Setouchi volcanic belt had took place contemporary with the rotation of 

SW Japan sliver. Moreover, some Setouchi volcanic rocks have been infen~ed 

to be derived directly from the upper mantle (e.g., Tatsumi, 1982). Therefore, 

analyses of the Setouchi volcaruc rocks should give essential constraints on 

geochemical evolution of the sub-Setouchi mantle wedge during the rotation 

of SW Japan sliver. The major goal of this thesis is to document the nature 

of overprinted SDSC and to evaluate the relation of the Setouchi volcanism 
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and the rotational movement of SW Japan sliver at the late stage of the 

Japan Sea opening on the basis of the geochemistry of the Setouchi volcc:mic 

rocks. 

Tectonic setting 

The Setouchi volcanic belt was built along the SW Japan arc, where 

the Eurasian plate overlies the subducted Philippine Sea plate. It occupies 

the narrow zone for about 600 km parallel both to the N ankai Trough .and 

Median Tectonic Line, and can be divided into eight subprovinces (Fig. 1); 

HMAs occur in the central four. The volcanic belt consists of dacitic and 

rhyolitic pyroclastic flows, dissected andesitic stratovolcanos and many 

monogenic volcanoes including small lava flows and dikes. 

The following five features may characterize for the Setouchi 

volcanism: (1) the volcanism was short-lived (about 1 Ma; Anno, 1994; 

Ishikawa et al., 1996; Tatsumi et al., 1996), (2) it is located in the present 

forearc region (Fig. 1), (3) the subducted plate was very young, as the 

Shikoku Basin formed at the 27-17 Ma (e.g., Kobayashi and Nakada, 1978; 

Shih 1980), (4) the occurrence of plagioclase-free, relatively aphyric basalts 

and andesites (sanukitoids) which include HMAs (Tatsumi and Ishizaka, 

1981), (5) andesites, both HMAs and evolved porphyritic andesites, show a 

typical calc-alkaline trend (Tatsumi and Ishizaka 1981). The zonal 

distribution of the volcanic belt and the occurrence of calc-alkaline rotCks 

suggest that the Setouchi volcanism is a subduction-related phenomena, as 
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is the case of general orogenic andesites. However, the unusual conditions, 

i.e., the presence of high temperature in the sub-fore arc mantle wedge, 

would be essential in the genesis of the Setouchi magmas (e.g., Tatsumi 

and Maruyama, 1989). 

The recent K-Ar age and paleomagnetic data of Setouchi volcanic 

rocks revealed that (1) the SW Japan arc sliver had rotated clockwisely 

about 60°, i.e., drifted southward 500 km, and caused the obduction of 

newly-bone Philippine Sea plate during 13-15 Ma (e.g., Otofuji et al 1985, 

1991; Hayashida et al., 1988; Otofuji and Matsuda, 1987; Ishikawa et al. , 

1996). (2) the Setouchi volcanism occurred simultaneously with the rotational 

movement of SW Japan sliver (Ishikawa et al. , 1996), (3) the volcanic 

activity in Osaka, Takamatsu and Shodo-Shima occurred at the pre-, syn­

and post-rotational stage, respectively (Ishikawa et al., 1996), (4) felsic 

volcanism preceded intermediate and mafic eruptions in each area (Anno, 

1995), (5) both the rotation of SW Japan sliver and the Setouchi volcanism 

occurred at the late stage of Japan Sea opening (Jolivet and Tamaki, 1992; 

Ishikawa et al., 1996). 

Geology 

Shodo-Shima area 

On the Shodo-Shima island, is located a dissected stratovolcano of 

Setouchi volcanics on the basement Ryoke complex (Fig. 2). The Miocene 

strata in the Shodo-Shima island are divided into two groups, i.e., the 
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Fig. 2. Locality map of the samples in Shodo-Shima area. Distribution of the 
Setouchi volcanic rocks is also shown (hatched areas). 
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Tonosho group and Shodo-Shima group in ascending order. The Tonosho 

group, which consists of sedimentary rocks, is conformably overlain by the 

Shodo-Shima group (Tatsumi, 1983). Since the paleomagnetic field deflected 

eastward about 60° for the Tonosho group, they would have bedded before 

the rotation of the SW Japan sliver (Torii, 1983). The Shodo-Shima group, 

which consists of volcanic rocks, is divided into the lower Uchinomi and 

the upper Kankakei formation. The Uchinomi formation consists of felsic 

lava rocks, lava domes, sheets and volcaniclastic flows, and the Kankakei 

formation consists of intermediate to mafic volcaniclastic rocks, lava flows, 

stocks, dikes and necks (Tatsumi, 1983). The paleomagnetic results revealed 

that both formations were magnetized parallel to the modern field (Totii, 

1983; Ishikawa et al., 1996). K-Ar age determination indicate that the mean 

age of the Uchinomi formation and the Kankakei formation are 13.78 ± 

0.17 and 12.82 ± 0.12 Ma, respectively (Anno, 1995). It is thus suggested 

that the volcanism in Shodo-Shima occurred immediately after the rotation 

of SW Japan sliver. 

Takamatsu area 

The Miocene volcanic stratum in E. Shikoku is the Sanuki group 

(Saito, 1962). These volcanic rocks comprising mesas, buttes and dissected 

hills are distributed unconformably on the basement Ryoke complex (Fiig. 

3). Among these, Goshikidai and Kokubudai, which occupy the central part 

of this region, are the largest volcanic mass composed mainly of andesi1tic 
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sanukitoids. The Sanuki group are divided into the lower Higasioku formation 

and the upper Kokubudai formation (Sato, 1982). A clockwise deflection in 

declination (D = 21.4° ± 9.9) was observed in Kokubudai formation of 

which K-Ar age was recently revealed, that is 13.39 + 0.21 Ma (Ishikawa 

et al., 1996). It is thus suggested that the volcanism in Takamatsu area 

occurred at the syn-rotational stage of the SW Japan arc sliver. In this 

region, basalt was found only in Takamishima island, about 25 km west of 

Goshikidai (Fig. 3). Recent K-Ar dating reveal that the age of this basalt is 

11.96 ± 0.45 Ma which definitely younger than other volcanic rocks in this 

area (Anno, 1995). 

Osaka area 

In the Osaka area, dikes and necks sporadically intrude into the 

basement Ryoke complex (Fig. 4). Recent K-Ar age determination 

documented that ages of Sionomiya, Teragaike, Sigisan volcanic rocks are 

14.51, 14.13 and 13.92 Ma, respectively and are distributed between the 

age ofMuro welded tuff (14.86 ± 0.32 Ma) and that ofTakamatsu volcanic 

rocks (13.39 ± 0.21 Ma). Since the Muro and Takamatsu volcanic rocks 

erupted pre-rotation and syn-rotation of SW Japan sliver, respectively (Torii, 

1983; Ishikawa et al., 1996), it is suggested that the volcanism in Osaka 

area took place at pre-rotation stage or immediately after the commencement 

of the rotation of the SW Japan arc sliver. 
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Fig. 4. Locality map of the samples in Osaka area. Distribution of the Setouchi 
volcanic rocks is also shown (hatched areas). 
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Experimental petrology and mineralogy 

On the basis of the petrological study, Tatsumi and Ishizaka (1981) 

suggest that Setouchi HMA from the Osaka area (TGI, equivalent to TGI-5 

in this study) would be a primary andesite which generated in the upper 

mantle based on following ev idence: (1) magnesian olivine phenocrysts 

(Fo
87

_
9

) are in equilibrium with the host HMA on the basis of Fe-:rvig 

exchange partitioning, (2) the chromite inclusions in olivine have high 

Cr
2
0

3 
contents (maximum 55 % ). 

The chemical compositions also suggest that some Setouchi HMAs 

are primitive, because bulk FeO*/MgO ratios (0.546-0.931) of these andesite 

are low enough to be in equilibrium with mantle peridotites (Tatsumi and 

Ishizaka, 1982). Moreover, high Ni (101-312 ppm), Co (30.0-45.1 ppm) 

and Cr (208-756 ppm) contents of HMAs also suggest that these andesite 

were produced by direct partial melting of mantle peridotites (Tatsumi and 

Ishizaka, 1982). Based on the petrographic observations of the basalt and 

HMA, Tatsumi and Ishizaka (1982) demonstrated that the andesite could 

not be derived from a basaltic magma by fractional crystallization and 

concluded that the andesite and basalt were generated independently in the 

mantle beneath SW Japan. 

On the basis of high pressure melting experiments on an augite 

olivine andesite (SD261) and a basalt (SD438, equivalent to SDSYB in this 

study), Tatsumi (1982) examined the following possible mechanisms for 

simultaneous production of primary basaltic and andesitic magmas; (1) 
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basalt and HMA magmas were formed at an identical depth by different 

degrees of partial melting; (2) basaltic magmas were generated in the presence 

of much smaller amount of ~0 in their source region than HMA magma; 

(3) basaltic magmas can be produced at a greater depth than HMA magmas. 

He concluded that (2) would be the plausible model, because hypothesizing 

that the amounts of ~0 in basalts magma source are identical to those for 

HMAs is not realistic. 

Samples 

Twenty volcanic rocks were selected for the isotopic analysis from 

the three volcanic fields, namely, Osaka, Takamatsu and Shodo-Shima area 

(Fig. 1). 

Shodo-Shima area 

Most samples used in this study are from the Kankakei formation on 

Shodo-Shima island (Fig. 2), because extensive petrographic, high pressure 

melting experimental, paleomagnetic studies and K-Ar age determination 

were conducted for these rocks (e.g., Tatsumi and Ishizaka 1982 a, b; 

Tatsumi, 1982; Anno, 1995; Ishikawa et al., 1996). Based on these studies, 

it is inferred that the HMA SD261 and the basalt SDSYB have chemical 

compositions of the primary magma generated in the upper mantle (Tatsumi, 

1982). All HMA in this area are augite-olivine HMA of which mantle 

residual phase assemblages were inferred to be lherzolitic as well as basalt 
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(Tatsumi, 1982). 

Takamatsu area 

Two HMAs and a basalt were selected for this study . HMA JA-2, 

1.e., JSG (Geological Survey of Japan) standard rock sample, and 

SH72010705B were collected from Goshikidai and Kokubudai, respectively 

in central part in this area (Fig. 3). The basalt sample TK101 was collected 

in Takamishima island (Fig. 3). 

Osaka area 

From this area, five HMAs were chosen for this study (Fig. 4) . One 

of HMA, i.e., TGI-5, has a chemical composition approximating that of the 

primary magma generated in the upper mantle (Tatsumi, 1981). The NBY -5 

has a low FeO*/MgO ratio and high Ni content. This suggest that it would 

also equilibrate with mantle peridotite. The HMAs in this area are bronzite­

olivine HMA, and were inferred that the mantle residual phase assemblages 

were harzburgitic (Tatsumi, 1981). There is no primitive basaltic rock in 

this region. 

Sediments 

The terrigenous sediments, i.e., turbidites - 560 m thick, were 

recovered from the floor of the Nankai Trough at the Site 582, DSDP Leg 

87 (Fig. 5), and details were discussed elsewhere (Taira and Niitsuma 
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1985). The pelagic sediments were recovered from the central Philippine 

sea (DSDP 15-12), the location is indicated in Fig 5. These sediments were 

selected for the representative sediments which had subducted beneath tlhe 

Setouchi volcanic zone. 

Crustal materials 

SW Japan is divided into two zones by the MTL, i.e., Inner zone and 

the Outer zone. Ryoke belt situate the southern most part in the Inner zone 

which is characterized by the widespread exposure of Cretaceous to Paleogene 

acidic rocks which intrude Paleozoic to Jurass ic sedimentary or 

metasedimentary rocks. In this study, granite, gneissose granite and gneiiss 

of metasediment origin were selected for representative of upper crust. All 

of these rocks were collected in the Nara prefecture 50 km eastward of 

Osaka area (Fig. 1). A granulitic xenolith from the Utashima Island in 

Yamaguchi prefecture was also analyzed as a possible candidate of lower 

crust (Fig. 1). 

Analytical procedures 

Chemical procedure 

Rock chip samples weighted about 100 mg were washed by acetone 

utilizing ultrasonic bath three times, and rinsed by pure water several times. 

Then, these were warmed (70-80 °C) by 6 N HCl for 30-60 minutes to 

eliminate surface contamination. Subsequently, samples were decomposed 
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by a mixture of 1 ml of20 N HF and 1 ml of 14 N HN03 with few drops of 

10 N HC10
4 

in screw-top PFA ®teflon vials at 90 oc for 3-7 days. Dicompos,ed 

samples were dried completely and then converted to chloride form for 

chemical sepraion. 

Samples in chloride form were dissolved completely with 3 ml of 1 N 

HBr and loaded onto columns (3 mm id x 30 mm) packed with anion 

exchange resin (Bio-Rad AG-1X8® 100-200 mesh). Then, the colums were 

washed with 2 ml HBr. These eluents were recovered for Nd and Sr isotopic 

analyses. Subsequently, Pb were eluted with 2 ml of 6 N HCl. Further, Pb 

purification were performed by the use of same columns with basicaly 

same method described above. Finally, purified Pb samples were dissolved 

to a drop of 14 N HN03 to burn out orgenic matter and dried to conv,ert 

nitric form. 

Samples for Nd and Sr isotopic analyses in bromide form were 

converted to chloride form and then dissolved to 1 ml of 1 N HCl and 

loaded onto columns (1 0 mm id x 200 mm) packed with cation exchange 

resin (Bio-Rad AG-Xl2® 200-400 mesh). The colums were washed with 

40 ml of 2 N HCI. Then, Sr were recovered with 20 ml of 2 N HCl. 

Subsequently, LREE were collected with 20 ml of 4 N HCl after washing 

columns by 20 ml of 4 N HCl. Sr and LREE purification were conducted 

by the usage of smaller column (7 mm id x 140 mm) packed with cation 

exchande resin (Bio-Rad AG-X8® 200-400 mesh) with 2 N HCl and 4 N 

HCl as eluates, respectively. Nd and Sm separation were performed by the 
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HDEHP + teflon columns (6.5 mm id x 200 mm) with 0.2 N HCl eluantes. 

Current total procedure blank levels for Pb, Sr and Nd were 60 pg, 100 pg 

and 30 pg, respectively and are negligible for the samples studied here. 

Mass Spectrometry 

Pb, Nd and Sr isotopic compositions were measured using a Finigan® 

MAT 261 mass spectrometer at Kyoto Sangyo University with Re single, 

Re-Ta double and Ta single filament mode, respectively. The accelerating 

voltage was adjusted to 10 kV. Collecter system is a single Faraday cup 

with a resistance of 1011 Q. The data aquisitions were made by peak jumping. 

The raw data were processed for baseline correction and bilinear correction 

by on-line system with Hewlett-Packard HP 9133 computer. Prior to sample 

loading , the Re and Ta filaments were outgassed for 30 minuites at filament 

current of 4.0 A at 1 o·6 Torr. 

200-500 ng of Pb per sample was loaded onto Re filament with 

silica-gel and H3P04 activator. The 208Pb signal were generally arround l.-2 

x 1()11 A. To correct mass fractionation effects and check reproducibility, 

repeated analyses of external standard NBS SRM 981 lead were conducted. 

The averages and standard deviations of 17 separated analyses of 206Pbf04Pb, 

207PbP04Pb and 208PbP04Pb are 16.900 ± 0.005, 15.463 ± 0.007 and 36.529 + 

0.020, respectively. Based on these results, upward correction factors per 

amu for 206Pbf04Pb, 207PbP04Pb and 208Pbf04Pb are determined, those are, 

0.11 %, 0.11 % and 0.13 %, respectively. Because, there is no way for 
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fractionation correction in case of Pb isotope analyses and the environmental 

contamination during sample preparation severely effect upon Pb isotope 

measurement, special care were taken to obtain precise Pb isotopic 

compositions. Details of Pb analitical procedure is given Appendix 1. 

300-700 ng of Nd per sample was loaded onto Ta filament with 1 f..ll 

of 1 N H
3
P04• Nd isotopic compositions were measured by Re-Ta double 

filaments mode at ion intensities of 144Nd = 3-5 x 10"12 A. Results were 

normalized to 146Nd/144Nd = 0.7219. The La Jolla standard value of single 

analysis in this study was 0.511833 ± 26. 

1-2 J..lg of Sr per sample were loaded onto single Ta filament with I 

f..ll of I N H3P04• The 88Sr signal was generally around 1-2 x 10"11 A. 

Results were normalized to 86Sr/88Sr = 0.1194. The value of NBS SRM 987 

of single analysis and the value of the Eimer & Amend standard of single 

analysis were 0.710171 ± 24 and 0.708009 ± 24, respectively. 

Major and trace elements 

Major and trace elements were analyzed using RIGAK~ Symaltics 

3550 and 3070 X-ray fluorescence (XRF) spectrometers in Kyoto University 

on fused glass beads and pressed powder pallets, respectively. Details of 

counting times, operating conditions and detection limits can be found in 

Goto and Tatsumi (1991, 1992). Analytical errors for trace elements are 

better than 5%, except Pb (7%). 

From this set of samples, 9 samples were further analyzed for RJEE 
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(Rare Earth Elements) by ICP (inductivity coupled plasma) in Kyoto 

University. 

Results 

The major and trace element data for analyzed samples are given in 

Table 1, the REE (Rare Earth Element) data shown in Table 2, and the 

isotopic composition determined in this study, along with previously reported 

were shown in Table 3. 

FeO*/MgO ratios of the selected basalts and the HMAs are less than 

unity (Table. 1), suggesting that they could equilibrate with mantle olivine 

on the basis of Fe-Mg partitioning. Therefore, basalts and HMAs used in 

this study would be primitive, and enable to infer the chemical and isotopic 

compositions of the mantle beneath the Setouchi volcanic belt. 

The Setouchi volcanic rocks have trace element characteristics which 

typify subduction related rocks (Fig. 6); an element with larger ionic radius 

is more enriched when comparing elements with an identical charge. A 

clear exception is Pb, which is strongly enriched in HMAs. The LILE 

concentrations of Setouchi volcanic rocks are about ten to a hundred times 

higher than those of theN-type MORB and are also higher than those of 

the basalts in same area (Table 1, Fig. 6). The Ti0
2 

and Zr concentrations 

of the Setouchi volcanic rocks are similar to those of N-type MORB (Sun 

and McDough, 1989), but the Nb contents of HMAs are relatively higher 

than those of N-type MORB and the basalt in same area (Table 1, Fig. 6). 
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Table 1. Major and trace clements compositions of representative 
Setouchi volcanic rocks, tcrri~enous sediments and pelagic sediments. 

Location Shodo-Shima 

sample SDSYB SD-261 SD407 SD411 SD812 MDYB-2 UDY 

rock type basalt HMA HMA HMA HMA HMA porphyric 
andesite 

Si02 (wl. %) 48.95 55.37 56.12 55.80 56.33 57.31 59.07 

Al20J 14.69 15.55 15.38 15.41 16.48 15.81 17.98 

CaO 8.75 7.04 6.87 6.92 6.97 6.46 5.62 

F~03' 10.21 6.92 6.87 6.84 6.19 6.43 6.35 

K20 1.20 2.25 2.38 2.42 2.04 2.28 2.37 

MgO 11.79 6.89 7.61 7.77 7.19 6.24 2.83 

MnO 0.17 0.17 0.14 0.14 0.11 0.14 0.12 

Na20 2.57 2.84 2.87 2.64 3.06 3.12 3.43 

P20, 0.27 0.17 0.16 0.16 0.16 0.17 0.24 

Ti02 1.02 0.65 0.62 0.61 0.61 0.59 0.64 

TOTAL 99.60 97.85 99.03 98.71 99.15 98.55 98.65 

FeO'!MgO 0.78 0.90 0.81 0.79 0.78 0.93 2.02 

Ba (ppm) 219 195 211 213 263 22 1 346 

Nb 4 5 4 4 5 5 6 
Ni 207 148 132 126 151 123 15 
Pb 8.3 17.4 18.3 17.7 17.8 17.9 13.9 
Rb 33.2 113.6 119.3 121.3 68.4 120.6 147.7 
Sr 277 267 249 253 299 274 362 
Th 4.2 4.8 4.7 4.6 5.3 6.2 6.1 
y 18 15 16 16 13 16 31 
Zr 99 80 82 82 109 92 132 

Fe20J' and FeO', total irons as Fe20 3 and FeO, respectively. 
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Table I. (continued) 

Location Shodo-Shima Takamatsu 

sample SDWHJ SD515 TKIOI SH7201 JA-2 TK6' TK-KAN 

rock type porphyric porphyric basalt HMA HMA porphyric porphyric 
andesite andesite andesite andesite 

Si02 (WI.%) 55.04 56.56 50.27 55.46 56.18 64.96 63.67 

AI203 16.20 17.85 17.06 15.54 15.32 17.52 17.55 

CaO 6.97 6.65 9.00 6.94 6.48 3.76 4.24 

F~o3' 8.17 7.10 7.92 6.71 6.95 3.80 4. 17 

K20 1.75 2.08 0.58 1.63 1.80 2.86 2.74 

MgO 7.07 4.36 8.76 9.33 7.68 1.53 2.15 

MnO 0.14 0.12 0.13 0.13 0.11 0.09 0.09 

Na20 2.91 3.17 3.22 2.90 3.08 4.25 4.20 

P20l 0.21 0.23 0.14 0.16 0. 15 0.22 0.23 

Ti02 0.68 0.78 0.95 0.70 0.67 0.50 0.56 

TOTAL 99.14 98.90 98.04 99.50 98.42 99.48 99.59 
FeO'!MgO 1.04 1.47 0.81 0.65 0.81 2.24 1.74 

Ba (ppm) 233 297 95 288 317 453 439 
Nb 3 5 2 8 10 10 10 
Ni 117 25 124 132 142 14 18 
Pb 12.1 11.8 4.3 17.7 19.3 33.4 31.7 
Rb 99.5 112.8 19.2 60.5 68.0 128.1 120.4 
Sr 347 406 223 245 252 282 293 
Th 3.4 4.8 1.6 4.5 4.7 11.2 10.9 
y 19 17 19 16 18 15 15 
Zr 105 116 96 107 119 229 219 
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Table l. (continued) 

Location Osaka Nankai Trough 
Site 582. DSDP Leg 87 

sample TGI-5 NBY-5 SG-2 NJSB T- 1 T-2 T-3 

rock type HMA HMA HMA HMA turbidite turbidite turbidite 

Si02 (wt. %) 57.27 55.77 51.87 53.75 61.89 65.50 64.49 

Al20 3 14.26 13.98 15.48 16.62 18.28 16.46 17.47 

CaO 6.31 6.96 8.14 8.18 2.32 2.65 1.80 

Fe20 3· 6.19 6.81 8.29 7.94 7.60 6.10 6.65 

K20 1.16 1.20 0.97 1.17 3 .39 2.63 3.16 

MgO 9.45 10.93 9.54 6.64 2.90 2.43 2.60 

MnO 0.12 0.13 0.14 0.15 0.13 0.10 0.09 

Na20 2.57 2.36 2.57 2.87 2.17 2.71 2.46 

P20, 0.10 0.09 0.12 0.18 0.16 0.14 0.40 

Ti02 0.42 0.39 0.76 1.08 0.80 0.73 0.77 

TOTAL 97.85 98.62 97.88 98.60 99.65 99.46 99.89 

FeO'/MgO 0.59 0.56 0.78 1.08 2.36 2.26 2.30 

Ba (ppm) 336 378 233 275 490 440 456 

Nb 3 2 3 5 10 8 10 

Ni 179 254 194 32 46 34 41 
Pb 13.1 11.2 9.0 13.6 27.5 17.7 21.9 
Rb 44.7 47.5 36.5 41.8 130.6 96.7 124.1 
Sr 308 284 274 301 165 207 183 
Th 4.9 3.0 2.3 3.8 13.1 9.3 12.0 
y 11 11 14 18 27 22 23 
Zr 94 68 80 116 153 156 161 
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Table l. (continued) 

Location Nankai Trough 
Site 582, DSDP Leg 87 

sample T-4 T-5 T-6 T-7 T-8 T-9 T-10 

rock type turbidite turbidite turbidite turbidite turbidite turbidite turbidite 

Si02 (wt. %) 64.03 64.00 63.24 67.50 63.36 65.62 63.34 

Al201 17.81 17.82 18.00 16.08 18.40 16.23 18.12 

CaO 2.29 2.33 2.54 2.54 1.79 3.62 1.48 

F~03' 6.89 6.56 7.02 5.44 7.06 6.12 7.59 

K20 3.06 2.90 2.87 2.59 3.07 2.21 3.17 

MgO 2.60 2.69 2.96 2.23 2.88 2.55 2.77 

MnO 0.11 0.11 0.11 0.10 0.09 0.10 0.09 

Na20 2.41 2.52 2.45 2.63 2.44 2.75 2.37 

P20l 0.16 0.16 0.16 0.13 0.19 0.13 0.15 

Ti02 0.78 0.77 0.79 0.68 0.80 0.69 0.78 

TOTAL 100.15 99.86 100.14 99.91 100.08 100.03 99.87 

FeO'!MgO 2.38 2.19 2.14 2.20 2.21 2.16 2.46 

Ba (ppm) 443 401 387 395 438 400 501 

Nb 10 9 8 8 10 6 9 

Ni 38 37 36 29 36 28 36 

Pb 22.9 22.1 22.4 15.6 23.2 13.9 23.8 

Rb 120.1 112.2 111.6 97.7 120.9 82.2 124.7 

Sr 176 177 177 205 163 238 144 
Th 12.7 10.5 10.6 8.1 11.5 7.6 11.2 
y 25 24 25 20 24 19 23 
Zr 160 157 147 156 152 135 145 

25 



Table 1. (continued) 

Location Philippine Sea GDPIS-12 

sample T-COM P-1 P-2 P-3 P-4 P-5 P-6 

rock type turbidite pelagic clay pelagic clay pelagic clay pelagic clay pelagic clay pelagic clay 

(composite) 

Si02 (wl. %) 64.36 63.82 58.89 58.36 58.60 59.50 58.73 

Al203 17.47 16.40 18.32 18.57 19.18 19.65 19.45 

CaO 2.36 1.75 1.77 1.66 1.46 1.56 1.89 

Fe2o)· 6.69 6.13 8.47 8.78 8.85 9.25 8.13 

K20 2.89 3.57 3.44 3.46 3.43 3.40 3.24 

MgO 2.69 2.26 3. 16 3.26 3.30 3.34 2.85 

MnO 0.10 0.54 0.80 0.69 0.73 0.81 0.76 

NaP 2.42 4.65 3.97 3.87 3.73 3.74 4.17 

PlOs 0.18 0.20 0.24 0.23 0.21 0.23 0.26 

Ti02 0.76 0.61 0.87 0.90 0.90 0.92 0.81 

TOTAL 99.93 99.95 99.94 99.76 100.38 102.43 100.29 
FcO'!MgO 2.24 2.44 2.4 1 2.42 2.41 2.49 2.56 

Ba (ppm) 449 886 822 866 787 782 744 
Nb 9 9 12 12 12 12 11 
Ni 37 59 91 81 83 82 68 
Pb 21.5 36.1 46.0 43.0 44.6 47.1 48.5 
Rb 111.8 123.6 128.3 130.0 137.3 132.1 I 17.3 
Sr 183 188 204 204 190 195 214 
Th 10.8 13.9 14.4 14.6 15.6 14.9 15.3 
y 23 33 41 38 37 41 47 
Zr 152 164 181 176 175 177 197 
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Table I. (continued) 

Location Philippine Sea GDP15-12 

sample P-7 P-8 P-9 P-10 P-11 P-12 P-COM 

rock type pelagic clay pelagic clay pelagic clay pelagic clay pelagic clay pelagic clay pelagic clay 
(composite) 

Si02 (wt. %) 58.03 57.69 58.91 58.28 58.16 57.92 59.11 

Al203 18.88 19.52 19.52 19.02 19.03 18.93 18.84 

CaO 1.58 1.51 1.25 1.30 1.30 1.32 1.53 

Felol· 9.05 9.19 8.51 8.92 8.96 8.93 8.59 

K20 3.46 3.36 3.59 3.65 3.65 3.66 3.50 

MgO 3.25 3.28 3.17 3.21 3.19 3.25 3.11 

MnO 0.73 0.79 0.63 0.69 0.71 0.73 0.72 

Na10 3.84 3.95 3.47 3.53 3.62 3.84 3.70 

P101 0.22 0.22 0.20 0.22 0.23 0.23 0.22 

Ti02 0.91 0.91 0.87 0.91 0.90 0.90 0.87 

TOTAL 99.94 100.42 100.12 99.73 99.75 99.70 100.19 
FcO./MgO 2.51 2.52 2.42 2.50 2.53 2.47 2.48 

Ba (ppm) 813 788 769 837 874 855 665 
Nb 12 II 13 13 13 12 12 
Ni 81 80 77 78 80 79 72 
Pb 43.9 45.8 42.5 45.4 45.6 46. 1 43.5 
Rb 129.4 124.6 136.9 138.5 138.1 136.4 128.1 
Sr 206 196 180 187 188 190 190 
Th 14.9 14.5 16.4 15.7 16.0 15.7 14.8 
y 37 40 34 40 41 42 38 
Zr 176 172 182 180 180 180 174 
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Table I. (continued) 

Location Nabari, Nara Prefecture Uta-Shima, 
Yamaguchi Prefecture 

sample NBN-1 SR-I SR-2 NBR2-3 KUZ-2 U-X 

rock type gneiss gneissose gneissose granite granite granulite 
granite granite (xcnnolith) 

Si02 (wt. %) 66.61 67.84 49.95 76.89 74.60 48.50 

AlP) 16.41 15.61 17.45 13.59 14.53 22.01 

CaO 2.90 3.86 7.30 1.86 1.76 10.67 

Fc2oJ· 4.63 4.54 13.34 1.30 1.53 9.71 

KP 3.54 1.99 1.70 3.18 3.30 0.11 

MgO 1.65 1.89 4.39 0.30 0.24 3.71 

MnO 0.12 0.09 0.23 0.03 0.07 0.16 

Na20 3.40 3.34 1.31 3.36 3.83 3.21 

P20l 0.15 0.16 1.03 0.05 0.05 0.20 

Ti02 0.60 0.63 3.16 0. 12 0.12 1.18 

TOTAL 100.01 99.98 99.87 100.67 100.03 99.46 
FeO./MgO 2.52 2.16 2.73 3.83 5.86 5.86 

Ba (ppm) 544 320 122 1157 435 55 

Nb 9 8 84 6 10 2 

Ni 29 14 4 4 4 1 

Pb 25.5 7.9 6.6 24.1 26.9 3.0 

Rb 114.2 91.0 47.7 77.9 97.0 0.7 
Sr 358 241 486 347 241 562 
Th 9.2 -0.5 6.3 5.0 4.8 0.3 
y 23 8 48 11 19 10 
Zr 183 142 436 143 109 27 
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Table 2. REE compositions of representative 
Setouchi volcanic rocks, terrigenous sediments and eclagic sed iments. 

Location Shodo-Shima Osaka Nankai Trrogh Philippine Sea 

sample SDSYB $0261 TGI-5 SG-2 T-COM P-COM 

rock type basalt HMA HMA HMA turbidite pelagic clay 
(composite) (composite) 

La (ppm) 10.3 8.6 12.0 8.3 22.4 35.9 

Ce 24.3 18.7 21.5 18.0 50.3 74.9 

Nd 9.1 9.5 10.6 9.3 21.3 33.1 

Sm 3.3 2.3 2.2 2.3 4.3 5.9 

Eu 1.1 0.8 0.6 0.8 0.9 1.5 

Gd 3.5 2.6 2.0 2.7 3.9 6.2 

Dy 3.2 2.6 1.9 2.6 3.5 4.9 

Er 1.7 1.5 1.1 1.4 1.9 2.4 

Yb 1.4 1.4 l.l 1.4 1.8 2.1 
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Table 3.1sotopic compositions of representative Setouchj volcanic rocks, 
terrigenous sediments and pelagic sediments. 

Location 
Sample rock type 206Pb/204Pb 2crm 207Pb/204pb 2crm 208Pb/204Pb 2crm 

Shodo-Shima 
SDSYB basalt 18.314 2 15.562 2 38.468 6 

SD-261 HMA 18.371 2 15.584 2 38.573 5 
SD407 HMA 18.361 9 15.571 9 38.551 20 

SD411 HMA 18.367 3 15.580 3 38.566 5 
SD812 HMA 18.365 5 15.582 2 38.591 6 

MDYB-2 HMA 18.370 3 15.582 3 38.547 6 

UDY andesite 18.362 1 15.584 38.568 3 

SDWHJ andesite 18.325 3 15.555 2 38.466 5 
SD515 andesite 18.359 5 15.573 5 38.544 9 

Takamatsu 
TK101 basalt 18.315 2 15.567 2 38.503 6 

SH7201 HMA 18.391 2 15.594 2 38.651 4 

JA-2 HMA 18.394 2 15.598 2 38.668 4 

TK6' andesite 18.414 4 15.608 4 38.718 10 

TK-KAN andesite 18.402 3 15.596 2 38.670 6 

Osaka 
TGI-5 HMA 18.453 2 15.596 38.679 4 

TGI-6 HMA 18.444 I 15.584 38.624 4 
NBY-5 HMA 18.425 3 15.586 4 38.629 7 
SG-2 HMA 18.461 2 15.594 2 38.656 5 
NJSB HMA 18.431 2 15.592 2 38.638 6 
NnB HMA 18.438 2 15.593 3 38.648 5 

Nankaj Trough Site 582, DSDP Leg 87 
T-1 turbidite 18.503 3 15.614 3 38.755 7 
T-3 turbidite 18.530 5 15.626 5 38.804 9 
T-4 turbidite 18.463 5 15.599 5 38.683 10 
T-6 turbidite 18.509 2 15.619 2 38.763 4 
T-8 turbidite 18.458 3 15.589 4 38.682 12 
T-9 turbidite 18.490 2 15.619 2 38.767 4 
T-10 turbidite 18.500 2 15.609 3 38.752 8 
T-COM turbidite 18.510 3 15.620 3 38.761 7 
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Table 3. (continued) 

Location 
Sample rock type 206Pb/204Pb 2crm 207PbP04Pb 2crm 208PbP04Pb 2crm 

Philippine Sea GDPI5-12 
P-1 pelagic clay 18.625 2 15.629 2 38.827 5 

P-6 pelagic clay 18.605 3 15.627 3 38.790 7 

P-12 pelagic clay 18.683 2 15.644 I 38.889 4 

P-COM pelagic clay 18.666 2 15.648 2 38.887 6 

Nabari, Nara Prefecture 
NBN-1 gneiss 18.554 I 15.611 2 38.700 3 
SR-I gncissose gr. 18.526 2 15.624 2 38.712 5 
SR-2 gneissose gr. 19.298 2 15.670 2 39.786 6 
NBR2-3 granite 18.502 2 15.626 2 38.742 6 

Uta-Shima, Yamaguchi Prefecture 
U-X granulite 18.461 2 15.574 2 38.446 6 

(xenolith) 
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Table 3. (continued) 

Location 
87Sr/s6Sr SarnEie 2crm 87Sr/86Sr(14Ma)• 143Nd/ 1~Nd 2om ENd 

Shodo-Shima 
SDSYB' 0.70446 0.70439 0.512747 2.1 

SD-261' 0.70512 0.70490 0.512700 1.2 

SD407' 0.70522 0.70502 0.512723 1.7 

SD411 0.70518 0.70491 0.512717 1.5 

MDYB-2' 0.70510 0.70487 0.51273 1 1.8 

UDY' 0.70539 0.70516 0.512645 0.1 

SDWHJ 0.704935 14 0.70477 0.512586 16 -1.0 

Takamatsu 

TK101 ' 0.70413 0.70408 0.512830 3.7 

SH7201 0.706104 25 0.70596 0.512502 20 -2.7 

JA-2 0.70637' 0.70621 0.512550' -1.7 

TK6' 0.706820 18 0.70656 0.512506 17 -2.6 

TK-KAN 0.706721 17 0.70649 0.512455 19 -3.6 

Osaka 

TGI-5' 0.70524 0.70514 0.512588 -1.0 

TGI-6 0.705154 18 0.70507 0.512562 19 -1.5 

NBY-5' 0.705460 0.70537 0.512553 -1.7 

SG-2' 0.704740 0.70468 0.512734 1.9 

Nankai Trough Site 582, DSDP Leg 87 

T-COM 0.708647 19 0.70829 0.512383 14 -5.0 

Philippine Sea GDP15-12 

P-COM 0.712118 19 0.71173 0.512325 16 -6.1 

Nabari, Nara Prefecture 

NBN-1 0.709828 18 0.70964 0.512386 20 -4.9 

SR-1 0.707508 19 0.70729 0.512313 13 -6.3 

SR-2 

NBR2-3 0.709271 22 0.709 14 0.512195 28 -8.6 

Uta-Shima, Yamaguchi Prefecture 

U-X 0.704806 19 0.512599 12 -0.8 

* Data from Ishizaka and Carlson ( 1983). 

+ Age corrected for 14 Ma 

# Data from An do and Shibata ( 1988) 

t Data from Arakawa ( 1992) 
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symbols are HMAs. Values of N-type MORB arc taken from Sun 
and McDonough ( 1989). 
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CI-chondrite normalized-REB patterns for representative Setouchi 

rocks and the composite of the terrigenous sediments and the pelagic 

sediments are given in Fig. 7. All of the Setouchi samples have high 

LREFiHREE ratios. Both sediments show the LREE enrichment, general 

characteristics of the sediments and the continental crustal material. The 

average compositions of pelagic sediments have higher LREE contents 

than the average composition of terrigenous sediments, but they have similar 

HREE contents. Further, the sediments have much more enriched in LREE 

than the Setouchi volcanic rocks, but these have similar HREE contents. 

Among primitive HMAs, the TGI-5 from the Osaka area, has lower HREE 

content than the SD261 from Shodo-Shima area, nevertheless TGI-5 has 

higher LREE content than SD261 (Table2, Fig. 7). 

Pb isotopic compositions for the Setouchi volcanic rocks clearly 

form a steeper array than NHRL (Northern Hemisphere Reference Line; 

Hart, 1984), and situated between sediments and the Japan Sea floor basalts 

on Pb-Pb diagrams (Japan Sea floor basalts data from Tatsumoto and 

Nakamura, 1991; Cousens and Allan, 1992; Fig. 8) . Pb isotopic compositions 

of Setouchi volcanic rocks show a remarkable linear trend; HMAs from the 

Shodo-Shima area have the most depleted isotopic compositions, similar to 

those of the most radiogenic Japan Sea floor basalts. The HMAs from 

Osaka area have the most enriched Pb isotopic compositions, which overlap 

some terrigenous sediments on Pb-Pb diagrams (Fig. 8). HMAs in Takamatsu 

area are situated between Shodo-Shima HMAs and Osaka HMAs on Pb-Pb 
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diagrams (Fig. 8). 

Basalts and HMAs have distinctive isotopic compositions; HMAs 

are higher, consequently sediment-like Pb isotopic compositions than basalts 

(Fig. 8). Basalts have most depleted Pb isotopic compositions of the Setouchi 

volcanic rocks, i.e., plotted nearby the Japan sea floor basalts on the Pb-Pb 

diagrams. 

The Pb isotopic compositions of terrigenous sediments are relatively 

depleted than those of pelagic sediments and overlap to the reported Pb 

isotopic compositions of the shales from the Shimanto belt (Ishikawa and 

Nakamura, 1994). The isotopic compositions of the present pelagic sediment 

samples plotted well within the compositional range of the Pacific pelagic 

sediments (e.g., Ben Othman et al., 1989). The Pb isotopic compositions of 

upper continental crust in the Setouchi volcanic zone, i.e., the granite, 

gneissose granite and gneiss from the Ryoke basement complex, are identical 

to those of the terrigenous sediments. This may suggest that provenanence 

of the terrigenous sediment was the Ryoke basement complex. 

The Nd-Sr isotopic compositions of the Setouchi volcanic rocks exhibit 

an overall negative correlation within the "mantle array" (Fig. 9), but this 

trend is less obvious than Pb-Pb diagrams. The Setouchi volcanic rocks are 

also plotted between sediments, especially the terrigenous sediment, and 

Japan Sea floor basalts. Basalts and IiMAs are also in separated fields, and 

the latter have also enriched 87Sr/86Sr and 143NdJ144Nd ratios than the former 

(Ishizaka and Carlson, 1983). 
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Isotopic ratios of Pacific sediment are taken from Ben Othman et al. ( 1989). 
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One of the most notable geochemical features of Setouchi volcanic 

rocks is the secular variations of Pb isotopic compositions (Fig. 1 0). 

Paleomagnetic studies (e.g. Otofuji et al., 1985; Ishikawa et. al., 1996) and 

K-Ar dating (Anno, 1995) indicate that the Setouchi volcanic activities in 

Osaka, Takamatsu, and Shodo-Shima area had commenced at pre-, syn-, 

and post-rotation of SW Japan arc sliver, respectively. Pb isotopic 

compositions of the Setouchi volcanic rocks shifted toward those of Japan 

Sea BABB during 15-14 Ma. 

Discussion 

1. Differences of isotopic characteristics of basalt and HMA 

Pb isotopic compositions of HMAs are systematically different from 

those of basalts as well as the Nd-Sr system (lshizaka and Carlson, 1983; 

Fig. 8, 9). Mechanisms responsible for these isotopic differences between 

basalts and HMAs are examined in terms of (1) crustal contamination, (2) 

mantle heterogeneity, (3) incorporation of SDSC. In order to evaluate the 

dominant process, a pair of the Shodo-Shima basalt and HMA was chosen, 

because those erupted simultaneously at the same region, suggesting that 

spatial and temporal heterogeneity within the mantle source would be 

negligible. 

Crustal contamination 

Unfractionated characteristics both for basalt and the HMA, which 
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were deduced by petrographical, chemical and melting phase relation studies 

(e.g., Tatsumi and Ishizaka, 1981, 1982a, 1982b; Tatsumi 1982), may provide 

a rather compelling reason for believing the minimal effect of crustal 

contamination in determining those compositions. Furthermore, even the 

bulk mixing of the underlying granite, gneiss or gneissose granite from the 

Ryoke belt is assumed, neither isotopic nor chemical composition of HMA 

are likely to be explained (Fig. 11). Although it is not possible to evaluate 

the net effect of crustal contamination, I here do not take its role into 

account based on the above observations. 

Mantle heterogeneity 

Based on Nd-Sr isotopic compositions of the Setouchi volcanic rocks, 

Ishizaka and Carlson (1983) inferred that the mantle wedge beneath the 

SW Japan are chemically stratified and proposed the mechanism of the 

production of two distinct magmas including that the primary basaltic 

magmas, generated by partial melting of the variably metasomatized mantle 

wedge overlying the subducted plate, ascended into the hydrous uppermost 

mantle characterized by an enriched isotopic signature. Heat from the basaltic 

magma causes secondary partial melting of hydrous peridotites to produce 

primary HMA magmas. However this mechanism would be rather adohoc, 

and could not explain the origin of such chemical stratification. 
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Subduction components 

It has been widely accepted that the slab-derived subduction 

component (SDSC) is one of the key components in governing the arc 

magma chemistry (e.g., Tatsumi et al., 1986; McCulloch and Gamble 1991; 

Pearce and Peate, 1995). The amount of SDSC overprinted on the original 

mantle source may thus be a possible factor in determining the composition 

of basalt and HMA magmas. The Pb isotopic compositions of the Setouchi 

volcanic rocks lie on a mixing trend formed between pelagic/terrigenous 

sediments and Japan Sea floor basalts (Fig. 8). Therefore the incorporation 

of the sediment component would be a plausible mechanism to produce 

isotopic variations of the Setouchi volcanic rocks. This would indicate that 

the compositional difference between the basalt and HMA may be caused 

by the different amount of adding SDSC in their magma source. 

The SDSC may be much more enriched in H20 than the original 

upper mantle before the addition of SDSC. Therefore the H20 content of 

magma source may be an indicator for estimating the amount of added 

SDSC. Based on high pressure melting experiments, the magma source of 

the HMA was inferred to have much higher ~0 content than that of the 

basalt (Tatsumi, 1982). It follows that the HMA magma source may be 

more polluted by hydrous SDSC. This is consistent with the Pb isotopic 

variations, because the SDSC would have higher Pb isotopic compositions 

than arc magmas (e.g., Ben Othman et al., 1989; Ishikawa and Nakamura, 

1994). 

43 



Nd-Sr isotopic compositions exhibit a mixing trend unclearer than 

the trend for Pb isotopes. This may be attributed to widely spread Nd-Sr 

isotopic compositions of SDSC than the Pb isotopes (Fig. 12). The differences 

of Pb, Nd and Sr concentrations between the sediments and the altered 

MORB inferred to be about a hundred-fold, fore-fold and nearly identical, 

respectively. Since the ratio of the altered MORB and sediment in SDSC 

would not be constant in each areas, the Nd and Sr isotopic compositions 

of SDSC are more highly varied than Pb isotopic compositions (Fig. 12), 

and thus precluded to form mixing line. 

2. Metasomatic agent 

One of the highly controversial problems in geochemistry is whether 

the SDSC is melt or ~0 fluid. The elemental ratios of HFSE could provide 

a key constraint for this problem, because HFSE are strongly partitioned 

into a partial melt as an incompatible element but not into an aqueous fluid. 

The HMAs have higher Nb/Ti02 and Zr/Ti02 ratios and lower Ti02 

concentraions than the basalts, namely, these are clearly separated fields on 

Ti02 variation diagrams for Zr/Ti02 and Nb/Ti02 (Fig. 13). Among HFSE, 

distribution coefficient of Ti02 would be higher than those of other HFSE 

(e.g., McCulloch and Gamble, 1991; Stolper and Newman, 1994). Since 

basalts and HMAs erupted simultaneously in the small area, it is reasonable 

to assume that the original mantle compositions for these two magma types 

are identical. This means that Ti0
2 

concentrations will positively correlate 
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with Nb/Ti02 and Zr/Ti02 ratios, because the bulk distribution coefficients 

of these elements between magmas and the mantle peridotite are inferred to 

be Nb < Zr < Ti02 < 1, i.e., 0.008, 0.05 and 0.07, respectively (McCulloch 

& Gamble 1991). Therefore, the constraints observed among HFSE cannot 

be explained by differing degrees of partial melting of a single mantle 

source. It is thus suggested that the HMA source is more enriched in Nb 

and Zr than the basalt source. The origin of this source characteristics may 

be better attributed to the metasomatism of slab-derived melt, because the 

HFSE can not be soluble in an ~0-fluid (e.g., Tatsumi et al, 1986). 

Comparison of ~0 content between HMA and basalt may also support 

the partial melt as a metasomatizing agent. K:zO content of SD261, which is 

inferred to be a possible primary magma, is 2.25 wt. %. Assuming (1) batch 

melting, (2) 10-20 % degree of partial melting and (3) appropriate bulk 

distribution coefficient, i.e., 0.004 (McCulloch and Gamble , 1991), the 

~0 concentration of magma source is calculated to be 0.2-0.5 wt.% (Shaw, 

1970). Since the results of high pressure melting experiments indicate that 

the HMA magma contains 7 wt.% ~0 (Tatsumi, 1982), the ~0 content in 

magma source would be 0.7 to 1.4 wt. %. Further, the upper limit of ~0 

concentration in magma source would be 1.5 to 3.0 wt. %, because the ~0 

solbility in HMA magmas were inferred to be 15 wt.% at 1.5 GPa (Tatsumi, 

1981). Assuming that the SDSC is aqueous fluid and the original mantle 

compositions are identical to Japan Sea BABB (Back Arc Basin Basalt) 

source with 0.0036 wt.% ~0 (Yamasita and Tatsumi, 1994), the addition 
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of 0.7-3.0 wt.% SDSC must elevate the ~0 concentration from 0.0036 

wt.% to 0.2-0.5 wt. %. This means that the ~0 concentration in the SDSC 

would be 15-33 wt.% (Fig. 14). The distribution coefficients between fluid 

and peridotite are hundred times higher than those between melt and peridotite 

(Hawkesworth et al., 1993). Moreover, the distribution coefficients between 

fluid and slab may be much higher, because there may be K-bearing phases. 

It is thus suggested that such a high concentrations, i.e., about ten times 

higher than arc magmas which would be representative melt of K enriched 
J 

mantle, are not realistic for aqueous fluids. 

The melt of oceanic crust and sediments, on the other hand, would 

be felsic (e.g., Nicholls and Ringwood, 1973; Ringwood, 1974; Whilly and 

Sekine, 1982) and may be saturated in H20. Further, the solubility of ~0 

in magmas mainly depend on pressure. Here, considering that the ~0 

solubility in andesitic melt had been reported to be 10 wt. % at 1.5 GPa 

(Sakuyama and Kushiro, 1979), the H20 concentrations of SDSC may be 

about 10 wt. %. It follows that the amount of SDSC in magmas source 

would be 7-14 and 15-30 wt.% at the case of HMAs magmas undersaturated 

~0 and saturated H20, respectively. To elevate the ~0 content from 

0.0036 wt.% to 0.2-0.5 wt.% by the addition of 7-30 wt. % SDSC, the ~0 

concentration of SDSC would be 1.5-3.3 wt. % (Fig. 14). If the major 

component of the SDSC generated by the melting of the sediment layer, 

this value may be acceptable, because these values are in the range of 

natural metasediments (e.g., Table 1; Yuhara, 1994) and the results of 
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melting experiments in pelitic systems (e.g., Vielzeuf and Holloway, 1988; 

Douce and Johnston, 1990; Douce and Beard, 1995). Even if the original 

mantle ~0 composition is identical toN-type MORB source, above results 

do not alter significantly, because ~0 concentration of HMA magma sources 

would be considerably higher than that of N-type MORB source, that is 

believed to be on the order of 0.01 wt. %. 

Estimation of temperature distribution beneath the Setouchi volcanic 

belt may also advocate the element transportation with a slab derived melt. 

i 

Using a constraint that 1100 oc is required at certain depth in sub-Setouchi 

mantle wedge at depths between 60-30 km, numerical simulations on 

temperature distribution suggest that the surface temperature of the 

subducting slab is about 900 °C at sub-Setouchi belt (Tatsumi et al., 1996; 

Furukawa and Tatsumi 1996). The solidus temperature of peritic system at 

sub-Setouchi, i.e., at 1.5 GPa, would be about 800 and 700 °C under H20-

absent and present condition, respectively. It follows that the pelitic rocks 

in downgoing slab would melt beneath the Setouchi region. Furthermore, 

DSDP drilling had shown that the off-ridge volcanism occurred in the 

Shikoku Basin around 15 Ma (Klein et al. , 1978; Klein and Kobayashi, 

1980) and this suggests that the subducted plate was still hot at the time of 

Setouchi volcanism. Therefore, the plausible mechanism to pollute mantle 

wedge is the elements transportation by melt. 

3. The nature of SDSC 
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3-1. Sediment derived component 

Nd-Sr isotopic compositions suggest that the major component of 

SDSC would be sediment derived component, because basalts and HMAs 

exhibit a negative correlation which would be produced by the addition of 

SDSC (previous section; Fig. 9). Arc magmas, which are formed by addition 

of altered MORB derived fluid, characterized by positive correlation on 

Nd-Sr diagram (e.g., Tatsumi et al., 1991; Tatsumi et al., 1992). Thus the 

negative trend on Nd-Sr diagram suggest the relatively minor contribution 

of altered MORB crust derived component, but the major contribution of 

sediment derived component with high 87SrJ86Sr and low 143Nd/144Nd ratios. 

The Pb concentration of HMA ranges from 11 ppm to 19 ppm, i.e., 

forty-fold to sixty-fold of that of N-type MORB. TheN-type MORB source 

is believed to be representative of upper mantle. Further, Pb concentrations 

of N-type MORB source and Japan Sea BABB source are nearly identical, 

which are inferred to be 0.05 and 0.06 ppm, respectively (e.g., Ben Otheman 

et al., 1989, for N-type MORB source; Yamashita and Tatsumi, 1994, for 

Japan Sea BABB source). Therefore, the most of Pb in HMA magma 

source would be derived from SDSC. This means that among the possible 

subduction sediments contributing to adding SDSC, the terrigenous sediment 

may play a more dominant roles, because the fact that some overlap of 

Osaka HMA and terrigenous sediment on Pb-Pb diagrams strongly suggest 

that the terrigenous sediment is a dominant component of SDSC (Fig. 8). 
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3-2. Contribution of altered MORB crust derived component 

Based on numerical simulations on temperature distribution in the 

sub-Setouchi upper mantle, it is suggested that the major component of 

SDSC would be the sediment derived component (Tatsumi et al., 1996; 

Furukawa and Tatsumi 1996). However, the following constraints suggest 

that minor contribution of the SDSC derived from the altered MORB crust 

must be also indispensable. 

Constraints from Pb systems 

Pb concentrations of Shodo-Shima HMAs range 17-18 ppm and are 

about sixty and twenty-sixty times higher than N-type MORB and Japan 

Sea BABB, respectively. Because the original mantle compositions of the 

Setouchi volcanic rocks may be identical toN-type MORB source or Japan 

Sea BABB source, the addition of Pb derived only from the sediments, 

which can explain Pb concentrations in HMAs, would produce isotopic 

shifts far larger than those observed, i.e., identical to terrigenous sediment 

(Fig. 15). Therefore the component, which can shift the Pb isotopic 

compositions of SDSC to less radiogenic, are required. Possible candidates 

are altered MORB crust-derived component and the interaction between 

the mantle and SDSC such as column mantle (e.g., Navon and Stolper 

1987). Pb concentrations of the original mantle may be identical toN-type 

MORB source or Japan Sea BABB source, those are, 0.05 and 0.06 ppm , 
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respectively ( data for N-type MORB, e.g., Ben Othman, 1989; data for 

Japan Sea, Yamashita and Tatsumi, 1994). Those of SDSCs, on the other 

hand, would be higher than 20-30 ppm, because SDSC would be melt 

derived from sediments of which Pb concentrations are typically 20-30 

ppm (e.g., Table 1; Ben Othman, 1989). Take the difference in concentrations 

into account, the interaction between SDSC and the mantle wedge seems 

to be minor factor to change Pb isotopic compositions of SDSC to depleted. 

On the other hand, the minimal melting of altered MORB crust may produce 

a melt of which concentration may be on the order of ppm. This means that 

the altered MORB crust derived component can effectively reduce the Pb 

isotopic compositions of SDSC relative to interaction between mantle and 

SDSC. It is thus suggested that the altered MORB crust derived component 

would be essential in order to dilute SDSC Pb isotopic compositions. 

Constraints from the geothermal conditions 

The following physical considerations also suggest the possibility of 

the minimal dehydration melting in the altered MORB crust. Wet solidus 

of basalt at 1.5 GPa, i.e., depth of slab at sub-Setouchi belt, is inferred 

about 650 °C (e.g., Green, 1982). Further, the surface temperature of slab is 

inferred about 900 oc beneath the Setouchi region (Furukawa and Tatsumi, 

1996). This may suggest that the temperature of altered MORB crust beneath 

Setouchi region is well above the wet solidus, because the temperature 

inside of the downgoing slab, i.e., 5 km below from the surface, is estimated 
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about 150 oc lower than the top of the slab (Toksoz et al., 1971). Considering 

that the diminishing of stability field of amphibole would release ~0 

continuously (Poli and Schnidt, 1995), the minimal melting of altered MORB 

crust is plausible. 

Further, the age of the subducted Shikoku Basin and the Setouchi 

volcanism were inferred to be 17-25 Ma and 12-14 Ma respectively (e.g., 

Kobayashi and Nakamura, 1978; Ishikawa et al., 1996). This would indicate 

that the age of subducting slab was about 3-13 Ma during the Setouchi 
J 

volcanism. Based on two-dimensional, heat-transfer model, Peacock (1990) 

calculated the temperature distribution on the surface of the subducting 

oceanic crust. The result indicate that the temperature of the top at the 

oceanic crust with a age of 10 Ma is inferred about 800 °C at the 1.5 GPa, 

well above the wet solidus, that is 650 °C, but below dry solidus temperature 

of the altered MORB crust, that is about 1200 °C (e.g., Green, 1982). 

Considering that the amhibole breakdown at 1.5 GPa is inferred to be about 

1100 °C (e.g., Green, 1982), free ~0 in altered MORB crust layer is 

released only by the diminishing of stability field of amphibole (Poli and 

Schnidt, 1995). This suggest that the melting of altered MORB crust would 

occur but the degree of melting probably minimal. 

4. Origin of secular variation of Pb isotopic composition 

The occurrence of HMAs may be limited to subduction zones where 

unusually high geothermal gradient is attained. This high geothermal gradient 
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is attribute both to the young plate subduction and the back arc spreading 

(e.g., Tatsumi and Maruyama, 1989). It follows that the major heat source 

of hot mantle wedge is uprising asthenosphere related to the back arc 

spreading. Supposing that supplied heat may be transmitted by the mass 

transportation, then the secular variation of Pb isotope compositions would 

be ascribed to the replacement of source material by the upwelling 

asthenospheric material (Fig. 16), because the uprising material would have 

depleted geochemical characteristics (e.g., Yamashita and Tatsumi 1994). 

Alternatively, two component mixing, namely, single depleted source mantle 

and SDSC, can also explain the trend on Pb-Pb diagrams, however, the 

correlation of Pb isotopic compositions and trace element ratios such as 

Pbffi02 and Pb/Zr are not consistent with this mechanism (Fig. 17). 

The trace element ratios would support the compositional change of 

mantle wedge. The Ba/Ti02 ratios clearly show the positive correlation 

with Pb isotopic compositions (Fig. 18), and so are Ba/Y, Ba/Sr and Zrffi02• 

Based on high pressure melting experiment, it is demonstrated that the total 

degree of partial melting of the Osaka HMAs were higher than the that of 

Shodo-Shima HMAs (Tatsumi, 1981, 1982). The bulk distribution 

coefficients to mantle peridotite are inferred to be Ba < Sr < Zr < Ti < Y, 

i.e., 0.002, 0.02, 0.05, 0.07 and 0.15, respectively (McCulloch & Gamble, 

1991). Therefore, the melt extraction would selectively reduced Ba, Sr and 

Zr concentrations relative to Ti and Y concentrations in their magma source 

region. Thus, previous melt extraction strongly reduce Ba/Y, Ba/Ti02 and 
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Zr!Ti02 ratios in their magma source regions. Ba/Y and Zr/Ti0
2 

ratios of 

Osaka HMAs are about 30, 900 and 200, respectively, and those of Shodo­

Shima HMAs are about 14, 350 and 140, respectively (Fig. 18). These 

ratios would preclude former melt extraction both in Osaka and Shodo-Shima 

region, because these ratios of HMAs are higher than those of arc basalt 

and N-type MORB, namely, the Ba/Y, Ba/Ti02 and Zrffi02 ratios of arc 

basalt are typically 10-20, 200-400 and 40-80, respectively (Sun, 1980; 

Ewart, 1982; Hickey et al., 1986; McCulloch and Gamble, 1991), and those 

of N-MORB are about 0.2, 8 and 60, respectively (Sun and McDonough, 

1989). It is thus suggested that the degrees of partial melting of Osaka 

HMAs would be higher than those of Shodo-Shima HMAs. Accordingly, 

these trace elemental ratios can not be explained by the different degrees of 

partial melting and would support the source compositional change. 

Alternatively, higher elemental ratios indicate that the Osaka magma sources 

have much SDSCs than the Shodo-Shima magma sources. However, the 

relative enrichment of the Shodo-Shima HMAs in alkalis over other 

incompatible elements compare to Osaka HMAs may not be consistent 

with this mechanism (Fig. 19; Ishizaka and Carlson, 1983), because this 

geochemical feature suggest that the magma sources of Shodo-Shima HMAs 

would have much more SDSCs than those of Osaka HM.As. 

CI-chondrite normalized REB patterns also advocate the source 

compositional change (Fig. 7). Osaka HMA has higher LREE and lower 

HREE concentrations than Shodo-Shima HMA. This suggest that the source 
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mantle beneath the Osaka area was enriched relative to that beneath the 

Shodo-Shima area, because the degree of partial melting of Osaka HMA 

would be higher than that of Shodo-Shima. 

Above geochemical constraints suggest that the sub-Setouchi mantle 

wedge had suffered the compositional changes. The enriched geochemical 

characteristics of pre-opening mantle is consistent with the paleomagnetic 

study, namely, the SW Japan situated along the continental margin before 

opening of Japan Sea (e.g., Otofuji et al 1985 a, b), because it has been 

suggested that the upper mantle beneath the continent has enriched 

geochemical character (e.g., Allegre et al., 1982; Hawkesworth et al 1983; 

Pearece, 1983). 

Tectonic implication 

Before the rotation of the SW Japan arc sliver, the volcanic rocks 

had relatively enriched Pb-Nd-Sr isotopic compositions. To explain the 

enriched isotopic compositions of HMAs relative to basalts, Ishizaka and 

Carlson (1983) advocated the existence of mantle keel as a enriched 

geochemical reservoir beneath the SW Japan arc. Likewise, Nohda and 

coworkers (1988) insisted on the existence of sub-continental lithosphere 

(SCL) as an enriched component beneath the NE Japan arc to explain 

enriched Nd-Sr isotopic compositions of volcanic rocks which had erupted 

before Japan Sea opening. Further, they suggested that the secular variation 

of Nd-Sr isotopic compositions had been induced by the thinning of SCL. 
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The stress field of SW Japan arc sliver is extensional during Japan 

Sea opening (e.g., Fourier and Jolivet, 1995; Northrup et al., 1995). Further, 

Tamaki (1995) had suggested that both Yamato and Tsushima basin are 

composed of thinned lower crust. Therefore, it seems to be suggested that 

the thinning of the enriched layer such as mantle keel mainly controlled the 

secular variations of Pb isotopic compositions. However, the depths of 

magma segregation of the both Osaka and Shodo-Shima !Th1As, which had 

erupted pre- and post-rotation of SW Japan arc sliver, respectively, were 

inferred to be identical, those are 35 km (Tatsumi 1982). Further, the 

thickness of continental crust beneath the SW Japan is about 30-40 km 

(e.g., Yoshii et al., 1974). These would indicate that the magma segregations 

had occurred at the upper most mantle throughout the rotation of SW Japan 

arc sliver and that the depth of upper most mantle had been invariant 

during the rotation of SW Japan arc sliver. These would suggest that the 

thinning of lower crust or SCL would not have occurred at sub-Setouchi 

lower crust or upper mantle during the Setouchi volcanism. It is thus inferred 

that the thinning of SCL would not play an important role to characterize 

the isotopic compositions of Setouchi volcanic rocks. Further, based on the 

isotopic compositions of basalts and HMAs, it is suggested that the mantle 

keel also may not play a important role to characterize isotopic compositions 

of Setouchi volcanic rocks (see previous section). 

The plausible mechanism to explain the geochemical secular variations 

would be replacement of the enriched mantle by depleted asthenospheric 
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materials. Following observations are consistent with this model. (1) The 

Nd-Sr isotopic compositions of Japan Sea BABB and the volcanic rocks 

from the back arc side of NE Japan exhibit secular variation (Nohda and 

Wasserburg, 1986; Nohda et al., 1988, 1992). (2) The Pb isotopic 

compositions of Japan Sea BABB form a single linear array, which is 

parallel with the trend of the Setouchi volcanic rocks (Tatsumoto and 

Nakamura, 1991; Cousens and Allan, 1992). (3) The che,mical composition 

of Japan Sea BABB also show the compositional shift (Allan and Gorton, 
J 

1992). (4) the BABB source mantle material were chemically depleted 

(Yamashita and Tatsumi, 1994). 

Taking the thickness of mantle wedge (less than 30 km) into the 

account, the depleted material should be the lateraly injected into sub-

Setouchi mantle wedge. If this is the case, the following scenario is suggested 

for the origin of the Setouchi volcanic rocks. Positively/passively uprising 

asthenospheric materials which related to Japan Sea opening may cause 

replacement of the sub-Setouchi mantle wedge by the lateral asthenospheric 

mantle flow. The rotational movement of SW Japan sliver and the obduction 

over the newly born Philippine Sea plate might also be induced by this 

mantle flow. The direct introduction of hot asthenospheric materials and 

the obduction over hot lithosphere should attain extremely high temperature 

both in the mantle wedge and the subducted slab. This may caurse both the 

direct partial melting of the downgoing slab and the Setouchi volcanism 

(e.g. , Drummond and Defant, 1990; Peacock et al., 1994; Tatsumi et al., 
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1996). The geochemical secular variations of the Setouchi volcanic rocks 

would represent the replacement of the mantle wedge by injected 

asthenospheric materials. This asthenospheric injection is consistent with 

the steepening of subducted slab and trench retreatment which observed in 

NE Japan arc (Nohda et al., 1990; Tatsumi et al., 1990) 

Although the Japan Sea opening had commenced at least 20 Ma 

(e.g., Kaneoka et al., 1990, 1992), the rotational movement of SW Japan 

sliver and the Setouchi volcanism suddenly occurred at 16 Ma and ceased 
) 

at 14 Ma (e.g., Otofuji et al., 1985a,b, 1991; Ishikawa et al1996), i.e., only 

active at the latest stage of Japan Sea opening. This might indicate that the 

arrival of hot asthenospheric materials induced both the rotational movement 

of SW Japan arc sliver and the Setouchi volcanism. This scenario may 

prefer the model that the Japan Sea opening caused by the positive 

asthenospheric uprising, and the relative motions, such as plate convergence 

rates, may not play an important role to precipitate Japan Sea opening (e.g., 

Northrup et al., 1995). 

65 



Conclusion 

Sr, Nd and Pb isotopic compositions of basalts and HMAs from the 

Setouchi volcanic belt are systematically different, more enriched isotopic 

compositions for HMAs than basalts. This would be explained by processes 

in including that much larger amounts SDSCs are overprinted onto the 

magma source for HMA magmas than those for basalt magmas. Further, 

Pb isotopic compositions suggest that the major component of SDSC is 

derived from the subducted terrigenous sediment. However, in order to 

' 
account for Pb concentrations of Illv1As, the altered MORB crust derived 

component are also required. 

Trace element characteristics of basalts and HMAs, especially 

systematically higher Zr/Ti02 and Nb/Ti02 ratios with lower Ti02 

concentrations of Illv1As than those of basalts, would suggest that the 

metasomatic agent may be partial melt of the subducted slab and not hydrous 

fluids. 

The secular variations of Pb isotopic compositions may suggest that 

the replacement of the sub-Setouchi mantle wedge by the depleted materials 

had occurred during the rotation of SW Japan arc sliver associates with the 

back arc opening. Possible materials with depleted geochemical signature 

would be the uprising deep-seated asthenospheric materials. The positively 

uprised asthenospheric materials, which had caused Japan Sea opening, 

would subsequently induce the rotational movement of the SW Japan sliver 

and the replacement of the sub Setouchi mantle wedge. 
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Abstract 

Experimental procedures of Pb isotopic analyses on rock samples are 

described. Bromide form anion exchange chromatography technique was 

adopted to separate Pb from acid-decomposed sample. Extreme care was 

exercised to minimize Pb contamination throughout the analytical procedures. 

Pb contamination was low enou~~h and precise Pb isotopic compositions of 

rock samples were determined. Silica-gel activator method was employed 

to obtain enhanced emission of Pb ions in the mass spectrometer. Repeated 
.. 

analyses of SRM 981 standard were performed with various sample size 

and filament current, which enabled to determine suitable conditions for Pb 

isotopic analysis. Based on these results, mass fractionation factor to correct 

mass fractionation was obtained. We applied this procedure to GSJ 

(Geological Survey of Japan) standard rock samples. The results agree with 

reported data for these standard rocks, suggesting that the present procedures 

are reliable in determining Pb isotopic compositions of rock samples. 
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!.Introduction 

Pb isotopic compositions are important geochemical tracers for the 

study of crust-mantle differentiation and many petrogenetic problems (e.g. 

Zindler & Hart, 1986). In addition, Pb isotopic compositions can be used to 

assess environmental pollution (e.g. Graney et al., 1995). Precise analyses 

of Pb isotope composition, however, often encounter two analytical 

difficulties. One is Pb contamination during sample processing, because Pb 

is ubiquitously contained in urban air. The other is in the correction for 
•· 

mass fractionation, since there is no internal stable isotope ratio for Pb. 

Consequently, interlaboratory comparison ofPb isotopic data may not always 

be possible. 

To overcome these difficulties, two breakthroughs were established 

during the 1960s. Development of ion exchange chromatography method 

using anion exchange resin in Br-form reduced the total elution volume 

and separation time, because diistribution coefficients for Br form anion 

exchange resin between Pb and the other elements are largely different. 

Silica-gel activator method developed by Akinshin et al. (1957) and Cameron 

et al. (1969) enhanced the emission of Pb ions and prevented mass 

fractionation effect. 

I apply these methods with mmor modification for prec1se 

determination of Pb isotopic composition. To overcome the problem of 

mass fractionation effect, external standard samples such as Standard 

Reference Materials (SRM) of lU.S. National Bureau of Standards (NBS), 
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especially SRM 981 for which the absolute isotopic compositions of Pb are 

known, was determined with our method. By analyzing SRM 981, it is also 

possible to compare the resul1ts from different laboratories. I further 

determined the suitable condition for Pb isotope analyses by changing both 

sample size of SRM 981 and filament current. 

In this appendix, I report the analytical procedure of Pb isotope 

compositions and the scheme for correcting mass fractionation effect. In 

addition, I present Pb isotopic compositions of the GSJ standard rock samples. 

2. Experiment 

2-1. Chemical procedures 

Reagents 

~0 is passed through mix bed resin, then distilled using a pyrex® 

apparatus, further purified with a Milli-Q® purifier, and finally sub-boiled 

by using quartz apparatus. All chemical procedures were performed using 

this pure water. HBr, HF, and HN03 ( W AKO PURE CHEMICAL INDUSTRIES 

Ltd., special grade, 47%, 46% and 61%, respectively) were distilled with a 

two-bottle teflon still, twice, four times, three times, respectively. HCl 

(WAKOPURECHEMICALINDUSTRIES, Ltd., special grade, 35%) was diluted 

to 6.2 N, and then distilled with a quartz apparatus, and finally distilled 

(sub-boiled) twice with a two-bottle teflon still. ~P04 (MERCK, ultra pure 

grade ) was diluted to 0.1 N, then passed through two cycles of cation 

exchange resin column ( Bio-Rad AG50W-X12® ) and anion exchange 
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resin column ( Bio-Rad AG-1X8~ . HC104, purchased from NBS, was 

directly used in our experiment. Silica powder was washed several times 

by pure nitric acid and were preserved in pure water. 

Decomposition 

About 100 mg of a powdered standard rock sample was placed in a 

PFA ®teflon vial with a screw cap and decomposed with 1 ml of hydrofluoric 

(about 20 N) acid and 1 ml of nitric acid (about 14 N) with a few drops of 
.. 

perchloric acid (about 10 N). The bottom half of the sample vial was 

immersed in ultrasonic bath for ten to thirty minutes to promote 

decomposition, and heated in an electric oven set at constant temperature 

(90 °C) for three to seven days for complete decomposition. 

The completely decomposed sample was dried in the small hand-made 

"clean box" which is a kind of closed system consisting of an acrylic box 

with a HEPA ® filter. By using this system, I can minimize the environmental 

contamination during drying samples. The completely dried sample was 

dissolved in the 1 ml of 6 N HCl, then dried and converted to chloride 

form. 

Chemical separation 

The procedure of chemical separation of Pb from the decomposed 

samples is summarized in Fig. 1.. Lead is the only element that is retained 
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Lead seJParation & the purification 

Separation Purification 

""'· " Clean colmnn with 5ml of Load 5ml of pure water 
6N HCl, then rinse with ~o clean the colmnn. 
pure water. Repeated this 

V'rocess twice. 
~ 

n .,, 
( Load 2ml of lN HBr for conditioning the colmnn. 

,, 
Dissolve the dried Cl ·form " 
sample in 3ml of lN H Br, 
then place in centrifuged 
to remove residual deposits. 

~ 

t ,, 
Load the supernatant " ~Dissolve sample in lml of " on to anion exchange l N HBr completely and 
resin colmnn. load on to the colmnn. 

~ ~ ,, .,, 
Load 2ml of lN HBr Load l ml of l N H Br 
to remove all element to purify lead. 
except lead. 

~ 

,, ,, 
Load 2ml of fiN HCl to elute lead. ) 

., , 
(Dry sample in the "clean box". ) 

, , 
purification ) Dissolved sample with a 

drop of l N HNO 3 and dry 
up in the "clean box" to 
change into nitric form. 

Fig. 1. The experimental scheme for separation and purification pf Pb from acid­
decomposed samples. 
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in the Br form anion exchange resin, because Pb has a much higher partition 

coefficient against that resin tlhan all the other elements (Korkisch and 

Hazan, 1965, Matsumoto et al., 1986). The separation and purification was 

done utilizing this principle. In this experiment, I used anion exchange 

resin column (Bio-Rad AG-1X8® 100-200 mesh) that is 3 mm in diameter 

and 30 mm in height, made from shrinkable teflon TFE® tube (NORTON 

Inc.). 

Chloride form samples were dissolved by 3 ml of 1 N HBr and were 

subsequently centrifuged to remove residual deposits. The solution was 

loaded on to the column. All elements, except Pb, were removed by 2 ml of 

1 N HBr. Subsequently, Pb was recovered by elution of 2 ml of 6 N HCl 

and then dried. The Pb samples were again purified with the same procedures 

through the same column (Fig. 1). The final Pb samples were dissolved by 

a drop of 14 N HN03 and dried lto convert into nitric form. 

2-2. Mass spectrometry 

Filament 

TheRe filaments used are 0.025 mm thick and 0.75 mm wide. The 

purity of Re is 99.97%. The filaments were outgassed at 4.0 A for 30 to 60 

minutes. The thermal ionization was carried out by the use of single filament 

mode. 

Sample loading 
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Dried Pb sample was completely dissolved by 4 ml silica-gel and 3 m1 

of 0.01 N phosphoric acid. 0.5 ml of the dissolved sample was loaded 

carefully onto a small area at the center of the filament. The filament 

current was then increased slowly up to about 1.0 A in order to dry the 

sample. This process was repeated until all sample solution was loaded and 

dried. Subsequently, the filament current was slowly increased to about 2.2 

A, until the filament becomes dark-red, then kept dark-red for about 2 

seconds. All sample loading procedure were performed using binocular 

microscope under laminar flow of filtered air. 

Mass spectrometry 

Finnigan MAT 260 thermal ionization mass spectrometer operated by 

HP9133 computer at Kyoto Sangyo University was used for Pb isotopic 

analyses. The accelerating voltage was adjusted to 10 kV. Collector system 

is a single Faraday cup with a resistance of 1 ott .n. The data acquisitions 

were made by peak switching between 204 amu, 206 amu, 207 amu, 208 

amu for mass peaks, and 204.5 arnu for baseline. The raw data were processed 

for base line correction and bilinear correction by on-line system. 

3. Results and Discussions 

Blanks 

The total procedure blanks are usually much higher than the sum of 

the amount of impurity in reagelflts (e.g. Koide and Nakamura, 1989). Since 
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the measured total procedure bl:anks in our laboratory were 62 pg, they are 

expected to be about 50-100 pg. This suggests that the influence of blanks 

to the isotopic composition of Pb is negligible, if sample size of Pb is more 

than 10 ng. 

Suitable condition for isotope analyses and the determination of mass 

fractionation factor 

When I analyze Pb isotopi•c composition, I must make corrections for 
I 

the mass fractionation effect which occurs in the mass spectrometer. In the 

case of Pb, there is no stable isotope ratio, therefore I cannot correct mass 

fractionation by the method applied to other isotope systems such as Nd 

and Sr. To overcome this problem, I must use an external standard. In the 

present study, I adopted NBS SRM 981 as the standard and Pb isotopic 

compositions were repeatedly determined for various sample sizes (2000 

ng, 1000 ng, 500 ng, 200 ng, 100 ng, 50 ng, 25 ng), and ion beam intensities 

(below 1 V, 1-2 V, above 2 V). 

From the present results, the following conditions should be maintained 

to obtain coherent isotopic composition. (1) Pb sample on the filament 

should be controlled between ll 00-1000 ng. (2) Mass analysis should be 

done in the range of ion beam intensity between 1-2 V. The reasons for this 

are given below. 

In the case where the amount of Pb is larger than 1000 ng, coherent 

and high precision data with good reproducibility is attained for ion beam 
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intensities above 2 V (Fig. 2). However, mass fractionation effect will be 

enhanced at higher ion beam intensities, and the obtained values must be 

evaluated with caution. Therefore it is recommended that the sample size 

be kept below 1000 ng and intensities below 2 V. On the other hand, if the 

amount of Pb is less than 50 ng, mass fractionation effect is much advanced 

during analysis (Fig. 2), hence I should not analyze Pb isotopic composition 

when the amount of Pb is less than 50 ng. Finally, if the amount of Pb is 

higher than 100 ng and less than 1000 ng, the ion beam intensity should not 

be raised above 2 V, since this possibly leads to advanced mass fractionation. 

In the case where ion beam intensity is below 1 V, I cannot obtain accurate 

data regardless of sample size. 

To confirm the reproducibility and precision, I analyzed NBS SRM 

981 under the suitable condition repeatedly. As shown in Fig. 3 and 4, 

analytical data under the suitablle condition are tightly grouped around the 

mean values, suggesting that the mass fractionation effect is not advanced. 

The mean Pb isotopic compositions and their standard deviation (1 cr) of 17 

analyses are 206PbP04Pb = 16.9010 + 0.005, 207PbP04Pb = 15.440 ± 0.007 and 

208Pb/204Pb = 36.529 ± 0.020. From now on, I will refer to this suitable 

condition as the "reliable condition". 

I also show data obtained under different conditions (Fig. 3) in which 

the mean Pb isotopic compositions and their standard deviation (1 cr) of 27 

analyses were 206PbP04Pb = 16.917 + 0.028, 207PbP04Pb = 15.463 ± 0.031 

and 208Pbf04Pb = 36.621 ± 0.089. These values are markedly higher than 
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Fig. 3. 206pbf204Pb vs 207pbf204Pb and 206pbf204Pb vs 
208pbf204Pb diagrams of NBS SRM 981. Analyses under the 
"reliable condition" (solid circles) concentrate within narrow 
range and their individual analysis has high analytical 
precision. On the other hand, analyses under the different 
conditions (open circles) are dispersed, and their individual 
analysis has much larg,er error than analysis that was 
performed under the "reliatble condition". 
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those under the reliable condition, with larger analytical errors. This indicates 

that the mass fractionation effect is much advanced under different conditions. 

Correction factor for mass fractionation effect was determined by 

normalizing the measured Pb isotopic ratios of SRM 981 to the recommended 

value obtained by Catanzero et al., (1968). Our data show good reproducibility 

but were definitely lower than the recommended values (Fig. 3) which is 

caused by the mass fractionation effect. This systematic shift of Pb isotopic 

ratio is interpreted by mass fractionation law. Three fractionation laws are 

generally used (Wasseburg et al., 1981). In this experiment, I adopted the 

linear law. Correction factor pe:r atomic mass unit "a" is calculated following 

equation. 

a= 
( Rref J Rmeas ) - 1 

(Mr~) 

Rref and Rmeas are isotope ratios of two isotopes i and j, whose masses 

are M i and Mj, respectively. The reference isotope ratios (Catanzero et al., 

1963) are 206PbP04Pb = 16.937, 207PbP04Pb = 15.491 and 208PbP04Pb = 36.721. 

Using the above values :and equation, I obtain the mass correction 

factor "a". In our laboratory, the mass fractionation factors for 206Pbf 04Pb, 

207PbP04Pb and 208PbP04Pb are 0.11 %/amu, 0.11 %/amu and 0.13 %/amu, 

respectively. Calculated con·ection factor for 208Pbf 04Pb is obviously 

different, therefore I us:e two correction factors . I compared the 
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correction factors from different laboratories (Table 1). This indicates that 

mass fractionation effect during analysis in our laboratory is within an 

acceptable range. 

Analytical precision and accuracy 

The standard deviations ( 1 cr) of 17 analyses 

207PbP04Pb and 208PbP04Pb analyzed under the reliable condition, are± 0.005, 

± 0.007 and + 0.020, which correspond to 0.03 %, 0.05% and 0.05 %, 

respectively. On the other hand, those which were analyzed under "different 

conditions" (27 analyses) are± 0.028, ± 0.031 and± 0.089, which correspond 

to 0.16%, 0.20% and 0.24%. This indicates that the data analyzed under the 

different conditions were widely scattered. In contrast, data analyzed under 

the reliable condition have good reproducibility. This probably due to the 

variable degree of mass fractionation effect, mainly much advanced mass 

fractionation effect, under the "different" conditions. Also, in the view of 

accuracy, I should analyze Pb isotopic composition under the reliable 

condition. It should be noted that the accuracy of Pb isotopic composition 

can not attain the same level as precision. 

Application to GSJ standard rock samples 

I analyzed Pb isotopic compositions of GSJ standard rock samples under 

the reliable condition to confirm the reliability of our analyses (Table 2). 
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Table 1. Correction factors from different laboratoies 

Correction Factor 

0.14%/amu 

0.10%/amu 

0.08%/amu 

0.15%/ amu 

0.10%/amu 

0.13%/amu 

0.09%/amu for 206pbf2o4pb and 2o7pbf2o4pb 
0.13%/amu for 208Pb/204Pb 

0.10%/amu for 206Pb/204Pb and 207PbP 04Pb 
0.13%/amu for 208Pb/204Pb 

0.11 %/amu for 2ospbf204pb and 207pbf204pb 
0.13%/amu for 208Pb/204Pb 
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Table 2 Pb isotopic compositions ofGSJ of standard rock samples 

This work 

Rocks *Pb/264Pb 

JA·1 18.289 +I- 0.002'' 

JA·2 18.403 +I- 0.005 

JB·1 18.327 +I- 0.003 

JB·2 18.332 +I - 0.003 

JG-1 18.631 +1- 0.009 
18.630 +I- 0.007 

18.595 +I- 0.002 

Koidc and Nakamura ( 1989) 
" Errors are 2 sigma mean 

Errors are standard deviation 

''"Pbl"" Pb 

15.522 +I- 0.001 

15.599 +I- 0.003 

15.549 +I- 0.003 

15.555 +I- 0.003 

15.667 +I - 0.010 
15.643 +I- 0.006 
15.614 +I- 0.002 

Lead isotopic compositions of GSJ standard rock samples. 

"'"Pbi'"'Pb 

38.228 +I- 0.004 

38.655 +I- 0.010 

38.615 +I- 0.008 

38.223 +I- 0.006 

38.90 I +I- 0.023 
38.849 +I- 0.011 
38.763 +1- 0.005 
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Reference data• 

""Pb1104Pb 207 Pbt"" Pb "'"Pbi264Pb 

18.295 +I- 0.018' " 15.530 +I- O.Q15 38.231 +I- 0.039 
18.308 +I- 0.058 15.548 +I- 0.041 38.265 +I- 0.115 
18.307 +I- 0.037 15.535 +I- 0.033 38.239 +I- 0.082 

18.425 +I- 0.050 15.637 +I- 0.039 38.757 +I- 0.106 
18.411 +I- 0.101 15.644 +I- 0.039 38.777 +1- 0.268 

18.335 +I- 0.059 15.548 +I- 0.055 38.215 +I- 0.142 
18.328 +I- 0.042 15.547 +I- 0.045 38.259 +I- 0.102 

18.561 +I- 0.070 15.570 +I- 0.070 38.531 +I- 0.174 
18.532 +I- 0.062 15.586 +I- 0.061 38.584 +I - 0.138 



The errors given in our analyses are 2 sigma-mean (or 2 standard errors), 

whereas those reported by Koiide and Nakamura (1989) were in one standard 

deviation. Therefore, I cannot make direct comparison between the analytical 

precisions of the two laboratories. However, our results are in good agreement 

with their data within the range of their analytical errors. But for JG-1, 

even though the difference is within their analytical error, our data are 

slightly different from their data. It is difficult to determine whether this 

was caused by difference in experimental procedures, especially the 

correction of mass fractionation effect, or by heterogeneity of standard 

rock sample. The latter is considered more plausible, because isotopic 

composition of other standard rock samples show good agreement. 
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4. Conclusions 

1. Using Br form anion exchange resin I have effectively separated and 

purified Pb from rock samples for Pb isotopic analyses. 

2. Application of the silica-gel activator method with limited sample sizes 

(100 ng to 1000 ng) and limited ion beam intensities (1 V to 2 V) enables 

to obtain Pb isotopic compositions with high precision and good 

reproducibility. 

3. Pb blanks through all procedures were 50-100 pg, which was insignificant 

for isotope ratio correction for Pb sample size more than 10 ng. 

4. Good reproducibility is demonstrated by 17 analyses of NBS SRM 981 

standard. The uncertainties (in 1 o') for 206Pbf04Pb, 207PbP04Pb and 208PbP04Pb 

are 0.03 %, 0.05 %and 0.05 %, respectively. 

5. Upward correction factors per amu for 206PbP04Pb, 207PbP04Pb and 208PbP04Pb 

ratios are 0.11 %, 0.11 % and 0.13 %, respectively. 

6. Analyses of GSJ standard rock samples indicate that our procedure is 

reliable in determination of Pb isotopic compositions of rock samples. 
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