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Abstract 

 Considerations to introduce the Suminoe or Asian oyster Crassostrea ariakensis 

along the East Coast have raised many questions regarding ecology, economics, and 

human health.  To date, research has focused primarily on the ecological and 

socioeconomic implications of this initiative, yet few studies have assessed its potential 

impact on public health.  Our work compares the rates of bioaccumulation, depuration 

and post harvest decay of indicator organisms (such as E. coli) and Vibrio sp. between 

Crassostrea virginica and Crassostrea ariakensis in the laboratory.  Preliminary results 

suggest that the rates of bioaccumulation of E. coli in Crassostrea ariakensis were 

significantly lower than those for Crassostrea virginica, depuration of E. coli was 

variable between the two species, and Crassostrea ariakensis post harvest decay rates of 

Vibrio sp. were significantly lower than Crassostrea virginica.  This research provides 

coastal managers with insight into the response of Crassostrea ariakensis to bacteria, an 

important consideration for determining appropriate management strategies for this 

species.  Further field-based studies will be necessary to elucidate the mechanisms 

responsible for the differences in rates of bioaccumulation and depuration.    
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Introduction 
  

 The Eastern Oyster, Crassostrea virginica, was once one of the most heavily 

exploited marine organisms on the eastern seaboard, particularly in Chesapeake Bay.  

Historical records show that in the peak oyster harvest era (mid to late 1800’s), over 

600,000 metric tons per year were harvested from Chesapeake Bay (Jackson et al., 2001).  

During this time, oysters were so widespread in the area that boats would ground on 

oyster reefs and oysters had the potential to filter the entire water column in just a few 

days (Newell, 1988).   Since the development of modern fishing techniques (e.g., 

mechanical dredges), oyster landings have declined and the incidence of eutrophication 

and poor water quality in mid-Atlantic coastal waters has risen dramatically (Rothschild 

et al., 1994; Jackson et al., 2001).  Average oyster densities in the bay are estimated to be 

96% lower today than they were in 1884.  Researchers estimate that it would take 

approximately 325 days for oysters to filter the water column  (Newell, 1988; Rothschild 

et al., 1994). Oyster restoration efforts in Chesapeake Bay have been further hindered by 

a relentless increase in watershed development, accompanied by increased pollutant-

laden runoff, and the spread of parasitic diseases (Virginia Institute of Marine Science, 

1996).    

 In an effort to improve estuarine water quality and boost the local economy, 

Maryland and Virginia are investigating ways to revitalize oyster populations in 

Chesapeake Bay.  Previous attempts to restore oysters were focused on economics and 

the maintenance of harvestable oyster stocks.  Only recently have restoration efforts 

focused on ecology and depuration of oyster populations and reefs (Committee on 

Nonnative Oysters in the Chesapeake Bay, 2004).  At present, the main question 
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surrounding oyster restoration is whether the native Crassostrea virginica or a non-native 

oyster can be a successful component of restoration of ecological functionality of the bay 

(Committee on Nonnative Oysters in the Chesapeake Bay, 2004).   

 Previous attempts to restore Crassostrea virginica in Chesapeake Bay have been 

severely limited by persistent parasite infections by Haplosporidium nelsoni (MSX) and 

Perkinsus marinus (Dermo) (Committee on Nonnative Oysters in the Chesapeake Bay, 

2004).  With the widespread distribution of these protozoa in the bay, researchers have 

been working to identify the genes involved with infection and to selectively breed a 

strain of Crassostrea virginica that is resistant to MSX and Dermo.  This is a time 

consuming and involved process that has had limited success thus far; consequently, it 

appears that it will be quite some time before a disease resistant strain will be ready for 

widespread dissemination (Ford and Haskin, 1987; Encomio et al., 2005; Goedken et al., 

2005). 

 Another proposal to restock Chesapeake Bay oyster populations involves the 

introduction of a non-native oyster species.  The main obstacle faced by advocates of this 

initiative is to find a species that is resistant to the dominant parasitic infections that 

plague the estuary (namely MSX and Dermo), that is well suited for local physical-

chemical parameters, and that is commercially harvestable/marketable. Oyster species, 

including Crassostrea gigas and C. ariakensis have been proposed as candidates. The 

oyster industry of the west coast of the U.S. has flourished since the introduction of the 

non-native C. gigas.  In light of the successes of this introduction, C. gigas was the first 

to be evaluated for introduction into the Chesapeake Bay region.  Field comparisons of C. 

gigas and C. virginica in the Chesapeake Bay region have shown that C. gigas is more 
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resistant to parasitic infections, but does not grow as well as the native oyster in eastern 

seaboard environments (Calvo, 1999).  Consequently, efforts to introduce C. gigas to 

Chesapeake Bay region have been delayed while other prospects are considered. At 

present, the species with the greatest potential for successful introduction in the mid-

Atlantic is C. ariakensis. This species is of particular interest due to tolerance to oyster 

pathogens such as MSX and Dermo, rapid growth, and potential for marketability (Calvo, 

2001; Bishop, 2005).   

 While increasing oyster populations may be ecologically and economically 

beneficial, human health concerns remain largely unknown.  Shellfishing waters can be 

contaminated with a wide range of bacterial and viral pathogens, including Hepatitis A, 

Salmonella, Campylobacter, E. coli O157:H7, enteroviruses, noroviruses, and 

adenoviruses (Rippey, 1994; Hurst, 2002; Griffin et al., 2003). The danger of contact 

with these and other pathogens is substantiated by the frequent occurrence of illness 

linked to waterborne pathogens and shellfish.  There is evidence of human disease 

resulting from the consumption of bivalve shellfish dating from medieval times (Lees, 

2000).  In the United States, over 400 outbreaks and 14,000 recorded cases of infectious 

disease have been attributed to shellfish consumption since the late 1800’s.  Filter feeding 

bivalve shellfish (particularly oysters and clams) are known vectors of human disease, as 

they concentrate microbial pathogens, via the feeding process, from overlying waters and 

are routinely eaten raw or lightly cooked.  The infectious dose of shellfish associated 

pathogens, especially those viral in nature, is believed to be low, and fatal infections have 

been reported after the ingestion of a single oyster (Oliver, 2006).  Under-reporting of 

shellfish illness is likely, as nearly all shellfish-associated infections manifest themselves 
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as gastrointestinal discomfort, which is often treated at home without a visit to health care 

professionals (Rippey, 1994).  

 Indicator bacteria such as total coliforms, fecal coliforms (including E. coli), and 

enteroccoci are used by regulatory agencies as proxies of fecal contamination found in 

both recreational and shellfish harvesting waters.  Indicator bacteria are generally not 

pathogenic and are abundant in the feces of warm-blooded organisms.  In addition, these 

bacteria are not found naturally in aquatic systems and can be easily detected.  These 

organisms have proven useful to coastal managers as a tool to recognize the occurrence 

of fecal contamination so that preventive measures can be taken to protect public health 

(Griffin et al., 2001; Noble et al., 2003).  State regulatory agencies are responsible for 

ensuring the protection of public health via the appropriate closure of contaminated 

shellfish harvesting waters.  Historically, the regulations used to control shellfish waters 

have been successful at controlling foodborne illness vectored by Crassostrea virginica. 

However, it is unknown whether the present regulations will be sufficient to protect 

consumers from pathogens vectored by C. ariakensis. 

 The goal of this study was to measure and compare the rates of bioaccumulation 

and depuration and post harvest (storage) growth of indicator bacteria (E. coli) and Vibrio 

sp. in the native and Suminoe oyster.  To our knowledge, this is the first report to address 

these issues.  Such research is necessary to determine the vulnerability and response of 

Crassostrea ariakensis to fecal bacteria so public health officials can either accept the 

present management strategies as sufficient or establish new, more appropriate strategies 

for this species. 
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Methods 

Oyster husbandry  

 
 All trials were conducted with one year old diploid Crassostrea virginica and one 

year old triploid (reproductively sterile) Crassostrea ariakensis, except where noted. 

Crassostrea virginica were obtained from an aquaculture facility in North Carolina. 

Crassostrea ariakensis were obtained from the Virginia Institute of Marine Sciences 

(VIMS), Gloucester Point, Virginia and were certified as disease-free in accordance with 

the shellfish importation requirements of the North Carolina Department of the 

Environment and Natural Resources.  Oysters were transported in coolers to indoor 

laboratory facilities at the National Oceanic and Atmospheric Administration (NOAA), 

Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina. Upon 

arrival, oysters were scrubbed with sterile brushes and marked according to species, using 

permanent markers or fingernail polish, before introduction into recirculating tanks. All 

oysters were divided randomly among six 315 L seawater systems comprised of a 40 watt 

ultraviolet sterilizer (UV), biofiltration, and a recirculating pump.  Recirculating tanks 

were comprised of two polyethylene tanks, one where the oysters were housed (rearing 

tank) and one where the pumps and biofiltration were contained (tank reservoir).  These 

units were maintained in an enclosed building with salinity and temperature at 23.8 ±2 

ppt and 23.4 ±1.5oC, respectively (unless otherwise noted).  Oyster tanks were filled 

with water from shellfishing areas open to harvest in the Newport River, North Carolina 

(34.770569° N, 76.736099° W).  Throughout the experiment, oysters were fed Shellfish 

Diet 1800® (Reed Mariculture, Campbell, California) at 1-3% total wet meat weight per 
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day via an automated dosing system every 4-6 hours.  Water exchange rate in each 

rearing tank was calibrated to achieve complete turnover every 10 minutes.   

   All methods for holding non-native oysters were in compliance with the NOAA 

Environmental Assessment and Biosecurity Requirements identified for all non-native 

oyster research projects supported by NOAA funds (see Federal Register Vol. 69, No. 

107, Thursday, June 3, 2004, pp 31359-31361).  All seawater effluent was pumped into a 

holding tank where it was sterilized through chlorination using a minimal concentration 

of 5 ppm of free chlorine per liter of seawater.  Once chlorine was added to the 

sterilization tank, the seawater was mixed and left stagnant for a minimum of 5 days.  

Following the five day sterilization period, sodium thiosulphate was added and mixed 

until chlorine levels were reduced to zero.  Chlorine levels were monitored and once they 

were reduced to a nominal concentration, the sterilized seawater was released into the 

estuary.   

 

Bacteria 

 

 Bacteria used for tank inoculations were acquired from American Type Culture 

Collection (ATCC), Manassas, Virginia (E. coli K12 ATCC # 47076).  This strain of E. 

coli has been well studied and the entire genome has been sequenced and characterized 

(Blattner et al., 1997).  Selection of a strain that was a BioSafety level 1 agent was of the 

highest priority for this project, as oysters were housed in a multiple-use building and 

contaminated samples were tested at multiple labs.   

 The original ATCC bacterial cells arrived lyophilized and were reconstituted 

according to the ATCC recommended methods.  To ensure bacteria were healthy and 
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replicating at expected rates, bacteria were subcultured a minimum of three times from 

the original ATCC strain before use in the experiment.  All cell culture was performed in 

a biological safety cabinet under sterile conditions. Bacterial cultures were grown in a 

37oC shaking incubator at 200 rpm until they reached log phase.  Aliquots of bacterial 

culture were pipetted into sterile tubes and transported at room temperature to oyster 

tanks. Tanks were inoculated with 103 to 104 E. coli cells/100 ml culture by diluting the 

culture with seawater then adding the mixture into the tank reservoir; ensuring equal 

distribution of inoculum over the oysters.   

 Oysters were monitored for total Vibrio sp. levels throughout all experiments.  

The oysters were not artificially contaminated with laboratory strains of Vibrio sp.; 

therefore, all Vibrio sp. were part of a natural assemblage found in the oyster guts or in 

the Newport River Estuary water used in the tanks.  

 

Sample collection 

 

 All water samples were collected in bottles that were sterilized by means of triple 

rinsing with 5% HCl followed by steam sterilization at 121oC for 20 minutes.  At the 

sample site, bottles were rinsed three times with a full volume of the water that was to be 

analyzed.  Samples were collected just below the surface of the water.  Samples were 

transported, in the dark, on ice, to the University of North Carolina at Chapel Hill’s 

Institute of Marine Sciences (IMS), Morehead City, North Carolina and the North 

Carolina Department of Environment and Natural Resources, Division of Environmental 

Health Shellfish Sanitation and Recreational Water Quality Section (NCDENR), 

Morehead City, NC for analysis.  
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Oyster processing 

 

 Oysters were removed from tanks, by hand, within 30 minutes of processing. 

Oyster samples were collected at discrete times and were homogenized according to 

sampling standards currently being employed by NCDENR shellfish monitoring 

programs, based on the guidelines set forth in Recommended Procedures for the 

Examination of Sea Water and Shellfish (American Public Health Association, 1970). 

These guidelines are approved by the Interstate Shellfish Sanitation Conference along 

with the National Shellfish Sanitation Program and are the approved methods for 

shellfish testing in regulatory agency laboratories.  In general, the protocol entails: 

scrubbing the exterior of oysters with a sterile brush, removal of shell contents using a 

sterile shucking knife, transfer of meat and mantle liquor (minimum sample size n=10-12 

to account for oyster variability) to a sterile tared beaker, addition of an equal volume of 

0.5% sterile peptone water, transfer to a sterile blender jar, and storage at 4oC until all 

samples were processed in this manner (less than one hour).  This last storage step was 

not in the standard method; however, it was necessary in this situation, as several oyster 

samples were processed at once and oysters needed to be kept intact for as long as 

possible to reduce enzymatic sample degradation.  Once all samples were shucked and 

diluted with peptone water, they were homogenized for 60 seconds on low speed as 

described in standard methods.  Oyster homogenate was then poured into separate sterile 

containers and transported immediately, on ice, to IMS and NCDENR.  A subset of 

samples were processed at Duke University Marine Laboratory for confirmation of E. 

coli enumeration. Microbial analyses were performed on samples immediately upon 

arrival and all samples were processed within two hours of homogenization. 
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Microbial analyses  

 

 
 Water samples and oysters were analyzed for Vibrio sp., fecal coliform, and E. 

coli concentrations.  Vibrio sp. were enumerated using membrane filtration on 

thiosulfate-citrate-bile salts-sucrose agar (TCBS) (Kobayashi 1963).  Homogenate and 

water samples were split between two labs and analyzed independently for E. coli using 

most probably number (MPN) enumeration.  Fecal coliform and E. coli determinations 

were conducted in an FDA certified lab (NCDENR) using conventional techniques 

(multiple tube fermentation (MTF) with 4-methylumbelliferyl-β-D-glucuronide (MUG) 

verification.  Additional E. coli MPN enumeration was performed using the chromogenic, 

fluorogenic substrate test Colilert-18® (IDEXX Laboratories, Inc.); however, all results 

presented for the depuration, bioaccumulation, and storage studies in this chapter are 

based on results using the MTF approach.   

 

Experimental design 

 

 Depuration of naturally contaminated bacteria 

 

 Upon arrival from aquaculture facilities, a random sample of oysters was tested 

for E. coli and Vibrio sp.  The remaining oysters were randomly distributed in each of the 

six recirculating rearing systems.  Analysis of the meat samples taken on arrival showed 

that both species of oyster had high levels of E. coli.  On the day of these results (3rd day 

after the oysters were introduced to the recirculating system), the ultraviolet lights were 

turned on and the tank water was sterilized.  Initially, tank temperatures were set at 
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different temperatures, three of the tanks were held at 15oC, and three tanks were held at 

22 oC, with all tanks reporting the same salinity (23.8 ±2 ppt).  Six days after the oysters 

were distributed in the tanks, the water temperatures in all tanks were adjusted to 23.4 

±1.5oC.  Meat samples were collected and analyzed as previously described at days 7 

(before tank temperature change), 10, 17 and 22, following introduction to the 

recirculating holding tanks (Table 1). Water samples were collected throughout this 

depuration experiment to ensure the efficiency of the ultraviolet sterilizer light.  

Statistical analyses were performed using data from day 0 to day 17.  Even though tank 

temperatures differed between day 0 and day 7, these data are included in the statistical 

analyses because the effect of temperature on depuration was evenly distributed between 

the two species of oyster.  Statistical analyses of the depuration rates only includes data 

collected up to 17 days as this was the sample date when the concentration of E. coli in 

Crassostrea virginica was first detected as nominal.  

 
 
 
 
Table 1. Experimental design 
 

 

 

  

Experiment Dates Duration 
(hours) 

Sampling frequency 
(hours post 
inoculation) 

Microorganism  
Analyzed 

Depuration of 
Natural Bacteria 

19 July-3 
August 2005 

358  0, 74, 245, 358  
 

E. coli 
Vibrio sp. 
 

Bioaccumulation 3 August 2005 4  0, 4 E. coli 
Vibrio sp. 

Storage  3 August-15 
August 2005 

288 0, 288 E. coli 

Depuration of 
Cultured Bacteria 

3 August-17 
August 2005 

332  0, 332 E. coli 
Vibrio sp.  
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 Bioaccumulation  

 

 Following depuration (day 22 from arrival), the oysters were artificially 

contaminated by inoculating the tanks with E. coli.  At time 0, meat samples were 

collected to establish baseline levels of bacteria concentrations and then each tank was 

seeded with E. coli K12 to a final concentration of 103 to 104 cells/100 ml.  Oyster 

samples were collected and analyzed for E. coli and total Vibrio sp. four hours after 

inoculation (Table 1).  

 Storage  

 

 At the end of the bioaccumulation experiment, 10 oysters of each species were 

harvested from each of the six tanks, and stored in mesh bags in temperature controlled 

storage systems at 4oC.  During the storage trial the oysters were jostled daily to mimic 

handling in a commercial setting.  After 12 days, the oysters were removed from storage 

and analyzed for E. coli and Vibrio species (Table 1).  The Crassostrea ariakensis sample 

from tank 2 was mistakenly discarded during sample processing; therefore, data for this 

tank is not presented. 

 

 Depuration of cultured bacteria 

 

 At the end of the bioaccumulation experiment, 10 oysters of each species 

remained in each of the six tanks.  These oysters were allowed to depurate naturally in 

water that was not UV sterilized for 14 days.  On day 14 the oysters were removed and 

bacteria were enumerated as described (Table 1).   
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Statistical analyses 

 

 Concentration of each bacterium was calculated (as either a most probable 

number (MPN) or as a colony forming unit (CFU) per 100 grams of oyster meat), 

samples that were at the upper or lower limit of test sensitivity were increased by one 

significant figure or decreased by 50% respectively (i.e., >100,000 became 100,001 and 

<18 became 9). Concentration data were log transformed and the slope of the linear best 

fit line was determined for each replicate (each tank).  Error bars represent the standard 

deviation of replicates for each sample point.  In experiments where only two time points 

exist (bioaccumulation, storage), the net increase or decrease in bacterium were 

calculated and compared using a one-way repeated ANOVA using SigmaStat 3.0 (SPSS).  

For the depuration experiments, the rate of depuration was determined by calculating the 

slope of the log transformed data.  For species and bacterium specific comparisons, a 

one-way repeated measure ANOVA was again tested using SigmaStat 3.0 (SPSS).  

Statistical significance was determined based on a p-value of 0.05 and power analysis 

conducted was based on an alpha of 0.05.  

 

Results 

 

Depuration of naturally contaminated bacteria  

 

 Oysters arrived from aquaculture facilities naturally contaminated with mixed 

bacterial assemblages including both Vibrio sp. and E. coli.  Initial concentrations of 

Vibrio sp. were above 107 CFU/100 grams in Crassostrea ariakensis, as well as in 

Crassostrea virginica (Figure 1).  Within one week of depuration in UV sterilized water, 
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concentrations of Vibrio sp. in oysters had been reduced by one order of magnitude.  

After this time, there were no significant changes in the concentrations of Vibrio sp. in 

either C. ariakensis or C. virginica.  This trend continued throughout the depuration, as 

both species maintained concentrations on the order of 106 CFU/100g through the 

duration of the experiment (Figure 1, ANOVA, p=0.071).  Concentrations of Vibrio sp. in 

the water were never reduced below 1000 CFU/100 ml, even though the water was 

continually sterilized with UV irradiation (Figure 1). 
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Figure 1. Depuration of Vibrio sp. in Crassostrea ariakensis meats (Ca) and Crassostrea 
virginica meats (Cv) during 22 day depuration in UV sterilized water (mean, n = 2, 2, 6, 
6, 6 for days 0, 7, 10, 17, and 22, respectively). Error bars represent one standard 
deviation. 
 

 Depuration rates of E. coli differed greatly from Vibrio sp. depuration results.  

E. coli concentrations were two orders of magnitude higher in Crassostrea ariakensis 

than Crassostrea virginica when the oysters arrived (Figure 2).  After one week in tanks 

treated with UV irradiation, C. ariakensis had dropped 97.9% to 3350 MPN/100 g; 

whereas, C. virginica had been reduced by 98.7% to 64 MPN/100 g (Figure 2, mean, 

n=6).  Even though the concentration of bacteria was lower in C. virginica, the rate of 
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depuration for natural E. coli was significantly higher in C. ariakensis (Table 2, ANOVA, 

P<0.05).  However, the rate constant (defined as the depuration rate divided by the initial 

concentration) did not show a statistically significant difference for the depuration of E. 

coli in the two oyster species.  Concentrations of E. coli in C. virginica were below the 

limit of detection (<18 MPN/100 g) by day 17; however, by day 22 C. ariakensis still 

contained E. coli at concentrations of 64 MPN/100 g.  As expected, the concentration of 

E. coli in the UV sterilized water remained <1.8 MPN/100 ml for the duration of the 

depuration period (Figure 2). 
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Figure 2. Depuration of E. coli in Crassostrea ariakensis meats (Ca) and Crassostrea 
virginica meats (Cv) during 22 day depuration in UV sterilized water (mean, n = 2, 2, 6, 
6, 6 for days 0, 7, 10, 17, and 22, respectively). Error bars represent one standard 
deviation. 
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Table 2. Results of ANOVA statistical analysis for each experiment. Membrane Filtration 
(MF) and Multiple Tube Fermentation (MTF). 

 

 

Bioaccumulation  

 

 Over the course of this experiment (4 h), E. coli was enumerated in the tank water 

and in the meats of Crassostrea ariakensis and Crassostrea virginica (Figure 3, mean, 

n=6).   C. ariakensis had higher baseline concentrations of E. coli at the start of the 

experiment.  After four hours, concentrations of E. coli in C. virginica were more than an 

order of magnitude higher than C. ariakensis.  Concentrations of E. coli in the water were 

inversely related to concentrations in the meat, where there was a three fold decrease in 

bacteria concentrations over the four hour time period (Figure 3).  There was a 

statistically significant difference in the rates of bacterial uptake, where C. virginica 

uptake rates were nearly ten fold higher than C. ariakensis (Table 2, ANOVA, p<0.001). 

Vibrio sp. concentrations in both species remained constant throughout the uptake 

experiment (data not shown). 

Experiment Microorganism 
analyzed 
(method) 

Mean rate/net 
difference 

n Standard 
deviation 

P 
value 

Alpha 
value 

Depuration of 
Natural Bacteria 

E.coli 
(MTF) 

C. ariakensis = -0.41 
 
C. virginica = -0.35 

6 
 
6 

0.046 
 
0.023 

0.02 0.05 

Bioaccumulation E.coli 
(MTF) 

C. ariakensis = 2.08 
 
C. virginica = 3.79 

5 
 
6 

0.25 
 
0.18 

<0.001 0.05 

Storage  Vibrio 
(MF) 

C. ariakensis = -0.51 
 
C. virginica = -1.26 

6 
 
6 

0.069 
 
0.092 

0.009 0.05 

Depuration of 
Cultured 
Bacteria 

E.coli 
(MTF) 

C. ariakensis = -0.32 
 
C. virginica = -0.60 

6 
 
6 

0.069 
 
0.069 

<0.001 0.05 
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Figure 3. Concentrations of cultured E. coli in water, Crassostrea ariakensis meats (Ca), 
and Crassostrea virginica meats (Cv) during bioaccumulation experiment (mean, n=6). 
Error bars represent one standard deviation. 
 

 

Storage  

 

 After 12 days of storage at 4oC, concentrations of E. coli in shellfish meats were 

reduced by 77% and 86% in Crassostrea virginica and Crassostrea ariakensis 

respectively (Figure 4).  Both C. ariakensis and C. virginica exhibited a large amount of 

sample variability.  This variability confounded the ability to detect significant 

differences between the decay rates of E. coli between the two species of oyster 

(ANOVA, p=0.677).  
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Figure 4. Effect of 12 day storage at 4oC on the concentration of E. coli in Crassostrea 
ariakensis meats (Ca) and Crassostrea virginica meats (Cv) represented using box and 
whisker plots.  Range of results for the 6 replicates are represented in each box plot as 
minimum (long dash), 25% quartile (short dash), median (triangle), 75% quartile (short 
dash), and maximum (long dash). 
 

 Vibrio sp. concentrations during the storage experiment were reduced by 92% in 

Crassostrea virginica and 69% in Crassostrea ariakensis (Figure 5, mean, n=5).   There 

was a statistically significant difference in the reduction of Vibrio sp. between the two 

species during storage, whereby the rate of Vibrio sp. decay was 2.5 times greater in C. 

virginica than C. ariakensis (Table 2, ANOVA, p<0.05).  
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Figure 5. Effect of 12 day storage at 4oC on the concentration of Vibrio sp. in Crassostrea 
ariakensis meats (Ca) and Crassostrea virginica meats (Cv).  Range of results for the 6 
replicates are represented in each box plot as minimum, (long dash), 25% quartile (short 
dash), median (triangle), 75% quartile (short dash), and maximum (long dash). 
 

Depuration of cultured bacteria 

 

 E. coli was found to depurate significantly faster in C. virginica; when compared 

to C. ariakensis (Figure 6, Table 2, ANOVA, p value <0.001).  The concentration of 

Vibrio sp. remained on the order of 106 CFU/100 ml in both species of oysters, and 104 

CFU/100 ml in untreated water during the depuration period (Figure 7).  Concentrations 

of Vibrio sp. in the water and tanks were nearly identical to the levels measured during 

the first depuration trial, where Vibrio sp. was consistently detected at concentrations 

near 106-107 CFU/100 ml. Levels of Vibrio sp. in tank water were also similar during 

both depuration experiments (~104 CFU/100 ml), although tank water was treated with 

UV irradiation for the first depuration but not for the second.   
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Figure 6. Depuration of E. coli in Crassostrea ariakensis meats (Ca) and Crassostrea 
virginica meats (Cv) during 12 day depuration in non - UV sterilized water (mean, n=6) 
Stars represent negligible concentration of E. coli in water. Error bars represent one 
standard deviation. 
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Figure 7. Depuration of Vibrio sp. in Crassostrea ariakensis meats (Ca) and Crassostrea 
virginica meats (Cv) during 12 day depuration in non-UV sterilized water (mean, n=6). 
Error bars represent one standard deviation. 
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Discussion 

 

Depuration of naturally contaminated bacteria 

  

 Vibrio sp.  

 
 Several studies have reported a commensal, resident population of Vibrio sp. in 

oyster meats (e.g. (Colwell and Liston, 1960; Tamplin and Capers, 1992). Our results 

show that Crassostrea ariakensis, like other oyster species, maintains stable populations 

of Vibrio sp. in gut tissue. Total Vibrio sp. concentrations in oyster meats were reduced 

after seven days in UV sterilized water; however, levels in both C. ariakensis and C. 

virginica remained comparable and relatively constant from day 7 to day 22.  Similar 

results were found by Tamplin and Capers (1992) where initially oysters released large 

quantities of Vibrio sp. to surrounding waters followed by a period of consistently low 

depuration rates. 

 Water samples were collected throughout the depuration trial to ensure that tank 

water was being effectively sterilized by ultraviolet light exposure. Use of UV irradiation 

for tank water sterilization was shown to be successful at reducing E. coli to nominal 

levels; however, total Vibrio sp. levels in the water were never reduced to less than 103 

CFU/100 ml. Although these results are based on total Vibrio sp., they are again similar 

to the previous research of Tamplin and Capers (1992), who found that, when naturally 

contaminated oysters were placed in depuration tanks, Vibrio vulnificus levels in the UV 

irradiated water never fell below 103 organisms/ ml.  These authors concluded that V. 

vulnificus was multiplying in the oyster tissue at a greater rate than UV sterilization was 

capable of eliminating this bacterium.   
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 E. coli 

 

 Previous studies have reported that E. coli depuration is controlled by water 

temperature, and that E. coli is rapidly depurated from oysters in the first few days after 

introduction to clean water (Haven et al., 1978).  In our study, there was a noticeable 

difference in depuration rates for both oyster species when held at 15oC and 22oC (data 

not shown). However, no samples were collected before day seven of the depuration trial, 

therefore, no conclusions can be made on the differential rate of depuration between 

Crassostrea ariakensis and Crassostrea virginica on this time scale.  

 Analysis of the depuration rates of C. virginica and C. ariakensis show that C. 

ariakensis depurated significantly faster than C. virginica between day 0 and day 17 

(ANOVA, p=0.02). There was not a statistically significant difference, however, between 

the rate constants for the two oyster species (p=0.3).  This indicates that the initial 

concentration of bacteria in the oyster meats was a significant factor in the depuration 

rate of E. coli in the oyster meats.  These results are consistent with the results of Haven 

et al. (1978), who found that the initial concentration of E. coli in C. virginica was a 

significant factor in the rate of depuration, as oysters with high concentrations depurated 

faster than oysters with low concentrations.  

 Given that depuration is a function of filtration rate, it is expected that differential 

filtration rates could play a role in the respective depuration rates of each species.  

Preliminary studies indicated no difference in the clearance rates of adult diploid C. 

virginica and adult triploid C. ariakensis at ambient seston levels of 8 to 12 mg/L and 

~23oC (R. Newell, pers. comm., University of Maryland, Center for Environmental 

Science, Horn Point Laboratory). Even though we did not measure and quantify filtration 



 23

rates specifically, we assume that they are comparable for both species.  We recognize 

that individual oysters will have varying filtration rates due to differences in size, 

maturity, and well-being.  The present experiment reduced such bias through the use of 

pooled oyster samples containing a minimum of 10 shellfish per homogenate.   

  It is important to recognize that the two oyster populations used were from 

different aquaculture facilities.  The different rearing locations impose several 

confounding factors on this experiment, since the oysters were contaminated by different 

bacterial assemblages, from different sources, and under different environmental 

parameters.   These factors could have impacts on the rates of depuration from the oyster 

species. More research is recommended to determine if there is a true difference in the 

responses of the two species. Future studies should use oysters grown in the same waters 

(i.e., conduct long term field trials), therefore eliminating the source bias and possibly 

reducing the difference in initial bacterial concentrations in each oyster species.  

 
  

Bioaccumulation 

 

 Bioaccumulation studies, using laboratory cultures of E. coli, show that 

Crassostrea virginica  accumulate bacteria significantly faster than Crassostrea 

ariakensis over a 4-hour period.  In an attempt to resolve fine scale differences in 

bacterial uptake between the two species, an attempt was made to repeat the previous 

bioaccumulation experiment with the addition of timepoints at 1, 3, and 5 hours post-

inoculation.  Unfortunately, the data generated from this experiment was not usable due 

to laboratory error and we could not repeat the failed experiment due to C. ariakensis 

availability.  C. ariakensis availability is limited as they are only cultured on small scales 
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and the facilities that supply these oysters only maintain enough oysters for ongoing 

research. The bioaccumulation data strongly suggests that there is a difference in the 

response of C. ariakensis and C. virginica to bacterial contamination. Experiments should 

be repeated with finer temporal resolution to determine if rates of E. coli uptake are 

indeed higher in C. virginica than in C. ariakensis. There may be small scale changes 

(short time scales) that could cause the oysters to respond in a variable way to bacterial 

uptake, and experiments should be conducted to address these changes. 

 

Storage  

 

 The results of the storage trial show that the natural decay of Vibrio sp. in 

Crassostrea virginica is statistically greater than the loss of Vibrio sp. during cold storage 

in Crassostrea ariakensis (p<0.05).  Average loss of naturally contaminated Vibrio sp. in 

C. virginica was one fold, a value comparable to reported values for Vibrio vulnificus in 

shellstock under similar storage times and conditions (Hood et al., 1983; Kaysner et al., 

1989; Kaspar and Tamplin, 1993).  Further research is necessary to determine if 

pathogenic strains of Vibrio sp. such as V. vulnificus and V. parahaemolyticus will follow 

the same patterns.   

 During the storage trial, Crassostrea ariakensis became noticeably more 

desiccated than C. virginica (J. Morris pers. observation). This observation may indicate 

that C. ariakensis has a shorter shelf life during post-harvest storage than C. virginica.  

While there are several factors that likely contribute to the observed desiccation (e.g., 

shell morphology), the persistence of high concentrations of Vibrio sp. in C. ariakensis 

cannot be discounted as a contributing factor.  Other researchers (e.g., Colwell and 
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Liston, 1960) have implicated commensal Vibrio sp. populations as contributing factors 

in oyster shellstock spoilage.  These scientists found that nearly 50% of the organisms 

isolated from shellstock were able to ferment glucose anaerobically.  They hypothesized 

that during oyster storage, these organisms were able to metabolize glycogen from the 

oyster tissue and thus facilitate oyster tissue deterioration.  Glucose levels in oysters were 

not monitored during this study, though it is possible that the desiccation of C. ariakensis 

is related to the observed perpetuation of high levels of Vibrio sp. in oyster tissue. More 

research is necessary to determine the role of desiccation and high Vibrio sp. levels on the 

shelf life and marketability of C. ariakensis in post-harvest markets.   

 

Depuration of cultured bacteria 

 

 The depuration of pure laboratory strains of E. coli was assessed as part of the 

present research study comparing Crassostrea ariakensis and C. virginica.  In the 

experiment assessing depuration rates in oysters that had been inoculated with laboratory 

cultured strains of E. coli, C. virginica had statistically higher rates of depuration 

(ANOVA, p<0.001) than C. ariakensis.   Depuration experiments using oysters that were 

contaminated with naturally found strains of E. coli; however, did not yield a significant 

difference in the rates of depuration between the two oyster species.  These results are 

confounding, but we speculate that the differences in the rates of depuration of bacteria 

between the two species may depend upon the source and types of bacteria in the gut, i.e., 

natural versus laboratory acquired strains of E. coli.  Several studies have reported that 

bacteria are eliminated faster from bivalves when they are contaminated artificially than 

when the oysters are contaminated in natural waters (e.g. Heffernan and Cabelli, 1971; 
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Tamplin and Capers, 1992). Oysters are selective filter feeders, which actively 

differentiate between food and non-food items (Newell and Jordan, 1983).  It is possible 

that, when filtered out of the water column, phytoplankton-attached bacteria are directed 

to the oyster gut, whereas laboratory cultured strains of bacteria would not be attached 

onto food items and would be directed to the pseudofeces.  As a result, naturally derived 

bacteria could become well-established in the gut of the oyster, whereas cultured bacteria 

would not be recognized as a food source by the oyster and would be expelled rapidly. 
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Conclusion 

 

 The proposed introduction of Crassostrea ariakensis into the Chesapeake Bay has 

profound implications for the future of the shellfishing industry on the mid-Atlantic 

seaboard.  If approved, introduction of this species may require a re-evaluation of the 

present standards used to assess shellfish safety and the classification of waters approved 

for harvest.  Comparative studies, such as those presented here, are a critical first step for 

state regulatory agencies that will be charged with protecting the public health of C. 

ariakensis consumers.   Results suggest that C. ariakensis depurates naturally 

contaminated fecal indicator bacteria faster and uptakes bacteria slower than C. virginica.  

These findings suggest that the present standards for oyster harvest may be acceptable for 

the protection of public health for C. ariakensis.  

 The finding that Crassostrea ariakensis retains high levels of Vibrio sp. during 

cold storage is a concern.  Vibrio sp. are autochthonous estuarine bacteria, and, while 

they are not indicative of human fecal pollution, some species are human pathogens.  

Future research should focus on the isolation and speciation of Vibrio sp. in C. ariakensis 

meats to determine if there is a sufficient human health risk associated with post storage 

consumption. Such research is necessary to assess whether the present regulations for 

post harvest storage of oysters are applicable to this species and will adequately protect 

public health.  Further field-based studies are also warranted to elucidate the mechanisms 

responsible for the differences in rates of bioaccumulation and depuration.    
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