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ABSTRACT

Discriminating between meteorological and nonmeteorological radar returns is necessary for a number of

radar applications, including hydrometeor classification, quantitative precipitation estimation (QPE), and the

computation of specific differential phase KDP. The algorithm proposed, MetSignal, uses polarimetric radar

data and is simple by design, allowing users to adjust its performance based on the location’s specific needs.

The MetSignal algorithm is a fuzzy logic technique with a few postprocessing rules and has been selected for

implementation on the WSR-88D network in the United States.

1. Introduction

Data from single- and dual-polarization weather ra-

dars are used in a wide variety of applications. The first

step in these applications is the separation of data that

contain meteorological signals from that which contain

nonmeteorological signals (Gourley et al. 2007). The

performance of applications such as quantitative pre-

cipitation estimation (QPE; e.g., Tang et al. 2014), the

computation of specific differential phase KDP (e.g.,

Wang and Chandrasekar 2009), and many others are

dependent on accurate identification of the locations of

meteorological signals. The problem is complicated by

the fact that the variety and types of nonmeteorological

echoes [such as those from insects, birds, clutter, and

anomalous propagation (AP)] rival those of meteoro-

logical echoes (such as those from hail, graupel, snow,

and rain); many types of nonmeteorological scatterers

exhibit similar radar characteristics to those of meteo-

rological scatterers (e.g., Straka et al. 2000; Kumjian

2013a,b,c). The algorithm described in this paper—

MetSignal—is scheduled for incorporation into the

WSR-88D system on the Open Radar Product Gener-

ator (ORPG) as part of build 17, which is scheduled

for deployment in late 2016. The output from the

MetSignal algorithm will be used in the ORPG to

identify meteorological signal locations for the compu-

tation of KDP and QPE.

The development and deployment of dual-polarization

radar allowsmeteorologists to better discriminate between

meteorological and nonmeteorological scatterers using

information about the scatterers’ shape and phase via

differential reflectivity ZDR and the diversity of particle

types via cross-correlation coefficient rhv (Park et al. 2009).

The current approach in the ORPG is to use rhv greater

than 0.9 as the threshold to identify regions of meteoro-

logical signal (Ryzhkov et al. 2005). This approach can fail

to identify meteorological signal in hail cores and areas

within the melting layer, where rhv may be less than 0.9

(e.g., Straka et al. 2000; Zrnić et al. 1993; Giangrande and

Ryzhkov 2008; Ryzhkov et al. 2013). Using the above-

mentioned threshold (rhv . 0.9) can also lead to false

detections of meteorological signal for areas of AP and

biological scatterers (Tang et al. 2014). Because radar re-

flectivity factor at horizontal polarizationZh is also high in

AP, QPE creates significant amounts of false precipitation

from this error (Berenguer et al. 2006).

The current scientific literature contains numerous

approaches from a variety of authors that deal with the

problem of identifying and removing nonmeteorological

signal or classifying each return as a particular hydro-

meteor type (e.g., Zrnić and Ryzhkov 1999; Zrnić et al.

2001; Berenguer et al. 2006; Park et al. 2009; Tang et al.

2014; Bechini and Chandrasekar 2015; Wen et al. 2015).

The proposed algorithm differs from these methods in

two important ways. First, many of the algorithms in the
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current literature attempt to deal with the difficulty of

the problem by becoming increasingly complex, using

sophisticated neural networks (e.g., Lakshmanan et al.

2014) or complex and lengthy multistep processes (e.g.,

Bechini and Chandrasekar 2015) that are both compu-

tationally intensive to operate and difficult to implement

or optimize (e.g., Wen et al. 2015). Second, complex

algorithms incorporate data from other observing sys-

tems and/or data from the radar volume in its entirety to

carefully refine their calculations. In contrast, the pro-

posed algorithm—MetSignal—is simple to implement,

easy to optimize, and offers improved computational

speed and simplicity. It relies only on dual-polarization

radar data. Because the proposed method is planned for

deployment on the operational WSR-88D network, er-

rors found in the method postdeployment are difficult to

correct. If a neural network or other complex algorithm

is deployed on the WSR-88D, retraining or modifying

the algorithm to correct for postdeployment errors can

change the results in unexpected ways. With the pro-

posed method, a predictable correction of errors can be

attempted by adding additional postprocessing rules.

2. Method

A comprehensive summary of echo classification

methods can be found in Chandrasekar et al. (2013).

Following this work, Fig. 1 summarizes the major steps

of the proposed algorithm as a block diagram. The se-

lection of variables and the weights given to those var-

iables are identified in Table 1 and will be discussed in a

following section. The inputs to the echo classifier areZh,

rhv, radial velocity V, standard deviation of differential

phase [std dev(FDP)], standard deviation of differential

reflectivity [std dev(ZDR)], and standard deviation of

cross-correlation coefficient [std dev(rhv)]. The standard

deviations of the variables are computed from the data

collected along a radial for nine range bins centered on

the bin of interest. Note that they could also be com-

puted using a 2D box centered on the range bin of in-

terest or with many other techniques.

Themethod applied for echo classification is a weighted

fuzzy logic scheme. This is a common technique, applied

by many others for hydrometeor classification (e.g.,

Park et al. 2009). The weighted fuzzy logic scheme used

here is a simple form with only a single output class—

meteorological signal. The weights W assigned to each

input are provided in Table 1. Most of the membership

functions (Fig. 2) are single-sided trapezoids, but the

V membership function is a two-sided inverted trape-

zoid, the value of which can be computed by subtract-

ing its inverse trapezoid from 1.

The aggregation value A is determined at each bin

as follows:
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where Wj is the weight and PVj is the value of the

membership function of the jth input. The aggregation

value is then compared to a threshold between 0 and 1

to determine whether the signal is meteorological. The

threshold used in this study is 0.8 in the warm season

and 0.7 in the cold season, and its selection is discussed

in a following section.

After the aggregation value has been computed, a few

postprocessing rules are applied. First, locations where

the absolute value ofZDR exceeds 4.5 dB are considered

nonmeteorological. This rule was developed to assist the

algorithm in properly classifying migrating birds and

wind turbine clutter. Second, locations where rhv is less

than 0.65 are also considered nonmeteorological. Fi-

nally, the algorithm checks the value of Zh at a height of

FIG. 1. Block diagram of meteorological signal algorithm.

TABLE 1. The six variables and the weight assigned to each in the

MetSignal algorithm.

Variable Weight

Horizontal reflectivity Zh 1.0

Cross-correlation coefficient rhv 1.0

Velocity V 1.0

Variability of differential phase [std dev(FDP)] 2.0

Variability of differential reflectivity [std dev(ZDR)] 2.0

Variability of cross-correlation coefficient [std dev(rhv)] 1.0

1876 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 33

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 08:17 PM UTC



FIG. 2. The six membership functions of theMetSignal algorithm:Zh, rhv,V, std dev(FDP), std dev(ZDR), and std

dev(rhv). The numbers in parentheses at the top of the graphs are theW used for that variable. PV(�) is the value of
the membership function for a given input.
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3 km in the previous volume scan at the sample location.

If this value exceeds 11 dBZ, then the location is con-

sidered to be meteorological (Lakshmanan et al. 2015).

This addition assists the algorithm in correctly identi-

fying precipitation in the melting layer, where many of

the computed texture functions are elevated.

3. Results

Radars located on the Great Plains in the central

United States can sample a wide variety of meteorolog-

ical and nonmeteorological targets within a single eleva-

tion. In Fig. 3, the KAMA radar located near Amarillo,

Texas, observed multiple large-hail-producing storms, as

well as fine lines from storm outflows, anomalous prop-

agation, ground clutter, wind turbine clutter, second-trip

echo, and a large (but common) area near the radar filled

with insects. An examination of the rhv field (Fig. 3e)

reveals that the thunderstorms to the east-southeast of

the radar (at;1008 azimuth) have a significant amount of

nonuniform beamfilling (Ryzhkov 2007) that can be

identified by the radial streaks of lower rhv. There is also a

strong melting layer signature in the data found to the

south-southeast of the radar (at ;1508 azimuth). These

locations are marked as ‘‘OR’’ for override (brown) by

the MetSignal algorithm. This means that the data were

originally marked as nonmeteorological, but this desig-

nation was overridden and changed to meteorological

because the Zh at 3-km field (Fig. 3f) exceeded the

threshold of 11dBZ in postprocessing. At the time

specified in the figure, many of the meteorological data

come from rapidly developing thunderstorms, which

contain higher values of the texture variables std dev(FDP),

std dev(ZDR), and std dev(rhv). High texture values lead

to lower scores in the membership functions and conse-

quently lower aggregation values. The logic of the Met-

Signal algorithm seeks to identify meteorological signal

only where there is strong evidence and relies on post-

processing to add back in those locations where a missed

detection is likely to have occurred. The power of this

approach can be seen in the locations near the radar,

where very few insects have been misclassified as meteo-

rological echoes, and to the east of the radar, where AP

and fine lines fromoutflowboundaries have been properly

classified as nonmeteorological echoes. The hydrometeor

classification algorithm (HCA; Park et al. 2009) often

misclassifies insects and AP in locations near the radar

with a variety of false alarms, such as big drops (BD), light

rain (LR), or even hail (SH). This can be seen in Fig. 3d.

Finally, it should be noted that the MetSignal algorithm

does not remove the elongated second-trip echo located

to the northwest of the radar. This is due to the fact that

FIG. 3. (a) MetSignal, (b)ZDR (dB), (c) Zh (dBZ), (d) HCA, (e) rhv, and (f)Zh (dBZ) at 3 km. All from the KAMAWSR-88D radar at

0051 UTC 2 Jun 2012 from an elevation of 0.58. HCA output classes are labeled as light rain (LR), heavy rain (HR), rain/hail mixture

(RH), big drops (BD), anomalous propagation (AP), biological (BI), unknown (UK), no echo (NE), dry snow (DS), wet snow (WS), ice

crystals (IC), graupel (GR), large hail (LH), and giant hail (GH).
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second-trip data have characteristics identical to meteo-

rological returns.

In winter events, there are typically fewer non-

meteorological targets like insects, but strong melting

layer signals, which are noisy, can confuse fuzzy logic

algorithms (Bechini and Chandrasekar 2015). Figure 4

shows a winter storm, sampled by the KBOX radar, near

Boston, Massachusetts, on 12 January 2012; a strong

melting layer signature can be seen in Fig. 4e. Themelting

layer is especially strong just to the north of the radar as

an elongated east-to-west band. MetSignal (Fig. 4a) and

the HCA (Fig. 4d) properly classify a majority of signal

present as meteorological and have difficulty only in

areas where there is a strong melting layer. An exami-

nation of the OR class in Fig. 4a again demonstrates the

design of the MetSignal algorithm to flag locations as

meteorological only when a strong meteorological signal

is present and then to use the Zh $ 11dBZ at 3 km cri-

terion to reduce missed detections.

Limitations of the method can be found in Fig. 5,

which is a collection of nonmeteorological targets from

different locations in the United States. The first pair of

images is MetSignal (Fig. 5a) and HCA (Fig. 5b) from

KJAX in Jacksonville, Florida, for a period with very

strong bird returns. There is no precipitation in the area

at this time. The HCA is contaminated with detections

of BD and a few LR misclassifications on the edges of

the echo.MetSignal shows a fewmisclassifications to the

northwest of the radar, but a larger issue is the ringlike

OR classifications mainly to the southwest. These are

due to the Zh at 3 km being in excess of 11 dBZ, which

causes the nonmeteorological fuzzy logic classification

to be overridden in postprocessing. The ringlike ap-

pearance is due to the data coming from a different

(lower) elevation as it is interpolated to 3 km (note that

similar elevation rings in Zh at 3 km can be found in

Fig. 4f). One possible way to optimize the MetSignal

algorithm for KJAX might be to increase the height at

which the OR classification operates (e.g., from 3 to

4 km). This same limitation of the MetSignal algorithm

is shown in the pair of images (Figs. 5c,d) fromKHDX in

Holloman, New Mexico. MetSignal suppresses most of

the spurious AP and biological returns, but the smoke

from a fire triggers the OR classification for the area just

to the northeast of the radar. Ground returns from at-

mospheric ducting are also likely to be incorrectly iden-

tified as meteorological by the algorithm to the south.

The pair of images (Figs. 5e,f) from KICT in southern

(Wichita) Kansas shows strong AP to the north and west

with true meteorological return in the south. Wind tur-

bine clutter is also common at this location. MetSignal

does a good job suppressing nonmeteorological detec-

tions while also identifying the storms to the south as

meteorological. Some AP is flagged by the algorithm as

FIG. 4. (a) MetSignal, (b) ZDR (dB), (c) Zh (dBZ), (d) HCA, (e) rhv, and (f) Zh (dBZ) at 3 km. All from the KBOX WSR-88D radar at

1151 UTC 12 Jan 2012 from an elevation of 0.58. HCA output classes as in Fig. 3.
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meteorological signal again due to strong Zh returns at a

height that would be 3km in the standard atmosphere.

The computational efficiency of the MetSignal algo-

rithm was compared to the algorithm proposed by Tang

et al. (2014). In a test on data from the KAMA radar

located near Amarillo, Texas, from 0000 to 0100 UTC

2 June 2012, the MetSignal algorithm was ;10 times

faster than the dual-polarization radar reflectivity quality

control (dpQC) algorithm proposed by Tang et al. (2014);

on the author’s computer, the MetSignal algorithm spent

;2400ms in the computational sections of the algorithm

versus ;26 000ms for dpQC as proposed by Tang

et al. (2014).

4. Discussion

The selection of variables and the weights given to

those variables is critical to the success of MetSignal. An

example of the process used in the design of the Met-

Signal algorithm can be found in Figs. 6 and 7. In Fig. 6,

an area of nonmeteorological signal is highlighted with

a blue polygon, and an area of meteorological signal is

highlightedwith a green polygon.Datawere then extracted

from each area and analyzed. The data included the six

dual-polarimetric radar moments—horizontal reflectivity,

differential reflectivity, velocity, spectrum width (SPW),

differential phase, and cross-correlation coefficient—

and a measure of the variability (standard deviation)

of each moment using a centered nine-gate sample of

the data along the radial. In all, 12 different data fields

were considered. The characteristics of the data were

evaluated using histograms. The six data fields se-

lected for inclusion in the algorithm (Fig. 7) show

consistent separation between meteorological and

nonmeteorological histograms for the 25-plus cases in

the dataset (Table 2). Following the work of

Lakshmanan et al. (2015) and experience in the ap-

plication of the Park et al. (2009) algorithm, ZDR was

excluded because of possible radar miscalibration in

the WSR-88D network.

The design of the membership functions and the

selection of variable weights followed an iterative

process. Initial estimates for both the shape of the

membership functions and the weights for the vari-

ables were assumed. The MetSignal algorithm was

computed and run on the cases in our dataset (Table

2). The algorithm was then assessed, and areas of poor

performance were identified. Data were extracted

from those areas and evaluated, the results of which

drove changes to the membership functions and the

variable weights. Figure 7 shows the final membership

functions that resulted from our iterative process (red

FIG. 5. A comparison of the performance ofMetSignal andHCA for various nonmeteorological targets. (a)MetSignal and (b) HCA for

KJAX at 0954 UTC 23 Sep 2012 with contamination by birds. (c) MetSignal and (d) HCA for KHDX at 0733 UTC 9 Jun 2012 with

mountain clutter and smoke. (e) MetSignal and (f) HCA for KICT at 1247 UTC 30 Mar 2012 with strong AP and wind turbine clutter.

HCA output classes as in Fig. 3. All data are collected from an elevation of 0.58.
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lines) and the matching normalized histograms from

the data (blue and green lines) identified in Fig. 6.

Biological scatterers, mainly insects, which are very

common in the WSR-88D network during the warm

season, are the major nonmeteorological contaminant

in the data.

Five of the six final variables in Fig. 7 show good sep-

aration between the histograms for nonmeteorological

(blue) and meteorological (green) data for this case.

The histograms for velocity do not show good separa-

tion; there is a significant amount of overlap for both

nonmeteorological and meteorological data. This is

because moving insects are the dominant non-

meteorological scatterer in this case. Velocity is not

particularly useful for separating the data for this case.

However, for other cases in the dataset, such as those

that have ground clutter and AP, velocity adds mean-

ingful discriminating power.

The weight of each variable (Table 1) indicates our

expectation of that variable’s importance. A primary

finding of Lakshmanan et al. (2015) was that the

variance (texture herein) of ZDR had the most value in

discriminating between meteorological and non-

meteorological signals. We can confirm this and our it-

erative process described above assigned std dev(ZDR) a

weight of 2.0. Although std dev(FDP) was not studied by

Lakshmanan et al. (2015), the performance of this

measure is likely similar to that of KDP—lower in me-

teorological data and higher in nonmeteorological data.

The std dev(FDP) showed a strong separation between

meteorological and nonmeteorological histograms for

all of our cases and was also assigned a weight of 2.0.

Many algorithms such as the current ORPG and Tang

et al. (2014) use rhv as the primary or only measure of

meteorological signal. We have included it as both rhv
and the texture of rhv. Each has a weight of 1.0 but

combined they are equal in importance to both the

texture of ZDR and the texture of FDP. Usually, rhv and

std dev(rhv) are statistically linked wherein if rhv ap-

proaches 1.0, then the std dev(rhv) is usually low (me-

teorological) and as rhv drops below 0.75, then std dev

(rhv) usually rises (nonmeteorological) (Melnikov and

FIG. 6. A display of (a)Zh (dBZ), (b)ZDR (dB), (c) rhv, and (d)MetSignal fromKLWXat 0911 UTC 25Aug 2012 from an elevation of

0.58. The green polygon designates an area of meteorological signal, and the blue polygon designates an area of nonmeteorological

signal.

SEPTEMBER 2016 KRAUSE 1881

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 08:17 PM UTC



Zrnić 2007). Finally, two variables are included that

have smaller weights; V, with a weight of 1.0, was in-

cluded to identify areas of the domain where the beam

may be hitting the ground (which usually results in V of

;0m s21); and Zh was included with a weight of 1.0 to

help identify locations with hail and locations within the

melting layer. In general, the approach was to use the

texture values (low) and rhv to identify meteorological

locations.

All of the cases in Table 2 were studied before a

threshold of A that was best able to separate meteoro-

logical and nonmeteorological signals could be identi-

fied. It was evident from the data that a more stringent

threshold should be applied in summer, when more

nonmeteorological signal was present from birds and

insects, than in winter, when there was relatively less

nonmeteorological return. The threshold of 0.80 was

used for periods of the year when biological targets (e.g.,

insects) are most commonly present, and 0.70 was used

during the cold season, when biological contamination is

less likely. Figure 8 shows the normalized histograms for

the MetSignal algorithm output for the data regions

identified in Fig. 6. The threshold of 0.80 appears to be

quite strict for this case. In other cases, the stricter

threshold of 0.80 is necessary to reduce false detections

owing to contamination from birds in the MetSignal

output. Figure 9 is a set of normalized histograms from

three locations where bird contamination is present. The

threshold of 0.80 is effective in classifying almost all of

the signal from birds as nonmeteorological.

The change in threshold from 0.80 in summer to 0.70 in

winter works in tandem with the postprocessing applica-

tion of Zh $ 11dBZ at 3km [a threshold suggested by

Lakshmanan et al. (2015)]. The value of Zh used in this

postprocessing step is kept from the previous volume scan

by storing the data from each elevation that is closest to the

constant altitude of 3km [i.e., a constant-altitude plan po-

sition indicator (CAPPI) is created]. The threshold ofZh$

11dBZ at 3km is used to infer a vertical depth to the radar

echo, which is strong evidence of a meteorological signal.

In summer, storm heights are expected to be greater than

in winter owing to typically greater convective potential

FIG. 7. Normalized histograms of data from different regions identified in Fig. 6 are overlaid onto the six

membership functions (red lines) of the MetSignal algorithm. Normalized histograms from the nonmeteorological

region are shown in blue. Normalized histograms from the meteorological region are shown in green.
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instability, so the application of a strict threshold (0.80) can

be corrected if detections are missed. In the cold seasons,

when biological contamination is relatively low, storm-top

heights are also generally lower and postprocessing will be

unable to assist the fuzzy logic classification, so a lower

threshold of 0.70 is recommended.

Many combinations of fuzzy logic thresholds and

postprocessing techniques can be used, depending on

TABLE 2. Data used to develop and test the MetSignal algorithm.

Radar Location Date Description

KAKQ Wakefield, VA 22 Jun 2012 Weather mixed with insects

KAMA Amarillo, TX 1 Jun 2012 Severe storms with nonweather targets

KATX Seattle, WA 7 Mar 2012 Weather and mountains

KBGM Binghamton, NY 11 Aug 2012 Light snow

KBMX Birmingham, AL 16 Jan 2013 Winter precipitation

KBOX Boston, MA 1 Dec 2012 Winter storm

KCLE Cleveland, OH 14 Dec 2011 Winter precipitation

KCLE Cleveland, OH 11 Aug 2012 Ground clutter only

KDIX Philadelphia, PA 22 Apr 2012 Sea clutter/weather

KDOX Dover Air Force Base, DE 22 Apr 2012 Weather/birds/strong clutter

KHDX Holloman, NM 6 Sep 2012 Ground clutter/mountains/smoke

KICT Wichita, KS 30 Mar 2012 Wind turbine/ground clutter

KJAX Jacksonville, FL 23 Sep 2012 Birds

KLOT Chicago, IL 29 Jun 2012 Ground clutter/storms

KLWX Sterling, VA 17 Jul 2012 Insects

KLWX Sterling, VA 21 Aug 2012 Insects/storms

KLWX Sterling, VA 25 Aug 2012 Insects/storms

KLWX Sterling, VA 11 Oct 2012 Birds

KLWX Sterling, VA 1 Nov 2012 Insects/storms

KMLB Melbourne, FL 26 Jan 2012 Biological/storms

KMPX Minneapolis, MN 10 Oct 2012 Strong birds

KMPX Minneapolis, MN 8 Nov 2012 Biological/storms

KNQA Memphis, TN 21 Sep 2012 Ground clutter/mesoscale convective system

KPBZ Pittsburg, PA 26 Jan 2012 Winter storm

KPBZ Pittsburg, PA 28 Nov 2011 Winter storm

KPBZ Pittsburg, PA 8 Nov 2012 Ground clutter

KVNX Vance Air Force Base, OK 8 Dec 2011 Bats

FIG. 8. Normalized histograms of MetSignal from the different regions identified in Fig. 6.

The normalized histogram from the nonmeteorological region is blue, while themeteorological

region is green. The red line shows the threshold value of 80 [5 0.8(100)] used in summer, and

the purple line shows the threshold value of 70 [5 0.7(100)] recommended for winter. Both

panels contain the same data, but the bottom had the y axis adjusted to show detail.
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the location and types of nonmeteorological contami-

nants expected. If the algorithm is applied in regions

where light and/or winter precipitation is normal, then

the lower aggregation threshold is recommended. If the

algorithm is applied in regions where terrain blocks the

radar beam, then the addition of a terrain map may

prove useful. As described, the MetSignal algorithm

provides good discrimination between meteorological

and nonmeteorological returns for a wide variety of

conditions.

5. Conclusions

A simple fuzzy logic algorithm was developed to sep-

arate meteorological and nonmeteorological radar ech-

oes. This algorithm uses only dual-polarization weather

radar data and a few simple postprocessing rules, and is

scheduled for implementation on the WSR-88D ORPG

in late 2016. It relies on fuzzy logic, simplicity of optimi-

zation, and enhanced computational speed over more

technically complex solutions that use a wider variety of

data and logic.
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