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Introduction and thesis outline

 “There is no task more fascinating to the naturalist than breaking up a block of some 
branching coral, such as  or , and dislodging from among its 
boughs the various animals that shelter there; nor of all these latter is there any more 
interesting than the crab , which gives rise to the well-known galls that 
Semper [1881] described in his Animal Life.” 

et al

la et al
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Chapter 1

Monophyly and phylogenetic origin of the gall crab family  
Cryptochiridae (Decapoda: Brachyura)

Sancia E.T. van der Meij & Christoph D. Schubart

Abstract

The enigmatic gall crab family Cryptochiridae has been proposed to be phylogenetically derived from within the 
Grapsidae (subsection Thoracotremata), based on the analysis of 16S mtDNA of one cryptochirid, Hapalocarcinus 
marsupialis, among a wide array of thoracotremes, including 12 species of the family Grapsidae. Here, we test the 
monophyly and phylogenetic position of Cryptochiridae using the same gene, but with an extended representation 
of cryptochirids spanning nine species in eight of 21 genera, in addition to further thoracotreme representatives. 
The results show that gall crabs form a highly supported monophyletic clade within the Thoracotremata, which 
evolved independently of grapsid crabs. Therefore, the Cryptochiridae should not be considered as highly 

molecular and morphological studies are needed to elucidate the precise placement of the cryptochirids within the 
Eubrachyura.

2014
Invertebrate Systematics 28: 491-500
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Introduction

Gall crabs (Cryptochiridae) are obligate symbionts of living scleractinian corals, residing in galls, 
et al., 

2008; Davie, 2014) and is recorded from both shallow and deeper waters down to 512 m (Kropp 

(1859), who named the species Hapalocarcinus marsupialis
new form of Brachyurous Crustacean’. Stimpson did not assign H. marsupialis to a crab family, 

Pinnotheres and Hymenosoma, 
which belong to the Pinnotheridae De Haan, 1833 and the Hymenosomatidae MacLeay, 1838, 
respectively. Heller (1861) described a second gall crab species, Cryptochirus coralliodytes, and 
commented on its similarities with Ranina and Notopus (Raninidae De Haan, 1839). A. Milne-Ed-
wards (1862) described yet another species, Lithoscaptus paradoxus, mentioning that this new 

subfamily Cryptochirinae within the Pinnotheridae to accommodate the gall crabs, which Rich-
ters (1880) elevated to family level. A more complete overview of the history of the family Cryp-

et 
al., 2002) were proposed by Wetzer et al. (2009). The authors recommended dropping the super-
family Cryptochiroidea (see Ng et al., 2008) and suggested considering Cryptochiridae as just 
one of many separate ‘grapsoid’ families. The zoeal features of Cryptochiridae present numerous 

et al., 2014 and references therein). Based on 
the larval development, a close relationship between grapsids and cryptochirids had been pro-

-
-

men. When considering the larval morphology (based on Troglocarcinus corallicola Verrill, 
-

nosomatidae and Leucosiidae (Scotto and Gore, 1981). Utinomi (1944) had previously considered 
the zoea of Hapalocarcinus and Cryptochirus to belong to the so-called Grapsizoea (including 
genera of the Cancridae, Grapsidae, Xanthidae and some Oxyrhyncha) and dismissed suggestions 

-
lies (Hymenosomatidae, Leucosiidae, Pinnotheridae, Palicidae and Retroplumidae) were dis-
cussed by Kropp (1988a), who suggested monophyly of the Cryptochiridae based on a series of 

palp). Guinot et al. (2013), based on several morphological structures, also concluded that the 
cryptochirids form a monophyletic group. The spermatozoa of C. coralliodytes and H. marsupi-
alis -

et al., 2014). Tudge et al. (2014) also compared the 
sperm ultrastructure and operculum of Cryptochiridae to those of species belonging to the Ma-

with regard to placement of the cryptochirids in Thoracotremata or Heterotremata. The morpho-
logy of the female reproductive system was studied by Vehof et al. (in press) who showed that the 
Cryptochiridae share characteristics with the thoracotreme families Varunidae, Ocypodidae and 

-
ries that are expanded into the abdomen (= pleon), which is exceptional among Brachyura and has 

et al., 2011).



17

Monophyly and phylogenetic origin of the gall crab family Cryptochiridae

Fig. 1. The cryptochirid taxa used in this study: A, Hapalocarcinus marsupialis; B, Utinomiella dimorpha; C, 
Opecarcinus lobifrons; D, Fungicola utinomi; E, Dacryomaia sp.; F, Fungicola fagei; G, Fizesereneia sp.; H, 
Lithoscaptus tri; I, Pseudocryptochirus viridis. No picture is available for Cryptochirus corallio dytes. Not to 
scale.
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Table 1. et al., 2008).  
et al. (2009)

Family Species GenBank No.

Camptandriidae Baruna trigranulum (Dai and Song, 1986) AB002129
 Paracleistostoma depressum De Man, 1895 AB002128
Crossotonotidae Crossotonotus spinipes (De Man, 1888) AJ130807
Cryptochiridae *Cryptochirus coralliodytes Heller, 1861 KM114587
 *Dacryomaia sp. KM114582
 *Fizesereneia sp. KM114581
 *Fungicola fagei
 *Fungicola utinomi
 Hapalocarcinus marsupialis Stimpson, 1859 EU743929
 Hapalocarcinus marsupialis Stimpson, 1859 EU743930
 *Hapalocarcinus marsupialis Stimpson, 1859 KM114586
 *Lithoscaptus tri
 *Opecarcinus lobifrons Kropp, 1989 KJ923730
 *Pseudocryptochirus viridis Hiro, 1938 KJ923710
 *Utinomiella dimorpha (Henderson, 1906) KM114585
Dotillidae Dotilla wichmanni De Man, 1892 AB002126
 Ilyoplax deschampsi (Rathbun, 1913) AB002117
 *Scopimera bitympana Shen, 1930 AB002125
 Tmethypocoelis ceratophora (Koelbel, 1897) AB002127
Gecarcinidae Cardisoma carnifex (Herbst, 1796) AM180687
 *Discoplax hirtipes
 Gecarcinus lateralis
 Gecarcoidae lalandii H. Milne Edwards, 1837 AM180684
Gecarcinucidae *Holthuisana biroi
 *Lepidothelphusa cognetti
 Sartoriana spinigera (Wood-Mason, 1871) AM234649
Glyptograpsidae Glyptograpsus impressus Smith, 1870 AJ250646
 Platychirograpsus spectabilis De Man, 1896 AJ250645
Grapsidae Geograpsus lividus (H. Milne Edwards, 1837) AJ250651
 Goniopsis cruentata (Latreille, 1803) AJ250652
 Grapsus grapsus (Linnaeus, 1758) AJ250650
 Leptograpsus variegatus
 Metopograpsus latifrons (White, 1847) AJ784028
 Metopograpsus quadridentatus Stimpson, 1858 DQ062732
 Metopograpsus thukuhar (Owen, 1839) AJ784027
 Pachygrapsus crassipes Randall, 1840 AB197814
 *Pachygrapsus fakaravensis
 *Pachygrapsus gracilis
 Pachygrapsus marmoratus
 Pachygrapsus minutus A. Milne-Edwards, 1873 AB057808
 *Pachygrapsus plicatus
 Pachygrapsus transversus (Gibbes, 1850) AJ250641
 Planes minutus (Linnaeus, 1758) AJ250653
Heloeciidae *Heloecius cordiformis (H. Milne Edwards, 1837) AM180695
Macrophthalmidae *Macrophthalmus crinitus Rathbun, 1913 AB537376
 *Hemiplax hirtipes
Mictyridae Mictyris brevidactylus Stimpson, 1858 AB002133
 *Mictyris guinotae Davie, Shih and Chan, 2010 AB513632
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 In the most recent treatments of the Brachyura (Ng et al., 2008; De Grave et al., 2009; Ahyong 
et al., 2011; Tsang et al., -
roidea, and placed in the subsection Thoracotremata. The main argument to place Cryptochiridae 
in the Thoracotremata is the sternal location of male gonopores (Guinot, 1977). This is in agree-
ment with Scotto and Gore (1981), who regarded adults of the Atlantic species Troglocarcinus 
corallicola as exhibiting an advanced thoracotreme state. The Cryptochiridae have alternatively 

Bouchard, 1998), advanced Heterotremata (Martin and Davis, 2001) or a ‘basal heterotreme eu-
brachyuran superfamily’ (Guinot et al.,
to clarify the position of the gall crabs within other brachyurans, its placement in the subsection 

et al., 2009).

Table 1. (continued)

Family Species GenBank No.

Ocypodidae *Ocypode quadrata
 *Uca borealis Crane, 1975 AB535403
 *Uca tetragonon (Herbst, 1790) AB535405
 *Ucides cordatus
Palicidae Palicus caronii (Roux, 1828) AM180692
Percnidae Percnon gibbesi (H. Milne Edwards, 1853) AJ130803
 *Percnon guinotae
Pinnotheridae Austinixa aidae
 Austinixa patagoniensis
 Pinnotheres pisum (Linnaeus, 1767) AM180694
Plagusiidae Euchirograpsus americanus A. Milne-Edwards, 1880 AJ250648
 *Plagusia depressa
 Plagusia squamosa (Herbst, 1790) AJ311796
Potamidae Geothelphusa pingtung Tan and Liu, 1998 AB266168
 *Potamon potamios (Olivier, 1804) AB428515
Potamonautidae *Potamonautes perlatus (H. Milne Edwards, 1837) AM234647
Pseudothelpusidae Epilobocera sinuatifrons
Sesarmidae Armases elegans
 *Chiromantes haematocheir (De Haan, 1833) AJ308414
 Sarmatium striaticarpus Davie, 1992 AM180680
 Sesarma meridies Schubart and Koller, 2005 AJ621819
 *Sesarma reticulatum (Say, 1817) AJ225867
Varunidae Austrohelice crassa (Dana, 1851) AJ308416
 Brachynotus atlanticus
 Cyrtograpsus affinis Dana, 1851 AJ130801
 Eriocheir sinensis H. Milne Edwards, 1853 AJ250642
 Helograpsus haswellianus (Whitelegge, 1899) AJ308417
 Hemigrapsus sanguineus (De Haan, 1835) AJ493053
 Paragrapsus laevis (Dana, 1851) AJ308418
 Pseudogaetice americanus (Rathbun, 1923) AJ250643

Xenograpsidae *Xenograpsus ngatama
 *Xenograpsus testudinatus
Xenophthalmidae *Xenophthalmus pinnotheroides White, 1846 EU934951
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 The monophyly and phylogeny of the Cryptochiridae among the Thoracotremata were 
re-evaluated by using 16S mtDNA data for 10 gall crab species belonging to nine genera. We 
reused almost the entire dataset from Wetzer et al. (2009), but expanded it by adding 10 gall crab 

-
ed in the previous study. We used this enlarged dataset for analysis of the position of the Cryp-
tochiridae within the Thoracotremata and to test Wetzer et al.’s result that Hapalocarcinus mar-
supialis evolved from within the family Grapsidae.

Materials and methods

Wetzer et al. Hapalocarcinus marsupialis, combined 

to evaluate the relationships between Cryptochiridae and other Brachyura. To re-evaluate the 
position of the Cryptochiridae, we added nine additional species belonging to eight cryptochirid 

H. marsupialis for comparison 
with the material of Wetzer et al. (2009).

families was used as a more complete dataset for research on the phylogenetic position of the gall 
crabs. Type genera and species were included whenever the corresponding data were available in 

 
The following changes and additions were made in comparison to the dataset of Wetzer et al. 
(2009):

(1)  The Old World freshwater crabs used by Wetzer et al. (2009), Sartoriana spinigera (Gecarci-
nucidae) and Geothelphusa pingtung (Potamidae), were moved to the ingroup together with 
additional freshwater crabs from other continents, while Crossotonotus spinipes (Crossotonoti-
dae) and Palicus caronii 
the newest brachyuran phylogeny by Tsang et al. (2014), which shows that Old World fresh-
water crabs of the superfamily Potamoidea (see Klaus et al., 2009) are placed at the base of 
the Heterotremata which in turn are the sister group to all Thoracotremata. This implies that 
the Potamoidea are phylogenetically closer to Thoracotremata than most other Heterotremata 

parable way to previ-
ous phylogenies of the Thoracotremata (Schubart et al., 2000, 2002, 2006).

(2)  Sesarma windsor (Sesarmidae) was deleted from the dataset as it is a close sister species of S. 
meridies (see Schubart and Koller, 2005) and does not contribute to the phylogenetic diversi-
ty, whereas Sesarmoides longipes (Sesarmidae) was removed, as it is a very basal sesarmid 

et al., 2002) and will be dealt with separately. In-
stead, the type species of the family, Sesarma reticulatum, was added, as well as the Asian 
sesarmid representative Chiromantes haematocheir.

(3)  Hemigrapsus oregonensis (Varunidae) was removed from the dataset, as it is not a typical 
representative of the genus, and will probably be placed in a separate genus after revision.

et al., 2009: 
table 2) does not correspond to Scopimera globosa (De Haan, 1835), but to S. bitympana  
(Dotillidae). We used the latter in our analyses. Taxon selection for the enlarged dataset was also 
tested with species belonging to heterotreme families, but in all preliminary analyses the crypto-
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chirids consistently nested in the Thoracotremata, similar to the results of Wetzer et al. (2009). 

Collecting
The gall crabs, with the exception of Cryptochirus coralliodytes, were collected in Indonesia (Raja 

chisel. The gall crabs were preserved in 80% ethanol, after being photographed with a digital SLR 
camera -

coded as RMNH.Crus.D). The specimen of C. coralliodytes
Guinot) was collected in New Caledonia, more material of the same series is in the collections of 

Analyses
® Kit ac-

h.  elution buffer. PCR was carried out with 
standard conditions (2.5 mL PCR buffer, 0.5 mL DNTPs, 1.0 mL of primers 16L2 and 16H10 

 The alignment was constructed with Clustal et al.,

-
Information Criterion (AIC) in jModelTest 2.1.1 (Darriba et al., 2012), 

which rendered TrN+I+G as the best model. A Bayesian phylogeny was estimated with MrBayes 

1000 generations (outgroup Palicus caronii

2009).

Results

the trees remaining after the burnin, with high support values in the basal part as well as in the 
distal phylogenetic branches. The outgroup is separated by a long branch, whereas the freshwa-
ter crabs from four families form a sister clade to the highly supported monophyletic Thoraco-
tremata. Within the Thoracotremata, four major clades can be distinguished. The cryptochirid 
taxa included in the analyses form a monophyletic clade with a long branch length compared 
to the other clades. Within this highly supported clade, Utinomiella dimorpha, Pseudocryp-
tochirus viridis and Opecarcinus lobifrons hold a basal position with respect to the remaining 
gall crabs. Our specimen of H. marsupialis differs from the specimens used in Wetzer et al. 
(2009) by 15-17 basepairs (bp) out of 533 bp. Nevertheless, Hapalocarcinus marsupialis is for 
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now regarded a single species, but may well be a complex of species (see also Castro, 2011).
 A second clade contains Glyptograpsidae, Heloeciidae, Pinnotheridae, Ocypodidae and 
Sesar midae. Ocypodidae and Pinnotheridae together form a paraphyletic clade. The single repre-
sentative of the Heloeciidae appears as a sister group of the Glyptograpsidae. All Sesarmidae taxa 

Fig. 2. Phylogenetic placement of the Cryptochiridae within the Thoracotremata, based on 16S mtDNA se-
Palicus caronii. Topology derived from 
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form a monophyletic clade. A third clade is formed by the Macrophthalmidae and Varunidae. The 
Macrophthalmidae are polyphyletic, while the Varunidae are paraphyletic because of non-recip-
rocal monophyly (overlapping taxa) between these two families. Lastly, Grapsidae form the 
fourth monophyletic clade. The genus Pachygrapsus is paraphyletic, and the genus Metopograp-
sus clusters basally compared to the other grapsids. In addition to these major clades, several 
monophyletic families can be discerned based on our taxon sampling: the Mictyridae, Percnidae, 
Plagusiidae and Xenograpsidae. The Xenophthalmidae (represented by only one species) are in-
cluded in the Dotillidae, which is a sister group of the Camptandriidae. The Gecarcinidae do not 
cluster together.

Discussion

The present molecular phylogeny, including 16S mtDNA of ten cryptochirid species belonging to 
nine genera, showed that Cryptochiridae form a highly supported monophyletic clade within the 

chiridae, representatives of Utinomiella, Pseudocryptochirus and Opecarcinus cluster basally to 
the other included genera. These remaining genera form one clade, with three possible subclades. 
Hapalocarcinus Fungicola fagei and Dacryomaia sp., but with a long 
branch. Our results are largely in agreement with Van der Meij and Reijnen (2014), who, based on 
16S and COI mtDNA, retrieved Utinomiella as the basal genus to all other crypto chirids. They 
also found Pseudocryptochirus forming a well supported clade with Neotroglocarcinus, and 
Opecarcinus forming a highly supported clade with Pseudohapalocarcinus. In their study, the 
remaining six genera (seven species) formed a fourth clade, with Hapalocarcinus -
ing as a sister clade. The position of Hapalocarcinus within the Cryptochiridae therefore remains 
unclear to some degree.

dae’ 
(see Wetzer et al., 2009), but an independent line -

-
rior probability (58%) values supporting the inclusion of H. marsupialis in the Grapsidae. Here 
we show that the conclusions of Wetzer et al. (2009) would have been different if there was better 
cryptochirid sampling. This may also be the case in the recent study by Tsang et al. (2014), where 
again only one cryptochirid taxon was used for a multi-gene phylogenetic analysis. In this case, 
Dacryomaia sp. is found in an unsupported sister taxon relationship with the family Xenograpsi-
dae. It shows that conclusions on the phylogenetic position of (non-monotypic) families or other 
higher taxa, may be premature if based on a single species, especially when representatives are 
chosen that are not the type species of a genus, and when no information is available on the mono-
phyly of the respective taxa.
 Our results, and the ones by Tsang et al. et al. 
(2009) that the Cryptochiridae belong to the Thoracotremata. In our analysis cryptochirids are 
consistently nested with thoracotreme crabs, when different heterotreme species were added to 

(2011) postulated that Thoracotremata evolved in ‘safe places’, such as intertidal, non-marine, 
deep water and endo-symbiotic habitats. Several thoracotreme families consist mainly of intertid-
al or shore crabs (e.g. Grapsidae, Sesarmidae, some Varunidae) occurring in different habitats, 

Sesarmidae and Ocypodidae, with the exception of Ocypode, which specialises on sandy shores) 
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or freshwater-dependent crabs (Glyptograpsidae and some Varunidae) (Schubart et al., 2002). 
Xenograpsidae with the genus Xenograpsus are specialised on hydrothermal vents (Ng et al., 
2007) and many Sesarmidae and Gecarcinidae have invaded repeatedly terrestrial and/or freshwa-
ter habitats (Schubart et al., 2000). Only the Pinnotheridae have a similar lifestyle to the Cryp-
tochiridae, by living in a permanent symbiosis with bi et al., 2011). 
Sur
to new environments (Paulay and Starmer, 2011).
 The branch support at the family/genus level is high for most clades. One of the largest 
clades is formed by the Glyptograpsidae, Heloeciidae, Ocypodidae, Pinnotheridae and Sesar-
midae. A possible phylogenetic relationship between the Glyptograpsidae and Sesarmidae (see 
Schubart et al., 2000; Wetzer et al., 2009) or Glyptograpsidae and Ocypodidae (see Schubart 
and Cuesta, 2010) had previously been proposed based on the same gene (in addition to histone 

et al. (2009). There is ongoing debate about the phy-
Ucides (e.g. Ng et al., 2008; Schubart and Cuesta, 2010). In our 

analyses, the relationship of U. cordatus with regards to the ocypodid genera Ocypode and Uca 
and the Pinnotheridae is not resolved. A study on the morphology of the female reproductive 
system shows that the overall anatomy of U. cordatus is similar to other ocypodids (Castilho- 
Westphal et al., Ucides as a genus within 
the Ocypodidae (see also Schubart and Cuesta, 2010) and not in its own family as suggested by 
Ng et al. (2008).
 The Grapsidae form a monophyletic family. The separate clustering of the genus Meto-
pograpsus within the Grapsidae has been shown before (e.g. Kitaura et al., 2002; Wetzer et al., 
2009). In Schubart et al. (2006) and Schubart (2011), Metopograpsus holds a basal position with-

Pachygrap-
sus
 Kitaura et al. (2002) and Schubart et al. (2006) proposed that the Macrophthalmidae and Var-

-
ship between selected Macrophthalmidae and Varunidae, with high support levels. The species 
Hemiplax hirtipes clusters with the Varunidae (see also Kitaura et al., 2010; McLay et al., 2010). 
If H. hirtipes would be included in the Varunidae, then this family could again be considered 

et al., 2002), based on the included taxa. The Mic-
tyridae appears related to the Percnidae (but with very long branches), which is a new and unex-
pected hypothesis considering the large phylogenetic distance between these two families in the 
trees of Schubart et al. (2006) and Wetzer et al. (2009). In their study on the Plagusiidae and 
Percnidae, Schubart and Cuesta (2010) did not include species belonging to the Mictyridae; there 
the genus Percnon holds a basal position to other thoracotreme families. In our tree, the Thoraco-
tremata form a polytomy and thus no basal lineage can be postulated.
 In Wetzer et al. (2009), the Camptandriidae are polyphyletic: Paracleistostoma depressum 
clusters as a sister group to the Mictyridae and the Pinnotheridae, whereas Baruna triganulum 
clusters with the Dotillidae. In our results both species form a clade with the Dotillidae. The spe-
cies Xenophthalmus pinnotheroides stands together with the Dotillidae. Based on molecular data 
and larval morphology, Palacios-Theil et al. (2009) also suggest a close relationship of Xenoph-
thalmus pinnotheroides with the family Dotillidae. Ng et al. (2008) already discussed the strange 
position of the Xenophthalmidae and found that it resembles the Dotillidae, but some characters 

treated it as a good family. As the Xenophthalmidae and the Heloeciidae are represented by single 
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species in this study, no overall conclusions about their position in the Thoracotremata should be 
drawn.
 Overall, several phylogenetic relationships -

et al., 
2008) superfamily concept within the Thoracotremata. Therefore, Schubart et al. (2006) suggest-
ed to refrain from this superfamily concept and treat the constituent families separately until a 
clearer picture of phylogenetic relationships within the Thoracotremata has been reached. The 

and Tsang et al. (2014). Here again we argue against it and would hence propose to refrain from 
using the superfamily Cryptochiroidea (see Ng et al., 2008), until the evolutionary origin of 

Cryptochiridae is a highly enigmatic family, for which the closest relatives so far remain un-

-

more insight in their unusual biology and life history.
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Chapter 2

A new species of Opecarcinus Kropp and Manning, 1987  
(Crustacea: Brachyura: Cryptochiridae) associated with  
the stony corals Pavona clavus (Dana, 1846) and  
P. bipartita Nemenzo, 1980 (Scleractinia: Agariciidae)

Sancia E.T. van der Meij

Abstract

A new species of Opecarcinus Kropp and Manning, 1987, is described from Indonesia and Malaysia. Opecarcinus 
cathyae sp. nov. is associated with the scleractinian corals Pavona clavus (Dana, 1846) and P. bipartita Nemenzo, 
1980, inhabiting crescent-shaped cavities or tunnels on the coral surface. The new species is the ninth assigned to 
the genus. It can be separated from congeners by the anterolateral orientation of the cornea, the carapace with 

pereiopod carpus. The distinctive colour pattern can be used as a diagnostic character in live specimens.

2014
Zootaxa 3869: 44-52
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Introduction

Colonies of the scleractinian coral Pavona clavus (Dana, 1846), belonging to the Agariciidae, can 

Pichon, 1980). Gall crabs belonging to the genus Opecarcinus Kropp and Manning, 1987, have 
been found to inhabit these large colonies in high densities (Hoeksema and van der Meij, 2013) 
and eight species are now recognised in the genus (cf. Ng et al., 2008). Opecarcinus was estab-
lished by Kropp and Manning (1987) to accommodate the Atlantic Pseudocryptochirus hypo-
stegus Shaw and Hopkins, 1977, and Cryptochirus crescentus

Opecarcinus were described by Kropp (1989), who also removed  
O. granulatus from the synonymy of O. crescentus.

Opecarcinus -
tral America (Kropp, 1989; pers. obs.), and have been recorded from corals belonging to several 
genera of the scleractinian family Agariciidae (Kropp, 1989). In the western Atlantic, Scott (1985, 
1987) and Johnsson et al. (2006) recorded O. hypostegus from the genera Agaricia (family Agari-
ciidae) and Siderastrea
der Meij (2014a) who recorded O. hypostegus only from Agaricia.
 Based on the observations by Hoeksema and van der Meij (2013), gall crabs collected from 

P. clavus
the present new species. This species, described herein, is the ninth assigned to the genus.

Material and methods

Gall crabs were collected in eastern Indonesia (Lembeh Strait, northern Sulawesi; Gura Ici, Hal-
mahera) and Malaysian Borneo (Kudat, north Sabah; Semporna, east Sabah) from 2009 to 2012. 
Corals were searched for galls, cavities and pits, photographed, and subsequently split with ham-
mer and chisel. Crab specimens were preserved in 80% ethanol after being photographed with a 
digital SLR camera equipped with a 50 mm macro-lens. All material is deposited in the collec-
tions of Naturalis Biodiversity Center in Leiden (formerly Rijksmuseum van Natuurlijke Historie, 

lucida. Carapace lengths and widths were measured to the nearest 0.1 mm using an eyepiece 
micrometre, with the crabs positioned on a level surface.
 Abbreviations used: CL, carapace length; CW, carapace width (at widest point); MXP, max-
illiped; ovig., ovigerous; P, pereiopod; G1, male gonopod 1; G2, male gonopod 2. Carapace meas-
urements are given as CL × CW, in mm.

Taxonomy

Family Cryptochiridae Paul'son, 1875
Opecarcinus Kropp and Manning, 1987

Opecarcinus cathyae sp. nov.
Figs 1-5

Type locality. Creach Reef, Semporna district, Sabah, Malaysia (04°18’58.8”N, 118°36’17.3”E).
 Type material. Holotype (female) and allotype (male). RMNH.Crus.D.53648a, 10-14 m, host 
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Pavona clavus (Dana, 1846), 05.xii.2010, ovig. female (5.5 × 3.8), male (3.3 × 2.6), leg. Z Waheed. 
Paratypes. RMNH.Crus.D.53648b, from the same lot as holotype and allotype, 1 ovig. female 
(3.7 × 3.0), 1 juvenile male (1.6 × 1.1). A damaged male from this lot was used for DNA barcoding.
 DNA barcoding. A COI sequence (partially, Folmer et al., 1994) of one of the paratypes 
(damaged male) has been deposited in GenBank under accession number KM396420.
 Additional material. Indonesia. RMNH.Crus.D.53923, S Lela, Gura Ici, Halmahera 
(00°01’51.2”S 127°15’03.1”E), 10.xi.2009, 3 males, one with epicaridean parasite (Carcinione 
platypleura Bourdon, 1983) under carapace, host Pavona clavus, leg. SET van der Meij. RMNH.
Crus.D.53916, 3 ovig. females, 1 male, host Pavona clavus, leg. SET van der Meij (same lot as 

Fig. 1. A-E. Holotype of Opecarcinus cathyae sp. nov. (RMNH.Crus.D.53648a). A, habitus, dorsal view; B, cara-
pace, lateral view; C, MXP3 (exopod hardly visible); D, close-up of antennules; E, anterolateral margin of cara-
pace, ventral view. Scale bars = 1.0 mm.
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RMNH.Crus.D.53923); RMNH.Crus.D.54202, Baturiri, Lembeh Strait (01°27’34.7”N 125°14’ 
23.1”E), 10 m, 6.ii.2012, 1 male, host Pavona bipartita, leg. SET van der Meij. RMNH.Crus. 
D.54214, Teluk Walemetodo, Lembeh Strait (01°24’11.3”N 125°10’20.3”E), 6 m, 15.ii.2012, 1 ovig. 
female, 1 male, host Pavona bipartita, leg. SET van der Meij. Malaysia (Borneo). RMNH.
Crus.D.53656, Mataking I., Semporna district (04°34’57.6”N 118°56’46.5”E), 8.xii.2010, 1 ovig. 
female, 1 non-ovig. female, host Pavona clavus, leg. BW Hoeksema. RMNH.Crus.D.53768, Hang-
ing Gardens, Sipadan I., Semporna district (04°06’45.3”N 118°37’29.3”E), 18.xii.2010, 2 ovig. fe-
males, host Pavona clavus, leg. Z Waheed. RMNH.Crus.D.54297, SW Mangsee Great Reef, Kudat 
(07°27’24.8”N 117°13’21.6”E), 9 m, 22.ix.2012, 1 ovig. female, 1 male, host Pavona clavus, leg. 
SET van der Meij. RMNH.Crus.D. 54275, Paliuk, Kudat (07°03’17.4”N 117°22’ 32.6”E), 10.ix.2012, 
2 ovig. females, 2 non-ovig. females, 2 males, host Pavona clavus, leg. SET van der Meij.
 Description female holotype. Carapace vase-shaped, CL 1.4 CW; widest posterior to mid-

-
pace, with shallow transverse depression across protogastric region; dorsal surface convex in later-
al view, median third concave with scattered small conical tubercles. Mesogastric region slightly 

-
ed, conical tubercles; posterior carapace smooth, tubercles most numerous at anterior, lateral cara-
pace; anterolateral margins of carapace granular; anterolateral angle without prominent tubercle; 
margin inner orbital angle with tubercle. Front slightly concave with small tubercles, width about 

carapace (Fig. 1A-B). Brood pouch swollen (ovigerous), many short setae on distal margin (ventral 
view) (Fig. 1E). Posterior carapace, brood pouch margins fringed with many setae (Fig. 1A, E).

Fig. 2. A-E. Holotype of Opecarcinus cathyae sp. nov. (RMNH.Crus.D.53648a). A, right P1 (cheliped), merus 
drawn twice because of angle distortion; B, right P2; C, right P3; D, right P4; E, right P5. Scale bar = 1.0 mm.
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distal margin larger than those on mesial margin. Basal segment strongly tapering anteriorly in 
ventral view, length 1.5 times width; ventral surface relatively smooth (Fig. 1E).
 Eyestalk partly exposed dorsally, slightly granular. Cornea anterolateral. Lateral margin of 
stalk not extending beyond anterolateral angle; distal margin with small spines (Fig. 1A, E). 
Distal segment of antennules with protruding segment, visible from ventral side (Fig. 1D-E).
 MXP3 with exopod; mesial margin of ischium slightly crenulated; merus with distolateral 
projection, carpus to dactylus decreasing in size, latter with bundle of setae (Fig. 1C).
 P1 (chelipeds) slender; merus length 2.8 times height; carpus granular on dorsal margin; 

 P2 stout; merus length 1.8 times height, dorsal margin evenly convex, entire length crenulated, 
ventral margin straight, smooth; carpus, propodus of similar length with rows of conical tuber-
cles; dactylus smooth, sharp, curved ventrally (Fig. 2B).
 P3 stout; merus length 1.6 times height, dorsal margin slightly convex, entire length with 

Fig. 3. A-F. Allotype of Opecarcinus cathyae sp. nov. (RMNH.Crus.D.53648a). A, habitus, dorsal view; B, cara-
pace, lateral view; C, MXP3 (exopod hardly visible); D, close-up of antennules; E, abdomen; F, anterolateral 
margin of carapace, ventral view. Scale bars = 1.0 mm.
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scattered conical tubercles, ventral margin straight, smooth; carpus, propodus of similar length 
with conical tubercles on dorsal margin; carpus with small anterior lobe; dactylus smooth, sharp, 
curved ventrally (Fig. 2C).
 P4 relatively slender; merus length 1.4 times height, entire length dorsal margin with scat-
tered conical tubercles, ventral margin straight, smooth; carpus, propodus of similar length; car-
pus with slight anterior lobe; propodus with conical tubercles on dorsal margin; dactylus smooth, 
sharp, curved ventrally (Fig. 2D).
 P5 slender; merus length 2.0 times height, straight, smooth margins; carpus, propodus of 
similar length, margins smooth; dactylus smooth, sharp, curved ventrally (Fig. 2E).
 Thoracic sternum 1-3 with transverse row of rounded tubercles at midlength, thoracic ster-
num 4 with fewer tubercles (Fig. 5B).
 Gonopore (vulva); elliptical, lateral margin with small vulvar cover (examined in paratype).
 Description male allotype. Generally similar to holotype, differences outlined hereafter. 
Carapace vase-shaped, CL 1.3 longer than CW; median third concave with few scattered small 
conical tubercles. Carapace surface ornamented with few rounded to conical tubercles, fewer 
than holotype, most numerous at lateral margins; anterolateral margins of carapace with row of 
small conical tubercles; anterolateral angle without prominent tubercle; inner orbital angle 

-B). Pos-
terior carapace margins fringed with numerous setae (Fig. 3A).

-2.4 times 
width; surface relatively smooth (Fig. 3F).
 Eyestalk partly exposed dorsally. Cornea anterolateral. Lateral margin of stalk not extending 
beyond anterolateral angle; distal margin with two small spines (Fig. 3F). Distal segment of 

Fig. 4. A-E. Allotype of Opecarcinus cathyae sp. nov. (RMNH.Crus.D.53648a). A, right P1 (cheliped) - drawn 
from ventral side; B, right P2; C, right P3; D, right P4; E, right P5. Scale bar = 1.0 mm.
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antennules with small protruding segment, visible from ventral side (Fig. 3D).
 MXP3 with exopod; mesial distal margin of ischium very slightly crenulated; merus with 
distolateral projection; carpus, propodus dactylus of similar length, dactylus with tuft of setae 
(Fig. 3C).
 P1 (chelipeds) somewhat stout; merus length 1.4 times height; carpus granular on dorsal mar-

 P2 stout; merus length 1.8 times height, dorsal margin slightly convex, entire length with 
tubercles, slightly larger distally, ventral margin straight, smooth (Fig. 4B).
 P3 stout; merus length 1.5 times height, dorsal margin evenly convex, entire length with scat-
tered conical tubercles, ventral margin rounded smooth; carpus with anterior lobe (Fig. 4C).
 P4 stout; merus length 1.1 times height, dorsal margin slightly convex, entire length with 
scattered conical tubercles, ventral margin straight, smooth; carpus, propodus of similar length 
with conical tubercles on dorsal margin; carpus with anterior lobe (Fig. 4D).
 P5 slender; merus length 1.3 times height, margins crenulated, ventral margin relatively 

Fig. 5. A-D. Dorsal and ventral view of Opecarcinus cathyae sp. nov. A, B, RMNH.Crus.D.53916, female with 
regular colour pattern; C, D, RMNH.Crus.D.54297, male with pale colour pattern.

A

D
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B
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straight; carpus slightly shorter than propodus, margins smooth (Fig. 4E).
 Thoracic sternum 1-3 with transverse row of rounded tubercles at midlength, thoracic ster-
num 4 with fewer, somewhat scattered tubercles (Fig. 5D). Abdomen widest at somite 3, somite 6 
not visible in ventral view because of curvature; telson rounded (Fig. 3E).
 Gonopods; G1: slightly curved laterally, slightly cinched in the middle, apex blunt, distal 
margin with 6-7 simple, long setae; G2: almost straight, slightly cinched in the middle, apex blunt 
with two large non-plumose setae at distal margin of the same length as G2.
 Variation. The tubercle on the margin of the inner orbital margin is prominent in some indi-
viduals only. The setae along the carapace margins are more numerous in large individuals, espe-
cially in females.
 Colour. Carapace bright orange-red to rust, darker rust on the lateral sides. Cardio-intestinal 
region outlined by a lighter colouration, off-white in some specimens. Anterolateral region off-
white, sometimes with tubercles of contrasting (dark) colour. MXP ischium, merus off-with with 

of lines, giving an orange hue. Cornea bright rust colour (Fig. 5B, C). Some specimens are quite 
pale, and lack the intense orange-red colouration. These specimens do have the cardio-intestinal 
region outlined by a lighter colouration and have black chromatophores visible on the carapace, 
predominantly on the lateral margins (Fig. 5C).
 Remarks. The orientation of the cornea on the eyestalk was used by Kropp (1989) to separate 
the species of Opecarcinus into two groups. Opecarcinus cathyae sp. nov. has anterolaterally 
oriented corneas, which places it in the same group as O. hypostegus, O. granulatus (Shen, 1936) 
and O. pholeter Opecarcinus have terminally oriented 
corneas. In Opecarcinus hypostegus, an Atlantic species, and O. granulatus the anterior third of 

to the protogastric region. In O. cathyae sp. nov. and O. pholeter the anterior third is not sharply 
set off from the posterior carapace and the transverse depression is shallow. The new species can, 
furthermore, be separated from O. granulatus by the smooth dorsal margin of the P5 carpus in 
females, and from O. pholeter by the smooth surface of MXP3 and the lack of depressions on the 
carapace. Opecarcinus cathyae -
ners in this species group by its colour pattern: O. granulatus is opaque with black chromato-
phores and O. pholeter has nine amber- coloured bands (Kropp, 1989), whereas O. cathyae sp. nov. 
is orange-red (rust) overall, with an off-white anterolateral region.
 Coral hosts. The new species appears to be strictly associated with the Pavona clavus and P. 
bipartita, sister species that form a rather distinct lineage within the Agariciidae (F. Benzoni, 

Opecarcinus species, Kropp (1989) does not mention 
P. clavus and P. bipartita as hosts, hence O. cathyae 

O. cathyae sp. nov. in P. clavus was 
provided by Hoeksema and van der Meij (2013: Fig. 1b, c). In P. bipartita the new species lives in 

O. aurantius Kropp, 1989 (host Pavona minuta Wells, 1954), O. peliops Kropp, 1989 (host P. 
duerdeni ghan, 1907), and O. lobifrons Kropp, 1989 (host Gardineroseris planulata (Dana, 
1846)). Opecarcinus cathyae
related species: P. clavus and P. bipartita.
 Ecology. The carapace and pereiopods are fringed with numerous setae (Fig. 1A, E; Fig. 
2A-E), which, in case covered with trapped sediment, can give the crab a mucky appearance.
 Distribution. So far known from Indonesia and Malaysian Borneo. The holotype of P. 
clavus
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coral species was described by Dana (1846) from Fiji, which is therefore a possible distribution 
record for O. cathyae sp. nov. Pavona clavus is widespread, occurring from the Red Sea and East 

Pavona bipartita also shows 

It is thus possible that O. cathyae has a wider distribution based on the distribution ranges of its 
host corals. Opecarcinus cathyae sp. nov. can be very abundant locally, with estimated densities 
up to 200 per m-2

1980; Hoeksema and van der Meij, 2013).
 Etymology. This species is named after Cathy [Catherine] DeGeorge to celebrate 15 years of 
Trans-Atlantic friendship.
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Chapter 3

A new species of Fizesereneia Takeda and Tamura, 1980  
(Crustacea: Brachyura: Cryptochiridae) from the Red Sea and Oman 

Sancia E.T. van der Meij, Michael L. Berumen & Gustav Paulay
 

Abstract 

A new species of cryptochirid crab, Fizesereneia panda van der Meij, is described and illustrated based on spec-
imens collected from the scleractinian corals Lobophyllia cf. hemprichii and L. cf. corymbosa from the Farasan 
Banks, Farasan Islands, and the reefs off Thuwal in the Saudi Arabian Red Sea, and from Symphyllia recta from 
reefs in the Gulf of Oman. This is the second cryptochirid species with the Red Sea as type locality. It can be 
separated from its congeners by the subrectangular carapace, raised midline and the complete division of the cara-
pace depressions, and reddish black colour pattern of these concavities in live specimens. This new species is the 
seventh assigned to Fizesereneia. A DNA barcode for the new species has been deposited in GenBank.

2015
Zootaxa 3931: 585-595
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Introduction 

Gall crabs (Cryptochiridae) occur on coral reefs worldwide. Cryptochirids are mostly found in 
tropical reef corals, but several species have been described from deep water corals (e.g. Kropp 
and Manning, 1996). Most gall crabs have been described from rather few areas where gall crab 
specialists worked (Guam, Japan, Vietnam), although they have been reported from most regions 

et al., 2013), Saint Helena in the 
Atlantic Ocean (den Hartog, 1989), and northern Borneo (van der Meij and Hoeksema, 2013). Yet, 
most reefs have not been sampled for gall crabs, resulting in patchy known distribution ranges for 
most species (Kropp, 1990a). 

36°E 37°E 38°E 39°E 40°E 41°E 42°E 43°E

23°N
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Fig. 1. Map of the collection sites in the Saudi Arabian Red Sea. The star indicates the type locality of Fizesereneia 
panda sp. nov., dots indicate the other Red Sea localities where F. panda sp. nov. was collected. One sample was 
collected in the Gulf of Oman (not on map).
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 To date, only one gall crab species has been described from the Red Sea: Cryptochirus coral-
liodytes Heller, 1861. Simon-Blecher and Achituv (1997) reported C. coralliodytes from the Gulf 
of Eilat inhabiting the former faviid genera Favia Milne Edwards, 1857 [= Dipsastrea Blainville, 
1830], Favites Link, 1807, Goniastrea Milne Edwards and Haime, 1848, and Platygyra Ehrenberg, 
1834.
corals were inhabited by other gall crab species (Kropp 1990a; van der Meij, unpublished data). 
Two additional cryptochirid species have been recorded from the Gulf of Eilat: Hapalocarcinus 
marsupialis Stimpson, 1859, from Stylophora pistillata Esper, 1797 (Abelson et al., 1991) and 
Fungicola fagei Pleuractis granulosa mar-
sky-Winter et al., 1995). The latter record, based on the host coral, should possibly be attributed 
to F. syzygia van der Meij, 2015. The only two species recorded to date from Saudi Arabia are 
H. marsupialis, which was recorded from Lidth [= Al Lith] and Djedda [= Jeddah] (Balls, 1924), 
and Neotroglocarcinus dawydoffi . 
Outside of the Gulf of Eilat, the Red Sea is a relatively understudied coral reef ecosystem, and 
non-coral invertebrates are particularly underrepresented in recent coral reef literature from the 
Red Sea (Berumen et al., 2013). 
 During a biodiversity research cruise in the Saudi Arabian part of the Red Sea, gall crabs were 
collected from a wide range of coral hosts. An undescribed species of the genus Fizesereneia 
Takeda and Tamura, 1980 was collected from the scleractinian genus Lobophyllia de Blainville, 
1830, and described below as Fizesereneia panda van der Meij sp. nov. The new species is the 
seventh assigned to the genus. 

Material and methods

2013, with some additional sampling conducted in Oman in May 2008 and offshore of Thuwal, 
in the central Saudi Arabian Red Sea, in March 2013 and November 2014 (Fig. 1). Scleractinians 
corals were searched for galls and pits, photographed, and subsequently split with hammer and 
chisel. Gall crab specimens were preserved in 80% ethanol after being photographed with a 
digital SLR camera equipped with macro lens. The material (including holotype) is deposited 
in the collections of Naturalis Biodiversity Center in Leiden, the Netherlands (formerly Rijks-
museum van Natuurlijke Historie, collection coded as RMNH.Crus.D), paratypes are deposited 
in the collections of the King Abdullah University of Science and Technology (Thuwal, Saudi 
Arabia, collection coded as SAI)) and in the Florida Museum of Natural History, University of 
Florida (Gainesville, USA, collection coded as UF Arthropoda). -
lowing Scheer and Pillai (1983) and Sheppard and Sheppard (1991). Drawings were made with 
a stereomicroscope with camera lucida. The chelipeds were drawn with the outer surface of the 
manus parallel to the plane of the paper, which somewhat distorts the other segments. The terms 
for carapace shape follow Zayasu et al. (2013). Carapace lengths (CL) and widths (CW) were 
measured using an eyepiece micrometre. All descriptions of colour patterns are based on pictures 
of live specimens.
 Abbreviations used: CL, carapace length; CW, carapace width (at widest point); MXP, max-
illiped; ovig., ovigerous; P, pereiopod; G1, male gonopod 1. Carapace measurements are given as 
CL × CW, in mm. 
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Taxonomy

Family Cryptochiridae Paul'son, 1875
Genus Fizesereneia Takeda and Tamura, 1980 

Fizesereneia Takeda and Tamura, 1980: 137 
Fizeserenia.— Kropp and Manning, 1987: 2 [erroneous spelling] 

Type species. Troglocarcinus heimi
(1990b) Type locality. Nha Trang, Vietnam. 
 Remarks. The genus Fizesereneia presently includes six species: Fizesereneia heimi

F. stimpsoni F. ishikawai Takeda and Tamura, 1980, 
F. latisella Kropp, 1994, F. tholia Kropp, 1994, and the recently described F. daidai Zayasu, 2013. 
The location of the holotypes of Troglocarcinus heimi and T. stimpsoni are unknown according 
to Kropp (1990a). The holotypes of the other Fizesereneia species are available in the collections 
of the National Museum of Nature and Science, Tokyo (F. ishikawai, F. daidai), the National 
Museum of Natural History, Smithsonian Institution, Washington D.C. (F. latisella), and the 
Muséum national d’Histoire naturelle, Paris (F. tholia). 

Fizesereneia panda van der Meij sp. nov.
Figs 2-6

Type locality. Atlantis Shoal, Farasan Banks, Saudi Arabia (18.1917 N, 41.1138 E) 
 Coral host of holotype. Lobophyllia cf. hemprichii (Ehrenberg, 1834) 
 DNA barcoding. A sequence of the Folmer region of COI of the holotype (partially, Folmer 
et al., 1994) has been deposited in GenBank under accession number KM491175.

Type material. Holotype: RMNH.Crus.D.54425, 1 ovig. female (4.2 × 3.6) on Lobophyllia cf. 
hemprichii, 7.iii.2013, ca. 10 m, leg. SET van der Meij; allotype: RMNH.Crus.D.54424, 1 male 
(4.2 × 3.2) on Lobophyllia cf. hemprichii, 7.iii.2013, ca. 10 m, leg. SET van der Meij. Paratypes: 
King Abdullah University of Science and Technology: SAI-001, Al-Fahal S, off Thuwal (22.2465 
N 38.9592 E), 2 m, 9.xi.2014, 1 ovig. female on Lobophyllia corymbosa (coll. nr. SA1916), leg. 
SET van der Meij; UF Arthropoda 40384 (ex RMNH.Crus.D.54465), Marca I, Farasan Banks 
(18.2206 N 41.3244 E), ca. 10 m, 6.iii.2013, 1 non-ovig. female (4.3 × 3.4) on Lobophyllia 
hemprichii, leg. SET van der Meij. Other material. Saudi Arabia. RMNH.Crus.D.54449, Pelican 
(Ablo) I., Farasan Banks (18.6595 N 40.8270 E), 5 m, 5.iii.2013, 1 non-ovig. female on Lobo-
phyllia corymbosa, leg. SET van der Meij; RMNH.Crus.D.54386, Shi’b Ammar, Farasan Banks 
(19.5707 N 40.0088 E), 7 m, 3.iii.2013, 1 ovig. female on Lobophyllia corymbosa, leg. SET van 
der Meij; RMNH.Crus.D.54490, Dolphen Lagoon, offshore of Farasan Banks (19.0005 N 40.1481 
E), 0-3 m, 4.iii.2013, 2 ovig. female, 1 non-ovig. female on Lobophyllia corymbosa, leg. SET 
van der Meij; RMNH.Crus.D.54390, Marca Isl. II, Farasan Banks (18.2089 N 41.3346 E), 5-10 
m, 7.iii.2013, 1 non-ovig. female on Lobophyllia cf. hemprichii, leg. SET van der Meij; RMNH.
Crus.D.54387, Naf Shuma, Farasan Is. (16.7527 N 41.6049 E), 9.iii.2013, 2 ovig. female (1 dam-
aged) on Lobophyllia cf. corymbosa, leg. SET van der Meij; RMNH.Crus.D.56801, Abu Gishaa, 
off Thuwal (22.2552 N 39.0235 E), 15 m, 10.xi.2014, 2 ovig. females on Lobophyllia corymbosa, 
leg. SET van der Meij; RMNH.Crus.D.56802, Tahlah, off Thuwal (22.2739 N 39.0503 E), 13 
m, 13.xi.2014, 1 ovig. female on Lobophyllia cf. corymbosa, leg. SET van der Meij. Oman. UF 
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Arthropoda 20378, off Bandar Al-Khayran, Gulf of Oman (ca. 23.52 N 58.73 E), 6-9 m, 1 ovig. 
female (damaged), 1 male on Symphyllia recta, 23.v.2008, leg. M Malay. 

Description female holotype. Carapace (Fig. 2A) subrectangular, longer than broad, CL 1.2 
times longer than CW; greatest width of carapace where posterior margin of depression meets 

. 2B). 
The anterior depressions divided completely into two concavities by median longitudinal ridge, 
armed with numerous spines crudely arranged in two rows; scattered spines on the margins of the 
depressions; carapace depressions smooth. Frontal margin armed with anteriorly directed spines. 
Frontal margin on ventral side features two substantial spines (Fig. 2C). Posterior half of dorsum 
smooth; cardio-intestinal region slightly outlined by shallow furrow; pterygostomial region is 
separated from the carapace by a membrane. 
 Ocular penduncles with two spines on distal margin, cornea elliptical, longer than broad; 
antennule same length as ocular penduncles; antennal segment two longer than broad, slightly 
extending beyond eyestalk, distal margin with several lateral spines. 
 MXP3 (Fig. 2D) exopod subrectangular, reaching approx. 1/3 length of ischium; ischium sub-
triangular, smooth, mesial and distal margin straight, anteromesial lobe with few setae; antero-
lateral margin of merus with few setae; distal portion of carpus with long setae; dactylus with 
bundle of long setae. 
 P1 (chelipeds, Fig. 3A) slender, smooth; ischium length ¾ height; merus length three times 
height, with few scattered short setae; carpus length twice height; propodus about same length 

slightly crossing. 

Fig. 2. A-D, Holotype Fizesereneia panda sp. nov. (RMNH.Crus.D.54425). A, habitus, dorsal view; B, carapace, 
lateral view; C, anterolateral margin of carapace, ventral view; D, MXP3. Scale bars 1 mm.
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 P2 (Fig. 3B) longer, coarser than P1; ischium without setae; merus stout, slightly bent, few and 
small conical tubercles on distal half of dorsal surface, simple short setae on lateral and dorsal 
surface; joint between merus, carpus not extending more than at right angle; carpus 2/3 length 
of merus, surface smooth except for conical tubercles crudely arranged in two rows, no setae; 
propodus as long as carpus, surface smooth except for conical tubercles crudely arranged in two 

slightly curved ventrally. 
 P3 (Fig. 3C) ischium with few setae; merus length twice height, rounded, tubercles and sim-
ple setae on dorsal surface, few small tubercles on distal half of lateral surface, simple setae along 
distal half of lateral surface; joint between merus, carpus not extending more than at right angle; 
carpus and propodus of equal length, rounded tubercles on dorsal surface, simple setae on lateral 
and dorsal surface; dactylus half-length of propodus, smooth, sharp, curved ventrally. 
 P4 (Fig. 3D) ischium with few setae; merus length twice height, small rounded tubercles 
close to joint with carpus, simple setae on dorsal and lateral surface; joint between merus, carpus 
not extending more than at right angle; carpus and propodus of equal length, rounded tubercles 
on dorsal surface, simple setae on lateral and dorsal surface; dactylus half-length of propodus, 
smooth, sharp, curved ventrally. 
 P5 (Fig. 3E) ischium with few setae; merus, carpus, propodus of equal length, all with simple 
setae; joint between merus, carpus not extending more than at right angle; carpus and propo-
dus with rounded tubercles on dorsal surface; dactylus half-length of propodus, smooth, sharp, 
straight. 

. P5 right sampled for DNA analysis. 
 Pleon (= abdomen) enlarged, lateral margin fringed with setae. 

Fig. 3. A-E, Holotype Fizesereneia panda sp. nov. (RMNH.Crus.D.54425). A, left P1 (cheliped); B, left P2; C, left 
P3; D, left P4; E, left P5. Scale bar 1 mm.
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 Anterior margin thoracic sternites 1-3 almost straight (Fig. 6B). 

UF Arthropoda 40384). 
 Description male allotype. Generally similar to holotype, differences as outlined below. 
Carapace (Fig. 4A) subrectangular, CL 1.3 times longer than CW (Fig. 4C). The anterior depres-
sions divided completely into two concavities by median longitudinal; numerous spines on the 
margins of the depressions. Posterior half of dorsum smooth. 
 Ocular penduncles with small spines on distal margin, cornea elliptical, longer than broad; 
antennal segment extending beyond eyestalk (Fig. 4B). 
 MXP3 (Fig. 4D) exopod subrectangular, reaching approx. ½ length of ischium; ischium, 
smooth, mesial and distal margin slightly curved; anterolateral margin of merus with indentation; 
propodus with scattered setae; dactylus with bundle of short setae. 
 P1 (chelipeds, Fig. 5A) slender, smooth; merus length two times height; carpus with short 

of dactyl with slight tooth. 
 P2 (Fig. 5B) longer, coarser than P1; ischium without setae; merus slender, simple short setae 
on lateral and dorsal surface; carpus ½ length of merus, slightly bent, few spiny tubercles on dor-
sal surface, few setae; propodus length twice height, surface smooth except for spiny tubercles 

Fig. 4. A-E, Allotype Fizesereneia panda sp. nov. (RMNH.Crus.D.54424). A, habitus, dorsal view; B, anterolateral 
margin of carapace, ventral view; C, carapace, lateral view; D, MXP3; E, abdomen. Scale bars 1 mm.
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ventrally. 
 P3 (Fig. 5C) merus length three times height, simple setae on lateral and dorsal surface; 
carpus bent with few setae; propodus tapering towards dactyl, simple setae on lateral and dorsal 
surface; dactylus smooth, sharp, curved ventrally, few setae. 
 P4 (Fig. 5D) merus slightly rounded, simple setae on dorsal and lateral surface; carpus 
and propodus with simple setae on lateral and dorsal surface; dactylus smooth, sharp, curved 
ventrally. 
 P5 (Fig. 5E) ischium with few setae; merus length twice height, simple setae on dorsal and 
lateral surface; carpus 2/3 of propodus length, simple setae on lateral and dorsal surface; dactylus, 
smooth, sharp, curved. . 
 P1-2 left missing, P4-5 left sampled for DNA analyses. 
 Anterior margin of thoracic sternites 1-3 slightly concave (Fig. 6D). Abdomen bowling pin-
shaped, longest and widest at 4th segment; telson rounded with few setae (Fig. 4E). 
 Gonopod; G1: slightly curved, tapering, apex pointed. Lateral margin with short, non-plumose 
simple setae, medial margin without setae. 
 Colour. Holotype (Fig. 6A-B): posterior 2/3 of the anterior depressions on the carapace have 
a black blotch with a reddish hue, whereas the remaining 1/3 is off-white. Several light blue spots 
are visible at the junction of the dark and off-white patterns. Remaining part of carapace trans-
lucent whitish-beige with a few scattered faint red spots on the posterior side of the carapace and 
brood pouch. All pereiopods translucent, P1 with many scattered brown spots and a few white 
spots, P2 more white than P3-5. Colour of MXP3 like P1. Antennules translucent with scattered 
white spots. Eyes reddish-brown with some white. Allotype (Fig. 6C-D) - differs from the holo-
type in the following - posterior 2/3 of the anterior depressions on the carapace have a deep red, 
almost black blotch, while the remaining 1/3 of the concavity is a soft yellow. Where the dark 
pattern meets the soft yellow a wine-red margin is visible. Remaining part of carapace translu-
cent bluish-grey, with some scattered red spots, especially on the posterior side of the carapace 

Fig. 5. A-E, Allotype Fizesereneia panda sp. nov. (RMNH.Crus.D.54424). A, right P1 (cheliped); B, right P2; 
C, right P3; D, right P4; E, right P5. Scale bar 1 mm.
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and around the concavities. P1 with scattered white and brown spots, P2-5 with faint soft yellow 
bandings. Eyes red with some white. 
 Variation. Fizesereneia panda sp. nov. females show little morphological variation. There is 
some variation in colour pattern in live specimens.
depressions varies but covers at least 2/3 of the concavities. Reddish hue of these blotches is more 
intense in some specimens. Several females lack the light blue spots of the holotype, whereas in 
other females the light part of the concavities appears more soft yellow. The male specimen of 
F. panda sp. nov. from Oman has mixed olive green and light blue spots on the overall red-
dish-black colour of the depressions. 
 Remarks. In Fizesereneia heimi and F. stimpsoni the anterior carapace depression is divided 
into two concavities by a median longitudinal ridge armed with spines, whereas it is incompletely 
divided in F. latisella, F. ishikawai and F. tholia
1980, Kropp, 1994). The division of the depression in F. daidai is variable, but it is incomplete 

Fig. 6. A-D, Fizesereneia panda sp. nov., colouration in life. A, B, holotype RMNH.Crus.D.54425 (carapace 4.2 
× 3.6), dorsal (A) and ventral (B) view. C, D, allotype RMNH.Crus.D.54424 (carapace 4.2 × 3.2), dorsal (A) and 
ventral (B) view. Photos by A. Anker and P.L. Norby.
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in most individuals (Zayasu et al., 2013). The degree of division of the concavity is stronger in F. 
panda sp. nov. (females and males) than in any other Fizesereneia species, including F. heimi and 
F. stimpsoni. In addition, the median longitudinal ridge in F. panda sp. nov. is ‘raised’, whereas in 
the other two species the ridge is less pronounced. Based on the degree of division of the concav-
ities, Fizesereneia panda sp. nov. is most similar to F. heimi and F. stimpsoni. The new species 
can be distinguished from these two species by its carapace shape and the colour pattern of the 
concavities. The carapace shape of F. heimi is roughly hexagonal (widest near the middle of the 
lateral margin), of F. stimpsoni subquadrangular (widest across the anterior margin, narrower 
posteriorly), whereas the carapace of F. panda sp. nov. is subrectangular (greatest width at the 
intersection of the posterior margin of the anterior depression with the lateral margin). The con-
cavities of female F. heimi are predominantly brown-grey, and the concavities of male F. heimi 
are emerald green with some darker spots or lines. Female and male F. panda sp. nov. have dark 
reddish black blotches in the concavities. Fizesereneia panda sp. nov. can be distinguished from 
F. stimpsoni by the marbled pattern of the concavities in the latter (visible even in specimens in 
ethanol). Additionally, F. stimpsoni has only been recorded from the coral genus Acanthastrea 

et al., 2013), whereas F. panda sp. nov. is associated with Lobo-
phyllia and Symphyllia. 

Fig. 7. A-B, Fizesereneia panda 
sp. nov. (A, RMNH.Crus.D.54386; 
B, RMNH.Crus.D.54449) (circled) 
in Lobophyllia corymbosa. Pho-
tos by S.E.T. van der Meij, not to 
scale.
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 Coral hosts (Fig 6A-B). So far, Fizesereneia has only been found in association with Indo- 

as Mussidae Ortmann, 1890, a family now restricted to the Atlantic (Budd et al., 2012)). The coral 
Lobophyllia cf. corymbosa (Forsskål, 1775) 

and L. cf. hemprichii, (Ehrenberg, 1834) based on Scheer and Pillai (1983) and Sheppard and 
Sheppard (1991), and as Symphyllia recta (Dana, 1846) based on Claereboudt (2006). Scheer and 
Pillai (1983) in their Red Sea study distinguished Lobophyllia corymbosa by its mostly monocen-
tric corallites, from the mostly phacelomeandroid L. hemprichii but considered them potentially 
synonymous. They did not document the lobophyllid genus Symphyllia in the Red Sea. Sheppard 
and Sheppard (1991) discussed Symphyllia erythraea S. radians (Milne Ed-
wards and Haime, 1849), and Lobophyllia corymbosa and L. hemprichii in the Red Sea. Sym-
phyllia erythraea and S. radians are fully meandroid and not easy to confuse with Lobophyllia. 
Arrigoni et al. (2012) found L. hemprichii, L. corymbosa and S. radians to be genetically very 
closely related, while S. erythraea is distinct and basal to the Symphyllia-Lobophyllia clade. 

Fizesereneia species appears to be less strict than that of species of some 
. 

So far, only Fizesereneia daidai and F. stimpsoni show strict host associations, respectively with 
the genera Micromussa and Acanthastrea et al., 2013). 
 Distribution. Currently known from the Farasan Banks and Islands and the reefs off Thu-
wal in the Saudi Arabian part of the Red Sea (Fig. 1) and from off Bandar Al-Khayran in the Gulf 
of Oman. Fizesereneia from this area, a genus heretofore recorded from 
Vietnam, Indonesia, Japan, Australia, and Micronesia (Kropp, 1990a). 
 Etymology. This species is named panda owing to the dark colour pattern of its anterior 
carapace concavities, which resemble the dark spots around the eyes of the giant panda Ailuro-
poda melanoleuca (David, 1869) (Mammalia, Ursidae). 
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Chapter 4

A new gall crab species (Brachyura: Cryptochiridae) associated with  
the free-living coral Trachyphyllia geoffroyi (Scleractinia: Merulinidae) 

Sancia E.T. van der Meij 

Abstract 

A new species of gall crab is described from the free-living stony coral Trachyphyllia geoffroyi. Specimens were 

here named Lithoscaptus semperi 

The distinctive carapace pattern in life is a diagnostic character in male specimens.

2015
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Introduction 

living in dwellings in free-living Trachyphyllia geoffroyi -

T. geoffroyi 

 Trachyphyllia geoffroyi 
et al

sister genera of Trachyphyllia Coelastrea 
Dipsastraea Gonias-
trea Favia 
genera are host to cryptochirids of the genus Lithoscaptus 

“Trachy-
phyllia” T. 
geoffroyi Lithoscaptus semperi 
assigned to the genus. 

Material and methods 

-

-

lucida. Carapace lengths and widths were measured to the nearest 0.1 mm using an eyepiece 

Taxonomy 

Lithoscaptus 

Lithoscaptus semperi sp. n. 

Type locality. 
 Coral host holotype. Trachyphyllia geoffroyi 
 Dna barcoding. et al

 Type material. Holotype. Allotype -
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Fig. 1. Lithoscaptus semperi A  habi-
B  C  D  close-up of anten-

E  F  G  H  I  J  
share scale bars. 
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Paratype. 

 Material examined. Indonesia: 

Malaysia: 

Fig. 2. Lithoscaptus semperi A  
B  C  D  E  F  

G  H  I  J  K  

IH
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A new gall crab species from Trachyphyllia geoffroyi

-
-

rial was collected from the scleractinian coral Trachyphyllia geoffroyi. 
 Description of female holotype. 

-

-

-

gin. 

-

-

-

-
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Fig. 3. Colour in life of Lithoscaptus semperi sp. n. A-B  
C-D  E  juve-

F  -
L. semperi sp. n. in Trachyphyllia geoffroyi -

nen/SET van der Meij. 

A

FE

DC

B



55

A new gall crab species from Trachyphyllia geoffroyi

slightly curved ventrally. 

 Description of male allotype. 

crossing. 
ple 

 Colour. 

pereiopods off-white. 
 Placement in genus. The placement of Lithoscaptus semperi sp. n. in the genus Lithoscaptus 

Cryptochiridae shows that the genus Lithoscaptus 
Lithoscaptus 
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L. prionotus cies 

species need to be moved to a new genus. 
 Comparisons. Eight species of Lithoscaptus et al

Lithoscaptus semperi sp. n. can be distinguished from L. nami 
L. tri L. pardalotus 

orbital angle extending beyond the external orbital angle. The new species can be separated 
from L. grandis L. paradoxus L. prio-
notus -

spines on the frontal carapace margin. Lithoscaptus pacificus L. helleri 
-

Lithoscaptus species. 
 Distribution. L. semperi 

host Trachyphyllia geoffroyi 

T. geoffroyi
presently recorded locations is expected for L. semperi sp. n. 
 Coral host. Lithoscaptus semperi sp. n. is so far strictly associated with T. geoffroyi 

T. geoffroyi 

Fungicola are associated with free-living 
Troglocarcinus corallicola is associated 

Manicina areolata 

 Remarks. Cryptochirus coralliodytes from Trachy-
phyllia “I found them [C. coralliodytes] 
in the Philippine Archipelago in cavities in 

in an undetermined true which was unfortunately lost also in an un-
described Trachyphyllia; finally I received a new form through A. Agassiz from the West Indian 
seas which may perhaps form a distinct genus though it is very nearly allied to the first. It also 
lives in a Trachyphyllia.” The coral genus Trachyphyllia is described from the Red Sea and has a 

similar Atlantic species would be Manicina areolata 
“This crab living in a West Indian 

coral is extremely like and perhaps belongs to the same genus; this can only be 
determined by future and more exact examination. But the ‘cave dwelling’ of this West Indian 
crab is perfectly unlike that of the Eastern species which is found from the Red Sea as far as the 
Pacific Ocean; it is not cylindrical but has one side quite flat so that its transverse section is 
almost exactly a half-circle; the underside of the crab rests against the flat side of the cavity.” 
The gall crab Troglocarcinus corallicola 

M. areolata 
T. corallicola in M. areolata 



A new gall crab species from Trachyphyllia geoffroyi

M. areolata Trachyphyllia
been referring to the Atlantic genus Colpophyllia 
established Trachyphyllia Colpophyllia et al. [2014] 
for a discussion on the genus Trachyphyllia M. areolata Colpophyllia natans 

T. corallicola 
Trachyphyllia geoffroyi. Semper is not 

et al
 Etymology. 

Trachyphyllia. 
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Chapter 5

Host relations and DNA reveal a cryptic gall crab species  
(Crustacea: Decapoda: Cryptochiridae) associated with  
mushroom corals (Scleractinia: Fungiidae) 

Sancia E.T. van der Meij 

Abstract 

Fungicola fagei Fungicola syzygia 
Cycloseris and Pleuractis

F. fagei Podabacia and Sandalolitha
F. syzygia F. fagei

F. utinomi and F. fagei 

 



Introduction 

et al

sema et al -

-

Fungicola fagei F. utinomi 
Dacryomaia 

et al -

et al
F. fagei 

Fungicola syzygia 

Material and methods 

-

-

Fungicola syzygia 
-

et al
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of Troglocarcinus fagei C D

E F T. utinomi
G H I

of T. utinomi

A

H
G

E

FDC

B

I



-

Nha Trang collections 

et-

Troglocarcinus fagei and T. utinomi T. utinomi 
T. fagei 

the Fungicola 

Fungicola 

Molecular analyses 
Fungicola fagei and F. utinomi 

Utinomiella dimorpha Pseudocryptochirus 
viridis Pocillopora and Turbinaria

et al

et al -

-



et al

-

et al -
a priori 

-

Results 

Molecular analyses 

Fungicola -
lated to Fungicola fagei F. syzygia -

-
F. utinomi 

F. fagei and F. syzygia 

Table 1.
between  determined a priori

 F. fagei F. syzygia F. utinomi

Fungicola fagei 
F. syzygia 
F. utinomi 

Table 2.
within  a priori

 d. SE

Fungicola fagei 
F. syzygia 
F. utinomi 



54222 on Lithophyllon repanda

54237 on Podabacia crustacea

54238 on Podabacia crustacea

54239 on Pleuractis granulosa

53231 on Lithophyllon repanda

53711 on Lithophyllon repanda

54246 on Halomitra pileus 

54017 on Fungia fungites

53233 on Sandalolitha robusta

54056 on Lithophyllon repanda

54236 on Cycloseris somervillei

53220 on Pleuractis granulosa

54228 on Podabacia crustacea

53688 on Lithophyllon scabra

56110 on Pleuractis paumotensis 

54044 on Pleuractis paumotensis

54183 on Podabacia motuporensis

53773 on Lithophyllon repanda

54230 on Cycloseris tenuis

54218 on Cycloseris costulata

54240 on Pleuractis moluccensis

53232 on Podabacia crustacea

54016 on Pleuractis paumotensis

53227 on Pleuractis paumotensis

54216 on Cycloseris sinensis

53230 on Lithophyllon repanda

54235 on Cycloseris costulata

54020 on Pleuractis gravis

53237 Pseudocryptochirus viridis

54245 on Sandalolitha robusta 

54006 Utinomiella dimorpha

54234 on Lithophyllon ranjithi

54220 on Cycloseris sinensis

54243 on Podabacia crustacea 

54217 on Cycloseris fragilis

54244 on Lithophyllon repanda

53774 on Lithophyllon repanda

53712 on Lithophyllon repanda

54219 on Cycloseris costulata

54231 on Podabacia crustacea

53224 on Pleuractis granulosa

53229 on Lithophyllon repanda

53217 on Fungia fungites 

53234 on Sandalolitha robusta

54232 on Podabacia crustacea

54233 on Lithophyllon ranjithi

54224 on Danafungia horrida

54226 on Lithophyllon repanda 

54178 on Podabacia motuporensis

54221 on Pleuractis paumotensis

1

1

1

1

1

outgroups

F. syzygia sp. nov. 

F. fagei 

F. utinomi

0.03



Fungicola fagei F. syzy-
gia F. utinomi a priori 

F. fagei and F. syzygia 
F. fagei and F. utinomi. F. syzygia F. utinomi 

Host specificity 
Fungicola fagei F. syzygia 

Fungicola fagei Podabacia or San-
dalolitha. Fungicola syzygia Cycloseris and Pleuractis

Lithophyllon. Fungicola utinomi 
Danafungia Fungia Halomitra Lithophyllon L. 

repanda. 

Systematic account 

Fungicola 

Fungicola
Fungicola 
Fungicora

Type species. Troglocarcinus utinomi 
 Diagnosis.

-

 

 Remarks. Fungicola Troglocar-
cinus 

T. utinomi Fungicola 

Fig. 2. Fungicola ◀



Fig. 3. Fungicola utinomi A B
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Fungicola utinomi 

Troglocarcinus utinomi 
Troglocarcinus Fungicola utinomi
Fungicola utinomii
Pseudocryptochirus ishigakiensis 
Hiroia ishigakiensis

Type locality.
 Holotype. -

Fungia fungites 

 Material examined. Institute of Oceanography (Nha Trang Vietnam)
holotype

Fungia 

allotype

Fungia 

Muséum national d’Histoire 
naturelle (Paris France)

Fungia Lithophyllon repanda -
Fungia Lithophyllon repanda. Natural History Museum (London UK): 

Fungia 
Fungia Naturalis Biodiversity Center (Leiden

The Netherlands)

Diagnosis. -

-



Fig. 4. Fungicola fagei A B
C D E F G H I  left 

A

H

G
F

E

D

B

C

I



F. utinomi 
 Host corals. Fungicola utinomi 

Lithophyllon repanda L. repanda F. utinomi 

 Distribution range. Fungicola utinomi -
et al

-

 Remarks.

Fungicola fagei 

Troglocarcinus fagei 
Troglocarcinus Fungicola fagei

Type locality.
Holotype.

Sandalolitha dentata 

Material examined. Institute of Oceanography (Nha Trang Vietnam)
holotype

allotype -
Parahalomitra San-

dalolitha robusta Para-
halomitra Sandalolitha robusta

Muséum national d’Histoire naturelle Paris France)

Parahalomitra Sandalolitha robusta
Parahalomitra Sandalolitha robusta. Naturalis Biodiversity Center 

Leiden The Netherlands)

Diagnosis.
-
-
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-

F. fagei 
 Host corals. Fungicola fagei 

Fungicola fagei 
Parahalomitra robusta Sandalolitha robusta

Sandalolitha 
dentata F. fagei are the attached Podabacia 

Sandalolitha Podabacia crustacea is the most 
P. sinai F. fagei 

 Distribution range. Fungicola fagei 
et al

F. fagei 
Fungia Pleuractis paumotensis -

stitutes F. syzygia F. syzygia 
 Remarks.

-

Fungicola syzygia 

?Fungicola fagei

?Fungicola et al

Type locality.
 Type material. Naturalis Biodiversity Center (Leiden, The Netherlands). Holotype: 

Pleuractis granulosa 
Museum 

Zoologicum Bogoriense, Bogor, Indonesia allotype: 

Pleuractis granulosa 
paratypes

Pleuractis granulosa 

Pleuractis granulosa 
Lee Kong Chian Natural History Museum (Singa-

pore)
Pleuractis granulosa -

 Material examined. Naturalis Biodiversity Center (Leiden, The Netherlands): see 
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 Description of holotype.
-

-

-

-

-

setae. 

 Description allotype.

omesial 



Fig. 7. Fungicola syzygia A B  
Carcinione pla typleura
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 Colour.

F. fagei
 Host corals. Fungicola syzygia 

et al Cycloseris and Pleuractis
Fungicola syzygia 

Lithophyllon repanda F. utinomi 

Table 3. Fungicola fagei and F. syzygia

 F. fagei F. syzygia 

Podabacia  Sandalolitha Cycloseris  Pleuractis

 
than F. syzygia  than F. fagei

 



 Diagnostic characters. Fungicola fagei and F. syzygia 
-

F. fagei and F. syzygia 
tra-

F. 
syzygia F. fagei

F. fagei F. syzygia 
F. fagei 

-

 Distribution range. Fungicola syzygia 

F. syzygia 
et al

F. syzygia 

 Remarks.
et al

Fungicola syzygia F. fagei
Fungicola

F. fagei S. dentata -
S. robusta F. fagei Cycloseris 

or Pleuractis F. fagei F. 
fagei 

F. fagei 

Fungia paumotensis Pleuractis 
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Chapter 6

 

Sancia E.T. van der Meij & Sebastian Klaus

Abstract

Coral-dwelling gall crabs (Cryptochiridae) belong to the subsection Thoracotremata, which is estimated to have 
originated around 108 [± 11] Mya. The age of their most recent common ancestor is, however, unknown. A selec-
tion of 38 shallow-water gall crab species belonging to 17 of the 21 currently recognised genera, including type 

study to estimate their origin. Divergence time estimation was performed using a Bayesian relaxed molecular 
clock approach in BEAST with external brachyuran substitution rates. The analysis gave total support for the 
monophyly of the Cryptochiridae. The age of the most recent common ancestor was estimated at 50-23 Mya 

congruence with the phylogeny reconstruction of their scleractinian hosts. The short branches leading to these 

Opecarcinus most likely corre-
sponding with the Pliocene closure of the Isthmus of Panama. 

Manuscript in preparation
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Introduction

Cryptochiridae, commonly known as gall crabs, are obligate symbionts of stony corals (Scler-
actinia). They live in dwellings (galls, pits or depressions) within corals and are fully dependent on 
their hosts for food and protection (Potts, 1915; Kropp, 1986). The relationship between the corals 

van der Meij, 2015a, b). There is a striking congruence between the phylogenetic reconstructions 
et al., 2008; Kitahara et al., 2010) and Cryptochiridae (van der Meij and 

Reijnen, 2014; van der Meij, chapter 10). This association even appears to be so tight that gall crabs 
can be used as phylogenetic indicators of scleractinian evolution (van der Meij, chapter 10). 
 The family Cryptochiridae is considered to be monophyletic, but their position within the 
brachyuran subsection Thoracotremata remains unclear (Guinot et al., 2013; van der Meij and 
Schubart, 2014). Within the Thoracotremata a wide variety of habitats occurs, as for example is 
observed among: 1) intertidal or shore crabs (e.g. Grapsidae, Sesarmidae), 2) specialised man-

(Glyptograpsidae, certain Varunidae), 4) hydrothermal vent specialists (Xenograpsidae), and 5) 
-

tween the latter two families (small size, large brood pouches) and their host dependency lead 

based on molecular analyses this appears not to be correct (Tsang et al., 2014; van der Meij and 
Schubart, 2014). 
 In a multi-marker paper by Tsang et al. (2014) the age of the most recent common ancestor 
(tMRCA) of Thoracotremata is estimated at 108 [± 11] Mya, and the divergence of the Crypto-
chiridae from the Xenograpsidae is placed into the Cretaceous (83 [± 11] Mya). As their clade has 
no statistical support, the exact position of the Cryptochiridae within the Thoracotremata still 
remains enigmatic. The question of the origin of the gall crabs is interesting in the light of their 
obligate relationship with corals. In this study we aim to estimate the age of the MRCA of the 
Cryptochiridae and that of the clades within the Cryptochiridae, based on a dataset containing 

-
-

gall crabs and their host taxa. 

Material and methods

Species selection
In this study, the same species selection was used as in the study of Van der Meij (chapter 10) on 
cospeciation, namely 38 shallow-water species belonging to 17 genera. The type species of each 
genus was included. The dataset includes three species from the West Atlantic, one endemic of 
waters surrounding the Arabian peninsula, and various species that are widespread in the Indo- 

Opecarcinus hypostegus (Shaw & Hopkins, 1977) belongs to a genus that 
Ceci-

docarcinus and Zibrovia, were not available. Hemigrapsus pennicilatus (de Haan, 1835) (Varu-
nidae) was selected as the outgroup (van der Meij and Schubart, 2014). 

Van der Meij (2015a). The total alignment length was 1514 bp. 
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Divergence time analyses 
Divergence time estimation was performed using a Bayesian approach in BEAST 1.7.5 (Drum-
mond et al., 6 iterations sampling every 10,000 iterations. 
Convergence of sampled parameters and potential autocorrelation (effective sampling size for all 
parameters >100) was investigated in Tracer 1.6 (Rambaut et al., 
discarded as burn-in, keeping 4500 trees. The maximum credibility tree was calculated and 

-
et 

al., 2012) using the Bayesian Information Criterion and considering GTR, TrN, HKY and JC 
models with and without gamma distributed substitution frequencies. A Yule tree prior was used 
and the nucleotide exchange rates for the 16S rRNA mitochondrial gene partition were adjusted 

-
ings in corals available for calibration of a molecular clock, hence we estimated divergence times 
using external substitution rates using an uncorrelated lognormal relaxed molecular clock ap-
proach. In detail, these are: 
(1)  A mean rate of 1.09% per Ma (normal distribution) for the 16S mitochondrial rRNAs (SD = 

0.239% per Ma; 5-95% interquantile range = 0.63-1.4% per Ma) was applied, that resulted 

with three fossil calibration points (for the calibration scheme, see Klaus et al., 2010; for 
chronostratigraphy of the fossils, see Klaus and Gross, 2010). These are the MRCA of the 
genus Potamon (divergence P. fluviatile and P. persicum) calibrated with fossil P. quenstedti; 
the MRCA of the gecarcinucid genus Sartoriana based on fossil claws from the South Asian 
Siwalik formation; and the MRCA of Potamonautes niloticus and Platythelphusa armata 

P. aff. niloticus. The taxonomy and chronostratigraphy of the pota-
mid and gecarcinucid fossils was recently assessed (Klaus and Gross 2010), and associated 
uncertainty was modelled conservatively in the study of Klaus et al. (2010). 

(2)  0.19% per Ma for the H3 gene (SD = 0.04% per Ma; 5-95% interquantile range = 0.12-0.26% 
per Ma). This rate is also derived from the study on gecarcinucid freshwater crabs of Klaus 
et al. (2010; see above). 

(3)  
2% as hard lower and upper bounds; 5-95% interquantile range = 0.20-2.69% per Ma) was 
used as inferred for Jamaican sesarmid freshwater crabs based on the Pliocene closure of the 
Isthmus of Panama (Schubart et al., 
been obtained for other arthropod taxa using biogeographical calibration (Papadopoulou 
et al., 2010; and references therein).

Results

The gall crabs are shown to be monophyletic with total support. The age of the MRCA was esti-
mated at 50-23 Mya (Early Eocene – Early Miocene; credibility interval). Short branches at the 

 Three distinct clades could be observed, albeit some with low support: 1) clade I (tMRCA 
43-20 Mya) is comprised of the Pocilloporidae-inhabiting genera Hapalocarcinus and Utino-
miella, together with the Dendrophylliidae-inhabiting genera Neotroglocarcinus and Pseudo-
cryptochirus, however, support for this clade is low. No recent radiation was observed in this 
clade; 2) the well-supported clade II (tMRCA 36-16 Mya) consists of the Atlantic species Kropp-
carcinus siderastreicola, which is the sister genus of a clade (tMRCA 11-5 Mya) containing the 
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Agariciidae-inhabiting genera Opecarcinus and Pseudohapalocarcinus. The genus Opecarcinus 

the well-supported clade III (tMRCA 34-15 Mya) comprised all remaining genera. Within clade 
III the Atlantic species Troglocarcinus corallicola diverged early from its relatives, the latter 

-
treidae, Psammocoridae and Leptastrea. The clades at generic level are generally well-support-

 All three known West Atlantic species are included in the present analysis. They could be 
retrieved in two different clades. As stated above, Kroppcarcinus siderastreicola and T. coralli-
cola diverged early within their clades. Opecarcinus hypostegus was retrieved as part of the 
(monophyletic) genus Opecarcinus. The only Red Sea – Arabia endemic clustered within the 

Discussion

Origin of the Cryptochiridae
The most recent common ancestor of the Cryptochiridae appears to have originated between 
50-23 Mya, whereas Tsang et al. (2014) traced the divergence of Cryptochiridae from its sister 
group (albeit without support) into the Cretaceous. The origin of the Thoracotremata was 
well-supported and is estimated to have originated around 108 [± 11] Mya, which makes it the 
most recently originated subsection within the Brachyura (Tsang et al., 2014). Paulay and Starmer 
(2011) postulated that Thoracotremata evolved in ‘safe places’, such as intertidal, non-marine, 

might therefore be related to their adaptability to new environments. Several other thoracotreme 
families – all with different lifestyles – appear to have originated around the same time as the 
Cryptochiridae (e.g. Sesarmidae and Glyptograpsidae) whereas other families originated earlier 
(Dotillidae) or later (Percnidae) (Tsang et al., 2014). 

Comparison with the evolution of Scleractinia
Scleractinia are much older than Cryptochiridae. The most recent common ancestor of the 
Scleractinia is estimated to have originated in the Triassic (ca. 250 to 200 Mya; Park et al., 2012). 
There are two main clades in the Scleractinia: the “complex” clade and the “robust” clade 

et al., 2008; Kitahara et al., 2010). These clades diverged in the Triassic and the most 
recent common ancestor for each clade originated in the middle of the Cretaceous (ca. 145 ± 4 to 
66 Mya) (Park et al., 2012). The phylogenetic topology of the Cryptochiridae (but not the diver-
gence times) follows this pattern; the host corals of the gall crabs in clades I and II belong to the 
complex clade, whereas the host corals of the gall crabs in clade III belong to the robust clade 

 Clade I consists of Pocilloporidae- and Dendrophylliidae-inhabiting crabs, all of which are 

strictly Atlantic genus Kroppcarcinus clusters as a sister genus to Opecarcinus  and 
Pseudohapalocarcinus (IP) (clade II). The recovery of the Agariciidae-inhabiting genus Ope-
carcinus  as monophyletic and recently di-
vergent surprising, yet corresponds with the monophyletic family Agariciidae occurring in both 
basins. The origin of the West Atlantic crab species O. hypostegus, 
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species varies among taxa, with many falling around 3.1 Mya (Malay and Paulay, 2010; and 
references therein). The Merulinidae is the only other coral family to host gall crabs in both 

 
Troglocarcinus corallicola, like Kropp-

carcinus, is strictly Atlantic and clusters as a sister genus to the remaining genera and species in 
clade III. The position of Detocarcinus balssi, an East Atlantic species recorded from between 
ca. 3 and 98 meters depth, has not yet been assessed using molecular methods, but this species 

Utinomiella dimorpha (clade I) (Kropp and 
Manning, 1987; Kropp, 1988; van der Meij and Nieman, unpubl.). Analyses of this species and 
deep-water gall crab species could shed more light on these results, especially given the results 
by Kitahara et al. (2010) who showed that shallow-water corals originated from deep-water spe-
cies. 
 The Red Sea – Arabia endemic Fizesereneia panda van der Meij, 2015 was retrieved within 
the large overall clade, otherwise containing Indo-Malayan species. It appears that gall crabs 

such as the Red Sea, however, the position of a single species is not enough to reach a conclusion. 
Such radiation is shown in a study on hermit crabs, which indicated that allopatrically distributed 

2010). These results are also in agreement with a study on coral-dwelling gobies which diversi-
-

et al., 2013).
 Van der Meij (chapter 10) suggested that the evolutionary development of the association 
between corals and gall crabs should be seen as sequential evolution. Sequential evolution is 

reef-building corals are, however, only sparsely becoming available (Santodomingo et al., 2014). 

between ca. 20 to 2 Mya among species of the families Merulinidae, Diploastreidae, Montastrei-
-

in 
reef-associated taxa (e.g. Budd, 2000; Williams et al., 

diverging clades. If the origins of taxa within these clades turn out to be synchronous, the strict 
coevolution vs sequential evolution paradigm needs to be revisited.
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Chapter 7

Host species, range extensions, and an observation of the mating system 
of Atlantic shallow-water gall crabs (Decapoda: Cryptochiridae)

Sancia E.T. van der Meij

Abstract

Coral-associated invertebrates dominate the biodiversity of coral reefs. Some of the associations involving sym-
biotic invertebrates remain unknown or little studied. This holds true even for relatively wellstudied coral reefs, 
like those in the Caribbean Sea. Coral gall crabs (Cryptochiridae), obligate symbionts of stony corals, form a 
much-overlooked component of coral reef communities. Most recent studies on the Atlantic members of Crypto-
chiridae have been conducted off Brazil and little recent data have become available from the Caribbean region. 

families, were recorded for three cryptochirid species. Kroppcarcinus siderastreicola Badaro, Neves, Castro and 
Johnsson, 2012, previously only known from Brazil, and Opecarcinus hypostegus (Shaw and Hopkins, 1977) are 

Troglocarcinus corallicola Verrill, 1908 was observed visiting a female of the same species lodged in her gall in 
an Orbicella annularis ing’ 
mating system in Cryptochiridae. 

2014
Bulletin of Marine Science 90: 1001-1010
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Introduction 

The biodiversity of coral reefs is predominantly composed of invertebrates, many of which live 
in close association with sponges, molluscs, echinoderms, ascidians, and coelenterates like sea 
anemones, and soft and stony corals. About 870 invertebrate species are known to be associated 

(Stella et al., 2011; Hoeksema et al., 2012). Species that live in obligate symbioses with a host 

This is a concern in the light of the ongoing degradation of coral reefs, especially given that the 
coral-associated fauna is relatively unknown. Such associated fauna has not been subject of 

of the overview provided by Zlatarski and Martínez-Estalella (1982), most published studies 
have focused on a particular geographical area, host, or symbiont (Reed et al., 1982; Scott 1985, 
1987, 1988). 
 Gall crabs (Cryptochiridae; also known as pit crabs) are obligate symbionts of stony corals 
(see Castro, 1988) worldwide, but many regions still need to be monitored for their occurrence. 

deep and shallow-water Atlantic cryptochirids and included many new host corals based on 
museum collections. All published research on Cryptochiridae conducted after 1987 has been 
carried out in Brazil (Noguiera, 2003; Johnsson et al., 2006; Oigman-Pszczol and Creed, 2006; 
Badaro et al., 2012; Noguiera et al -
cart-Ganivet et al., 2004). For the three Atlantic species of shallow-water gall crabs recognized 

et al., 
2012). One gall crab species, Kroppcarcinus siderastreicola Badaro, Neves, Castro and Johns-
son, 2012, is so far only known from Brazil, whereas Troglocarcinus corallicola Verrill, 1908 
and Opecarcinus hypostegus (Shaw and Hopkins, 1977) have amphi-Atlantic distributions 

approach, which is to investigate the associated fauna from the perspective of the host by collect-
ing specimens from as many coral species as possible. 

Material and methods 

Caribbean, Leeward Islands) in the southern Caribbean Sea. A total of 23 localities were visited, 
22 on the leeward side and one on the windward side of the island. Cryptochirids were sampled 

collected from their coral hosts and taken to the CARMABI research station for further process-
ing. All cryptochirids were photographed in vivo with a digital SLR camera with 50/60 mm 

-

et al. (2012), whereas coral 

and DeLoach (2002), Coralpedia (http://coralpedia.bio.warwick.ac.uk), and the reference collec-
tions of Naturalis Biodiversity Center. Coral nomenclature was updated following Budd et al. 
(2012). 
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Fig. 1. Gall crab dwellings in the newly reported coral hosts. A, Agaricia humilis; B, Colpophyllia natans; C, 
Dendrogyra cylindrus (free-living male); D, Diploria labyrinthiformis; E, Favia fragum; F, Meandrina meandri-
tes; G, Orbicella faveolata; H, Orbicella franksi. For the associated gall crab species, see Table 1.
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Results

these 21 coral species represent new records as cryptochirid hosts (Fig. 1A-H). With an addition-
al 10 host records based on literature, the number of Atlantic host coral species for gall crabs is 
now 31 (Table 1). The majority of the coral species housing gall crabs belong to the coral families 
Agariciidae and Mussidae, the latter being the Atlantic coral family with most species. Favia 
fragum (see Table 1 for species authorities), Manicina areolata, and Mussa angulosa were only 
recorded in low densities, yet they were found inhabited by cryptochirids on two different occa-
sions. Some common coral species (e.g. Colpophyllia natans and Meandrina meandrites) were 
frequently found inhabited by gall crabs. Mycetophyllia sp. was previously recorded as a host in 

ed 
with Mycetophyllia 
 Kroppcarcinus siderastreicola Side-
rastrea siderea and Stephanocoenia intersepta as new hosts. Opecarcinus hypostegus, repre-

Agaricia species, of which 
Agaricia humilis is a new record. The agariciid Helioseris cucullata was encountered on a few 
reefs, but was not found inhabited by cryptochirids. Troglocarcinus corallicola was associated 
with a wide range of hosts, but did not occur in association with Agariciidae (Table 1). 

Male ‘visiting’ female gall crab
During a dive in Slangenbaai (Snake Bay) a male T. corallicola was observed residing close to 

Fig. 2. A female Troglocarcinus corallicola. A, in her lodge inside a colony of the coral Orbicella annularis, with 
a free-living male; B, residing closely.
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which he did not move. This immobility could have been caused by the presence of the diver 

T. corallicola 
from Orbicella annularis, a free-living male T. corallicola from Dendrogyra cylindrus and a 
free-living male T. corallicola from Pseudodiploria clivosa (Table 1). 

Discussion 

huis collected Troglocarcinus corallicola in 1957 from unknown coral hosts in Piscadera Baai 

record from the southern Caribbean Sea. The results of the present study increase the gall crab 
-

chirid-coral associations. Opecarcinus hypostegus and T. corallicola were already known from 
various localities in the Caribbean region, but the recently described K. siderastreicola was so 
far only known from off Bahia State, Brazil (Badaro et al., 2012; Noguiera et al., 2014). Kropp-
carcinus siderastreicola is now also documented from the Caribbean Sea. It is possible that K. 
siderastreicola also occurs in the central Atlantic Ocean, like T. corallicola and O. hypostegus, 
because its host coral genus Siderastrea has a distribution range that includes western off Africa 
(Laborel, 1974; Neves et al., 2010; Nunes et al., 2011). Siderastrea siderea is now recorded to 
host K. siderastreicola, a new host for the species. This coral species was previously considered 
restricted to the Caribbean Sea, but was recently recorded off Brazil (Neves et al., 2010). 
 Eight new coral hosts were recorded for gall crabs, which increases the number of Atlantic 
host coral species from 23 to 31 (Table 1). The new host records include common coral species 
like Colpohyllia natans, Diploria labyrinthiformis, and Meandrina meandrites, all of which are 
inhabited by T. corallicola, a generalist that occurs in association with a wide variety of Atlantic 

Opecarcinus hypostegus is associated 

study) and Siderastreidae (Scott, 1985, 1987; Johnsson et al., 2006), whereas K. siderastreicola 
is now known from Siderastreidae and the astrocoeniid S. intersepta. Consistent with previous 
collections, no gall crabs were encountered in corals belonging to the families Acroporidae and 

 One of the newly recorded hosts, Dendrogyra cylindrus, is possibly not a true host of crypto-
chirids. A male T. corallicola was found on the surface of a colony, among the coral tentacles, 
but no dwelling was found. No other gall crabs were found on D. cylindrus colonies despite 
further searching. This single observation, also based on the fact that there are no other records 

living male. 
 The observation of a free-living male T. corallicola close to the lodged female in an Orbicella 
annularis colony is consistent with Asakura (2009), who, based on anecdotal evidence and ob-

-

-
tary females,’ and Guinot et al
symbiotic species of crabs move from host to host in search of potential female mates. Baeza and 
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-
T. corallicola

constructed by the female, and is thought to visit the gall of the female for mating.’ The fact that 

-
servation of this mating system in cryptochirids. 
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Introduction

Coral gall crabs (Cryptochiridae) are obligate symbionts of stony corals (Scleractinia), residing in 
galls or pits in its host. Cryptochirids settle as megalopae on scleractinian corals, and somehow 
induce the host to grow over and around them (Utinomi, 1944; Castro, 1976). Despite their pecu-
liar mode of life, little is known about their biology and ecology. The taxonomy of the Crypto-
chiridae was revised by Kropp (1990a), including a summary of all known coral host genera. Host 

 This paper discusses the coral gall crab Pseudocryptochirus viridis Hiro, 1938, associated 
with stony corals of the genus Turbinaria (Dendrophylliidae). The colour patterns of juveniles 

records is provided, including new records for Indonesia, Malaysia and Australia. 

Material and methods 

Coral gall crabs were collected in Bunaken National Marine Park (N. Sulawesi, Indonesia, Dec. 
-

sia, Nov.-Dec. 2010), and around Lembeh Island (N. Sulawesi, Indonesia, Jan.-Feb. 2012). Corals 
of the genus Turbinaria were searched for specimens of Pseudocryptochirus viridis. Encountered 

SLR camera with a 50 mm macro-lens, the crabs were preserved in 80% ethanol. All material is 
deposited in the Crustacea collection of Naturalis Biodiversity Center in Leiden (formerly Rijks-
museum van Natuurlijke Historie) (coded RMNH.Crus.D). 

Results 

Family Cryptochiridae Paul'son, 1875 
Genus Pseudocryptochirus Hiro, 1938 
Pseudocryptochirus viridis Hiro, 1938 

Material examined. Indonesia: RMNH.Crus.D.53235, N Sulawesi, Bunaken, Timur II, 1°36’30.66”N 
124°46’58.2”E, in T. mesenterina, 20 Dec. 2008, collected by S.E.T. van der Meij; RMNH.
Crus.D.54109, N Sulawesi, Lembeh, Tanjung Nanas I, 1°27’40.428”N 125°13’36.408”E, 15 m 
depth, in T. mesenterina, 30 Jan. 2012, collected by S.E.T. van der Meij; RMNH.CRUS. D.54110, 
N Sulawesi, Lembeh, SE Sarena Kecil, 1°27’15.804”N 125°13’29.5314”E, 8 m depth, in T. mesen-
terina, 30 Jan. 2012, collected by S.E.T. van der Meij; RMNH.Crus.D.54111, N Sulawesi, Lembeh, 
Baturiri, 1°27’34.704”N 125°14’23.1”E, 11 m depth, in Turbinaria sp., 6 Feb. 2012, collected by 
S.E.T. Van der Meij; RMNH.Crus.D.54112-54113, N Sulawesi, Lembeh, Teluk Makawide, 
1°29’5.0634”N 125°14’26.1234”E, 6 m depth, in T. cf. mesenterina, 9 Feb. 2012, collected by S.E.T. 
van der Meij; RMNH.Crus.D.54114, N Sulawesi, Lembeh, S Pulau Dua, 1°23’17.016”N 
125°12’43.1274”E, 8 m depth, in T. cf. mesenterina (together with Neotroglocarcinus sp.), 13 Feb. 
2012, collected by S.E.T. van der Meij; RMNH.Crus.D.53242, Tidore, Pilongga S, 0°42’44.1”N 
127°28’47.3”E, 8 m depth, in Turbinaria cf. reniformis, 12 Nov. 2009, collected by S.E.T. van der 
Meij; RMNH.Crus.D.53236-53238, Ternate, Batu Angus, 0°50’48.5”N 127°21’58.98”E, <5 m depth, 
in T. mesenterina
Sulamadaha II, 0°52’2”N 127°19’45.8”E, 8 m depth, in T. mesenterina, 6 Nov. 2009, collected by 



99

Some characteristics of Pseudocryptochirus viridis Hiro, 1938

Fig. 1. A-F, colour patterns in Pseudocryptochirus viridis Hiro, 1938; F, recent moult; G, posture of P. viridis in 
gall, after Utinomi (1944, Fig. 3); H-I, in situ photographs of P. viridis. Photos by S.E.T. van der Meij (A-F), B.T. 
Reijnen (H) and B.W. Hoeksema (I).
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S.E.T. van der Meij; RMNH.Crus.D.53240, Halmahera, Pasir Lamo W, 0°53’20.5”N 127°27’34.2”E, 
14 m depth, in T. mesenterina, 8 Nov. 2009, collected by S.E.T. van der Meij; RMNH.Crus.D.53243, 
Halmahera, Teluk Dodinga E-N of Jere, 0°50’47.8”N 127°37’48.7”E, 3 m depth, in T. cf. frondens 
(Dana, 1846), 13 Nov. 2009, collected by S.E.T. van der Meij; RMNH.Crus.D.53244, Halmahera, 
Teluk Dodinga - Karang Galiasa Besar E, 0°50’45.6”N 127°35’7.4”E, 10 m depth, in T. mesente-
rina, 14 Nov. 2009, collected by S.E.T. van der Meij; Malaysia: RMNH.Crus.D. 53983, Semporna, 
SE of Tawau, Darby Rock, 04°06’42.8”N 118°13’39.7”E, 15 m depth, in Turbinaria sp., 30 Nov. 
2010, collected by S.E.T. van der Meij; RMNH.Crus.D.53984, Semporna, SE of Tawau, Darby 
Rock, 04°06’42.8”N 118°13’39.7”E, 15-18 m depth, in Turbinaria sp., 30 Nov. 2010, collected by 
B.W. Hoeksema; RMNH.Crus.D.53985, Semporna, SE of Tawau, Hand Rock, 04°08’24.5”N 
118°10’44.3”E, 20 m depth, in Turbinaria sp., 30 Nov. 2010, collected by S.E.T. van der Meij; 
RMNH.Crus.D.53986, Semporna, Ligitan Isl., Ligitan 3, 04°12’43.0”N 118°54’36.6”E, 15 m 
depth, in T. mesenterina, 03 Dec. 2010, collected by S.E.T. van der Meij; RMNH.Crus.D.53987, 
Semporna, Ligitan Isl., Ligitan 3, 04°12’43.0”N 118°54’36.6”E, 10-20 m depth, in T. reniformis, 
03 Dec. 2010, collected by S.E.T. van der Meij; RMNH.Crus.D. 54049, Semporna, Tg. Pantau 
Pantau, Bumbun Isl., 04°26’54.1”N 118°46’31.0”E, 10 m depth, in T. mesenterina (together with 
Neotroglocarcinus sp.), 07 Dec. 2010, collected by S.E.T. van der Meij; RMNH.Crus.D. 53988, 
Semporna, NW Gaya Island, 04°38’32.5”N 118°44’6.0”E, shallow, in T. cf. reniformis, 10 Dec. 
2010, collected by B.W. Hoeksema; RMNH.Crus.D. 53710, Semporna, S Boheydulang Isl., outer 
reef, 04°35’00.3”N 118°46’39.1”E, in T. mesenterina, 11 Dec. 2010, collected by S.E.T. van der 
Meij; RMNH.Crus.D.53709, Semporna, S Boheydulang Isl., outer reef, 04°35’00.3”N 118°46’39.1”E, 
in T. mesenterina, 11 Dec. 2010, collected by B.W. Hoeksema; RMNH.Crus.D.54050, Semporna, 
Church Reef 1, 04°40’54.9”N 118°39’28.4”E, 3 m depth, in T. mesenterina, 13 Dec. 2010, collected 
by S.E.T. van der Meij; RMNH.Crus.D. 53713, Semporna, Bakungan Isl., 04°45’11.1”N 
118°29’16.0”E, in Turbinaria sp., 16 Dec. 2010, collected by S.E.T. van der Meij. 

Coral host 

Family Dendrophylliidae Gray, 1847 
Genus Turbinaria 

The genus Turbinaria is in serious need of a revision. Bernard’s (1896) monograph of Turbinaria 
was a turning point in the study of this genus, and was highly criticized by later coral taxonomists 
for recognizing too many species that actually represent various morphotypes resulting from 
ecophenotypical variation. Current authors (Veron and Pichon, 1980; Cairns et al., 1999; Cairns, 
2001) recognize 13 to 15 valid species of Turbinaria compared to the 58 listed by Bernard (1896), 
many of which are now considered to be either junior synonyms or species of uncertain status. 

Turbinaria in this paper should therefore be treated with some caution, 
although the majority of Turbinaria corals from which P. viridis was collected seem to belong to 
two species currently regarded as T. reniformis Bernard, 1896 and T. mesenterina (de Lamarck, 
1816). 
 Fize and Serène (1957) list many Turbinaria species as hosts for P. viridis. Some of these have 
been synonymized and the identity of other Turbinaria species remains unresolved (table I). Fize 
and Serène (1957) did remark that all hosts of P. viridis consisted of Turbinaria corals with small 
polyps (up to approximately 3 mm), which excludes T. peltata (Esper, 1794) and most likely T. 
patula (Dana, 1846). Besides P. viridis, Turbinaria corals also host the gall crabs Neotroglocar-
cinus dawydoffi (Fize and Serène, 1956) and N. hongkongensis (Shen, 1936). 
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 Turbinaria often occurs in protected environments with turbid water. Because of these con-
ditions the colour of Turbinaria corals may appear greyish-brown, but in fact the colour ranges 
from orange-grey (Maerz and Paul, 1950, pl. 11, B7) to more purple-grey (Maerz and Paul, 1950, 

tentacles are yellow. 

Colour pattern 
Hiro (1938) named the species Pseudocryptochirus viridis for its bluish-green colour. The colour 
pattern of P. viridis (Fig. 1A-F) is rather uniform, with juvenile crabs appearing more cyan-green, 
especially on the legs. The eyestalks are bluish with four brown longitudinal stripes, whereas the 
eyes themselves are off-white with a horizontal red band. Antennules have white bands on an 
overall transparent background. The eye region, including the antennules, sometimes appears 
yellowish (Fig. 1I). The light blue background of the carapace seems to deepen to azure when the 
individual matures. The mesobranchial region of the carapace is marked on both sides with an 
emerald green spot, or sometimes two or three smaller spots clustered together. In some speci-
mens the reddish-brown marbled pattern is more pronounced than in others (Fig. 1B). The colour 

have recently moulted or is in an intermoult stage. Closer examination shows the reddish-brown 
dotted pattern, including azure blue spots, on the generally transparent carapace. No sexual dimor-
phism has been observed in carapace colouration. 
 The maximum carapace length of P. viridis according to Fize and Serène (1957) is 4.5 mm for 
females and 2.0 mm for males. Utinomi (1944) mentions maximum carapace length/breadth 
dimensions of 5.8/5.2 for females and 2.5/2.1 mm for males. 

Distribution 
Gall crabs were collected from Turbinaria corals at depths between 3 and 20 m. An infested 
coral usually hosts many crabs, mostly (ovigerous) females. An overview of published distribution 
records is given in table II. Bunaken, Lembeh and Ternate are new Indonesian records for P. 
viridis T. 
reniformis on Hastings Reef off Cairns (Great Barrier Reef, Australia), which is a new record for 
Australia. The holotype of T. reniformis Bernard, 1896 (NHM 1892.12.1.374), from the Great 
Barrier Reef, has an empty gall (Bernard, 1896). Based on the shape of the pit, the coral was most 

Table 1. Pseudocryptochirus viridis Hiro, 1938.

Coral host Reference

Turbinaria frondens (Dana, 1846) (as T. contorta Bernard, 1896;  Hiro, 1938; Utinomi, 1944; Fize and Serène,  
     T. danae Bernard, 1896; T. Edwarsii [edwardsi] Bernard, 1896;  1957; Garth, 1964; this study 
     T. pustulosa Bernard, 1896)  
T. mesenterina (de Lamarck, 1816) (as Turbinaria tubifera Utinomi, 1944; Wei et al., 2006; this study 
     Bernard, 1896)  
T. cf. patula (Dana, 1846)  Kropp, 1988
T. reniformis Bernard, 1896 (as T. veluta Bernard, 1896) Fize and Serène, 1957; this study
T. stellulata (de Lamarck, 1816)  Kropp, 1988
T. agaricia Bernard, 1896 (identity unclear)  Fize and Serène, 1957
T. mollis Bernard, 1896 (identity unclear)  Fize and Serène, 1957
T. crater (Pallas, 1766) (identity unclear)  Fize and Serène, 1957
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likely inhabited by P. viridis. This distribution record corresponds with the herein reported 
observation of P. viridis on Hastings Reef. 

Discussion

Hapalocarcinus 
marsupialis Stimpson, 1859 and Fungicola spp. associated with Pocilloporidae and Fungiidae, 
respectively. Unlike their congeners, the females of Pseudocryptochirus viridis can leave their 
pit, which is merely a shallow, crescent-shaped depression within the coral. Specimens of P. viridis 
show a characteristic position when lodged in their gall, with most of the carapace and the ante-
rior three pereiopods exposed (Fig. 1G). They are positioned on roughly the same level as the 
surface of the host coral. 
 Their bright colours could make the gall crabs more detectable for predators. Figure 1I shows 
how the eye region of P. viridis appears to be yellow, just like the polyp tentacles of its Turbinaria 
host, making the gall crab visually blend in the coral. There is only one published record of a gall 

in terms of actual predation. 
 The currently known distribution of P. viridis ranges from Vietnam in the west to the Mar-
shall Islands and New Caledonia in the east (table II). The distribution ranges of some of its host 
species (e.g., T. mesenterina and T. reniformis) also include the east coast of Africa and the south-
ern Red Sea (Pichon et al., 2010), but so far no records of Turbinaria-associated cryptochirid 
fauna are available from those regions.

Table 2. Distribution records of Pseudocryptochirus viridis Hiro, 1938.

Country Location Reference

Australia  Hastings Reef, off Cairns This study
China Hong Kong (gall only) Scott, 1984
Indonesia  Banda Neira, Banda Island  Kropp, 1994
 Moluccas  Serène et al., 1974
 Bunaken, Lembeh (N Sulawesi),  This study
 Ternate (Halmahera) 
Japan  Tanabe Bay  Hiro, 1938
 Yaeyama Islands; Ryukyu Islands Utinomi, 1944
Malaysia  Semporna (E Sabah) This study
Marshall Islands  Eniwetok Atoll Garth, 1964
Micronesia  Palau (Palao)  Utinomi, 1944
 Guam, Palau, Pohnpei Kropp, 1990a
New Caledonia  Loyalty Islands Juncker and Poupin, 2009

et al., 2006
 Penghu Island (the Pescadores);  Utinomi, 1944
 ?Pratas Island (Dongsha Island) 
Vietnam Nha Trang Fize and Serène, 1957
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Phylogenetic ecology of gall crabs (Brachyura: Cryptochiridae) and 
their mushroom host corals (Scleractinia: Fungiidae)

Sancia E.T. van der Meij, Charles H.J.M. Fransen, Leon R. Pasman & Bert W. Hoeksema

Abstract 

Coral-associated fauna is a relatively understudied topic, hence the nature of the relationship between an associated 
organism and its host is frequently unknown. In the present study the obligate associations between gall crabs 

surveys, examination of museum material and a literature review, a total of 35 fungiid species have been found that 
act as hosts for four gall crab species. Fungiid-associated gall crabs appear to be more geographically widespread 
than previously known, with new records showing their occurrences from the Red Sea and western Indian Ocean 

hosts makes them an ideal model taxon to test for possible cospeciation events. The congruence between their 
phylogenies was tested by using the programme Jane 4.0, resulting in cospeciation and duplication events between 
the crabs and their host corals. The sharing of several closely related coral host species by a gall crab species or 
genus may provide support to models indicating phylogenetic relationships within the Scleractinia.

Manuscript under review
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Introduction

The integration of molecular analyses with skeleton microstructure data in recent phylogeny recon-
structions of stony corals (Scleractinia), has initiated large changes in scleractinian systematics 
(i.e. Benzoni et al., 2007; Budd et al., 2012; Huang et al., 2014). For the mushroom coral family 
Fungiidae this approach has resulted in various changes at genus level and the inclusion of two 
additional species (Gittenberger et al., 2011; Benzoni et al., 2012a). Fungiidae occur in the Indo- 

-
tral America (Hoeksema, 1989). Several species have been recorded to live in association with 
fungiids. Most of the associated fauna consists of crustaceans and molluscs, but also includes 

et al., 2012; van der Meij, 2015a; Bos and Hoeksema, 
in press).
 Gall crabs (Brachyura: Cryptochiridae) are obligate associates of stony corals, living in 
dwellings inside their coral hosts. They are common inhabitants of coral reefs, but are easily 
overlooked because of their small size and hidden life inside their coral hosts (Hoeksema and van 

scheme that worked for some crab genera but proved to be unreliable for other genera (Kropp and 
Manning, 1987). 

cies 
are known to live in association with mushroom corals: Fungicola fagei
and F. utinomi et al. (2012) reported on a Dacryomaia species 
as a third cryptochirid species associated with Fungiidae, whereas Van der Meij and Hoeksema 
(2013) reported on the fourth. The latter concerned a cryptic species closely related to F. fagei, 
described as Fungicola syzygia van der Meij, 2015.
 The obligate nature of the association between cryptochirids and their hosts raises questions 
about possible cospeciation between the two. Studies on the associated fauna of stony corals, how-
ever, have so far largely been focused on the symbiont. In this study the following questions are 
addressed. Is there an overlap between the geographical distribution of the corals and their associ-
ated gall crabs? Are common coral species more likely to be inhabited by gall crabs than less 

phylogenetic relationships of the crabs, hence is there some kind of cospeciation between the two?
 To answer these questions fungiid-associated gall crabs were studied from the perspective of 
the host by collecting crabs from as many coral species as possible. Fieldwork in various parts of 

carried out in order to obtain host, distribution and occurrence records. The gall crab-coral asso-
ciations and occurrence rates were projected on a cladogram of the Fungiidae in order to recon-
struct the evolutionary history of the associations of the crabs and their host species. The congru-
ence between the fungiid and gall crab phylogenies was tested for cospeciation events with the 
help of the programme Jane 4.0.

Material and methods

Historical records
In order to examine the distribution of fungiid associated gall crabs the coral collections of 
Naturalis Biodiversity Center (RMNH) in Leiden, the Netherlands, and the Royal Belgian Insti-
tute of Natural Sciences (IRSNB) in Brussels, Belgium, were searched for the presence of gall 
crabs or their vacated pits. Additional records were obtained from the coral collections of the 
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Table 1. Distribution of gall crab species based on museum records of Fungiidae containing coral gall crabs (in-
dicated by species name) or their pits (+), literature, and incidental observations (photo vouchers). Coral names 
updated according to Gittenberger et al. (2011). Localities of the listed host species: A = Israel (Eilat, Red Sea); B 
= Kenya (western Indian Ocean); C = Gulf of Aden, Yemen; D = Seychelles (western Indian Ocean); E = Maldives 
(central Indian Ocean); F = Thailand (Phuket); G = Indonesia; H = Vietnam (Nha Trang); I = Malaysia (Tioman 
Isl.).; J = Malaysia (Sabah); K = Taiwan; L = Palau; M = Papua New Guinea (Bismarck Sea); N = Japan (Yaeyama 

R = Hawaii; S = Vanuatu. Museum records: 1 = RMNH, 2 = IRSNB, 3 = UNIMIB, 4 = AMNH. In bold, localities 
based on literature references and/or incidental observations. *Fungicola utinomi without host record was report-
ed from Indonesia (Moluccas – Kropp, 1994) and Micronesia (Mariana Isl. – Paulay et al., 2003).

Coral host Museum records Localities Reference for locality data

Cycloseris costulata (Ortmann, 1889) Fungicola syzygia1 B, G, J, S 
C. curvata (Hoeksema, 1989) +3 C 
C. cyclolites (Lamarck, 1815) +1 F, G 
C. fragilis (Alcock, 1893) +1 G 
C. mokai (Hoeksema, 1989) +1 G 
C. sinensis (M. Edwards & Haime, 1851) +1 G 
C. tenuis (Dana, 1846) +1 F, K 
Danafungia horrida (Dana, 1846) - H   

(F. utinomi)
Fungia fungites (Linnaeus, 1758) +1, F. utinomi2 G, H  

(F. utinomi)
Herpolitha limax (Esper, 1797) - O 
Lithophyllon concinna (Verrill, 1864) +1 G, K 
L. ranjithi Ditlev, 2003 +1 J 
L. repanda (Dana, 1846) +1, F. utinomi2 H, K, M, N, O  Takeda and Tamura, 1979 

(F. utinomi); Fize and 
F. utinomi)

L. scabra (Döderlein, 1901)  Dacryomaia sp.,  G 
Fungicola sp.  

L. undulatum Rehberg, 1892 Dacryomaia sp.  G, I 
Lobactis scutaria (Lamarck, 1801) Fungicola sp.4 R 
Pleuractis granulosa (Klunzinger, 1879) Fungicola syzygia 1, 2 A, E, G, L, P, S 
P. gravis (Nemenzo, 1956) Fungicola syzygia 1 G 
P. moluccensis (Van der Horst, 1919) +1 G, K 
P. paumotensis (Stutchbury, 1833) Fungicola syzygia 1, 2 E, G, H, N, O  

(? F. syzygia); Takeda and 
Tamura, 1979 (? F. syzygia)

P. seychellensis (Hoeksema, 1993) Fungicola syzygia 1 D 
P. taiwanensis (Hoeksema & Dai, 1991) +1 G 
Podabacia crustacea (Pallas, 1766) F. fagei1 G 
P. motuporensis Veron, 1990 +1 L 
P. sinai Veron, 2000 F. fagei1 L 
Sandalolitha dentata 1 G, H   

(F. fagei)
S. robusta F. fagei1, 2 M, S 
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University of Milano-Bicocca (UNIMIB) in Milan, Italy, and the American Museum of Natural 
History (AMNH) in New York, USA. Some pits contained (dried) gall crab carapaces which were 

Hoeksema (1989), Gittenberger et al. (2011) and Benzoni et al. (2012a). Literature was studied to 

taken from the main text (p. 122, 130, 134, 156, 171) because these were assumed to be more 

vouchered). 

Fieldwork

southern part of the Makassar Strait (1994), where belt quadrats of 50 × 2m2 were used to study 
gall crab – fungiid occurrences. Per quadrat the density of mushroom coral species and the per-
centage of inhabited corals was recorded. Transect work was mostly carried out on the western 
reef slopes as mushroom coral species are most abundant at these sides of the reefs, which are the 
most exposed to wind and wave action. Additionally, inhabited mushroom corals were collected to 
obtain the gall crab specimens. The corals were split by use of a hammer and chisel and coral 
fragments containing the gall crabs were immersed in 80% ethanol for at least one hour to immo-
bilize the crabs, which were subsequently transferred to labelled vials. All specimens are deposit-
ed in the collections of Naturalis in Leiden, The Netherlands (collection coded as RMNH.Crus.D).

Indonesia (Raja Ampat – W Papua, Bunaken – N Sulawesi, Ternate – N Moluccas, Lembeh Strait 
– N Sulawesi ) and Malaysia (Semporna – N Borneo, Kudat – N Borneo). Mushroom corals from 
various reef sites were sampled for gall crabs, attempting to sample as many host species as pos-
sible from deep to shallow reef zones. Mushroom corals containing gall crabs were collected 
until a representative collection of the Fungiidae species was reached. The corals were sampled 
in the same way as described above after being photographed with a Canon 400D camera 
equipped with a 50 mm Sigma macro-lens. 
 Additional records were obtained from Vietnam (Nha Trang – 2006), Australia (Great Barrier 
Reef – off Cairns (2010), New Caledonia (2012, Loyalty Is. – 2013), Malaysia (Payar Isl, Tioman 
Isl – 2013), and the Maldives (2014).

Cophylogenetic analyses based on host preference data
The phylogenetic congruence of hosts and associates was tested by using the programme Jane 4.0 
(Conow et al., 2010), based on the phylogenies in Gittenberger et al. (2011), Benzoni et al. (2012a), 
and Van der Meij (2015a). The programme is based on an event-based model which considers 
cospeciation as the most parsimonious explanation for congruence between host and associate 
trees. Detection of coevolutionary relationships are easily obstructed by the complex interplay of 
events, i.e., cospeciation, duplication (intrahost speciation), host switching, sorting (extinction) 

Conow et al. (2010). The evolutionary events are used to superimpose phylogeny reconstruction 
of the associated taxon on that of the host taxon. Jane 4.0 assigns a cost to each evolutionary event, 

were used, as follows: cospeciation (0), duplication (1), duplication – host switching (2), loss (1) 
and failure to diverge (1). Statistical analyses are performed by comparing the best (minimum) 
costs found for the host parasite data set against randomized data sets (Cruaud et al., 2012).
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Fig. 1. Mushroom coral hosts with crab galls and their pits (arrows). A, Pleuractis paumotensis (Nha Trang, Viet-
nam); B, Lithophyllon undulatum (Nha Trang, Vietnam); C, Podabacia crustacea (Raja Ampat, Indonesia); D, 
Pleuractis moluccensis (Nha Trang, Vietnam); E, Cycloseris sinensis (Raja Ampat, Indonesia); F, Pleuractis 
granulosa (Ternate, Indonesia); G, Lithophyllon repanda (Raja Ampat, Indonesia); H, L. scabra (Nha Trang, Viet-
nam). Photographs not to scale.
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Fig. 2. Cladogram of the Fungiidae (based on Gittenberger et al., 2011; Benzoni et al., 2012), combined with gall 
crab associations. Percentages portray how the gall crabs are distributed over their coral hosts: Fungicola syzygia 
(n = 316), F. fagei (n = 4), F. utinomi (n = 82), and Dacryomaia sp. (n = 29). Other records based on collection data 

1994 are included as squares.



111

Phylogenetic ecology of gall crabs and mushroom corals

 The programme can take multiple host associations into account, but occurrence levels are 
not supported, and therefore it was run twice: 1) on the complete dataset including all host spec-

In this second dataset sporadic host occurrences (singletons) were removed. In both runs the 
following settings were used (stats mode): 100 generations, population size 500, sample size 100. 
All other settings were left unchanged.

Results

Distribution based on historical records
Based on museum and literature records, distributions of Fungiidae-associated gall crabs range 
from Eilat in the Red Sea, and Kenya in the western Indian Ocean, towards Hawaii and Tahiti in 

Occurrence records
Data on crab occurrences obtained from the belt quadrats in the Spermonde Archipelago, are 
projected on a cladogram of the Fungiidae (Table 2, Fig. 2). Percentages per host species are 
based on the number of encountered coral specimens per gall crab species. Fig. 1 shows gall crab 
dwellings in eight of their common gall crab hosts. Fungicola fagei was only found inhabiting 
corals belonging to the genera Podabacia and Sandalolitha, F. syzygia was predominantly found 
in corals of the genus Pleuractis and to a lesser extent in Cycloseris, whereas Fungicola utinomi 
was predominantly found in Lithophyllon repanda. Dacryomaia sp. mainly inhabits corals of the 
genera Lithophyllon, and was primarily associated with L. undulatum. It also occurs in the gen-
era Cycloseris and Pleuractis. In the belt quadrats only one specimen of Dacryomaia sp. was 
recorded from the genus Cycloseris. 

Table 2. Mushroom coral species (Fungiidae) acting as host for gall crab species in the Spermonde Archipelago, SW 

Coral host Fungicola Fungicola Fungicola Dacryomaia 
  syzygia  fagei utinomi sp.

Ctenactis echinata (Pallas, 1766)   1 
Cycloseris costulata (Ortmann, 1889) 8   1
C. fragilis (Alcock, 1893) 2   
C. tenuis (Dana, 1846) 1   
Danafungia horrida (Dana, 1846)   1 
Fungia fungites (Linnaeus, 1758)   1 
Halomitra pileus (Linnaeus, 1758)   3 
Herpolitha limax (Esper, 1797) 1  1 
Lithophyllon concinna (Verrill, 1864)   4 
L. repanda (Dana, 1846) 1  68 
L. scabra (Döderlein, 1901) 1   1 7
L. undulatum Rehberg, 1892    15
Pleuractis granulosa (Klunzinger, 1879) 49   6
P. moluccensis (Van der Horst, 1919) 40   
P. paumotensis (Stutchbury, 1833) 213   
Podabacia crustacea (Pallas, 1766)  1  
Sandalolitha robusta  3 2 
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Host preferences and cophylogenetic analyses
The total number of Fungiidae associated with gall crabs is 35 (Fig. 2, Table S1). Fungicola uti-
nomi is found to be associated with 10 mushroom corals species, F. fagei 
F. syzygia with 15 hosts. Dacryomaia sp., appears to be associated with nine fungiid species (Fig. 
2, Table 2). Cycloseris curvata and C. explanulata are new host records. Hoeksema et al. (2012) 
recorded Polyphyllia talpina as a gall crab host. Further inspection of the material in the Naturalis 
collections revealed that this is likely not a gall crab dwelling, because the two pits in the host 
coral are interconnected and the surface of the dwelling is not smooth. These characteristics argue 
against a gall crab dwelling, and we therefore remove this coral species from the list of fungiid 
gall crab hosts until more evidence becomes available. 
 Based on the analysis in Jane 4.0 the complete dataset (Fig. S2) shows two duplication events, 
one cospeciation event, 34 losses and 37 failures to diverges. The smaller dataset (Fig. S4), com-
prised of only the common hosts, resulted in one duplication event, one duplication plus host 
switch event, one cospeciation event, 20 losses and 11 failures to diverge. Both results show that 
the costs of the random sample solutions are higher than the optimal [= cospeciation] solution 
(Figs S3, 5). 

Discussion

Invertebrate taxa account for the greatest numerical abundance and diversity on coral reefs, yet 
have received rather little attention. Our awareness of coral reef ecosystem functioning is derived 
from what we know about a relative small proportion of coral reef species. Animals so closely 
associated with their habitat may be vital to the maintenance of critical ecological systems per-
taining to coral health (Stella et al., 2010), and as such could be potentially useful as environmen-
tal indicators (Thomas, 1993; Scaps and Denis, 2008). 
 In this study we used a phylogeny of the Fungiidae corals to map host preferences and oc-
currence rates. Using phylogenies to map ecologically meaningful traits of species is a fusion 
between ecology and evolution, also known as phylogenetic ecology or phylo-ecology (Westoby, 
2006; Hoeksema, 2012a). 

Distribution records
Until the late 1960s, the genus Fungicola was only known from Vietnam and since then just a few 
records became available from elsewhere (Takeda and Tamura, 1979; Kropp, 1990a, 1994). Van 
der Meij and Hoeksema (2013) and Van der Meij (2015a) added several new records of the genus 
in Indonesia and Malaysia. The present research on museum collections resulted in the availabil-
ity of many additional records for all three Fungicola species (Table 1). During a short survey on 
the Great Barrier Reef off Cairns in May 2010 one specimen of F. utinomi was observed in Litho-
phyllon repanda, and individuals of Fungicola sp. were observed in Pleuractis paumotensis and 
Herpolitha limax. Fungicola syzygia is now reported from the Red Sea and Kenya in the west, to 
Japan and Vanuatu in the east, while F. fagei and F. utinomi are now recorded from Vietnam and 
Indonesia in the west, to Japan and possibly Australia (GBR) in the east. Dacryomaia sp. is re-
corded from the heart of the Coral Triangle: Indonesia and Malaysia (Table 1-2). The Indo-Pacific 
mushroom coral Lobactis scutaria, host to Fungicola utinomi, was brought to Jamaica from Eilat 
in 1966 and has established an apparently viable population (Bush et al., 2004). So far no gall 
crabs have been reported for this population, which seems unlikely given current day ocean cur-
rents.
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 Hoeksema and Gittenberger (2008) report that coral gall crabs appear to be abundant in Nha 
Trang, Vietnam, especially in Podabacia crustacea and Lithophyllon repanda. Based on their 
results, the gall crab fauna in Vietnam likely consists of Fungicola fagei and F. utinomi, which is 

 According to Takeda and 
Tamura (1979), F. utinomi is more common in Japan than F. fagei, of which only two specimens 

F. fagei by Takeda and Tamura 
(1979) should most likely be corrected to F. syzygia. The main hosts of F. fagei are, however, also 

(1979) are caused by undersampling of particular species of mushroom coral hosts or by lower 
occurrence rates of F. fagei and F. syzygia. The genus Dacryomaia has been recorded from non-
fungiid corals at the Ryukyu Islands (Japan), Caroline Isl. (Kiribati), Guam and other Mariana Isl. 
(Table 1), however, these records most likely concern D. japonica, D. edmonsoni and/or further 
undescribed species (Paulay et al., 2003, van der Meij unpubl. data). 
 There appears to be much overlap in the geographical distribution of the mushroom corals 
and fungiid-associated gall crabs (Hoeksema, 1989; Table 2). The distribution ranges of the gall 
crab species is likely even more extensive. Presumably rare species, or species with a disjunct 

-
-

imens may show that species display a greater distribution range than previously assumed (Drew, 
2011; Hoeksema et al., 2011; van der Meij and Visser, 2011). 

Occurrence records
The results of the belt quadrats in the Spermonde Archipelago show that the percentage of en-
countered gall crabs appears to be linked to the relative occurrence of their host corals. The 
coral species for which most gall crabs are reported are also among the most commonly occur-
ring mushroom corals, i.e. Lithophyllon repanda, Pleuractis granulosa, P. moluccensis and P. 
paumotensis (see Hoeksema, 2012b). However, some common mushroom corals are not frequent-
ly inhabited by gall crabs (e.g. Halomitra pileus, Lobactis scutaria, Sandalolitha dentata), 
whereas others appear to be associated with one or more species (Table 2). Small and/or thin 
species (e.g. Cycloseris boschmai, C. distorta, Halomitra clavator, Zoopilus echinatus), those 

Heliofungia spp., Polyphyllia spp.), 
or rarely observed species (e.g. Cantharellus spp., Podabacia kunzmanni, Sandalolitha boucheti) 
are not yet found to be associated with gall crabs. 

Host preferences and cophylogenetic analyses
The total number of fungiid species inhabited by gall crabs is now 35 (Table S1). Cycloseris expla-
nulata and C. wellsi were not yet included in the Fungiidae (Benzoni et al., 2012) during most of 
the present research and were therefore also not considered as potential host for fungiid-associated 
gall crabs. This likely lead to under-sampling of these coral hosts. Polyphyllia talpina is no longer 
considered to be a gall crab host. This is in line with previous observations that gall crabs are most-

 Recently the coral family Fungiidae was revised based on a molecular analysis (Gittenberger 
et al., 2011). The majority (95%) of Fungicola syzygia specimens was encountered in Pleuractis 
corals, i.e. P. paumotensis, P. granulosa, and P. moluccensis (Fig. 2). Apart from the genus Pleu-
ractis, this gall crab species also occurs in the closely related genus Cycloseris. Fungicola uti-
nomi is in almost all cases associated with Lithophyllon repanda, but occurs to a lesser extent in 
corals belonging to other genera. None of the inhabited fungiids were simultaneously occupied 
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by more than one gall crab species, but one host species, Lithophyllon scabra, was found inhab-
ited by either one of the three gall crab species. The sporadic selection of certain corals as a host 
might be related to a low availability of the common or ‘preferred’ host species at a certain local-
ity. It might also be the result of a collecting artefact, as it remains possible that host occurrence 
has geographic variability. 
 Dacryomaia sp. mostly targets Lithophyllon undulatum, and to a lesser extent L. scabra, and 
Pleuractis granulosa. Other species in the genus Dacryomaia are associated with the genera 
Coscinaraea (Coscinaraeidae), Leptastrea (Scleractinia incertae sedis), and Psammocora 
(Psammocoridae) (Kropp, 1990a, van der Meij, unpubl. data). This is likely not a coincidence, 
since these genera are closely related to the Fungiidae (Fukami et al., 2008; Kitahara et al., 2010; 
Huang, 2012). The genus Dacryomaia, which contains undescribed species, is in need of a taxo-
nomic revision (Paulay et al., 2003, van der Meij, unpubl. data). Further research on the gall crabs 
of this genus and their host preferences may be used to verify congruencies of the phylogenetic 
relationships of the associated fauna and their hosts as support for reconstructed phylogenetic 
relationships within the Scleractinia. 
 The analyses in Jane 4.0 show that there have been cospeciation and duplication events be-
tween fungiids and their gall crab inhabitants, as well as several losses and failures to diverge. 
Differences between the outcomes of the analysis on the complete dataset vs the common host 
dataset can be explained by the settings of the programme Jane. Associations between host and 
symbiont are not weighed, hence single recorded associations are given the same value in the 
analysis, obscuring the overall patterns between host and symbiont. Both analyses show that even 
within a moderately small coral family like the Fungiidae with just over 50 species (Gittenberger 
et al., 2011; Benzoni et al., 2012a), four gall crab associates occupy their own niche and are 

Fungicola fagei appears to be more strict in its host preference 
than the other three species. The large-scale phylogeny reconstruction of all gall crabs and their 
coral hosts provides more insight in the cospeciation between these associates and their hosts. 

and failures to divergence in the Jane analysis. The relationship between Scleractinia and Crypto-
chiridae appears to be so tight that gall crabs can be used as phylogenetic indicators of scleractin-
ian evolution (van der Meij, 2015a), which contradicts the hypothesis of Kropp and Manning 

genera. 
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Chapter 10

Adaptive divergence in coral-dwelling gall crabs:  
signature of host driven evolution

Sancia E.T. van der Meij

Abstract

Intimate interactions between host organisms and their symbionts can, on a long time scale, lead to impact on the 
evolution of the partner. Within the theoretical context of host-parasite evolution, coevolution is only considered 
appropriate for a given host-symbiont assemblage if the hosts and their symbionts show similar patterns of phyloge-
netic differentiation. Many studies on coevolutionary relationships focus on terrestrial organisms and involve 
vertebrates as hosts. The present research on the association between stony corals (Scleractinia) and gall crabs 
(Cryptochiridae) concerns an invertebrate-invertebrate association in the marine realm. For the Cryptochiridae 
the phylogenetic relationships within the family were reconstructed based on 16S, COI and H3 markers, whereas 
information on the phylogenetic relationships within the Scleractinia was already largely available in the literature. 
The congruence between both phylogeny reconstructions was tested using the programme Jane 4.0, which tests for 
the occurrence of coevolutionary events. The phylogram of the Cryptochiridae shows three large clades and mul-

The test for congruency resulted in 20 cospeciation events, three duplication events, 14 duplication - host switching 
events, eight losses and 10 failures between the gall crab phylogeny and coral phylogeny. The statistics show that 

would have been as expected by chance alone. The observed events should most probably be ascribed to sequential 
evolution, which indicates that the phylogeny of the Cryptochiridae has been directed by the evolution of the 
Scleractinia. 

Manuscript in preparation
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Introduction

as an alternative to direct competition between associated species for the same host, is an im-
portant strategy for survival in biotic communities. Symbioses include a broad category of heter-

physiological and ecological interactions (Castro, 1988). If interactions between species are close 
enough, the organisms involved may have speciated synchronously, so a reconstruction of their 
evolutionary histories would show congruent events of speciation (Paterson and Banks, 2001). 
Nonetheless, the impact of these interactions on the evolution of each partner depends on the 
time-scale considered. Only macroevolutionary patterns will be considered here, i.e., the long-
term evolutionary dynamics of speciation following host shifts. These are differentiated from 
studies at a shorter time scale (e.g. changes in allele frequencies over successive generations, Red 
Queen driven processes) (Desdevises, 2007; de Vienne et al., 2013). 
 Many studies on coevolutionary relationships focus on mammal, bird and (to a lesser extent) 

range of other systems, including non-symbiotic ones such as plants – pollinator and vertebrate – 
virus systems (for overviews see Lanterbecq et al., 2010; Duchene et al., 2013). A well-known 
symbiotic coevolution example is that of gophers and lice (Hafner and Nadler, 1988; Hafner et al., 
1994), but studies of intimate evolutionary associations between hosts and parasites started with 
avian hosts and their parasites (Hoberg et al., 1997). 

a-
sites are considered to have great predictive value in elucidating the associated host phylogeny 
(Eichler, 1942). A series of parasitological rules were developed of which Fahernholz’s rule – para-
site phylogeny mirrors host phylogeny – is the most well-known. Indeed, phylogenetic studies of 
interacting organisms often reveal congruence between the phylogenies of the interacting taxa. 
Congruence between host and parasite phylogenies is seen as evidence for coevolution (e.g. Haf-
ner and Nadler, 1988; Hafner et al., 1994; Patterson and Banks, 2001). Within a theoretical con-
text of host-parasite evolution, coevolution is only considered appropriate for a given host-parasite 
assemblage if the hosts and their parasites show identical patterns of phylogenetic differentiation. 
In contrast, identical patterns in host organisms and their parasites are only rarely observed and 
certain levels of discordance between host and parasite phylogenies are considered the norm 

-

among parasites that infect more than one host species to infect hosts that are phylogenetically 
closely related - that is, usually species within the same genus or family – which appears to be an 
important factor in speciation (Norton and Carpenter, 1998).
 Coevolution is the universally accepted term for the process involving two or more lineages 

-
passes strict coevolution and sequential coevolution. Strict coevolution implies that two separate 

(coadaptation), or ii) speciate together (cospeciation) (Ridley, 1996). It has been assumed that 
coadaptation favours cospeciation, but it appears that the critical factor may be the rate at which 
the symbiont or parasite encounters potential new host species (Ronquist, 1997). Sequential evo-
lution is a particular case of coevolution where the changes (morphological, physiological or be-

reciprocal (Ridley, 1996). 
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 Documentation of widespread coevolution in a host-parasite assemblages requires statistical 
evidence that the congruence observed between the host and parasite phylogenies exceeds that 
expected by chance (Huelsenbeck et al., 1997; Hafner and Nadler, 1990). Two kinds of evidence 
are necessary to document coevolution in a host-parasite assemblage: evidence that the host and 
parasite phylogenies are derived independently and statistical evidence that the topological simi-
larity of the host and parasite trees exceeds chance expectations (Hafner and Nadler, 1990). By 
comparing the phylogenies of host species and their associates, it is possible to detect if a statisti-

-

obstructed by the complex interplay of coevolutionary events. Four types of basic coevolutionary 

1998): cospeciation (concomitant host and parasite speciation), host switching (colonization of a 
new host by a parasite), duplication (parasite speciation on a single host lineage), and sorting event 

Paterson and Banks, 2001; Johnson et al., 2003), but they broadly fall into the four basic categories 
described above (Desdevises, 2007). These coevolutionary events may all produce incongruence 
between host and parasite phylogenies (Patterson and Banks, 2001). Speciation of the symbiont 
can occur independently of host speciation, often through host shifts as the symbiont comes to 
occupy a new host environment in isolation from the ancestral lineage (de Vienne et al., 2013).
 Only few taxa received much of the attention in studies on cophylogenies. Marine models have 
not been extensively studied, especially not models in which marine invertebrates are involved, 
yet their difference compared to more known terrestrial systems may shed light on processes con-
cerning the generation of cophylogenetic patterns (Desdevises, 2007; Duchene et al., 2013). This 
chapter studies the relationship between gall crabs (Cryptochiridae) and their stony coral hosts 
(Scleractinia). Cryptochiridae is a family of coral-inhabiting crabs occurring on reefs worldwide. 
These crabs depend on their hosts for food and shelter (Kropp, 1986, 1990a). The observed host- 

-
tions about the nature of the association. The relatively small size and worldwide occurrence of the 

-
terns between a monophyletic family (van der Meij and Schubart, 2014) and their scleractinian 
hosts across the whole family, as well as between oceanic basins. Cophylogenetic approaches in 
coevolution and biogeography studies ask for a whole new set of analytical methods (Ronquist, 
1997). The combination of a high species diversity in certain crab genera, biogeographic patterns, 

-

phylogeny of the corals (Fahernholz’s rule) or are there incongruences between the two? 2. Is there 
coevolution (in the broad sense) between the crabs and their hosts, and if so, i) which type of co-
evolution can be distinguished, and ii) which coevolutionary events are expected to have occurred? 
To study these questions the phylogenetic relationships within the Cryptochiridae are recon-
structed and compared with a phylogeny reconstruction of the Scleractinia. 

Material and methods

The material used in this study has been collected from 2007 to 2013 in Indonesia, Malaysia and 
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the Atlantic. Corals from many different families were searched for galls and pits, and subse-
quently split with hammer and chisel. The gall crabs were preserved in 80% ethanol, after being 

are deposited in the collections of Naturalis Biodiversity Center in Leiden, The Netherlands 
(formerly Rijksmuseum van Natuurlijke Historie), collection-coded as RMNH.Crus.D).

Molecular analyses
For the reconstruction of relationships within the Cryptochiridae, 38 shallow-water species be-
longing to 17 genera were selected. The type species of each genus was included. Material from 

not available for molecular study. The Hemigrapsus pennicilatus (Varunidae) was selected as an 
outgroup (van der Meij and Schubart, 2014).

-

(Penn et al., 2010a, b), resulting in scores of 0.98 for 16S (minimally adjusted by eye in BioEdit 
(Hall, 1999)), 0.99 for COI, and 1.0 for H3. The 16S dataset contained 383 constant, 169 parsimo-
ny-informative and 33 uninformative characters. The COI dataset contained 396 constant, 238 
parsimony informative and nine uninformative variable characters. The H3 dataset contained 

 The appropriate model of evolution was determined using jModeltest 2.1.3 (Darriba et al., 

Sequences were concatenated in Sequence Matrix (Vaidya et al., 2011), converted to nexus and 

Phylogeny reconstructions
Bayesian inferences were estimated in MrBayes (Ronquist and Huelsenbeck, 2003). The pro-

-

bootstrap consensus tree was visualised with the SumTrees 3.3.1 package of the DendroPy 3.12.0 
package in the Phyton library (Sukumaran and Holder 2010). Scleractinian phylogeny, for the 
coevolutionary analyses, was reconstructed based on literature. The main groupings were based 
on Fukami et al. (2008), supplemented by data from Budd et al. (2012) and Huang et al. (2014).

Coevolutionary analyses
The congruence between coral and gall crab phylogenies was tested by using the programme Jane 
4.0 (Conow et al., 2010). The programme is based on an event-based model which considers 
cospeciation as the most parsimonious explanation for congruence between host and parasite 
trees. Coevolutionary relationships are obstructed by the complex interplay of cospeciation, du-
plication (intrahost speciation), host switching, sorting (extinction) and inertia (lack of parasite 

et al. (2010). The evolu-
tionary events are used to superimpose phylogeny reconstruction of the associated taxon on that 

mappings minimizing the total cost. The default costs settings of Jane were used, as follows: 
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Fig. 1. Bayesian inference (BI) tree based on the concatenated dataset of 16S, COI and H3, with the varunid Hemi-
grapsus penicillatus 

complex. 
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53237 Pseudocryptochirus viridis

53715 Lithoscaptus prionotus

54305 Dacryomaia japonica

54928 Pelycomaia minuta

53762 Cryptochirus coralliodytes

54988 Kroppcarcinus siderastreicola

54341 Dacryomaia cf. edmonsoni

54309 Lithoscaptus sp. A

54259 Lithoscaptus semperi

53233 Fungicola fagei

54989 Kroppcarcinus siderastreicola

54265 Fizesereneia heimi
54184 Fizesereneia heimi

56095 Opecarcinus hypostegus
54298 Pseudohapalocarcinus ransoni

54285 Sphenomaia pyriformis

54908 Hapalocarcinus marsupialis*

54026 Xynomaia sheni

54054 Lithoscaptus sp. C

54278 Fizesereneia latisella

54910 Xynomaia cf. boissoni

53722 Lithoscaptus tri

54021 Lithoscaptus paradoxus

54169 Lithoscaptus “Plesi”

54982 Troglocarcinus corallicola

54017 Fungicola utinomi

54266 Hiroia krempfi

54205 Opecarcinus pholeter

53230 Fungicola utinomi

54048 Neotroglocarcinus hongkongensis

54262 cf. Lithoscaptus “Caula”

54200 Opecarcinus pholeter

53991 Lithoscaptus prionotus

54258 Lithoscaptus semperi

54068 Cryptochirus “Lepto”

54275 Opecarcinus cathyae

54047 Neotroglocarcinus dawydoffi

54195 Opecarcinus lobifrons

54425 Fizesereneia panda

54336 cf. Lithoscaptus “Caula”

54926 Lithoscaptus sp. D

54172 Lithoscaptus “Plesi”

54326 Lithoscaptus sp. Z

54225 Dacryomaia sp. nov.

54917 Neotroglocarcinus dawydoffi

54314 Sphenomaia pyriformis

100/86

81/80

100/93

81/--

91/51

90/70

100/98

100/84

100/95

100/89

99/--

96/74

97/--

100/95

100/81

100/100

100/98

100/98

100/100

98/--

--/53



122

CHAPTER 10

cospeciation (0), duplication (1), duplication – host switching (2), loss (1) and failure to diverge (1). 
Statistical analyses are performed by comparing the best (minimum) costs found for the host 
parasite data set against randomized data sets (Cruaud et al., 2012). The following settings were 

were left unchanged.

Results

Phylogenetic tree

majority rule consensus of the trees remaining after the burnin, with high support values in the 
basal part as well as in the distal phylogenetic branches. The outgroup is separated by a long 
branch. Within the Cryptochiridae, three major clades can be distinguished, but the relationships 

Troglocarcinus corallicola (ATL) as 
the most basal clade (not supported by the ML analysis), followed by Sphenomaia pyriformis (IP) 
and Lithoscaptus tri (IP). Several subclades can be discerned within this clade; 1) Fungicola fagei 
and F. syzygia are closely related to the genus Dacryomaia. The type species of the genus Fungi-
cola does not cluster in the same subclade. Cryptochirus coralliodytes is closely related to a 
presumably undescribed species associated with the coral genus Leptoria. A larger clade is 
formed by several species (including undescribed species) of Lithoscaptus, including the type 
species L. paradoxus. This clade also contains the type species of Xynomaia. Another clade is 
formed by Fizesereneia, with another Xynomaia species clustering basally. A second clade is 

Hapalocarcinus, Utinomiella, Neotroglocarcinus and Pseudo-
cryptochirus, however, this clade is not supported by the ML analysis. The latter two genera form 
a well-supported subclade within this clade. The third clade is formed by the genera Opecarcinus 
(IP+ATL) and Pseudohapalocarcinus (IP), with Kroppcarcinus (ATL) in a basal position (albeit 
with low support and long branch length). 

Coevolution analyses
Based on the analysis in Jane 4.0, the following events can be discerned: 20 cospeciation events, 
three duplication events, 14 duplication – host switching events, eight losses, and 10 failures to 
diverge between Cryptochiridae and Scleractinia (Fig. 2). The majority of the cospeciation events 
were recorded in associations of gall crabs and hosts species belonging to the Agariciidae, Den-
drophyllidae, Fungiidae and Merulinidae. The results of the stats run show that the costs of the 
random sample solutions are higher than the optimal [= coevolution] solution, for which the costs 
are 49 (Fig. 3). For all the isomorphic optimal solutions provided by Jane 4.0 the costs and num-
ber of estimated coevolutionary events were the same.

Fig. 2. Tree resulting from analysis in Jane 4.0 showing the different coevolutionary events between Scleractinia 
(black lines) and Cryptochiridae (blue lines). ATL = Atlantic, RS = Red Sea, all other species are from the Indo- 

indicates species complex. Letters in bold refer to the host coral family of the gall crabs specimens: 
As = Astrocoeniidae, De = Dendrophylliidae, Is = Insertae sedis, Me = Meandrinidae, Mo = Montastreidae, Mu = 

et al., 2012; 
Huang et al., 2014).

▶
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Discussion

Relationships within the Cryptochiridae
There are three major clades within the Cryptochiridae, similar to the results of van der Meij and 
Reijnen (2014), which was based on 16S and COI mtDNA, and the results of Wei et al. (2013) that 

genus Troglocarcinus in a basal position, which is not supported by the ML analysis. The remain-
der of the clade consists of Fizesereneia panda) is 
endemic to the Red Sea and to other waters around the Arabian peninsula (van der Meij et al. in 
press). The genera Fungicola, Lithoscaptus and Xynomaia appear to be paraphyletic. Based on 

the genus Fungicola. The type species, F. utinomi clusters in a subclade with four other genera, 
whereas F. fagei and F. syzygia cluster with the genus Dacryomaia. The second clade, which is 
formed by Dendrophylliidae-associated genera Neotroglocarcinus and Pseudocryptochirus, is 
very well supported, whereas the clustering of Hapalocarcinus and Utinomiella with this clade 
is only supported by Bayesian inference. The clade containing Opecarcinus and Pseudohapalo-
carcinus, two genera associated with Agariciidae, is very well supported. Kroppcarcinus clusters 
weakly with this clade. This genus is strictly Atlantic, whereas Opecarcinus occurs in the Atlantic 

Pseudohapalocarcinus 
1990a). The position of Hapalocarcinus and Utinomiella is so far not consistent, and with low 
support (see Van der Meij and Reijnen, 2014). Again their position (Fig. 1) is only supported by 
the Bayesian analysis, in the ML analysis the resulting tree ended in a polytomy. Interestingly, 
these genera are both associated with Pocilloporidae corals.
 More species need to be added for certain genera, especially for Lithoscaptus, to understand 
the relationships within the paraphyletic genera. It is however clear that taxonomic revisions of 
certain genera are needed in order to become monophyletic genera.

Fig. 3. Histogram resulting from a stats run in Jane 4.0, showing the distributions of costs of the random sample 
solutions. The costs of the optimal [= coevolution] solution is indicated by the red dotted line. 
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Coevolution

host-parasite assemblage: evidence that the host and parasite phylogenies are derived inde-
pendently and statistical evidence that the topological similarity of the host and parasite trees 
exceeds chance expectations (Hafner and Nadler, 1990). They furthermore warn that the taxon-

of relationships within the other. They further their statement by mentioning that systematic 
investigations of parasites generally postdate systematic studies of their hosts. The latter is not 

et al., 
2011; Arrigoni et al., 2014a; Huang et al., -
ractinian systematics on gall crab systematics, in addition to a molecular approach to reconstruct 
the Cryptochiridae relationships. The present analysis supports the hypothesis that the topolog-
ical congruence between the gall crab and coral trees is not due to chance alone, hence specia-
tion of stony corals may have induced speciation in gall crabs. The Cryptochiridae and corals, 
however, do not have strict parallel phylogenies and evolutionary events other than cospeciation 
are needed to explain the topological incongruence found in the gall crab-coral tree pairs. Sort-
ing events, host-switches, losses and, to a lower degree, duplications, were present all along the 
twin history of these organisms. 
 An important aspect in determining whether there are mutual events between the crabs and 
hosts is the origin of the Cryptochiridae compared to the origin of the Scleractinia. The most 

-
cation roughly around 10 Ma (van der Meij and Klaus, chapter 6). This preliminary data shows 

et al., 
2013; Santodomingo et al., 2014). Also, the common ancestor of the gall crabs does not neces-
sarily have the same symbiotic lifestyle of the extant Cryptochiridae (i.e. this ancestor may not 

observed coevolutionary event should be ascribed to sequential evolution – the phylogeny of the 

 Based on the present results, it appears that the coral-cryptochirid system is a good model 

those presented in literature, which exclusively involve either parasites or mutualists, because 
(i) the number of hosts and symbionts used in the various existing studies is extremely varia-
ble, and (ii) the taxonomical range of symbionts and hosts is also extremely different from one 
study to another. Only one study is known that deals with such coevolutionary relationships in 
the marine environment, i.e., by looking at the relationship between crinoids and their myzos-
tomid commensals (Lanterbecq et al., 2010). This study showed a minimum of eight cospeci-
ation events between 16 Myzostomida worms and their Crinoidea hosts. This is comparable 
with the gall crabs, which showed 20 events between 38 Cryptochiridae and their coral hosts. 
However, the study of Lanterbecq et al. (2010) only comprised a small subset of the known 
associations between myzostomids and crinoids, whereas the present study includes about 
half the number of known associations between gall crabs and corals (van der Meij et al., 
chapter 12; van der Meij, unpublished data). The importance of one evolutionary event on 
another within a host-symbiont system can vary from case to case, based on the type of asso-
ciation (parasitism, commensalism, mutualism) (Lanterbecq et al., 2010). The association be-
tween Cryptochiridae and Scleractinia is mostly considered to be a symbiotic relationship 
(Kropp, 1986; Castro, 1988). 
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Limitations of this study
-

of more species, especially for species rich genera such as Lithoscaptus, and the inclusion of known 
cryptic species would shed more light on coevolutionary events in these associations. The coevolu-
tionary analysis used in this paper is an event-based method, which would ideally be supplemented 
by a topology- and distance-based methods (de Vienne et al. 2013). For the majority of the pro-
grammes that can perform such analyses the Scleractinia phylogeny has to be reconstructed based 
on molecular data, an exercise that is now hampered by large datasets, a lack of suitable markers and 
missing species. Preferably additional testing would also include a test of biogeography. 

Gall crabs as phylogenetic indicators of scleractinian evolution
The relationship between corals and gall crabs is a tight one, with at least 20 cospeciation events 
according to Jane 4.0. Also when comparing the phylogenies by eye, several similarities between 
the large overall clades become apparent. Within the Scleractinia two main clades are recog-
nized: a ‘complex’ clade and a ‘robust’ clade (Fukami et al. 2008). A third basal clade (containing 

-
age of modern scleractinians (Kitahara et al. 2010). No gall crabs have so far been recorded from 
this basal clade. Within the ‘complex’ and ‘robust’ clades several main clades can be distinguished. 

Pocilloporidae, whereas the robust clade is comprised of a subclade containing the Fungiidae, 
Psammocoridae and Leptastrea, and a large subclade (again with several subclades) consisting of 
Merulinidae, Lobophylliidae and several smaller families. Several Atlantic species cluster basal 
to this large subclade. 
 The Cryptochiridae show a similar pattern with the Dendrophylliidae and Agariciidae asso-
ciated gall crabs in separate clades. Two gall crab genera inhabit corals of the Pocilloporidae. The 
position of these genera within the Cryptochiridae is somewhat equivocal. Support for the posi-
tion of these genera is low and so far they have ‘jumped’ through the different trees resulting from 
phylogeny reconstructions. Two Fungicola species and Dacryomaia inhabit corals from the 
Fungiidae, Psammocoridae and Leptastrea which perfectly matches the coral phylogeny. The 
types species of Fungicola, however, clusters in a different clade. Like with the corals, the re-
maining gall crabs, associated mostly with Merulinidae and Lobophylliidae, form a large clade, 
and, like the corals, the Atlantic species Troglocarcinus corallicola clusters basally to this clade. 
In a more narrow framework of one family, gall crabs have shown to be good indicators of their 

molecular studies on Lobophyllidae and Merulinidae, such as the close relationship between the 
coral genera Lobophyllia and Symphyllia, and Oxypora or between Oulophyllia and Mycedium 
are mirrored in the gall crab phylogeny (Arrigoni et al., 2014b; Huang et al., 2014). The presence 
of deep-water species in the Cryptochiridae allows for future studies on the relationship between 
deep-water corals and shallow-water reef corals (Kitahara et al., 2010). 
 There are other groups of symbionts ‘predicting‘ systematic relationships, in the case of cryptic 

different species (Wulff, 2006). Similarly, based on the results of this study, gall crabs could serve 
as phylogenetic indicators of scleractinian relationships. Especially for scleractinian species and 

insertae cedis, for example Leptastrea spp. or Plesiastrea 
versipora, gall crabs could provide an indication of their closest coral relatives. This could be 
somewhat weakened by apparent host shifts.
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Concluding remarks
The two kinds of evidence as required according to Hafner and Nadler (1990) are met. The host 
and parasite phylogeny reconstructions were derived independently and the cospeciation analysis 
in Jane 4.0 showed that the topological similarity of the trees exceeds chance expectations, and 
thus the observed coevolutionary events should be ascribed to sequential evolution. The relation-
ship between Scleractinia and Cryptochiridae appears to be so tight that gall crabs can be used as 
phylogenetic indicators of scleractinian evolution. 

Acknowledgements

all his help with photography and lab work. Sequences were produced as part of a Naturalis Barcoding project. 

umbrella of Ekspedisi Widya Nusantara (E-Win). Fieldwork in Lembeh Strait in 2012 took place during a Marine 

Manado, N Sulawesi (Indonesia). I am grateful to LIPI and RISTEK for granting research permits. Bert Hoeksema 
(Naturalis) and Yosephine Tuti Hermanlimianto (RCO-LIPI) are acknowledged for all their efforts in organizing 
the various expeditions in Indonesia. The 2010 Semporna Marine Ecological Expedition was jointly organized by 

Biological Sciences and Naturalis, and was funded through WWF-Malaysia. The research permits for Malaysia 

Fisheries Sabah. The Tun Mustapha Park Expedition (TMPE) 2012 was jointly organized by WWF-Malaysia, 

-

Naturalis), Schure-Beijerinck-Poppingfonds (KNAW), Stichting Fonds Dr C van Tussenbroek (N Ongerboer-

Research in the Tropics) and the Van Tienhoven Foundation for International Nature Protection. 





Biogeography





Chapter 11

The curious case of Neotroglocarcinus dawydoffi  
(Decapoda: Cryptochiridae): unforeseen biogeographic patterns  
resulting from isolation

Sancia E.T. van der Meij & Bastian T. Reijnen

Abstract 

Coral gall crabs form a commonly overlooked component of the associated fauna of shallow-water reef corals and 
therefore little is known about their ecology and biogeography. This study investigated the biogeography and 
phylogenetic position of the informal ‘Detocarcini’ species group within the Cryptochiridae. We used molecular 
data for two mitochondrial markers (COI and 16S) obtained from gall crabs covering (part of) a wide geographic 
range: the Red Sea, Malaysia, Indonesia and New Caledonia. Our phylogeny reconstructions portrayed the ‘Deto-
carcini’ as paraphyletic within the monophyletic Cryptochiridae. A phylogeographic clustering was noticed in 
Neotroglocarcinus dawydoffi that was absent in its sister species, N. hongkongensis, and the closely related species 
Pseudocryptochirus viridis. A Neighbour Network was estimated for the N. dawydoffi dataset to visualize the 
similarity between sequences from different biogeographic areas, resulting in three groupings: (1) New Caledonia 
with Lembeh/Ternate (eastern Indonesia), (2) Semporna/Kudat (eastern Malaysia), and (3) Red Sea (Saudi Arabia). 
Cryptic speciation rather than isolation is discussed and rejected as an alternative explanation for the observed 
biogeographic pattern. 

2014 
Systematics and Biodiversity 12: 503-512
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Introduction 

Cryptochirids (Cryptochiridae), commonly known as coral gall crabs, may occur in high densi-
ties in coral reefs, but form a commonly overlooked component of the coral associated reef fauna 
(Hoeksema and van der Meij, 2013). Many aspects of their evolution, distribution and ecology 
have remained largely unknown, but the taxonomy of this monophyletic family (Guinot et al., 
2013; van der Meij and Schubart, 2014) has been studied in several series of papers by Fize and 
Serène (1956a, b, 1957), Takeda and Tamura (e.g. 1980, 1981, 1985), and Kropp (e.g. 1989, 1990a, 
1994). Within the Cryptochiridae, Kropp (1988a) recognized four informal species groups based 
on morphology: (1) Hapalocarcinus, (2) Pseudohapalocarcinus, (3) ‘Detocarcini’ and (4) ‘Crypto-
chirini’. The ‘Detocarcini’ group consists of the Atlantic deep-water genus Cecidocarcinus, and 
four shallow- water genera, one of which is restricted to East Africa (Detocarcinus) and three to 

Neotroglocarcinus, Pseudocryptochirus, Utinomiella). The ‘Crypto-
chirini’ species group includes all the remaining gall crab genera, including the Atlantic Troglo-
carcinus. 
 The informal ‘Detocarcini’ species group is noteworthy because all members of this clade 
(except Utinomiella) live in association with dendrophylliid corals (family Dendrophylliidae). 
Dendrophylliids are most common at depths between 50-300 metres, but also known from the 
intertidal and depths of up to 2165 metres (Cairns, 2001). The close relatives of this coral family 
remain unclear to some extent, but include the hermatypic Poritidae (Cairns, 2001; Fukami et al., 
2008; Kitahara et al., 2010; Huang, 2012), which is not known to host gall crabs (Kropp, 1990a). 
Utinomiella is associated with the coral genera Pocillopora and Stylophora, which belong to the 
Pocilloporidae (Kropp, 1990a). Studies on higher-level relationships among the Scleractinia show 
that the Pocilloporidae is part of the ‘robust clade’ that is highly divergent from the ‘complex’ 
clade containing the Dendrophylliidae and Poritidae (Fukami et al., 2008; Huang, 2012). Based 
on the close association between gall crabs and their coral hosts, paraphyly of the ‘Detocarcini’ 
within the Cryptochiridae is expected. 
 We analysed the relationships between the species included in ‘Detocarcini’ (we had no fresh 
material from Cecidocarcinus and Detocarcinus): Utinomiella dimorpha (Henderson, 1906) as-
sociated with pocilloporids, and Neotroglocarcinus and Pseudocryptochirus associated with the 
dendrophylliid Turbinaria (Fize and Serène, 1957; van der Meij, 2012). The latter two crypto-
chirid genera comprise three species: Pseudocryptochirus viridis Hiro, 1938; Neotroglocarcinus 
hongkongensis (Shen, 1936) and N. dawydoffi (Fize and Serène, 1956). A third Neotroglocarcinus 
species, N. monodi (Fize and Serène, 1956), was synonymised with N. hongkongensis by Kropp 
(1988b). To study the position of the ‘Detocarcini’ species group within the Cryptochiridae we 
analysed a dataset based on two mitochondrial markers (16S, COI) that included 12 out of the 15 

to New Caledonia) were used for the molecular phylogeny reconstructions. 

Material and methods 

Collecting 
Gall crabs were collected (2007-2012) from various locations in Indonesia (Manado [Menado], 
Sulawesi; Lembeh Strait, Sulawesi; Ternate, Halmahera; Raja Ampat, Papua) and Malaysian Bor-
neo (Kudat, Sabah; Semporna, Sabah). Additional specimens were collected in 2012 in New 

Mustapha 
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Park), New Caledonia and Saudi Arabia are coded as TMP, NC and SA, respectively. Corals were 
searched for gall crabs and subsequently split with hammer and chisel to isolate the crabs. After 
being photographed with an SLR camera equipped with macro lens to register colour patterns 
the gall crabs were preserved in 80% ethanol. All specimens are deposited in the collections of 
Naturalis Biodiversity Center in Leiden, the Netherlands (formerly Rijksmuseum van Natuurlijke 
Historie, collection coded as RMNH.Crus.D). 

DNA analyses 

using the DNeasy 96 Blood and Tissue Kit (Qiagen) and the Nucleo-Mag 96 Kit (Machery-Nagel) 
according to the manufacturer’s protocol for animal tissue. Incubation took place overnight for 

elution buffer. Polymerase chain reaction was carried out with standard PCR conditions: PCR 
CoralLoad Buffer (containing 15 mM MgCl2), 0.5 mL dNTPs (2.5 mM), 1.0 mL of each primer 
(LCO-1490 and HCO-2198, see Folmer et al. (1994), 16L2 and 16H10, see Schubart (2009)), 0.3 
mL Taq polymerase (15 units per mL), 18.7 mL of extra pure PCR water and 1.0 mL DNA tem-
plate. Thermal cycling was performed for COI and 16S by: initial denaturation at 95°C for 5 min, 
followed by 39 cycles of 95°C for 5 s, 47°C for 1 min and 72°C for 1 min. The initial elongation 
steps were followed by an additional elongation step of 10 min at 72°C. Sequences were assem-
bled and edited in Sequencher 4.10.1. Voucher data and GenBank accession numbers (KJ923643-
KJ923766) are provided in Appendix 1.

Phylogenetic analyses 
Phylogenetic analyses were carried out on three datasets: (1) a dataset containing 12 cryptochirid 
genera, with the heterotreme domeciid Cherusius triunguiculatus (Borradaile, 1902) and the 
thoracotreme varunid Hemigrapsus penicillatus (de Haan, 1835) as outgroup species (see van der 
Meij and Schubart, 2014); (2) a dataset containing members of the ‘Detocarcini’ group (P. viridis, 
N. hongkongensis and N. dawydoffi) from various localities. Based on the phylogeny reconstruc-

Utinomiella dimorpha (Henderson, 1906) was selected as the outgroup; 
(3) a dataset solely containing N. dawydoffi specimens from different locations to study the bio-
geographic patterns resulting from the second dataset. Neotroglocarcinus hongkongensis was 
used as the outgroup. 
 Sequences were aligned using Guidance (ClustalW, removal of unreliable columns below 
0.93) (Penn et al., 2010a). The alignment score for dataset 1 was 0.992 and for datasets 2 and 3 
0.999. A model selection analysis was carried out in jModelTest (Posada, 2008) to select the best-

 Maximum likelihood analyses (1000 bootstraps) were carried out in MEGA 5.20 (Tamura 
et al., 2011), and Bayesian inferences were estimated in MrBayes 3.1.2 (Ronquist and Huelsen-

000 generations, with a sample tree saved every 1000 generations. Likelihood scores stabilized 
at a value of 0.006 for dataset 1, at 0.010 for dataset 2 and at 0.002 for dataset 3. Consensus trees 
were constructed in MrBayes with a burnin of 25%, and visualized in FigTree 1.3.1 (http://tree.

MEGA 5.20 (1000 bootstraps, Close-Neighbour-Interchange (CNI), 10 initial trees with random 
addition). 
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 For the species belonging to Neotroglocarcinus and Pseudocryptochirus, the evolutionary 
divergence over sequence pairs, between a priori determined groups based on their respective 
localities, was estimated in MEGA 5.20 (p-distance; Table 1). 
 A Neighbour Network was estimated for the N. dawydoffi dataset to visualize the similarity 
between sequences from different biogeographic areas, using the Neighbor-Net algorithm in 
SplitsTree4 (Huson and Bryant, 2006). This algorithm is based on a distance method estimating 
the splits between the nodes. Inconsistencies in the splits are shown by using multiple lines con-
necting the nodes, when the algorithm does not fully resolve the network. All possible splits be-
tween the nodes are shown. The analysis produced a consensus network based on 10 000 boot-

Species delimitation 
To check for potential cryptic speciation within Neotroglocarcinus and Pseudocryptochirus, we 
used the web version of ABGD (Automatic Barcode Gap Discovery; Puillandre et al., 2012) on a 
concatenated dataset (16S and COI) and on the single marker sequence datasets of N. dawydoffi, 
N. hongkongensis and P. viridis using the standard settings (Pmin: 0.001; Pmax: 0.1; steps: 10; X: 

gap within a given dataset based on pairwise distances between the sequences without a priori 
species hypotheses and sorts sequences into putative species. The advantage of this approach is 
that no such hypotheses are needed, nor any of the proposed presets that were established as a 

et al., 2005) or the ‘10 times’ rule (Hebert et al., 2004). 

Results 

New geographic records of gall crabs belonging to the ‘Detocarcini’ 
Neotroglocarcinus dawydoffi: This species has so far been recorded from Micronesia (Enewetak 
Atoll, Marshall Islands - Garth et al., 1987; Palau, Guam, Pohnpei - Kropp, 1990a), and Vietnam 
(Nha Trang - Fize and Serène, 1957). New records reported herein include: Red Sea (Saudi Ara-
bian coast), Malaysia (Kudat, Semporna), Indonesia (Lembeh Strait, Ternate), and New Caledo-

various localities. Specimens of N. dawydoffi collected during this study were mostly associated 
with the corals Turbinaria mesenterina (de Lamarck, 1816) or Turbinaria sp. (see van der Meij 

N. dawydoffi from  
New Caledonia were collected from T. heronensis Wells, 1958. Neotroglocarcinus dawydoffi 
co-occurred with P. viridis in one of the colonies. Fize and Serène (1957) described N. dawydoffi 
from Turbinaria elegans Bernard, 1896, a possible junior synonym of Turbinaria stellulata (de 
Lamarck, 1816). The latter species appears similar to T. mesenterina and T. reniformis. 
 Neotroglocarcinus hongkongensis: This species has so far been recorded from Oman (Sadh 
- Hogarth, 1989), Vietnam (Nhatrang - Fize and Serène, 1957; Rocher Noir, Bai Miew - Kropp, 
1988b), Singapore (Serène, 1966), Indonesia (Banda, Moluccas - Kropp, 1994), Hong Kong (Shen, 
1936), Taiwan (Penghu Islands [Pescadores] - Utinomi, 1944; Orchid Isl. - Wei et al., 2006), Japan 
(Tanabe Bay, Central Japan - Hiro, 1938; Yaeyama Group, Ryukyu Isls - Utinomi, 1944) and 
Micronesia (Palau, Guam, Pohnpei - Kropp, 1990a). New records: Malaysia (Kudat, Semporna) 
and Indonesia (Lembeh Strait). All N. hongkongensis specimens in this study were associated 
with Turbinaria peltata (Esper, 1794); except for one specimen from T. cf. patula (Dana, 1846). 
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The host of N. hongkongensis was not recorded by Shen (1936), but the host of N. monodi [ = N. 
hongkongensis], was recorded as T. peltata by Fize and Serène (1957). 
 Pseudocryptochirus viridis: Records for P. viridis range from Vietnam to New Caledonia 
(see van der Meij, 2012). All specimens of P. viridis were collected from T. (cf.) reniformis, T. (cf.) 
mesenterina or Turbinaria sp. One specimen from New Caledonia was collected from T. heronen-
sis, where it co-occurred with N. dawydoffi N. hongkon-
gensis and P. viridis were not encountered along the Saudi Arabian coast of the Red Sea. 
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Fig. 1. Cladogram (ML analysis 1000 bootstrap iterations; 16S and COI) of the Cryptochiridae. Support values 
represent from left to right: Bayesian posterior probabilities/ML/MP. Numbers refer to collection codes (RMNH.
CRUS.D). Letters in bold refer to the host coral family of the gall crabs specimens: Me = Merulinidae, Lo = Lo-
bophylliidae, Fu = Fungiidae, Ps = Psammocoridae, Ag = Agariciidae, Po = Pocilloporidae, De = Dendrophyllii-

et al., 2012; Huang et al., 2014). The groupings of the gall crabs are based on Kropp 
(1988a). 
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Fig. 2. Cladogram of the genera Pseudocryptochirus and Neotroglocarcinus, based on 16S and COI, topology 
derived from Bayesian analysis. Support values from left to right: Bayesian posterior probabilities/ML/MP. NC = 
New Caledonia, TER = Ternate (Indonesia), LEM = Lembeh Strait (Indonesia), MEN = Manado (Indonesia), 
SEM = Semporna (Malaysia), TMP = Kudat (Malaysia), SA = Red Sea (Saudi Arabia). Stars represent nodes with 
Bayesian probabilities of >90 and high ML/MP values.
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Relationships within the Cryptochiridae 
-

gies for the ML (MEGA) and Bayesian analyses (Fig. 1). Five large clades can be distinguished. 
ini’. 

Most notably, Sphenomaia pyriformis (Edmonson, 1933) clusters as a sister species to the other 
genera, and Lithoscaptus prionotus Kropp, 1994 and Xynomaia sheni (Fize and Serène, 1956) 
appear to be closely related. Hapalocarcinus marsupialis Stimpson, 1859 clusters as a sister clade 
(Fig. 1) to the ‘Cryptochirini’, but support values are low. The third clade consists of Pseudocrypto-
chirus and Neotroglocarcinus as sister genera. The fourth clade is formed by Pseudohapalo-
carcinus ransoni Fize and Serène, 1956 and Opecarcinus lobifrons Kropp, 1989. Utinomiella 
dimorpha clusters basally to all other genera. 

Patterns within the ‘Detocarcini’, with a focus on  
The topologies of the ML, MP and Bayesian consensus trees were congruent and the three clades 
are highly supported (Fig. 2). Within the P. viridis clade and the N. hongkongensis clade, little to 
no sequence variation was observed between specimens, resulting in short branch lengths. In 
contrast, subclades can be discerned within the N. dawydoffi clade. Specimens from New Caledo-
nia cluster together, as well as specimens from eastern Indonesia (Lembeh/Ternate). Little varia-
tion can be observed among specimens from eastern Malaysia and Saudi Arabia, and support for 
separate grouping is absent (Fig. 2). Yet, in a separate analysis containing only data of N. dawydoffi 

split between clade I and II has low support 
values. 
 Based on the geographic clustering in 
Fig. 3, a Neighbour Network analysis was 
conducted on the N. dawydoffi specimens to 
visualise sequence similarities (Fig. 4). The 
box-like shapes in the network indicate data 
incompatibilities, shown as parallel lines, 
which cannot be explained by tree-like evo-
lution scenarios. The distinction between 
these two groups is unclear and therefore 

edges (= branches) between groups are short 
and connected by several parallel lines. 

-
in the observed clusters than in the main net-
work. The network shows three clusters: (1) 
New Caledonia with Lembeh/Ternate (east-
ern Indonesia), (2) Semporna and Kudat 
(eastern Malaysia) and (3) Red Sea (Saudi 
Arabia). The edges between Saudi Arabia 
and Malaysia are shorter than those between 
Malaysia and Indonesia, despite the geo-
graphic distance. Groupings in the network 
(Fig. 4) are similar to those in the cladogram 
(Fig. 3) and therefore considered to be robust. 
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Fig. 3. Cladogram showing variation within N. dawy-
doffi, with N. hongkongensis as outgroup. Groupings I-V 

right: Bayesian posterior probabilities/ML/MP. Stars 
represent nodes with Bayesian probabilities of >90 and 
high ML/MP values. 
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 High sequence heterogeneity is observed in N. dawydoffi from Kudat (TMP; Appendix 3). 
These specimens do not show a clear biogeographic pattern (Fig. 3) and ‘wander’ through the 
Neighbour Network (Fig. 4). They are most similar to specimens from nearby Semporna (Ta-
ble 1). 
 Based on the estimates of evolutionary divergence (Table 1), the similarity between N. da-
wydoffi specimens from Malaysia and Saudi Arabia was investigated further. There is a 3.7-3.8% 
sequence difference between specimens of N. dawydoffi from New Caledonia and Lembeh/
Ternate and almost 5% sequence difference between the New Caledonian and Malaysian/Saudi 
Arabian specimens (Table 1; see also Appendix 3). The same test for evolutionary divergence was 
conducted for N. hongkongensis and P. viridis. These tests showed almost no difference between 
N. hongkongensis from three different localities (LEM/SEM/TMP), contrary to N. dawydoffi 
for the same three localities. For P. viridis the largest sequence difference (1.6%) was observed 
between New Caledonia and Ternate. 

Species delimitation and speciation 
The concatenated sequence dataset (16S and COI) and single marker datasets subjected to ABGD 
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Fig. 4. Neighbour Network analysis 
by SplitsTree4 to visualize the geo-
graphic clustering in N. dawydoffi, 
based on 16S and COI. NC = New 
Caledonia, TER = Ternate (Indonesia), 
LEM = Lembeh Strait (Indonesia), 
SEM = Semporna (Malaysia), TMP = 
Kudat (Malaysia), SA = Red Sea (Sau-
di Arabia). Groupings I-V are based 
on Fig. 3. 
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both the recursive and initial partition. Each of these MOTUs corresponded to one of the three 
nominal species (Neotroglocarcinus dawydoffi, N. hongkongensis, Pseudocryptochirus viridis). 
Changing the Kimura model to the Jukes-Cantor model or changing the relative gap width did not 
have an effect on the outcome of the analysis. 

Discussion 

Relationships within the Cryptochiridae, with a focus on the ‘Detocarcini’ 

morphology used by Kropp (1988a) to a degree, but some substantial differences are observed 
(Fig. 1). The ‘Detocarcini’ was found to be paraphyletic, with representatives retrieved in two 
clades. Pseudocryptochirus is here positioned basally to Neotroglocarcinus and should be con-
sidered a sister genus of Neotroglocarcinus, which is in agreement with Kropp (1988a). The pre-

Pseudocryptochirus and Neotroglocarcinus with Cecidocarcinus and 
Detocarcinus based on morphology could not be tested, owing to a lack of DNA material for the 
latter two genera. Utinomiella dimorpha, the other species belonging to the ‘Detocarcini’ group 
according to Kropp (1988a), was retrieved basally to all other cryptochirids and does not seem to 

Pseudocryptochirus and Neotroglocarcinus (see Kropp, 
1988a: 340). Like Neotroglocarcinus and Pseudocryptochirus, Cecidocarcinus is only known to 
be associated with the Dendrophylliidae, whereas Detocarcinus is associated with corals belong-
ing to the Rhizangiidae, Oculinidae and Caryophyllidae, and possibly Dendrophylliidae (Kropp 
and Manning, 1987). In comparison, U. dimorpha is found inhabiting the Pocilloporidae. 

N. dawydoffi   NC  TER  LEM  SEM  TMP  SA

 NC   0.006  0.006  0.006  0.006  0.006
 TER  0.038   0.002  0.005  0.004  0.004
 LEM  0.037  0.005   0.005  0.004  0.004
 SEM  0.045  0.032  0.032   0.002  0.002
 TMP  0.044  0.028  0.028  0.012   0.002
 SA  0.049  0.032  0.033  0.010  0.014

N. hongkongensis LEM  SEM  TMP

 LEM   0.001  0.000
 SEM  0.002   0.000
 TMP  0.000  0.001

P. viridis   NC  TER  LEM  MEN  SEM

 NC   0.003  0.002  0.003  0.003
 TER  0.016   0.002  0.002  0.002
 LEM  0.010  0.013   0.002  0.002
 MEN  0.015  0.006  0.012   0.002
 SEM  0.014  0.010  0.013  0.010

Table 1. Estimates of evolution-
ary divergence over sequence 
pairs between a priori determined 
groups based on 16S and COI (10 
000 bootstraps). The number of 
base differences per site from av-
eraging over all sequence pairs 
between groups are shown below 
the diagonal, SE estimates are 
shown above the diagonal. NC = 
New Caledonia, TER = Ternate 
(Indonesia), LEM = Lembeh 
Strait (Indonesia), MEN = Mana-
do (Indonesia), SEM = Semporna 
(Malaysia), TMP = Kudat (Ma-
laysia), SA = Red Sea (Saudi Ara-
bia).
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 Almost all other gall crab genera are represented in the ‘Cryptochirini’ group recognised by 
Kropp (1988a). Kropp considered Pseudohapalocarcinus a separate group, yet the DNA results 

Opecarcinus lobifrons, which was placed in the ‘Cryptochirini’ 
group. Pseudohapalocarcinus and Opecarcinus exclusively inhabit corals of the Agariciidae, but 
there are obvious morphological differences between the two, of which carapace shape is the 
most notable. The position of Hapalocarcinus marsupialis remains to some extent unclear. 

Neotroglocarcinus  biogeographic isolation or cryptic speciation? 
Numerous molecular phylogenetic and population genetic studies on different marine organisms 

by low sea-level stands during Pliocene and Pleistocene glaciations (Hoeksema, 2007; Timm et 
al., 2008; Kochzius et al., 2009). Studies on stony and soft corals showed strong clustering in bio-
geographic regions (Keshavmurthy et al., 2013; Reijnen et al., 2014). These studies found a high 

-
phological characters to explain this divergence. Such biogeographic clustering further compli-
cates already present uncertainties in the taxonomy and systematics of marine invertebrates. 
 Within the informal ‘Detocarcini’ species group, Neotroglocarcinus dawydoffi shows a bio-
geographic pattern. Surprisingly, and contrary to the studies mentioned above, N. dawydoffi 
shows a closer relationship between Malaysian Borneo and the Red Sea than between Malaysian 
Borneo and Lembeh/Ternate in eastern Indonesia (Table 1, Figs 3-4), despite the shorter distance 
between the latter. Isolation by distance can be a reason for high genetic differentiation (Timm 
and Kochzius, 2008), but this does not appear to be the case in N. dawydoffi. The observed bio-
geographic pattern does not correspond with current patterns of ocean circulation. Palumbi 
(1996) showed similar differences in average sequence heterogeneity between sea urchin popula-

results of Palumbi (1996) and present-day surface circulation does not imply that genetic struc-
ture always has to result from past events (e.g. dispersal from the Indian Ocean towards the Indo- 

assumed to have been the case so far (Benzie, 1999), or that in N. dawydoffi specimens from 
Borneo and the Red Sea went through a similar bottleneck event resulting in sequence homo-
geneity. 
 A correct assessment of species boundaries is fundamental to biogeographic hypothesis test-
ing (e.g. Palumbi, 1996, 1997). No cryptic species are expected within N. dawydoffi based on the 
results from our ABGD analysis. When comparing the values of Table 1 (largest genetic differ-
ence 4.9%) with those obtained from the ABGD analysis, in which values exceeding 7.7% were 

observed difference is related to biogeographic variation within a single species and not a result 
of cryptic speciation. Moreover, in the genus Fungicola cryptic speciation is observed to be 

-
covered cryptic species were much longer, and no geographic clustering was observed (van der 
Meij and Hoeksema, 2013; van der Meij, unpubl). Compared with Fungicola the branch lengths 
are much shorter in Neotroglocarcinus -
culties concerning the host genus Turbinaria (Cairns, 2001; van der Meij, 2012). 
 It remains possible that the selected markers are too conservative for the analyses, although 
(parts of the) Cytochrome Oxidase I gene of the mtDNA are frequently used for studies on 
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biogeographic patterns and population genetics (e.g. Palumbi, 1996; Benzie, 1999; Kochzius et al., 
2009; Ahrens et al., 2013). Moreover, the present study was limited by the number of specimens 
available per locality. Nonetheless, it is noteworthy that (i) closely related sister species show 
such large differences in sequence variation, and (ii) that the observed variation in N. dawydoffi 
appears to be linked to biogeographic patterns, which has so far not been observed in other gall 
crab species. 
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Chapter 12

The Red Sea and Arabia are a diversity and endemism hotspot  
for coral-dwelling gall crabs (Cryptochiridae)

Sancia E.T. van der Meij, Michael L. Berumen & Gustav Paulay

Abstract

The Red Sea and Arabia are renowned for marine endemism and diversity, mostly based on studies of the coral 
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Chapter 13

Cross-shelf distribution patterns of gall crabs in the Makassar Strait 
(SW Sulawesi, Indonesia)

Sancia E.T. van der Meij, Leon R. Pasman & Bert W. Hoeksema

Abstract 

Coral reef cryptofauna forms an important component of tropical marine biodiversity, consisting primarily of inver-
tebrates dwelling in and on corals and other sessile organisms. Distribution patterns of associated organisms are, 

patterns of gall crabs (Cryptochiridae) associated with mushroom corals (Fungiidae) were studied from near-shore 
to offshore over the 40 km wide Spermonde Shelf. Occurrence rates of crabs was measured in four parallel shelf 
zones along the shore with the use of belt quadrats at 5 m depth intervals over the reef bottom down to a maximum 
of 40 m. Four gall crab species were encountered, of which Fungicola syzygia was the most abundant and inhab-
ited the widest range of mushroom coral hosts. The primary factor determining gall crab distributions was host 
coral availability. Host shifts were observed when the preferred host was absent in certain shelf zones or at certain 
depths. The mid- and outer shelf reefs had the highest occurrence rates of gall crabs, while those near-shore had 
lower occurrence rates. Highest occurrence rates of gall crabs were observed from 5 to 15 m depth, and mostly at 
10 m depth. 

Manuscript under review
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Introduction

Coral-associated organisms contribute highly to the species richness of coral reefs, especially in 
the Coral Triangle, where the highest concentrations of coral host species can be found (Hoeksema, 
2007). Nonetheless, such associated faunas are relatively understudied, possibly because many 

endosymbiotic lifestyle (e.g. Scott, 1987; Bickford et al., 2007). The size of the coral host may be 
important for the composition of the associated fauna (Schiemer et al., 2009; Carvalho et al., 
2014). The nature of such associations is often uncertain, implying that they can be either com-
mensals or parasites (Castro, 1988; Buhl-Mortensen and Mortensen, 2004). 
 Reef habitats support abundant and diverse assemblages of small crustaceans; a large portion 

coral reefs live in close association with scleractinian corals (Serène, 1972). This includes both 
motile species such as copepods and amphipods, as well as (mostly) sessile species such as 
Paguritta hermit crabs (Paguridae) and gall crabs (Cryptochiridae). The associations between 
corals and crustaceans range from facultative arrangements to obligate dependencies (Stella et al., 
2011; Hoeksema et al., 2012).
 Gall crabs are obligate associates of stony corals, living in enclosed galls or pits in their coral 
hosts. Although cryptochirids have been known to science for over 150 years, little is known 
about their ecology and biology. They are common inhabitants of coral reefs, but easily overlooked 
because they are small and reside inside holes (Hoeksema and van der Meij, 2013). According to 

live in association with Fungiidae corals: Fungicola fagei (Fize and Serène, 1956) and F. utinomi 
(Fize and Serène, 1956). Hoeksema et al. (2012) reported on a Dacryomaia species as a third 
cryptochirid species associated with Fungiidae, and van der Meij and Hoeksema (2013) reported 
on an undescribed species, closely related to F. fagei, which is now described as F. syzygia van der 
Meij, 2015. 
 Literature on distribution patterns of coral-associated organisms is scarce (Preston and Do-
herty, 1994; Oigman-Pszczol and Creed, 2006; Gittenberger and Hoeksema, 2013; van der Meij 
and Hoeksema, 2013). The presence of coral-associated organisms evidently depends on host 
availability, which may be related to various environmental factors, such as distance offshore, 
exposure to winds, and depth (Cleary et al., 2005; Hoeksema, 2012a, b). It is not entirely under-
stood how these environmental factors interact with occurrence rates (Gittenberger and Hoeksema, 
2013; van der Meij and Hoeksema, 2013), with the possible exception of sedimentation. Sediment 
is expected to hinder gall crabs and other endosymbiotic invertebrates because it may clog their 

et al., 1995), whereas the host itself may be well equipped to shed 
sediments (Bongaerts et al., 2012; Erftemeijer et al., 2012). 
 To examine which factors may control gall crab occurrences, a good knowledge of the host 
species and their distributions is conditional. Ideally, the research should be undertaken in an area 
where clear environmental gradients can be discerned that affect both the host species and the 
associated organisms. This area should also be species-rich regarding host assemblages and as-

among the crabs.
 In this paper the focus is on the cross-shelf distribution patterns of gall crab species associated 
with mushroom corals (Fungiidae) in the Spermonde archipelago in SW Sulawesi (Indonesia), 
which is situated in the Coral Triangle. A total of 37 fungiid species has been observed in this 
archipelago, some of which show wide cross-shelf distribution ranges (Hoeksema, 2012a, b). 
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Most fungiid species are free-living (Hoeksema, 1989; Gittenberger et al., 2011) and may co-exist 
in dense multi-species aggregations within their depth range overlaps (Hoeksema, 2012a, b; 
Hoeksema and Benzoni, 2013). Because of these ecological traits, mushroom corals and their 
associates can easily be counted and used in quantitative comparative studies using quadrats over 
reef transects dealing with co-occurrence in both host species assemblages and their associated 
fauna.

Material and methods

Spermonde Archipelago is situated on a well-documented carbonate coastal shelf, approximately 

(Cornils et al., 2010; Hoeksema, 2012a; Sawall et al

land-eroded sediments and sewage from the mouths of the nearby Jene Berang river to the south 
and smaller rivers to the north. Makassar city, the capital of South Sulawesi province, is a major port 
with a population of over one million inhabitants (Hoeksema, 2012a, b; references therein).

in four shelf zones (Fig. 2). The reefs are rich in coral species, which is related to the various reef 
environments (Umbgrove, 1930; Moll, 1983; Best et al., 1989). The distribution of mushroom 
corals off SW Sulawesi varies with: 1) the arrangement of reefs along cross-shelf gradients, from 
onshore to offshore, 2) the circum-reef variation in wind exposure and subsequent wave action, 

the reef base below (Hoeksema, 2012a, b).
 A total of 11 reefs divided over four zones were surveyed (Figs 1-2). Data collection consisted 
of two parts. Firstly, mushroom corals were collected at various depths (down to 40 m) in four shelf 
zones parallel to the shoreline as a preliminary inventory of crab-infested mushroom coral species. 
Secondly, belt quadrats of 50 x 2m2 at isobaths across depth gradients in the transects sites (at 1, 5, 
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Fig. 1. Map of the Spermonde archipelago, showing zone I-IV.
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10, 15, 20 and 25 m) were monitored for mushroom corals containing gall crabs at 27 sites. In each 
quadrat an area of 100 m2 was searched for gall crab species, except in zone 4 at a depth of 5 meters 
where this was 50 m2. Transect work was predominantly carried out on the wave-exposed west 
sides of the reefs, as mushroom coral species are most abundant here (Fig. 1, Table 1). 

(Gittenberger et al., 2011). The corals were split with a hammer and chisel and the gall crab was 
-

posited in the collections of Naturalis in Leiden (collection coded as RMNH.Crus.D). Gall crab 
-

et al., 2012; van der Meij and Hoeksema, 2013; van der Meij, 
2015a). The gall crab-host associations reported in Hoeksema et al. (2012) were largely derived 
from this survey. Dacryomaia sp. is possibly new to science, which is currently being studied by 

et al., 2003). 
 

Results

The percentage of corals inhabited by gall crabs was highest on Samalona reef in zone II (Fig. 1, 

Distance offshore (km)

D
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 (m

)
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010203040
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Zone 4

offshore

Zone 2

onshore

Zone 1offshoreZone 3

Fig. 2. Schematic cross-section of the central Spermonde Shelf from the Makassar Strait to the mainland (after 
Hoeksema, 2012a).

Shelf zone Reef  Transect direction with maximum depth (m)

  N NW W SW S SE E

Zone I Lae-Lae - - 10 - - - 10

Zone II Barang Caddi - - 25 - 25 20 -
 Barang Lompo - 25 25 - - - -
 Bone Baku - - 20 - - - -
 Samalona 20 - 25 - 25 20 25
Zone III Badi - - 40 - - - -
 Bone Tambung 35 35 35 - - - -

 Lumu Lumu - - 40 - - - -
Zone IV Langkai 5 - 15 - - - -

Table 1. List of 11 reefs in four 
reef zones on the Spermonde 
Shelf with the position of 27 tran-
sects (Fig 1), maximum depth (m) 
are provided. 



159

Cross-shelf distribution patterns of gall crabs

Table 2. Cross-shelf distribution in the Spermonde archipelago. Coral presence/absence data and zonations I-IV 

-
bols:  = species inhabited by Dacryomaia sp.; ▲ = species inhabited by Fungicola fagei; ● = species inhabited 
by F. syzygia ■ = species inhabited by F. utinomi; ○ = species present, not inhabited by gall crab; - = coral species 
absent; ? = no species presence/absence data available.

 I  II    III    IV 

Ctenactis albitentaculata Hoeksema, 1989 - - - ○ ? ○ ○ ? ○ ? ○ 0
C. crassa (Dana, 1846) - - ○ ○ ? ○ ○ ? ○ ? ○ 0
C. echinata (Pallas, 1766) ○ ○ ○ ■ ? ○ ○ ? ○ ? ○ 13
Cycloseris costulata (Ortmann, 1889) ○ ○ ○ ○ ● ● ●♦ ? ○ ● ○ 40
C. cyclolites (de Lamarck, 1816) - - ○ ○ ? - ○ ? ○ ? - 0
C. distorta (Michelin, 1842) - - - - ? - ○ ? - ? - 0
C. fragilis (Alcock, 1893) - - ● ○ ? ○ ○ ? ● ? - 40
C. mokai (Hoeksema, 1989) - - ○ ○ ? ○ ○ ? ○ ? ○ 0
C. sinensis  - - - ○ ? ○ ○ ? ○ ? ○ 0
      (Milne Edwards and Haime, 1851)
C. somervillei (Gardiner, 1909) - - - ○ ? ○ ○ ? ○ ? - 0
C. tenuis (Dana, 1846) - - ○ ● ? ○ ○ ? ○ ? ○ 17
C. vaughani (Boschma, 1923) - - - ○ ? - ○ ? ○ ? - 0
Danafungia horrida (Dana, 1846) ○ ○ ○ ■ ? ○ ○ ? ○ ? ○ 13
D. scruposa ○ ○ ○ ○ ? ○ ○ ○ ○ ? ○ 0
Fungia fungites (Linnaeus, 1758) ○ ○ ○ ○ ? ○ ○ ? ■ ? ○ 13
Halomitra pileus (Linnaeus, 1758) - - ○ ■ ? ○ ○ ? ■ ? ○ 33
Heliofungia actiniformis  ○ ○ ○ ○ ? ○ ○ ? ○ ? ○ 0
      (Quoy and Gaimard, 1833)
H. fralinae (Nemenzo, 1955) - - - ○ ? ○ ○ ? ○ ? ○ 0
Herpolitha limax (Esper, 1797) ○ ○ ○ ○ ? ■ ○ ? ○ ? ● 13
Lithophyllon concinna (Verrill, 1864) ○ ○ ○ ○ ■ ■ ■ ? ○ ■ ○ 40
L. repanda (Dana, 1846) ○ ○ ■ ■ ■ ■ ●■ ■ ■ ■ ■ 82
L. scabra (Döderlein, 1901) ○ ○ ○ ●■♦ ♦ ○ ♦ ? ♦ ? ○ 44
L. spinifer  - - - - ? - - ? - ? - 0
      (Claereboudt and Hoeksema, 1987)
L. undulatum Rehberg, 1892 - - - ○      ? - 83
Lobactis scutaria (de Lamarck, 1801) - - ○ ○ ? ○ ○ ? ○ ? ○ 0
Pleuractis granulosa ○ ●♦ ● ●♦ ●♦ ● ●♦ ●♦ ● 89
P. gravis (Nemenzo, 1955) ○ - ○ ○ ? ○ ○ ? ○ ? ○ 0
P. moluccensis (van der Horst, 1919) ○ ○ ○ ● ● ● ● ● ● ● ○ 64
P. paumotensis (Stutchbury, 1833) ● ○ ● ● ● ● ● ● ● ● ● 91
Podabacia crustacea (Pallas, 1766) ○ ○ - ▲ ? ○ ○ ? ○ ? - 17
Polyphyllia talpina (Lamarck, 1801) ○ ○ ○ ○ ? ○ ○ ? ○ ? ○ 0
Sandolitha dentata Quelch, 1884 - - - ○ ? ○ ○ ? ○ ? - 0
S. robusta (Quelch, 1886) ○ ○ ○ ○ ? ○ ■ ? ○ ■ ▲ 33
Zoopilus echinatus Dana, 1846 - - - - ? - ○ ? ○ ? - 0
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Table 3. Number of commonly inhabited fungiid coral individuals present per zone and transect depth (number of 
inhabited corals between brackets in bold
10 m depth, in zone IV no reefs were present below 15 m (indicated by - ).

crab species zone 1 m  5 m  10 m  15 m  20 m  25 m 

  Dacryomaia sp.

Pleuractis granulosa I 0 0 0 0 0 0 - - - - - -
  II 0 0 1(0) 0 28(0) 0 16(0) 0 1(0) 0 0 0
  III 0 0 5(0) 0 87(1) 0 80(0) 0 3(0) 0 5(0) 0
  IV 0 0 0 0 3(0) 0 1(0) 0 - - - -
Lithophyllon scabra I 2(0) 0 3(0) 0 0 0 - - - - - -
  II 0 0 5(0) 0 10(0) 0 3(0) 0 0 0 0 0
  III 0 0 4(0) 0 20(0) 0 11(0) 0 0 0 0 0
  IV 1(0) 0 0 0 0 0 0 0 - - - -
L. undulatum I 0 0 0 0 0 0 - - - - - -
  II 0 0 1(0) 0 1(0) 0 2(0) 0 0 0 0 0
  III 0 0 4(0) 0 7(0) 0 5(0) 0 1(0) 0 0 0
  IV 0 0 0 0 1(0) 0 0 0 - - - -

  Fungicola fagei

Sandalolitha robusta I 2(0) 0 4(0) 0 0 0 - - - - - -
  II 0 0 15(0) 0 16(0) 0 11(0) 0 0 0 0 0
  III 0 0 15(0) 0 26(0) 0 3(0) 0 0 0 0 0
  IV 0 0 5(1) 20 1(0) 0 0 0 - - - -

  F. syzygia

Cycloseris costulata I 0 0 3(0) 0 2(0) 0 - - - - - -
  II 0 0 4(0) 0 56(1) 1.8 47(1) 2.1 1(0) 0 0 0
  III 0 0 6(0) 0 99(0) 0 129(0) 0 16(0) 0 18(0) 0
  IV 0 0 0 0 0 0 0 0 - - - -
Pleuractis granulosa I 0 0 0 0 0 0 - - - - - -
  II 0 0 1(0) 0 28(2) 7.1 16(1) 6.3 1(0) 0 0 0
  III 0 0 5(0) 0 87(6) 6.9 80(0) 0 3(0) 0 5(0) 0
  IV 0 0 0 0 3(0) 0 1(0) 0 - - - -
P. moluccensis I 0 0 30 0 8(0) 0 - - - - - -
  II 0 0 0 0 50(2) 4.0 56(1) 1.8 8(0) 0 1(0) 0
  III 0 0 0 0 0 0 14(0) 0 1(1) 100 14(1) 7.1
  IV 0 0 0 0 0 0 0 0 - - - -
P. paumotensis I 27(0) 0 20(0) 0 0 0 - - - - - -
  II 1(0) 0 43(2) 4.7 95(9) 9.5 46(4) 8.7 2(0) 0 0 0
  III 0 0 67(3) 4.8 109(9) 8.3 27(4) 14.8 1(0) 0 0 0
  IV 0 0 26(0) 0 4(0) 0 0 0 - - - -

  F. utinomi

Halomitra pileus I 0 0 0 0 0 0 - - - - - -
  II 0 0 1(0) 0 2(0) 0 4(0) 0 0 0 0 0
  III 0 0 5(0) 0 12(0) 0 4(0) 0 0 0 0 0
  IV 0 0 5(0) 0 1(0) 0 0 0 - - - -
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high rates of corals inhabited by gall crabs, followed closely by Langkai (zone IV). Despite the 
abundant presence of mushroom corals, gall crabs were absent in the onshore zone I, as well as at 
1 m depth in the other three zones.
 Fungicola syzygia was the most abundant gall crab species inhabiting Fungiidae over the 
whole shelf area, despite its near-absence close to the shore line. This species was only encoun-
tered once on an on-shore reef (outside transects), but was found abundantly on the mid-shelf 
reefs in zones II and III (Tables 2-3). The single specimen in zone I was found in a coral of Pleu-
ractis paumotensis. This mushroom coral species hosted F. syzygia across the whole shelf, 
including the most offshore reefs. It also showed its highest abundance near-shore, and was com-
mon elsewhere on the shelf (Hoeksema, 2012a). Pleuractis granulosa, P. moluccensis and P. 
paumotensis were regularly found inhabited on reefs in zone II-IV, just like Cycloseris costulata. 
This latter species was inhabited by both F. syzygia and Dacryomaia sp. Fungicola utinomi 
was observed inhabiting Lithophyllon repanda on all reefs in zones II-IV, and also frequently 
observed in L. concinna on the same reefs. Dacryomaia sp. inhabited Lithophyllon scabra, L. 
undulatum and P. granulosa in zones II-III. Fungicola fagei was only observed on two reefs, 
inhabiting the phylogenetically closely related species Podabacia crustacea and Sandalolitha 
robusta (Table 2).
 The most frequently inhabited coral species were Lithophyllon repanda, L. undulatum, Pleu-
ractis granulosa and P. paumotensis, which housed three out of the four known gall crabs inhab-
iting fungiids. Fungicola fagei, encountered on only two Spermonde reefs, is associated with 
fungiids belonging to the genera Podabacia and Sandalolitha, which were observed in all zones.

Occurrence rates
In most fungiid host corals, gall crabs reside in pits between the septae with a narrow opening for 
water circulation. However, crab species associated with free-living corals of Lithophyllon repanda 
reside in gall-like structures with overhangs near the coral mouth. However, such overhangs can 
also be observed in pits of Dacryomaia sp. in corals of the attached L. undulatum.

cont. Table 3

crab species zone 1 m  5 m  10 m  15 m  20 m  25 m 

Lithophyllon concinna I 0 0 0 0 0 0 - - - - - -
  II 0 0 26(0) 0 56(0) 0 45(0) 0 2(0) 0 0 0
  III 1(0) 0 51(0) 0 234(0) 0 62(0) 0 1(0) 0 2(0) 0
  IV 0 0 78(0) 0 4(0) 0 0 0 - - - -
L. repanda I 1(0) 0 0 0 0 0 - - - - - -
  II 2(0) 0 98(1) 1.0 126(2) 1.6 64(0) 0 2(0) 0 0 0
  III 11(0) 0 428(6) 1.4 628(4) 0.6 180(0) 0 2(0) 0 3(0) 0
  IV 0 0 474(1) 0.2 52(0) 0 2(0) 0 - - - -
Sandalolitha robusta I 2(0) 0 4(0) 0 0 0 - - - - - -
  II 0 0 15(0) 0 16(0) 0 11(0) 0 0 0 0 0
  III 0 0 15(1) 6.7 26(0) 0 3(0) 0 0 0 0 0
  IV 0 0 5(0) 0 1(0) 0 0 0 - - - -

Infested corals per depth 50(0) - 1462 - 1865 - 923 - 45 - 30 -
     (15)  (36)  (11)  (1)  (1)
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 Occurrence rates can be obtained based on transect data (Table 3). For example, in zone II at 
5 m depth, F. syzygia inhabited two out of 43 available Pleuractis paumotensis corals, resulting 

 If outliers are ignored (F. fagei S. robusta corals and F. syzygia in-
habiting a single available P. moluccensis coral), the occurrence rates range between 0.2 and 14.8 

Dacryomaia sp. and F. fagei is scarce, relating to a lower abundance in comparison 
to F. syzygia and F. utinomi. Of the latter two, F. syzygia has a higher overall abundance in its 
respective hosts than F. utinomi (Table 3). 

Depth distributions
Data on the depth distribution of gall crabs were obtained from belt quadrats of 50 × 2m2 along 
depth gradients (1, 5, 10, 15, 20 and 25 m; Table 3). Only results concerning the preferred coral 
host species of the gall crabs during the research efforts are mentioned here (Table 2; Hoeksema 
et al., 2012; van der Meij and Hoeksema, 2013). 
 No inhabited fungiid species were observed in the belt transects of zone I, as well as in all the 
1-m depth belt quadrats. Most gall crabs were found at 10 m depth, where also the highest density 
of host corals was found. The depth with the highest concentrations of fungiids increased with 
distance from the coast (except for Langkai in zone IV).
 Fungicola syzygia was present at depths with high densities of available host coral species. 
The highest occurrence rates were found in zones II and III at 10 and 15 m depth in its preferred 
host Pleuractis paumotensis, which was also present in zone IV, but to a lesser extent (Table 3). 
Its sister species P. moluccensis (see Gittenberger et al., 2011) prefers greater depths (> 15 m), 
where it hosts F. syzygia. Fungicola fagei was only observed in zone IV, where it inhabited one 

Sandalolitha robusta individuals. Zones II and III had many available 
host corals belonging to the genera Podabacia and Sandalolitha, but these were not inhabited by 
gall crabs. Fungicola utinomi was only found at 5 and 10 m depth in zones II and III, where its 
preferred host species Lithophyllon repanda also showed its highest abundance. The occurrence 
rates are much lower than for F. syzygia. Only one specimen of Dacryomaia sp. was found at 10 m 
depth in a colony of Pleuractis granulosa (zone III). 

Discussion

The distribution of mushroom corals on the Spermonde shelf varies with: 1) the distance of reefs 
offshore, 2) the circum-reef variation in exposure to wave action, and 3) the depth range (Hoek-
sema, 2012a, b). Mushroom corals of the mid-shelf reefs Barang Caddi, Samalona, Bone Tambung, 

mid-shelf reefs are more remote from terrigenous impact than reefs in the near-shore zone I, and 
also less affected by Halimeda dust, upwelling and wave impact as on the offshore reefs of zone 
IV (Hoeksema, 2012a). 
 The near-shore reefs in zone I contain fewer fungiid species than those in zones II – IV be-

onshore reefs offer less available space for some mushroom coral habitats than those on the deeper 
offshore reefs (Hoeksema, 2012a, b). Evidently, low host coral availability offers less potential 
habitat for gall crabs. Nevertheless, the percentage of crab-inhabited corals is also lower on near-
shore reefs than in the other zones. Van der Meij and Hoeksema (2013) showed that reefs in the 



163

Cross-shelf distribution patterns of gall crabs

occurrence rates of gall crabs. Stress has a negative effects on coral assemblages and hence on 
their associated cryptofauna (Risk et al., 2001; van der Meij et al., 2010). Similarly, Preston and 
Doherty (1990, 1994) showed that coral-dwelling crustacea on the Great Barrier Reef had a max-

the inner shelf reefs. 

Occurrence rates
Van der Meij and Hoeksema (2013) discussed various studies on occurrence rates in gall crabs, and 
show that low occurrence rates are possibly linked to natural and anthropogenic stress. Apart from 
this study, only one study (in Brazil) used belt quadrats to determine occurrence rates, with occur-

-
rats were haphazardly placed in areas where at least one of the studied coral species occurred, 
whereas the in the present study they were placed over the reef at depth intervals regardless of the 
presence of fungiid corals. This might explain the higher observed occurrence rates in the Brazilian 
study, in addition to differences caused by the discrepancy in coral fauna composition. 
 The present study shows much variation in occurrence rates among crab species and within 
species among preferred host corals. The most abundant corals are not necessarily the most com-
monly inhabited (Scott, 1987; Norton and Carpenter, 1998), which is related to the host preference 
of the gall crabs (van der Meij and Hoeksema, 2013: Table 1). So far, it is unclear why the crabs 

several wentletrap snails (Epitoniidae) and parasitic Leptoconchus snails (Gittenberger and 
Gittenberger, 2011; Gittenberger and Hoeksema, 2013) and some commensal shrimp species 
(Hoeksema et al., 2012). In comparison, some species of boring mussels (Mytilidae) living inside 
fungiid corals may have a much broader host spectrum (Owada and Hoeksema, 2011), while in-

(Bos, 2012; Hoeksema et al., 2012) and other corals (Schiemer et al., 2009; Reijnen et al., 2011; 
Duchene et al., 2013; Tornabene et al., 2013). Preference for a particular host may be advanta-
geous when many potential hosts are abundantly available. Moreover, host corals may produce 

may be present when host preferences have been derived from ancestral associated species in 
which the association was more advantageous than in descendant species.

Depth distributions
Depth, so far, does not seem to be a limiting factor for gall crabs, which inhabit their fungiid hosts 
in wide depth ranges. The maximum depth record for gall crabs in this study was 32 m (in Pleu-
ractis granulosa during a reconnaissance survey on the sandy reef base of Pulau Badi), while 
there are also shallow records of 1 m depth (host P. granulosa, Papua New Guinea, Institut Royal 
des Sciences Naturelles de Belgique (IRNSB) coll. nr. 26862/84-46). Mushroom corals at greater 
depths are usually dwelling on sand (Hoeksema, 2012a), but this does not appear to affect the 
presence of crabs as long as their hosts are also able to survive in sandy habitats.
 Several fungiid species show a downward shift in depth range with increasing distance off-
shore (Table 3; Hoeksema, 2012a). At depths outside the preferred depth ranges of the preferred 
host coral, gall crabs appear to shift to the second-preferred host coral. Fungicola syzygia shifts 
from Pleuractis paumotensis to P. moluccensis at depths > 15 m. On the other hand, Fungicola 
utinomi in L. repanda was predominantly observed at 5 and 10 m depth, despite the host’s occur-
rence at 15 m depth. This indicates that the depth ranges of gall crabs are not necessarily strictly 
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related to those of their hosts and that some gall crab species might show more restricted depth 
ranges than others regardless of their host coral.
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Chapter 14

Distribution of gall crabs inhabiting mushroom corals  
on Semporna reefs, Malaysia

Sancia E.T. van der Meij & Bert W. Hoeksema

Abstract 

Coral reef cryptofauna forms an important component of tropical marine biodiversity, consisting primarily of 
invertebrates dwelling in and on corals. During a survey carried out around the Semporna peninsula (Sabah, 
NE Borneo), the occurrence of gall crabs inhabiting mushroom corals was examined on reefs ranging from 
sheltered to exposed conditions. Out of 44 fungiid species, 19 were found to be associated with gall crabs. The 
gall crabs were observed at 85% of the 62 studied sites, and their occurrence rates per site ranged between 0 and 
25%. High occupancy rates were almost equally distributed over the northern (sheltered) and southern (exposed) 
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Introduction

Coral reefs are well known for their high biodiversity. An important component of reef biota is 
formed by cryptofauna, predominantly consisting of endozoic and epizoic invertebrates associated 
with corals (Stella et al., 2011). Although reef corals are known to act as hosts to a wide range of 
invertebrates (e.g. Oigman-Pszczol and Creed, 2006; Stella et al., 2010; Hoeksema et al., 2012), 
little information is available on environmental factors that affect the species composition of the 
associated fauna. 

been used as a model taxon for a variety of studies, including research on regional and local bio-
diversity patterns (Hoeksema and Moka, 1989; Hoeksema, 1991a, 2007, 2012b; Hoeksema and 
Koh, 2009) as well as research on their associated fauna (Bos, 2012; Hoeksema et al., 2012). 
Coral gall crabs (Brachyura: Cryptochiridae) are obligate associates of living stony corals, resid-
ing in galls or pits in their hosts. Their taxonomy has been revised (Kropp and Manning, 1987; 
Kropp, 1990a), but many aspects of the distribution and ecology of the species have so far re-
mained unknown (e.g. van der Meij, 2012). 
 This study provides information on the occurrence of gall crab fauna in association with 
mushroom corals on reef assemblages in eastern Sabah, ranging from inshore sheltered condi-
tions to exposed oceanic environments. 

Fig. 1. Semporna, showing the various degrees of gall crab occurrence per site: red triangles n=0%; black squares 
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Material and methods 

bah 
(Malaysia) as part of the Semporna Marine Ecological Expedition in December 2010 (SMEE2010), 
using the roving diver technique (Hoeksema and Koh, 2009). Data collection started around the 

of the host corals, a taxonomic revision of the Fungiidae (Hoeksema, 1989) was used, combined 
et al., 2011). 

 Fungiids were searched for gall crabs at 62 sites (Fig. 1), and the presence (or absence) of gall 

level, as this would have required collecting all the gall crabs and their coral hosts, which was 
impossible in the given time frame. The gall crab-mushroom coral associations were taken from 
Hoeksema et al. (2012), and unpublished data (van der Meij, unpubl.). 
 The gall crab occurrence rate per site was plotted on a map of the research area (Fig. 1; see 

based on the Bray-Curtis similarity measure was used to determine the similarity between sites. 

inhabited fungiid corals was performed. Lastly, a Pearson’s chi-squared test was carried out to 
test for differences in the distribution patterns of the crab-inhabited fungiids between the more 
sheltered northern reefs and more exposed southern reefs. 

Table 1. Overview of mushroom corals inhabited by gall crabs in the Semporna area. Hosts: no. of sites where 
fungiid is present, gall crabs: no. of sites where fungiid is inhabited by gall crabs, % percentage of sites where 
fungiid is gall crab inhabited.

Pleuractis granulosa (Klunzinger, 1879)  62  30  48
Lithophyllon repanda (Dana, 1846)  62  26  42
Podabacia crustacea (Pallas, 1766)  62  13  21
Herpolitha limax (Esper, 1797)  62  1  2
Pleuractis paumotensis (Stutchbury, 1833)  61  41  67
Cycloseris costulata (Ortmann, 1889)  58  6  10
Sandalolitha robusta (Quelch, 1886)  58  5  9
Pleuractis gravis (Nemenzo, 1955)  53  1  2
Pleuractis moluccensis (van der Horst, 1919)  51  13  25
Lithophyllon scabra (Döderlein, 1901)  37  4  11
Cycloseris mokai (Hoeksema, 1989)  37  1  3
Cycloseris tenuis (Dana, 1846)  36  1  3
Lithophyllon undulatum Rehberg, 1892  15  4  27
Sandalolitha dentata Quelch, 1884  15  1  7
Lithophyllon ranjithi Ditlev, 2003  12  3  25
Lithophyllon spinifer (Claereboudt and Hoeksema, 1987)  7  2  29
Cycloseris somervillei
Cycloseris hexagonalis (Milne Edwards and Haime, 1848)  3  1  33
Cycloseris vaughani (Boschma, 1923)  2  1  50
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Fig. 2. The group-averaged hierarchical clustering of 62 sites, based on the species composition (presence/
ab

Table 2. Locality data of the sites visited during SMEE2010. Hosts: no. of mushroom coral species, gall crabs: no. 
of gall crab-inhabited mushroom corals, % occurrence rate.

29 Nov  SEM.01  Roach reef, Mid rock/Tyre reef  04°10’39.0”  118°18’12.1”  22  2  9
 SEM.02  NW Roach reef, Second reef  04°10’31.5”  118°17’53.5”  17  3  18
30 Nov  SEM.03  SE of Tawau, Hand rock  04°08’24.5”  118°10’44.3”  28  6  21
 SEM.04  SE of Tawau, Darby rock  04°06’42.8”  118°13’39.7”  23  2  9
 SEM.05  SE of Tawau, Alert patches 2  04°09’38.5”  118°15’36.3”  17  1  6
 SEM.06  SE of Tawau, Alert patches 3  04°09’46.7”  118°16’35.8”  18  3  17
1 Dec  SEM.07  Erzherzog reef  04°14’26.5”  118°23’35.2”  18  2  11
 SEM.08  Horn reef  04°14’31.9”  118°26’25.0”  19  2  11
 SEM.09  Ligitan reef 1 S / Yoshi point  04°14’05.8”  118°33’26.7”  22  2  9
2 Dec  SEM.10  SE of Mabul Isl., Kapalai  04°13’05.4”  118°40’20.0”  17  1  6
 SEM.11  NE of Mabul Isl, W Cust reef  04°16’27.5”  118°42’32.9”  23  5  22
 SEM.12  Mabul Isl., Eel garden  04°13’49.8”  118°38’12.3”  22  4  18
3 Dec  SEM.13  Ligitan Isl., Ligitan 1  04°11’13.8”  118°47’27.9”  19  1  5
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cont. Table 2

 SEM.14  Ligitan Isl., Ligitan 2  04°09’35.8”  118°52’22.2”  23  4  17
 SEM.15  Ligitan Isl., Ligitan 3  04°12’43.0”  118°54’36.6”  14  0  0
4 Dec  SEM.16  Si Amil Isl., Second beach  04°18’56.9”  118°52’33.8”  20  4  20
 SEM.17  Wof Si Amil Isl., Denawan Isl.  04°18’55.9”  118°51’03.6”  15  0  0
 SEM.18  Ligitan Isl., Ligitan 4  04°14’06.5”  118°48’26.5”  20  0  0
5 Dec  SEM.19  Cust reef 2  04°17’08,3”  118°42’40.7”  17  2  12
 SEM.20  Creach reef  04°18’58.8”  118°36’17.3”  20  5  25
 SEM.21  Sipanggau Isl.  04°22’51.4”  118°36’20.3”  15  0  0
 SEM.22  Bumbun Isl. W (channel)  04°27’40.7”  118°38’09.1”  20  1  5
7 Dec  SEM.23  Pasalat reef  04°30’47.8”  118°44’07.8”  22  2  9
 SEM.24  Tg. Pantau Pantau, Bumbun Isl.  04°26’54.1”  118°46’31.0”  23  0  0
 SEM.25  Batura reef  04°30’48.6”  118°48’31.2”  19  4  21
8 Dec  SEM.26  Bohayen Isl.  04°28’00.9”  118°56’51.6”  24  4  17
 SEM.27  Timba Timba Isl.  04°33’37.7”  118°55’30.4”  21  4  19
 SEM.28  Pandanan Isl.  04°34’36.0”  118°55’14.1”  23  2  9
 SEM.29  Mataking Isl.  04°34’57.6”  118°56’46.5”  15  1  7
9 Dec  SEM.30  S Kulapuan Isl.  04°30’41.3”  118°51’58.4”  16  0  0
 SEM.31  N Kulapuan Isl.  04°32’09.6”  118°50’18.6”  21  0  0
 SEM.32  Pom Pom Isl.  04°35’29.8”  118°51’43.1”  17  4  24
 SEM.33  Kapikan reef  04°38’56.5”  118°49’15.0”  24  4  17
10 Dec  SEM.34  Mantabuan Isl.  04°37’56.0”  118°47’48.6”  22  1  5

11 Dec  SEM.37  S Boheydulang Isl., outer reef  04°35’00.3”  118°46’39.1”  19  2  11
 SEM.38  Boheydulang Isl., outer reef lagoon  04°34’01.8”  118°45’27.5”  22  5  23
 SEM.39  Tetagan Isl., inner lagoon  04°35’55.4”  118°43’43.2”  21  3  14
 SEM.40  Ribbon reef  04°36’10.0”  118°45’53.6”  18  3  17
12 Dec  SEM.41  Maiga Isl.  04°37’32.2”  118°40’58.0”  29  2  7
 SEM.42  Selakan Isl.  04°34’22.1”  118°43’04.3”  19  2  11
 SEM.43  Sebangkat Isl.  04°33’19.9”  118°39’17.3”  25  5  20
 SEM.43B  Singamata Pancang  04°31’21.0”  118°37’00.7”  21  1  5
13 Dec  SEM.44  Sibuan Isl.  04°39’01.9”  118°39’22.6”  23  4  17
 SEM.45  Church reef 1  04°40’54.9”  118°39’28.4”  26  3  12
 SEM.46  Church reef 2  04°41’10.5”  118°38’56.5”  24  3  13
 SEM.47  Larapan Isl.  04°34’27.5”  118°36’15.0”  25  3  12
15 Dec  SEM.48  Timbun Mata Isl.  04°37’59.6”  118°35’21.6”  23  4  17
 SEM.49  Balusuan Isl.  04°41’07.9”  118°32’29.6”  25  4  16
 SEM.50  Batik Isl.  04°43’09.2”  118°28’22.0”  22  4  18
16 Dec  SEM.51  Tabawan Isl.  04°47’15.6”  118°25’00.8”  24  3  13
 SEM.52  Silumpat Isl.  04°45’58.7”  118°23’25.6”  27  3  11
 SEM.53  Batik Kulambu Isl.  04°42’02.1”  118°23’18.4”  29  1  3
 SEM.54  Bakungan Isl.  04°45’11.1”  118°29’16.0”  22  4  18
17 Dec  SEM.55  Silawa Isl.  04°34’29.8”  118°33’59.6”  21  1  5
 SEM.56  Mata Pahi Isl.  04°34’50.9”  118°32’49.4”  21  2  10
 SEM.57  S Larapan Isl. 2  04°32’51.1”  118°36’31.3”  25  3  12
 SEM.58  Semporna town, mangrove  04°27’35.6”  118°37’33.6”  16  0  0
18 Dec  SEM.59  Sipadan Isl., Baracuda point  04°07’12.0”  118°37’44.9”  17  0  0
 SEM.60  Sipadan Isl., Hanging gardens  04°06’45.3”  118°37’29.3”  13  1  8
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Results

Occurrence rates 
Out of 44 fungiid species recorded from the area (Waheed and Hoeksema, 2013), 19 were found 
to be inhabited by at least a single gall crab (Table 1). The most frequently recorded fungiid hosts 
were Lithophyllon repanda, Pleuractis granulosa, and P. paumotensis. Cycloseris vaughani 
also showed a high occupancy rate, but this was based on low absolute numbers; only two speci-

encountered on nearly all localities (61-62 out of 62), the number of sites with gall crabs differed 
considerably. Crabs inhabiting P. paumotensis were observed in 41 out of 62 localities, whereas 
gall crab in Herpolitha limax was observed only once (Table 1). 
 The occupancy rate ranged from 0 to 25% inhabited host species per site. In general, sites with 

Distribution patterns 

between the sheltered northern sites and the exposed southern ones. High host occupancy by 
gall crabs was almost equally distributed over the northern and southern sites, but sites without 
gall crabs were all located in the exposed southern area (Fig. 1). The reef sites richest in 
fungiid species were found in the northernmost part of the research area (Waheed and Hoek-

numbers. 
 In a dendrogram showing clusters of localities based on the mushroom coral species com-

The majority of the sites grouped in one large cluster. After plotting the occurrence data on 
the dendrogram it becomes apparent that the outliers and the small clusters had the lowest gall 
crab occupancy (Fig. 2). 
 The MDS ordination of the inhabited fungiids (thus excluding the presence/absence data on 
non-inhabited fungiids) show no grouping based on locality. 

Discussion 

Occurrence rates 

occupancy rates, owing to different methods of data collection. In this study, occurrence rates 
per locality are compared, whereas in previous studies they were recorded per species. Three 
earlier studies used transects to determine the occurrence in various species of host corals. In 
the Red Sea, the gall crab Cryptochirus coralliodytes Heller, 1861 inhabited four faviid genera 
along transect lines (between 2 and 7 m) with 25% infected hosts (Simon-Blecher and Achituv, 
1997), whereas at 10-20 m depth, 20% of the individuals of the mushroom coral Pleuractis 
granulosa appeared to act as host for Fungicola fagei (Fize and Serène, 1956) (Kramar-
sky-Winter et al., 1995). A study in Brazil using belt transects showed that gall crabs infested 
17-21% of the host species Mussismilia hispida (Verril, 1902) and Siderastrea stellata Verril, 
1868 (Oigman-Pszczol and Creed, 2006). Another Brazilian study by Johnsson et al. (2006) 
recorded occurrence percentages for S. stellata, which ranged between 10 and 37% depending 

et al. (2004) found that 21% 
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of Manicina areolata (Linnaeus, 1758) corals (n=160) were inhabited by Troglocarcinus cor-
allicola Verrill, 1908. Lastly, in Vietnam, Fize and Serène (1957) encountered F. fagei in three 

Parahalomitra [= Sandalolitha] robusta, which most likely 
consisted of both Sandalolitha dentata (see Fize and Serène, 1957: pl. XIII, DEF) and S. ro-
busta. 
 Of the 31 recorded fungiid species that can act as gall crab hosts (Hoeksema et al., 2012), 
30 were found in Semporna. Nineteen of these 31 were observed to be associated with gall crabs. 
Cycloseris vaughani is now recorded as a new host. Fungiids with the highest numbers of gall 
crabs are Lithophyllon repanda, Pleuractis granulosa, and P. paumotensis. Cycloseris species 
are not frequently observed inhabiting gall crabs, which may be restricted by the relatively small 

et al., 2011). Pleuractis granulosa and P. 
paumotensis are hosts to the gall crab Fungicola fagei. In addition, P. granulosa is also known to 
be inhabited by Dacryomaia sp. Lithophyllon repanda is also associated with F. fagei, but is most 
frequently inhabited by Fungicola utinomi (Fize and Serène, 1956) (Hoeksema et al., 2012; van 
der Meij et al., in preparation). Molecular studies on gall crabs inhabiting Fungiidae indicate the 
presence of a cryptic species closely related to F. fagei, which is currently studied in more detail 
(van der Meij, in preparation). 
 Herpolitha limax, host to both F. fagei and F. utinomi, occurred at all Semporna localities, 
but it was found only once to be inhabited by a gall crab. This mushroom coral can nevertheless 
be considered a hospitable species as it is host to a wide range of other associated organisms 
(Hoeksema et al., 2012). Cycloseris spp. that are hosts to F. fagei and Dacryomaia sp., were in-
habited at only a few sites. These differences in occupancy rate indicate a host preference in 
certain gall crab species. 

Distribution patterns 
So far little information is available on the distribution patterns of coral-associated organisms 

localities with relatively high occupancy rates are distributed quite evenly over the research area, 
but that low occurrence rates are only found in the southern part of the research area. Apart from 
having few or no gall crab-inhabited mushroom coral species, those sites also differed in fungiid 
species composition. Some sites with low occurrence numbers can be related to oceanic condi-

high nutrient impact (SEM.58) (Waheed and Hoeksema, 2013). Natural and anthropogenic stress 
have negative effects on coral assemblages and hence on their associated cryptofauna (Sebens, 
1994; van der Meij et al., 2010). 
 Near-shore sites show lower numbers of inhabited corals compared to offshore sites (Fig. 1). 
Cross-shelf distribution data of gall crab-inhabited mushroom corals in the Spermonde Archi-
pelago (SW Sulawesi) show a similar presence/absence pattern, with the near-shore reefs hav-
ing the lowest occurrence rates (0-6% of the available host species) (van der Meij et al., in 
preparation). In the Spermonde, where mushroom coral distributions have been studied exten-
sively (Hoeksema, 2012b), no clear differences in occurrence rates between the mid-shelf and 
outer-shelf reefs can be discerned (van der Meij et al., in preparation). Near-shore reefs can 
have a higher sediment load, especially close to river outlets (van der Meij et al., 2010; Erfte-
meijer et al., 2012). Kramarsky-Winter et al. (1995) mention that no crab-inhabited fungiids 

hence smothering the crab. 
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Concluding remarks 

Previous research involving gall crab occurrence data was conducted in the western Atlantic 

rates from 0 to 25%. In general, sites with higher infestation rates had higher numbers of host 
species. The distribution patterns of inhabited host species (at the different sites) show that there 

-
ern section of the study area and the more exposed reefs in the south, where all the low crab 
occurrences were recorded. The majority of these sites have low fungiid species richness and a 
different fungiid species composition (Waheed and Hoeksema, 2013). 
 Cryptochirids are diminutive crabs that may occur in high densities but are usually over-
looked on coral reefs (Hoeksema and van der Meij, 2013). A little over 85% (53 out of 62) of the 
reef sites around the Semporna peninsula harbour mushroom corals inhabited by gall crabs. 
Non-inhabited sites can be related to disturbances. Future studies will tell more about their diver-
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Female reproductive morphology of coral-inhabiting gall crabs  
(Crustacea: Decapoda: Brachyura: Cryptochiridae)
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Abstract

Fungicola syzygia
Opecarcinus cathyae Pseudocryptochirus viridis

Pseudocrypto-
chirus viridis
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Introduction 

et al.
et al.

et al.
hidden lifestyle within the coral skeleton, gall crabs are one of the least studied eubrachyuran 

et al.

et al.

systems of Fungicola syzygia Opecarcinus cathyae
Pseudocryptochirus viridis

Material and methods 

Collection of specimens and fixation 

Fungicola syzygia ° °
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in Pleuractis paumotensis 
Opecarcinus cathyae ° ° Pavona clavus 

Pseudocrypto-
chirus viridis ° ° Turbinaria

Gross morphology and histology 

m. A trichromatic 

Results 

Species and gall types 

 Fungicola syzygia
similar to those of F. fagei ing 

Opecarcinus cathyae were collected from P. clavus

Crabs were not observed to freely move around on the coral. Pavona clavus can occur in large 
O. cathyae ma 

  Pseudocryptochirus viridis is associated with Turbinaria

nevertheless, moving crabs were only observed when disturbed. 

Gross morphology 
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Fig. 1. A-D, Fungicola syzygia
E-H, Opecarcinus cathyae I-L, Pseudocryptochirus viridis. A
F. syzygia in Pleuractis paumotensis

B C F. 
syzygia

D F. syzygia
E O. cathyae, on a 

large colony of Pavona clavus F
G O. cathyae; H, dorsal view of O. cathyae; I

P. viridis in Turbinaria
J, Schematic longitudinal section of 

K P. viridis; L P. viridis. 

A

L

K

J

I

H

G

F

E

D

C

B



F. syzygia  
O. cathyae P. viridis

F. syzygia O. cathyae 
P. viridis

ground. 

Overview 

to other eubrachyuran crabs. Paired sternal 

are connected to the ovaries of each body 
side – left and right through an oviduct. The 

nec

lying cuticle ventrally that is continuous with 

cle 

Vaginae

Monolayered glandular epithelium 

O. cathyae

F. syzygia
atively smaller than those in O. cathyae

O. cathyae P. viridis is regular and 

Fig. 2.

the oviduct leads mature oocytes from the ovary lobes 
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Fig. 3. A, schematic 

B Opecarcinus cathyae C
thelium of Fungicola syzygia; D, Pseudocryptochirus viridis E, Ventral localisation of 

O. cathyae; F
secretion in P. viridis; G, Vagina of P. viridis H
through the vagina of O. cathyae I

ing, well visible here in F. syzygia

A

IHG

FE

DCB



Secretory transfer tissue 

Seminal receptacle content 

F. syzygia 
and O. cathyae O. cathyae

F. 
syzygia P. 
viridis

Ovary 

O. cathyae and P. viridis, ova

F. syzygia

F. syzygia

Discussion 

Overview and systematic position 

et al. ó et al. et al., 
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ó et al. et al.  
et al.

et al. et al.

Vagina and seminal receptacle 

is characteristic for thoracotreme crabs and has been found in a number of thoracotreme crab 

Fig. 4. A Opecarcinus 
cathyae

B Fungicola syzygia
C Pseudocryptochirus viridis

D P. viridis

A

DC

B



et al., 
et al. et al.

Uca et al. et al.

 

Eriocheir sinensis

al 
et al.

et al. et al.

et al.
et al. et al.

Heterotremata is currently uncertain. 

et al.
Greco et al. et al. et al.

et al.
et al., 

et al.

et al.

Pseudocryptochi-
rus viridis

et al. et al. Moreover, 
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Fungicola syzygia and Opecarcinus 
cathyae
indication of a recent insemination. 

Ovaries and reproductive investment 

de et al.

et 
al. Cardisoma guanhumi 

Goniopsis cruentata
et al.

et al.

Fig. 5. A, Transverse section through mature ovary of Opecarcinus cathyae
B Fungicola syzygia with mature oocytes ventrally to the 
C, Section through ovary of F. syzygia m in 

D m 

 

A

DC

B



Hapalocarcinus marsupialis 

et al.

Gall type and possible mating strategies 

P. viridis is wide enough to allow males to enter for 

F. syzygia, the entrance to the gall 
wherein the female lives is a narrow slit that is unlikely to allow the female to leave or a male to 

H. marsupialis lives in semiclosed galls in 

Conclusions 

Fungicola syzygia

Hapalocarcinus 
marsupialis Pseudocryptochirus viridis and Opecarcinus cathyae 

 Only in P. viridis

duction in gall crabs. 
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