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Premise of research. The genus Mucuna has a pantropical distribution and comprises approximately 105 spe-
cies, many of which show great economic value for forage, ornament, and medicine. To date, phylogenetic
relationships within Mucuna have not been investigated using molecular data. The aim of this study was to
build a phylogenetic framework for Mucuna to address questions about its monophyly, infrageneric relationships,
divergence times, and biogeography.

Methodology. We sequenced plastid (#7nL-F) and nuclear ribosomal (internal transcribed spacer) regions
and applied Bayesian and maximum likelihood analyses. An ancestral area reconstruction coupled with a di-
vergence time analysis was used to investigate the historical biogeography of the genus.

Pivotal results.  Our results show that Mucuna is a monophyletic genus and that subgenus Stizolobium is a
monophyletic group within it. We present here the analyses and results that support the need to recircumscribe
subgenus Mucuna and to segregate a small group of species with large fruits into a newly proposed subgenus (to
be described formally elsewhere after additional investigations).

Conclusions. On the basis of ancestral area reconstruction and divergence time analyses, we conclude that
the genus Mucuna originated and first diversified in the Paleotropics around 29.2 Ma and achieved a pantrop-
ical distribution through multiple long-distance dispersal events, which were facilitated by the occurrence of

seeds adapted to oceanic dispersal.

Keywords: Fabaceae, long-distance dispersal, sea-drifted seeds, systematics.

Introduction

Mucuna Adans. (Phaseoleae-Leguminosae) has a pantropi-
cal distribution and comprises approximately 105 species
(Lackey 1981; Schrire 2005). The highest diversity of the ge-
nus occurs in Asia (68 taxa), followed by Oceania (34 taxa),
the Americas (25 taxa), and Africa (19 taxa). Some species are
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widely distributed, such as Mucuna sloanei Fawc. & Rendle,
occurring in the Americas, Hawaii, and Africa; M. gigantea
(Willd.) DC., in Africa, Asia, and the Pacific Islands; and M.
pruriens (L.) DC. across the entire tropical region. A number
of species are ecologically and economically important, and the
genus displays a high level of morphological variation, espe-
cially in its inflorescences, flowers, fruits, and seeds.

Most species of Mucuna are lianas (except the African en-
demic species M. stans Welw. ex Baker, which has a shrubby
habit), and they are often an important component of tropical
ecosystems. Because of their showy inflorescences, some spe-
cies are grown as ornamentals in botanical gardens and green-
houses (e.g., M. bennettii F. Muell.). Mucuna pruriens is of wide
economic importance and is currently used in agriculture as for-
age and green manure, for biological control, and as a coffee
substitute (Duke 1981; Garcia and Fragoso 2003; Ortiz-Ceballos
and Fragoso 2004; Ortiz-Ceballos et al. 2007a, 2007b). It also
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has been used for the treatment of Parkinson’s disease (Naga-
shayana et al. 2000; Singhal et al. 2003).

Most species have pendant inflorescences; M. stanleyi C.T.
White, endemic to New Guinea, is the only lianescent Mucuna
with an erect inflorescence. Peduncles vary from a few centi-
meters long (e.g., 5-18 cm long in M. sloanei) to approximately
2 m long (e.g., M. globulifera T. M. Moura, N. Zamora &
A. M. G. Azevedo). The length of peduncle is partially associ-
ated with the pollination system. Species with short-pedunculate
inflorescences are mostly pollinated by birds; those with long-
pedunculate inflorescences (over 1 m long) are usually pollinated
by bats. The single lianescent species with an erect inflorescence
is visited by and may be pollinated by a possum (H. Fortune-
Hopkins, unpublished data). Inflorescences can be pseudorace-
mose (e.g., M. flagellipes Vogel, from Africa); pseudopaniculate
(e.g., M. paniculata Baker, from Madagascar); or umbelliform,
in which all flowers are closely clustered at the inflorescence
apex and where the floral internodes are so reduced as to not
be evident (e.g., M. elliptica Ruiz & Pavon, from South Amer-
ica). The species with pseudoracemose inflorescences are dis-
tributed across the entire geographical range of the genus; those
with pseudopanicles occur in the Paleotropics, whereas all the spe-
cies with umbelliform inflorescences are found in the Neotropics
(i.e., M. argentea T. M. Moura, G. P. Lewis & A. M. G. Azevedo,
M. cajamarca T. M. Moura, G. P. Lewis & A. M. G. Azevedo,
M. cuatrecasasii Hern. Cam. & C. Barbosa ex. L. K. Ruiz, M.
elliptica, M. klitgaardiae T. M. Moura, G. P. Lewis & A. M. A.
Azevedo, and M. pseudoelliptica T. M. Moura, G. P. Lewis &
A. M. G. Azevedo). Two widely distributed species (M. sloanei
and M. gigantea) have a reduced pseudoraceme in which the
brachyblasts and pedicels are progressively shorter toward the
inflorescence apex (rather than of uniform length). This has been
described as pseudoumbellate by some authors (e.g., Wilmot-
Dear 1990; Tozzi et al. 2005), although the internodes are clearly
visible on the inflorescence rachis.

Mucuna flowers show a remarkable variation in color of
the corolla, ranging from white (e.g., M. klitgaardiae), cream
(e.g., Mucuna urens (L.) Medik.), or greenish (e.g., M. monticola
Zamora, T. M. Moura & A. M. G. Azevedo) to yellow (e.g.,
M. japira A. M. G. A. Tozzi, Agostini & Sazima), orange (e.g.,
M. rostrata Benth.), red (e.g., M. bennetti), purple (e.g., M. pru-
riens), or almost black (e.g., M. hainanensis Hayata). The wing
petals of the corolla can be either longer than the standard (e.g.,
M. mutisiana (Kunth) DC.) or shorter (e.g., M. holtonii (Kuntze)
Moldenke). The flowers vary in size from 2.5 ¢cm long (e.g.,
M. lane-poolei Summerh.) to 11 cm long (in M. cuatrecasasii).

The morphology of the fruits also presents an important
suite of taxonomic characters. The pod surface is sometimes or-
namented by lamellae (in a transversal, longitudinal, oblique, or
reticulate pattern) or ornamentation can be completely lacking.
Most species have dehiscent fruits, but two (M. poggei Taub.
and M. occidentalis T. M. Moura & G. P. Lewis, both endemic
to Africa) have indehiscent fruits. Some species have fruits shorter
than 10 cm and contain approximately five seeds (e.g., M. pru-
riens); other species have fruits 10-30 cm long, but they again
contain approximately five seeds (e.g., M. urens); in a third group
of species, the fruits can be over 50 cm long and have up to 18 seeds
(e.g., M. macrocarpa Wall.). In addition, the seeds and hilum
provide taxonomically informative characters. Seeds can be re-
niform, discoid, or globose; the length of the hilum varies from

3-7 mm in length (circling less than 20% of the seed circumfer-
ence) to 8-9 cm in length (circling more than 50% of the seed
circumference).

On the basis of fruit and seed morphology, two subgenera
have been traditionally recognized in Mucuna (Wilmot-Dear
1984): M. subg. Mucuna and M. subg. Stizolobium (P. Browne)
Baker. Stizolobium P. Browne was described by Browne (1756),
and De Candolle (1825) later down-ranked it to a section of
Mucuna, as M. sect. Stizolobium (P. Browne) DC. Currently,
the infrageneric classification of Mucuna recognizes two sub-
genera and no sections (Wilmot-Dear 1984, 1991). Neverthe-
less, due to differences in fruit and seed shape and hilum length,
some authors have treated Stizolobium as a distinct genus (e.g.,
Molina Rosito 19785; Stevens et al. 2001; Zamora 2010). Phylo-
genetic studies are necessary to clarify this issue.

Regional taxonomic studies have been published for the ge-
nus Mucuna across its pantropical distribution range (Verd-
court 1970, 1971, 1978, 1979a, 1979b, 1981; Wilmot-Dear
1984, 1987, 1990, 1991, 1992, 1993, 2008; Wiriadinata and
Ohashi 1990; Du Puy et al. 2002; Tozzi et al. 2005; Ren and
Wilmot-Dear 2010; Moura et al. 20124, 20125, 2013a,
2013b, 2013¢, 2013d, 2013e, 2014, 2015; Moura and Lewis
2014; Zamora and Moura 2014), but there has been no global
taxonomic survey to date. Moreover, a comprehensive phylo-
genetic study of Mucuna has never been performed. A small
number of broader phylogenetic studies have included only
two or three species of Mucuna (e.g., Kajita et al. 2001; Ste-
fanovic et al. 2009; Lima 2011) and thus have not adequately
covered the entire geographical range or morphological var-
iation of the genus. Although these studies have highlighted
the relationships between Mucuna and its closest allies, the
monophyly of the genus and its infrageneric groups remains
to be tested. In addition, the lack of a phylogenetic framework
for Mucuna precludes more precise inference about the area
of origin of the genus and possible dispersal routes across the
tropics.

In this study, we present a densely sampled phylogeny of
Mucuna and try to answer the following taxonomic and bio-
geographical questions: (1) Are the genus Mucuna and its pro-
posed subgenera monophyletic? (2) What are the infrageneric
relationships among Mucuna species? (3) Do pollination sys-
tems or geographical ranges correlate to clades identified by
the molecular phylogeny? (4) When and where did the genus
originate, and what processes may have produced its current
pantropical distribution?

Material and Methods

Taxon Sampling and DNA Extraction

Sixty-three taxa were sampled for this study, including 47 of
Mucuna and 16 representing outgroups. Due to the wide geo-
graphical distribution of the genus, most of the samples used
in this study came from herbarium collections. Material of a
few species was collected in the field and stored in silica gel.
Three sequences of Mucuna and nine outgroups were obtained
from GenBank. The range of morphological variation and wide
geographical distribution of Mucuna are represented in this
study. A list of the species and specimens sampled is presented
in the appendix.

This content downloaded from 160.111.254.017 on January 29, 2016 09:08:15 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journal s.uchicago.edu/t-and-c).



78 INTERNATIONAL JOURNAL OF PLANT SCIENCES

For internal transcribed spacer (ITS) analysis, 53 accessions
of Mucuna from 45 taxa were sequenced, and for the trnl-F
region, 48 accessions of 33 taxa were sequenced. Because it
was impossible to sequence all the samples for both markers
due to the high level of degradation of the DNA, we opted
for sequencing as much as we could for each locus and then
presenting the results separately. We also present a combined
analysis for the species sequenced for both markers (34 acces-
sions, 30 taxa).

The DNA extraction from leaf tissue was conducted in three
different laboratories: (1) the specimens from MO, UEC, and
CEN herbaria were extracted at the Missouri Botanical Garden
(St. Louis, MO) using MP FastDNA Green Spin Kit (MP Bio-
medicals). After extraction, the DNA was cleaned by DNA
Axigen AxyPrepPCR Clean-Up Kit; (2) the specimens from K,
some from L, and GH herbaria were extracted in the Jodrell
Laboratory, Royal Botanic Gardens, Kew, using the 2 x cetyl-
trimethylammonium bromide method (Doyle and Doyle 1987),
and the DNA was cleaned by a cesium chloride-ethidium bro-
mide gradient (1.55 g/mL) and a dialysis procedure to yield
material suitable for long-term storage; (3) specimens from L
were extracted at Chiba University (Chiba, Japan), using the
DNeasy Plant Mini Kit (Qiagen) and following the man-
ufacturer’s instructions with a modified protocol for herbarium
materials. The concentration of genomic DNA was measured
with a GeneQuant 100 electrophotometer (GE Healthcare, Life
Sciences).

Polymerase Chain Reaction (PCR) and Sequencing

Two markers were used: the nuclear region ITS (White et al.
1990) and the plastid region ¢rnL-F (Taberletetal. 1991). When
amplification of the ITS region failed, internal primers I'TS2 and
ITS3 (Baldwin 1992) were used to amplify the ITS region in two
fragments in association with primers ITSS and ITS4, respec-
tively. Because the DNA obtained from the herbarium spec-
imens is generally degraded, both regions were amplified and
sequenced using internal primers for most of the samples. The
PCR and sequencing steps were conducted in two laboratories:
the Jodrell Laboratory, Royal Botanic Gardens, Kew, and the
Department of Biology at Chiba University.

For the analysis conducted in the Jodrell Laboratory, the PCR
was performed in 25-pL-volume reactions with the following
components: 1.0 uL template DNA; 22.5 uL of Reddy PCR
Master Mix (2.5 mM MgCl,; Thermo Scientific, Waltham,
MA); 0.5 uL of each primer (100 ng/uL); 5 uL of tricholse, bo-
vine serum albumin, and tween; 1.0 uL of dimethyl sulfoxide.
The same PCR mix was used for both nuclear and plastid regions.
The PCR conditions for both regions were an initial denatura-
tion at 80°C for 5 min, followed by 35 cycles of denaturation
at 95°C for 1 min, primer annealing at 48°-50°C for 1 min, and
primer extension at 65°C for 1 min; this was followed by a final
extension step of 7 min at 64°C. For some samples that were dif-
ficult to amplify, the PCR conditions included a ramp of 0.3°C/s,
as described by Shaw et al. (2007).

PCR products were checked on 1% agarose gel before being
cleaned with QIAquick PCR purification kit (Qiagen). Cycle se-
quencing reactions were performed in 5-pL-volume reactions,
using 0.3-1.0 uL of the PCR product, 0.25 uL BigDye, 1.5 uL
BigDye Buffer, 1.5 uL double distilled water (ddH,O), and

0.75 pL of the same primer as for PCR (diluted to 10%). The
cycle sequencing products were cleaned using Magnesil and
the automated workstation BiomeK NX58 (Beckman Coulter).
Complementary strands were sequenced on an ABI 3730 au-
tomated sequencer (Applied Biosystems) and then assembled;
software base-calling was verified using Sequencher 4.5 (Gene
Codes, Ann Arbor, MI).

At Chiba University, PCR reactions were performed in
volumes of 10 pL containing 0.2 units of ExTaq (TaKaRa) or
0.25 units of MightyAmp DNA Polymerase (TaKaRa) and
0.2 mM deoxynucleotide triphosphates, 10 x PCR buffer con-
taining 1.5 mM magnesium chloride, 0.5-1 uM of each primer,
and 20 ng of genomic DNA. The PCR conditions were as
follows: 2 min for initial denaturation at 95°C, followed by 35
amplification cycles of 45 s denaturation at 95°C, 1 min anneal-
ing at 56°C, 1 min extension at 72°C, and a final 10 min exten-
sion at 72°C. The PCR products were visualized on a 0.8 % aga-
rose gel. PCR products were purified using illustra ExoStar
Enzymatic PCR and Sequencing Clean-Up Kit (GE Healthcare)
according to the manufacturer’s instructions. The cycle sequenc-
ing reactions were performed using the BigDye Terminator, ver-
sion 3.1, Cycle Sequencing Kit (Applied Biosystems), and cycle
sequencing products were purified using an ethanol precipita-
tion method. All base sequences were determined using an
ABI 3500 DNA sequencer (Applied Biosystems).

Phylogenetic Analyses

The sequences for all DNA regions were assembled into
contigs and edited using the program Geneious, version 7.1.7
(Biomatters, Aukland, New Zealand), or SeqScape, version
2.7 (Life Technologies, Applied Biosystems). A BLAST search
(http://blast.ncbi.nlm.nih.gov/) was conducted for all sequences
to check for possible contaminant DNA. Afterward, edited
alignments were performed using the Clustal W (Larkin et al.
2007) and MUSCLE (Edgar 2004) programs using default set-
tings with manual adjustments.

We performed phylogenetic analyses using two different
approaches: Bayesian inference (BI) and maximum likelihood
(ML). The Bayesian analysis was performed using a Markov
chain Monte Carlo (MCMC) method, as implemented in Mr-
Bayes, version 3.2.2 (Ronquist et al. 2012). The best-fit model
of DNA substitution for each molecular region was determined
using MrModeltest, version 2.2 (Nylander 2004), and the
Akaike information criterion (Akaike 1974). The GTR +1+ G
and GTR + G models were selected as the “best model” for
the ITS and trnL-F regions, respectively. For the combined anal-
ysis, two partitions were defined corresponding to the plastid
and nuclear regions. Two independent Metropolis-coupled
MCMCs with incremental heating temperature of 0.25 were
run for 50 million generations, with the parameters and the re-
sulting phylogenetic trees being sampled every ten-thousandth
generation. The analysis was repeated four times. The MCMC
sampling was considered sufficient when the effective sampling
size (ESS) for each parameter was higher than 200, as verified
with Tracer, version 1.6 (Rambaut et al. 2014). A burn-in period
of one million generations per run was applied, and the remaining
trees were used to reconstruct an “allcompat” consensus tree
with posterior probabilities (PP) for each node. Members of tribe
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Desmodieae, as well as Apios americana Medik., were selected as
outgroup taxa based on published phylogenies (Kajita et al. 2001;
Schrire 2005; Stefanovic et al. 2009).

The ML analysis was performed using Randomized Axel-
erated Maximum Likelihood (RAxML), version 8.1.11 (Sta-
matakis 2014), which implements a rapid hill-climbing algo-
rithm (Stamatakis 2006). Analyses were run for the best-scoring
ML tree inferences under the GTR-GAMMA model. Rapid boot-
strapping was performed with 1000 replications using the GTR-
CAT estimation to assess branch support (Stamatakis 2006). To
increase analysis speed, parallel versions of the RAXML, MPI/
Pthreads were used (Pfeiffer and Stamatakis 2010).

Partition Homogeneity Test

To assess congruence between the #rnL-F and ITS data sets,
we performed the incongruence length difference (ILD) test (Far-
ris et al. 1994), implemented as a partition homogeneity test in
PAUP*, version 4.0b10 (Swofford 2002). The test was conducted
using a heuristic search with tree-bisection-reconnection branch-
swapping algorithm and with invariant characters excluded
(Cunningham 1997). Three random additions per replicate with
a time limit of 10 min were selected to run 1000 homogeneity
replicates.

Divergence Time Analysis

Estimates of divergence time were obtained using the Bayes-
ian inference approach implemented in the package Bayesian
Evolutionary Analysis Sampling Trees (BEAST), version 1.8.1
(Drummond et al. 2012), using the combined matrix of ITS
and trnL-F, applying the same partition delimitation and evo-
lutionary models as those used for the MrBayes analysis. We
used an uncorrelated relaxed molecular clock with a lognor-
mal distribution of rates and a Yule speciation model (Yule
1925; Gernhard 2008). The analysis was run for 30 million
generations, sampling one tree every one-thousandth genera-
tion. As a calibration point, we applied a normal prior distri-
bution (mean + standard deviation = 39.7 + 2.0 Ma) to the
root of the tree, based on the age estimate of the most recent
common ancestor of Platycyamus regnellii Benth. and Pha-
seolus vulgaris L., published in Lavin et al. (2005). To sum-
marize plausible trees and to obtain a maximum clade credi-
bility tree, the Tree Annotator program implemented in the
BEAST package was used. Twenty-five percent of trees (i.e.,
7500 trees) were excluded as burn-in from the subsequent
calculations. Tracer, version 1.6 (Rambaut et al. 2014), was
used to check the ESSs, convergence, and confidence intervals
(CIs). The trees were visualized and edited using FigTree, ver-
sion 1.4.2.

Biogeographic Inferences

To investigate the historical biogeography of Mucuna, we
conducted ancestral state geographic distributions on phylo-
genetic trees using the Bayesian Binary MCMC (BBM) method
implemented in the Reconstruct Ancestral State in Phylogenies
(RASP) program, version 3.2 (Yu et al. 2015). We divided the

pantropical distribution of Mucuna into eight areas that were
based on the presence of endemic species: North America, in-
cluding Mexico (A), Asia (B), Central America (C), Papua
New Guinea (D), South America (E), Africa (F), Pacific (G),
and Madagascar (H). BBM calculates the probabilities of ances-
tral ranges using the probabilities for each unit area. A con-
densed tree created by Tree Annotator from the output of the
BEAST analysis on the basis of a combined data set of #rnL-F
and ITS was used. MCMC calculations were conducted with
2,000,000 generations and a sample frequency of 1000. We
used a Fixed]C (Jukes-Cantor) model with the number of chains
equal to 10 and excluding 200 samples as burn-in using null
root distribution. The maximum number of areas selected was
SiX.

Results

Phylogenetic Analyses

The aligned trnL-F matrix consisted of 1203 characters for
58 samples, including 48 of Mucuna (33 taxa) and 10 outgroup
taxa; the aligned ITS matrix consisted of 902 characters for
62 samples, 53 of Mucuna (45 taxa), and nine outgroup taxa.
For both markers, Mucuna was supported as monophyletic
(figs. 4, 5). For the trnl-F marker, both subgenera tradition-
ally recognized within Mucuna were also monophyletic (fig. 4),
whereas Mucuna subg. Mucuna appeared as nonmonophyletic in
the analysis based on the ITS marker (fig. 5). A third clade, here
named the Macrocarpa clade, was revealed.

The ILD analysis suggested that the #7nL-F and ITS data
sets are incongruent (P < 0.003). This incongruence was also
detected from visual inspection of trees derived from individ-
ual independent analysis of the plastid and nuclear regions
(figs. 4, 5). The incongruence observed is mainly related to
the position of the Macrocarpa clade; otherwise, no incongru-
ence was found and the topologies of the main clades from
each region were congruent with support >0.7 posterior prob-
ability and >70% bootstrap. In the zrnL-F tree, the Macrocarpa
clade (M. birdwoodiana, M. calophylla, M. macrocarpa, and
M. sempervirens) is sister to the core Mucuna clade (fig. 3),
whereas in the ITS trees (fig. 4) and combined trees (fig. 1), it
is sister to the Stizolobium clade. Given that some authors argue
that combining different data sets (fig. 1) generally improves
phylogenetic accuracy, to increase the resolution of our trees re-
gardless of their incongruence (Cunningham 1997; Yoder et al.
2001), we decided to merge data sets and perform a combined
analysis.

The majority rule consensus tree resulting from the Bayes-
ian analysis of the combined data set revealed that the genus
Mucuna is monophyletic (fig. 1). Three main clades were re-
solved, here named the core Mucuna clade (which includes
the type species of Mucuna, M. urens), which thus represents
Mucuna subg. Mucuna; the Stizolobium clade (which includes
the species currently placed in M. subg. Stizolobium); and the
Macrocarpa clade. The main diagnostic characteristic of species
in the Macrocarpa clade is the long pods, and therefore Macro-
carpa is an appropriate name for the clade (T. M. Moura, un-
published data). The results obtained from the ML analysis
are in agreement with the Bayesian results (results not shown).
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Fifty percent majority rule consensus tree resulting from Bayesian analysis of the combined data set of #7#L-F and internal transcribed

spacer (ITS) sequences for Mucuna species. The numbers above and below branches are posterior probabilities and bootstrap supports, respec-

tively. Values <0.7 and <70% are not shown.

Estimates of Divergence Times

Mucuna (Mucuna clade) and the clade comprising the Stizo-
lobium and Macrocarpa subclades began diversifying during

The BEAST analysis based on the combined data set (fig. 2)
estimated the stem age of Mucuna to be in the Oligocene to
early Miocene (29.2 Ma; 95% CI, 18.1-39.1). The subgenus

the Miocene at 20.8 Ma (95% CI, 11.4-31.0) and 20.8 Ma
(95% CI, 10.5-32.1), respectively. Additionally, diversifica-
tion of subgenus Stizolobium (Stizolobium clade) and the Mac-
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rocarpa clade occurred in the late to middle Miocene around 10.4
Ma (95% CI, 4.5-17.8) and 9.5 Ma (95% CI, 3.4-18.2),
respectively (fig. 2). Our results suggest that the main diversifi-
cation of the genus Mucuna occurred more recently, in the mid-
dle to late Miocene and Pliocene.

Biogeographic Inferences

The ancestral geographic ranges obtained by BBM analysis
(fig. 3) suggest that Mucuna originated in area B (Asia, node I)
with a marginal probability (MP) of 91.5%. Subclade Mucuna
(node II) and the subclade comprising the Macrocarpa and
Stizolobium clades (node III) are also postulated to have an
Asian origin with MPs of 95.9% and 85.4%, respectively. Al-
though the Macrocarpa clade has an exclusively Asian origin
(node IV, MP = 97.6%), the Stizolobium clade (node V) is am-
biguous, and five ancestral areas are possible, B (MP = 37.7%),
BE (MP = 20%), AB (MP = 7%), F (MP = 6.3%), and BE
(MP = 5.7%), with 23% ambiguity (fig. 3, node V). Node VI

was inferred to be of South American (area E) origin with
MP = 73.5%, suggesting a dispersal event from Asia to the
Neotropics.

Discussion

Phylogenetic Analyses

Mucuna was recovered as monophyletic in all analyses and
comprises three main clades, two of them corresponding to
M. subg. Mucuna as traditionally circumscribed. However, the
position of the Macrocarpa clade varies between the analyses, sug-
gesting that additional molecular data, coupled with a detailed
morphological analysis, are needed to clarify this relationship.

The Macrocarpa clade is characterized by species with long
fruits (often >50 cm in length, containing up to 18 seeds),
whereas the remaining species in the core Mucuna clade (i.e.,
excluding the Macrocarpa clade) have fruits up to 30 cm long
that usually contain no more than five seeds. Members of the
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Stizolobium clade (M. subg. Stizolobium) also have fruits up to
10 cm long that usually contain no more than five seeds, but the
seeds are reniform in outline (rather than round, as they are in
the other two clades), and the hilum is shorter. Although all the
taxa of subgenus Stizolobium cluster in a well-supported clade,

the topology of the trees indicates that this group should be
treated as a subgenus within Mucuna (Wilmot-Dear 1984,
1991; Moura et al. 20135, 2014), instead of as an independent
genus, as suggested by some authors (Molina Rosito 1975;
Stevens et al. 2001; Zamora 2010).
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Fifty percent majority rule consensus tree resulting from Bayesian analysis of the #7nL-F marker for Mucuna species. The numbers

As stated above, the Macrocarpa clade is morphologically
coherent with respect to fruit morphology. Only the ML anal-
ysis of the ITS marker failed to include M. calophylla as a
member of the Macrocarpa clade, placing it instead as the sis-
ter taxon to subgenus Stizolobium, although with low support

(58%). Conversely, there is high support (99% bootstrap and
1 posterior probability support) in the combined ML and BI
analyses for a clade comprising M. birdwoodiana, M. calophylla,
M. macrocarpa, and M. sempervirens. Incongruency between the
chloroplast DNA and ITS trees regarding the position of the
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Macrocarpa clade (see above) and the observed variation in poly-
ploidy level among individuals of M. sempervirens might be the
result of incomplete lineage sorting and/or introgressive hybrid-
ization (Maddison and Knowles 2006; Petit and Excoffier
2009) among species of the Macrocarpa, core Mucuna, and
Stizolobium clades.

The corolla color, the pollination systems, and the lamellate
ornamentation of the pod surface were not found to be syna-
pomorphies for any of the three major clades in the analyses.
For example, M. nova-guineensis and M. bennettii, two red-
flowered species from Oceania, are placed in the same subclade,
whereas M. neocaledonica (from New Caledonia) and M. ros-
trata (Neotropics), which have red, purplish-red, or orange
flowers, are nested in different subclades. Similarly, M. japira
(endemic to Brazil) and M. sloanei (widely distributed) both
have yellow flowers but are not closely related. There is also
no evident clustering of species with similar pollination systems.
Species bearing long peduncles, which are characteristic of bat
pollination, appear in different subclades. For example, in the
clade formed by M. urens, M. flagellipes, M. mollis, M. rostrata,
and M. japira, the first three species have long peduncles and
are bat pollinated, whereas the other two species have short pe-
duncles and are pollinated by birds. Likewise, in the clade com-
prising M. argyrophylla, M. mutisiana, and M. sloanei, the first
two species have long peduncles and are probably bat polli-
nated, whereas M. sloanei has a short peduncle and is likely to
be bird pollinated. Our results suggest that the pollination syn-
drome and floral features have arisen in parallel multiple times
during the evolutionary history of Mucuna, a trend that has been
reported in other plant groups, such as Sinningeae (Gesne-
riaceae; Perret et al. 2003) and Bignonieae (Bignoniaceae; Al-
cantara and Lohmann 2010). The presence of lamellate orna-
mentation on the pod surface is apparently not synapomorphic
(e.g., M. argyrophylla, M. mollis, and M. gigantea, which lack
ornamented pods, group into different subclades, together with
species with ornamented fruit). No clustering of species on the
basis of inflorescence type, namely, pseudoracemose, pseudo-
paniculate, or pseudoumbellate, was observed, although the in-
clusion of several Neotropical pseudoumbellate species (M. argen-
tea, M. cajamarca, M. cuatrecasasii, M. elliptica, M. klitgaardiae,
and M. pseudoelliptica), which were not included in our study,
would be needed to further support this finding. On the other
hand, the types of fruit, seed, and seed hilum do provide tax-
onomically informative characters that support our molecular
findings.

Biogeographic Inferences

Present-day global legume distributions are most likely a
combination of long-distance dispersal (LDD) and vicariance,
based on the evidence from phylogenetic studies and fossil
records (Schrire et al. 2005; Bessega et al. 2006). More impor-
tantly, the transoceanic distribution of various crown clades of
the legumes is considered to be the result of LDD, because the
young ages estimated for most legume groups preclude vicari-
ance as an explanation for their disjunct distributions (Lavin
et al. 2004). According to our divergence time analysis using
BEAST, the genus Mucuna evolved sometime in the Oligocene
to early Miocene (39.1-18.1 Ma), whereas the core Mucuna,
Macrocarpa, and Stizolobium clades diversified in the Miocene

(fig. 2). Our results suggest that the genus Mucuna originated
in Asia and has since undergone multiple colonization events
into Africa and North, Central, and South America. Although
the role of long-distance dispersal in the biogeography of land
plants has generally been underestimated (Cain et al. 2000;
Vatanparast 2010), when one considers the topology of our
phylogenetic trees and ancestral area reconstruction, it is plau-
sible that several LDD events underpin the pantropical distribu-
tion of Mucuna across Asia, Africa, and the Americas. The ma-
jority of extant Mucuna species (>80%) are restricted to a single
continent, whereas some species, M. gigantea and M. sloanei,
have almost pantropical distributions. The distribution of these
species is hypothesized to be a result of dispersal of seeds that
have drifted by ocean currents, because Mucuna seeds have
been found even along the coast of New Zealand (Mason
1961) and on beaches in Europe (Nelson et al. 2000). LDD
plays an important role in the biodiversity and biogeography
of a number of legume genera, including Apios (Li et al. 2014),
Canavalia and Dalbergia (Vatanparast et al. 2011; Vatanparast
et al. 2013), Lonchocarpus (Silva et al. 2012), Zornia (Fortuna-
Perez et al. 2013), and members of tribe Fabeae (Schaefer et al.
2012) and indeed of legumes in general (Lavin et al. 2004; Pen-
nington et al. 2006).

Although our taxon sampling could be increased, our anal-
yses showed that at least two dispersal events from the Paleo-
tropics (Asia) to the Neotropics can be inferred. One dispersal
event to Central America has led to a clade comprising
M. sloanei, M. mutisiana, and M. argyrophylla, whereas another
inferred dispersal event to South America has resulted in a clade
comprising M. urens, M. mollis, M. rostrata, and M. japira. For
Africa, four dispersal events can be inferred. Although the Af-
rican species of M. subg. Stizolobium (M. coriacea, M. poggei,
M. pruriens, and M. stans) could have resulted from a single
colonization from Asia, M. subg. Mucuna arrived on the Afri-
can continent multiple times: M. flagellipes from South America,
M. gigantea from Asia, and M. sloanei from Central America
(all by LDD). Mucuna manogarivensis, which is endemic to
Madagascar, is sister to M. atropurpurea from Asia, but the
ancestor of these two species appears to be Central Ameri-
can (although this relationship received low support of PP;
0.53). The species from Oceania, M. nova-guineensis, M. ben-
nettii, and M. mollissima, also have an origin in Asia (fig. 3),
whereas the origin of M. diabolica (an Australian species) is
uncertain.

Conclusions

Our results confirm that the genus Mucuna is monophyletic,
as is the previously described subgenus Stizolobium. Mucuna
subg. Mucuna contains two main clades, the core Mucuna clade
and Macrocarpa clade. Although the position of the Macro-
carpa clade is variable in our analyses, it is consistent in species
content for both studied markers. The species of this clade are
morphologically distinctive with respect to fruit type, but we
are carrying out additional investigations before formally de-
scribing a new subgenus. On the basis of the divergence time
analysis, we conclude that the genus Mucuna originated in the
Paleotropics, in the Oligocene to early Miocene, and gradually ex-
panded its geographic range via a number of dispersal events into
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Africa and via at least two dispersal events into the Neotropics.
These findings suggest that long-distance oceanic dispersal of
Mucuna seeds has had a central role in forming the present-
day pantropical distribution of and diversification within the
genus.
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Appendix
Voucher Information and GenBank Numbers

Shown below are voucher information and GenBank numbers (¢7#L-F and ITS) for all specimens used in this study.

Outgroups

Apios americana Medik., ITS: AF467019.1, trul-F: EU717312.1. Craspedolobium schochii Harms, China, A. Henry 9241-A
(K), ITS: KT696028. Desmodium barbatum (L.) Benth., trul-F: EU717290.1. Desmodium microphyllum (Thunb.) DC., ITS:
GQ413945.1, trnL-F: JN402868.1. Desmodium uncinatum (Jacq.) DC., ITS: GQ413950.1. Erythrina fusca Lour., Brazil: cul-
tivated in Rio de Janeiro Botanical Gardens, ITS: KT729507; trnl-F: KT729512. Erythrina speciosa Andrews, Brazil, T. M.
Mowura 1004 (UEC), ITS: KT729508; trnl-F: KT729513. Kennedia coccinea (Curtis) Vent., Australia, T. R. Lally 1568
(MO), trnL-F: KT696082. Kennedia nigricans Lindl., cultivated in the United States, H. Van der Werff 8254 (MO), trnL-F:
KT696083. Kennedia prostrata R. Br., Australia, R. J. Smith & A. Shade 39 (K), trnL-F: KT696084. Lespedeza cuneata
(Dum. Cours.) G. Don, ITS: GU572175.1, trnL-F: JN402793.1. Lespedeza maritima Nakai, ITS: GU572190.1. Strongylodon
archboldianus Merr. & L. M. Perry, New Guinea, M. Fallen 404 (MO), ITS: KT696078. Strongylodon macrobotrys A. Gray,
Brazil: cultivated in Rio de Janeiro Botanical Gardens, trnL-F: KT696131.

Platycyamus

Platycyamus regnellii Benth., Brazil, B. A. S. Pereira & D. Alvarenga 2474 (K), KT696079. Platycyamus ulei Harms 44721,
Brazil, E. Ule 9496 (K), trnl-F: KT696080. Platycyamus ulei Harms 45190, Peru, E. Meneces s.n. (MO 4268531), truL-F:
KT696081.

Mucuna

Mucuna argyrophylla Standl., Mexico, M. Sousa 11399 (MO), ITS: KT696029, trnl-F: KT696085. M. argentea T. M. Moura,
G.P. Lewis & A.M.G. Azevedo., Colombia, B. Kats & A. van Dulmen AVD 265 (K), ITS: KT729509. M. atropurpurea (Roxb.)
DC., Ceylon, A. G. Robyns 7327 (K), ITS: KT696030, trnl-F: KT696086. M. bennettii F. Muell., Brazil, cultivated in the Rio de
Janeiro Botanical Garden, T. M. Moura 996 (UEC), ITS: KT696031, trnl-F: KT696087. M. biplicata Teijsm & Binn., Malaysia,
L.G. Saw (L 0462392), trnl-F: KT696088. M. biplicata Teijsm & Binn., Malaysia, C. Hansen 136 (K), ITS: KT696032, trnL-F:
KT696089. M. birdwoodiana Tutcher, China, W. T. Tang 20607 (MO), ITS: KT696033, trul-F: KT729514. M. brachycarpa
Rech., Fiji, W. Greenwood 1109 (K), ITS: KT696034. M. bracteata DC. ex Kurz, Thailand, E. F. Anderson 4108 (MO), trnL-F:
KT696090. M. bracteata DC. ex Kurz 02, Burma, G. B. Vogt 495 (K), trnL-F: KT696091. M. calophylla W. W. Sm., China,
R. C. Ching 21690 (GH), ITS: KT696035, trnL-F: KT696092. M. championii Benth., Hong Kong, Hu & But 20316 (MO),
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ITS: KT696036. M. coriacea Baker, Zimbabwe, R. D. Barnes s.n. (K), ITS: KT696037, trnL-F: KT696093. M. diabolica Backer
ex Keuch., Australia, K. Kenneally 6391 (K), ITS: KT696038, trnL-F: KT696094. M. ecuatoriana T. M. Moura, G.P. Lewis &
A.M.G. Azevedo., Ecuador, M. Blanco 2532 (MO), ITS: KT696039. M. elmeri Merr., Indonesia, Ambriansyah (L 0501638),
ITS: KT696040, trnl-F: KT696095. M. flagellipes Vogel ex Benth., Ghana, C. C. H. Jonkind ¢& D. K. Abbin 1588 (MO), ITS:
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KT696042,irnL-F: KT696100. M. hainanensis Hayata, ITS: GU217596.1. M. hainanensis Hayata (as M. nigricans (Lour.)
Steud.), Taiwan, W. L. Wagner 6735 (K), ITS: KT696043. M. holtonii (Kuntze) Moldenke, Colombia, W. Devia et al. 2302
(MO), ITS: KT696044. M. interrupta Gagnep., ITS: AB775135.1. M. irritans Burtt Davy, Malawi, E. A. Banda et al. 3573
(MO), ITS: KT696045. M. japira A. M. G. Azevedo, K. Agostini & M. Sazima, Brazil, T. M. Moura 630 (UEC), ITS:
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KT696049, trnl-F: KT696103. M. macrocarpa Wall., China, G. Z. Li s.n. (MO), ITS: KT696050, trnlL-F: KT696104. M.
macrophylla Miq., Indonesia, F. J. A. J. Verbeijen 1330/31 (L), ITS: KT696051. M. macropoda Baker f., Papua New Guinea,
H. Hopkins s.n. (L), ITS: KT696052. M. manongarivensis Du Puy & Labat, Madagascar, L. Gautier et al. 3785 (MO), ITS:
KT696053, trnl-F: KT696105. M. melanocarpa Hochst. ex A. Rich., Ethiopia, I. Friis, W. Abebe & E. Getachew 13442
(K), #rnL-F: KT696106. M. mollis (Kunth) DC., Colombia, H. Murphy & E. Parra 684 (MO), ITS: KT696054, trnL-F:
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KT696113. M. poggei Taub. 02, Zambia, D. K. Harder et al. 3073 (MO), trul.-F: KT696114. M. pruriens var. utilis (Wall. ex
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C. E. Ridsdale (L 0396765), ITS: KT696067, trnL-F: KT696121. M. schlechteri Harms, New Guinea, R. D. Hoogland 4241
(GH), ITS: KT696068. M. sempervirens Hemsl., China, D.E. Boufford (L 0254117), ITS: KT696069, trnL-F: KT696122. M.
sempervirens Hemsl., Asia, Hemsl s.n. (MO), trnl-F: KT696123. M. sloanei Fawc. & Rendle, Brazil, T. M. Moura 1005
(UEC), ITS: KT696070, trnL-F: KT696124. M. stanleyi C. T. White, Papua New Guinea, L. . Brass 24277 (L), ITS:
KT729511. M. stanleyi C. T. White 2, Papua New Guinea, Hopkins ¢& Hopkins 1018 (K), ITS: KT696071. M. stans Welw.
ex Baker, Tanzania, F. Furuya 95 (MO), ITS: KT696072, trul-F: KT696125. M. stenoplax Wilmot-Dear, Thailand, S.
Phusomsaeng & S. Pinnin 49 (K), trul-F: KT696126. M. stenoplax Wilmot-Dear, Asia, T. Kajita s./n. (FU), ITS: KT696073,
trnl-F: KT696127. M. stenoplax Wilmot-Dear 22, Thailand, J. F. Maxwell (L 0401600), #rnlL-F: KT696128. M. urens (L.)
Medik., Brazil, T. M. Moura 629 (UEC), ITS: KT696074, trnl-F: KT696130. M. urens (L.) Medik. 39, Guyana, T. R. van Andel
(U0085459), trnl-F: KT696129. M. warburgii K. Schum. & Lauterb., Papua New Guinea, S. Lenean 1443 (K), ITS: KT696075.
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