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l. Introduction

Large, long-lived, sessile organisms contribute structural
complexity to seafloor habitats and play an important role in
marine ecosystems. In deep or cold oceanic waters, corals and
sponges are the most important organisms forming such biogenic
habitats (Roberts et al. 2009, Buhl-Mortensen et al. 2010, Hogg et al.
2010, Rossi et al. 2017). They increase the physical heterogeneity of
habitat, provide refuge and substrate, increase the number and
availability of micro-habitats for other organisms, and thereby

create hotspots of biological diversity in the deep sea.

Deep-sea corals, also known as cold-water corals, have become a
major focus of new deep-sea research and conservation, both in the
United States and worldwide. Recent reviews (Hovland 2008,
Roberts et al. 2009, Cordes et al. 2016a) have highlighted the value
of the habitats they create and their vulnerability to anthropogenic

impacts.

In comparison to deep-sea coral habitats, deep-sea sponge grounds
have, until recently, been relatively overlooked and poorly
understood (Hogg et al. 2010). This too is beginning to change as
new research has highlighted the extent and importance of these
habitats (Maldonado et al. 2016).
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Deep-sea coral and sponge ecosystems have
become a major focus of international
conservation efforts. United Nations General
Assembly resolutions (UNGA Resolutions
61/105, 64/72, and 66/68) have identified cold-
water coral habitats as vulnerable marine
ecosystems in need of protection from
significant adverse impacts of deep-sea bottom
fishing on the high seas. In response,
international guidelines on deep-sea fishing
(FAO 2009) and conservation actions by
Regional Fishery Management Organizations
worldwide have focused on protecting coral
and sponge habitats as vulnerable marine
ecosystems. The Conference of the Parties to the
Convention on Biological Diversity (Decision
IX/20: CBD 2008) adopted scientific criteria
(Annex I to the decision) for identifying
ecologically or biologically significant marine
areas in need of protection in the open ocean
and deep sea. Deep-sea coral and sponge

habitats meet the criteria for such designation.

The State of Deep-Sea Coral and Sponge Ecosystems
of the United States presents new information
gathered over the last decade in the U.S., and
summarizes how this information is
increasingly being used to inform our nation’s
ocean resource management. This introduction
describes the purpose and purview of the
report, and provides a brief summary of
national-level activities over the last decade that
have supported progress in research,

conservation and management.

ll. About This Report

In 2007, the United States National Oceanic and
Atmospheric Administration (NOAA)
published the first peer-reviewed report on the
State of Deep Coral Ecosystems of the United States
(Lumsden et al. 2007; hereinafter referred to as
the “2007 Report”). The 2007 Report
summarized research on these communities in
U.S. waters up to 2006, focusing on the biology
and importance of structure-forming deep-sea
corals and the communities they support, the
threats they face, and their distribution and
conservation status in U.S. waters. In the
decade since 2007, there has been a tremendous
expansion of interest in the science and
management of these ecosystems in the U.S.

and internationally.

The State of Deep-Sea Coral and Sponge
Ecosystems of the United States serves as an
update to the 2007 Report. It consists of six
regional chapters that cover new information
on research and efforts to conserve deep-sea
coral ecosystems since 2007. The regional
chapters also provide the first summary of
research on deepwater sponge ecosystems —
though for most regions this information is
relatively limited. This volume does not include
a U.S. Caribbean chapter, as there has been
relatively little new information from waters
surrounding Puerto Rico, the U.S. Virgin
Islands, and Navassa Island since information
from that region was last reviewed (Lutz and

Ginsburg 2007). Each chapter is accompanied
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THE STATE OF
DEEP CORAL ECOSYSTEMS OF
THE UNITED STATES: 2007

The State of Deep-Sea Coral and Sponge
Ecosystems of the United States

Thomas F. Hourigan, Peter | Etnoyer, and Stephen D, Cairns

Figure 1. The 2017 State of Deep-Sea Coral and Sponge Ecosystems of the United States provides an update
to the first NOAA report, State of Deep-Sea Coral Ecosystems of the United States: 2007.

by an online list of deep-sea coral species
known from that region. These independently

citable and peer-reviewed lists (including a U.S.

Caribbean list) update species inventories
contained in the 2007 Report, and substantially
increase the number of taxa recorded in U.S.
waters. NOAA will work with the taxonomists
to update these online deep-sea coral species
lists regularly and supplement them with

similar species lists for deep-sea sponges.

The 2007 Report contains a large amount of
background information on regional
ecosystems and management efforts prior to
2007, and the current report is not meant to
replace this. Rather, it builds on the 2007

Report, and provides an update on new

research and management efforts that have
occurred through 2016.

In addition to the regional update chapters, this
report includes six spotlight chapters that
highlight cross-cutting themes. Each chapter is
written by leading experts with an emphasis on
how research conducted in the U.S. has
contributed globally to our understanding of
deep-sea coral species discovery (Cairns et al.,
Chapter 2), population connectivity (Morrison
et al., Chapter 12), predictive modeling
(Guinotte et al., Chapter 8), age and growth of
deep-sea corals (Prouty et al., Chapter 10),
fishing impacts (Rooper et al., Chapter 4), and a
case study on managing black coral harvests
(Wagner et al., Chapter 6).
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lIl. Corals and Sponges: Key
Components of Deep-Sea
Biogenic Habitats

Deep-sea corals and sponges occur throughout
the world’s oceans. Many species attain large
sizes and occur in sufficient densities to create
habitat for numerous associated organisms,
thereby forming the basis for remarkably
complex and fragile benthic communities.
These habitat-forming or structure-forming
species (NOAA 2010) act as “ecosystem
engineers” (Jones et al. 2007). Rossi et al. (2017)
have dubbed deep-sea coral and sponge
habitats “marine animal forests,” due to the
structural and functional similarities of these
communities with terrestrial forests. The three-
dimensional features formed by many deep-sea
corals and sponges provide habitat for
numerous fish and invertebrate species and
thereby enhance the biological diversity of
many deepwater ecosystems. There is
increasing evidence that these habitats may
play important ecosystem functions, acting as
hotspots of carbon and nutrient recycling in the
food-limited deep ocean (Cathalot et al. 2015,
Maldonado et al. 2016).

In addition to habitat and ecosystem functions,
deep-sea corals and sponges are also valuable
to humans in their own right. Cnidarians
(predominantly octocorals) and especially
sponges are the most important sources of

marine natural products (Leal et al. 2012).

Mehbub et al. (2014) reviewed new sponge-
derived natural products from 2001 to 2010,

which represented about 29% of all marine

Box 1. Defining Deep-Sea Corals
and Sponges

In this report, “deep-sea corals” and “deep-sea
sponges” are defined as corals or sponges that
do not depend upon symbiotic algae and light
for their metabolic requirements, and generally
occur at depths below 50 m (NOAA 2010).
Deep-sea corals are also referred to as cold-
water corals (e.g., Roberts et al. 2009) and were
called deep corals in the 2007 Report (Lumsden
et al. 2007).

Structure-forming deep-sea corals and sponges
are those larger species that provide three-
dimensional structure above the seafloor that
can be used as habitat by other species. In the
case of corals, these include both deep reef-
building stony corals (e.g., Lophelia pertusa), as
well as gorgonians, gold corals, and black
corals, which often have branching tree-like
forms and either occur singly or occur in
aggregations that increase their habitat value.
The most important deep-sea structure-forming
sponge species are those in the classes

Demospongiae and Hexactinellida.

natural products discovered during this
decade. Bath sponges have been harvested for
centuries, but now other sponges are being
studied for insights into new industrial
products ranging from fiber optics (Aizenberg
et al. 2005) to nanocrystals (Morse 2007). Black,
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pink, and red corals are the basis for a large

jewelry industry (Wagner et al., this volume).

Il.1. Deep-Sea Corals

Deep-sea corals, also referred to as cold-water
corals, are a taxonomically and morphologically
diverse group of cnidarians distinguished by
their predominant occurrence in deep or cold
oceanic waters. Cairns (2007) defined corals as
“animals in the cnidarian classes Anthozoa and
Hydrozoa that produce either calcium
carbonate (aragonitic or calcitic) secretions
resulting in a continuous skeleton or as
numerous, usually microscopic, individual
sclerites, or that have a black, horn-like,
proteinaceous axis.” Table 1 shows the major
taxa of deep-sea corals. The anthozoan
hexacorals include stony corals (Order
Scleractinia), black corals (Order Antipatharia),
and several species parazoanthid gold corals
(Order Zoantharia — in the genera
Kulamanamana [formerly Gerardia)] and Savalia;
Sinniger et al. 2013).

The anthozoan octocorals include the true soft
corals, stoloniferan corals, gorgonians (Order
Alcyonacea), sea pens (Order Pennatulacea),
and helioporids (the shallow-water blue coral
and the deepwater lithotelestids in the order
Helioporacea). Recent molecular phylogenetic
studies indicate that the anthozoan subclass
Octocorallia is likely monophyletic, but the
orders (Alcyonacea, Pennatulacea, and

Helioporacea) within the octocorals are likely

not (McFadden et al. 2010). Most modern
taxonomists treat the large and morphologically
diverse soft and gorgonian corals as the single
order, Alcyonacea (Daly et al. 2007). Here, as in
the 2007 Report, we continue to treat the
gorgonians (alcyonaceans with a proteinous
and/or calcitic supporting skeletal axis; i.e.,
species currently included in the suborders:
Scleraxonia, Holaxonia, and Calcaxonia)
separately from the other alcyonaceans (true
soft corals and stoloniferans). We do this for
practical reasons (discussed in Hourigan et al.
2007), since many gorgonians are major
structure-forming species (in contrast to soft-
bodied alcyonaceans, which typically are not),
and many surveys report corals as
“gorgonians” based on gross morphology when
species or family-level identifications are
lacking. This practice also allows comparison to
the 2007 Report. In the online species lists,
however, we have included the gorgonians in
the order Alcyonacea in keeping with generally
accepted taxonomic reviews (Fabricius and
Alderslade 2001, Daly et al. 2007, Watling et al.
2011).

Corals in the class Hydrozoa (sometimes called
hydrocorals) are only distantly related to other
corals (in class Anthozoa). Most deep-sea
species are limited to a single family,
Stylasteridae (the stylasterid or lace corals, in
the order Anthoathecata). The order Hydrozoa
also includes the calcified shallow-water fire

corals (Family Milleporidae), and three species
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of long horn corals, only one of which lives in
deep water (Cairns 2007).!

Although more than 600 species of scleractinian
corals occur deeper than 50m (Cairns 2007),
most are solitary corals and only about 20 are
considered framework-forming (constructional)
species that contribute to deepwater coral reefs
or bioherms (Roberts et al. 2009). The six most
significant species are Lophelia pertusa,
Solenosmilia variabilis, Goniocorella dumosa,
Oculina varicosa, Madrepora oculata, and
Enallopsammia profunda (Roberts et al. 2009). In
U.S. waters, deep-sea coral bioherms
constructed primarily by O. varicosa, L. pertusa,
and E. profunda occur in the Southeast U.S. and
by L. pertusa in the Gulf of Mexico. Deep-sea
coral reefs support faunal communities that are
much higher in biomass and diversity than
surrounding unstructured deep-sea habitats
(Cordes et al. 2008, Roberts et al. 2009, Rossi et
al. 2017). Deepwater reefs may also provide an
important link between the benthos and diel
vertical migrating mesopelagic fishes and
macronekton invertebrates (Gartner et al. 2008,
Davies et al. 2010).

Since 2007, there has been an increased focus on
other types of deep-sea coral habitats, both in
the U.S. and internationally. This includes high
density aggregations of gorgonians or black
corals, often referred to as coral “gardens,” and
groves of sea pens (Buhl-Mortensen et al. 2010,
2017; Auster et al. 2013; Stone et al. 2005; Stone
2014; De Clippele et al. 2015; Pérez et al. 2016).

L A few species of other branching deepwater hydrozoans
produce chitinous skeletons (e.g., Hydrodendron
gorgonoide, Order Leptothecata), reach large sizes, and

These have much broader depth and
geographic distributions than deep-sea stony
coral reefs, and have also been recognized as
important biodiversity hotspots in the deep sea
(Buhl-Mortensen et al. 2017).

IIl.2. Deep-Sea Sponges

Sponges are sessile animals in the phylum
Porifera, and are among the oldest lineages of
animals (Hooper and van Soest 2002). Most
species are marine, found from tropical to polar
environments and from very shallow to abyssal
depths (van Soest et al. 2012). There are four
extant classes: Demospongiae (the largest class
— sometimes referred to as siliceous and horny
sponges), Homoscleromorpha (recently
separated from the demosponges), Calcarea
(calcareous sponges) and Hexactinellida (glass
sponges) (Table 2). The World Porifera
Database (Van Soest et al. 2017) lists over 9575
extant species of marine sponges (7,742
Demospongiae, 878 Hexactinellida, 834
Calcarea, and 121 Homoscleromorpha). The
phylogeny, systematics, and taxonomy of
sponges have recently undergone extensive
revisions, and many aspects remain unresolved.
The Systema Porifera (Hooper and van Soest
2002) represented a major systematic revision of
the phylum. This revision was supplemented
by recent major revisions to the orders,
Homoscleromorpha (Gazave et al. 2010),
Demospongiae (Morrow and Cardenas 2015),
and Hexactinellida (Dohrmann et al. 2017).

may provide habitat functions similar to many deep-sea
corals. While morphologically-similar to gorgonians,
these are currently not considered to be corals.
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Table 1. Corals in the phylum Cnidaria that occur in deepwater (> 50 m).

Class

Subclass

Order

Common
Names

Habitat Contribution

Anthozoa

Hexacorallia

Scleractinia

Stony corals

A few branching species form deep-water
biogenic reef frameworks known as bioherms,
coral banks, or lithoherms. Most deep-sea
species are small solitary cup corals.

Antipatharia

Black corals

Many branching forms, some of which can
reach large sizes. Often co-occur with
gorgonians.

Zoantharia

Gold corals

Only a few species in the family
Parazoanthidae form rigid skeletons. They
parasitize other corals and need other coral
hosts to settle on. Gold corals can live for over
2000 years.

Octocorallia

Alcyonacea

True soft corals
and stoloniferan
corals

Soft-bodied species. Most are small and
although they can occur in significant
densities do not appear to be major structure-
forming species.

Gorgonacea
(= Alcyonacea,
in part)

Gorgonians

Many branching forms that can reach large
sizes. A number of species can occur in dense
aggregations.

Pennatulacea

Sea pens

Unlike most other coral orders, sea pens are
mostly found on soft sediments, where they
can form dense beds that provide important
habitat.

Helioporacea

Lithotelestids

Only three species in one genus are known
from deep water. Contribution to habitat is
unknown.

Hydrozoa

Hydroidolina

Anthoathecata

Stylasterids or
lace corals
(Family
Stylasteridae)

Can form branching colonies. Most species
are relatively small. May be confused with
stony corals but the resemblance is
superficial.

Longhorn
hydrozoans

Only one species (in the Family
Hydractiniidae) of this group is known from
deep water. Not an important structure-
forming species.
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Deep-sea sponges can play ecological roles
similar to those of deep-sea corals, creating
significant three-dimensional structure on the
sea floor that is used by numerous species
(Freese and Wing 2003, Bell 2008, NOAA 2010,
Buhl-Mortensen 2010, Stone 2014, Hogg et al.
2010, Maldonado et al. 2016). Although they
can be found on many different bottom types,
most occur on hard substrata (van Soest et al.
2012), also favored by most deep-sea corals.
Individual sponges can host a rich complement
of microorganisms (Taylor et al. 2007, Webster
et al. 2012) and serve as habitat for a variety of
larger taxa, including both commensal and
obligate symbionts (Klitgaard 1995, Buhl-
Mortensen 2010). For example, Sedberry et al.
(2004) reported 947 invertebrates representing
ten taxonomic groups living in just five
individual deepwater sponges of different
genera collected in the Southeast U.S. region.
Sponge aggregations can range from small
patches to dense “sponge grounds” in many
deep-sea areas. These deep-sea sponge grounds
remain poorly mapped and understood,
prompting Hogg et al. (2010) to christen them
“Cinderellas of the deep seas.”

Demosponge Aggregations: A variety of
demosponges can create monospecific or
multispecies aggregations. In the Aleutian
Islands of Alaska, demosponges greatly
outnumber corals and are a primary component
of highly diverse coral and sponge gardens
(Stone et al. 2011).

Demosponges in the order Tetractinellida
(formerly order Astrophorida) can form dense
and extensive aggregations (commonly known
as astrophorid sponge grounds) on gravel and
coarse sand bottoms from 150 — 1,700 m deep in
cold temperate and arctic regions (Maldonado
et al. 2016). Off Norway, the most abundant
sponges on these grounds (e.g., Geodia barretti)
can reach sizes of 1 m and biomasses as high as
45 kg/m? (Kutti et al. 2013). Similar sponge
grounds are found along the continental shelf
and slopes off Labrador and Newfoundland
(Murillo et al. 2012; Knudby et al. 2013; Beazley
et al. 2015). Smaller aggregations of
tetractinellid sponges are common in the deep
sea at lower latitudes. Other unique types of
deep-sea demosponge aggregations include
“lithistid” sponge grounds and carnivorous
sponge grounds (Maldonado et al. 2016).

Glass Sponge Reefs and Aggregations: In the
northeast Pacific off British Columbia, glass
sponges (class Hexactinellida) in the order
Sceptrulophora form unique sponge reefs up to
19 m high and many km long at depths of 90-
240 m (Conway et al. 2001, 2005). Smaller glass
sponge reefs have recently been documented in
Southeast Alaska (Stone et al. 2014, Stone and
Rooper, this volume). Elsewhere, glass sponges
can form dense, sometimes monospecific,
aggregations principally at depths below 300 m
(Maldonado et al. 2016). In abyssal depths,
small glass sponges are among the few
organisms providing refuge for other species
(Beaulieu 2001).
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Table 2. Sponges in the phylum Porifera that occur in deep water (> 50 m).

Common . o

Class Subclass Order Habitat Contribution
Names
Heteroscleromorpha | 18 Orders

Demosponges are a large,

. diverse group. Many species
i Keratosa Dendroceratida reach large sizes and along
Demospongiae Dictyoceratida Demosponges

Verongimorpha

Chondrillida
Chondrosiida

Verongiida

with glass sponges represent a
major structure-forming taxon
in deep water.

Hexactinellida

Amphidiscophora

Amphidiscosida

Hexasterophora
incertae sedis

Glass sponges

Glass sponges along with
demosponges represent the
primary structure-forming
deepwater taxa. A few species
form large reefs or bioherms in

Hexasterophora Lychniscosida Southeast Alaska and British
Lyssacinosida Columbia.
Sceptrulophora
Baerida
Calcaronea Leucosolenida
Lithonida Most calcareous sponges are
Calcareous )
Calcarea found in shallow water. A few
sponges ) .
. species occur in deeper water.
. Clathrinida
Calcinea

Murrayonida

Homoscleromorpha

Homosclerophorida

A small group of mostly
encrusting forms in deep
water.
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Figure 2. Dense community of glass sponges on Pioneer Seamount in the Northwestern Hawaiian Islands.

Dense aggregations of filter-feeding deep-sea
sponges may also play an important ecosystem
function in nutrient and biogeochemical cycles.
They filter large amounts of water and can
convert dissolved organic matter into
particulate organic matter, which in turn is
used by other organisms (Maldonado et al.
2016). In this way, sponges may play an
important role in carbon, nitrogen, and silicate

cycling and enhancing local productivity.

There is international recognition that deep-sea
sponge grounds represent vulnerable habitats.
Deep-sea sponges have been recognized as a
key component of vulnerable marine
ecosystems (FAO 2009) and create habitats that

10

meet the criteria for Ecologically and
Biologically Significant Areas in the deep sea
(Hogg et al. 2010). Deep-sea sponge ecosystems
also face many of the same threats as deep-sea
corals — particularly damage from bottom
trawling (Freese et al. 1999, Freese 2003,
Wassenberg et al. 2002, Hogg 2010, Stone and
Rooper, this volume). Deep-sea sponge
aggregations are a habitat type listed on the
OSPAR list of Threatened and/or Declining
Species and Habitats (OSPAR 2008). This
recognition led NOAA to include deep-sea
sponges in its 2010 Strategic Plan for Deep-Sea
Coral and Sponge Ecosystems (see below and
Box 2).
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V. U.S. National Overview

IV.1. A Strategic Approach

The National Oceanic and Atmospheric
Administration (NOAA) is the lead federal
agency mandated to conserve and manage the
nation’s marine resources, including deep-sea
coral and sponge ecosystems. In 2010, NOAA
published a Strategic Plan for Deep-Sea Coral and
Sponge Ecosystems: Research, Management, and
International Cooperation (NOAA 2010, Box 2).
The plan identifies goals, objectives, and
approaches to guide NOAA'’s research,
management, and international cooperation
activities on deep-sea coral and sponge

ecosystems.

Of particular consequence was the Strategic
Plan’s approach to managing bottom-fishing
impacts to deep-sea coral and sponge habitats.
Bottom-contact fishing gears, especially bottom
trawls, currently present the most important
and widespread threat to deep-sea coral and
sponge habitats, both worldwide (Roberts et al.
2009, Hogg et al. 2010, Ragnarsson et al. 2017)
and within many U.S. regions (Hourigan et al.
2007, Rooper et al., this volume). Because
NOAA'’s National Marine Fisheries Service
(NMES), in partnership with the regional
Fishery Management Councils, is the federal
agency responsible for managing fisheries in
the U.S. exclusive economic zone (EEZ) where
most deep-sea corals and sponges occur,
managing fishing threats to these ecosystems is

a primary focus of the Strategic Plan.

NOAA Strategic Plan

for Deep-Sea Coral and
Sponge Ecosystems

Rescarch, Management, and International Cooperation

..

Box 2. Strategic Plan

NOAA'’s 2010 Strategic Plan guides the agency’s
objectives and approaches in three areas related

to deep-sea coral and sponge ecosystems:

1. Exploration and Research —provides
decision-makers with scientific information
to enable effective ecosystem-based
management.

2. Conservation and Management — guides
NOAA efforts to enhance protection of these
ecosystems, working with the Regional
Fishery Management Councils, other Federal
agencies and partners. NOAA's strategy is
based on authorities provided through the
Magnuson-Stevens Fishery Conservation
and Management Act (MSA) and the
National Marine Sanctuaries Act.

3. International Cooperation — describes
NOAA'’s participation in international
activities to study and conserve vulnerable
deep-sea coral and sponge ecosystems.
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The NOAA Strategic Plan supports area-based
(i.e., spatially-explicit) protection of identified
areas of high density structure-forming deep-
sea corals or sponges, and recommends a
precautionary approach to prevent expansion
of the most damaging fishing activities into
unsurveyed areas that might contain deepwater
corals, sponges, and other vulnerable biogenic
habitats (Hourigan 2014). This approach
formed the basis of the historic protection
measures proposed by the Mid-Atlantic Fishery
Management Council and instituted by NOAA
in 2016 (see Packer et al., this volume). The
Strategic Plan also highlighted the importance
of measuring and addressing fisheries bycatch
of deep-sea corals and sponges. The NMFS
National Bycatch Reduction Strateqy (NMFS
2016a) calls upon the agency to: (1) identify

areas of high bycatch of deep-sea corals and
sponges; (2) to work with regional Fishery
Management Councils and the fishing industry
to close these areas to high-bycatch gears as
called for in the Strategic Plan for Deep-Sea Coral
and Sponge Ecosystems; and (3) to collect better
data on coral bycatch and post-interaction
mortality. The agency’s most recent U.S.
National Bycatch Report (NMFS 2016b)
contains quantitative information on the
bycatch of deep-sea corals and sponges off the
West Coast and Alaska.

Within the U.S. government, interest in these
deepwater ecosystems is not limited to NOAA.
The U.S. Geological Survey (USGS) released
Strategic Science for Coral Ecosystems 2007-2011
(USGS 2007), which described the information
needs of resource managers for both shallow

and deep coral ecosystems and summarized

12

research conducted by USGS scientists and
partners. The agency-shared long-term vision is
to develop a more complete understanding of
the physical, chemical, and biological processes
- both natural and anthropogenic — that control
or influence the structure, function, and
ecological relationships within coral

communities.

IV.2. Research Advances

Understanding

IV.2.i — Deep-sea science spurred by
advances in technology

Research on U.S. deep-sea coral and sponge
ecosystems has benefited from the availability
of new tools and techniques (Fig. 3). In 2008,
NOAA commissioned the Okeanos Explorer to
systematically explore our largely unknown
ocean for the purpose of discovery and the
advancement of knowledge. Telepresence uses
satellite communications to allow scientists
from around the world to participate in
expeditions remotely by connecting the ship
and its discoveries live with audiences ashore.
The NOAA Ship Okeanos Explorer is joined by
the Ocean Exploration Trust’s E/V Nautilus, also
equipped with telepresence capabilities, and a
new generation of NOAA fisheries research
vessels conducting deep-sea coral and sponge
research in U.S. waters. These and other vessels
have begun to map the seafloor more
systematically, and at higher resolution, using
multibeam sonar. Meanwhile, improvements to
remotely-operated vehicles (ROVs),
autonomous underwater vehicles (AUVs) and
other equipment (Fig. 3) have provided for

more detailed surveys, revealing previously


http://oceanexplorer.noaa.gov/explorations/07blacksea/background/telepresence/telepresence.html
http://www.nmfs.noaa.gov/sfa/fisheries_eco/bycatch/strategy.html
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Figure 3. Advanced Technology used to explore and understand deep-sea coral and sponge ecosystems: a) NOAA

Ship Okeanos Explorer; b) Deep Discoverer ROV, c) Telepresence-enabled exploration; d) SeaBed AUV.

unknown habitats to depths of 6000 m.

In addition to new survey technologies,
understanding of these ecosystems has

benefitted from a host of other new approaches.

As reviewed by Cairns et al. (this volume), new
genetic techniques have revolutionized our
understanding of taxonomy and systematics,
and are being applied for the first time to
understanding the connectivity of deep-sea
coral and sponge populations (e.g., Morrison et
al., this volume). Predictive modeling of deep-
sea coral habitats has advanced considerably,
and is helping target both new research and
conservation efforts (Guinotte et al., this

volume). Other new techniques allow corals to
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tell the history of past oceanographic conditions
they have experienced (Prouty et al., this
volume), and reveal the remarkable microbial
associates of deep-sea corals (e.g., Kellogg et al.
2016) and sponges. Sponges, in particular, host
exceptionally dense and diverse microbial
communities (reviewed by Taylor et al. 2007,
Webster et al. 2012, Thomas et al. 2016).

IV.2.ii — NOAA’s Deep Sea Coral Research
and Technology Program

NOAA'’s Deep Sea Coral Research and
Technology Program is the only U.S. national
program dedicated to research on deep-sea

coral ecosystems. It was established in the 2007
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Box 3. National Database for Deep-Sea Corals and Sponges
(https://deepseacoraldata.noaa.gov)

NOAA'’s Deep Sea Coral Research and Technology Program has compiled a database of the known locations of deep-sea
corals and sponges, beginning in U.S. waters (Hourigan et al. 2015). Representing the most comprehensive collection of
deep-sea coral and sponge records and information for U.S. waters, the database is available publicly in NOAA’s Deep-
Sea Coral Data Portal. The portal includes a digital map displaying more than 500,000 records. The National Database

includes records from samples archived in museums and research institutions, reported in the scientific literature, as

well as observations collected during deep-water surveys conducted by NOAA and other research institutions.

In addition to showing locations of corals and sponges, the fully searchable map also provides access to the following:

e Insitu photos of the organisms.

e  Extensive associated data available for download about coral and sponge observations, including record
provenance, details about where and how they were observed or collected, and, where available, ecologically
important information, such as their density, size, and habitat.

e Reports that characterize the deep-sea coral and sponge habitats surveyed over the past decade by scientists
from NOAA, other agencies, and universities.

e Deep-sea coral habitat suitability model layers.

The National Database for Deep-Sea Corals and Sponges is continually expanding, incorporating new records from
recent fieldwork observations and historic archives quarterly. Additional software tools for data exploration and
analysis are under development. The Portal also offers information about studies funded by the Deep Sea Coral
Research and Technology Program since 2009 and a growing library of NOAA publications on deep-sea corals and

sponges.
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reauthorization of the Magnuson-Stevens
Fishery Conservation and Management Act
(MSA, Section 408), the nation’s primary
fisheries management legislation. The mission
of the program is to provide the science needed
to conserve and manage vulnerable deepwater
ecosystems. While focused on deep-sea corals,
NOAA has informed congress and the public
that the program will also collect
complementary information, if available, on
high biodiversity deep-sea sponge habitats
(NMFS 2008).

The Deep Sea Coral Research and Technology
Program began operations in 2009. It has
conducted 3-4 year field research initiatives in
nearly all U.S. regions, as outlined in the
regional chapters that follow. Surveys
conducted by the program and its partners
have supported management efforts across the
country, including identification of vulnerable
coral and sponge habitats to be protected from
damaging bottom-fishing gears, expansion of
National Marine Sanctuaries and Monuments,
and the establishment of the Northeast

Canvons and Seamounts Marine National

Monument.

These field initiatives have been supplemented
by targeted projects to map deep-sea coral
distributions, model predicted deep-sea coral
habitat (Guinotte et al., this volume), study
coral genetics and connectivity (e.g., Everett et
al. 2016), and support coral bycatch reduction.
Data collected by the Deep Sea Coral Research
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and Technology Program and its partners
contribute to NOAA’s National Database for
Deep-Sea Corals and Sponges (Box 3, Hourigan
et al. 2015) and are available through the
program’s map portal

(www.deepseacoraldata.noaa.gov).

IV.2.iii — Other major research programs
The last decade also saw the results from major
U.S. interagency collaborations focused on
deep-sea coral ecosystems led by the
Department of Interior’s Bureau of Ocean
Energy Management (BOEM, formerly
Minerals Management Service), in collaboration
with the U.S. Geological Survey (USGS) and
NOAA, and sponsored by the National
Oceanographic Partnership Program (NOPP).
As described by Boland et al. (this volume),
major multidisciplinary studies were conducted
in the Gulf of Mexico during the 2004-2006
(Lophelia I; Sulak et al. 2008), 2005-2009 (Chemo
III; Brooks et al. 2014) and 2008-2012 (Lophelia II;
Brooks et al. 2016). These studies, particularly
Lophelia II, produced unprecedented new
information on the biology and life history of
major structure-forming corals (Lophelia pertusa,
the black coral Leiopathes sp., and the gorgonian
Callogorgia spp.), community structure, trophic
relationships, and other aspects of these deep-
sea coral communities (Brooks et al. 2016). A
similar collaboration was conducted in the Mid-
Atlantic’s Baltimore and Norfolk Canyons
(Packer et al., this volume).


http:www.deepseacoraldata.noaa.gov
https://obamawhitehouse.archives.gov/the-press-office/2016/09/15/presidential-proclamation-northeast-canyons-and-seamounts-marine
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IV.3. Conservation Status of U.S.
Deep-Sea Coral and Sponge
Ecosystems

Understanding the conservation status of deep-
sea coral and sponge ecosystems requires
information on the following topics: (1) the
spatial distribution of these biogenic habitats;
(2) the spatial extent and intensity of
anthropogenic activities that pose potential
threats and their overlap with biogenic habitats;
(3) the sensitivity of these ecosystems to
different impacts and their recovery potential;
and (4) the effectiveness of management
measures to address these threats (Ragnarsson
et al. 2016). There has been substantial progress
over the last ten years on each of these fronts in
regard to deep-sea coral and sponge

ecosystems.

IV.3.i — Spatial distribution of U.S. deep-sea
corals and sponges

Deep-sea habitats are difficult and expensive to
survey. The United States has the world’s
second largest exclusive economic zone (EEZ),
most of it below the edge of the continental
shelf (i.e., greater than ~200 m deep). This area
remains largely unmapped, and the areas
visually surveyed for deep-sea corals or
sponges are miniscule. Nevertheless, the last
decade has seen a more systematic approach to
both mapping the seafloor and understanding
the distribution of deep-sea habitats. This
information has been identified as the first
priority nationally for management (Hourigan

2014, regional chapters in this Report).
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Deep-Sea Coral Distributions: Structure-forming
corals are widespread in deeper waters of all
regions except the U.S. Arctic. Although largely
unexplored, only sea pens and one soft coral
(Gersemia sp.) have been reported from the
Chukchi Sea and Beaufort Seas (Stone and
Rooper, this volume). This result contrasts to
the Arctic north of the Atlantic, where extensive
and relatively diverse coral habitats have been
discovered off Canada, Greenland, and Norway
(Roberts et al. 2009). NOAA’s National
Database for Deep-Sea Corals and Sponges
(Box 3) has resulted in the first comprehensive
maps of coral presence in areas of U.S. waters
that have been sampled (map annexes in each
regional chapter). Predictive habitat models
allow some extrapolation of these data to
unsurveyed areas (Guinotte et al., this volume).
Such maps and models of coral presence,
however, do not yet capture the local extent of
habitats nor the density and diversity of corals
within the habitats — features that are most
important for determining their conservation

value.

Although deep-sea corals occur widely, areas of
high-density aggregations (e.g., coral
“gardens”) are highly localized, and may be
small (many on the scale of tens to hundreds of
meters across). They therefore represent a
comparatively rare habitat type. Yet these coral
garden areas support diverse communities of
other organisms and represent hotspots of
biological diversity in the deep sea (e.g., Auster
et al. 2013, Stone 2014). Their diversity and
rarity makes them both extremely valuable and

extremely vulnerable.
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The only true deepwater stony coral reefs
(bioherms) have been observed in the U.S.
Southeast (Hourigan et al., this volume) and
Gulf of Mexico (Boland et al., this volume), and
most recently on seamounts of the
Northwestern Hawaiian Islands and Emperor
Seamount Chain (Baco et al. 2017). Some deep-
sea reef formations may also occur in
unsurveyed areas of the U.S. Caribbean. U.S.
deepwater coral reefs are most diverse and
numerous in the Southeast, where they
probably rank among the most extensive deep-
sea coral reef provinces in the world. These
reefs, along with coral and sponge gardens in
the Aleutian Islands, represent the largest
extents of highly diverse U.S. deep-sea coral
communities. However, every U.S. region
contains truly remarkable habitats, often in
areas of clear water — on ridges, seamounts,
canyon walls and shelf-edge breaks — where
there is hard substratum, sufficient food, and

moderate to strong currents.

New explorations continue to reveal amazing
new habitats. Deep-sea surveys in the U.S.
Pacific Island Territories began in 2016 (too
recent to be reflected in the U.S. Pacific Islands
summary; Parrish et al., this volume), revealing
extensive and dense coral and sponge gardens
on ridges and seamounts. New research has
also uncovered unexpectedly rich habitat areas
within the current bottom-fishing footprint that
appear to have escaped damage (e.g., coral
gardens in the Gulf of Maine, Northern
California, and Aleutian Islands). These areas
represent conservation priorities, as they face
the most immediate threats from bottom-

fishing.
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Deep-Sea Sponge Distributions: The Gulf of
Mexico (Riitzler et al. 2009) and the Aleutian
Islands in Alaska (Stone et al. 2011) are the only
regions with moderately systematic lists of
deep-sea sponge species, although species lists
exist for certain sub-areas (e.g., California, Lee
et al. 2007). Mapping of sponge distributions
has barely begun, and with the exception of
some Alaskan areas (Rooper et al. 2014, Rooper
et al. 2016), no predictive habitat models have
been developed to date. The most
comprehensive picture of sponge presence
comes from scientific trawl surveys conducted
off Alaska and the U.S. West Coast (Clarke et
al., this volume) — though most records are only
recorded as “Porifera,” and the surveys cannot
access areas of rough topography that may be
especially important habitats for many species.
These surveys indicate that certain areas have
high bycatch of sponges and likely represent
high-density sponge grounds. These include
monospecific sponge grounds in Alaska’s
Bristol Bay (B. Stone pers. comm.), and highly
diverse sponge gardens in the Aleutian Islands
that have also been visually surveyed (Stone
2014, Goddard et al. 2017). Bycatch of sponges
from commercial fisheries off the U.S. West
Coast and Alaska is an order of magnitude
larger by weight than the bycatch of corals, and
the Alaska sponge bycatch is 50 to 100 times
higher than off the West Coast. This trend
supports the generalization that high-density
deep-sea sponge grounds are more common in

cold temperate waters (Maldonado et al. 2016).

Pile and Young (2006) reported that the deep-
sea glass sponge, Sericolophus hawaiicus, forms

dense beds (mean density: 4.7/m?) over
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Figure 4. Massive glass sponge discovered at a
depth of 2117 m in the Northwestern Hawaiian
Islands. The picture shows the sponge and the

ROV Deep Discoverer. The sponge was estimated
to be over 3.5 m in length, 2.0 m in width and 1.5
m in height, making it the largest sponge recorded
to date.

extensive areas at depths between 360 — 460 m
off the Big Island of Hawaii. Unlike many deep-
sea sponges that occur only on hard substrata,
S. hawaiicus is adapted to anchor in the sand.
Recent explorations in both the Hawaiian
Archipelago and other U.S. Pacific Islands and
seamounts have revealed dense aggregations of
glass sponges on rocky ridges. These
explorations included the discovery of what
may be the largest sponge ever reported
(Wagner and Kelley 2016; Fig. 4).

There have been no systematic surveys of deep-
sea sponge habitats in other U.S. regions. Our
understanding of these ecosystems has been
hampered by lack of appreciation of their
importance, and by limited U.S. expertise in

taxonomy and ecology of deepwater sponges.
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IV.3.ii — Anthropogenic threats

The 2007 Report summarized information on
anthropogenic threats to deep-sea coral
ecosystems in U.S. regions (Hourigan et al.
2007). Bottom trawl fisheries were the most
serious threat in Alaska, the U.S. West Coast,
Northeast, and Southeast regions. Other
bottom-tending gear, including traps, bottom-
set longlines, and gillnets can also damage
deep-sea corals (Baer et al. 2010, Sampaio et al.
2012, Rooper et al., this volume). These gears
may be used preferentially in steep and rocky
habitats (i.e., areas of high rugosity) that are
inaccessible for trawling, thereby representing
the primary fishing gear damaging corals and
sponges in such areas. Oil and gas development
was considered a moderate threat in the Gulf of
Mexico, and invasive species and precious coral
harvests were of particular concern in Hawaii.
Other threats, while possibly significant at a
local level, had relatively small footprints
compared to bottom fishing. At the time, there
was insufficient information on potential
impacts of climate change to these ecosystems
to assign a threat level.

The last decade has seen an increase in
awareness of potential threats to deep-sea
ecosystems (Ramirez-Llodra et al. 2011,
Mengerink et al. 2014, Koslow et al. 2016).
Ramirez-Llodra et al. (2011) concluded that
impacts to the deep sea were increasing
globally, with deep-sea coral habitats among
the most vulnerable, and fishing, especially
bottom trawling, being their most serious
current threat. Climate-related changes,
including ocean acidification, ocean warming,

and changes in deep-sea current regimes and
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productivity were expected to become major
threats in the future. This general conclusion
based on scientific expert opinion is supported
by recent reviews of threats to deep-sea coral
ecosystems by other authors (Roberts et al.
2009, Cordes et al. 2016a, Koslow et al. 2016,
Ragnarsson et al. 2017), each of which
highlighted vulnerability to threats from
tishing, fossil fuel exploitation, climate change,
and ocean acidification. Reviews of impacts to
deep-sea sponge ecosystems have also
identified bottom-trawling as the most serious
current impact (Hogg et al. 2010, Maldonado et
al. 2016).

Table 3 provides an updated summary of
anthropogenic threats to deep-sea corals and
sponges in U.S. regions based on published
literature and expert judgement (reviewed in
the regional Chapters), and compares these to
threats described in the 2007 Report. We
assume that impacts to sponges from physical
disturbances are qualitatively similar to impacts
to corals from the same activities (e.g., Stone
2014). The following represent the major

changes to the 2007 threat assessment:

Bottom Fishing: Damage from bottom trawling is
still considered the biggest threat to deep-sea
coral and sponge ecosystems where it occurs in
U.S. regions where these gears are used
(Alaska, U.S. West Coast, Northeast U.S.).
Bottom trawling in the Southeast U.S. and Gulf
of Mexico is restricted to a small number of
vessels engaged in deepwater shrimp fisheries.
There is still incomplete information on the
footprint of bottom-fisheries in the U.S., but

information has improved in certain areas (e.g.,
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the West Coast; see Clarke et al., this volume).
In a series of National Bycatch Reports (NMFS
2011, 2013, 2016b), NOAA quantified the
bycatch of corals and sponges by fishery in
Alaska (2003-2005; 2010-2013) and the U.S. West
Coast (2011-2013). There continues to be
significant bycatch of corals and sponges —
primarily from a limited number of trawl
tisheries and from relatively discrete locations
within these large regions. The highest rates by
far are from the rockfish trawl fishery in the
Aleutian Islands. As noted by Rooper et al. (this
volume), fixed gears (e.g., bottom-set longlines,
gillnets, and traps) can also damage deep-sea
corals and sponges, but less is known about the
extent of their impacts. Their footprint is
certainly orders of magnitude smaller than that
of trawling, but may allow targeting of prime
coral or sponge habitats that are unsuitable for
trawling. Steps taken by the South Atlantic and
Mid-Atlantic Fishery Management Councils
have significantly increased the area of
protected deep-sea coral and sponge habitats,
reducing the threat from bottom-fishing

impacts to the most important areas.

Oil and Gas Development: The potential impacts
of oil and gas development came into stark
focus with the Deepwater Horizon oil spill
(Boland et al., this volume). Deep-sea coral
habitats at three sites from 6-22 km away from
the wellhead (White et al. 2012, Fisher et al.
2014a, Fisher et al. 2014b) were damaged by the
oil spill — evidently as a result of a deepwater
plume. Gorgonians at mesophotic depths (60—
88 m) in areas below the surface oil slick also

exhibited significant declines in condition
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Table 3. Summary of perceived levels of threats (based on Lumsden et al. 2007 and chapters within this report) to deep-sea coral communities
(2007 and 2017) and sponge communities (2017) for ULS. regions. NA = Not Applicable (i.e., this threat is prohibited or does not occur anywhere

within the region).

Note: Perceived threat levels reflect only the occurrence of these stressors in a region and their potential, if unmitigated, to damage deep-sea coral
and sponge communities. They do not indicate the actual impacts of each stressor, which can vary widely within and among regions. Since the
location of deep-sea coral and sponge habitats is incompletely known, there is uncertainty over their degree of overlap with human activities. The
U.S. has taken substantial management steps to mitigate many threats, and the change in perceived threats for fishing in the Northeast and
Southeast reflect recent protections. The 2007 Report did not separate ocean acidification from climate change, and deep-sea mining was not

analyzed as a potential threat.

U.S. REGIONS
THREATS Alaska West Coast Pacific Islands Northeast Southeast Gulf of Mexico Caribbean
2007 2017 2007 2017 2007 2017
B Trawl - -
Bottom Traw High NA NA tow tow NA NA
Fishing Impacts Medium Medium
Other Bottom Low - . Low - Low - Low - Low - Low - Low - Low - Low -
- ) Medium ) ) ) ) ) ) i ) Low Low
Fishing Impacts Medium Medium Medium Medium Medium Medium Medium Medium Medium
Deep- |
eep-Sea Cora NA NA NA Medium  Medium NA NA NA NA NA NA NA NA
Harvest
il
Oil & Gas Low Low Low Low NA NA NA Low NA Low Medium  Medium NA NA
Development
Cable Deployment Low Low Low Low Unknown Low Low Low Low Low Low Low Unknown Low
Sand and G |
an “:Tn ing'ave Low Low NA NA NA NA Low Low Low Low Low Low NA NA
Deep-Sea Minin, Low Low Low - Low Low Low Low
P & Medium
Invasive Species Unknown | Unknown | Unknown | Unknown Medium Medium Unknown | Unknown | Unknown | Unknown | Unknown | Unknown | Unknown | Unknown
Climate Change Unknown Unknown Unknown Unknown Unknown Unknown
Unknown Unknown Unknown Unknown Unknown Unknown Unknown | Unknown
Low - Low -
Ocean Acidification Medium Medium Medium Low ) )
Medium Medium
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(Etnoyer et al. 2016, Silva et al. 2016). Cordes et
al. (2016b) recently reviewed the environmental
impacts of the oil and gas industry: when
potential accidental spills are taken into
account, the potential threat posed by oil and
gas development in the Gulf of Mexico to deep-
sea coral ecosystems is greater than originally
supposed by Hourigan et al. (2007). The
Deepwater Horizon oil spill was a rare, worst-
case scenario, and greatly improved measures
have been put in place to prevent this kind of
spill from happening again. During the last
decade, offshore oil and gas exploration and
leasing has been considered for additional
regions, including Alaska (Stone and Rooper,
this volume) and the Mid-Atlantic (Packer et
al., this volume). While active fossil fuel
development in these regions is currently on
hold, the increased possibility of this moving

forward in the future is reflected in Table 3.

Renewable Energy: Offshore renewable energy,
especially offshore wind energy, has recently
become a major driver for more comprehensive
ocean planning in a number of regions. The
nation’s first offshore wind installation began
operations off Rhode Island in 2016 (Packer et
al., this volume). Most offshore wind facilities
are expected to be sited on the continental shelf
relatively close to shore, and thus are less likely
to impact major deep-sea coral and sponge
habitats. There is, however, the potential for
anchored wind turbines in deepwater areas
nearshore (e.g., in Hawaii), which could affect
deep-sea coral and sponge habitats. Developers
have also proposed potential marine current

energy off southeastern Florida (Vinick et al.
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2012) and ocean thermal energy conversion
projects off Hawaii and southeastern Florida
that could damage deepwater biogenic habitats.
Any proposed activities would result in site-
specific surveys conducted to avoid impacts

from installations.

Deep-Sea Mining: There are currently no
proposals for deep-sea mining within U.S.
waters. Nevertheless, there is increasing
interest and capacity for deep-sea mining
worldwide. Deep-sea mineral resources contain
commercially important quantities of high-
grade ores increasingly valued in modern
technology (Hein 2010, Hein et al. 2013). The
principal deep-sea mineral resources being

considered for mining include the following;:

e Polymetallic manganese nodules, generally
occurring at abyssal depths (3,500 — 6,000
m).

e Seafloor massive sulfides, also known as
polymetallic sulfides, associated with active

or extinct hydrothermal vents.

e Cobalt manganese crusts on seamounts. The
prime crustal zone occurs in the North
Pacific, including areas around Hawaii and

U.S. Pacific territories.

e Phosphorite nodules, typically found
between 200-400 m depth.

Mining, if it occurs, is likely to completely
destroy deep-sea coral or sponge habitats
within its footprint (Ramirez-Llodra et al. 2011,
Levin et al. 2016). Additional impacts are
expected from sediment plumes produced
during mining operations. Currently the

greatest concern in U.S. waters appears to
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impacts from mining to the particularly rich
deep-sea coral and sponge habitats on
seamounts in the U.S. Pacific Islands (Parrish et
al., this volume). Many of these occur in the
Prime Crust Zone of the Central Pacific
(Schlacher et al. 2014), which contains large
concentrations of commercially valuable deep-

sea minerals (Hein et al. 2013).

Climate Change and Ocean Acidification: There are
still many unknowns concerning the potential
impacts of climate change and ocean
acidification on deep-sea coral ecosystems. The
2007 Report did not assign a level of threat to
these ecosystems in the United States from
climate change due to a lack of information
(Hourigan et al. 2007). Since then, the Fifth
Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC) concluded
that ocean warming has affected deep-sea
ecosystems at least down to 2000 m (Hoegh-
Guldberg et al. 2014). Effects of warming on
deep-sea coral and sponge communities include
direct impacts on survival (e.g., Brooke et al.
2013, [coral]) and growth (Stone et al. 2017,
[coral]), and an array of indirect effects linked
to increasing water temperature (Sweetman et
al. 2017). These include decreased dissolved
oxygen concentrations (Keeling et al. 2010,
Levin and Le Bris 2015), altered hydrodynamics
(Birchenough et al. 2015), or decreased
productivity of surface waters and export of
food to the deep-sea (Jones et al. 2014).

Rising atmospheric carbon dioxide (CO) is also
directly responsible for ocean acidification with

associated changes in carbonate chemistry that
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affect coral calcification (Guinotte et al. 2006).
Ocean acidification results from net uptake by
the ocean of CO: emissions, which decreases
carbonate ion concentration in ocean waters
(Feely et al. 2004). Worldwide, ocean waters
from 200-3000 m are expected to face the
largest reductions in pH by the year 2100
(Sweetman et al. 2017). This decrease has been
forecast to hamper production of biogenic
carbonates (aragonite and calcite) in the
skeletons of corals, and is likely to be most
problematic for reef-forming stony corals. The
deep waters of the northeast Pacific have the
shallowest aragonite and calcite saturation
horizon, and may provide a unique
opportunity to study the response of deep-sea
corals to ocean acidification. Corals in this
region could be surviving in potentially
corrosive water conditions for some months of
the year (Feely et al. 2008).

In Table 3 we have divided climate impacts into
two categories — climate changes and ocean
acidification. We identify the latter as a low to
medium threat to deep-sea corals currently, but
is likely to become a high threat in the future.
Threats from ocean acidification are highest
where the aragonite saturation horizon is
shallowest (in the North Pacific) and where
there are deep-sea scleractinian coral reefs,
which are expected to be especially vulnerable
to dissolution. These factors come together in
the newly discovered deepwater reefs in the
Northwestern Hawaiian Islands and Emperor
Seamounts (Baco et al. 2017). There are likely
synergies between ocean acidification and other

impacts of climate change.
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Compared to corals, there is little information
on potential responses of sponges to climate
change and ocean acidification. Kahn et al.
(2012) observed changes in abyssal sponge
populations correlated with climate-driven
changes in particulate organic carbon. Bennett
et al. (2017) presented initial experiments with
shallow-water sponges that found that high
temperatures may adversely affect sponge
survival. In their experiments, elevated partial
pressure of carbon dioxide (pCOz) alone did not
result in adverse effects, however it exacerbated
temperature stress in heterotrophic sponges,
but not in phototrophic species. We are not
aware of similar experiments with deep-sea

sponges, all of which are heterotrophic.

IV.3.iii — Vulnerability of Deep-Sea Coral
and Sponge Ecosystems to Threats

Most deep-sea corals and sponges are highly
vulnerable to physical impacts such as those
from bottom trawling (Roberts 2009, Hogg
2010). Recovery from damage will depend on
extent of the damage, and the ability of the
damaged organisms to recover or for new
recruits to settle and grow. This, in turn, is
governed by the life-history characteristics of
deep-sea corals and sponges, which tend to
include slow growth, late maturity, extreme
longevity, and infrequent recruitment events,
all of which make these organisms particularly
slow to recover from disturbances (Roberts et
al. 2009, Hogg et al. 2010).

Since the 2007 Report there has been growing
evidence for extreme age and slow growth of
deep-sea corals (Prouty et al., this volume).
Roark et al. (2009) reported that Hawaiian gold

23

corals and one species of black coral could
reach ages of 2,500 to over 4,000 years,
respectively. Even relatively shallow-water
holaxonian corals in Alaska may take 60 years
to reach maximum size (Stone et al. 2017).
There have been few studies of recruitment of
deep-sea corals in U.S. waters, but most
evidence points to relatively low and episodic
recruitment (Cordes et al. 2016a).

Clark et al. (2016) found that corals and
sponges were highly vulnerable to fishing
impacts, and their life history attributes meant
that, once damaged, the recovery potential of
biogenic habitats was highly limited. They
concluded that recovery would take decades to
centuries after fishing had ceased. There have
been few studies investigating recovery of
damaged deep-sea coral habitats in U.S. waters,
but observations to date indicate that its
potential is very limited (Stone and Rooper, this

volume).

Sponges are also extremely vulnerable to
damage from fishing gears (Freese et al. 1999,
Freese 2001, Stone 2014, Stone et al. 2014,
Maldonado et al. 2016, Malecha and Heifetz
2017). Suspended sediments associated with
bottom trawling may also adversely affect
deep-sea sponges (Tjensvoll et al. 2013). Less is
known about the life history of sponges than of
deep-sea corals, however, there is growing
evidence that many species are slow-growing
and long-lived. The massive shallow-water
demosponge, Xestospongia muta from the
Florida Keys, is estimated to live for more than
2300 years (McMurray et al. 2008). The deep-sea
glass sponge, Monorhaphis chuni, may hold the
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distinction of being the longest-lived animal on
earth. Jochum et al. (2012) measured oxygen
isotopic ratios and Mg/Ca ratios from a giant
basal spicule of a specimen collected at 1110 m,
and estimated that the sponge had been
growing for 11,000 + 3,000 years.

The glass sponge, Aphrocallistes vastus, is widely
distributed in the northern Pacific Ocean from
Panama through the Bering Sea and to Japan
(Stone et al. 2011). Austin et al. (2007)
concluded that juveniles of this species can
reach a moderate size within 10-20 years on
glass sponge reefs off British Columbia, but
may require a century to reach full size. They
also found that that the species was very
susceptible to physical damage and that
recruitment appeared to be rare at their study
site. Kahn et al. (2016) observed recruitment,
growth, and response to damage of glass
sponge reefs over a three year period. They
observed recruitment, as well as growth of
sponges ranging from 0-9 cm/year, but sponges
did not recover from experiments simulating
larger scale damage. The authors concluded
that the sponge reefs are not resilient to

disturbances such as bottom trawling.

In conclusion, research over the last decade has
provided increased evidence for the high
vulnerability and low resilience of deep-sea
coral and sponge habitats and the communities
they support. This conclusion emphasizes the
value of management measures to protect
remaining undamaged deep-sea coral and

sponge communities.
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IV.3.iv — Actions to conserve U.S. deep-
sea coral and sponge ecosystems

The 2007 Report summarized steps taken
within U.S. waters to manage impacts to deep-
sea corals and other deepwater habitats. These
efforts primarily focused on NOAA’s National
Marine Sanctuaries and area-based fishing gear
closures developed by the regional Fishery
Management Councils. The latter addressed the
most immediate threat to vulnerable benthic
habitats: a few relatively small areas were
specifically established to protect deep-sea coral
habitats, e.g., the Oculina Banks Habitat Area of
Particular Concern (established in 1983 and
expanded in 2000), Alaska Sitka Pinnacles
Marine Reserve (2000), and Aleutian Islands
and Gulf of Alaska Coral Habitat Conservation
Areas (2006). Additional deepwater areas in
U.S. waters have been established for general
habitat protection (Sutter et al. 2013).

New Areas Protected from Fishing: The 2007
Magnuson-Stevens Act reauthorization
recognized the importance of deep-sea coral
habitats and provided new discretionary
authority to protect these habitats in their own
right (MSA Sec. 303(b)(2)). Since then, Fishery
Management Councils in each region have
actively included deep-sea coral ecosystems in
discussions of conservation measures
(Hourigan 2014). Large-scale, area-based
conservation measures have specifically
targeted deep-sea coral ecosystems for
protection. In 2010, the South Atlantic Fishery

Management Council established five
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deepwater Coral Habitat Areas of Particular
Concern that protect deepwater coral reefs in
an area of 62,717 km? (Hourigan et al., this
volume). The Mid-Atlantic Fishery
Management Council was the first to use the
new MSA discretionary authority to protect
deep-sea coral habitat regardless of formal
recognition as Essential Fish Habitat (Packer et
al., this volume). The Council proposed the
designation of the Frank R. Lautenberg Deep-
Sea Coral Protection Area, encompassing more
than 99,000 km? (~38,000 square miles) in 2015.
NMEFS approved this amendment in 2016,
establishing the largest protected area in the
U.S. Atlantic. This conservation approach was
based on NOAA'’s Strategic Plan for Deep-Sea
Coral and Sponge Ecosystems, protecting specific
canyons where deep-sea corals had been found,
as well as freezing the footprint of most bottom
fisheries to prevent expansion into new
deepwater habitats. The New England Fishery
Management Council is exploring major deep-
sea coral protections in 2017 using the same

approach and authority.

New and Expanded National Monuments and
Sanctuaries: New discoveries of rich deep-sea
coral and sponge habitats have also resulted in
other important advances in deep-sea
conservation. In the U.S. Pacific Islands,
Presidential proclamations 8335-8337 (January
2009) designated three new National
Monuments: the Marianas Trench Marine
National Monument, Rose Atoll Marine
National Monument, and Pacific Remote
Islands Marine National Monument. The Pacific

Remote Islands Marine National Monument
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and the existing Papahanaumokuakea National
Marine Monument (established in 2006) were
subsequently expanded by Presidential
proclamation in 2014 and 2016, respectively.
These new and expanded Monuments protect
important deep-sea and seamount habitats and
form the largest network of marine protected
areas in the U.S. (Parrish et al., this volume). In
2016, the first marine national monument in the
Atlantic Ocean, the Northeast Canyons and
Seamounts Marine National Monument, was
established under the authority of the
Antiquities Act of 1906 (Packer et al., this
volume). This new monument protects several
submarine canyons and the four New England
seamounts in the U.S. EEZ. The Presidential
Proclamation specifically referenced deep-sea
corals, along with “other structure-forming
fauna such as sponges and anemones,” as
resources that “create a foundation for vibrant
deep-sea ecosystems” and are extremely
sensitive to disturbance from extractive

activities.

Several of NOAA’s national marine sanctuaries
have also undergone major expansions in the
last decade. In 2008, NOAA incorporated
Davidson Seamount — a volcanic seamount
that is home to rich deep-sea coral and sponge
habitats — into the Monterey Bay National
Marine Sanctuary, providing comprehensive
management in addition to the 2006 EFH
bottom-gear closure. In 2012, the Fagatele Bay
sanctuary expanded to protect five additional
areas and became the National Marine
Sanctuary of American Samoa. In 2015, NOAA
expanded the boundaries of Cordell Bank and

Gulf of the Farallones National Marine



INTRODUCTION TO THE STATE OF DEEP-SEA CORAL AND SPONGE ECOSYSTEMS OF THE UNITED STATES

Sanctuaries to an area north and west of their
old boundaries, to include new deepwater areas
surveyed by the Deep Sea Coral Research and
Technology Program. These expansions were
motivated, in part, by the discovery of
important deep-sea coral habitats. Most of the
existing sanctuaries have also been actively
exploring the deeper extents of their protected
areas (e.g., Clarke et al., this volume, and
Boland et al., this volume) and incorporating

results into their management plans.

Offshore Energy Management: The Bureau of
Ocean Energy Management (BOEM) manages
renewable energy development in federal
waters. The Deepwater Horizon disaster has
prompted review and strengthening of offshore
oil and gas regulations (Boland et al., this
volume). Mesophotic and deep-sea coral
habitats will also be a priority for restoration
activities in the Gulf of Mexico over the coming
decade under the Deepwater Horizon Oil Spill
Final Programmatic Damage Assessment and
Restoration Plan. The last decade has also seen
the first offshore leases for wind energy
development off the U.S. East Coast (Packer et
al., this volume). While these offshore wind
farms do not extend into deep water, this
development has become a major driver for
regional ocean management planning efforts. A
number of regions have begun to incorporate
deep-sea coral observation and predicted
habitat information into their broader plans to
protect vulnerable ecosystems (e.g., the Mid-

Atlantic Regional Council for the Ocean).

In summary, the last decade has seen deep-sea

biogenic habitats, especially deep-sea coral
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habitats, taking an increasingly central role in
ocean planning and conservation in every U.S.
region. Interest in these ecosystems seems
likely to continue as we learn more about their

value and vulnerability.

V. Conclusions

Deep-sea coral research over the decade since
the 2007 Report on the State of Deep Coral
Ecosystems of the United States has become more
targeted, systematic, and collaborative. As
described in the chapters that follow, this trend
has resulted in tremendous advances in our
understanding of the distribution of many taxa,
as well as insights into the basic biology and
ecology of these organisms. In contrast,
knowledge of deep-sea sponges remains
rudimentary at best, despite our increasing
recognition of their importance to deep-sea
ecosystems. Even a basic understanding of the
life history of the most important structure-
forming species and their distribution in U.S.
waters continues to elude researchers and

managers.

The new research has led to increased
awareness of the beauty, ecological importance,
and fragility of deep-sea ecosystems. This
awareness is manifested in new conservation
measures directed toward the deep sea,
especially deep-sea coral habitats. Most
important among these have been the new
Marine National Monuments in the U.S. Insular
Pacific and Northeast U.S., and large new
fishery management zones that will protect
over 175,000 km? of deep-sea areas off the U.S.

East Coast, including many important deep-sea
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coral habitats. Deep-sea sponge grounds have
received no specific protections, though many
are likely included in these recent large-scale

conservation areas that address bottom-fishing.

As marine research and management move
forward, conservation of these remarkable
ecosystems will be enhanced by continued
mapping of deep-sea biogenic habitats, and
research focused on understanding their
structural diversity, ecological function, and
contribution to biodiversity and ecosystem
productivity. Each of the following chapters

contains recommendations for future research.

The next steps in conservation will use this
improved understanding to apply a more
targeted approach to identifying high priority
areas for protection. Based on the success in
“freezing the footprint” of the most damaging
tishing gears, future progress will likely require
management within existing fishing areas,
using a collaborative approach with fishers and
other resource users that promotes sustainable
use while protecting the most valuable benthic
communities. Future progress will also need to
address increasing economic uses of deep-sea
resources (e.g., deep-sea mining) and the

potential impacts of a changing climate.
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