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The Significance of Body Size,
Dispersal Potential, and Habitat

for Rates of Morphological Evolution
in Stomatopod Crustacea

Marjorie L. Reaka and Raymond B. Manning

Introduction

RATES OF EVOLUTION

Factors that Influence Evolutionary Rates

Evolutionary biologists long have sought to understand
how some lineages flourish while others fail, how some
epochs produce major radiations and others extinctions,
and how some environments support diverse but others
impoverished faunas. Rates of evolution, including diver-
gence and multiplication within lineages and extinction, are
thought to vary among taxa and over time (Simpson, 1983;
but see Van Valen, 1973; Raup, 1975). Dispersal ability,
extent of geographic range, body size, behavior, genomic
traits, and various environmental characteristics have been
implicated in rates of evolution. Here we examine how
biotic and environmental characteristics influence rates of
evolutionary divergence and apparent extinctions in the
Atlanto-East Pacific Stomatopoda. We are aware of the
diversity of levels at which evolutionary rates can be consid-
ered (Eldredge, 1982; Schopf, 1984a), and we restrict our
discussion to rates of morphological evolution in extant
stomatopods.

Scheltema (1971, 1977, 1978, 1979) and Shuto (1974)
have shown that larval dispersal ability is associated with
broad geographic ranges in both fossil and contemporary
species of gastropods (but see Thresher and Brothers, 1985,
for a counterexample in angelfishes). East and West Atlantic
gastropods whose planktonic larvae frequently are collected
in mid-oceanic areas resemble each other morphologically
more than gastropods whose larvae do not frequently dis-

Marjorie L. Reaka, Department of Zoology, University of Maryland, College Park,
Maryland 20742. Raymond B. Manning, Department of Invertebrate Zoology,
National Museum of Natural History, Smithsonian Institution, Washigton, D.C.
20560.

perse into oceanic waters (Scheltema, 1972). Hansen (1978,
1980, 1982) and Jablonski and his co-workers (Jablonski
and Valentine, 1981; Jablonski, 1982; Jablonski and Lutz,
1983) also have shown that species of gastropods and biv-
alves with dispersing larvae have broader geographic distri-
butions, persist longer in the fossil record, and generally
form fewer new species than those without planktonic lar-
vae. Jablonski (1982) and Jablonski and Valentine (1983)
suggest that shifts from planktotrophic to abbreviated de-
velopment (e.g., due to extinction of particular clades) may
alter the mechanisms as well as the rates of speciation, and
that modes of larval development are better predictors of
evolutionary rates and patterns (including the generation
of evolutionary novelties) than are many aspects of adult
ecology.

Characteristics of the habitat, perhaps in association with
larval dispersal, may influence evolutionary rates, although
there is considerable controversy over whether intrinsic
(e.g., genomic) or extrinsic factors fuel evolutionary change
(Stebbins, 1949; Lewin, 1984; Schopf, 1984b; Cronin,
1985). Gastropod and bivalve mollusks living in shallow,
physically stressful, and potentially disturbed environments
occur over broader geographic ranges, appear to have
greater dispersal ability, and have persisted longer in the
fossil record than species living at greater depths (Jackson,
1974, 1977; Jablonski, 1980; Jablonski and Valentine,
1981; but see Jablonski et al., 1983, for a discussion of the
complexities of this issue). Species in shallow, warm, or
tropical habitats are thought to have evolved more rapidly,
or to have given rise to evolutionary novelties more fre-
quently, than those in very deep, cold, or temperate envi-
ronments (Kauffman, 1977; also see Vermeij, 1978; Jablon-
ski et al., 1983). In addition, trophic position and predation,
as well as competition, may accelerate rates of species turn-
over and divergence (Mayr, 1963; Stanley, 1973a, 1979;
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Jackson, 1977; Kauffman, 1977). Several groups of West
Atlantic and East Pacific organisms (fishes, mollusks, crus-
taceans, polychaetes) living on hard substrates show greater
taxonomic divergence (Rosenblatt, 1967; Vermeij, 1978) and
possibly suffer more intense predation and competition than
those on soft substrates. It also has been argued that com-
plex social behavior associated with small demes is a major
contributor to rapid evolutionary change and speciation
(Bush et al., 1977; Bush, 1981; see also discussion in Reaka
and Manning, 1981). Raup (1986:1530) noted that "some
aspects of organismal biology appear to be related to resist-
ance to extinction. Large population size, broad geographic
distribution, and high dispersal potential should help to
protect species and higher taxa from extinction . . . ."

In addition, evolutionary divergence and extinction have
been related to body size and morphological complexity. It
is generally accepted that adaptive breakthroughs occur at
small body size, that species within lineages tend to evolve
toward larger body sizes (or away from small body sizes),
and that extinctions often occur in large, structurally spe-
cialized lineages (see Simpson, 1944; Newell, 1949; Stanley,
1973b). Compared to other groups (e.g., the decapod crus-
taceans), the Order Stomatopoda is relatively homogeneous
morphologically, with small and large members of all super-
families conforming to one basic body plan. Thus, we avoid
the bias of differential morphological complexity, where
greater numbers of characters can be measured in taxa that
are relatively more complex morphologically, and where
less change thus is artificially inferred in morphologically
simple lineages (Schopf et al., 1975; Eldredge, 1982).

Predictions of Evolutionary Rates

Our purpose here is specifically to investigate the rela-
tionship of body size, larval characteristics, and habitat to
evolutionary rates in stomatopod Crustacea. The stomato-
pods or mantis shrimps represent an ancient order of crus-
tacean carnivores. Several lineages (Bathysquillidae, Har-
piosquillidae, Squillidae, Lysiosquillidae, Erythrosquillidae,
Nannosquillidae, Eurysquillidae, and Pseudosquillidae) pos-
sess a toothed raptorial maxilliped that is used to smash,
grasp, or spear relatively soft-bodied prey. Other lineages
(Coronididae, Hemisquillidae, Gonodactylidae, Protosquil-
lidae, and Odontodactylidae), have a hammer-like maxil-
liped that is used to smash prey (bivalves, gastropods, bar-
nacles, and other crustaceans; see Holthuis and Manning,
1969; Caldwell and Dingle, 1975; Manning, 1980; Reaka
and Manning, 1981; Reaka, in press). This raptorial maxil-
liped also is used in potentially lethal intraspecific and
interspecific combat, usually in association with defense or
acquisition of a burrow. Previous work on coral-dwelling
mantis shrimps has shown that, in general, the size and
number of eggs, growth rates, and aggressive levels increase
with species body size (Reaka, 1978, 1979a,b). In addition,

the extent of the geographic range and probable dispersal
ability increase with body size among species in this guild
(Reaka, 1980).

Storms and disturbances frequently affect stomatopods
(Reaka, 1980, 1985). Local catastrophes, however, are un-
likely to affect the entire geographic range of a species,
particularly for widely distributed taxa (see Shuto, 1974;
Endean, 1976; Scheltema, 1977; Connell, 1978). Following
a local disturbance, larger species of coral-dwelling stoma-
topods should be able to recolonize a locally disturbed area
more rapidly than smaller species because of their life
history characteristics (Reaka, 1979a, 1980).

Thus, larger species with broad geographic ranges should
show greater larval exchange and lower rates of extinction,
as well as lower rates of phyletic change, than small species.
Because of their small geographic ranges and apparently
low dispersal abilities, populations of small species are more
likely to be isolated; thus, small species of stomatopods may
speciate more rapidly as well as suffer higher rates of
extinction than large species. More small than large coral-
dwelling species are known, and small species show some
tendencies for ecological innovations (Reaka, 1980; Reaka
and Manning, 1980; and below).

We will examine the following hypotheses: (1) large spe-
cies of stomatopods have lower rates of morphological and
taxonomic divergence among geographic subregions than
small species; (2) species with large, long-lived planktonic
larvae have lower rates of divergence among geographic
subregions than those with small, short-lived larvae; (3)
species from level bottom habitats have low rates of diver-
gence among subregions compared to those from rocky or
coral rubble environments; (4) species from deep or cold
habitats have lower rates of divergence than those living in
warm or shallow environments; and (5) species from tem-
perate latitudes have lower rates of divergence than those
from the tropics. Although fraught with obvious difficulties,
we examine the problem of differential extinction in these
different groups of stomatopods in different habitats and
zoogeographic subregions as well. We previously have re-
viewed the behavior of stomatopods as now known, and
have tested the hypothesis that rates of evolution are cor-
related with complexity of behavior (Reaka and Manning,
1981). Since that time we have compiled considerable newly
available data, and analyses of these results are presented
here.

THE STUDY AREA

We have chosen to examine most intensively the Atlanto-
East Pacific stomatopods. Their taxonomy is relatively well
known (Manning, 1969a; 1970a,b; 1971c; 1972a,c; 1974a;
1977a). Information on the size of settling larvae in a
number of species (providing an estimate of duration of
planktonic life, discussed in more detail below) is available
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for comparisons among species. Furthermore, these species
occur in a variety of habitats and depths, and their field
distributions are relatively well documented compared to
many other groups. Many species and generic lineages of
stomatopods span the Atlanto-East Pacific region, and we
examine the incidence of taxonomic and morphological
divergence as well as conspicuous gaps in expected distri-
butions in the East Pacific vs. West Atlantic vs. East Atlantic
subregions to obtain a quantitative estimate of evolution in
lineages with different biotic or environmental characteris-
tics.

Affinities between West Atlantic and East Pacific faunas
provide insights for rates of divergence, since these regions
have been separated by the Central American isthmus since
the Pliocene, about 3.1 to 3.5 million years ago (Keigwin,
1978, 1982). Consideration of evolutionary divergence,
speciation, and extinction in lineages that have been isolated
for this period is especially appropriate, since various work-
ers have estimated that the mean species durations of most
animal groups range from 0.5-25 (usually <5) million years
(Schopf, 1984a). Lessios (1979, 1981) has compared bio-
chemical and morphological variation in geminate species
pairs of sea urchins (Diadema, Eucidaris, and Echinometra)
on each side of the Central American isthmus. He found
that East Pacific and West Atlantic populations of the
smaller rock-boring Echinometra have diverged more exten-
sively in both biochemical and morphological traits than
have those of Diadema. Even in D. mexicanum and D. antil-
larum, however, the lunar spawning cycles have diverged
so that these species would be reproductively isolated if they
were to come into contact again (Lessios, 1984). Whereas
the data from Lessios' study suggest that protein molecules
do not evolve at a constant rate in different sea urchin taxa,
Vawter et al. (1980) reported relatively consistent patterns
of divergence in the electrophoretic attributes of 10 pairs
of fish populations on each side of Central America. Based
upon the "molecular clock," the latter authors estimated
that these fish populations had been separated about 3.9
(range 2.5-6.8) million years ago, a figure that agrees well
with the geological record.

The East Atlantic and East Pacific faunas also have been
separated since the Pliocene and have been partially isolated
since continental divergence between the Late Triassic and
Middle Jurassic 200-150 million years ago (Phillips and
Forsyth, 1972). Species that occur in the East Atlantic and
East Pacific (but not in the West Atlantic), in the West
Atlantic and Indo-West Pacific (but not in the East Pacific),
and in the Americas and Indo-West Pacific (but not in the
East Atlantic) can provide insights for patterns of extinction
in these regions if these data are carefully scrutinized for
alternative interpretations.

Thus, we examine the degree of taxonomic divergence
and possible extinctions within lineages that span different
zoogeographic subregions as indicators of rates of evolution

in organisms that possess different biotic characteristics and
occupy different types of environments. While fossil evi-
dence on these issues would be exceptionally valuable, the
inadequacy of the fossil record for many groups of animals
and the numerous critical biases in the nature of fossil
evidence (e.g., Gingerich, 1983; Schopf, 1984a) would
never allow testing of the detailed hypotheses presented
above with the large sample sizes and statistical rigor that
we use here. Thus, while our results at this time are re-
stricted to rates of morphological change, they provide
valuable new insights, not otherwise obtainable, into the
factors that mold evolutionary change at this level, and they
provide justified hypotheses for further research using pa-
leontological or other methods on this or other groups of
organisms.

T H E FOSSIL RECORD

The stomatopods are known but relatively sparsely rep-
resented in the fossil record. Lineages leading to the subclass
Hoplocarida probably diverged from other malacostracan
Crustacea as early as the Devonian (Schram, 1969a,b, 1977,
1979a, 1981, 1982; Reaka, 1975; Kunze, 1983; Dahl,
1983). Schram (1977) reports that the hoplocarids had a
well-established Laurentian range by the Late Carbonifer-
ous period. Following the breakup of Pangea in the Per-
mian, many crustacean groups became extinct or were
restricted to deep sea or fresh water (Gondwana) refugia.
The only Late Paleozoic group of malacostracans that per-
sisted and radiated were the stomatopod hoplocaridans;
Schram (1977) attributes their success in part to the unique
specialization of their raptorial claw.

Members of the Orders Aeschronectida (Kallidecthes, Ar-
atidecthes, Joanellia, Crangopsis, Aenigmacaris), Paleostoma-
topoda (Perimecturus, Bairdops, Archaeocaris), and Stomato-
poda (Tyrannophontes theridion Schram, a primitive species
linking the paleostomatopods and the stomatopods; and
Gorgonophontes peleron Schram) were present in North
America and Britain during the Carboniferous period
(Schram, 1969a,b, 1979a,b,c, 1984; F. Schram and J.
Schram, 1979, J. Schram and F. Schram, 1979; Factor and
Feldmann, 1985). Schram (1979c) indicates that the paleos-
tomatopods, which possessed subchelate claws, were the
dominant carnivores in the Lower Carboniferous of Mazon
Creek. However, they became less abundant, occurring
together with the tyrannophontid stomatopods, by the Mid-
dle Carboniferous. By the Upper Carboniferous, the tyr-
annophontids, with their raptorial claws, were the only
active carnivores in this habitat. The natant, filter feeding
aeschronectids also apparently became extinct during this
time.

The fossil stomatopod family Sculdidae is known from
the Upper Jurassic (three species of Sculda in Bavaria;
Holthuis and Manning, 1969). In contrast to the two seg-
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mented exopod of all living stomatopods (except for one
species of the extant Bathysquillidae, Indosquilla manihinei
Ingle and Merrett (1971), in which the distal segment is
separated from the proximal by an indistinct suture), the
sculdids possessed an undivided uropodal exopod. The
Sculdidae persisted at least as long as the Cretaceous (Sculda,
Pseudosculda) and possibly into the Eocene. Members of all
three major Recent superfamilies (Squilloidea, Gonodacty-
loidea, Lysiosquilloidea) appeared as early as the Creta-
ceous; because of their apparent ancient derivation, the
bathysquillids were likely present also. In addition to Sculda
and Pseudosculda, Squilla cretacea Schliiter, Squilla angolia
(Berry), and a stomatopod previously misidentified as an
eryonid decapod are known from the Cretaceous of West
Germany, Angola, and Israel, respectively (Holthuis and
Manning, 1969). Schram (1968) described a gonodactylid,
Paleosquilla brevicoxa, from the Cretaceous of Colombia,
and Forster (1982) recently described a lysiosquillid, Lysios-
quilla nkporoensis, from the early Maestrichtian (late Creta-
ceous) of Nigeria. Squilla antiqua Munster and 5. wetherellii
Woodward have been found in Eocene rocks from northern
Italy and England, respectively. Holthuis and Manning
(1969) suggest that 5. cretacea and S. antiqua do not repre-
sent the genus Squilla but may belong to the Sculdidae.
Forster (1982) also described a clearly defined squillid,
Squilla hollandi, and a pseudosquillid, Pseudosquilla wulfi,
from the late Eocene of northern Germany. Interestingly,
all of Forster's Cretaceous and Eocene specimens were
recovered from sediments of shallow tropical-subtropical
seas, the predominant habitat of modern stomatopods. In
addition, fSquilla miocenica Lovisato and Squilla sonomana
(Rathbun) are recorded from Spain (Miocene) and Califor-
nia (probably Pliocene), respectively (Holthuis and Man-
ning, 1969). These data must be interpreted cautiously,
however, since several authors have registered doubt about
the generic and familial affinities of many of the stomato-
pods in the fossil record (Holthuis and Manning, 1969;
Forster, 1982).

The eyes of stomatopods, which have been demonstrated
to be different in members of each superfamily (Manning
et al., 1984a,b), also suggest that the currently recognized
lineages were differentiated very early in the history of the
group. The eyes are far more diverse within the stomato-
pods, comprising about 400 Recent species, than they are
in the Decapoda, comprising more than 10,000 species (see
Fincham, 1980).

DISTRIBUTION PATTERNS OF STOMATOPODS

World-wide Distribution Patterns

The Stomatopoda generally are tropical shallow water
organisms. Some genera, especially Hemisquilla and Ptery-
gosquilla (see Manning, 1977a), and some species of other

genera, such as Heterosquilla, Heterosquilloides, Platysquilla,
and Platysquilloides (see Manning, 1969a, 1977a) are warm
or cold temperate organisms, occurring in or frequenting
latitudes above 30° N or S. Others, such as species of
Bathysquilla (see Manning, 1969a), are found in outer shelf
or upper slope habitats. The vast majority of stomatopods,
however, live in relatively shallow tropical habitats.

As pointed out by Manning (1977a: 161), the stomatopods
"provide good examples of Tethyan distribution patterns as
described by Ekman," who (1953:11) distinguished two
main warm water regions of the marine shelf faunas. The
larger Indo-West Pacific region was comprised of the area
from the western Indian Ocean (including the Red Sea)
eastward to the oceanic islands of the Pacific, Hawaii, the
Marquesas, and the Tuamotus. The smaller Atlanto-East
Pacific region included American and West African subre-
gions. In contrast, Briggs (1974:13) recognized four major
zoogeographic regions: the Indo-West Pacific, Eastern Pa-
cific, Western Atlantic, and Eastern Atlantic.

The Stomatopoda support the recognition of two major
marine zoogeographic regions, as proposed by Ekman,
rather than the four recognized by Briggs. The distribu-
tion patterns of three taxa representing three distinct line-
ages within the Atlanto-East Pacific region provides the
strongest evidence for recognizing the Atlanto-East Pacific
as a major region distinct from the Indo-West Pacific. The
squilloid Squilla aculeata is represented in the East Atlantic
and East Pacific subregions by distinct subspecies, but it
does not occur in the West Atlantic. Similarly, the gonodac-
tyloid and lysiosquilloid genera Pseudosquillopsis and Coron-
ida each are represented by related species in the East
Atlantic and the East Pacific, but neither genus is known in
the West Atlantic. The Atlanto-East Pacific region is con-
sidered to be a unit herein, comprising distinct East Atlantic,
West Atlantic, and East Pacific subregions.

The distribution patterns of families and genera of Sto-
matopoda are summarized in Tables 1 and 2 (see also
Manning, 1980). Of 76 currently recognized genera, 59 are
represented in the Indo-West Pacific region, and 39 or
51% of all genera are endemic there. In particular, 88% of
all gonodactylid, 75% of all protosquillid, and 59% of all
squillid genera are endemic to the Indo-West Pacific.
Thirty-seven genera are known in the Atlanto-East Pacific
region, and 17 or 22% of all genera are endemic there.
The Nannosquillidae are notable in this region because
88% of all nannosquillid genera are endemic there. Twenty
genera are shared by the two regions. Three of the most
species-rich genera, each containing more than 20 species,
are largely or entirely restricted to one of the two regions:
within the squillids, Squilla (27 species or subspecies) occurs
only in the Atlanto-East Pacific, while Oratosquilla (with 33
species; Manning, 1978d) and Clorida (including about 27
species) are (with one exception) restricted to the Indo-
West Pacific region. Within the lysiosquilloids, Nannosquilla
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TABLE 1.—Numbers of genera within families of Stomatopoda in different zoogeographic regions
(AEP = Atlanto-East Pacific; IWP = Indo-West Pacific).

Family

Bathysquilloidea
Bathysquillidae

Gonodactyloidea
Eurysquillidae
Gonodactylidae
Hemisquillidae
Odontodactylidae
Protosquillidae
Pseudosquillidae

Lysiosquilloidea
Coronididae
Erythrosquillidae
Lysiosquillidae
Nannosquillidae

Squilloidea
Harpiosquillidae
Squillidae

Totals

AEP
genera

1

2
1
1
1
1
3

3
0
5
8

0
11

37

AEP
endemic
genera

0

0
0
0
0
1
1

2
0
1
7

0
5

17

Genera
in both AEP

and IWP

1

2
1
1
1
0
2

1
0
4
1

0
6

20

IWP
genera

3

5
8
1
1
3
3

2
1
4
5

1
22

59

IWP
endemic
genera

2

3
7
0
0
3
1

1
1
0
4

1
16

39

Total
no. genera

3

5
8
1
1
4
4

4
1
5

12

1
27

76

(comprising 20 species) is restricted to the Americas; species
are subregionally distinct there. Within the gonodactyloids,
species of Gonodactylus (45 species) occur in both major
regions, but Indo-West Pacific and American lineages are
distinct, and no species occurs in both major regions. Species
of Gonodactylus also are subregionally distinct in the Amer-
icas, with no species occurring on both sides of the Ameri-
cas.

Although all stomatopods have pelagic larvae (Proven-
zano and Manning, 1978), their larvae in general do not
appear to disperse outside of their subregion. For example,
of approximately 250 species of stomatopods found in the
Indo-West Pacific, few (possibly only Clorida mauiana;
Manning, 1976b) Indo-West Pacific stomatopods have
crossed the East Pacific barrier (Briggs, 1974:102). Four
otherwise circumtropical species (Pseudosquilla ciliata, P.
oculata, Alima hieroglyphica, A. hyalina) have not successfully
traversed this barrier; the only stomatopod known to occur
in all four world oceans is the lysiosquillid Heterosquilloides
mccullochae. Of approximately 400 species of stomatopods
known, only seven (Odontodactylus brevirostris, Pseudosquilla
ciliata, P. oculata, Heterosquilloides mccullochae, Alima hiero-
glyphica, A. hyalina, Bathysquilla microps) are shared by the
tropical Indo-West Pacific and the Atlantic. Furthermore,
little exchange has occurred even between the East and
West Atlantic. No members of the genera Gonodactylus and
Nannosquilla, each represented by numerous species in the
West Atlantic and East Pacific, are known from the East
Atlantic. Of the 30 species and subspecies occurring in the
East Atlantic and the 78 species and subspecies known from
the West Atlantic, only 5 (Pseudosquilla ciliata, P. oculata,

Heterosquilloides mccullochae, Alima hieroglyphica, A. hyalina)
are shared, and all five also occur in the Indo-West Pacific.
For the stomatopods, both the East Pacific and the mid-
Atlantic barriers described by Briggs (1974:102, 109) are
real.

Atlanto-East Pacific Distribution Patterns

The kind of analysis presented here can be made only
for groups in which the systematics are relatively well
known. The systematics of few, if any, other tropical marine
invertebrate groups with pelagic larvae are as well known
in the Atlanto-East Pacific region as the stomatopods. The
systematics of the Atlantic stomatopods have been reported
in two basic monographs, one including the West Atlantic
species (Manning, 1969a) and a second for the East Atlantic
species (Manning, 1977a). The East Pacific species, although
not monographed so far, are almost as well known. The
Atlanto-East Pacific stomatopods are listed by subregion in
Table 3.

LARVAL-POSTLARVAL STAGES AND DISPERSAL

Although stomatopods produce larvae whose planktonic
phase varies from approximately one to many months (Prov-
enzano and Manning, 1978; Pyne, 1972), dispersal among
different geographic subregions appears to be relatively
rare, as is shown by their distribution patterns (discussed
above). As noted for coral reef fishes by Brothers and
Thresher (1985), breadth of distribution may not correlate
with the duration of pelagic developmental stages. Diurnal
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TABLE 2.—Distribution patterns of all Stomatopod genera (EP = East Pacific; WA = West Atlantic; EA =
East Atlantic; IWP • Indo-West Pacific; total numbers of taxa within each genus are given in parentheses).

Taxon

BATHYSQUIIXOIDEA

BATHYSQUILUDAE

Altosquilla (I)
Bathysquilla (2)
Indosquilla (1)

GONODACTYLOIDEA

EURYSQUILUDAE

Coronidopsis (3)
Eurysquilla (10)
F.urysquilloides (1)
Manningia (9)
Sinosquilla (2)

GONOOACTYUDAE

Gonodactyhideus (1)
Gonodactylolus (1)
Gonodactylopsis (2)
Gonodactylus (45)
Hoplosquilla (1)
Hoplosquilloides (1)
Mesacturoides (2)
Mesacturus (5)

HEMISQUILLIDAE

Hemisquilla (4)
ODONTODACTYUDAE

Odontodactylus (5)
PROTOSQUILLIDAE

Chonsquilta (10)
Echinosquilla (1)
HaptosquUla (14)
Protosquilla (2)

PSEUDOSQUILUDAE

Faughnia (3)
Parasquilla (5)
Psnidosqwlla (8)
Pstudosquillopsis (4)

LYSIOSQUIIXOIDEA

CORONIDIDAE

Acoridon (1)
Coronida (3)
Neocoronida (3)
Parvisquilla (3)

ERYTHROSQUHXIDAE

Frythrosquilla (1)

I.YSIOQl 11 I IDAF

Heterosquilla (3)
HtlerosquUloides (9)
Lystosquilla (12)
Lysiosquilloides (2)

EP

-
-
-

-
2
-
-
-

-
-
-
8
-
-
-
-

2

-

-
-
-
-

-
1
1
2

-
2
1
-

-

1
2
2
-

WA

-
1
-

-
4
-
-
-

-
-
-

11
-
-
-
-

1

1

-
-
-
-

-
3

2
-

1
-
-
-

-

2
3
3
-

EA

-
-
-

-
2
-
1
-

-
-
-
-
-
-
-
-

-

-

-
-
-
2

-
1
2
1

-
1
-
-

-

-
1
2
1

IWP

1
2
1

3
2
1
8
2

1
1
2

26
1
1
2
5

1

5

10
1

14
-

3
-
7
1

-
-
2
3

1

1
5
5
1

Taxon

Tectasquilla (1)
NANNOSQUILLIDAE

Acanthosquilla (12)
y47/<w?iH7/a(l)

Austrosquilla (2)
Coronis (1)
Hadrosquilla (2)
Keppelius (1)
Mexisquilla (1)
Nannosquilla (20)
Nannosquilloides (1)
Platysquilla (1)
Platysquilloides (2)
Pullosquilla (3)

SQUILLOIDEA

HARPIOSQUILLIDAE

Harpiosquilla (10)
SQUILUDAE

,4/imo (4)
Alimopsis (1)
Anchisquilla (2)
Anchisquilloides (1)
Areosquilla (3)
Busquilla (2)
Carinosquilla (2)
C/orufo (27)
Cloridopsis (7)
Crenatosquilla (1)
Dictyosquilla (1)
Distosquilla (1)
Fennerosquilla (1)
Kempina (3)

Lenisquiila (4)
Leptosquilla (1)
Levisquilla (2)
Lophosquilla (4)
Meiosquilla (7)
Natosquilla (1)
Oratosquilla (33)
Pterygosquilla (4)
Rissoides (5)
Schmittius (2)
tyut/to (27)
Squilloides (2)
Tuleariosquilla (1)

Total (387)

EP

-

2
-
-
-
-
-
-
7

-
-
-
-

-

-
-
-
-
-
-
-
1
1
1
-
-
-
-
_
_
_
_

2
_
_

2
_

2
8
_
_

50

WA

1

2
-
-
1
-
-
1

13
-
-
1
-

-

2
-
-
-
-
-
-
-
1
-
-
_
1
_
_
_
_
_

5
_
_
1
_
_

16
_
_

77

EA

-

1
1
-
-
-
-
-
-
1
1
1
-

-

2
-
-
-
-
-
-
_
_
-
_
_
_
_
_
_
_
_
_
_
1
1
4
_

3
_
_

30

IWP

-

9
-
2
-
2
1
-
-
-
-
-
3

10

4
1
2
1
3
2
2

27
6
_
1
1
_
3
4
1
2
4
_
1

33
1
1
_
_

2
1

249

migrations from benthic or near bottom habitats during the
day into the water column at night (often with peaks just
after sunset and before dawn) are known in many marine
plankton communities (Emery, 1968; Alldredge and King,
1977, 1980; Porter et ah, 1977; Hobson and Chess, 1978,
1979; Ohlhorst, 1982; Robichaux et al., 1981; Ohlhorst
and Liddell, 1985). These local vertical migrations also have
been observed extensively for stomatopod larvae (Reaka,

unpublished data). Such behavioral patterns, in combination
with reduced activity during periods of heavy wave action
(Robichaux et al., 1981; Reaka, unpublished data), may well
reduce the potential for long distance dispersal in many
nearshore meroplankters such as stomatopod larvae (see
also Thresher and Brothers, 1985, for fish larvae). The
great variation in length of the larval period among stoma-
topod taxa, however, still provides a relative indicator of
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different potentials for dispersal among species. For exam-
ple, larvae that persist in the plankton even in local habitats
for a number of months undoubtedly are more likely to be
carried away from local areas by currents than are larvae
that are planktonic for no more than a month.

In the Stomatopoda, the postlarva is the transitional stage
between the pelagic larval phase and the benthic adult
phase. Morphologically, the postlarva is intermediate be-
tween the late larva and the adult; the rostral plate is jointed,
the claw often is provided with teeth, and some of the
spination and carination of the adults make their first ap-
pearance. Postlarvae often show enough adult characters so
that they can be identified to species; most larval stages as
yet can not be identified to species.

We use the size of the postlarva as an indication of the
length of the larval period. Squillids and lysiosquillids, spe-
cies of which are known to have as many as 8 or 9 pelagic
instars and/or to persist in the plankton for a number of
months, have considerably larger postlarvae than Gonodac-
tylus, species of which are known to pass through only 4
pelagic stages in about a month (Giesbrecht, 1910; Komai
and Tung, 1929;Gurney, 1937,1946; Gohar and Al-Kholy,
1957; Alikunhi, 1944, 1950, 1952, 1967; Manning, 1962c;
Manning and Provenzano, 1963; Michel, 1968 [1969],
1970; Pyne, 1972; Provenzano and Manning, 1978; Mor-
gan and Provenzano, 1979; Reaka and Manning, 1981).
Whereas the sizes of postlarvae vary dramatically among
species (from 6-33 mm), the sizes of eggs vary relatively
little (0.3-1.8 mm diameter) among groups of stomatopods
(Reaka, 1979a; Williams et al., 1985). We presume that, in
general, growth through more instars to these considerably
larger terminal sizes imposes a longer planktonic feeding
period than that required for larvae that settle at small sizes.
We recognize that larvae of some species of stomatopods
may grow more rapidly than those of other species, that
growth rates and terminal sizes in some populations occa-
sionally may be variable, that some species of stomatopods
spend extended periods in the plankton yet settle at mod-
erate sizes (see Alikunhi, 1944; Michel and Manning, 1972;
and below), and that the tremendously diverse decapods
may exhibit more heterogeneous relationships between lar-
val and postlarval size and length of larval period (A. H.
Hines, personal communication); however, our studies show
that, in general, species of stomatopods with larger larval
and postlarval sizes spend longer periods in the plankton
before settling than do those with very small postlarvae. We
treat this subject in greater detail in a separate publication
(Reaka and Manning, in prep.).

METHODS

The body sizes, postlarval sizes, habitat affiliations, and
phyletic affinities of stomatopods occurring in the Atlanto-
East Pacific region are shown in Tables 4-7. Indo-West

Pacific species are too numerous for detailed presentation
and their body sizes and habitat characteristics generally
are much less well known; thus, only Indo-West Pacific
cognates of species in the Atlanto-East Pacific region are
given. "Cognates" here indicates closely related, morpho-
logically similar species in different geographical subregions
or regions that apparently are derived from a common
ancestor (see Manning (1969a, 1977a) for examples and
discussion of morphological characters used to differentiate
and establish relationships among species and genera). Many
of the species thus identified have been validated repeatedly
by observations on live animals (color pattern, courtship
and mating behavior, habitat, and geographic field distri-
butions), and the classification appears to represent natural
phyletic relationships.

Body lengths are comparable measures of body size
among lineages, since the empirical relationship between
body volume and body length does not vary significantly
among different groups of stomatopods. All measurements,
taken either from the literature or our own records, are
rounded to the nearest millimeter here. The sample size
indicates the minimum number of animals measured, since
published reports sometimes presented the body sizes of
only the largest and smallest individuals; these were collated
here simply as two individuals. Small sample sizes can pro-
vide erroneous estimates of body sizes of some species in
given regions; however, our comparisons are drawn from
relatively large numbers of species, and we treat only gen-
eral trends in body size. We define species as small, mod-
erate, or large if maximum body length of individuals is
<50 mm, 50-149 mm, or 2:150 mm, respectively. The
category of body size for each taxon that was used in our
statistical analyses is given in the tables, so that the impact
of future data upon our results and conclusions can be
evaluated easily.

Similarly, Tables 4-7 provide the known range of total
body lengths for postlarvae in each taxon. These are cate-
gorized as small (<10 mm), moderate (10-19 mm), and
large (>20 mm). While the pelagic larva sometimes can be
considerably larger than the settling postlarva (e.g., a 30
mm larva of Alima hieroglyphica settled as a 17 mm postlarva;
Alikunhi, 1944), the size of a postlarva (double asterisk in
Tables 4-7) usually is smaller than that of a juvenile (single
asterisk in Tables 4-7), so that the postlarval size category
could be estimated in a number of cases (e.g., as small in
Gonodactylus zacae, where a 8 mm juvenile is known). Also,
sizes of postlarvae are remarkably consistent among related
species within a lineage, and usually conform to a single size
category within the entire genus. For example, all known
postlarvae within Gonodactylus and within Protosquilla are
small, all those known for Meiosquilla are moderately sized,
and all those known for Parasquilla, Pseudosquillopsis, and
Lysiosquilla are large. Consequently, it is possible to estimate
the sizes of postlarvae (category in parentheses in Tables 4 -
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TABLE 3.—Stomatopod Crustacea known from the Atlanto-East Pacific region (EP = East Pacific, WA =
West Atlantic, FA = East Atlantic; + indicates present, dash indicates absent, parentheses indicate
questionable records).

Taxon EP WA EA Taxon EP WA EA

BATHYSQUILLOIDEA Manning, 1967
BATHYSQUILLIDAE Manning, 1967

Bathysquilla microps (Manning, 1961)
GONODACTYLOIDEA Giesbrecht, 1910

EURYSQUILUDAE Manning, 1977
Eurysquilla chacei Manning, 1969
Eurysquilla galatheae Manning, 1977
Eurysquilla holthuisi Manning, 1969
Eurysquilla leloeuffi Manning, 1977
Eurysquilla maiaguesensis (Bigelow, 1901)
Eurysquilla plumata (Bigelow, 1901)
Eurysquilla solan Manning, 1970
Eurysquilla veleronis (Schmitt, 1940)
Manningia posteli Manning, 1977

GONODACTYLIDAE Giesbrecht, 1910
Gonodactylus albicinctus Manning and

Reaka, 1979
Gonodactylus austrinus Manning, 1969
Gonodactylus bahiahondensis Schmitt, 1940
Conodactylus bredini Dingle, 1969
Gonodactylus costaricensis Manning and

Reaka, 1979
Gonodactylus curacaoensis Schmitt, 1924
Gonodactylus festae Nobili, 1901
Gonodactylus lacunatus Manning, 1966
Gonodactylus lalibertadensis Schmitt, 1940
Gonodactylus lightbourni Manning and

Hart, 1981
Gonodactylus minutus Manning, 1969
Gonodactylus moraisi Fausto Filho and

Lemos de Castro, 1973
Gonodactylus oersUdii Hansen, 1895
Gonodactylus petilus Manning, 1970
Gonodactylus pumilus Manning, 1970
Gonodactylus spinulosus Schmitt, 1924
Gonodactylus stanschi Schmitt, 1940
Gonodactylus torus Manning, 1969
Gonodactylus zacae Manning, 1972

HEMISQUILUDAE Manning, 1980
Hemisquilla braziliensis (Moreira, 1903)
Hemisquilla ensigera californiensis Stephen-

son, 1977
Hemisquilla ensigera ensigera (Owen, 1832)

ODONTODACTYUDAE Manning, 1980
Odontodactylus brevirostris (Miers, 1884)

PROTOSQUILLIDAE Manning, 1980

Protosquilla calypso Manning, 1974
Protosquilla folini (A. Milne Edwards,

1867)
PSEUDOSQUILLIDAE Manning, 1977

Parasquilla boschii Manning, 1970
Parasquilla coccinea Manning, 1962
Parasquilla ferussaci (Roux, 1830)
Parasquilla meridionalis Manning, 1961
Parasquilla similis Manning, 1970
Pseudosquilla adiastalta Manning, 1964
Pseudosquilla ciliata (Fabricius, 1787)
Pseudosquilla oculata (Brulle, 1837)
Pseudosquillopsis cerisii (Roux, 1828)
Pseudosquillopsis Ussonii (Guerin, 1830)
Pseudosquillopsis marmorata (Lockington,

1877)
LYSIOSQUILLOIDEA Giesbrecht, 1910

CORONIDIDAE Manning, 1980
Acoridon manningi Adkison, Heard, and

Hopkins, 1983
Coronida bradyi (A. Milne Edwards, 1869)
Coronida glasselli Manning, 1976
Coronida schmitti Manning, 1976
Neocoronida cocosiana (Manning, 1972)

LYSIOSQUILLIDAE Giesbrecht, 1910
Heterosquilla platensis (Berg, 1900)
Heterosquilla polydactyla (von Martens,

1881)
Heterosquilloides armata (Smith, 1881)
Heterosquilloides insolita (Manning, 1963)
Heterosquilloides mccullochae (Schmitt,

1940)
Lysiosquilla campechiensis Manning, 1962
Lysiosquilla desaussurei (Stimpson, 1857)
Lysiosquilla glabriuscula (Lmarck, 1818)
Lysiosquilla hoevenii (Herklots, 1851)
Lysiosquilla monodi Manning, 1977
Lysiosquilla panamica Manning, 1971
Lysiosquilla scabricauda (Lamarck, 1818)
Lysiosquilloides aulacorhynchus (Cadenat,

1957)
Tectasquilla lutzae Adkison and Hopkins,

1984
NANNOSQUILLIDAE Manning, 1980

Acanthosquilla biminiensis (Bigelow, 1893)
Acanthosquilla digueti (Coutiere, 1905)

7) in a number of taxa for which the pattern of postlarval
sizes within the lineage (e.g., those connected by horizontal
or vertical lines in Tables 4-7) was clear. The sizes of
postlarvae are known in 39 Atlanto-East Pacific taxa, and
we either know or can reliably estimate the sizes for 121
taxa. We document both known and estimated size cate-
gories for each taxon in the tables so that the reader can
evaluate our conclusions as new information becomes avail-
able.

Types of substrate are categorized as "coarse bottom"
(coral, rock, coralline algal mat) and "level bottom" (mud,
sand, sometimes mixed with shell). Depths are defined as
"shallow" (where the species is recorded only from depths
<100 m), "moderate" (100-300 m), or "deep" (>300 m).
These depth categories differ from those used in Reaka
(1980), where finer subdivisions of depth distribution were
analyzed for coral-dwelling stomatopods. Latitudinal distri-
butions are classified as "tropical" and "temperate". Tropi-



NUMBER 448

TABLE 3.—Continued.

Taxon EP WA EA Taxon EP WA EA

Acanthosquilla septemspinosa (Miers, 1881)
Allosquilla africana (Manning, 1970)
Coronis scolopendra Latreille, 1828
Mexisquilla horologii (Camp, 1971)
Nannosquilla adkisoni Camp and Manning,

1982
Nannosquilla anomala Manning, 1967
Nannosquilla antillensis (Manning, 1961)
Nannosquilla baliops Camp and Manning,

1982
Nannosquilla californiensis (Manning,

1961)
Nannosquilla canica Manning and Reaka,

1979
Nannosquilla carolinensis Manning, 1970
Nannosquilla chilensis (Dahl, 1954)
Nannosquilla dacostai Manning, 1970
Nannosquilla decemspinosa (Rathbun, 1910)
Nannosquilla galapagensis Manning, 1972
Nannosquilla grayi (Chace, 1958)
Nannosquilla hancocki (Manning, 1961)
Nannosquilla heardi Camp and Manning,

1982
Nannosquilla schmitti (Manning, 1962)
Nannosquilla similis Manning, 1972
Nannosquilla taguensis Camp and Man-

ning, 1982
Nannosquilla taylori Manning, 1969
Nannosquilla vasquezi Manning, 1979
Nannosquilla whitingi Camp and Manning,

1982
Nannosquilloides occultus (Giesbrecht,

1910)
Platysquilla eusebia (Risso, 1816)
Platysquilloides enodis (Manning, 1962)
Platysquilloides lillyae (Manning, 1977)

SQUILLOIDEA Latreille, 1803

SQUILLIDAE Latreille, 1803

Alima hieroglyphica (Kemp, 1911)

Alima hyalina (Leach, 1817)
Clorida mauiana (Bigelow, 1931)
Cloridopsis dubia (H. Milne Edwards,

1837)
Crenatosquilla oculinova (Glassell, 1942)
Fennerosquilla heptacantha (Chace, 1939)
Meiosquilla dawsoni Manning, 1970
Meiosquilla lebouri (Gurney, 1946)

Meiosquilla quadridens (Bigelow, 1893)
Meiosquilla randalli (Manning, 1962)
Meiosquilla schmitti (Lemos de Castro,

1955)
Meiosquilla swetti (Schmitt, 1940)
Meiosquilla triearinata (Holthuis, 1941)
Oratosquilla massavensis (Kossmann, 1880)
Ptergygosquilla armata armata (H. Milne

Edwards, 1837)
Pterygosquilla armata capensis Manning,

1969
Pterygosquilla gracilipes (Miers, 1881)
Rissoides africanus (Manning, 1974)
Rissoides calypso (Manning, 1974)
Rissoides desmaresti (Risso, 1816)
Rissoides pallidus (Giesbrecht, 1910)
Schmittius peruvianus Manning, 1972
Schmittius politus (Bigelow, 1891)
Squilla aculeata aculeata Bigelow, 1893
Squilla aculeata calmani Holthuis, 1959
Squilla biformis Bigelow, 1891
Squilla bigelowi Schmitt, 1940
Squilla brasiliensis Caiman, 1917
Squilla cadenati Manning, 1970
Squilla caribaea Manning, 1969
Squilla chydaea Manning, 1962
Squilla deceptrix Manning, 1969
Squilla decimdentata Manning, 1970
Squilla discors Manning, 1962
Squilla edentata australis Manning, 1969
Squilla edentata edentata (Lunz, 1937)
Squilla empusa Say, 1818
Squilla grenadensis Manning, 1969
Squilla hancocki Schmitt, 1940
Squilla intermedia Bigelow, 1893
Squilla lijdingi Holthuis, 1959
Squilla mantis (Linnaeus, 1758)
Squilla mantoidea Bigelow, 1893
Squilla neglecta Gibbes, 1850
Squilla obtusa Holthuis, 1959
Squilla panamensis Bigelow, 1891
Squilla parva Bigelow, 1891
Squilla prasinolineata Dana, 1852
Squilla rugosa Bigelow, 1893
Squilla surinamica Holthuis, 1959
Squilla tiburonensis Schmitt, 1940

Total 50 78 30

cal species are defined as those which occur at any depth
within the latitudes where reef coral is known to grow
(>20° C surface temperature, although note that this defi-
nition is delimited by latitude rather than temperature, since
all depths, i.e., even cold deep waters, are included). Tem-
perate species are those that occur at any depth outside of
tropical latitudes or whose ranges extend into temperate
latitudes. (Thus, species which also are recorded in tropical
localities but extend into high latitudes will be classified as

temperate, whereas species categorized as tropical do not
extend into high latitudes.) Warm environments are cate-
gorized here as those in tropical latitudes at shallow or
moderate depths; species that live in temperate regions or
in deep tropical water are classified as inhabiting cold en-
vironments.

We analyzed our data in r X k contingency tables as
explained in Tables 8 and 10 or the text; p <0.05 is used
as the criterion of statistical significance, although instances
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of p <0.10 are brought to the reader's attention in the text.
We tested the relationship of biotic and environmental
characteristics to four different measures of affinity to rel-
atives elsewhere and endemicity or local species radiation.
Taxa were scored as either having (+1) or not having (+0)
relatives (conspecifics, cognates) in another subregion, even
though a given taxon may be related to several different
cognates in different subregions. To avoid possible bias, we
repeated the analysis presented in Table 8 when the total
number of relatives in other subregions were summed for
each of the categories in Table 8, but the statistical results
were essentially unchanged from those presented here. In
addition, the relationship of biotic and environmental char-
acteristics to the number of endemic species without cog-
nates elsewhere was tested. We also tested the number of
endemic species alone, regardless of whether or not cog-
nates were present in other subregions; however, the results
were not essentially different from those presented in Table
8. These several tests, available upon request from the
authors, showed that different analytical approaches yielded
essentially the same results as presented here.
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GONODACTYLOIDEA

ODONTODACTYUDAE, GONODACTYLJDAE, AND

PROTOSQUILLIDAE

Within the study area, the superfamily Gonodactyloidea
is represented by six families. Members of three relatively
closely related families, the Odontodactylidae, Gonodactyl-
idae, and Protosquillidae inhabit holes in or under coral

rubble, rocks, coralline algae, or shells (Table 4). The first
family includes one species of Odontodactylus, the second 19
species of Gonodactylus, and the third 2 species of Protos-
quilla. All representatives of these families possess smashing
claws. Most of these coarse bottom species occupy shallow
(less than 50 m) warm water habitats. Thus habitat is held
relatively constant within the group, while genera and spe-
cies vary in body size, and, in some cases, postlarval size.
Three other families, treated below, include species that
usually live in burrows on level bottoms of sand or mud.

ADULT BODY SIZE.—Species of Odontodactylus attain the
largest sizes of stomatopods in this group of families, and
one species of the genus, O. brevirostris, occurs in both the
West Atlantic and the Indo-West Pacific (Table 4). Four
other species of Odontodactylus (maximum lengths from
102-171 mm) are known from the Indo-West Pacific.

Gonodactylus and related genera, all of small or moderate
body size (lengths up to 105 mm), include many more
species and show considerably more regional divergence
than Odontodactylus. All West Atlantic species of Gonodac-
tylus have diverged at the species level from sibling lineages
in the East Pacific (Table 4). Two main lineages, those with
Bredini-type telsons (e.g., G. bredini, G. zacae) and those
with Oerstedii-type telsons (e.g., G. oerstedii, G. putnilus),
are found on both coasts of the Americas (Manning, 1969a,
1971c). Extensive radiation has occurred in the Oerstedii
lineage in both the West Atlantic and the East Pacific, and
species within each subregion are more closely related to
each other than to species in the other subregion (e.g., G.
oerstedii-G. curacaoensis-G. torus-G. moraisi; G. festae-G.
bahiahondensis-G. lalibertadensis-G. costaricensis—G. albicinc-
tus). All of the American Gonodactylus show major morpho-
logical differences from Indo-West Pacific lineages of this
genus (Manning, 1969a, 1971c, 1977a). At least 26 species
of Gonodactylus are present in the Indo-West Pacific.

In the East Atlantic, the endemic protosquillid genus
Protosquilla (Table 4) is closely related to a small Indo-West
Pacific relative, Chorisquilla (maximum lengths usually less
than 50 mm). Comparisons among gonodactyloid genera
from coarse substrates therefore are consistent with the
hypothesis that lower rates of divergence are found in taxa
of large rather than small body size.

POSTLARVAL SIZE.—Postlarvae are considerably larger
and probably require longer planktonic periods in species
of Odontodactylus (13-27 mm) than in species of Gonodacty-
lus and Protosquilla (6-10 mm) (Manning, 1969a, 1977a;
Provenzano and Manning, 1978; Table 4). Although we
have classified the postlarvae of 0. brevirostris from the
Indo-West Pacific as large based on the median of the
recorded range, the recorded postlarvae appear to fall into
two size groups, and it is likely that these records include
the young of two different species (Manning, 1969a); since
we do not include Indo-West Pacific taxa in our statistical
analyses, however, this does not bias our results. Larvae of
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TABLE 4.—Sizes, habitats, and taxonomic relationships for morpho-
logically related families of Gonodactyloidea that occupy coarse
habitats. In this and following tables, the size category (S — small, M
= moderate, L = large; see text for further definition of these
categories) of postlarvae (pi) is given beneath each species; parenthe-
ses around the size category indicate that postlarval size was esti-
mated from juvenile size or a consistent pattern of postlarval size in
closely related taxa (see text). The known size ranges (mm total
length) of postlarvae (**) and juveniles (*) that were used to establish
the postlarval size category follow. Where a range of postlarval sizes
spans two categories, the median was used to assign the category
(also see text for further discussion of postlarval size in 0. breviro-
stris). On the second line beneath each species, the adult size (as)
category is given (S = small, M = moderate, L = large; see text for
further explanation), followed by the range of body sizes (mm total
length) recorded for juveniles through adults in the species. Envi-
ronmental characteristics known for the species are presented to-
gether on the third line beneath the species (CB, LB = coarse or
level bottoms; SH, MD, DP — shallow, moderate, or deep water;
TR, TE = tropical-subtropical or temperate-warm temperate lati-
tudes; W, C = warm or cold water; see text for further discussion
of these environments). Dashes for a size or habitat category indicate
that data were not available or were inadequate to assign a category.
The number of measured individuals (see text) is given on the last
line beneath each species. Horizontal solid lines (e.g., 0. breuirostris)
indicate conspecific lineages in different geographic subregions;
horizontal dashed lines (e.g., G. bredini—G. zacae; G. spinulosus—G.
festae) designate closely related species in different subregions. Ver-
tical solid lines indicate that species within a subregion are more
closely related to each other than to those in another subregion; an
x or + to the left of the genus name indicates species that form
species clusters within the endemic group. Vertical dashed lines
show that a group of species or even genera are very closely related.

Sources of data are as follows: ODONTODACTYLIDAE: Manning,
1965, 1966, 1967a, 1968a, 1969a. GONODACTYUDAE: Fausto-Filho
and Lemosde Castro, 1973;Gurney, 1946; Manning, 1969a, 1970b,
1971c, 1974a, 1976a; Manning and Hart, 1981; Manning and
Reaka, 1979; Provenzano and Manning, 1978; Reaka and Manning,
1980; Schmitt, 1940; authors' unpublished observations. PROTO-
SQUILUDAE: Manning, 1970a, 1974c, 1977a.

East Pacific West Atlantic East Atlantic Indo-West Pacific

ODONTODACTYLI DAE

Odontodactylus breviroslris
plM(»*13, *20) pi L(*» 13-27,* 13-30)
as M (20-78) as M (13-79)
CB. DP. TR, C CB. DP, TR, C
N = 21 N - S 3

GONODACTYLIDAE

Gondactylus zacae~ ~~ ~
pi (S) (»8)
as M (8-59)
CB. SH, TR. W
N -=394

+ G. festat
pl(S)
as S (15-49)
CB, SH, TR. W
N-25

+ G. bahiahondensis
pi (S) (*7)
as S (7-49)
CB, SH, TR. W
N = 6S

+ C. slanschi
pl(S)
as S (10-41)
CB. SH, TR, W
N = 20

+ G. coslaricensis
pl(S)
as S (25-37)
CB, SH, TR. W
N - 10

+ C. lalibertadensis
pl(S)(*9)
as S (9-32)
CB. SH, TR. W
N - 14

+ C. albuinctus
pl(S)
as S (13-25)
CB. SH, TR, W
N - S

G.pumttus
pl(S)
as S (8-20)
CB, SH, TR, W

. N - 22

~ G. bredini
pi S (**8, *9)

as M (9-75)
CB, SH, TR, W
N = 725

G.laeunatus
pi S (**8-9, *9)
as M (9-59)
CB. SH, TR. W
N = 77

X G. otrstedii
plS(**6-10.*8-10)
as M (8-76)
CB, SH, TR, W
N - 1404

X G. curacaotnsis
pl(S)(*9-12)
as M (9-72)
CB, SH, TR, W
N - 139

G. spinulosus

pl(S)(*8-l2)
as M (8-54)
CB, SH, TR. W
N - 131

G. austrinus
pl(S)
as M (10-53)
CB, SH, TR, W
N - 7 2

X G. torus
plS(*»9)
as S (12-34)
CB, DP. TR, C
N-56

G. minutus
pi (S)(*9-10)
as S (9-31)
CB. SH, TR. W
N-47

C. lightbaurni
pl(S)(*IO)
as S( 10-25)
CB. SH. TR, W
N - 4

G. petiltis
pl(S)
as S (18-22)
CB. SH, TR. W
N - 5

XG. moraisi
pl(S)
asS(20)
CB. SH. TR. W
N - 2

PROTOSQUILLIDAE

Prototqutlla calypso

as S (10-36)
CB. SH. TR. W
N - 6 3 5

P.folini
pl(S)(»7-8)
as S (7-28)
CB. SH, TR, W
N-408
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Gonodactylus pass through four pelagic stages in about a
month (Provenzano and Manning, 1978).

HABITAT.—All members of these families occupy coarse
substrates (coral rubble, rocks, shell) in tropical waters.
Deep distributions are not correlated consistently with low
morphological divergence among regions. The broadly dis-
tributed Odontodactylus brevirostris occurs in deep environ-
ments (55-439 m), but 0. hawaiiensis Manning, 1967,
known only from Hawaii, also occurs at considerable depths
(109-276 m). In Gonodactylus, both small and moderately
sized species occupy exclusively shallow (<10 m; G. bredini,
G. spinulosus, G. festae) or moderately broad (0-73 m; G.
zacae, G. austrinus) depth ranges, but only smaller species
live exclusively in deeper water (G. minutus 13-66 m; G.
petilus 51-59 m; G. lightbourni 64-91 m; G. moraisi 76m;
G. torus 50-364 m; see also Reaka, 1980). No evidence
suggests that these small, moderately deep-dwelling species
with small geographic ranges have lower rates of morpho-
logical divergence than those in exclusively shallow habitats.

GAPS IN DISTRIBUTION.—Since O. brevirostris occurs in

the West Atlantic and the Indo-West Pacific but not the
East Pacific or the East Atlantic, extinction of this lineage
may have occurred in the latter subregions. We have dis-
cussed above (p. 5) the evidence that stomatopod larvae in
general disperse outside of their subregions infrequently.
Furthermore, it seems unlikely that larvae of O. brevirostris
could disperse from the Indo-West Pacific into the West
Atlantic without colonizing the East Atlantic or central
Atlantic islands (as do Alima hyaline and Pseudosquilla ocu-
lata, see Manning, 1969a). If Odontodactylus brevirostris has
reached the East Pacific from the Indo-West Pacific, it has
not survived there.

If one assumes prior Tethyan faunal distributions (Man-
ning, 1977a; Scheltema, 1977; Schram, 1977), the absence
of Gonodactylus from the East Atlantic also suggests that
this lineage may have become extinct in the latter area.

The East Atlantic genus Protosquilla, on the other hand,
has Indo-West Pacific affinities but is absent in the Ameri-
cas. Possibly a Chorisquilla-Wke ancestor immigrated into or
was already present in the East Atlantic, where it evolved
into the present Protosquilla without dispersing to the New
World. It is also likely, however, that either Protosquilla or
a pre-existing relative with a Tethyan distribution may have
disappeared in the Americas.

HEMISQUILUDAE, PSEUDOSQUILLIDAE, AND

EURYSQUILLIDAE

Within the Atlanto-East Pacific region, these families,
only recently separated from the gonodactylids (Manning,
1977a, 1980) are represented by one, three, and two gen-
era, respectively (Table 5). These stomatopods often inhabit
level bottom (sometimes deep or cold) habitats, possess
toothed spearing claws (except Hemisquilla), include fewer
species, produce larger postlarvae, have wider distributions,

and show closer taxonomic affinities to taxa in other geo-
graphic subregions than do the gonodactyloid genera
treated above and in Table 4.

ADULT BODY SIZE.—The largest (lengths to 174 mm)

members of these families belong to the Hernisquillidae.
Hemisquilla is represented by H. ensigera, with subspecies
off California, Chile, and Australia, and a related congener,
H. braziliensis, which occurs off Brazil.

In the Pseudosquillidae, species of Parasquilla reach mod-
erately large body sizes (lengths to 160 mm), and related
species are found in each of the subregions of the study
area; in the Indo-West Pacific Parasquilla is replaced by
the cognate genus Faughnia (length to at least 157 mm;
Manning and Makarov, 1978). Species of Pseudosquillopsis
also reach moderate to large body sizes (lengths to 150 mm),
and are widely distributed. Although cognates occur in the
East Atlantic and East Pacific, the Pseudosquillopsis lineage
is absent in the West Atlantic. In a genus of moderate
(lengths to 125 mm) body size, the distributions of two
species, Pseudosquilla ciliata and P. oculata, span remarkably
wide areas (East and West Atlantic, Indo-West Pacific), but
do not include the East Pacific. Instead, P. adiastalta (a
relative of P. oculata and P. guttata Manning, 1972 in the
Indo-West Pacific) is endemic in the East Pacific. Five
additional species of Pseudosquilla, with maximum lengths
from 35 to 83 mm, are known from the Indo—West Pacific.
Thus, the largest species in this genus show the broadest
distributions.

In the Eurysquillidae, Eurysquilla galatheae and E. leloeufft
(East Atlantic), E. plumata (West Atlantic), E. veleronis and
E. solari (East Pacific), and E. sewelli (Chopra, 1939) (Indo-
West Pacific), form a closely related, widespread group of
moderately small (length to about 50 mm) species. An
additional small species of Eurysquilla and eight species of
Manningia, all of relatively small body size, are known from
the Indo-West Pacific.

POSTLARVAL SIZE.—Postlarvae of these taxa settle at
unusually large, sometimes variable sizes (30 mm in Hemis-
quilla ensigera; 20-21 mm in Parasquilla coccinea, 40 mm
in P. ferussaci, and 21 mm in the related species Faughnia
haani (Holthuis, 1959); 30-32 mm in P. lessonii, 30-33 mm
in Pseudosquillopsis cerisii, <20-22 mm in P. dpfleini (Balss,
1910), and 25-33 mm in P. marmorata; 16-24 mm in
Pseudosquilla ciliata, 24-33 mm in P. oculata, and 25 mm
in P. guttata (see Komai, 1927; Manning, 1968a, 1969a,b,
1971c, 1972a,b, 1974c, 1977a). In contrast, the postlarvae
of eurysquillids are only moderately sized (15 mm in an
unidentified species of Eurysquilla from West Africa (not
listed in Table 5): <14 mm, <10 mm, <15 mm, and <13
mm in E. veleronis, E. plumata, E. galatheae, and E. leloeufft;
<17 mm in an Indo-West Pacific species, E. pacifica Man-
ning, 1975; and 11-12 mm in Manningia posteli (Camp,
1973; Manning, 1975a, 1977a; authors' unpublished data).
Therefore, these lineages generally show much closer tax-
onomic relationships and possess considerably larger, prob-
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TABLE 5.—Sizes, habitats, and taxonomic relationships for morphologically related families of
Gonodactyloidea that generally occupy level bottoms (symbols and format are as in Table 4).

East Pacific West Atlantic East Atlantic Indo-West Pacific

HEMISQUILLIDAE

Hemisquilla ensigera
ensigera

pi L (**30)
as L (141-163)
LB, MD, TE, C
N = 3

H. e. californiensis
pl(L)
as L (90-166)
LB, MD, TE, C
N = 9

Parasquilla similis ~'
pl(L)
as L (117-160)
LB, MD, TR, W

"H. braziliensis *" — — — — — — //. «. australiensis
pi (L) pi (L)
as L(78-163) as L(127-174)
LB, SH, TE, C LB, MD, TE, C
N = 1 7 N = 26

PSEUDOSQUILLIDAE

P. boschii "— "* ""P. ferussaci
pi (L) pi L (••40)
as M (108-128) as M (79-120)
LB, MD, TE, C LB, DP, TE, C

N = 13

P. meridionalis
pl(L)
as M (55-99)
LB, SH, TR, W

Parasquilla coccinea
pi L ( • •20-21 , ^27)
as M (27-117)
LB, DP, TR, C

Pseudosquillopsis lessonii ~~ "
pi L (**30-32, *35)
as L (35-150)
LB, —, TE, C
N = 6

Pseudosquillopsis marmorata
pi L (**25-33, *40-50)
as M (40-120)
LB, SH, TR, W
N = 15

"PseudosquUla ciliata '
pi L ( • •16-24, *16-18)
as M (16-89)
CB, SH, TR, W
N = 339

PseudosquUla adiastalta — ——P. oculata
pl(L)
as M (23-89)
CB, SH, TR, W
N = 52

pi L ( • •29-33 , ^
as M (30-125)
CB, SH, TR, W

• P. cerisii
pi L (••30-33)
as M (84)
LB, —, TE, C

P. dofleini
pi L (••22, ^20)
as M (20-85)

N-6

-P. ciliata
pi (L) (••18-19,
as M (18-61)
CB, SH, TR, W
N - 18

-P. oculata ——"—•^^
pi L (••25-33, •24-25)
as M (24-65)
CB, SH, TR, W
N = 78

•P. ciliata
pi L (••18-24)
as M (18-95)
CB, SH, TR, W
N - 180

~P. oculata *"
pi L(* •24-31)
as M (34-54)
CB, SH, TR, W
N-27

P. guttata
pi L (••25)
as S (33-35)
CB, SH, TR, W
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TABLE 5.—Continued

East Pacific West Atlantic East Atlantic Indo-West Pacific

Eurysquilla veleronxs
pl(M)(*14-18)
as S (14-43)
LB, SH, TR, W
N = 13

E. solan
pl(M)
as S (47)
LB, MD, TR, W
N= 1

EURYSQUILUDAE

• E. plumata
pl(M)(*10)
as S (10-32)
LB, SH, TR, W
N = 10

Eurysquilla chacei
p l -
as M (50)
LB, DP, TR, C
N = l

E. holthuisi
p l -
as S (35)
LB, MD, TR, W
N = 1

E. maiaguesensis
p l -
asS (19-23)
LB, MD, TR, W

E. galatheae
pl(M)(*15)
as S (15-31)
LB, SH, TR, W

E. leloeuffi
pl(M)(*13)
as S (13-33)
LB, SH, TR, W

Manningia posteli
plM(**l l -12 , *12)
as S (12-39)
LB, SH, TR, W

•E. sewelli
pl(M)
as S (32-42)
LB, DP, TR, C
N = 2

*£. pacifica
p l -
asS(17)
—, —. TR,
N - 1

Sources of data are as follows. HEMISQUILLIDAE: Dahl, 1954; Holthuis, 1941; Manning, 1963a, 1966,
1969a,b, 1974a; Schmitt, 1940; Stephenson, 1953, 1967; Stephenson and McNeill, 1955. PSEUDOSQUILLI-
DAE: Balss, 1910; Bigelow, 1901, 1931; Camp, 1973; Giesbrecht, 1910; Hansen, 1895; Holthuis, 1941;
Komai, 1927; Manning, 1964, 1968a, 1969a,c, 197Oa,b,c, 1971c, 1972b, 1973, 1974a,c, 1976a, 1977a,b,
1978a; Reaka and Manning, 1980; Schmitt, 1940; Stephenson and McNeill, 1955; authors' unpublished
observations. EURYSQUILUDAE: Camp, 1973; Chopra, 1939; Gore and Becker, 1976; Manning, 1969a,
1970b, 1971c, 1974a, 1975a, 1977a; authors' unpublished observations.

ably longer-lived larvae than the reef-dwelling gonodactyl-
ids treated above.

HABITAT.—Members of these families have been col-
lected in diverse, usually soft muddy or sandy level bottom
environments. Individuals of some species, e.g., those of
Hemisquilla, are known to dig burrows in mud or muddy
sand, whereas others, e.g., those of Pseudosquilla, inhabit
burrows in grass flats, coralline algae, sponges, or beneath
coral rubble (Hatziolos, 1980). Juveniles of large species
and even adults of small species of Pseudosquilla are found
in holes within coral rubble.

Although some of these gonodactyloids live in shallow
water, others frequent deep or cold environments. Hemis-
quilla ensigera and H. braziliensis occupy moderately deep
(33-200 m and 37-100 m) temperate environments and
show low geographic divergence. West Atlantic species of

Parasquilla live in relatively deep water (21-194, 46-92,
and 73-382 m for P. boschii, P. meridionalis, P. coccinea),
and have close affinities to East Pacific and East Atlantic
species that also occur in deep environments (73-125 m
and 100-550 m, respectively). On the other hand, most
species of Pseudosquilla inhabit shallow, warm, coralline
sand and rubble environments and also show unusually low
geographic divergence. Several species of Eurysquilla are
found in relatively shallow water (less than 100 m except
for E. solari, which is known from 160 m) and have close
relatives in other subregions. However, E. holthuisi, E.
chacei, and E. maiaguesensis live in relatively deep waters (to
291, 419, and 315 m), as does one of the Indo-West Pacific
species, E. sewelli (220-695 m). Thus, habitat type, temper-
ature, and depth do not influence rates of divergence in a
predictable manner in this group of families.
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GAPS IN DISTRIBUTION.—Extinction appears to have oc-
curred in at least one of these families, since a lineage of
Pseudosquillopsis occurs in the East Pacific and East Atlantic,
but, assuming a Tethyan distribution, has disappeared in
the West Atlantic.

Two species of Pseudosquilla occur in all subregions ex-
cept for the East Pacific. One of these lineages apparently
has disappeared and the other has diverged into the East
Pacific endemic, P. adiastalta. One lineage of Eurysquilla
(E. maiaguesensis-E. pacified) is present in the West Atlantic
and Indo-West Pacific, but is conspicuously absent from
both the East Pacific and East Atlantic.

Hemisquilla is not present in the East Atlantic, but mem-
bers of this genus may not have reached there due to their
generally southerly distribution; H. ensigera californiensis,
however, reaches Californian waters.

The genus Manningia, represented by one species in the
East Atlantic and several in the Indo-West Pacific, is absent
from the Americas.

LYSIOSQUILLOIDEA

LYSIOSQUILLIDAE, NANNOSQUILLIDAE, AND CORONIDIDAE

These families are represented by five, eight, and three
genera, respectively, within the study area (Table 6). All
have toothed claws, but these are inflated into smashing
appendages in the coronidids. Many lysiosquilloids excavate
U-shaped or vertical burrows in sandy or muddy bottoms,
but the coronidids and some nannosquillids live in coarse
substrates. The lysiosquilloids include the largest and some
of the smallest stomatopods known.

ADULT BODY SIZE.—Almost all lysiosquillids reach mod-
erate or large body sizes and are broadly distributed, with
close taxonomic relationships among distant geographic
regions and subregions. The genus Lysiosquilla includes the
largest known species of stomatopod, the Indo-West Pacific
L. maculata (Fabricius, 1793), which can attain a total length
of up to 385 mm. Several lineages of closely related species
of Lysiosquilla, all of large body size (maximum lengths from
132-385 mm), occur over broad geographic regions (Table
6). Lysiosquilla desaussurei (East Pacific) is more closely
related to L. hoevenii (East Atlantic) than to the West Atlan-
tic L. scabricauda. Also, L. panamica (East Pacific) is more
closely related to the Indo-West Pacific L. tredecimdentata
Holthuis, 1941 than to any of the West Atlantic species. In
contrast, the distribution of the L. glabriuscula-L. maculata
lineage includes the West Atlantic and Indo-West Pacific
but not the East Pacific or East Atlantic. A related genus of
large body size (lengths to 266 mm), Lysiosquilbides, is
known from both the East Atlantic and from Thailand in
the Indo-West Pacific.

The lysiosquillids Heterosquilla and Heterosquilloid.es are
moderately sized (maximum lengths from 76-109 mm), but
show remarkably low rates of divergence in different geo-

graphic regions and subregions (Table 6); these and several
other stomatopod genera appear to exhibit relict distribu-
tion patterns (Manning, 1977a). Although relatively uncom-
mon, Heterosquilloides mccullochae has the widest distribu-
tion of any stomatopod, having been collected from Ascen-
sion Island (authors' unpublished data; included as East
Atlantic in Table 6), the West Atlantic, the East Pacific, and
the Indian Ocean. Heterosquilloides insolita has been taken
off Florida and possibly the Galapagos (where only a frag-
mented specimen has been taken), and Heterosquilla poly-
dactyla is an austral species known from both Chile and
Argentina. However, Heterosquilloides armata occurs only
between Massachusetts and Texas, Heterosquilla platensis is
recorded only from Uruguay and Argentina, and a newly
discovered species, Tectasquilla lutzae Adkison and Hopkins,
1984, is known only from the Gulf of Mexico. In addition
to Heterosquilloides mccullochae, H. insignis, and Heterosquilla
tricarinata, at least three species of Heterosquilloides and an
additional undescribed species of Heterosquilla are endemic
in Indo-West Pacific waters.

Species within the Nannosquillidae reach only small or
moderate body sizes. One of the lineages of largest body
size, Acanthosquilla, is characterized by broadly distributed,
closely related taxa. The widespread Acanthosquilla bimi-
niensis-A. septemspinosa lineage is related to A. acanthocarpus
(Claus, 1871) and A. multifasdata (Wood-Mason, 1875) in
the Indo-West Pacific; at least seven other Indo-West
Pacific species of Acanthosquilla are known. Conspecific
populations of A. biminiensis and A. digueti inhabit both
coasts of the Americas. Closely related species of Platysquil-
loides occur in both the North West and North East Atlantic,
members of Allosquilla, Mexisquilla, and Platysquilla each
are found only in one subregion (Manning, 1977; Manning
and Camp, 1981; Froglia and Manning, 1986). However,
Coronis also reaches moderate sizes (to 75 mm), but is found
only in the West Atlantic.

All of the 20 species in the genus Nannosquilla are small
(<42 mm) and all are endemic to either the West Atlantic
or East Pacific. Most species resemble others in their own
subregion (e.g., species clusters in Table 6), indicating local
radiation. Nannosquilloides, a related genus of similar small
size (<48 mm), is endemic to the East Atlantic.

In contrast, the coronidids are characterized by small
body size but widespread distributions at the generic level,
often with close taxonomic relationships among taxa in
distant regions or subregions. East Pacific species of Coron-
ida and Neocoronida resemble relatives in the East Atlantic
and Indo-West Pacific, respectively (Table 6). Only the
species shown in table 6 are known. The recently discovered
Acoridon manningi (related to both Coronida and Neocoron-
ida) may reflect either a remnant of an ancestral Tethyan
lineage that has become extinct in the East Atlantic and
East Pacific or a branch of Coronida or Neocoronida that has
diverged in the West Atlantic.

Therefore, large and particularly some moderately sized
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TABLE 6.—Sizes, habitats, and taxonomic relationships for species of Lysiosquilloidea in different geo-
graphic subregions (symbols and format are as in Table 4; within Nannosquilla, +, X, O, and • signify local
species clusters that are more closely related to each other than to other species).

East Pacific

Lystosqutlla desaussurei
pl(L)
as L (68-210)
LB, SH, TR, W
N = 8
i • -n

pl(L)
as L (90-205)
LB, SH, TR, W
N = 7

Heterosquilla

pi L(*» 19-22)
as M (42-95)
LB, SH, TE, C
N-17
Heterosquilloides

p l -

as M (ca. 76)
LB, MD. TR. W
N - 1

West Atlantic East Atlantic

LYSIOSQUILLIDAE

pl(L)
as L (52-275)
LB, SH, TR, W
N = 82

L. glabriuscula

pi L (**22-25)
as L (61-214)
LB, SH, TR, W
N = 43

L. campechiensis
pl(L)
as M (64-132)
LB, SH, TR, W
N = 6

l~H. plattnsis ~1
'pl(L)
as M (68-109)

, LB, —, TE, C
| N = 15
!

H. polydactyla

1 pi L(*» 19-22)
as M (36-65)
LB, SH, TE, C

V- -

,_N - 12 J

p l -

as(M)(48)
LB, MD, TR, W
N = 1

pI(L)
as M (79-135)
LB, SH, TR, W
N = 4
/ k

pl(L)
as L (75-265)
LB, SH, TR, W
N = 40

Lysiosquilloid.es
| L. . 1 . .

as L (161-266)
LB, SH, TR, W
N = 3

Indo-West Pacific

i •

pi L (**20-22, *26)
as L (26-325)
LB, SH, TR, W
N = 12

pl(L)
as L (72-259)
LB, SH, TR, W
N = 17

— —L. macuiata
plL(**22-23,*26-29)
as L (26-385)
LB, SH, TR, W
N = 76

r
•" "T-. siamcnsts

as L (102-155)
—. —, TR, —
N = 5

— -H. tricannata
plM(**12-13)
as M (51-80)
LB, SH, TE, C
N = 14

• •

pi —
as M (42-52)
LB, —, TR, —
KI A
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TABLE 6.—Continued.

East Pacific West Atlantic East Atlantic Indo-West Pacific

Heterosquilloides
mccullochae

pl(M)(*19)
as M (19-50)
LB, SH, TR, W
N = 8

-H. mccullochae
pl(M)
as (M) (21-32)
LB, SH, TR, W
N = 2

Heterosquilloides armata
p l -
as M (20-76)
LB, MD, TE, C
N = 15

Tectasquilla lutzae
p l -
as M (73)
—, SH, TR, W

-H. mccullochae —
pl(M)
as M (42-69)
LB, SH, TR, W

-H. mccullochae —
pl(M)
as M (55)
LB. SH, TR, W
N = 1

Acanthosquilla biminiensis
pl(S)
as M (15-56)
LB, SH, TR, W
N = 19

Acanthosquilla diguett
p l -
asS (18-27)
LB, SH, TR, W
N = 7

NANNOSQUILLIDAE

• A. biminiensis ——"—A. septemspinosa-
plS(**9-10) pi M ( * * l l , ' l i -
as M (39-62) as M (11-55)
LB, SH, TR, W LB, SH, TR, W
N = 15 N = 13

•A. digueti
p l -
as S (45-48)
LB, SH, TR. W

Coronis scolopendra
pi L (*»20)
as M (23-75)
LB, SH, TR, W
N = 70

• A. acanthocarpus — — — — ——
plS(**9-10, *11)
as M (11-79)
LB, SH, TR. W
N = 12

fplatysquilloides enodis
[pi —
las M (32-67)
JLB. SH, TE.C
|N = II

iMexisquilla horologii

ipi(S)Cii)
asS(ll-16)

| LB, SH, TR, W
I N - 5

Allosquilla africana |
p i - |
as S (39-70)
LB, MD, TR, W
N = 3 |

P. lillyae
pi —
as M (42-55)
LB. DP. TR, C
N = 4

Platysquilla eusebia
pi —
as M (45-55)
LB, SH, TE, C
N = S

Nannosquilloides occultus
p l -
asS (15-48)
LB. MD. TE, C
N = 11



TABLE 6.—Continued.

East Pacific West Atlantic East Atlantic Indo-West Pacific

• Nannosquilla
decemspinosa

pl(S)
as S (15-25)
LB, SH, TR, W
N = 22

N. anomala
pl(S)
as S (34-41)
LB, SH. TE, C
N = 8

N. californiensis
pl(S)
as S (17-30)
CB, SH, TE, C

ON. chilensis
pi(S)CiO)
as S (10-28)
LB, SH, TE, C
N - 13

O N. similis
pl(S)
as S (25)
—, SH, TR, W
N - 1

O N. galapagmsis
pl(S)
as S (21-23)
—. SH. TR. W
N-3

9 N. canica
pl(S)
as S (15-18)
LB, SH, TR, W
N-3

+ N. grayi
pl(S)
as S (21-42)
LB, SH, TE, C
N = 34

+ N. whitingi
pl(S)
as S (24-30)
LB, SH, TR, W
N = 4

+ N. taylori
pl(S)
as S (28)
LB, SH, TR, W
N = 1

+ N. baliops
pl(S)
as S (23)
LB, SH, TR, W
N = 1

X N. antUUnsis
pi S (**6)
as S (14-25)
CB, SH, TR, W

N. schmitti
pl(S)(*9)
as S (9-25)
LB, SH. TR, W

N. vasquezi
pl(S)
as S (18-24)
LB, SH, TR, W
N = 7

+ N. hancoch
pl(S)
as S (15-21)
—, SH, TR. W
N « 5

X N. dacostai
pl(S)
asS(19)
—. SH, TR, W
N - 1

X N. carolintnsu
pl(S)
asS(18)
—. SH, TE. C
N-2

X N. heardt
pl(S)
asS(18)
LB, SH, TR, W
N - 1

X N. adktsom
pl(S)
asS(17)
—, SH. TR. W
N - 1

N. tagumsis
pl(S)
asS(16-17)
LB. SH, TR, W
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East Pacific

Coronida schmitti
pl(S)
as S (13-48)
CB, SH, TR, W
N = 33

C. glasselli
pl(S)
as S (19-36)
CB, SH, TR, W

p l -
as S (20)
CB, SH, TR, W
N = 1

TABLE 6.—Continued.

West Atlantic

CORONIDIDAE

Acoridon manningi
p l -
asS (13-41)
—, SH, TR, W

East Atlantic

pl(S)(*10)
as S (10-44)
CB, SH, TR, W
N = 24

Indo-West Pacific

p l -
as S (45)

N. trachurus
p l -
as S (32-47)
CB, SH, TR, W
N-10

Sources of data are as follows. LYSIOSQUILLIDAE: Adkison and Hopkins, 1984; Alikunhi, 1967; Barnard, 1950; Bigelow, 1931; Camp, 1973, 1985;
Fcnwick, 1975; Gore and Becker, 1975, 1976; Greenwood and Williams, 1984; Holthuis, 1941; Manning, 1962b, 1963b, 1966, 1968a, 1969a,c, 1970c,d,
1971a,b,c, 1972c, 1974a,b,c, 1977a, 1978b,c; Michel, 1970; Naiyanetr, 1980; Reaka and Manning, 1980; Schmitt. 1940; Shanbhogue. 1970 [1971];
Stephenson and McNeill, 1955; Tirmizi and Manning, 1968; Williams et al., 1985; authors' unpublished data. NANNOSQUILLJDAE: Bahamonde, 1968;
Camp. 1973; Camp and Manning, 1982; Dahl, 1954; Froglia and Manning, 1986; Holthuis, 1984; Howells et al., 1980; Kocatas, 1981; Lewinsohn and
Manning, 1980; Manning, 1961, 1962a,b, 1967b, 1968a, 1969a, 1970a,b,c, 1972c, 1974a,b,c, 1977a, 1979; Manning and Camp. 1981; Manning and
Froglia, 1979; Manning and Reaka, 1979; Reaka and Manning, 1980; Schmitt, 1940; Stephenson and McNeill, 1955; Tirmizi and Manning, 1968; authors'
unpublished observations. CORONIDIDAE: Adkison et al., 1983; Manning, 1970a, 1972c, 1974c, 1976a, I977a,b, 1978c.

lysiosquilloids show a high incidence of close relatives or
conspecifics in different regions and subregions. Of 15
American lysiosquilloids of large or moderate size, four
species (27%) have conspecific populations in other subre-
gions, and seven species (47%) are closely related to con-
geners in other areas. Affinities are generally as strong
among as within subregions, and relatively small numbers
of closely related species within subregions suggest either
relatively low rates of radiation or high rates of extinction.
As discussed below, the small numbers of closely related
species within subregions does not appear to be explainable
by postulating high rates of extinction. The largest species
in this heterogeneous superfamily, however, also show some
tendencies for subregional differentiation, since all species
of Lysiosquilla and Lysiosquilloides are endemic to their
subregion. Of 25 American lysiosquilloids of small body
size, only one species (4%) is conspecific, and only five
species (20%) show cognate relationships to species in other

subregions. Two genera of very small body size, Nannos-
quilla and Nannosquilloides, inhabit only Atlanto-East Pa-
cific waters, and show strong divergence in different geo-
graphic subregions. Nannosquilla has undergone consider-
able radiation within each American subregion.

POSTLARVAL SIZE.—Species of Lysiosquilla produce lar-
vae that progress through numerous molts during long
pelagic phases and settle at large sizes (22-25 mm in L.
glabriuscula, 20-22 mm in L. sulcirostris Kemp, 1913, 2 2 -
23 mm in L. maculata; see Alikunhi, 1967; Michel, 1970;
Manning, 1969a, 1978b; Table 6). Postlarvae of some spe-
cies of Heterosquilla and Heterosquilloides settle at similar
relatively large to moderate sizes (19-22 mm in H. polydac-
tyla, <19 mm in H. mccullochae; 12-13 mm in H. tricarinata;
see Greenwood, and Williams, 1984; Manning, 1971b;
Reaka and Manning, 1980). Within the Nannosquillidae,
species of Acanthosquilla produce small to moderately sized
postlarvae (9-12 mm in A. biminiensis, A. acanthocarpus, A.
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multifasciata, A. tigrina (Nobili, 1903), and A. septemsfrinosa
(Alikunhi, 1967; Camp, 1973; Manning, 1977a; Table 6).
In general, Heterosquilla, Heterosquilloid.es, and Acanthos-
quilla show less morphological divergence among subre-
gions and produce larger postlarvae than comparably sized
gonodactyloids.

Coronida bradyi has relatively small postlarvae (<10 mm),
as does Mexisquilla horologii (<11 mm) (Camp, 1973; Man-
ning, 1977a; authors' unpublished data), but both show
taxonomic affinities among different subregions. However,
the small size of postlarvae (6 mm in Nannosquilla antillensis,
<9 mm in N. schmitti, <10 mm in N. chilensis; Dahl, 1954;
authors' unpublished data; Table 6) and the high endemism
in Nannosquilla are comparable to that in Gonodactylus.

Consequently, there is a general inverse correlation be-
tween size of postlarvae and degree of divergence within
lineages among zoogeographic subregions (especially ex-
emplified by Lysiosquilla, Heterosquilla, Heterosquilloides,
and Nannosquilla), but several exceptions are apparent.
Although species of Lysiosquilla produce large postlarvae
and show affinities among taxa in different subregions, all
species are endemic to their own subregion. Similarly, spe-
cies of Acanthosquilla and Coronida show strong relation-
ships among taxa in distant regions or subregions but lack
large postlarvae.

HABITAT.—Where their habits are known, lysiosquilloids
(except coronidids) burrow in level bottoms of sand or
muddy sand. Although the wide distributions of many lin-
eages in this family generally correlate with occupation of a
sandy environment (e.g., in Lysiosquilla, Acanthosquilla),
several exceptions exist. Some widespread species live in
sand associated with coarse substrates, whereas some en-
demic species occupy exclusively sandy environments. One
of the most widespread species, Heterosquilloides tnccullochae,
often lives in sand associated with coral rubble or rocks.
Another species found in more than one subregion, Acan-
thosquilla biminiensis, sometimes is found in sand in rocky
habitats. Nannosquilla is characterized by the greatest re-
gional differentiation in the family. Some species of that
genus occur in sand on coral reefs, but most live exclusively
on beaches or in subtidal sandy environments (Reaka and
Manning, 1980; personal observations). Coronidids, like
gonodactylids, inhabit cavities in rocks, rubble, or coralline
algae.

Furthermore, no predictable relationship occurs between
depth and rate of geographic divergence in lysiosquilloids.
Heterosquilloides mccullochae and species of Acanthosquilla
and Lysiosquilla occupy shallow, warm environments and
show low rates of divergence. A number of lysiosquilloids
occur in cold or deep water (Heterosquilla platensis, Uru-
guay, Argentina; H. polydactyla, Chile, Argentina; Heteros-
quilloides insolita, Florida and perhaps the Galapagos, 9 1 -
247 m; Heterosquilloides armata, Massachusetts, Florida, and
Texas, 96-218 m; Platysquilla eusebia, Ireland to the Med-

iterranean; Platysquilloides enodis, Massachusetts to North
Carolina; Platysquilloides lillyae (Azores, 225-345 m); and
Allosquilla africana (Adriatic and West Africa, 148-222 m).

GAPS IN DISTRIBUTION.—Extinction appears to have oc-
curred in the Coronida lineage in the West Atlantic, since
closely related species inhabit only East Atlantic and East
Pacific waters. However, this or a preceding lineage may
have diverged into the related genus, Acoridon, now known
from the West Atlantic. Neocoronida, known from the Indo-
West Pacific and Cocos Island in the East Pacific, either
never reached or became extinct in the Atlantic. Similarly,
the Lysiosquilla panamica-L. tredecimdentata lineage is pres-
ent in the East Pacific and Indo-West Pacific but not the
Atlantic. The East Atlantic endemic genera Platysquilla and
Allosquilla are missing in the West Atlantic, but are closely
related to the West Atlantic Platysquilloides and Mexisquilla;
however, another East Atlantic endemic, Nannosquilloides,
either never reached or became extinct in American waters.
Similarly, the Lysiosquilla monodi-L. sulcirostris and the Ly-
siosquilloides aulacorhynchus-L. siamensis lineages extend to
East Atlantic from Indo-Pacific waters but fail to inhabit
the New World.

The Lysiosquilla glabriuscula-L. maculata lineage is con-
spicuously absent from East Pacific waters and may have
become extinct there. The related species of Platysquilloides
are found in the West and East Atlantic but not in the East
Pacific. It is not possible to determine whether these line-
ages, as well as the endemic species of Tectasquilla, Coronis,
Allosquilla, Mexisquilla, and Platysquilla, became extinct in
the East Pacific or if they evolved in the Atlantic after
elevation of the Central American isthmus.

The distributions of two lineages of Lysiosquilla span
Indo-West Pacific and American regions without occurring
in the East Atlantic (L. panamicz-L. tredecimdentata, L.
glabriuscula—L. maculata). In addition, two otherwise
transregional lineages, Heterosquilla polydactyla-H. tricari-
nata and Heterosquilloides insolita-H. insignis, display con-
spicuous gaps in distribution in the East Atlantic; H. poly-
dactyla may not have reached the East Atlantic, however,
because of its very southerly distribution. Although related
to the pantropical Acanthosquilla biminiensis-A. septemspi-
nosa-A. acanthocarpus lineage, A. digueti includes conspecific
populations on both sides of the Central American isthmus
but is not present in the East Atlantic. If the broad distri-
butions of its relatives and its own trans-American distri-
bution are characteristic, this lineage may have previously
inhabited the East Atlantic and become extinct there. The
genus Nannosquilla is present in the Americas but lacks
representation in the East Atlantic, where a pre-existing
lineage may have diverged as Nannosquilloides. Similarly,
the endemic West Atlantic genera Tectasquilla and Coronis
are missing from the East Atlantic; either these genera arose
in the West Atlantic or all relatives have disappeared in the
East Atlantic.
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SQUILLOIDEA

SQUILLIDAE

This diverse family is represented by 11 genera in the
Atlanto-East Pacific region, and 6 of these (Squilla, Fenne-
rosquilla, Schmittius, Rissoides, Meiosquilla, and Crenatos-
quilla) are almost entirely restricted to that region (Table
7); one species of Rissoides occurs in the Indo-West Pacific
(Manning, 1975b). This superfamily contains one Indo-
West Pacific family, Harpiosquillidae, which, like the Ly-
siosquillidae, includes some of the largest (to 335 mm)
known stomatopods (Manning, 1969d, 1980). Most squillids
excavate vertical, branched, or U-shaped burrows in level
bottom habitats, and all possess toothed spearing appen-
dages (Caldwell and Dingle, 1976; Myers, 1979; Reaka and
Manning, 1981).

ADULT BODY SIZE.—Major predators in shrimp beds,
species of Squilla reach large sizes (more than 150 mm) in
each of the subregions of the study area. One of the largest
species in the East Pacific, S. aculeata, occurs also in the East
Atlantic (with morphological differences at the subspecific
level), but is replaced in the West Atlantic by a large and
very common relative, S. etnpusa (Table 7). Additionally, S.
biformis reaches relatively large sizes in the East Pacific and
has cognates in both the East and West Atlantic. Of six
West Atlantic species larger than 130 mm, four are closely
related to species in the East Pacific and two also have
cognates in the East Atlantic. Species of smaller body size
do not show comparable linkages (11 West Atlantic species,
only one of which has an East Pacific cognate). Species in
both the West Atlantic and the East Pacific form a series of
related groups (5. edentata (two subspecies)-^. caribaea-S.
intermedia-S. brasiliensis, S. lijdingi-S. chydaea, S. rugosa-S.
grenadensis, S. neglecta-S. prasinolineata, S. obtusa-S. suri-
natnica, S. discors-S. deceptrix (all West Atlantic); S. pana-
mensis-S. tiburonensis-S. bigelowi (East Pacific)), indicating
substantial radiation within each subregion, particularly the
West Atlantic. Thirty-three species of Oratosquilla, some
reaching lengths of more than 200 mm, form the Indo-
West Pacific counterpart of Squilla (see Manning, 1978d).
Oratosquilla is represented in the Atlanto-East Pacific by O.
massavensis (Kossmann, 1880), a large species that recently
has entered the Mediterranean Sea via the Suez Canal
(Lewinsohn and Manning, 1980).

Pterygosquilla armata also reaches large sizes (to 168 mm),
and subspecies occur off southern South America, New
Zealand, and southern Africa. Although little is known of
its ecology, a large (to 157 mm) related species, P. gracilipes,
inhabits Chilean waters. Conspecific populations of Clori-
dopsis dubia reach relatively large body sizes (to 156 mm),
and are known from both sides of the Americas; this genus
is otherwise represented by six species (lengths to at least
93 mm) in the Indo-West Pacific region.

Species of Alima and Schmittius reach moderate (to about
75 mm) body sizes. Two species of Alima are pantropical
except for the East Pacific, and two additional species occur
in the Indo-West Pacific. Species of Schmittius, known only
from the East Pacific, appear to be closely related to Squil-
loides in the Indo-West Pacific.

A smaller relative of Cloridopsis, Clorida includes one
species, C. mauiana, which occurs in the East Pacific as well
as in Hawaii and the Santa Cruz islands in the Indo-West
Pacific (Manning, 1976b). This represents the only instance
of a single species of stomatopod that lives in both the Indo-
West Pacific and the East Pacific. A relatively large number
of individuals have been collected, suggesting that its occur-
rence in the East Pacific probably is not accidental. The
lineage is characterized by small to moderate body sizes; 26
other Indo-West Pacific species of Clorida range from 23
to 67 mm in maximum lengths. Among the smallest mem-
bers of the Squillidae, the Rissoides-Meiosquilla-Crenatos-
quilla lineage is distributed in the East Atlantic and the
Americas (except for R. barnardi, which inhabits South
African waters; Manning, 1969c, 1975b). A major morpho-
logical feature, the shape and dentition of the claw, distin-
guishes species of Rissoides in the East Atlantic from the
American species of Meiosquilla and Crenatosquilla (see
Manning and Lewinsohn, 1982). All species of Meiosquilla,
as well as the genus Crenatosquilla, are endemic to their
subregions. Thus, this group illustrates the greatest degree
of subregional differentiation within the squillids, even
though the trend for endemism and local species radiation
appears to be less extensive than that found in the compar-
ably small species of Gonodactylus and Nannosquilla.

Therefore, as in the lysiosquilloids, large species of squil-
lids show strong affinities to taxa in other regions or subre-
gions (Squilla, Pterygosquilla, Cloridopsis), as well as some
tendencies for regional divergence (generic differentiation
in Atlanto-East Pacific vs. Indo-West Pacific regions, as
well as large numbers of subregionally distinct species in
Squilla). Within Squilla, the large species show the closest
affinities to taxa in other geographic subregions. As in the
pseudosquillids and the lysiosquilloids, some medium sized
species (e.g., those of Alima) are unusually widespread. Also,
as in the gonodactylids and nannosquillids, most small spe-
cies (e.g., those of Rissoides, Meiosquilla, and Crenatosquilla)
show strong subregional differentiation. The main excep-
tion to this general pattern is the transregional distribution
of Clorida mauiana, a small lineage.

POSTLARVAL SIZE.—In general, sizes of squillid postlar-
vae exceed the sizes of postlarval protosquillids and gono-
dactylids, are smaller than those of the pseudosquillids, but
are comparable to those of many lysiosquilloids. Some squil-
lid larvae (e.g., those of Pterygosquilla armata and Squilla
empusa) pass through eight or nine pelagic stages that can
last many months (Pyne, 1972; Morgan and Provenzano,
1979). In some cases, postlarval sizes appear to vary consid-



22 SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY

TABLE 7.—Sizes, habiuts, and uxonomic relationships for species of Squillidae and Bathysquillidae in
different geographic subregions (symbols and format are as in Table 4; within Squilla, O, • , +, ++, X, and
XX indicate species clusters within the West Atlantic subregion that are more closely related to each other
than to other species).

East Pacific West Atlantic East Atlantic Indo-West Pacific

SQUILLIDAE

Squilla aculeate
acultata — —

pl(M)
as L (26-197)
LB, SH, TR, W
N = 25

S. mantoidea
p l -
as L (93-200)
LB, SH, TR, W

S. biformis — — — •
pl(L)(*51-57)
as L (51-170)
LB, DP, TR, C
N=134

S. panamensis
p)(M)
as M (32-140)
LB, SH, TR, W
N ~ 4 5

5. Hburonensis
pl(M)(*16-21)
as M (16-97)
LB, MD, TR, W
N-27

S. bigelowi
pl(M)
as M (37-132)
LB, MD, TR, W
N - 3 4

S. empusa —
plM(**12-14)
as L (29-185)
LB, SH, TE, C
N = 1295

O S. edentate.
p l -
asL (30-175)
LB, DP, TR, C
N = 7 0

OS. caribaea
p l -
asL (61-174)
LB, DP, TR, C
N = 63

— OS. intermedia
pl(L)
as L (48-153)
LB, DP, TR, C
N » 3 7

~—OS. brastliensis
p l -
asL (38-150)
LB, MD, TE, C
N = 75

— • $. lijdingi
pl(M)
as M (22-1 S3)
LB, MD, TR, W
N=136

• S. chydaea
pl(M)
as M (29-125)
LB, DP, TR, C
N« 153

+ S. rugosa
p l -
asM (24-125)
LB, SH, TR, W
N - 112

++ S. ntglecta
P l -
as M (43-119)
LB, SH, TR, W
N-34

++ 5. prasinolineata
l ^ -
as M (21-119)
LB, SH, TR, W
N-48

-S. aculeata calmani
plM(**13)
as L (21-150)
LB, SH, TR, W
N = 123

~S. cadenati
pl(L)
as L (33-166)
LB, DP, TR, C
N = 120

S. mantis
pi L(»* 17-23)
as L (25-165)
LB, DP, TE, C
N = 142
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TABLE 7.—Continued

East Pacific

S. hancocki — — -
p l -
as M (20-68)
LB, MD, TR, W
N = 27

S. parva
p l -
as M (19-53)
LB, SH, TR, W
N= 15

I Pterygosquilla armata
armata

pi L (••20-32, *33)
as M (33-145)
LB, DP, TE, C
N = 27

P. gracilipes
pl(L)

I as L (82-157)
1 —, —, TE, C

West Atlantic

S. decimdentata
p l -
as M (22-86)
LB, MD, TR, W
N-41

X S. obtusa
p l _
as M (30-83)
LB, MD, TR, W
N « 5 5

- XX 5. deceptrix
p l -
as M (24-75)
LB, DP, TR, C
N = 55

XX S. discors
p l -
as M (37-67)
LB, MD, TR, W
N = 31

X 5. surinamica
p l -
as S (26-44)
LB, SH, TR, W
N » 4 3

+ 5. grenadensis
p l -
as S (24-42)
LB, DP, TR, C
N = 9

FennerosquUla ktptacantha
plM(**18)
as M (37-100)
LB, DP, TR, C
N = 29

pl(L)
as M (31-146)
LB, DP, TE, C
N-14

East Atlantic Indo-West Pacific

Oratosquilla massavensis~O. massavensis
pi M (••15-18, *17)
as L (17-216)
LB, SH, TR, W
N - 3 0 3

pi M(** 12-22)
as L (22-168)
LB, DP, TE, C
N-36

pl(M)
as M (35-126)
LB, SH, TR, W
N-42

P l -
asM (114-122)
LB, DP, TE, C
N - 4

L.
N - 9
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TABLE 7.—Continued

East Pacific West Atlantic East Atlantic Indo-West Pacific

Cloridopsis dubia-
p l -
as M (35-147)
LB, SH, TR, W

Schmittius peruvianus
pl(L)(*33)
as M (33-60)
LB, DP, TE, C
N = 2

S. politus
pl(L)(*22)
as M (22-72)
LB, MD, TE, C
N = 17

Clorida mauiana'
p l -
asS(17)
LB, SH, TR, W
N - l

Af. dawsoni
pl(M)
as S (19-47)
LB, SH. TR. W
N-8

Af. swelti
pl(M)
as S (19-42)
CB. SH, TR, W

• C. dubia
p l -
asL (50-156)
LB, SH, TR, W
N = 55

• Alima kieroglyphica
pl(M)
as M (49-75)
LB, SH, TR, W

•A. hieroglyphica—
plM("15)
as M (16-58)
LG. SH, TR, W
N = 10

-Alima kyalina
pi M (••16-18, * 18-20)
as S (18-46)
LB, SH, TR. W
N = 2 6

•A. hyalina
pi L ("22)
as S (32)
LB. SH, TR. W
N-4

Meiosquilla randalli
pl(M)
as S (24-39)
—, SH. TR, W
N-5

Af. tricarinata

as S (14-35)
LB. SH, TR, W
N - 10

• Af. quadridens
plM("13-16, • l l - lS )
as S (11-35)
LB, SH. TR. W
N-25

• Af. schmilti
pi M (••12-13)
as S (13-33)
CB. SH, TR, W
N - 19

Af. lebouri
pi M (••12-14)
as S (13-22)
CB, SH. TR, W
N-8

Rissoides desmaresti

as M (26-89)
LB. SH. TE. C
N = 30

R. pallidus
pl(M)
as M (21-73)
LB, DP, TE, C
N-31

R. africanus
pl(M)(*13-15)
as S (13-36)
LB. SH, TR. W
N-96

R. calypso
pl(M)
as S (35)
—, SH, TR, W
N = l

•A. hieroglyphica -
pi M (••!?)
as M (48-62)
LB, SH. TR, W

-A. hyalina
pl(M)
as S (17-46)
LB. SH, TR, W
N-8

" C. mauiana ~ " ^
p l -
asS (21-27)
LB, SH, TR, W
N = 2

R. barnardi
pl(M)C15)
as S (15-30)
—. SH, TE, C
N-4
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TABLE 7.—Continued

East Pacific West Atlantic East Atlantic Indo-West Pacific

Crenatosquilla oculinova
pl(S)(*9-14)
as S (9-36)
CB, SH, TR, W
N = 70

BATHYSQUILLIDAE

Bathysquilla microps
p l -
as L (45-255)
LB, DP, TR, C
N = 12

~B. microps

as L (201)
LB, DP, TR. C
N = 1

Sources of data are as follows. SQUILLIDAE: Alikunhi, 1944; Bigelow, 1894; Camp, 1973; Dahl, 1954;
Giesbrecht, 1910; Gurney, 1946; Holthuis, 1961, 1967; Ingle, 1963; Kemp, 1913, 1915; Kurian, 1947,
1954; Lewinsohn and Manning, 1980; Manning, 1966, 1968a,b, 1969a,c, 1970b,c, 1971c, 1972a, 1974a,c,
1975b, 1976a,b, 1977a,b, 1978a,c, 1984; Manning and Camp, 1983; Manning and Froglia, 1979; Manning
and Lewinsohn, 1982; Miers, 1881; Morgan and Provenzano, 1979; Parisi, 1922; Reaka and Manning,
1980; Schmitt, 1940; Tirmizi and Manning, 1968; authors' unpublished data. BATHYSQUILLIDAE: Manning,
1969a; Manning and Struhsaker, 1976.

erably even within a species (12-22 mm in Pterygosquilla
armata capensis and 20-32 mm in P. a. armata; 16-22 mm
in different populations of Alima hyalina; Manning, 1969a,
1969c; Table 7), suggesting that number of stages or du-
ration of larval development sometimes may be variable.

The relationships between postlarval size and morpholog-
ical divergence among populations are not clear for a num-
ber of squillids with large and moderately sized postlarvae,
perhaps reflecting the need for further study of the biology
and systematics of members of this family. In the widely
distributed Squilla aculeata-S. empusa lineage (Table 7),
postlarvae are only 12-14 mm in length, but juveniles of
the subregional endemic 5. tiburonensis are 16-21 mm long.
On the other hand, the subregional endemics 5. mantis and
Fennerosquilla heptacantha produce moderately large pos-
tlarvae (17-23 mm and 18 mm, respectively) (Giesbrecht,
1910; Manning 1969a, 1977a; authors' unpublished obser-
vations). Also, the transregional Clorida mauiana apparently
has either moderate or small postlarvae (juveniles <17 mm;
Manning, 1976b, Table 7). Despite their unusually broad
distributions, Alima hyalina and A. hieroglyphica have only
moderately large postlarvae (16-22 mm and 15-17 mm,
respectively); however, pelagic larvae 54 mm and 30 mm
long have been reported for these two species (Gurney,
1946; Manning, 1962c; Alikunhi, 1944). Species of Schmit-
tius appear to possess relatively large postlarvae (juveniles
22-33 mm; Bigelow, 1894; Manning, 1972a). Although
this genus is endemic to the East Pacific, it is related to a
similar lineage (Squilloides) in the Indo-West Pacific. A
species introduced into the Mediterranean from the Indo-
West Pacific, Oratosquilla massavensis, produces postlarvae
15-18 mm in length; it is not known whether or not long-

lived larvae were instrumental in this colonization process
(Lewinsohn and Manning, 1980; Table 7).

Even though the Rissoides-Meiosquilla-Crenatosquilla lin-
eage shows generic affinities among Atlantic-East Pacific
subregions, this lineage is characterized by extensive endem-
icity and some of the smallest postlarvae among the squillids.
Postlarvae are moderately small in the American Meiosquilla
(12 mm in Af. tricarinata, <11—16 mm in Af. quadridens,
12-13 mm in Af. schmitti, and 12-14 mm in Af. lebouri;
Gamp, 1973; Gurney, 1946; Manning, 1969a; authors'
unpublished data). Known only in the East Pacific, the
related genus Crenatosquilla possesses even smaller postlar-
vae (<9 mm; Reaka and Manning, 1980), perhaps compa-
rable in size to those of Gonodactylus and Nannosquilla. In
Rissoides, postlarvae are 16 mm in length in R. desmaresti
(Giesbrecht, 1910). Juveniles are <13-15 mm and 15 mm,
respectively, in the East Atlantic Rissoides africanus and in
R. barnardi off South Africa (Manning, 1969c, 1975b,
1977a; Table 7).

Therefore, although there are several conspicuous excep-
tions (e.g., Squilla aculeata, Clorida mauiana, possibly Alima
hyalina and A. hieroglyphica), a general correlation exists
between postlarval size and intimate taxonomic relation-
ships among geographic subregions when groups of mod-
erately large versus relatively small postlarvae are com-
pared.

HABITAT.—Squillids generally dig U-shaped burrows in
level bottom habitats of mud or muddy sand, frequently in
association with shells or debris. However, whereas some
species of Meiosquilla are found in mud or sand, members
of the related Crenatosquilla occur under and among rocks
in coral rubble (Reaka and Manning, 1980, 1981).
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Many squillids are found in shallow water, but some
species have considerable depth ranges. A number of species
of Squilla occur in unusually deep habitats, but deep distri-
butions do not correlate with low divergence from species
in other subregions. For example, the S. cadenati-S. inter-
media-S. bifortnis lineage occurs in deep water (to 300, 615,
and 466 m, respectively), but the S. aculeata-S. empusa
lineage usually is found in less than 40 m. Nevertheless,
both lineages are known from all three parts of the Atlanto-
East Pacific region. The 5. hancocki-S. deceptrix lineage
inhabits moderate to deep water, but S. Hburonensis-S.
lijdingi and S. panamensis-S. brasiliensis occupy moderate
to shallow habitats. Pterygosquilla armata occurs in cold,
deep (to 380 m) water, and subspecies are known from all
geographic subregions in the southern hemisphere. Species
of Schmittius, an endemic East Pacific genus with Indo-West
Pacific affinities, have been recorded from depths between
125 and 350 m. On the other hand, the transregional
species Clorida mauiana is found at moderately shallow
depths (26-79 m), and Cloridopsis dubia (0-73 m) and both
species of Alima (0-37 m) also live in shallow water. Thus,
both widespread and geographically limited lineages are
found in both deep and shallow habitats.

GAPS IN DISTRIBUTION.—Several instances of apparent
extinction are found in the squillids. Otherwise pantropical,
both species of Alima are conspicuously absent from the
East Pacific. It is possible that members of this genus have
colonized the Atlantic rather recently, but have been unable
to cross the East Pacific barrier. However, Alima hyalina,
along with Pseudosquilla dliata and P. oculata, has been
recorded from the mid-South Atlantic island of St. Helena.
All three of these species also have been recorded from
Hawaii (Townsley, 1953), and A. hyalina and P. dliata are
both known from South Africa and the Red Sea (Ingle,
1958; Manning, 1969a,c; Manning and Lewinsohn, 1986).
These distributional patterns suggest that these species are
specialized for colonization, making it likely that these spe-
cies have reached but not survived in the East Pacific.

Squilla aculeata is represented in the East Atlantic and
East Pacific by distinct subspecies but is absent in the West
Atlantic, where it is replaced by a cognate, S. empusa.

Although Oratosquilla massavensis is absent from the
Americas, this species has invaded the eastern Mediterra-
nean from the Red Sea in recent times (Lewinsohn and
Manning, 1980). This gap in distribution clearly does not
represent an American extinction but a very recent coloni-
zation of the Mediterranean.

Although absent from the East Atlantic, Cloridopsis in-
cludes both American and Indo-West Pacific representa-
tives. There is no evidence to determine whether it became
extinct in or never reached the East Atlantic, but the
occurrence of several species of this genus in the Indo-West
Pacific suggests that it may be an old lineage with a Tethyan
distribution that has undergone extinction in parts of its
original range.

Both Schmittius and Clorida live in the East Pacific and
show Indo-West Pacific affinities. These lineages either
never reached or became extinct in the Atlantic Ocean.

BATHYSQUILLOIDEA

BATHYSQUILLIDAE

The bathysquillids are believed to represent an ancient
stock of stomatopods now restricted to deep, continental
slope habitats (Manning and Struhsaker, 1976). They pos-
sess reduced eyes and a toothed spearing claw. One genus
and species is known from the study area.

ADULT BODY SIZE.—Bathysquilla microps is a large spe-
cies, attaining a total length of 255 mm; it has been recorded
from Hawaii as well as the West Atlantic (Manning and
Struhsaker, 1976). Three other Indo-West Pacific repre-
sentatives of the family are known. Bathysquilla crassispinosa
(Fukuda, 1910), length to almost 300 mm, is reported from
several localities from Japan to South Africa (Manning and
Struhsaker, 1976; Bruce, 1985). Indosquilla manihinei Ingle
and Merrett, 1971, length to 176 mm, is recorded from the
western Indian Ocean (Ingle and Merrett, 1971). Also,
Altosquilla soelae Bruce, 1985, length to 120 mm, was found
recently on the Australian northwest shelf.

HABITAT.—Other than depth, little is known of the hab-
itat of bathysquillids; they presumably construct burrows in
soft, level bottoms. Bathysquilla microps has been taken from
depths of 604-1281 m (Manning and Struhsaker, 1976).
Bathysquilla crassispinosa is recorded from 208-310 m (Fu-
kuda, 1910; Manning and Struhsaker, 1976; Bruce, 1985);
the latter author reports a specimen of this species taken
from clay-mud substrate. Indosquilla manihinei is known
from 420 m (Ingle and Merrett, 1971), and Altosquilla soelae
was taken from cold (8.4°-9.6° C) silty substrates at 396-
458 m (Bruce, 1985).

GAPS IN DISTRIBUTION.—Bathysquilla microps occurs in
both the West Atlantic and in the Indo-West Pacific, but
not in the East Atlantic or in the East Pacific. Whether this
is a reflection of its extinction in one or both of those
regions or reflects incomplete sampling of these relatively
rare animals is not known.

Discussion

Summarizing information for all families of stomatopods,
we first discuss general relationships of body size, postlarval
size, and habitat to the degree of morphological change and
speciation that has occurred since different lineages became
isolated in the East Atlantic, West Atlantic, and East Atlantic
subregions. Then we review the evidence for apparent
extinctions, and relate these patterns to body size, larval
settling size, habitat, and evolutionary equilibria in different
geographic subregions.
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ADULT BODY SIZE

Most groups of stomatopods with small body sizes are
characterized by relatively large numbers of species and
substantial differentiation of both lower and higher taxa
among regions and/or subregions. For example, the Amer-
ican species of Gonodactylus are distinct from Indo-West
Pacific lineages of this genus, and all 19 American species
are endemic to either the East Pacific or West Atlantic.
With 45 species, the genus Gonodactylus contains more
species world-wide than any other genus of stomatopods
(Table 2). The small gonodactylid Protosquilla has diverged
from Indo-West Pacific relatives at the generic level in the
East Atlantic. The small lysiosquilloids include nine genera
endemic to the Atlanto-East Pacific area, and, in one genus
restricted to the Americas (Nannosquilla), all 20 species are
endemic to their own subregions. A related genus, Nannos-
quilloides, is unique to the East Atlantic. Of the small squil-
lids, the Rissoides-Meiosquilla-Crenatosquilla lineage is
largely restricted to the Atlanto—East Pacific (there is one
South African species), but differentiation at the generic
level has occurred between East Atlantic (Rissoides) and
American (Meiosquilla, Crenatosquilla) lineages. AH 13 spe-
cies are subregionally endemic. On the other hand, several
instances of small species with close affinities to taxa in
different regions are known (members of Eurysquilla, Co-
ronida, Neocoronida, and Clorida).

Moderately sized species sometimes show the lowest rates
of divergence among all of the stomatopods. Such species
include the largest gonodactyloids (Odontodactylus), the
smallest pseudosquillids (Pseudosquilla), some medium-sized
lysiosquilloids (Acanthosquilla, Heterosquilla, Heterosquil-
loides), and some medium-sized squillids (Alitna). Exceptions
to this trend include some lysiosquillids, nannosquillids, and
squillids with subregionally endemic taxa (Tectasquilla, Co-
ronis, and Schmittius). Even considering these exceptions,
however, the level of phylogenetic affinity to taxa in other
regions or subregions is considerably higher and the num-
ber of species per genus is lower in taxa of moderate than
of small body size.

In taxa of relatively large body size, we find several trends
in geographic divergence. One species of Hemisquilla occurs
in different East and West Pacific subregions as distinct
subspecies, and a cognate species is known from the South-
west Atlantic. Species of Parasquilla and Pseudosquillopsis
show close relationships among regions and subregions,
although all species are distinct. Including some of the
largest known stomatopods, Lysiosquilla is found in all geo-
graphic regions. Although they are subregionally distinct,
species of Lysiosquilla clearly show close affinities among
distant regions. A related genus, Lysiosquilloides, until re-
cently considered to be endemic to the East Atlantic, is now
known to be represented by a species in the Indo-West
Pacific as well (Naiyanetr, 1980). Some squillids also reach
very large body sizes. Members of two genera of relatively

large body size, Cloridopsis and Pterygosquilla, show partic-
ularly low divergence among regions and contain few spe-
cies. Squilla also reaches large sizes, but, like Lysiosquilla,
Parasquilla, and Pseudosquillopsis, shows both strong affini-
ties among populations in distant regions and tendencies
for regional differentiation. Atlanto—East Pacific species of
Squilla have diverged at the generic level from all Indo-
West Pacific relatives. Squilla includes more Atlanto-East
Pacific species than any other genus in this study, and all
species except one are subregional endemics. On the other
hand, particularly the larger species show strong cognate
relationships among subregions, and one of the largest
American species, S. aculeata, has diverged only at the
subspecific level in the East Pacific and East Atlantic subre-
gions. The bathysquillids include an old stock of large
stomatopods (Manning and Struhsaker, 1976), one species
of which spans West Atlantic and Indo-West Pacific areas.
Therefore, while most large stomatopods do not achieve
the pantropical distributions found in some of the moder-
ately sized stomatopods, they show conservative patterns of
morphological differentiation among regions and subre-
gions.

When the degree of taxonomic divergence in species of
different body size is quantified for all stomatopods within
the study area, body size shows a highly significant inverse
relationship to regional divergence within lineages; simi-
larly, species of small body size are significantly more likely
to be included in local species clusters than are large species,
suggesting a high incidence of local species multiplication
in the former (Table 8). We conclude that evolutionary
change in stomatopods proceeds at the most rapid rates in
lineages of small body size, but that considerable divergence
is occurring among some lineages of larger body size as
well. Most large lineages and particularly a few moderately
sized lineages appear to be evolutionarily conservative.

POSTLARVAL SIZE

Several previous workers have reported for other groups
of marine invertebrates that species with dispersing larvae
have low rates of morphological divergence and speciation
compared to those with abbreviated larval phases (Schel-
tema, 1971,1972,1977,1978,1979;Shuto, 1974; Hansen,
1978, 1980, 1982; Jablonski, 1980, 1982; Jablonski and
Valentine, 1981; Jablonski and Lutz, 1983). One can see
how distant populations with potential larval exchange, such
as those in the East and West Atlantic, could remain genet-
ically similar. However, even if a species occurs in geograph-
ically isolated subregions, species with pelagic larvae may
evolve slowly within each of the subregions. Species with
dispersing larvae are likely to occupy broad geographic
ranges within each subregion, encounter diverse local hab-
itats, and exchange genetic material among populations in
these different local environments. These factors can re-
duce the effectiveness of directional selection within each



TABLE 8.—Degree of phyletic divergence (conspecific, cognate, and endemic relationships) among taxa in
different geographic subregions, and local species radiation within geographic subregions, where taxa are
characterized by different adult and postlarval sizes or different habitats. The percentage figures indicate
the proportion of taxa with a given phyletic affinity relative to the total number of taxa in that adult or
postlarval size class or in that habitat type. The sum of these proportions sometimes does not equal 100%,
since some taxa have both cognate and conspecific relationships to taxa in different subregions. The number
of species within locally radiating lineages is derived from the number of taxa included in vertical brackets
within subregions in Tables 4-7. Since Indo-West Pacific taxa in Tables 4-7 are biased toward cognates
and conspecifics, these taxa are excluded from the present statistical analysis. Statistical tests are based on
r X k contingency tables, for example the number of taxa with vs. the number of taxa without conspecifics
in each size or habitat category. (• = statistically significant results; AEP = Atlanto-East Pacific)

Character

Adult body size
Small (<50 mm)
Moderate (50-149 mm)
Large (a 150 mm)

Statistical test (df= 2)

x2

P

Known postlarval size
Small (< 10 mm)
Moderate (10-19 mm)
Large (>20 mm)

Statistical test (df = 2)
X1

P

Postlarval size (known and
estimated)

Small (< 10 mm)
Moderate (10-19 mm)
Large (>20 mm)

Statistical test (df = 2)
X1

P

Substrate type
Coarse bottom
Level bottom

Statistical test (df « 1)
X*
P

Latitude
Tropical
Temperate

Statistical test (df = 1)
X*
P

Depth
Shallow (<100 m)
Moderate (100-300 m)
Deep (2300 m)

Statistical test (df - 2)
X1

P

Temperature
Warm
Cold

Statistical test (df = 1)
X*
P

No. AEP
taxa

67
63
27

7
15
17

48
36
37

37
109

127
30

no
21
22

112
45

No. (%)
taxa with

conspecifics
elsewhere

5 (7.5)
19 (30.2)
8 (29.6)

12.02
0.0025*

1 (14.3)
6 (40.0)
9 (52.9)

3.07
0.215

2 (4.2)
11 (30.6)
11 (29.7)

12.29
0.0021*

5(13.5)
27 (24.8)

2.05
0.153

27(21.3)
7 (23.3)

0.20
0.66

23 (20.9)
4(19.0)
5 (22.7)

0.09
0.96

23 (20.5)
9 (20.0)

0.06
0.94

No. (%)
taxa with
cognates
elsewhere

19 (28.4)
28 (44.4)
20(74.1)

16.58
0.0003*

2 (28.6)
6 (40.0)
9 (52.9)

1.33
0.515

11 (22.9)
18 (50.0)
26 (70.3)

19.32
0.0000*

13(35.1)
52 (47.7)

1.77
0.184

51 (40.2)
16 (53.3)

1.72
0.19

42 (38.2)
13(61.9)
9 (40.9)

4.09
0.13

45 (40.2)
22 (48.9)

1.00
0.32

No. (%) endemic
species without

cognates
elsewhere

43 (64.2)
24(38.1)

4 (14.8)

21.09
0.0000*

5(71.4)
5 (33.3)
4 (23.5)

5.01
0.082

38 (79.2)
10(27.8)
6 (16.2)

39.39
0.0000*

21 (56.8)
41 (37.6)

4.14
0.042*

60 (47.2)
11 (36.7)

1.10
0.30

54(49.1)
7 (33.3)

10(45.5)

1.77
0.41

53 (47.3)
18(40.0)

0.69
0.40

No. (%) species
within locally

radiating
clusters

55(82.1)
31 (49.2)

8 (29.6)

27.03
<0.0000*

6 (85.7)
5 (33.3)
4 (23.5)

8.37
0.015*

43 (89.6)
20 (55.6)
13(35.1)

27.67
0.0000*

27 (73.0)
58 (53.2)

4.43
0.035*

75(59.1)
19(63.3)

0.18
0.67

65(59.1)
15(71.4)
12(54.5)

1.45
0.48

66 (58.9)
28 (62.2)

0.15
0.70
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subregion. Thus, everything else being equal, one might
expect change to be conservative, even within subregionally
isolated populations, in species with dispersing larvae com-
pared to species with reduced larval phases.

As discussed in the introduction, we have assumed that
length of the pelagic larval period and dispersal potential is
roughly proportional to size of the settling postlarva. In the
case of the Atlanto-East Pacific stomatopods, we find that
size of postlarvae usually increases with increased adult body
size among genera (e.g., Gonodactylus vs. Odontodactylus;
Pseudosquilla vs. Pseudosquillopsis and Hemisquilla; Nannos-
quilla and Acanthosquilla vs. Heterosquilla and Lysiosquilla;
Meiosquilla vs. Alima; see also Reaka, in press). Exceptions
to this trend include some species of Squilla and possibly
some populations of Pterygosquilla. In many cases, increased
postlarval size also correlates with lower divergence among
subregions (Gonodactylus vs. Odontodactylus; gonodactylids
and protosquillids vs. pseudosquillids, especially Pseudos-
quilla); however, there are many exceptions. For example,
Coronida, Alima, and probably Clorida produce relatively
small or moderately sized postlarvae but show very low rates
of divergence among subregions (although very large pe-
lagic larvae have been reported for Alima). Nannosquilla
and Acanthosquilla both have relatively small postlarvae, but
the former includes numerous subregionally endemic spe-
cies and the latter transregional species. Smaller postlarvae
are found in Pseudosquilla than in Pseudosquillopsis, but the
former is less regionally differentiated than the latter. The
most widely distributed stomatopod, Heterosquilloides mccul-
lochae, apparently does not have unusually large postlarvae
compared to either the large lysiosquillids or the pseudos-
quillids and hemisquillids. In general, the correlation be-
tween postlarval and adult body size (Reaka, in press) ap-
pears to be stronger than the relationship between postlar-
val size and evolutionary divergence.

Nevertheless, when the degree of taxonomic divergence
is quantified for all taxa with postlarvae of different sizes,
postlarval size is inversely related to degree of evolutionary
change (Table 8). This correlation is higher for comparisons
including estimated postlarval size than for comparisons in
which postlarval size is known, however. Where postlarval
size is definitely known, species with small postlarvae are
significantly more likely to be included within locally ra-
diating species clusters, and probably are more likely to be
endemic without relatives in other subregions, than are
species that possess larger postlarvae (Table 8).

HABITAT

Rates of divergence do not correlate consistently with
distributions in deep or cold waters or with latitude (Table
8). Among species that occur in relatively deep habitats,
several show very low rates of geographic divergence (Bath-
ysquilla microps, Odontodactylus brevirostris, Hemisquilla en-

sigera, Pterygosquilla armata; Tables 4-7), which is consistent
with the hypothesis that evolution proceeds more slowly in
deep than in shallow habitats. However, many shallow-
dwelling species also exhibit low rates of divergence (Pseu-
dosquilla ciliata, P. oculata, Heterosquilloides mccullochae,
Squilla aculeata, Cloridopsis dubia, Alima hyalina, A. hierogly-
phica, Clorida mauiana; Tables 5-7). Furthermore, many
deep-dwelling taxa show restricted ranges, occupying only
one or part of one geographic subregion (Gonodactylus torus;
some species of Parasquilla, Eurysquilla, Allosquilla, Squilla,
Rissoides, and SchmitHus; Tables 4-7). Coral-dwelling species
that occupy exclusively deep habitats have significantly
smaller geographic ranges than those with shallow or broad
depth distributions (Reaka, 1980). Thus, there is no signifi-
cant overall correlation between depth and rate of morpho-
logical divergence among subregions or speciation within
subregions (Table 8).

Although it has been postulated that rapid evolution in
the tropics fosters high species diversity compared to tem-
perate or polar environments, transregional distributions
are not more frequent among lineages that inhabit temper-
ate compared to tropical waters (Table 8); instead geo-
graphic divergence correlates with body size. For example,
of the smaller species living in cold habitats (all of which are
lysiosquilloids or squilloids), Heterosquilloides armata and
Heterosquilla platensis each occur in only one part of one
subregion (the North West and South West Atlantic, re-
spectively), and Heterosquilla polydactyla is found only on
the coasts of south temperate South America. Platysquilla
eusebia is known from the North East Atlantic, while the
related Platysquilloides enodis has been taken only from the
North West Atlantic. Endemic to the East Pacific, the two
species of SchmitHus are known from as far south as Peru
and as far north as Central California, while several species
of another genus of moderately small body size, Rissoides,
occur in temperate waters in the Mediterranean and South
Africa (Table 7). Thus, many small or moderately sized
species from temperate waters have restricted distributions.
On the other hand, of the larger species that occur in
temperate habitats, subspecies of Hemisquilla ensigera oc-
cupy ranges over a broad area (California, Chile, New
Zealand, Australia), as do those of Pterygosquilla armata
(Argentina, Chile, New Zealand, South Africa). The widely
distributed Pseudosquillopsis cerisu-P. lessonii lineage, as well
as several cognate species of Parasquilla, extend into tem-
perate waters in the Mediterranean and off the Americas
(Table 5). Thus, large species inhabiting temperate latitudes
tend to be broadly distributed while small species do not.

Among families in the Atlanto-East Pacific region, rates
of divergence for Gonodactylus and Squilla, appear to be
related very generally to substrate type, as suggested by
Vermeij (1978). The highest degree of subregional differ-
entiation is found among the gonodactylids and protosquil-
lids, which occupy holes in coral rubble and rocks. Most
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lysiosquillids and nannosquillids occupy sandy substrates in
level bottom habitats, and most hemisquillids, pseudosquil-
lids, eurysquillids, squillids, and bathysquillids use muddy
or sand and mud substrates, also on level bottoms; in most
cases these groups show greater taxonomic affinities among
subregions than do the gonodactylids and protosquillids.

However, when examined closely, these trends are sub-
ject to many exceptions and in some cases are not statistically
significant when all stomatopod taxa from the subregions
are considered (Table 8). For example, despite the transre-
gional distribution of Odontodactylus brevirostris, some spe-
cies of this genus occur on reefs and have been collected
from holes inside coral rubble (Manning, 1967a; Reaka,
personal observations). Also, some species of Pseudosquilla
are exceptionally widespread but live in coarse substrates
and among the roots of grass beds (Hatziolos, 1980; Reaka
and Manning, 1981). Both Odontodactylus and Pseudosquilla
reach moderately large body sizes. The coronidids (e.g.,
Coronida, Neocoronida) inhabit coarse substrates, have
smashing claws, and show close affinities among geograph-
ically distant populations. Some species of Nannosquilla
occur exclusively in sandy habitats, whereas others burrow
among rocks and coral rubble (Reaka and Manning, 1980);
nevertheless, all species of the genus show high subregional
endemism. Similarly, although all species of Meiosquilla and
Crenatosquilla are endemic to a single subregion, some
species live on mud flats, some in sandy environments, and
others in rocks and rubble (Reaka and Manning, 1980).
Therefore, except in the coronidids, the trend for high
regional differentiation in species that are associated with
hard substrates appears to be more closely related to body
size than to type of habitat occupied.

There is no statistically significant relationship between
the type of substrate inhabited and the incidence of conspe-
cific and cognate relationships between taxa in separate
subregions; however, the degree of endemism (without
cognates elsewhere) and the numbers of species included
within locally radiating species clusters are statistically as-
sociated with substrate type (Table 8). These results suggest
that speciation events (though not necessarily subsequent
morphological divergence) may be more common in species
inhabiting coarse than level bottom habitats. Rapid specia-
tion could result either from biotic pressures (predation,
competition for space) that have been demonstrated to limit
stomatopod populations in these environments (Reaka,
1985), or may result from the more complex social behavior
known for stomatopods that occupy coarse compared to
level bottom habitats (Reaka and Manning, 1981).

Divergence appears to occur most slowly in two separate
conditions. First, taxa may retain close affinities to those in
other subregions when several factors (body size, larval
characteristics, substrate type, temperature or depth) oper-
ate together. For example, Bathysquilla microps reaches a
large size; inhabits soft substrates; lives in cold, deep envi-

ronments; and occupies a broad, probably relict, distribu-
tion (Table 7). Hemisquilla ensigera and Pterygosquilla armata
reach large sizes as adults; have large, long-lived larvae; and
inhabit soft substrates in cold, deep water (Tables 5, 7).

Second, broad geographic ranges and slow rates of diver-
gence can occur in shallow-dwelling species with adaptations
for colonization. For example, Pseudosquilla ciliata is of
moderate body size; lives in shallow, sandy environments
with rubble; and produces tremendous numbers of larvae
that progress from tiny to relatively large settling stages
(Reaka, 1979a). Also of moderate size, Alima hyalina pro-
duces larvae that grow to unusually large sizes; their size,
the known biology of squillid larvae, and the distribution of
the species (including the South Atlantic island of St. Hel-
ena, which has emerged as recently as the Miocene; Briggs,
1974:93), suggest that these larvae spend long periods in
the plankton. Pseudosquilla oculata, Alima hieroglyphica, and
Heterosquilloides mccullochae show similar biological attri-
butes and distributions. In addition, most gonodactylids
occupy shallow habitats in warm water. Especially the larger
species (moderately sized in our overall classification) within
the coral-dwelling lineages occupy relatively broad geo-
graphic ranges and are adapted for colonization and disper-
sal in disturbed reef habitats (Reaka, 1979a, 1980, 1985).

Therefore, broad geographic distributions and slow rates
of evolutionary change may occur either in deep relict
populations or in species adapted for dispersal and coloni-
zation in shallow environments. Species of moderate body
size are more likely to show dispersal and colonization
abilities, whereas those of large body size often show relict
distributions. Divergence among distant populations is low
in both cases. Consequently, generalizations about rates of
divergence and environmental factors, particularly depth,
can be obscured because these factors do not operate in
isolation.

GAPS IN DISTRIBUTION

The number of species observed at any one time is a
result of both rates of species multiplication and rates of
extinction. In the present study, we examine conspicuous
absences of taxa where, on the basis of subregional geo-
graphic distributions, a lineage can be expected to occur.
This method can best evaluate possible extinctions in
broadly distributed species and lineages, and probably
underestimates apparent extinctions in taxa of small body
size and restricted distributions. However, many transre-
gional species lineages and genera of stomatopods are
known, so that absences can be identified. The geographic
method also is subject to the objection that the absence of
a species from a region may indicate that the species,
evolved elsewhere, merely has not yet arrived in a given
area. Each example must be examined carefully, but in
many cases extinction is the most parsimonious explanation
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of a gap in distribution. While not entirely satisfactory, this
analysis provides some information on possible extinction
in lineages with different body sizes, larval characteristics,
and habitat requirements, and it yields new information on
regional patterns of extinction and diversity.

Three species lineages are present in the East Pacific and
East Atlantic, but not the West Atlantic (Pseudosquillopsis
cerisii-P. lessonii/P. marmorata; Coronida bradyi-C. glasselli/
C. schmitti; and Squilla aculeata calmani-S. aculeata aculeata;
Tables 5-7). However, Squilla aculeata is replaced by a
relative, S. empusa, in the West Atlantic, and a West Atlantic
gap in the Coronida lineage is not certain since the affinities
and derivation of Acoridon, a recently discovered West
Atlantic coronidid, are not known.

This leaves one highly likely (Pseudosquillopsis) and a
possible (Coronida) case of extinction in the West Atlantic
(Table 9). One of these two lineages is large in body size
and one small. Postlarvae are large and probably small. One
of the lineages inhabits soft and the other coarse substrates;
and both live in shallow or moderate depths. The distribu-
tion of one lineage extends into cold temperate waters, and
the other is from tropical warm climates.

Apparent extinctions are more numerous in the East
Pacific than in the West Atlantic. Eight species lineages
occur in the West Atlantic and Indo-West Pacific, but not
the East Pacific (the Indo-West Pacific affinities of a ninth
species, Heterosquilloides armata, are not known). Six of
these lineages are conspecific (Odontodactylus brevirostris,
Pseudosquilla ciliata, P. oculata, Alima hyalina, A. hierogly-
phica, and Bathysquilla microps). Cognate representatives of
the other two lineages (Eurysquilla pacifica-E. maiaguesensis/
E. chacei/E. holthuisi; Lysioquilla glabriuscula-L. maculata)
also are absent from the East Pacific (Tables 4, 5, 7). In
addition, 8 species (members of Tectasquilla, Coronis, the
Platysquilloides-Mexisquilla-Platysquilla-Allosquilla com-
plex, and Fennerosquilla) are known from the Atlantic but
not the East Pacific. However, Pseudosquilla oculata is re-
placed by a relative, P. adiastalta, in the East Pacific, sug-
gesting divergence rather than extinction. It is not known
whether the seven endemic Atlantic genera arose in the
Atlantic after elevation of the Central American isthmus or
whether they became extinct in the East Pacific. Although
extinction of the ancient Bathysquilla microps lineage seems
likely in the East Pacific, this deep-dwelling species simply
may not have been collected there.

Therefore, seven (Odontodactylus brevirostris, Pseudos-
quilla ciliata, Eurysquilla maiaguesensis-E. pacifica, Lysios-
quilla glabriuscula-L. maculata, Alima hieroglyphica, A. hy-
alina, and Bathysquilla microps) conspicuous omissions of
taxa in the East Pacific stomatopod fauna remain (Table 9).
Five of these seven species lineages (all but E. maiaguesensis-
E. pacifica and A. hyalina) are moderate-sized or large as
adults. Where known, all have moderate-sized or large
postlarvae. Two inhabit coral rubble, often with associated

coralline sand, and the others live in muddy or muddy sand
environments. Four lineages show shallow and three mod-
erate to deep distributions. All seven apparent extinctions
are from tropical latitudes, although two derive from very
deep cold waters. Apparent extinctions, then, are more
numerous in the East Pacific than in the West Atlantic.

Overall, however, the evidence suggests many more omis-
sions of taxa, and probably much more extensive extinction,
in the East Atlantic than in the Americas. Twelve species
lineages and seven generic lineages are absent from the East
Atlantic (Table 9). Eight of the species lineages (Odontodac-
tylus brevirostris, Eurysquilla maiaguesensis-E. pacifica, Ly-
siosquilla panamica-L. tredecimdentata, L. glabriuscula-L.
maculata, Heterosquilla polydactyla-H. tricarinata, Heteros-
quilloides insolita-H. insignis, Acanthosquilla digueti, Bathys-
quilla microps) are present in the Americas and have relatives
in the Indo-West Pacific but are conspicuously absent in
the East Atlantic. Of these, extinction is the simplest expla-
nation for all except for the Heterosquilla polydactyla lineage,
which because of its distribution around the southern tip of
South America may never have been in the East Atlantic.
We do not know if Heterosquilloides armata arose in the
West Atlantic or became extinct in the East Atlantic and
East Pacific. In addition, several species lineages of Squilla
are known in the Americas but not the East Altantic; they
may either have become extinct there or may have arisen
at a later time in the new world. The seven genera that are
absent from the East Atlantic include 45 American species.
Extinction seems highly likely for Gonodactylus and Clori-
dopsis (including 20 American species), since these genera
are well represented in both subregions of the Americas
and in the Indo-West Pacific; either these genera or their
precursors must have been present in the East Atlantic
during continental divergence. Nannosquilla possibly be-
came extinct in the East Atlantic. However, this genus is
known only from the Americas, and may have arisen there.
Alternatively, if a pre-existing Nannosquilla-like lineage was
present throughout the Atlanto-East Pacific, this lineage
may have diverged into the endemic genus Nannosquilloides
in the East Atlantic. Tectasquilla, Coronis, and Fennerosquilla
also are endemic to the West Atlantic, but there is no way
to determine whether they arose there or became extinct
in the East Atlantic. Hemisquilla either became extinct or
may have never been in the East Atlantic because of its
southerly distribution around South America.

Of the seven species lineages and two generic lineages
where we judge extinction to be likely in the East Atlantic
(Table 9), six are characterized by moderate to large body
size; however, the three remaining small or moderately
sized lineages (Gonodactylus, Eurysquilla maiaguesensis and
relatives, Acanthosquilla digueti) include 23 American spe-
cies. The postlarvae of only four of these taxa are known;
they are small in Gonodactylus (19 species), moderately sized
in Odontodactylus (1 species lineage), and large in Lysiosquilla
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TABLE 9.—Instances of possible and very likely (*) extinctions of stomatopod Crusucea (cases of gaps in distribution but where extinction was not judged
probable are omitted from this list; [ ] — lineage replaced by a relative, probably due to endemic divergence; where entire genera are missing from an
area, the genus name and the number of AEP species are given; for the Gonodactyloidea, group A includes the Odontodactylidae, Gonodactylidae, and
Protosquillidae (Table 4); group B includes the Hemisquillidae, Pseudosquillidae, and Eurysquillidae (Table 5).

Absent Absent Absent Absent Absent
EP WA EA Americas Atlantic

GONUDACTYLOIDEA. Croup A: 2 (*2) absences of species lineages
2 (*l) absences of generic lineages. 21 (*I9) species

* Odontodactylus brrvirostris * 0. brevirostris
pIM.asM pIM.asM
CB, DP. TR. C CB. DP. TR, C

* Gonodactjlus (\9 sp)
pi S. as S-M
CB. SH, TR, W

Protosquilla (2 sp)
pi S. as S
CB. SH, TR. W

GONODACTYLOIDEA, Group B: 5 (*4) absences of species lineages
2 (*0) absences of generic lineages, 3 (*0) species

Hemisquilla (2 sp)
pi L. as L
LB, MD, TE, C

* Psrudosquilhspsis Ussomi-

pl L. as M-L
LB, SH MD. TE, C

* Pseudosqmlla riliata
pi L. as M
CB. SH, TR. W
[P. otulata]
pi L. as M
CB. SH. TR. W

• Eurysquilla maiagutsensis- * E. maiagtustnsis-
E. pacifica E. pacific a
pi —, as S pi —, as S
LB, M D. TR. W LB, M D, TR, W

Manningia (I sp)
pIM.asS
LB. SH, TR. W

LYSIOSQUILLOIDEA: 13 (•«) absences of species lineages
7 (*0) absences of generic-suprageneric lineages, 30 (*0) species

* Lysiosquilla panamica- • L. panamica-
L, tredecimdentata L. tredecimdenteta

pi (L), as L p| (L), as L
LB. SH. TR, W LB. SH, TR, W

• Lysiosquilla glabriuuula- • L, glabriuseula-
L. maculata L. maculate

pl I- a* L p| L. as L
LB. SH. TR. W LB. SH. TR. W

Lysiosquilla monodi-L. sulcirostris
pl (L). as ML
LB, SH, TR, W

Lysiosquilloides aulacorkjnckus-
L. siamensu

pi—,a>L
LB. SH, TR. W

Htttrosquilla palydattyla-
H. truannala
pIL, asM
LB, SH. TE, C

* Heterosquilloides msolita-
H. insignts
pl —. as M
LB. MD. TR, W

Utttrosquillmdrs armala //. ornate
pl —. as M pl —, as M
LB. MD.TE.C LB, MD. TE. C

I'rriasquilla (I sp) Tettesqmlla (I sp)
pl —. as M pl —. as M
- . SH. TR. W _ . SH. TR. W

* Aranthosquilla digurli
pl —. as S
LB, SH. TR, W
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TABLE 9—Continued.

Absent
EP

Absent
WA

Absent
EA

Absent
Americas

Absent
Atlantic

(Uironis (I sp)
pi L, as M
LB, SH.TR, W

Plalysquilloides-
Mexisquillo-
Platysquilla-
Allosquilla (5 sp)

pi —, as S-M
LB, SH-DP, TE-TR, C-W

Coronis (I sp)
pi L. as M
LB, SH, TR, W

Nannosqwllaides (I sp)
pi —, as S
LB, MD.TE, C

Nannosquilla (20 sp)
pi S. as S
LB-CB. SH. TE-TR. C-W

C.oromda schmitli-C bradyi
pi (S). as S
CB, SH. TR, W

SQUII.LO1DEA: 6 (*2) absences of species lineages
5 (• 1) absences of generic lineages, 6 (• I) species

[Squilla aculeata ]
pi M. as L
LB. SH, TR. W

Ntocoronida

N. marlensi
pi—, asS
CB. SH. TR. W

Ftnnerosquilla (I sp)
pi M. as M
LB, DP, TR, C

* Alima hieroglyphka
pi M. as M
LB. SH, TR, W

* A. hyalma
pi M.asS
LB, SH, TR. W

A", brasilunsis
pi (M), as M-L
LB, SH-MD, TE-TR, C-W

S. tibuTonensis-S. lijdingi
pi (M). as M
LB. MD, TR, W

S. hancocki-S. deceptnx
pi—,MM
LB, MD-DP, TR, C-W

Fennerosquilla (I sp)
plM.asM
LB, DP, TR. C

' Cloridopsis (I sp)
pi —, as M-L
LB. SH, TR, W

Schmittius (2 sp)
pl<L).a»M
LB. MD-DP. TE, C

Clorida (I sp)
pi—.asS
LB. SH. TR. W

BATHYSQUILLOIDEA: 2 (*2) absences of species lineages

* Bathysqwlla microps * B. murops
pi —, as L pi —, as L
LB, DP, TR. C LB, DP. TR, C

TOTAL GAPS IN DISTRIBUTION:
9 (*7) species lineages 3 (* I) species lineages
4 (*0) generic-suprageneric 0 generic lineages

lineages, 8 species

12 (*7) species lineages
7 (*2) generic lineages,

45 (*20) species

2 (*0) species lineages
S (*0) generic lineages,

4 species

2(*l)species
lineages

2 (*0) generic
lineages,
3 species
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(2 species lineages). Likely extinction occurs in lineages
containing 20 American species that inhabit coarse bottoms
(Gonodactylus and Odontodactylus) and in seven species line-
ages from level bottoms. Gaps in distribution are found in
taxa including 23 American species (Gonodactylus, Lysios-
quilla, Acanthosquilla, Cloridopsis) from shallow and 4 spe-
cies lineages from moderate or deep water. All likely ex-
tinctions occurred in tropical latitudes, and temperatures
were warm except for two species lineages inhabiting very
deep waters (Odontodactylus, Bathysquilla).

Relatively few taxa are found in the Indo-West Pacific
and East Pacific but not in the Atlantic (Table 9). Neocoron-
ida and Clorida may have dispersed from the Indo-West
Pacific into either the offshore islands or the continental
East Pacific, and we do not regard extinction throughout
the Atlantic to be highly likely in these lineages. It is difficult
to determine whether a pre-existing SchmitHusSquilloides
lineage was pantropical but became extinct in the Atlantic,
or whether Schmittius arose in the East Pacific after the
Miocene elevation of Central America. Because all of the
lineages within the genus Lysiosquilla tend to be very widely
distributed, however, the failure of the Lysiosquilla panatn-
ica-L. tredecimdentata lineage to inhabit the Atlantic indi-
cates a possible instance of extinction in this area. This
lineage is moderate to large in adult body size, probably has
large postlarvae, and inhabits level bottoms in shallow,
warm tropical waters.

Two species lineages in the genera Lysiosquilla and Ly-
siosquilloides are present in the Indo-West Pacific and the
East Atlantic but are absent from and possibly became
extinct in the Americas (Table 9). In addition to one species
in the East Atlantic, a number of species of Manningia are
known in the Indo-West Pacific. It is difficult to determine,
however, whether extinction occurred in the New World,
or whether Lysiosquilla monodi, Lysiosquilloid.es aulacorhyn-
cus, and Manningia posteli arrived and diverged in the East
Atlantic after separation of the continents. Oratosquilla mas-
savensis has invaded the Eastern Mediterranean via the Suez
Canal in recent times (Lewinsohn and Manning, 1980);
otherwise, Oratosquilla is restricted to the Indo-Pacific,
being replaced in the Atlanto-East Pacific by Squilla. Two
additional generic lineages (Protosquilla, Nannosquilloides)
are present in the East Atlantic but absent in the New
World. Although the genus Protosquilla is endemic to the
East Atlantic, it may have been derived from Indo-West
Pacific relatives (Chorisquilla). Protosquilla may have be-
come extinct in the Americas or it may have evolved after
the opening of the Atlantic. Nannosquilloides and Nannos-
quilla are uniquely Atlanto-East Pacific genera and may
have diverged from an ancient common stock in the East
Atlantic and Americas, respectively; thus it is not clear that
the absence of Nannosquilloides in American waters repre-
sents extinction. The biotic and environmental character-
istics of taxa that are absent from the Americas are given
in Table 9.

The number of gaps in distribution is higher for the
Gonodactyloidea than for the other superfamilies. The
number of species lineages plus the number of Atlanto-
East Pacific species within generic lineages that are absent
from given geographical areas due to possible extinction is
29, 43, and 12 in the Gonodactyloidea, Lysiosquilloidea,
and Squilloidea, respectively. Of these, we judge that the
absence of 25, 6, and 3 species are very probably due to
extinction in these three groups, respectively. Likely in-
stances of extinction thus represent 53% (25/47), 11% (6/
55), and 6% (3/54) of the numbers of Atlanto-East Pacific
taxa in these three superfamilies, respectively.

Table 10 shows the biotic and environmental character-
istics associated with instances of possible and likely extinc-
tions. We emphasize that these data on gaps in distribution
must be interpreted with extreme caution awaiting fossil or
other comparative evidence. In addition, using our meth-
ods, gaps in distribution are less likely to be detected in
lineages with narrow rather than with broad geographical
distributions. Thus, the geographic method probably
underestimates extinctions in species of small body size
because species lineages in these groups are likely to occur
in fewer regions than those of larger body size (e.g., Gono-
dactylus, Nannosquilla, Meiosquilla). However, extinctions
appear to occur in species with large as well as small adult
and postlarval body sizes, in species that inhabit soft as well
as hard substrates, and in species from shallow, warm envi-
ronments as well as in deep or cold habitats. Despite their
limitations, these preliminary data do suggest working hy-
potheses for further testing, either in Crustacea or in other
animal groups, and we present the statistically significant
trends in our data so that they can be further tested and
modified as more information becomes available. For ex-
ample, our data on likely extinctions suggest that extinctions
may be more frequent in lineages with dispersing than
nondispersing larvae, in taxa that occupy reefs and rock
compared to mud and sand habitats, and in animals from
warm or tropical compared to cold or temperate environ-
ments (Table 10). These predictions need to be tested
further on other groups where fossil evidence is available.

Furthermore, apparent extinction rates vary substantially
among geographic subregions, as do rates of divergence.
The equilibrium between these processes determines the
species diversity in a region. Approximately 77 species and
subspecies of stomatopods occur in the West Atlantic, 50 in
the East Pacific, and 30 in the East Atlantic (Table 3). Of
these three subregions, apparent extinctions are most fre-
quent in the East Atlantic, where extinction is likely in seven
species lineages and two generic lineages including 20
American species (Table 9). However, very extensive diver-
gence also has occurred in that subregion. An endemic
representative of one family (Protosquillidae) and 5 endemic
genera with 9 species (Protosquilla, Platysquilla, Allosquilla,
Nannosquilloides, and Rissoides) apparently have diverged in
the East Atlantic. All East Atlantic species (except for the
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TABLE 10.—Summaries of biological and environmental characteristics
associated with instances of possible or likely extinction (see text for discus-
sion). Data are drawn from the number of species lineages plus the number
of Atlanto-East Pacific species within generic lineages that are absent from
the geographic areas given in Table 9. The total number of species known
in each biotic or environmental category (see Table 8) is given to show the
number of species with apparent extinctions that one might expect to find
in each category; statistical tests based on the two sets of numbers are given
below each data set (* = statistically significant results).

Character

Adult body size
Small
Moderate
Large

Statistical test
X2

P

Postlarval size
Small
Medium
Large

Statistical test
X1

P

Substrate
Coarse bot-

tom
Level bot-

tom
Statistical test

X*
P

Depth
Shallow
Moderate
Deep

Statistical test
Xs

P

Latitude
Tropical
Temperate

Statistical test
X*
P

Temperature
Warm
Cold

Statistical test
X*
P

No. AEP
taxa

67
63
27

48
36
37

37

109

110
21
22

127
30

112
45

Number of species lineages with

possible
extinctions

43
34
14

0.50
0.78

42
10
15

9.69
0.008*

29

50

3.19
0.074

66
13
9

0.87
0.65

71
17

0.00
0.97

49
20

0.00
0.96

likely
extinctions

16
14
8

0.34
0.84

19
4
6

6.53
0.038*

22

14

16.86
0.000*

28
3
4

1.03
0.60

35
1

5.79
0.02*

31
5

3.33
0.07

pantropical lineages of Pseudosquilla, Heterosquilloides, Al-
itna, and the south temperate Pterygosquilla) are morpholog-
ically distinct from American relatives. Three species line-
ages (Eurysquilla galatfuae. E. leloeuffi, Acanthosquilla septetn-

spinosa) have diverged into cognate species from relatives
in both surrounding (West Atlantic, Indo-West Pacific)
areas. Eleven of the 30 East Atlantic species (36.7%) are
included within locally radiating species clusters (vertical
brackets in Tables 4-7). When the number of species within
versus those not included in local species clusters are com-
pared, species multiplication varies significantly among the
three subregions (x2 = 10.17, df = 2, p = 0.006). In
particular, the incidence of species radiations as here meas-
ured is lower in the East Atlantic than in the West Atlantic
(x2 = 10.14, df = 1, p - 0.001) and probably is less than in
the East Pacific (x2 = 3.41, df = 1, p = 0.065). Therefore,
the East Atlantic stomatopod fauna has undergone major
phyletic divergence but has suffered high extinction and
relatively limited species multiplication, thus it includes
relatively few extant species.

Our evidence suggests that the rate of extinction may be
lower and phyletic divergence and speciation considerably
greater in the West Atlantic than the East Pacific. Seven
species lineages are absent and very likely extinct in the
East Pacific in contrast to only one from the West Atlantic.
Five endemic monospecific genera are known in the West
Atlantic (Tectasquilla, Coronis, Mexisquilla, Acoridon, and
Fennerosquilla). Only two endemic genera with three species
have developed in the East Pacific {Schmittius, Crenatos-
quilla). At the species level, lineages have diverged from
conspecific relatives in both surrounding subregions in
Squilla empusa (West Atlantic) and Pseudosquilla adiastalta
(East Pacific). Five West Atlantic species (Parasquilla boschii,
P. meridionalis, Eurysquilla plumata, Lysiosquilla scabricauda,
and Squilla intermedia) have diverged from cognate relatives
in both surrounding subregions, and two East Pacific species
(Eurysquilla veleronis and E. solari) have diverged from
cognate relatives in both surrounding regions. Speciation
tends to be somewhat more extensive in the West Atlantic
than in the East Pacific, since 54 of 77 (70.1%) of the species
in the West Atlantic in contrast to 29 of 50 (58.0%) of those
in the East Pacific are included within radiating endemic
species groups (Tables 4-7); however, this difference is not
statistically significant when the numbers of species within
versus those not included in species clusters are tested for
the two subregions (x2 = 1.97, df = 1, p = 0.16).

Therefore, the considerably fewer species known from
the East Pacific than in the West Atlantic probably is due
both to higher rates of extinction and lower rates of phyletic
divergence in the former. Rates of evolutionary divergence
of West Atlantic taxa appear to approach those of East
Atlantic stomatopods (Table 11), but high extinction and
low rates of local speciation appear to have played a prom-
inent role in reducing the numbers of East Atlantic com-
pared to West Atlantic species.

Area of stomatopod habitat is smaller in the East Atlantic
and East Pacific subregions than in the West Atlantic (Ek-
man, 1953, fig. 19; Reaka, 1980, fig. 1). Rates of extinction
as here measured are inversely proportional and the num-
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TABLE 11.—Summary of phyletic divergence, species multiplication (%
taxa within locally radiating species clusters), and probable extinction (Table
9) in the Atlanto-East Pacific subregions.

Divergence

Species
multiplication (%)

Extinction

East
Pacific

2 endemic
genera,
3 species

3 cognate
species
diverged

58.0
7 taxa

West
Atlantic

5 endemic
genera,
5 species

6 cognate species
diverged

70.1
1 taxon

East
Atlantic

1 endemic
family

5 endemic
genera,
9 species

3 cognate species
diverged

36.7
27 taxa

ber of extant species is directly proportional to total area of
habitat in each subregion.

Conclusions

This study reviews the distribution and status of all fam-
ilies and genera of stomatopod Crustacea from both major
zoogeographic regions (Atlanto-East Pacific and Indo-
West Pacific), and tests a number of hypotheses about
intrinsic or environmental factors that enhance or retard
rates of morphological evolution in the well-studied At-
lanto-East Pacific stomatopods.

The degree of morphological and taxonomic divergence
among geographic subregions (East Pacific, West Atlantic,
East Atlantic) is consistently correlated with body size. In
small taxa, most species are subregionally endemic, consid-
erable radiation of species has occurred within subregions,
and groups of species or genera frequently have diverged
among subregions. Some moderate-sized species show un-
usually low divergence, and a number of transregionai
species are known. Most large species show low rates of
divergence, although several taxa or lineages of large body
size also show tendencies for regional divergence at the
generic and specific level. Lineages of large body size gen-
erally have fewer closely related species within subregions
than taxa of small body size, suggesting lower species radia-
tion in the former. When all taxa are considered, rates of
evolutionary divergence since geographic isolation in dif-
ferent subregions and species multiplication within subre-
gions show a highly significant decline with increased body
size.

We suggest that size of settling postlarvae is related to
duration of dispersal phases. Size of postlarvae generally

increases with adult body size, and species with postlarvae
of large known and estimated sizes show lower regional and
subregional divergence than those with moderately sized or
small postlarvae. Taxa with known small postlarvae are
significantly more prone to local speciation than those with
known large postlarvae.

Different types of habitat (coral and rock vs. sand and
mud substrate; deep or cold vs. shallow and warm water,
tropical vs. temperate latitudes) generally were not related
to rates of morphological change among geographic subre-
gions. However, the number of endemic species and the
number of species within locally radiating lineages were
significantly higher for species inhabiting coarse than level
bottoms, suggesting that the former habitat (or competition
and complex behavior associated with this habitat) may
enhance speciation. Low regional divergence occurs in lin-
eages with large body sizes and deep, relict distributions as
well as in shallow-dwelling species with dispersing and col-
onizing tactics. Environmental temperature and latitude
were consistently unrelated to rates of evolutionary change.
Trends in regional divergence are more coherently related
to adult and postlarval size than to habitat characteristics.

Extinction, estimated from conspicuous gaps in distribu-
tion, appears to occur in taxa of all body sizes, postlarval
sizes, and habitat types. Our data suggest that extinction is
more frequent in the gonodactyloid than in the squilloid or
lysiosquilloid stomatopods, in lineages with dispersing than
nondispersing larvae, in taxa that occupy reefs and rock
compared to mud and sand substrates, and in animals from
warm or tropical compared to cold or temperate environ-
ments. These hypotheses need to be further tested with
paleontological evidence and data from other groups of
organisms.

Apparent extinctions are most prominent in the East
Atlantic, followed by the East Pacific, then the West Atlan-
tic. Although phyletic divergence also is dramatic in the
East Atlantic, this subregion supports the fewest extant
species of the three subregions. The West Atlantic stoma-
topods have undergone extensive phyletic divergence from
relatives in other regions; however, this fauna has been
subject to relatively low extinction rates and high local
species multiplication. The West Atlantic supports the larg-
est extant stomatopod fauna of the three subregions. Sto-
matopods in the East Pacific have undergone somewhat less
speciation and considerably lower rates of phyletic diver-
gence from relatives in surrounding regions than those in
the West Atlantic; in addition, higher rates of extinctions
probably have contributed to the reduced numbers of spe-
cies observed in this geographic subregion compared to the
West Atlantic.
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hoevenii, 8, 15, 16
maculata, 15, 16, 19, 20, 31, 32
monodi, 8, 16,20,32,34
nkporoensis, 4
panamica, 8, 15, 16, 20, 31, 32, 34
scabricauda, 8, 15, 16, 35
sulcirostris, 16, 19, 20, 32
tredecimdentata, 15, 16, 20, 31, 32, 34

Lysiosquilloides, 6, 15, 19, 27, 34
aulacorhynchus, 8, 16, 20, 32, 34
siamensis, 16, 20, 32

maculata, Lysiosquilla, 15, 16, 19, 20, 31, 32
maiaguesensis, Eurysquilla, 8, 14, 15, 31, 32
manihinei, Indosquilla, 4, 26
manningi, Acoridon, 8, 15, 19
Manningia, 6, 12, 15, 32, 34

posteli, 8, 12, 14,34
mantis, Squilla, 9, 22, 25
mantoidea, Squilla, 9, 22
niarmorata, Pseudosquillopsis, 8, 12, 13, 31
martensi, Neocoronida, 19, 33
massavensis, Oratosquilla, 9, 21, 23, 25, 26, 34
mauiana, Clorida, 5, 9, 21, 24, 25, 26, 29
mccullochae, Heterosquilloides, 5, 8, 15, 16, 19, 20, 29, 30
Meiosquilla, 6, 7, 21, 25, 27, 29, 30, 34

dawsoni, 9, 24
lebouri, 9, 24, 25
quadridens, 9, 24, 25
randalli, 9, 24
schmitti, 9, 24, 25
swetti, 9, 24
tricarinata, 9, 24, 25

meridionalis, Parasquilla, 8, 13, 14, 35
Mesacturoides, 6
Mesacturus, 6
mexicanum, Diadema, 3
Mexisquilla, 6, 15, 20, 31, 33, 35

horologii, 9, 17, 20
microps, Bathysquilla, 5, 8, 25, 26, 29, 30, 31, 33
minutus, Gonodactylus, 8, 11, 12
miocenica, Squilla, 4
monodi, Lysiosquilla, 8, 16, 20, 32, 34
moraisi, Gonodactylus, 8, 10, 11, 12
multifasciata, Acanthosquilla, 15, 20

Nannosquilla, 4, 5, 6, 15, 16, 19, 20, 21, 25, 27, 29, 30, 31, 33, 34
adkisoni, 9, 18
anomala, 9, 18
antillensis, 9, 18, 20
baliops, 9, 18
californiensis, 9, 18
canica, 9, 18
carolinensis, 9, 18
chilensis, 9, 18, 20
dacostai, 9, 18
decemspinosa, 9, 18
galapagensis, 9, 18
grayi, 9, 18
hancocki, 9, 18
heardi, 9, 18
schmitti, 9, 18, 20
similis, 9, 18
taguensis, 9, 18

taylori, 9, 18
vasquezi, 9, 18
whitingi, 9, 18

Nannosquilloides, 6, 15, 19, 20, 27, 31, 33, 34
occultus, 9, 17

Natosquilla, 6
neglecta, Squilla, 9, 21, 22
Neocoronida, 6, 15, 20, 27, 30, 34
cocosiana, 8, 19, 33
martensi, 19, 33
trachurus, 19

nkporoensis, Lysiosquilla, 4

obtusa, Squilla, 9, 21, 23
occultus, Nannosquilloides, 9, 17
oculata, Pseudosquilla, 5, 8, 12, 13, 26, 29, 30, 31, 32
oculinova, Crenatosquilla, 9, 25
Odontodactylus, 6, 10, 27, 29, 30, 31, 34

brevirostris, 5, 8, 10, 11, 12, 29, 30, 31, 32
hawaiiensis, 12

oerstedii, Gonodactylus, 8, 10, 11
Oratosquilla, 4, 6, 21, 34

massavensis, 9, 21, 23, 25, 26, 34

pacifica, Eurysquilla, 12, 14, 15, 31, 32
Paleosquilla brevicoxa, 4
pallidus. Rissoides, 9, 24
panamensis, Squilla, 9, 21, 22, 26, 33
panamica, Lysiosquilla, 8, 15, 16, 20. 31, 32, 34
Parasquilla, 6, 7, 12, 14, 27, 29

boschii, 8, 13, 14,35
coccinea, 8, 12, 13, 14
ferussaci, 8, 12, 13
meridionalis, 8, 13, 14, 35
similis, 8, 13

parva, Squilla, 9, 23
Parvisquilla, 6
peleron, Gorgonophontes, 3
Perimecturus, 3
peruvianus, Schmittius, 9, 24
petilus, Gonodactylus, 8, 11, 12
platensis, Heterosquilla, 8, 15, 16, 20, 29
Platysquilla, 4, 6, 15, 20, 31, 33, 34

eusebia, 9, 17,20,29
Platysquilloides, 4, 6, 15, 20, 31, 33

enodis, 9, 17,20,29
lillyae, 9, 17,20

plumata, Eurysquilla, 8, 12, 14, 35
politus, Schmittius, 9, 24
polydactyla, Heterosquilla, 8, 15, 16, 19, 20, 29, 31, 32
posteli, Manningia, 8, 12, 14, 34
prasinolineata, Squilla, 9, 21, 22
Protosquilla, 6, 7, 10, 12. 27. 32, 34

calypso, 8, 11
folini, 8, 11

Pseudosculda, 4
Pseudosquilla. 6. 12. 14. 15, 27, 29, 30, 35

adiastalta, 8, 12, 13, 15, 31, 35
ciliata, 5, 8, 12, 13, 26, 29, 30, 31. 32
guttata, 12. 13
oculata, 5, 8, 12, 13, 26, 29, 30, 31, 32
wulfl, 4

Pseudosquillopsis, 4. 6, 7, 12, 15. 27, 29, 31
cerisii, 8, 12, 13,29,31,32
dofleini, 12, 13
lessonii, 8, 12. 13.29.31,32
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marmorata, 8, 12, 13, 31
Pterygosquilla, 4, 6. 21, 27, 29, 35

armata. 21,26, 29, 30
armata armata, 9, 23, 25
a r mat a capensis, 9, 23, 25
armata schizodontia, 23
gracilipes, 9, 2 1 , 2 3

Pullosquilla, 6
pumilus, Gonodactylus, 8, 10, 11

quadridens, Meiosquilla, 9, 24, 25

randalli, Meiosquilla, 9, 24
Rissoides, 6, 21. 25, 27, 29, 34

africanus, 9, 24. 25
barnardi, 21 ,24 , 25
calypso. 9, 24
desmaresti, 9, 24, 25
pallidus. 9, 24

rugosa, Squilla, 9, 21, 22

scabricauda, Lysiosquilla, 8, 15, 16, 35
schmitti, Coronida, 8, 19, 31, 33

Meiosquilla, 9, 24, 25
Nannosquilla, 9, 18.20

Schmittius. 6, 21, 25. 26. 27. 29, 33, 34, 35
peruvianus, 9, 24
politus, 9, 24

scolopendra, Coronis, 9, 17
Sculda, 3. 4
septemspinosa, Acanthosquilla, 9, 15, 17, 20, 35
sewelli, Eurysquilla, 12, 14
siamensis, Lysiosqutlloides, 16, 20, 32
similis, Nannosquilla, 9 ,18

Parasquilla, 8, 13
Sinosquilla, 6
soelae, Altosquilla, 26
solan, Eurysquilla, 8, 12, 14, 35
sonoma, Squilla, 4
spinulosus, Gonodactylus, 8, II , 12
Squilla. 4. 6. 21, 22, 26, 27. 29, 31, 34

aculeau, 4, 21, 25, 26, 27, 29, 31, 33
aculeata aculeata, 9, 22, 31
aruleata calmani, 9, 22, 31
angolia, 4
antiqua, 4
biformis. 9. 21, 22 ,26
bigelowi, 9, 2 1 , 2 2
brasiliensis. 9, 21, 22, 26, 33
cadenati, 9, 22. 26
caribaea. 9, 2 1 . 2 2
chydaea. 9. 2 1 . 2 2
cretacea, 4

deceptrix, 9, 21 ,23 . 26 ,33
decimdentata, 9, 23
discors, 9, 21. 23
edemata, 21, 22
edentata australis, 9
edemata edentata, 9
empusa, 9, 21, 22, 25, 26, 31, 35
grenadensis, 9, 21, 23
hancocki, 9, 23, 26, 33
hollandi, 4
intermedia, 9, 21, 22, 26, 35
lijdingi, 9, 21,22, 26, 33
mantis, 9, 22, 25
mantoidea, 9, 22
miocenica, 4
neglecta, 9, 21 ,22
obtusa, 9, 21 ,23
panamensis, 9, 21, 22, 26, 33
parva, 9, 23
prasinolineata, 9, 21, 22
rugosa, 9, 21,22
sonomana, 4
surinamica, 9, 21, 23
tiburonensis, 9. 21, 22, 25, 26, 33
wetherellii, 4

Squilloides, 6, 21,25, 34
stanschi, Gonodactylus, 8, 11
sulcirostris, Lysiosquilla, 16, 19, 20, 32
surinamica, Squilla, 9, 21, 23
swetti, Meiosquilla, 9, 24

taguensis, Nannosquilla, 9, 18
taylori, Nannosquilla, 9 ,18
Tectasquilla, 6, 20, 27, 31, 32, 35

lutzae, 8, 15, 16
theridion, Tyrranophontes, 3
tiburonensis, Squilla, 9, 21, 22, 25, 26, 33
tigrina, Acanthosquilla, 20
torus. Gonodactylus, 8, 10, 11, 12, 29
trachurus, Neocoronida, 19
tredecimdentata, Lysiosquilla, 15, 16, 20, 31, 32, 34
tricarinata, Heterosquilla, 15, 16, 19, 20, 31, 32

Meiosquilla, 9, 24, 25
Tuleariosquilla, 6
Tyrranophontes theridion, 3

vasquezi, Nannosquilla, 9, 18
veleronis, Eurysquilla, 8, 12, 14, 35

wetherellii, Squilla, 4
whitingi, Nannosquilla, 9, 18
wulfi, Pseudosquilla, 4

zacae, Gonodactylus, 7, 8, 10, 11, 12
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