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1 Abstract 

Maintenance of often-observed elevated levels of pelagic diversity and biomass on 

seamounts, that are of relevance to conservation and fishery management, involves 

complex interactions between physical and biological variables that remain poorly 
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understood. To untangle these biophysical processes we explore factors influencing the 

distribution of epi- and meso-pelagic (0-1000 m) micronektonic crustaceans (> 15 mm; 

order Lophogastridea, family Gnathophausiidea; and order Decapoda) on and off 

seamounts along the South West Indian Ridge (SWIR, 27° to 42° S) and on a seamount 

off the Madagascar Ridge (31.6° S, 42.8° E). Thirty-one species of micronektic 

crustaceans were caught using mid-water trawls within the study are but there was no 

apparent latitude-related patterns in species richness or abundance. Species richness 

predicted by rarefraction curves and numerical abundance was highest in the vicinity 

(<1 km) of seamounts (species richness: 15 to 21; abundance: 10 ± 2 to 20 ± 1 ind.10-3 

m-1) compared with over the abyssal plains and ridge slopes (species richness: 9.2-9.9; 

abundance: 24 ± 2 to 79 ± 8 ind.10-3 m-1). Multivariate analysis of assemblage 

composition revealed significant groupings of individual net samples with respect to 

whether the sample was on or off a seamount and hydrographic region, but not with 

time of sampling relative to diel cycle (day/night or dawn) or depth of sampling (0-500, 

500-800, > 800 m). The dominant species assemblage comprised the shrimps 

Systellaspis debilis (37 %) and Sergia prehensilis (34 %), and was restricted to 

seamounts on the subtropical SWIR. Our observations suggest that the ‘oasis effect’ of 

seamounts conventionally associated with higher trophic levels is also applicable to 

pelagic micronektic crustaceans at lower trophic levels. We suggest that the enhanced 

biomass and species richness attributed is due to ‘habitat enrichment’, whereby 

seamounts provide favourable habitats for both pelagic and bentho-pelagic mid-water 

crustaceans. 

 

Key words:  Conservation, Indian Ocean, Decapod shrimp, Gnathophausia, deep sea.  
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2 Introduction 

Seamounts are topographic elevations with a limited extent across the summit (Rogers, 

1994).  There are more than 33,000 seamounts in the World Ocean with an elevation 

>1000m and a much larger number of smaller features (Yesson et al., 2011). The 

biomass of commercially important species of fishes (e.g orange roughy and billfish) 

and that of other large nekton is often enhanced around seamounts (Hirch and 

Christiansen, 2010; McClain, 2007; often referred to as the 'oasis' effect of seamounts, 

see Morato et al., 2010), through poorly understood ecological mechanisms. This 

enhanced biomass is thought to be sustained through trophic interactions between fish 

resident on seamounts and diurnally vertically migrating (DVM) layers of epi- (0-200 

m) and mesopelagic (200-1000 m) zooplankton and micronekton that drift over the 

seamount summit and slopes at night (Rogers, 1994). At dawn, organisms comprising 

these layers would ordinarily descend, but become trapped in the shallower waters over 

the seamount and are consumed by predatory nekton. This mechanism is known as the 

sound-scattering layer interception hypothesis, or the DVM trapping/ topographic 

blockage hypothesis (Hirch and Christiansen, 2010; hereafter DVM trapping, Isaac and 

Schwarzlose, 1965). Taylor columns - quasi-stationary eddies - may also be present over 

the seamount (Boehlert, 1988), driving localised enhanced primary production and 

trapping of meso-zooplankton (0.2- 2 mm), facilitating their predation by seamount 

predators, although evidence for this is weak. Seamounts has the potential to harbour 

reproductively isolated population, with little connectivity between mounts, as species 

and assemblages tend to specialised to the local conditions (de Forges et al., 2000; the 

'island' effect, see Johannesson, 1988). However, recent work has suggested that this 

isolation, if it occurs at all, is likely to occur in species with life histories that confer a 

low probability of dispersal (Clark et al., 2009). The fauna of seamounts has been found 
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to resemble that of the nearest shelf environments although community structure and 

biomass can be markedly different (McClain et al., 2009; Rowden et al., 2010). 

In oceanic systems in general, interactions between meso-zooplankton and demersal 

fish populations are mediated by a trophic spectrum of micronekton (>15 mm), which 

forms intermediate links in food chains (Sutton, 2013). This fraction forms the focus of 

this study. Decapod shrimps and gnathophausiids are an important component in the 

diet of demersal and benthopelagic fish on ridges (Bergstad et al., 2010; Horn et al., 

2010), abyssal plains (Stowasser et al., 2009),  and seamounts (Hirch and Christiansen, 

2010). Although DVM has been observed in both shrimps and gnathophausiids, the 

behaviour is not universal within either taxa (Sergestes, see Flock and Hopkins, 1992; 

Gnathophausia ingens , see Hargreaves, 1985). In a mechanism that is almost a 

corollary of DVM trapping outlined above, resident shrimps and Gnathophausiidae may 

actively resist advection away from the seamount (Wilson and Boehlert, 2004). The 

reasons for and mechanisms of this behaviour are poorly understood and its taxonomic 

prevalence unknown. Some species may be benthopelagic specialists, and thus require 

habitats in proximity to the seabed, which seamounts provide (Meland and Aas, 2013). 

How seamounts influence the distribution of shrimps and gnathophausiids and by what 

mechanism this influence is maintained is thus of relevance to the understanding of 

oceanic and seamount trophic food-web. 

The seamounts of the southwestern Indian Ocean have been exploited from a fishery 

perspective for nearly 50 years. Exploratory fishing on the South West Indian Ocean 

Ridge (SWIR), the Mozambique Ridge and the Madagascar Ridge began in the 1970s 

by the Soviet fleet, and associated research institutions, with commercial trawling 

beginning in the early 1980s (Clark et al., 2007; Romanov, 2003). These fisheries 

targeted redbait (Emmelichthys nitidus) and rubyfish (Plagiogeneion rubiginosus) with 
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catches peaking about 1980 and then decreasing to the mid-1980s. Fishing then 

switched to alfonsino (Beryx splendens) in the 1990s as new seamounts were exploited. 

Some exploratory trawling was also carried out on the Madagascar Ridge and South 

West Indian Ocean Ridge (SWIR) by French vessels in the 1970s and 1980s, 

particularly targeting Walter’s Shoals and Sapmer Bank (Collette and Paring, 1991). In 

the late 1990s, a new fishery developed on the SWIR with trawlers targeting deep-water 

species such as orange roughy (Hoplostethus atlanticus), black cardinal fish (Epigonus 

telescopus), southern boarfish (Pseudopentaceros richardsoni), oreo (Oreosomatidae) 

and alfonsino (Clark et al., 2007). These species are generally slow to reproduce and 

typically form breeding aggregation on seamounts, making them particularly 

susceptible to overexploitation (Koslow et al., 2000). This fishery rapidly expanded, 

with estimated catches of orange roughy being in the region of 10,000t, but then rapidly 

collapsed. Fishing then shifted to the Madagascar Plateau, Mozambique Ridge and Mid-

Indian Ocean Ridge, targeting alfonsino and rubyfish (Clark et al., 2007). Most of these 

areas have therefore been significantly impacted by deep-sea bottom fisheries and 

exploitation of these stocks, as well as new ones, such as the lobster fishery (Palinurus 

barbarae) on Walter’s Shoal, continue (Bensch et al., 2008). 

In spite of a series of concerted efforts in the 1960s (Zeitzschel, 1973), the basin scale 

biogeography and ecology of the Indian Ocean and the SWIR is poorly known, in part 

because of the ocean’s remoteness to nations with large-scale historical, oceanographic 

research programmes. Most basin-scale studies arising from those intensive efforts were 

on epipelagic meso-zooplankton, and few baseline data exists for deeper depth horizons, 

or on specific energy pathways in oceanic food webs (Letessier et al., 2012; Sestak, 

1974). Moreover, recent deep-sea studies on the SWIR are limited to a series of 

geological surveys of the Atlantis Bank (Dick, 1998), and to the hydrothermal vents in 
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the vicinity of Melville Banks (Tao et al., 2007). Some previous work stemming from a 

series of Russian cruises in the 1990s provides baseline species records for zooplankton 

and micronekton from Walter’s Shoal (Vereshchaka, 1995).  

As a result of historical overfishing and subsequent collapse, some of the fish 

populations on the SWIR may be in a state of recovery, the rate of which will depends 

partly on energy input and prey accessibility (Kar and Ghosh, 2013). Moreover, 

population connectivity and the potential ‘island’ effect of seamount will have relevance 

for replenishment and for the capacity of population to resist any depensation 

(Courchamp et al., 2008) at low densities arising from the allee effect (Stephens et al., 

1999). How seamounts influence mid-water micronekton distribution and the function 

of open ocean food-wed is therefore of relevance for management, whilst being of 

scientific interest for the broader understanding of open ocean food webs, and 

ecological processes. The faunal assemblage composition of seamount micronekton, 

their overlap with true pelagic communities, and their potential role in the DVM 

trapping are poorly understood, yet remain crucial for the management of the SWIR and 

associated fishing grounds. 

Here we address this paucity in knowledge by presenting new records of epi- and 

mesopelagic crustaceans along the SWIR and on a seamount on the Madagascar Ridge, 

north of Walters’ shoal. The aims of this study were threefold: 

1) To describe epi- (0 – 200 m) and mesopelagic (200-1000 m) micronektic crustacean 

assemblage composition on and off seamounts of the SWIR.  

2) To test the influence of seamounts and hydrographical regions on the abundance and 

species richness of micronekonic crustaceans, and to elucidate mechanisms driving 

species richness and abundance enhancement (such as a potential ‘oasis’ effect of 

seamounts).  
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3) Explore connectivity between seamounts by comparing assemblage similarity and 

isolation, in order to explore the hypothesis of ‘island’ of these seamounts. 

Work was conducted as part of the UNDP/IUCN project, which aims to provide 

ecosystem-based management of fisheries of the South West Indian Ocean.  

 

3 Materials and methods 

3.1 Sampling area 

The SWIR (Fig. 1) extends from northeast to southwest in the west of the Indian Ocean 

basin, extending over 1,200 miles and varying from 200 to 300 miles in width 

(Romanov, 2003). The result is an axial valley with ridge terraces on either side, with 

several areas rising from the abyssal plains to within <1000 m of the surface. To the 

north of the SWIR lies the Island of Madagascar with its associated shelf and the 

Mascarene plateau, and the Madagascar Ridge including Walters’ shoal, a productive 

fishing ground that has recently had a small area voluntarily closed by some of the 

fishing industry (bottom trawl) for conservation (Rogers et al., 2009). 

The physical oceanography and environmental conditions of the study area are explored 

in detail in two dedicated studies in this volume (R. Pollard and Read, 2015; Read and 

D. A. Pollard, n.d.). The sampling stations occupied in this study spanned 10 degrees of 

latitude, and surface temperature ranged from 27° in the North to 8° in the South. 

Oceanographically, the SWIR is influenced by several fronts with the combined effect 

of the retroflection of the Aghulas Return Current and the Subantarctic Front creating 

one of the most productive areas in the global ocean (161 gC m-2 yr-1, Read et al., 

2000). The SWIR is also characterised by two biomes deemed ecologically distinct in 

primary production pattern: the Indian South Subtropical Gyre Province (ISSG), and the 
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South Subtropical Convergence Province (Longhurst, 1998), see also Vierros et al. 

(2008). Kostianoy et al (2004) and Pollard (2015) defined oceanographic sub-regions 

further by deriving frontal features from satellite sea surface temperature and sea 

surface height patterns: the Tropical region (TR, ~25° to 40° S; 25° to 17° C), 

Subtropical convergence (STC, ~40° to 43° S; 17° to 13° C), sub-Antarctic convergence 

(SAC, ~43° to 46° S; 13 to 10 °C). 

 

 

3.2 Net sampling 

Pelagic sampling was conducted using scientific nets at 8 stations along the SWIR (Fig. 

1) from the R/V Fridtjof Nansen Cruise 2009-410. Forty depth-targeted hauls were 

conducted on 5 seamounts along the ridge, a single seamount of Walter’s Shoal, and on 

two ‘off-seamount’ sites considered as control stations (station 2 on the abyssal plains 

between the Reunion and Atlantis seamount, and station 7 in the sub-Antarctic 

convergence, see Table 1, Fig.1). The routine approach to trawl sampling at all stations 

generally consisted of two day-time hauls (400-600 m and 720-1100 m) and two night-

time hauls, using a medium-sized pelagic fish trawl (a Norwegian ‘Åkratrawl’, vertical 

net opening 20-35 m, door spread 110 m, cod-end mesh size 4 mm stretched). On three 

occasions, a ‘benthic’ trawl rigged without rollers or bobbins was hauled at high speed 

as close to the seamount peak as possible, without touching the seabed, in order to catch 

larger benthopelagic species, usually shoals identified by ship-mounted echosounders 

(Boersch-Supan, this volume). In all cases the trawl was lowered rapidly to the 

minimum depth to be sampled, and then fished on a slowly lowered trajectory to the 

maximum target depth, after which the trawl was collapsed and heaved quickly to the 

surface in order to minimise net contamination from shallower waters.  
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Upon recovery of the cod-end on deck, the material was sorted to nearest taxa, and fixed 

in 4% buffered formaldehyde (Steedman, 1976). Subsamples (usually  ~50 individuals) 

of dominant species were fixed in 96 % ethanol for molecular studies. The portion of 

the catch kept in formaldehyde was transferred to 70% ethanol, usually within 48 hours 

of fixation. After the cruise, all samples were identified to the lowest taxonomic level 

possible (to species for 98% of samples) in the Oxford Museum of Natural History. 

3.3 Data analysis 

3.3.1 Net catchability 

Relative abundance of species/taxa (numerical count) and species richness (total number 

of species recorded) were determined for each station. Because of the poor catchability 

of large crustaceans by the ‘benthic’ trawl (the ‘benthic’ trawl was fished at high speed 

and the net bag mesh size was coarser than the Åkratrawl) crustacean densities were 

derived using the Åkratrawl catches only. The benthic trawl catches were only 

considered when deriving species richness. Because the Åkratrawl likely undersampled 

greatly the Catch per Unit Effort (CPUE), densities were derived by standardizing the 

catch by the horizontal distance trawled (m) rather than by the volume (equation [1]).  

Equation [1] CPUE = ind 10 -3 m-1.  

Previous studies have shown that the catchability of invertebrate micronekton by the 

Åkratrawl can be very taxon specific, probably because of taxonomic size differences, 

‘herding’ effects of the trawl doors, and the large mesh size at the mouth of the trawl (de 

L Wenneck et al., 2008; Heino et al., 2011). While all sampling gear holds some 

inherent bias because of its design parameters, the data derived directly from the raw 

Åkratrawl catches are probably unfit for comparison of relative abundance between the 

mikronekton, or for assemblage analysis (of other than presence/absence data). As a 



 10

consequence the catch-selectivity of the Åkratrawl (Heino et al., 2011) was considered 

for further analysis. This was aimed at making the present study more usefully 

comparable to other macrozooplankton/micronekton studies which typically use smaller 

gear types (Cox et al., 2013; Letessier et al., 2012; 2011; Pakhomov et al., 1999). The 

selectivity of the Åkratrawl (‘y’) relative to the reference trawl (‘x’; a Norwegian 

macrozooplankton trawl (de L Wenneck et al., 2008), can be expressed by equation [2] 

 

Equation [2]: Cy  = ρCx 

 

where p is the relative catchability coefficient and C is the catch standardized by the 

trawled distance (CPUE here). The Norwegian macrozooplankton reference trawl is not 

assumed to convey 100% catchability, but it is probably more quantitative than the 

Åkratrawl for the fauna in the size-range targeted here (<100 m). 

True catches (Cx) were derived by dividing the distance-standardised catches (Cy) by the 

taxon specific catchability coefficients (‘ρ’) using parameters from Heino et al. (2011; 

personal communication; equation [3]) and ‘a_y’ a taxon specific model parameter (see 

Table 2 for the selected model taxon and model parameter).  

Equation [3]: ρ = ea_y
                  

Previous studies have shown that in the context of multidimensional assemblage 

analysis, the transformation applied here to the relative abundance reduces the gear 

effect to a weakly significant grouping term, when analysed together with replicates 

from a standard macrozooplankton trawl (Sutton et al., 2008). This potential source of 

bias was deemed acceptable for our purposes here, and numerical abundance at the level 

of the individual species and the assemblage is therefore reported using our standardised 
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CPUE densities. 

The coefficients from Heino et al. (2011) were calculated with respect to an Åkratrawl 

with a net bag mesh of 22 mm, and this is likely to infer some bias compared to the 

trawl used here (net bag mesh 4 mm). However, net bags typically get clogged rapidly 

during hauls, and the difference in mesh size in the net bags would probably not 

influence the results, especially as the majority of species considered where larger than 

22 mm. 

 

3.3.2 Species richness estimation 

 

Species sampling efficiency was explored using the expression of Gotelli & Colwell 

(2001), which finds the species accumulation curve and its standard deviation from 

random permutations of the sample pool. Species accumulation curves and predicted 

species richness patterns at each seamount were explored using the vegan package 

(Oksanen, 2011) in the R statistical programming environment  (Team, 2012). In the 

absence of a balanced sampling design (effort varied slightly between stations, see Table 

1) we followed the recommendation of (Colwell and Coddington, 1994) in order to 

estimate the number of unseen species, using the frequency of new species arrival to 

generate a bootstrap-predicted species richness (hereafter species richness) value and 

standard error. Species richness per station was predicted using the slope of the species-

area curve, or the exponent z of the Arrhenius model (Oksanen, 2011). 

 

3.3.3 Univariate and multivariate analysis 
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To determine the effect of sampling location compared to seamounts (on or off), 

hydrographic region (Kostianoy et al., 2004), depth (0-500, 500-800, > 800 m), and 

time in diel cycle (Night, Day and Dawn; Table 1), and interactions there of, on species 

richness, standardised numerical abundance and species assemblage composition, we 

conducted non-parametric permutational analysis of variance (PERMANOVA, 

Anderson, 2001), with 9999 permutations (on a Bray-Curtis resemblance matrix for the 

assemblage, Bray and Curtis, 1957). 

Multivariate species assemblage patterns were further explored with multivariate 

statistics and classification techniques using Primer software v6 (K. R. Clarke and 

Gorley, 2006), namely non-metric multidimensional scaling (NMDS), ordination and 

cluster analysis. Input data were root-transformed density data (ind. 10-3 m-1) to reduce 

the influence of dominant species. Similarity between samples was evaluated using the 

Bray-Curtis similarity index (Bray and Curtis, 1957). Analysis of individual net samples 

was carried out, where each cod-end collected was considered a distinct sample. Each 

cod-end was characterised by its standardized species-specific abundances and sample 

depth (Table 2). The appropriate discrimination level for determining clusters was 

decided by running similarity profile permutation tests (SIMPROF, 1000 permutations, 

p < 5% to determine at which similarity % the clusters significantly differed in 

structure). Species contribution to similarity (SIMPER) was applied to determine the 

characteristic species composition to each significant cluster. 

3.3.4 Isolation and ‘island’ effect hypothesis 

To test for any potential ‘island’ effect of seamount, the degree of connectivity between 

seamounts was explored by plotting the Bray-Curtis index of similarity distance 

between samples. The relationship was explored using linear regression of distance-

between-sites (modelled at the independent variable) and the Bray-Curtis index as the 
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response. We would expect a perfectly connected assemblage to have a slope of 0, as the 

similarity index would be unaffected by distance. The actual model slope was compared 

with a slope of 0 using a Wald-test based comparison (Fox and Weisberg, 2011). 

4 Results 

4.1 Crustacean micronekton abundance and diversity distribution patterns 

 
We caught 4936 individual decapods and lophogastrids in the size range 15 mm to 60 

mm, representing 31 species and 14 families (Table 2), in 40 net hauls. The species 

accumulation curve revealed a rapid increase of species richness from 0 to 10 trawls, 

reaching an asymptote after approximately 35 samples (Fig. 2). Mean numerical 

abundance per station ranged from 10 to 79 ind.10-3 m-1. Highest numerical abundances 

were observed over seamounts (Fig. 3 A). Highest species richnesses were predicted 

over Coral seamount (21 species, station 8), Walter’s Shoal (20 species, station 10), and 

Melville bank (20 species, station 9).  

 

Several decapod species were caught at almost every station, and so appeared 

ubiquitous (Oplophorus novaezelandiae, Systellaspis debilis, Funchalis villosa, Sergia 

prehensilis, Deosergestes corniculum; Table 2) but S. debilis and F. villosa were absent 

in catches from most stations in the sub-Antarctic convergence. The most abundant 

species overall were S. prehensilis and S. debilis. Several species were caught uniquely 

in the vicinity of seamounts (all lophogastrids and Gennadas spp, Acanthephyra sica, 

Eupasiphae gilesii, Funchalia danae, Acanthephyra quadrispinosa, Meningodora 

vesca, Notostomus auriculatus. Parapasiphae sulcatifrons, Pasiphaea barnardi, 

Pasiphae gelasinus; Table 2). Several species were caught uniquely in the sub-Antarctic 

convergence (Pasiphaea rathbunae, Pasiphaea barnardi, Eusergestes cf. antarcticus, 
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Petalidium foliceum, Gennadas kempi). No species were caught uniquely on off-

seamount stations, although Sergestes armatus was most abundant on off-seamount 

stations.  

4.2 Univariate and multivariate assemblage patterns 

 

There were significant differences in species richness between depths, on and off 

seamounts, and between hydrographic zones (Table 3), but not between diel cycle times. 

Species richness, and numerical abundance were both higher on seamounts (Table 3, 

Fig. 3). Species assemblage was significantly different on and off seamount, and 

between hydrographic zone (Table 3), but not between depth and diel cycle time. 

Cluster analysis and SIMPROF identified 8 significant clusters (Fig. 4) at 54% 

similarity (π=5.4, p<0.1%). The two dimensional MDS ordination gave a stress index of 

0.15, and was deemed sufficiently low to enable meaningful interpretations of 

ecological patterns (Fig. 5). Horizontal dispersion in multidimensional space appeared 

to be  related to latitude, as samples towards the centre of the plot were mostly from TR 

and STC stations. The largest of these clusters (h) contained 17 samples from seamounts 

between 31.5° and 40°S, and all but two stations from the Subtropical Convergence 

region (STC) region (Table 1, Fig. 4 and 5). Cluster ‘h’ contained 65 % of seamounts 

stations overall and comprised mostly Sergia prehensilis and Systellaspis debilis (37 and 

34 % respectively, see Fig. 6). The second largest (n=7), cluster ‘c’, consisted of three 

samples from the TR zone (station 2, 4), one from the STC zone (station 9), and two 

from the SAC zone (station 7 and 8) and comprised S. debilis, Oplophorus 

novaezelandia, Sergestes corniculum and Oplophorus spinosus (26, 21, 28, and 25 % 

respectively, Fig. 6). Cluster ‘d’ (n=3) was predominantly from the TR (station 2, 10), 

with a single station from the sub-Antarctic convergence zone (SAC). Cluster ‘g’ 
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consisted of two stations, one from the TR zone and one from the SAC zone (Fig. 4), 

and comprised mostly of S. armatus (80%, Fig. 6). Clusters ‘a’, ‘b’, and ‘f’ all consisted 

of either a single or two stations from the sub-Antarctic convergence (SAC) zone 

(station 7 or 8). Cluster ‘e’ comprised a single sample from the STC zone (station 6). 

Similarity (Bray-Curtis index) showed a very weak correlation with distance between 

samples and seamount (R2 = 0.034, Fig. 7). The F statistics of the linear regression 

indicated that the slope was significantly different from 0 (p <0.001). 

 

5 Discussion 

Very little information exists on the deep-sea ecosystems of the Indian Ocean outside 

the Arabian Sea (Ingole and Koslow, 2005). Thus the majority of species caught in this 

study represent new records of occurrence. As the PERMANOVA results suggested that 

the numerical abundance, species richness, and species assemblage were all influenced 

by the properties of the water mass and the proximity to seamounts, this Discussion will 

be focussed around these two factors. The apparent low influence on clusters of depth 

strata and diel cycle position may be a result of the lack of opening/closing mechanisms 

utilised on the Åkratrawl on this cruise rather than true biological affects. Arguably, 

although the trawl was collapsed during deployments, there may still have been some 

fishing effect and hence some shallow water contamination. Typically, shallow-living 

species are more abundant than deeper living species (pelagic biomass decreases 

logarithmically with depth, Angel and Pugh, 2000), thus the Bray Curtis similarity 

measures could potentially be highly sensitive to biases imposed by this shortcoming. 

Nevertheless, previous studies that utilized opening/closing gears to consider effects of 

diel cycle on assemblage structure, have not detected diel cycle effects either (Letessier 

et al., 2011; Sutton et al., 2008). The studies of Letessier et al. (20011) and Sutton et al. 
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(2008) opted to analyse the effect of diel cycle and depth in their permutation test 

(ANOSIM) independently, and may therefore have failed to detect interactions between 

terms (for example, the effect of diel cycle on assemblages may be dependent upon 

depth). While we did not detect any interactions here, our analysis was conducted on 

different taxa, and on a smaller number of samples (n = 40, versus 115 and 167 for 

Sutton et al. and Letessier et al. respectively), so further study with larger sample sizes 

may be needed before the null hypothesis that  diel cycle position does not influence  

assemblage structure across depth could be rejected. 

5.1 Biogeography  

High abundances of Systellaspis debilis and Sergia prehensilis were found throughout 

the survey area outside the sub-Antarctic convergence, and these species were dominant 

in the seamount cluster (e). This is not consistent with the findings of Vereshchaka 

(1995) who observed that both species showed decreased abundance with proximity to 

the seabed of seamounts and of the abyssal plains. While both species are pan-temperate 

(Poupin, 1998), S. debilis is reported to be less abundant over continental slopes than 

over seamounts (Vereshchaka, 1995). In the present study, S. debilis was caught in all 

the nets fished over the tropical abyssal plains (i.e. station 2), albeit in fewer numbers 

than over the seamounts. S. debilis has been shown to have a high benthic component to 

its diet compared to other shrimps (Rau et al., 1989), thus potentially explaining its 

affinity with seamounts. 

Previously Acanthephyra sica has only been recorded from the sub-Antartic front 

(Burukovsky and Romensky, 1982): the present  study is the first to report this species 

north of 40º S (station 10, 32 ºS, north of Walter’s Shoal). Several species were caught 

uniquely in the SA front, although they were not ubiquitous south of 40º S. Three 

species, were found uniquely on Coral seamount, Pasiphae barnardi, Gennadas kempi, 
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Funchalia danae but the SA front was not sampled sufficiently to distinguish whether 

these were associated solely with that seamount or - as seems more probable due to 

previous records in the SA front (Burukovsky and Romensky, 1982)- typical inhabitants 

of the SA front. 

Observations of less similarity amongst samples south of 37ºS (of 8 significant clusters, 

4 were restricted to > 37º S whereas no clusters were restricted to <37º, Fig. 6) suggest 

that this area is highly heterogeneous, typical for a frontal zone where there is 

substantial mesoscale eddy formation and mixing of water masses (Read et al., 2000): 

this dynamic physical-oceanographic regime is evident in observations of high sea 

surface height variance (Babu et al., 2011). Decapod abundance was highest in this area 

(~75 ind 10. 3 m-1, station 5 and 6), which is consistent with previous findings 

(Pakhomov et al., 1999; 1994) and acoustic observations of watercolumn biomass made 

from the same cruise as net samples reported here were collected  (P. Boersch-Supan, 

this volume). Southern stations (station 6 to 9) harboured several species typical of 

Antarctic waters and not observed in other areas in this study and thus indicating the 

influence of Antarctic faunas (Burukovsky and Romensky, 1982; A. Clarke and 

Holmes, 1987). It is likely that the difference in crustacean micronekton species 

distribution and assemblage across the SA front reflect major difference in mid-water 

biovolumes and production regimes, typical of difference observed across fronts 

elsewhere (e.g north Atlantic, see Cox et al., 2013). 

5.2 Seamount effects 

Following variability associated with hydrographic zones, the most important and 

consistent factor in determining species richness, numerical abundance, and species 

assemblage was proximity to seamount. The increased numerical abundance and species 

richness over seamounts is consistent with patterns observed on other micronekton taxa 
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(Wilson and Boehlert, 2004; sternopthychid fish, 1993) and of higher trophic levels 

such as marine mammals and commercially important species of fish (Genin, 2004; 

Haney et al., 1995; Morato et al., 2010; Pitcher and Bulman, 2007; Rogers, 1994), and 

supports the ‘oasis’ effect hypothesis of seamounts (McClain, 2007). We think it likely 

that our observations of this pattern are due to micronekton actively resisting advection 

away from seamounts (using their capacity for active locomotion). This is in contrast to 

biophysical mechanisms related to interactions between DVM behaviour and 

topographic trapping that influence the distribution of meso- and macrozooplankton 

such as euphausiids. Moreover, while observations of seabed foraging by euphausiids 

are not uncommon (Tarling and Johnson, 2006), evidence suggests that euphausiids are 

outcompeted or preyed upon in the vicinity of seamount and ridges (Letessier et al., 

2011) probably by specialists nekton in the benthic boundary layer (Sutton et al., 2008), 

and that seabed foraging by euphausiids is favoured primarily during food-shortages or 

high predation pressure common in  shallower waters (Schmidt et al., 2011). DVM 

trapping and other linkages between micronekton and seamounts through the diel cycle 

may be occurring, however, we were unable to detect such mechanism here. 

A possible explanation for the observed increase in abundance and species richness is 

that the seamounts afford additional habitats (both pelagic and benthic) to the target 

taxa. Less than 200 of the world’s ~4000 species of shrimps are considered truly pelagic 

(De grave et al., 2014), and SWIR seamounts could be acting as diversity sources from 

which species radiate  out into the mid-water. Vereshchaka (1995) described mid-water 

communities caught only in the mid-water over seamounts at night, which were absent 

in daytime catches. He further suggested that organisms in these communities spent the 

daytime on or near the seabed, or in the sediments. Other organisms (such as the shrimp 

S. debilis) appeared to be seamount mid-water-specialist, that descend into the near-
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bottom layer during the daytime. This behaviour (‘habitat diversification’) could 

theoretically be acting independently of DVM trapping behaviour, as no extra trophic 

input would be required, from advected zooplankton to sustain it. However, ubiquitous 

species that occupied both off-seamount and seamount locations were more abundant on 

seamounts (with the single exception of Sergestes armatus) suggesting that seamounts 

present favourable habitats for mid-water micronekton in general, in addition to being 

necessary habitat for seamount specialist (such as lophogastrids). 

When quantifying possible bio-physical mechanisms responsible for the seamount 

‘oasis’ effect our analysis did not enable differentiation between the relative importance 

of DVM trapping of meso-plankton prey or ‘habitat diversification’. Other bio-physical 

mechanisms have been suggested as possibilities by which diversity/biomass on 

seamounts might be enhanced. These include localized upwelling (Uda and Ishino, 

1958) leading to increased productivity (Samadi et al., 2006), and trapping by Taylor 

cones (Pitcher and Bulman, 2007). However, we suspect the influences of such 

processes to be relatively minor compared to the mechanism of DVM trapping and 

‘habitat diversification’ mentioned above, because Taylor columns were not identified 

on the seamounts here, and primary control of circulation (and primary production) 

appeared to be eddy activity operating at the mesoscale (R. Pollard and Read, 2015).  

Distinction of the relative important of DVM trapping of meso-plankton prey and 

‘habitat diversification’ could potentially be elucidated by exploring deep seamounts 

(>1000 m) where DVM is less prevalent (the majority of DVM takes place in the meso-

pelagic, see Angel and Pugh, 2000; Flock and Hopkins, 1992). If mid-water abundance 

and diversity of micronekton are primarily controlled by ‘habitat diversification’ we 

would expect the ubiquitous micronekton to be as- or less abundant on the seamount 

than they are in the mid-water. Although no paired on/off sampling of a deep seamount 
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was conducted in this study, our impression is that ‘habitat diversification’ is likely 

underestimated as a driver of mid-water abundance. 

Similarity between samples appeared to be influenced only very weakly by distance 

(isolation) between samples. According to our model a distance of 1,000 km between 

two sites would cause a decrease in assemblage similarity of just 7.6%, suggesting that 

there is high connectivity at the level of the assemblage between seamounts. Moreover, 

only four species were reported at a single seamount location (Pasiphaea ratbunae, 

Eusergestes cf antarcticus and Pasiphaea gelasinus, Gennadas brevirostris), and these 

species have previously been recorded from non-seamount locations elsewhere (De 

grave et al., 2014). As 70% of the seamount samples clustered within a single cluster 

spanning almost 10° of latitude (with no apparent influence of diel cycle or depth strata) 

the statement of Gjerde and Breide (2003) ‘Seamounts are areas of high endemic 

biodiversity with little overlap in community composition between seamount’ may not 

pertain to the mid-water taxa explored here. Our observations can be interpreted in two 

ways:  

1) Our results do not support the ‘island’ effect hypothesis of seamounts that states that 

seamounts are reproductively isolated, thus promoting endemism (see Koslow and 

Poore, 2000, and see McClain, 2007 for a review), a hypotheses that has gained support 

from other studies (de Forges et al., 2000; Gjerde and Breide, 2003; Samadi et al., 

2006). 

2) The taxa investigated in this study are poorly suited to explore the ‘island’ effect 

hypothesis because of their high capacity for swimming. 

Investigation of reproductive connectivity between seamounts, using population 

genetics of ubiquitous species may further resolve this issue. 
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5.3 Conclusion 

This study has revealed that the distribution and abundance of decapod shrimps and 

lophogastrids on high-sea fishing grounds in the SWIR is greatly influenced by the 

presence of seamounts, potentially through our proposed mechanism of ‘habitat 

diversification’. Enhanced numerical abundance and species richness may be linked to 

either (a) active migration undertaken by individuals to maintain their proximity to the 

seabed on seamounts, which provides habitat, or (b) may be associated with biophysical 

mechanisms such as DVM trapping of mesozooplankton prey. The taxa considered in 

this study are an important component of demersal fish diet (Bergstad et al., 2010; 

Mauchline and Gordon, 2006), perhaps more so than diurnally migrating zooplankton, 

even on seamounts (Hirch and Christiansen, 2010). Elevated abundances of decapod 

shrimps and lophogastrids in the vicinity of seamounts may provide an important prey 

item, linking between pelagic and/or benthic ecosystems and the demersal/pelagic fish 

fauna (see Letessier et al., 2012; Reid et al., 2012). Ubiquitous mesopelagic crustaceans 

with a benthic component to their diet (such as S. debilis, and maybe some 

gnathophausiids) may hold a more important trophic position in seamount food webs 

than previously assumed, by making benthic energy sources available to higher and 

pelagic trophic levels, thus enforcing benthopelagic connectivity.  

Conservation and holistic fishery management efforts on seamounts require good 

understanding of open ocean energy pathways and food webs, and should consider 

micronekton distribution and connectivity patterns from the micro- to mesoscale (1 to 

100 km). The consideration of the influences of different seamount substrata on 

associated resident micronekton assemblage structure should be an important aspect of 

fishery management and conservation, particularly when mitigating anthropogenic 

activity such as bottom trawling and, in the future, potential mining operations that have 
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the capacity to impact water column processes because of suspension of sediments.  
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7 Figure 

 

Fig.1 Map of survey area and stations. See Table 1 for station activity. The 500, 1000, 

2000, 3000, 4000 m isobaths are shown. 
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Fig 2 Species accumulation curve for the 37 Åkratrawls conducted at all locations. 

Shaded areas indicate the standard deviation. 



Fig. 3 Micronekton crustacean 

predicted species richness (B. 

(gray line, in m) per stations.  

Micronekton crustacean numerical abundance (A. mean ± SE ind.10

species richness (B. Bootstrapped values  ±SE), and seamount summit

 

 

(A. mean ± SE ind.103 m-1), 

and seamount summit depth 
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Fig. 4 Cluster analysis dendrogramme based on square root transformed species density 

data, and characteristics of samples in significant clusters (SIMPROF): depth (m), Diel 

cycle (D/N/DW). 
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Fig. 5 Non-metric multidimensional scaling ordination (MDS) of root transformed 

density estimates in individual net samples. Overlayed are significant clusters ‘a-h’ (A), 

resulting from the SIMPROF classification analysis (see text for explanation), 

hydrographic zone (B), and seamount presence (yes or no, C).  
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Fig. 6 Species assemblage composition (averaged amongst cod-ends; assemblage ‘d’, 

‘c’, ‘h’) and latitudinal extend of assemblage.  

 

Fig. 7 Relationship between Bray-Curtis index of similarity and distance between 
individual samples on seamounts. 
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Table 1 Trawl activity on the R/V Fridtjof Nansen Cruise 2009-410 
 

Stations Latitude 
(deg S) 

Longitude Depth (m), Day, Night, Dawn 5(D,N, DWN) Hydrographic region 
(Kostianov, et al. 2004): 
Tropical (TR), Subtropical 
convergence (STC), sub-
Antarctic front (SA) 

Target location

2 26.94 56.23 50D, 300D, 600D, 800D TR Off-Ridge 1

4 32.72 57.29 700D, 400D+, 700N, 400N, 740DW* TR Atlantis Bank

5 36.86 52.05 750D, 400D, 720N, 400N, 500N*, 750DW* STC Sapmer Bank

6 37.95 50.37 700N, 400N, 930N, 700D, 420D  STC Middle of What

7 41.48 49.53 700N, 400N, 700D, 400D+ SA Off-Ridge 2

8 41.42 42.9 900D, 600D, 900N, 600N, 270DW* SA Coral Seamount

9 38.5 46.75 860N, 480N, 320DW*, 850D, 430D+, 560D* STC Melville Bank

10 31.64 42.83 700N, 1100N, 300DW, 1100D, 700D TR Walters Shoal

*Benthic trawl 
+Negative trawls 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2 Micronektic crustacean species sampled in association with the South West 
Indian Ocean Ridge (26-42 °S). Station locations given in Table 1 and Fig. 1. Column 
headings need sorting 
Species Authority Number 

of 
specime
ns 
collecte
d (Cy) 

ea_y
 Closest 

taxon to 
which 
relative 
catchabilit
y 
coefficient 

True 
catch
es 
(Cx) 

Latitudi
nal 
range 
(deg S) 

Longitudi
nal range 
(deg E) 

Stations at which 
species was recorded 



 34

exists 
(from 
Heino et al 
2011) 

Sergia 

prehensilis 

(Bate, 
1881) 

2092 0.90 Sergia sp 2306 27-38.5 57-42 2.800D, 4.700N, 
4.400, 4.740DW, 
5.750D, 5.400D, 
5.720N, 5.400N, 
5.500N, 5.750DW, 
6.700N, 6.400N, 
6.930N, 6.700D, 
8.900D, 8.600D, 
8.643N, 9.860N, 
9.480N, 9.850D, 
10.700N, 10.1100N, 
10.1100D, 10.700D 

Systellaspis 

debilis 

(A. 
Milne-
Edwards, 
1881) 
 

1392 0.75 S. debilis 1834 27-38.5 57-42 2.600D, 2.300D, 
2.50D, 2.800D, 
4.700N, 4.400N, 
4.740DW, 5.750D, 
5.400D, 5.720N, 
5.400N, 5.500N, 
5.750DW, 6.700N, 
6.400N, 6.930N, 
6.700N, 9.860N, 
9.480N, 9.850D, 
10.700N, 10.1100N, 
10.300N, 10.1100D, 
10.700D 

Parasergest

es armatus 

(Krøyer, 
1855) 
 

96 0.20 Sergestes 

sp 

457 27-38.5 57-42 2.600D, 4.700D, 
5.400D, 5.400N, 
5.750DW, 6.400N, 
6.700D, 7.400N, 
8.900N, 9.860N, 
9.850D,10.700N 

Acanthephy

ra 

quadrispino

sa 

Kemp, 
1939 

118 0.57 Acantheph

yra sp 

205 32.8-
41.5 

57.3-42.8 4.700N, 4.740DW, 
5.400N, 5.500DW, 
5.750N, 6.400N, 
6.700N, 6.930DW, 
8.600D, 
10.700N,10.1100D   

Oplophorus 

novaezelan

diae 

(De Man, 
1931) 

208 1.60 Oplophoru

s sp 

129 27-38.5 57-42 2.300D, 4.700N, 
4.400N, 4.740DW, 
6.700N, 6.400N, 
6.930N, 6.700D, 
6.420D, 7.700D, 
7.700N, 8.900D, 
9.860N, 9.480N, 
9.850D  

Eusergestes 

cf 

antarctica 

(Verescha
ka, 2009) 

25 0.20 Sergestes 

sp 

119 41.5 43 8.600D 

Funchalia 

villosa 

(Bouvier, 
1905)  

93 NA(
1) 

NA 93 27-38.5 57-42 2.800D, 2.50D, 
4.400N, 4.400N, 
4.700N, 4.740DW, 
6.700N, 6.400N, 
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6.420D, 9.480N, 
10.700N, 10.300N, 
10.1100D, 10.700D  

Petalidium 

folicea 

Bate, 
1881 

19 0.20 Sergestes 

sp 
90 38-42 50-43 7.700N, 8.900D, 

8.900N,9.860N 

Acanthephy

ra sica 

Bate, 
1888 

40 0.57 Acantheph

yra sp 

70  31-41 43-49 7.700N, 8.900D, 
8.900N, 10.1100D 

Gennadas 

gilchristi 

Calman, 
1925  

43 0.75 Gennadas 
sp 

57 31-42 50-43 6.700D, 8.900D, 
8.900N, 9.860N, 
9.850D, 10.700N 

Deosergeste

s 

corniculum 

(Krøyer, 
1855) 
 

384 8.40 S. 

corniculu

m 

46 27-38.5 57-42 2.600D, 2.300D, 
2.300D,4.700D, 
4.740DW, 5.400D, 
5.720N, 5.400N, 
5.750DW, 6.700N, 
6.400N, 6.930N, 
6.700D, 7.700N, 
8.900D, 9.860N, 
9.480N, 
9.850D,10.700N,10.1
100N, 
10.1100D,10.700D 

Pasiphaea 

diaphana 

Burukovs
ky & 
Romensk
y, 1980 

99 2.51 Pasiphaea 

sp 

39 27-38.5 57-42 6.700N, 6.930N(c.f), 
8.900N, 9.850D, 
5.720D(c.f), 
5.400N(c.f), 
5.750DW(c.f) 
9.480N(c.f), 10.700N 
(c.f), 4.700N (c.f), 
6.700N, 9.860N, 
10.300N, 10.1100D, 
4.740DW, 5.750DW  

Gnathopha

usia ingens 

(Dohrn, 
1870) 

39 NA(
1) 

NA 39 27-38.5 57-42 4.740DW, 5.750DW, 
6.700N, 6.930N, 
8.900D, 8.900N, 
9.860N, 9.850D, 
10.1100N, 10.300N, 
10.1100D, 10.700N 

Pasiphaea 

romenskyi 

Burukovs
ky, 1995 

73 2.51 Pasiphae 

sp 

29 33-42 58-50 7.700N(c.f), 4.400N, 
5.400N, 4.700N, 
4.400D 

Oplophorus 

spinosus 

(Brullé, 
1839) 
 

37 1.66 O. 

spinosus 
22 27-38.5 57-42 2.50D, 2.300D, 

2.800D, 4.700N, 
4.400N, 4.740DW, 
9.480N, 10.700N, 
10.300N, 10.700D 

Pasiphaea 

rathbunae 

(Stebbing, 
1914) 

50 2.51 Pasiphaea 

sp 

20 42 50-43 7.400N, 7.700N, 
8.900D, 8.900N, 

Gennadas 

kempi 

Stebbing, 
1914 

11 0.75 Gennadas 

sp 

14 41.5 43 8.900D, 8.900N 

Sergia 

potens 

(Burkenro
ad, 
1940) 
 

12 0.90 Sergia sp 13 38-42 47.5-43 8.900D, 8.900N, 
9.850D 
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Pasiphaea 

gelasinus  

Hayashi 
& 
Yaldwyn, 
1998 

27 2.51 Pasiphaea 

sp 

11 38.5 46.75 9.480N(c.f) 

Gennadas 

propinquus 

Rathbun, 
1906 

8 0.75 Gennadas 

sp 

11 37-38.5 47-52 5.400N, 6.400N, 
9.480N 

Notostomus 

auriculatus 

Barnard, 
1950 

7 0.66 Notostomu

s sp 

11 38-41.5 50-43 6.700N, 6.930N, 
8.900N, 9.850D 

Eupasiphae 

gilesii 

(Wood-
Mason, 
1892) 

11 NA(
1) 

NA 11 31-42 50-43 6.930N, 10.700N, 
8.900D, 8.900N, 
10.1100D 

Stylopandal

us richardi 

(Coutière, 
1905) 
 

9 NA NA 9 27-37 57-43.5 5.400D, 5.400N, 
2.300D, 10.700D, 
4.700N 

Pasiphaea 

barnardi 

Yaldwyn, 
1971 

21 2.51 Pasiphae 

sp 

8 41.5 43 8.900N, 8.643N 

Meningodor

a vesca 

(Smith, 
1886) 

4 0.52 M. vesca 8 38-32 50-43 6.700N, 6.930N, 
10.1100N, 10.1100D 

Parapasiph

ae 

sulcatifrons 

Smith, 
1884 

6 0.89 P. 

sulcatifron

s 

7 38-41.5 50-43 6.930N(c.f), 
8.900N(c.f), 
10.1100N, 1100D 

Funchalia 

danae 

Burkenro
ad, 1940 

4 NA(
1) 

NA 4 41.5 43 8.900D, 8.600D, 
8.900N 

Gennadas 

capensis 

Calman, 
1925  

3 0.75 Gennadas 

sp 

4 32-33 57.5-43 4.700N, 10.1100D 

Gnathopha

usia zoea 

Willemoe
s-Suhm, 
1875 

3 NA(
1) 

NA 3 32.8-
41.5 

57.3-42.8 4.700N, 8.900D, 
8.900N 

Gennadas 

brevirostris 

Bouvier, 
1905 

1 0.75 Gennadas 

sp 

1 37 52 5.400N 

Gnathopha

usia 

gracilis 

Willemoe
s-Suhm, 
1875 
 

1 NA(
1) 

NA 1 32 43 10.1100D 
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Table 3 PERMANOVA results for predicted total numerical abundance, species 
richness, and species assemblage composition on and off seamount, in different 
hydrographic regions, and at different times of day. 

Source d.
f 

Numerical abundance Predicted species 
richness 

Species assemblage 

  MS Pseudo
-F 

P(perm
) 

MS Pseudo
-F 

P(perm
) 

MS Pseudo
-F 

P(perm
) 

Seamount 
(Yes/No) 

1 0.8
0 

3.66 0.017 0.4
4 

2.73 0.019 1.2
9 

4.38 0.0009 

Hydrographi
c zone 

2 0.2
8 

1.27 0.093 1.3
2 

4.08 0.0001 0.5
9 

2.03 0.029 

Diel 2 0.3
1 

1.43 0.18 0.5
9 

1.83 0.051 0.3
6 

1.25 0.22 

Depth 2 0.4
1 

1.87 0.09 0.9
6 

2.96 0.0027 0.4
6 

1.59 0.089 

Residual 29 0.2
1 

  0.1
6 

  0.2
9 

  

Total 36          

           

 
 




