Un Atlas de Estrellas Variables TESS

Eng. M. Sc. Antonio Maria Perez Sept. 2022

Índice general

1. Resumen

2.	2. Introducción 5				
	2.1.	Estrellas variables	5		
		2.1.1. Variabilidad inducida por pulsación	8		
		2.1.2. Variabilidad debida a la rotación y a los eclipses	11		
		2.1.3. Variables eruptivas y cataclísmicas	13		
	2.2.	Catálogo VSX	16		
	2.3.	Archivo Mikulski para Telescopios Espaciales (MAST)	16		
	2.4.	LightKurve	17		
		2.4.1. Algoritmos de construcción de periodogramas	18		
	2.5.	kernel gaussiano para suavizado de series de tiempo	20		
	2.6.	Similarity Functions, algoritmos de comparación de curvas en espacios 2D	22		
	2.7.	Cartografiados	23		
		2.7.1. Cartografiados espaciales	23		
		2.7.2. Cartografiados desde la Tierra	26		
	2.8.	Observatorio espacial TESS	27		
3.	Dat	os, ejecución v análisis	31		
	2.1	Objetivo del proceso	21		
	J.1.		91		
	3.2.	Obtención de los datos	31		
		3.2.1. Obtención del Catálogo VSX	32		

3

		3.2.2.	Obtención de las Curvas de Luz desde MAST	33
	3.3.	Identif	icación de la mejor Curva de Luz	34
	3.4.	Suaviz	ado y refinado de la Curva de Luz	35
		3.4.1.	Suavizado por Kernel Gauss	36
		3.4.2.	Eliminación de puntos no relevantes	36
	3.5.	Alinea	miento por puntos de inflexión	37
	3.6.	Calcul	o de similitud entre Curvas de Luz	38
	3.7.	Agrup	amiento preliminar	39
	3.8.	Súper	agrupamiento	41
		3.8.1.	Eliminación de puntos no relevantes	41
		3.8.2.	Alineamiento por puntos de inflexión	41
		3.8.3.	Calculo de similitud entre Curvas de Luz	42
		3.8.4.	Comparación final	43
	3.9.	Vista g	general del proceso	46
4.	Res	ultado	5	48
4.	Res 4.1.	ultado Anális	s is estructural de los datos	48 48
4.	Res 4.1.	ultado Anális 4.1.1.	s is estructural de los datos	48 48 48
4.	Res 4.1.	ultado Anális 4.1.1. 4.1.2.	s is estructural de los datos	48 48 48 54
4.	Res [*] 4.1.	ultado Anális 4.1.1. 4.1.2. 4.1.3.	s is estructural de los datos	 48 48 48 54 56
4.	Res 4.1.	ultado Anális 4.1.1. 4.1.2. 4.1.3. 4.1.4.	s is estructural de los datos	 48 48 48 54 56 60
4.	Res [*] 4.1.	ultado Anális 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5.	is estructural de los datos	 48 48 48 54 56 60 63
4.	Res 4.1. 4.2.	ultado Anális 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Curvas	is estructural de los datos	 48 48 48 54 56 60 63 66
4.	Res 4.1. 4.2. 4.3.	ultado Anális 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Curvas Result	is estructural de los datos	 48 48 48 54 56 60 63 66 66
4.	Res 4.1. 4.2. 4.3.	ultado Anális 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. Curvas Result 4.3.1.	is estructural de los datos	 48 48 48 54 56 60 63 66 66 66 66

Estrellas pulsantes y rotatorias

		4.3.3.	Agrupación de estrellas variables	70		
		4.3.4.	Estrellas variables descartadas	70		
	4.4.	Result	ados obtenidos al evaluar el tipo HADS - Delta Scuti	70		
		4.4.1.	Gráficas de perfil de ruido	70		
		4.4.2.	Protoformas finales suavizadas	72		
		4.4.3.	Agrupación de estrellas variables	73		
		4.4.4.	Estrellas variables descartadas	73		
	4.5.	Result	ados obtenidos al evaluar el tipo DCEP - δ Cephei-Cefeidas $\hfill \hfill \ldots \hfill $	73		
		4.5.1.	Gráficas de perfil de ruido	73		
		4.5.2.	Protoformas finales suavizadas	75		
		4.5.3.	Agrupación de estrellas variables	76		
		4.5.4.	Estrellas variables descartadas	76		
	4.6.	Result	ados obtenidos al evaluar el tipo TTS - T Tauri	76		
		4.6.1.	Gráficas de perfil de ruido	76		
		4.6.2.	Protoformas finales suavizadas	78		
		4.6.3.	Agrupación de estrellas variables	78		
		4.6.4.	Estrellas variables descartadas	78		
	4.7.	Condi	ciones de solapamiento	79		
5.	Con	clusio	nes	80		
А.	. Ane	exos		83		
Bi	Bibliografía 147					
Li	Lista de Figuras					
Li	Lista de Tablas 158					

Capítulo 1

Resumen

Las estrellas variables son interesantes por varias razones diferentes, pero fundamentalmente se estudian porque son como laboratorios de física. Entender cómo cambia la luz de una estrella variable, ayudará comprender más sobre cómo funciona el universo. Los mismos procesos físicos fundamentales que operan en la Tierra (*la gravedad, la mecánica de fluidos, el electromagnetismo, la luz y el calor, la química y la física nuclear*) operan de la misma manera en todo el universo; por ende, repetir la medida física del brillo de una estrella una y otra vez en un momento concreto en el tiempo es la esencia de la fotometría de apertura, independientemente de qué dispositivo se use para realizar dichas mediciones.

Diferentes tipos de estrellas varían en diversas escalas de tiempo. Algunas pueden tardar semanas, meses o años en sufrir cambios que sean detectables. Por el contrario, otras necesitan días, horas, minutos, segundos o incluso mucho menos; algunas varían regularmente y se pueden ver patrones en las variaciones que se repiten en el tiempo; otras experimentan cambios caóticos que nunca se podrán predecir exactamente; algunas varían de la misma forma durante siglos; mientras que otras como las supernovas, pueden estallar rápidamente para luego desaparecer: nunca se verán otra vez.

Las estrellas variables poseen también distintos rangos de brillo aparente (cómo de brillantes parezcan), así como con una variedad de luminosidades intrínsecas (la cantidad de luz que realmente emiten); una estrella puede ser intrínsecamente luminosa, pero si está a miles de años luz de distancia, parecerá débil. Las variables también tienen un rango de amplitudes (cuánto cambia su luz en función del tiempo). Algunas pueden variar 10 magnitudes o más, lo cual es un valor de diez mil en flujo, jun gran cambiol; por el contrario otras varían 1 milimagnitud, o incluso menos, y sus variaciones serán imposibles de detectar. Hay innumerables variables entre ambos extremos, el cual se pretende cada día poder clasificar, de allí la necesidad de iniciar, mantener y refinar cada día un catalogo de estrellas variables. El árbol de variabilidad tiene cuatro niveles: 1- La distinción entre **variabilidad intrínseca y extrínseca**. 2-La separación en los principales tipos de objetos (asteroides, estrellas y AGN). 3- El origen físico de la variabilidad. Y 4- el nombre de la clase. **Extrínsecos**: La variabilidad se debe al eclipse de una estrella por otra, al efecto de la rotación estelar o eventos; se dividen en tres grupos: **Eclipsantes**, **Rotatorias** y **Microlente. Intrínseca**: la variabilidad es causada por los cambios en las propiedades físicas de las estrellas mismas; se dividen en cuatro grupos: **pulsantes**, **eruptivas**, **cataclísmicas** y de **rayos X**.

La diversidad de causales físicas que llevan a una curva de luz a representar el comportamiento de una estrella respecto a sus periodos, ya sea de tipo: rotacional, orbital o pulsante, determinará la morfología de la misma. Para ello es decisivo seleccionar la correcta misión o instrumento de cartografiado, con productos entregables que se ajusten con mejor precisión a los objetivos trazados; 1- La cadencia observacional, debe ajustarse a las escalas temporales que se quiere cubrir. 2- El tiempo de exposición, el cual use el mayor tiempo de exposición apropiado para el brillo total y la escala de tiempo de la

variación que se desea medir. 3- La magnitud estelar. y 4- Los filtros, para la porción del espectro que se quiera estudiar.

El objetivo principal del presente catalogo es estudiar los primeros cuatro grupos con mayor sensibilidad en sus periodos según la física que los rodea: 1- RR-RR Lyrae - Intrínseca/Pulsante. 2-HADS-Delta Scuti - Intrínseca/Pulsante. 3- DCEP- δ Cephei-Cefeidas - Intrínseca/Pulsante. Y 4- TTS-T Tauri - Extrínsecos/Rotatoria; con periodos promedios de: 0.2-1.2, 0.2, 0.2-100 y 12 días, respectivamente. Para lograr cartografiar los grupos y/o posibles pseudo grupos objetivo, fue necesario trabajar con los productos (curvas de luz) entregados por la misión TESS (Transiting Exoplanet Survey Satellite), lanzada en el 2018; con curvas de 20 / 120 segundos y tiempos de exposición acumulativo ~ 27 días; los datos de cadencia corta proporcionan una mayor resolución de tiempo para eventos de corta duración, contienen menos picos de alta amplitud a baja frecuencia y permiten una determinación más precisa de las amplitudes y fases de una pulsación o rotación estelar; dichas curvas, permitieron estudiar periodos entre 240 segundos y 14 días; rango que incluye el promedio de los periodos de tipo pulsante y rotatorio esperado para los grupos anteriormente mencionados. No se usaron las curvas de luz de 20 segundos a razón que fueron construidos para objetos astronómicos específicos (>27 sector) después de finalizada la misión en el año 2020; toda estrella con periodos superiores a 14 días, no poseían la suficiente información para la creación de un perfil morfológico y por ende conllevo a una no posible clasificación; para este tipo de casos sería necesario obtener curvas de luz de diferentes tipos de proyectos. Adicionalmente, TESS se centro en la búsqueda de estrellas cercanas de tipo G, K y M con magnitudes aparentes más brillantes que la magnitud 12; esto infiere que, todas los estrellas observadas en esta misión, están ubicadas esencialmente en los rangos promedio de 10 a 15 magnitudes.

Los datos descargados desde las diferentes fuentes de información y resultados obtenidos fueron: - Catalogo de VSX (The International Variable Star Index); del cual se adquirieron los índices de búsqueda inicial, para un total de **2.117.467** estrellas registradas y preclasificadas en **441** grupos. - Todos los productos de TESS, se encuentran en los repositorios de MAST (Mikulski Archive for Space Telescopes); del total de estrellas de VSX encontradas en MAST, después de los filtros de indeterminado (NaN) y de la no posible lectura por las herramientas de MAST (Lightkurve v2.3), solo **343.714** estrellas fueron las escogidas para las descargas respectivas de sus curvas de luz; **1.519.028** archivos de curvas de luz, fueron obtenidas, para un total de **928** Gigabytes de información; de este total, **16.895**, curvas de luz de **120 segundos**, fueron las seleccionadas para el análisis y desarrollo del presente proyecto (ver tabla 3); - **RR-RR Lyrae**, expuso un total de 447 estrellas, con resultados de **8 protoformas** finales, observables en la figura 54; - **HADS-Delta Scuti**, presento 106 estrellas, para **6 protoformas**, que se exhiben en la figura 56; - **DCEP-** δ **Cephei-Cefeidas**; para un total de 257 estrellas, con **5 protoformas**, que se pueden apreciar en la figura 58. Y - **TTS-T Tauri**, evidencio 314 estrellas, para un total de **4 protoformas**, que se pueden apreciar en la figura 60.

Capítulo 2

Introducción

2.1. Estrellas variables

Desde hace tiempo se sabe que las estrellas variables ofrecen una visión crucial de la estructura y la evolución estelar. Asimismo, el diagrama de Hertzsprung-Russell (HRD) proporciona una visión general de todas las etapas de la evolución estelar y, junto con su primo empírico, el diagrama color-magnitud (CMD), ha dado forma a la astrofísica estelar como ningún otro diagrama. Henrietta Leavitt (1908) fue una de las primeras en señalar el inmenso potencial del estudio de las estrellas variables en poblaciones, donde las incertidumbres de distancia no introducían una dispersión significativa. Poco después, Leavitt and Pickering (1992), descubrieron la relación periodo-luminosidad de las variables Cefeidas, que se ha convertido en una piedra angular de la física estelar y la cosmología. Parece que, Eggen (1951) en su Fig. 42 fue el primero en utilizar las observaciones (fotoeléctricas) de estrellas variables (en este caso, Cefeidas clásicas) para restringir las regiones en las que se producen Cefeidas en el HRD; estas regiones se denominan hoy en día franjas de inestabilidad. Eggen ilustró además cómo las Cefeidas cambian su ubicación en el diagrama color-magnitud absoluta (CaMD) durante el curso de su variabilidad, desarrollando así un CMD dependiente del tiempo para las estrellas variables. Más tarde, Kholopov (1956) y Sandage (1958) ilustraron las distintas ubicaciones de las estrellas variables en el CMD utilizando las estrellas Cefeidas clásicas situadas dentro de los cúmulos estelares. Muchos estudios de variabilidad (terrestres y espaciales) han aprovechado el poder de identificar estrellas variables en poblaciones estelares a distancias similares, por ejemplo, en cúmulos estelares o galaxias cercanas como las Nubes de Magallanes.

La variabilidad estelar comprende una gran variedad de características observables que se deben a diferentes orígenes físicos. La figura 1, muestra el árbol de variabilidad actualizado (*Eyer and Mowlavi* (2008)), que proporciona una útil visión general de los distintos tipos de variabilidad y sus causas conocidas. El árbol de variabilidad tiene cuatro niveles: 1- La distinción entre variabilidad intrínseca y extrínseca. 2- La separación en los principales tipos de objetos (asteroides, estrellas y AGN). 3- El origen físico de la variabilidad. Y 4- el nombre de la clase. En este documento, se sigue la distinción clásica de las diferentes causas de los fenómenos de variabilidad (véase la tabla 1): variabilidad inducida por pulsación, rotación, erupción, eclipses y eventos cataclísmicos.

Variabilidad	Tipo	Referencia
Pulsantes	α Cygni	Hip97, VSX16
	β Cephei	PDC05
	Cepheid	ASA09, Hip97, INT12
	δ Scuti	ASA09, Hip97, JD07, Kep11b, Kep11c,
		SDS12
	γ Doradus	FKA16, Kep11b, Kep11c, VSX16
	Variable de largo plazo	ASA12, Hip97, INT12, Kep11b, NSV04
	PV Telescopii	VSX16
	Estrella Am rápidamente oscilante	VSX16
	Estrella Ap de rápida oscilación	VSX16
	RR Lyrae, modo fundamental (RRab)	ASA09, ASA12, Cat13a, Cat13b,
		Cat14b, Cat15, Hip97, INT12, LIN13,
		NSV06, VFB16, VSX16
	RR Lyrae, primer sobretono (RRc)	ASA09, ASA12, Cat13b, Cat14b,
		Hip97, INT12, Kep11b, LIN13, MA14,
		VFB16, VSX16
	RV Tauri	ASA12, Hip97, VSX16
	Estrella B de pulsación lenta	IUE03, Hip 97 , PDC05
	SX Phoenicis	ASA12, Hip97, VSX16
	Cefeida de tipo II	ASA12, Cat14b, Hip97, VSX16
	V361 Hya (también CE 14026)	VSX16
	V1093 Ella (también PG 1716)	VSX16
	ZZ Ceti	VSX16
Rotaciónales	$\alpha 2$ Canum Venaticorum	Hip97, VSX16
	Binario con reflexión	VSX16
	POR Draconis	VSX16
	Elipsoidal	ASA12, Cat14b, Hip97, Kep11b,
		VSX16
	FK Comae Berenices	Hip97
	Rotacion de manchas	Kep15b
	RS Canum Venaticorum	ASA12, Cat14b, Hip97, VSX16
	Variaciones de tipo solar	HATIU H: 07 MCN16
	SX Arietis	$\frac{\text{Hip97, VSX16}}{\text{AGA00, G-114}, \text{Hip07, IN10, NGV16}}$
Ecupsantes	EA, β Persei (Algol)	ASA09, Cat14b, Hip97, LIN13, VSX16
	EB, p Lyrae	ASA09, Cat14b, $H1p97$, $L1N13$, $VSA10$
	Ew, w Orsae Majoris	
Fruntivas	Estrolla de línea de emisión de tipo B	3515 ASA12 VSX16
Eruptivas	Estrella T Tauri clásica	VSX16
	Bengalas (IIV BV TTS)	Ken11a Ken13 Ken15a MMT15
	\sim Cassioneiae	Hip97 VSX16
	B Coronae Borealis	VSX16
	S Doradus	ASA12 INT12
	Estrella T Tauri (TTS)	VSX16
	UV Ceti	INT12. VSX16
	Estrella T Tauri de líneas débiles	VSX16
	Wolf-Rayet	INT12, VSX16
Cataclísmicas	Variable cataclísmica (genérica)	Cat14a, OGL15, VSX16
	U Geminorum	INT12, VSX16
	Z Andromedae	INT12, VSX16

Tabla 1: Estrellas en función del tipo de variabilidad. Gaia Collaboration and Eyer (2019).

Figura 1: Versión actualizada del árbol de variabilidad presentado en Eyer and Mowlavi (2008), separado según la causa de los fenómenos de variabilidad: variabilidad inducida por pulsaciones, rotación, erupciones, eclipses y eventos cataclísmicos. Gaia Collaboration and Eyer (2019).

2.1.1. Variabilidad inducida por pulsación

Este tipo de variaciones son debidas a la expansión y contracción de las capas externas de las estrellas. Estas variables son gigantes o supergigantes que han alcanzado una etapa inestable en su evolución. A medida que las estrellas evolucionan hacia la secuencia principal, comienzan a quemar hidrógeno en sus núcleos, produciendo energía. Una vez que la energía se lleve hacia la superficie, el transporte de calor puede causar que las estrellas se expandan y contraigan, lo que hace que su brillo varíe. El estudio de esta variabilidad estelar se llama astrosismología y nos informa sobre lo que sucede dentro de las estrellas. Dichas variabilidades u oscilaciones de una estrella pulsante son el resultado de ondas sonoras o acústicas que resuenan en el interior estelar. Estas ondas, implicadas en los modos radiales de pulsación estelar, son esencialmente ondas estacionarias (ondas en las cuales ciertos puntos, llamados nodos, permanecen inmóviles) similares a las que ocurren en el tubo de un órgano que está abierto en uno de sus extremos. La estrella y el tubo del órgano pueden sustentar varios modos de oscilación. La onda estacionaria, para cada modo, tiene un nodo al final (el centro de la estrella) donde los gases no se mueven, y un antinodo al otro extremo, que para el caso de la estrella seria su superficie. En el modo fundamental los gases se mueven en la misma dirección en cada punto de la estrella. Sí hay un sólo nodo entre el centro y la superficie, es el llamado primer armónico, con los gases moviéndose en direcciones opuestas a ambos lados del nodo, y para la instancia del segundo armónico habría en consecuente dos nodos. Para los modos radiales el movimiento del material estelar ocurre principalmente en las regiones superficiales. Adicionalmente, el flujo de energía radiativo del interior estelar podría suministrar energía a las oscilaciones sí éstas se produjeran en regiones profundas de alta densidad. Pero éste no es el caso, las oscilaciones ocurren en las capas más exteriores y menos densas. Sin embargo, en estas regiones existen las llamadas zonas de ionización parcial en las que el hidrógeno y el helio están parcialmente ionizados, en estas zonas la opacidad de la materia se hace mayor cuando el gas se comprime. Al aumentar la temperatura el hidrógeno y el helio se ionizan más y toda la energía se utiliza en esta ionización, aumentando la opacidad de la materia al disminuir el transporte de energía. Cuando ocurre la expansión el proceso es al contrario, disminuye la opacidad, el hidrógeno y el helio se recombinan y emiten la energía acumulada en la compresión. Luego estas zonas de ionización parcial sirven para almacenar energía y cederla manteniendo las oscilaciones, pero es necesario que su localización en la estrella sea la adecuada, es decir, no pueden ser muy profundas porque la pulsación no llega hasta allí, ni muy exteriores porque no contiene masa suficiente para suministrar la energía necesaria para mantener la pulsación. Por ello no todas las estrellas pulsan, sino sólo aquellas que tienen las capas de ionización parcial a una profundidad adecuada y esto explicaría porque la pulsación estelar se observa sólo en una de cada cien mil estrellas.

Por otra parte el período de pulsación corresponde a una frecuencia propia de la estrella es como un diapasón vibrando con una frecuencia característica cuando se golpea, una estrella tiene una frecuencia fundamental de vibración. Además de la frecuencia fundamental otras frecuencias, sobre tonos, son posibles. La variación de brillo observado puede ser entendida como una superposición de todos estos tonos de vibración. La principal causa de la variación de la luz es la variación periódica de la temperatura superficial, representada en el diámetro de la estrella que puede llegar a duplicarse durante la pulsación, aunque generalmente los cambios suelen ser de menor tamaño. La causa principal de la variación de luminosidad es la variación periódica de la temperatura superficial, ya que la luminosidad depende de la cuarta potencia de la temperatura efectiva,

$L\alpha T_{Eff}^4$

 T_{Eff}

, así un pequeño cambio en la

conduce a una gran variación de magnitud. Por otro lado, alrededor de 1920, *Eddington* demostró que el período de pulsación P es inversamente proporcional a la raíz cuadrada de la densidad media

 $P\alpha\rho^{-1/2}$

Un Atlas de Estrellas Variables

, es la llamada relación período-densidad, que explica porque el período de pulsación disminuye, conforme nos movemos hacia abajo en la banda de inestabilidad del diagrama H-R.

Las figuras: 2 y 3, se distinguen varias clases de estrellas pulsantes, entre las más conocidas son: 1) Las variables de periodo largo, que son estrellas gigantes rojas que pueblan las regiones más rojas y brillantes del diagrama de color y magnitud absoluta (CaMD). Entre ellas se encuentran; las Miras, las variables semirregulares, las variables irregulares lentas y las gigantes rojas de pequeña amplitud; 2) α Cygni, que son estrellas supergigantes luminosas que pulsan en modos no radiales. Se ven especialmente afectadas por la extinción interestelar ya que son estrellas jóvenes y masivas que residen en el disco galáctico, por lo que su posición en la Fig. 4 debe tratarse con precaución; 3) δ Scuti, son estrellas de la población I de tipos espectrales A0 y F6 con periodos cortos (<0,3 d) que pulsan dominantemente en modos de presión, pero que también pueden revelar modos gravitatorios de bajo orden y de poca amplitud; 4) Las estrellas SX Phoenicis, Son estrellas subenanas pertenecientes a la Población estelar II evolucionando fuera de la secuencia principal. De tipo espectral A2 a F5, son más pequeñas que el Sol, encontrándose habitualmente en cúmulos globulares. Su período de pulsación está en el rango de 0.04 a 0.8 días con una amplitud de aproximadamente 0.7 magnitudes; 5) Las estrellas γ Doradus, son estrellas con tipos espectrales A y F con periodos de 0,3 a 3 d que pulsan dominantemente en modos gravitatorios de alto orden, pero que también pueden revelar modos de presión de baja amplitud; 6) Las estrellas RR Lyrae, son estrellas de la rama horizontal de la población II con periodos de 0,2 a 1 d que pulsan en modo de presión. Las estrellas RR Lyrae de tipo C son más azules que las de tipo ab; 7) Las estrellas B de pulsación lenta (SPB), que son pulsadores multiperiódicos no radiales de modo gravitatorio de tipo espectral B con periodos típicamente en el rango de 0,4 a 5 d; 8) Las estrellas β Cephei, que son estrellas no supergigantes de tipo espectral tardío-O a temprano-B, con modos dominantes de gravedad y de presión de bajo orden que presentan períodos en el rango de 0,1 a 0,6 d. Se ha comprobado que varias de ellas también presentan modos gravitatorios de alto orden y baja amplitud como en las estrellas SPB (por ejemplo, Stankov and Handler (2005)). Las estrellas β Cephei están situadas en el disco galáctico, por lo que su posición en el CaMD se ve fácilmente afectada por el extinción; 9) Las cefeidas clásicas (prototipo δ Cephei), son estrellas evolucionadas de la población I (jóvenes de masa intermedia) que presentan pulsaciones radiales en modo p con periodos de aproximadamente 1-100 d. Las cefeidas pueden verse muy afectadas por la extinción interestelar, ya que residen en el disco galáctico y pueden ser observado a grandes distancias; 10) Las cefeidas de tipo II, que son estrellas de la población II que pulsan en modo p y que históricamente se consideraban idénticas a las cefeidas clásicas. Las cefeidas de tipo II constan de tres subclases diferentes (separadas por el periodo) que se conocen comúnmente como estrellas BL Herculis, W Virginis y RV Tauri. Sus escenarios evolutivos difieren significativamente, aunque las tres subclases definen conjuntamente una estrecha relación periodo-luminosidad; 11) Las estrellas PV Telescopii, que incluyen las subclases V652 Her, V2076 Oph y FQ Aqr (Jeffery (2014)). Se trata de raras estrellas supergigantes con déficit de hidrógeno que cubren una amplia gama de tipos espectrales y presentan complejas variaciones de luz y de velocidad radial; 12) Las estrellas Am y Ap de oscilación rápida, que son estrellas A químicamente peculiares que presentan modos de presión multi periódicos no radiales en un rango de periodo de unos 5-20 min; 13) Las estrellas V361 Hydrae (o EC 14026), son estrellas subenanas B en la rama horizontal extrema que pulsan en modos de presión con periodos muy cortos de aproximadamente entre 1-10 min; 14) Las estrellas V1093 Her (o PG 1716), son estrellas subenanas B en la rama horizontal extrema que pulsan en modos gravitatorios con periodos de unas 1-3 h; 15) Las estrellas ZZ Ceti, son enanas blancas que presentan pulsaciones rápidas no radiales en modo gravitatorio con períodos de 0.5 a 25 minutos.

Figura 2: Diagramas Hertzsprung-Russell (H-R), para estrellas variables Delta Scuti y Cefeidas ANTA-RES (2022), Tropea (2016).

Figura 3: Diagrama de color y magnitud absoluta (CaMD) de Estrellas variables pulsantes conocidas Gaia Collaboration and Eyer (2019). Para la referencia de los filtros véase la figura 8.

2.1.2. Variabilidad debida a la rotación y a los eclipses

Este tipo de clasificación esta descrito por ser estrellas variables extrínsecas, las cuales su variabilidad es causada por propiedades externas, como la rotación o los eclipses. Existen dos subgrupos dentro de esta categoría: 1) Binarias eclipsantes: aquellas en las cuales, según se ven desde la Tierra, una estrella del par eclipsa a la otra ocasionalmente debido a su traslaciones orbitales; 2) Variables rotantes: aquellas cuya variabilidad es causada por algún fenómeno relacionado con su propia rotación. Se dan casos de estrellas con manchas solares de proporciones extremas, que afectan su brillo aparente, o estrellas que, por tener una velocidad de rotación muy elevada, tienen forma elipsoidal. La figura 4 muestra las estrellas cuya variabilidad es inducida por la rotación. Hay tres categorías principales: estrellas manchadas, estrellas deformadas por interacciones de marea y objetos cuya variabilidad se debe a la luz reflejada por una compañera. Siguiendo la nomenclatura de la literatura (tabla 1), se enumeran las siguientes clases de variabilidad por separado: 1) α 2 Canum Venaticorum, son estrellas Bp y Ap (p— Peculiaridad no especificada, estrella peculiar) MS variables altamente magnéticas; 2) estrellas manchadas, muestran la variabilidad de la modulación rotacional de las manchas; 3) estrellas BY Draconis, son estrellas de la secuencia principal con tipos espectrales tardíos (K y M) que presentan curvas de luz casi periódicas debido a manchas y actividad cromosférica; 4) estrellas RS Canum Venaticorum, son estrellas manchadas cuya variabilidad inducida por la rotación suele ir acompañada de otros fenómenos, como eclipses y llamaradas; 5) Variables elipsoidales, muestran variabilidad (sin eclipses) debido al movimiento orbital de una estrella que es distorsionada por una compañera estelar; 6) estrellas de tipo solar con actividad magnética. Las estrellas de este tipo en la figura 4 se limitan a un catálogo centrado en las Pléyades, lo que explica la fina distribución de la secuencia principal. Podemos ver un indicio de la secuencia binaria; 7) SX Arietis, que son similares a las estrellas $\alpha 2$ Canum Venaticorum pero tienen una temperatura más alta; 8) sistemas binarios con un fuerte componente de reflexión en la curva de luz con la re-radiación de la luz de la estrella más caliente desde la superficie de la compañera más fría; 9) estrellas FK Comae Berenices, son estrellas gigantes manchadas.

Por otra parte la figura 5 muestra los sistemas binarios eclipsantes, así como las estrellas que han sido identificadas como anfitrionas de exoplanetas a través del método de tránsito. Los símbolos distinguen las siguientes subclases: 1) binarias eclipsantes de tipo EA, el prototipo es Algol. Binarias con componentes esféricos o ligeramente elipsoidales con curvas de luz bien separadas y casi constantes entre los mínimos. Los mínimos secundarios pueden estar ausentes; 2) binarias eclipsantes de tipo EB, el prototipo es β Lyrae. Binarias con curvas de luz continuamente cambiantes y con inicios o finales de eclipses no claramente definidos, con mínimos secundarios siempre presentes, pero pueden ser mucho menos profundos que los mínimos primarios; 3) binarias eclipsantes de tipo EW, el prototipo es W Ursae Majoris, inicios y finales de los mínimos no están bien definidos; 4) estrellas que se sabe que presentan tránsitos exoplanetarios en la literatura. Basándonos en la figura 5, observamos que las estrellas EA están presentes en casi todo el CaMD. Hay grupos de estrellas EB que son excesivamente luminosas en comparación con la secuencia de enanas blancas, que probablemente sean estrellas enanas blancas con compañeros de la secuencia principal. Además, la mayoría de las estrellas que albergan exoplanetas están identificadas por la misión Kepler, y sólo muy pocos de ellos tienen tránsitos detectables por la sonda espacial Gaia.

Figura 4: Igual que la figura 3, pero para los tipos de variabilidad inducidos por la rotación Gaia Collaboration and Eyer (2019). Para la referencia de los filtros véase la figura 8.

Figura 5: Igual que la figura 3, pero para las binarias eclipsantes (de tipo EA, EB y EW) y las estrellas anfitrionas conocidas que muestran tránsitos de exoplanetas. Las binarias eclipsantes pueden estar en cualquier lugar del CaMD, lo que explica que sean la principal fuente de contaminación de las estrellas pulsantes Gaia Collaboration and Eyer (2019). Para la referencia de los filtros véase la figura 8.

2.1.3. Variables eruptivas y cataclísmicas

La luminosidad de las variables eruptivas varía a causa de violentos procesos que tienen lugar en la cromosfera y en la corona estelar. Estas variaciones de luminosidad son causadas por erupciones y en algunos casos pueden provocar la expulsión de las capas más externas de la estrella hacia el espacio circundante. Por otra parte las Cataclísmicas están formadas por dos estrellas: una enana blanca primaria y una secundaria que le transfiere su masa al llenar su lóbulo de Roche. Actualmente se conocen más de 1600 sistemas de VC (variables Cataclísmicas). la figura 6 presenta los siguientes tipos de estrellas variables eruptivas: 1) las estrellas S Doradus, también conocidas como variables azules luminosas, son estrellas masivas evolucionadas que presentan variaciones fotométricas importantes e irregulares que se deben a una fuerte pérdida de masa por un viento impulsado por la radiación; 2) las estrellas R Coronae Borealis, que son supergigantes ricas en carbono que emiten material oscurecedor y, en consecuencia, tienen drásticas fases de oscurecimiento rápido; 3) las estrellas Wolf-Rayet (WR), que son el núcleo de helio casi desnudo que queda de las estrellas evolucionadas originalmente de muy alta masa. Presentan fuertes líneas de emisión de hidrógeno, nitrógeno, carbono y oxígeno. Las estrellas WR sufren una pérdida de masa muy rápida y pueden estar muy atenuadas por el polvo; 4) las estrellas γ Cassiopeiae y las estrellas de tipo espectral B que presentan líneas de emisión de hidrógeno, es decir, las estrellas Be. Se trata de estrellas de cáscara emisoras. Durante sus fenómenos "eruptivos", se vuelven más brillantes; 5) estrellas de destello (Flare stars), que son estrellas magnéticamente activas que muestran destellos. Esta categoría incluye muchos subtipos de estrellas magnéticamente activas, como las estrellas UV tipo Ceti, RS tipo CVn y T Tauri; 6) estrellas Ceti UV, que suelen ser enanas K-M que muestran llamaradas (Flare); 7) estrellas T Tauri (clásicas y de líneas débiles), son estrellas jóvenes de la pre-secuencia principal que se acrecionan fuertemente (clásicas) o muestran pocos signos de acreción (de líneas débiles). Estas estrellas muestran una variabilidad que se debe a la actividad magnética (por ejemplo, modulación rotacional y llamaradas) o a la acreción (variaciones cuasi-periódicas, episódicas o estocásticas), además de las pulsaciones que también pueden darse en algunas de ellas.

Figura 6: Igual que la figura 3, pero para los tipos de variabilidad eruptiva. Esta región está poblada por estrellas pulsantes, como las estrellas γ Doradus y δ Scuti, presentadas en la figura 3. Además, las estrellas WR, las estrellas R Coronae Borealis y las estrellas S Doradus se encuentran entre las estrellas más luminosas de este diagrama Gaia Collaboration and Eyer (2019). Para la referencia de los filtros véase la figura 8.

Adicionalmente, en la figura 7 se ilustra tres tipos de variables cataclísmicas: 1) variables cataclísmicas (clase genérica), típicamente novas y novas enanas que incluyen una enana blanca. Muchas de estas estrellas se sitúan entre las secuencias principal y de la enana blanca; 2) las estrellas U Geminorum, que son novas enanas que en principio consisten en una enana blanca con una compañera enana roja que experimenta transferencia de masa; 3) las estrellas Z Andromedae, que son estrellas binarias simbióticas compuestas por una gigante y una enana blanca. Se puede encontrar más información sobre las variables cataclísmicas, por ejemplo, en Warner (2003) y Hellier (2001).

Figura 7: Igual que la figura 3, pero para las variables cataclísmicas y algunos subtipos Gaia Collaboration and Eyer (2019). Para la referencia de los filtros véase la figura 8.

Figura 8: Filtros usados en la misión GAIA (DR2) SVO (2022).

2.2. Catálogo VSX

VSX es uno de los catálogos más completos de estrellas variables, fue concebido y creado por el astrónomo aficionado Christopher Watson en respuesta a los deseos específicos de los miembros del Chart Team y el Grupo de trabajo de comparación de bases de datos de estrellas de la Asociación Estadounidense de Observadores de Estrellas Variables (AAVSO), y la necesidad percibida más importante de poder tener un centro global de acceso de toda la información actualizada al minuto sobre estrellas variables, tanto establecidas como sospechosas. El sitio web de VSX fue diseñado para ser el medio en línea a través del cual los datos de estrellas variables se ponen a disposición del público en general, a través del cual se mantienen, revisan y comentan los datos.

VSX sirve para hacer la planificación previa y definir un listado de objetivos. La información entregada de los objetos consultados incluye: 1) tipo de variable; 2) coordenada; 3) amplitud o rango de variación de su magnitud; 4) Periodo; 5) referencias. Entre otras, estrellas de referencia con el objeto de poder comparar su brillo con el brillo de la variable y así poder deducir su magnitud. Por otra parte, mantener VSX actualizado y lleno de los últimos hallazgos corregidos, las personas registradas y aprobadas revisan y revisan constantemente los metadatos, siempre citando fuentes para cualquier detalle nuevo y documentando completamente las razones detrás de cualquier adición o cambio. Al mantener un estricto control de versiones en todos los registros, el historial del conocimiento recopilado en cada estrella variable puede ser rastreado, validado y seguido por aquellos que confían en que esta información es precisa y verdadera.

VSX, clasifica los tipos de estrellas variables según tipos reconocidos en la literatura y tipos utilizados en listas publicadas en otros estudios y encuestas, para ello tenemos: 1) Extrínseco, la variabilidad se debe al eclipse de una estrella por otra o al efecto de la rotación estelar. Se dividen en tres grupos: A) eclipsantes, el plano orbital coincide con nuestra línea de visión; B) Rotativas, debido a las manchas, reflexión o forma elipsoidal; C) eventos de microlentes. 2) Intrínseco, variación debida a cambios físicos en la estrella o sistema estelar. Se dividen en cuatro grupos: A) pulsante, contracción y expansión; B) eruptivo, eyección de masa o actividad cromosférica; C) cataclísmico, sistemas binarios interactivos con enanas blancas o estrellas que muestran estallidos de gran amplitud; D) X-ray, sistemas binarios con estrellas de neutrones o agujeros negros. Para mayor información de los tipos de variables dentro de los grupos principales ver la tabla 6 de los anexos y/o visitar el siguiente sitio web: VSX (2022).

2.3. Archivo Mikulski para Telescopios Espaciales (MAST)

El Archivo Mikulski para Telescopios Espaciales (MAST) es un proyecto financiado por la NASA para apoyar y proporcionar a la comunidad científica una variedad de archivos de datos astronómicos, con principal enfoque en los rangos del óptico, ultravioleta e infrarrojo cercano. Se encuentra ubicado en el Instituto de Ciencias del Telescopio Espacial (STScI - Space Telescope Science Institute) en Baltimore, Maryland, EEUU, y es una de las bases de datos astronómicas más grandes del mundo. El 5 de abril de 2012, el archivo fue nombrado por la NASA en honor a la Senadora Barbara A. Mikulski, en reconocimiento a su lucha política por la ciencia y la investigación a lo largo de su carrera política.

MAST contiene los datos de una serie de misiones dentro de los cuales se encuentran incluidos el Hubble Space Telescope (HST), Kepler, K2, James Webb Space Telescope (JWST) y Transiting ExoPlanet Survey Satellite (TESS), entre otros. TESS es el instrumento que ha hecho un sondeo de todo el cielo en fotometría de alta precisión durante una misión de dos años, con entregas de curvas de luz calibradas en cadencias aproximadas de 20, 120, 600 y 1800 segundos, por tal motivo y para efectos del desarrollo del presente documento, las curvas de luz en alta y baja resolución del catalogo de TESS, fueron consultadas y usadas con referencia a los registros estelares descritos en el catalogo de VSX.

MAST posee una serie de herramientas para poder consultar e interactuar con los datos TESS y/o otras misiones, en especial Kepler y K2 (ver MAST (2022)). Dichas herramientas de búsqueda son; 1) **MAST** Portal: Tiene la capacidad de descargar curvas de luz, archivos de píxeles y de validación para los objetivos requeridos. Además, se pueden descargar imágenes del fotograma completo para algunos CCD, realiza pequeñas búsquedas dentro del TIC o CTL y puede llegar a encontrar datos de otras misiones para el objetivo solicitado.; 2) exo.MAST: Puede encuentrar datos en MAST (incluyendo TESS) para planetas conocidos o TCE, emparejados con la fase orbital. Dibuja curvas de luz según el Plot sector-stitched DV y puede llegar a acceder a parámetros de exoplanetas con referencias.; 3) TESScut: Crea recortes de píxeles de series temporales a partir de las imágenes del fotograma completo de TESS y puede llegar a averiguar en qué sectores/cámaras/detectores se observó un objetivo.; 4) TESS Bulk **Downloads:** Descarga todas las curvas de luz o archivos de píxeles de destino para un sector o programa GI determinado; descarga todas las imágenes de fotograma completo para un sector determinado; Puede llegar a descargar la tabla completa de TCE para un sector determinado y descargar versiones de TIC y CTL. 5) Amazon Web Services: Accede a todos los datos TESS disponibles públicamente directamente en la nube de AWS. Imágenes de cuadro completo calibradas y sin calibrar, archivos de curva de luz y píxel objetivo de cadencia de dos minutos, y co-trending basis vectors y cubos FFI disponibles en Amazon S3. También accesible usando astroquery. mast. 6) MAST Astroquery: Busca y recupera datos de TESS mediante programación en función de una lista de coordenadas o nombres de objetivos e interactúa con catálogos de datos de observación, TIC y CTL en los programas que se escriba. Ademas, Astroquery es un conjunto de herramientas para consultar bases de datos y formularios web astronómicos. Por otro lado, este ultimo es usado como parte de las dependencias de software que requiere la principal librería (*Lightkurve*) usada en el desarrollo del presente proyecto.

2.4. LightKurve

LightKurve (2022) version 2.3, es un paquete amigable con **Python**, ofrece una forma fácil de uso para el análisis de datos en series temporales sobre el brillo de planetas, estrellas y galaxias. El paquete se enfoca en apoyar la ciencia con los telescopios espaciales **Kepler** y **TESS** de la NASA, pero también puede usarse para analizar las curvas de luz obtenidas por los telescopios de uso personal. Lightkurve tiene como objetivo reducir las barreras, promover las mejores prácticas, reducir los costos y mejorar la fidelidad científica al proporcionar herramientas y tutoriales accesibles de Python en código abierto para la astronomía en el dominio del tiempo. **Lightkurve** requiere de los siguientes dependencias de software: 1)Astropy; 2)Numpy; 3)Scipy; 4)Matplotlib; 5)Astroquery; 6)Bokeh (para widgets interactivos); y 7)Pandas. **Lightkurve**, ofrece adicionalmente, soporte mejorado para TESS de tres formas importantes: A)*LightCurve objects*, ahora son tipos especializados de objetos *AstroPy Table*, lo que los convierte en un contenedor más genérico para las curvas de luz de cualquier telescopio. B) *Data search y download* functions, ahora son compatibles con todas las curvas de luz de TESS y de Kepler disponibles en MAST, incluidas las creadas por los community pipelines. Y C) The noise removal tools, ahora permiten a los usuarios realizar correcciones personalizadas de una manera muy similar a los del official TESS pipeline.

Las anteriores habilidades junto con las siguientes funciones en orden logico de aplicación, fueron de vital importancia para el tratamiento de los datos (curvas de luz) usados durante el desarrollo del presente proyecto: 1)lightkurve.search_lightcurve, Esta función de Busqueda (2022) obtiene una tabla de datos que enumera los archivos de curvas de luz que caen dentro de una región del cielo centrada alrededor de la posición del objetivo y dentro de un cono de un radio dado. Si no se proporciona ningún valor para el radio, solo se devolverá un solo objetivo. 2)lightkurve.SearchResult.download, Descarga (2022) y abre el primer producto de datos en el resultado de búsqueda, si hay varios archivos en SearchResult.table, solo se descargará el primero. 3)lightkurve.LightCurve.normalize, devuelve una versión normalizada de la curva de luz. La curva de luz Normalizada (2022) se obtiene dividiendo los atributos del objeto flux y flux_err por el flujo medio. Opcionalmente, el resultado se multiplicará por 1e2 (si unidad='porcentaje'),

1e3 (unidad='ppt') o 1e6 (unidad='ppm'). **5)lightkurve.periodogram.Periodogram**, clase genérica para representar un espectro de potencia (frecuencia vs datos de potencia). La clase Periodograma (2022) representa un espectro de potencia, con valores de frecuencia en el eje x (en cualquier unidad de frecuencia) y valores de potencia en el eje y (en unidades de flujo^2 / [unidades de frecuencia]). A partir del periodograma, se calcula el Max_Power que equivale al periodo de la estrella; es importante mencionar, que en muchas ocasiones el periodo calculado por este método difiere significativamente con el periodo registrado en la base de datos de *VSX*. **6)lightkurve.LightCurve.fold**, devuelve un objeto FoldedLightCurve Plegado (2022) en un período y una época. Este método es idéntico al método fold() de AstroPy, excepto que devuelve un objeto FoldedLightCurve que ofrece métodos de trazado convenientes. Y por ultimo el objeto LightCurve, que representa todos los atributos y metodos de la curva de luz. La clase LightCurve es una extensión del objeto TimeSeries de AstroPy, que a su vez extiende la tabla de AstroPy. En comparación con una tabla genérica, los objetos LightCurve (2022) imponen la presencia de tres columnas de datos especiales: tiempo, flujo y flux_err. Esto permite que un objeto LightCurve ofrezca una variedad de métodos que son específicos para trabajar con datos de series de tiempo basados en flujo.

2.4.1. Algoritmos de construcción de periodogramas

Los algoritmos actualmente implementados para computar periodogramas a partir de curvas de luz son: 1)Lomb-Scargle (Scargle (1982) - Zechmeister and K\ürster (2009)), es una variación de la transformada discreta de Fourier (DFT), en la que una serie temporal se descompone en una combinación lineal de funciones sinusoidales. La base de las funciones sinusoidales transforma los datos del dominio del tiempo al dominio de la frecuencia. Las técnicas DFT a menudo asumen puntos de datos espaciados uniformemente en la serie temporal, pero esto rara vez ocurre con los datos astrofísicos de series temporales. Scargle ha derivado una fórmula para los coeficientes de transformación que es similar a la DFT en el límite de las observaciones espaciadas uniformemente. Además, un ajuste de los valores usados para calcular los coeficientes de transformación hace que la transformación sea invariable a los cambios de tiempo. Cómo usar el algoritmo: El periodograma de Lomb-Scargle está optimizado para identificar señales periódicas de forma sinusoidal en datos de series temporales. Las aplicaciones particulares incluyen datos de velocidad radial y búsquedas de estrellas variables pulsantes. L-S no es óptimo para detectar señales de exoplanetas en tránsito, donde la forma de la curva de luz periódica no es sinusoidal. La tabla 2, presenta las variables usadas en el algoritmo.

Variable	Descripción
Ν	número de puntos en el archivo de entrada
df	tamaño de paso en el espacio de frecuencia
$^{\mathrm{dp}}$	tamaño de paso en el espacio del período
p(i)	valor del período de salida

Tabla 2: Variables del algoritmo Lomb-Scargle.

Distribución Estadística: En la implementación del Archivo de exoplanetas de la NASA, la potencia del periodograma se normaliza por el inverso de la varianza de los valores de datos de la señal original. Horne and Baliunas (1986) demostraron que esta potencia escalada tiene una distribución exponencial para valores de datos de ruido gaussiano y un gran número de observaciones N_{obs} . La probabilidad, ρ , de observar una potencia menor o igual a P_0 en una muestra cuando la serie temporal es una señal de ruido viene dada por:

$$\rho = Pr\{P \le P_0\} = 1 - e^{-P_0}$$

La probabilidad de ver al menos una muestra que exceda este valor viene dada por

$$\rho v = 1 - \rho^M,$$

donde M es el número de períodos muestreados.

La expressión anterior no es válida en el límite de un pequeño número de observaciones, N_{obs} . Cuando N_{obs} es inferior a 50, se aplica la siguiente fórmula como en Zechmeister and K\ürster (2009):

$$\rho = Pr\{P \le P_0\} = (1 - \frac{2P}{N-1})^{\frac{N-2}{2}}$$

y otra vez

$$\rho v = 1 - \rho^M,$$

donde M es ahora el número de frecuencias independientes. El número teórico de frecuencias independientes para un conjunto de datos dado que, se encuentra entre N y $N^*(N-1)/2$ (o N=2). El número efectivo de frecuencias independientes es aproximadamente igual a

$$M = \frac{maxf - minf}{df}$$

donde df es el ancho (en frecuencia) de un pico Zechmeister and K\ürster (2009) que se define como el ancho del pico superior en el periodograma. Los puntos inicial y final de un pico se definen como las frecuencias en las que la potencia es la mitad del máximo del pico.

2)Box-fitting Least Squares o "BLS" (Kovacs et al. 2002 - Kov\'acs et al. (2002))

El algoritmo BLS ajusta la serie temporal de entrada a funciones periódicas con forma de "**caja**", en lugar de descomponerlas en sinusoides como con el algoritmo L-S. Una función en forma de caja consiste en la superposición de dos funciones escalonadas de igual amplitud pero de signo contrario y desplazadas en el tiempo. Una función periódica en forma de caja alterna entre un estado "bajo" y "alto", con una fracción y una fase fija de cada ciclo periódico en un estado dado.

Las funciones periódicas en forma de caja representan el comportamiento de una curva de luz durante un tránsito mejor que los senos y los cosenos; son planas excepto por una caída periódica repetida en el brillo que dura, típicamente, menos del 10 por ciento del período total. En el algoritmo *BLS*, se supone que la señal adopta un valor "bajo" durante una fracción del período y un valor "alto" durante el resto. Se eligieron funciones periódicas en forma de caja como un conjunto de funciones base en lugar de sinusoides, porque la curva de luz de tránsito típica, cuando se descompone en el espacio de frecuencia de Fourier, no tiene un término de frecuencia dominante. Una función periódica en forma de caja requiere muchos componentes aditivos de Fourier. Para detectar tránsitos, es mejor elegir un conjunto de funciones base que requieran solo un término para generar un modelo de curva de luz simple para el tránsito.

Para determinar el ajuste de estas funciones periódicas en forma de caja a la señal, se considera un conjunto de períodos como candidatos. Para cada período candidato P, una serie de tiempo se "pliega"

al período: para cada punto de datos i y tiempo ti, y hay una fase correspondiente dada por la fórmula fasei = (ti módulo P) / P. Todos los puntos de datos luego se colocan en contenedores de fase. Luego, el algoritmo considera varios rangos de contenedores en función de la fracción mínima y máxima de entrada de un período que se puede gastar en tránsito, e identifica el mejor rango de contenedores para designarlo como el estado "bajo". El mejor ajuste de mínimos cuadrados y la amplitud relativa del estado "bajo" para un período candidato determina la "potencia" del periodograma. Ajuste de los parámetros del algoritmo: Number of bins: el algoritmo BLS se basa en la agrupación de puntos de datos y el Number of bins se puede especificar como un parámetro de entrada. El objetivo es elegir el Number of bins para lograr un equilibrio entre tener un número razonable de puntos en cada contenedor (bin) y dividir la serie temporal por fases en un número razonable de partes. "Razonable" es en cada caso dependiente de la cantidad de puntos en su curva de luz; 50 contenedores (bins) es un número típico que se utiliza para encuestas de tránsito en tierra con unos pocos miles de puntos de datos. Fraction of period in transit: el algoritmo BLS plantea la hipótesis de que una fracción del período se gastará en el estado "bajo" y el resto en el estado "alto". Puede especificar la fracción mínima y máxima permitida del período pasado en el estado bajo. Cómo usar el algoritmo: El periodograma BLS está optimizado para identificar señales periódicas en forma de "caja" o tránsito en datos de series temporales. Las aplicaciones particulares incluven búsquedas de exoplanetas en tránsito o binarias eclipsantes separadas. BLS no es óptimo para detectar señales de variables pulsantes o exoplanetas de velocidad radial, donde la forma de las variaciones de datos de series temporales es sinusoidal. Distribución Estadística: La distribución calculada del periodograma de los valores de potencia para el algoritmo BLS en una serie de tiempo determinada se describe muy bien mediante una distribución normal (gaussiana). El archivo de exoplanetas de la NASA mide la media y la desviación estándar de los valores calculados del periodograma y, a partir de esto, calcula los valores p, de acuerdo con la literatura. Para variaciones de gran amplitud o tendencias a largo plazo, los valores de p resultantes pueden no ser confiables, ya que estas variaciones pueden alterar la distribución de los valores del periodograma de la distribución normal idealizada.

3)Plavchan (Plavchan et al. 2008 - Plavchan et al. (2008)). El periodograma de Plavchan es similar a una variación binless del algoritmo de "minimización de la dispersión de fase" (*PDM*) Stellingwerf (1978). En este método, la "base" de las curvas periódicas se calcula directamente a partir de los datos. Al igual que en el método *BLS*, la serie temporal se pliega al período candidato. Un previo dinámico es generado por un box-car que suaviza la serie de tiempo escalonada. La diferencia entre los datos y los anteriores se eleva al cuadrado y se suma sobre el subconjunto de datos que peor se ajusta. Cuando se encuentre un período adecuado, se minimizará la suma de los cuadrados de los residuos de la curva suavizada. Si no hay señal presente, la suma mínima de errores cuadráticos provendrá del modelo sin variabilidad (es decir, valores de datos = constante). Esto se utiliza como la normalización. La potencia del periodograma se define como la normalización dividida por la suma de los residuos cuadrados de la curva suavizada. Será mayor que uno si se mejora el supuesto de no variabilidad.

Sin embargo **lightkurve** (función numero 5 (*lightkurve.periodogram.Periodogram* anteriormente descrita)) actualmente (version 2.3) solo soporta LS y BLS; por lo tanto, para el desarrollo del proyecto actual se decidió trabajar en base a BLS, dado que este algoritmo ofrece un marco de rendimiento o suficientemente bueno para los objetivos planteados y puede ejecutarse en un tiempo razonable por el volumen de datos implicados.

2.5. kernel gaussiano para suavizado de series de tiempo

Debido a que las curvas de luz generalmente poseen valores de flujo que distan mucho de aquellos que constituyen la forma principal de la curva que se desea determinar; se hace necesario, definir un método por el cual sea posible obtener un conjunto de valores cuya dispersión sea mucho menor y que permitan por tanto realizar labores de comparación de forma mas sencilla y asertiva. Para tal labor se considera ideal el uso del algoritmo del kernel gaussiano en el desarrollo del presente proyecto.

Figura 9: Forma de una curva de Gauss. FWHM=1.25.

El kernel define la forma de la función utilizada para tomar el promedio de los puntos vecinos, así que,el kernel de Gauss tiene la forma de la curva de Gauss, por lo tanto, la curva de Gauss tiene la forma de la figura 9:

Como se ve en la figura 9, los puntos cercanos (*alrededor de 0*) se ponderarán más alto y los puntos más lejanos se ponderarán más bajo. La expresión matemática del núcleo gaussiano se da a continuación:

$$y(t) = \sum_{t+k}^{t-k} x(i)g(i)$$

fórmula para generar una función gaussiana:

$$g=e^{(}\frac{-4Ln(2)t^2}{w^2})$$

Smoothing process: Para realizar el suavizado, consideramos cada punto de datos como el promedio de k (orden) número de puntos de datos vecinos. Aquí vamos a utilizar la función kernel (2022) Gauss como "núcleo" para suavizar, para cada punto de datos vamos a sopesar los puntos de datos anteriores y siguientes mediante una curva de forma gaussiana.

El parámetro más importante de una función gaussiana es el atributo llamado Full Width Half Maximum (FWHM) (Anchura a media altura) (ver la figura 9), w. El FWHM de una Gaussiana es la distancia entre los dos puntos que están más cerca del 50 % de ganancia. El FWHM está relacionado con la desviación estándar de una Gaussiana de la siguiente manera.

$$FWHM = \sigma * \sqrt{(8Ln(2))} = 2,3548 * \sigma$$

El anterior procedimiento de suavizado, es un proceso que es requerido aplicar sobre cada curva de luz de cada tipo de estrella variable que fuese descargada como resultado de las consultas de la base de datos de VSX en MAST (catalogo TESS); dicho procedimiento se aplica después de procesar la función numero seis ((lightkurve.LightCurve.fold) de Lightkurve descrita anteriormente. Para ello fue necesario realizar algunas modificaciones al algoritmo del kernel de Gauss con enfoque a procesamiento de señales (análisis de series temporales) para análisis de datos científicos. Los resultados obtenidos de las pruebas realizadas, fueron satisfactorias.

2.6. Similarity Functions, algoritmos de comparación de curvas en espacios 2D

Continuando con el proceso de investigación para lograr el objetivo del atlas de estrellas variables basado en la previa clasificación hecha por el catalogo de *VSX*, luego de agrupar todas las curvas de luz por tipo y cadencia, considerando los datos obtenidos en *MAST* (*catalogo de TESS*) y posterior al suavizado de las mismas, mediante el algoritmo de *kernel de Gauss*. Surge la necesidad de encontrar un método de comparación eficiente y de baja carga computacional, que permita calcular las diferencias relativas entre las curvas a considerar como candidatas para pertenecer a un mismo tipo previamente establecido o a un posible nuevo subgrupo.

Los algoritmos disponibles en la librería similaritymeasures (2022) (Jekel et al. (2019)), que pueden ejecutarse en un periodo de tiempo razonable para los alcances del presente proyecto y con un gasto computacional aceptable son: 1) Curve Length method, permite cuantificar la diferencia entre dos curvas arbitrarias discretizadas por puntos de datos individuales y ordenadas desde un principio hasta un final; La técnica aproxima secciones de la curva al arco de un círculo utilizando solo puntos de muestra en la curva: no se requiere cálculo de derivadas u otras propiedades. Este método es casi tan rápido de implementar y computar como la suma de la longitud de la cuerda, pero es mucho más preciso: también proporciona criterios de recurrencia para el muestreo adaptativo. Como resultado se obtiene una medida de cuán similares son las dos curvas que se están midiendo. Se considera que las curvas son similares si la distancia entre ellas es pequeña y viceversa Vincent (2001). En resumen, supone que la única variable independiente verdadera de las curvas es la distancia de longitud de arco a lo largo de la curva desde el origen. 2) Partial Curve Mapping (PCM) method: Este algoritmo calcula, la diferencia perimétrica entre dos curvas mediante un proceso de aproximación por subconjuntos fijos que se ajustan a la mínima área viable para ambas curvas Witowski and Stander (2012). El proceso consta de: A)Normalizar las dos curvas. B)Normalizar las N coordenadas para el subconjunto seleccionado de cada curva. C)Computar la longitud total de los polígonos individuales de cada curva. D)Escalar la longitud de cada segmento al total de la longitud del polígono de la curva. E)Calcular la diferencia entre la longitud del segmento individual, respecto al polígono total. F)Definir un punto de corte inicial sobre la curva que este dentro del rango entre 1 y la longitud relativa del segmento individual. G)Deslizar la curva objetivo sobre la curva destino realizando saltos equivalentes a la longitud del segmento individual. H) Calcular la distancia paramétrica de todos los segmentos en cada paso del deslizamiento. Este proceso se ilustra en el figura 10; el resultado obtenido es la distancia paramétrica mínima identificada en todo el recorrido ajustada al error mínimo aceptable. Dos curvas procesadas mediante este algoritmo serán mas similares a medida que el valor devuelto tienda a cero. 3) Area method: Este algoritmo permite calcular el área entre dos curvas en espacio bidimensional mediante la formula de la sucesión cuadrilátera de Gauss Jekel and Venter (2018). Como resultado se obtiene el valor de la suma del área de todos los segmentos acotados por las dos curvas como un numero entero positivo que representa las unidades cuadradas gasométricas en la escala que se encuentren las curvas originales. El área de los segmentos se calcula como la suma de todos los posibles cuadriláteros capaces de formarse dentro del segmento. Dos curvas procesadas por este algoritmo serán mas similares en cuento el área resultante se mas cercana a cero.

Inicialmente se trabajo con una combinación de los métodos CL y PCM dado que la considerable longitud de las curvas hacia inviable el calculo de las similitud por medio del método del área. Sin embargo, el trabajar con dos valores como indicadores de similitud genera graves dificultades al tratar de aplicar técnicas combinatorias para generar la agrupación estelar; adicionalmente, los resultados obtenidos por CL y PCM no son simétricos para un par de curvas, es decir los valores calculados para A vs Bson diferentes a los de B vs A, lo que imposibilita completamente usar algoritmos de agrupamiento por grafos. Debido a esta problemática y a la creciente necesidad de acelerar los proceso de calculo se decidió aplicar un proceso de **reducción** a la cantidad de observaciones por curva de luz y aplicar un proceso de agrupamiento rápido basado en puntos de inflexión; después de realizado estos cambios, los tiempos de procesamiento se redujeron de días a horas, lo cual abrió la posibilidad de implementar un algoritmo

Figura 10: Asignación de curva parcial de la Curva a (en rojo) a la Curva a ´ con compensación. Witowski and Stander (2012)

de similitud basado en el método del área (*method*).

2.7. Cartografiados

2.7.1. Cartografiados espaciales

Un observatorio espacial, también conocido como telescopio espacial, puede llevar uno / varios telescopios o instrumentos astronómicos embarcados a bordo de satélites o plataformas espaciales. El objetivo es hacer las observaciones fuera de la atmósfera, evitando así, la atenuación y distorsión que producen los componentes y movimientos de la atmósfera terrestre. Los observatorios espaciales permiten observar en longitudes de onda menores (ultravioleta, rayos X, rayos gamma), mayores (infrarrojo, microondas y radio) y las correspondientes a la luz visible. Además, las observaciones en el visible realizadas desde satélites son de mejor calidad, ya que de esta manera se pueden eliminar los efectos de la contaminación lumínica, de la turbulencia atmosférica y de los problemas meteorológicos, así como el ciclo noche-día, siendo posible alcanzar el límite de difracción como resolución óptica del instrumento. Los observatorios espaciales pueden trabajar de dos formas: en modo barrido, en el que se observa una franja determinada del cielo o todo él (bóveda celeste), por medio de imágenes contiguas consecutivas, o en modo observatorio, en el que se observa sucesivamente en direcciones específicas de interés astronómico.

Los satélites espaciales astronómicos se pueden clasificar según las longitudes de onda en que se observan: radiación gamma, radiación X, ultravioleta, luz visible, infrarroja, radio milimétrica y radio. El término telescopio se reserva generalmente para instrumentos que utilizan óptica, lo que no es el caso de los satélites astronómicos que observan radiación Gamma, X y de radio (algunos satélites pueden observar varios rangos). Se puede incluir en la categoría de satélites astronómicos, los instrumentos que estudian los núcleos y / o electrones de la radiación cósmica así como los que detectan ondas gravitacionales.

Los observatorios espaciales de tipo modo barrido y de luz visible (entre 4.000 y 8.000 Å), son de especial interés para el desarrollo del presente trabajo, el cual está enfocado en poder lograr procesar curvas de luz promedio de estrellas variables de fuentes de estrellas variables con curvas de luz en la mejor resolución de tiempo posible, por lo tanto los resultados podrán ser utilizadas como plantillas para

próximos proyectos. Algunos de estos observatorios espaciales son: MOST (2003); CoRoT (2006-2014); Kepler (2009-2018); Gaia (2013-); TESS (2018-); CHEOPS (2019); Euclid (2023); PLATO (2024); y ARIEL (2028).

MOST (Microvariability and Oscillations of Stars), es el primer y único telescopio espacial de Canadá. También es el telescopio espacial más pequeño en órbita. MOST es el primer telescopio espacial destinado al estudio de la sismología estelar. La misión principal es rastrear variaciones en la luz de las estrellas, lo que hace al observar un solo objetivo durante un largo período de tiempo (hasta 60 días). Los grandes telescopios espaciales no pueden permitirse permanecer enfocados en un solo objetivo durante tanto tiempo debido a la demanda de sus recursos. Con 65 cm de ancho y alto y 30 cm de profundidad para 51 kg , ya sea el tamaño y el peso de un baúl pequeño o una maleta extra grande llena de componentes electrónicos, MOST está en la categoría de microsatélites, dispone de un instrumento compuesto por una cámara CCD doble en luz visible, alimentada por un telescopio Maksutov con una apertura de 15 cm. Un CCD recopila imágenes científicas, mientras que el otro proporciona imágenes utilizadas por el software de seguimiento de estrellas que, con un conjunto de cuatro ruedas de reacción, mantienen, con un error de menos de un segundo de arco, un apuntamiento mucho más eficiente que cualquier otro microsatélite hasta la fecha.

CoRoT (Planetary Co nvection, Ro tación y T ransits) fue un telescopio espacial previsto para el estudio de la estructura interna de estrellas y la búsqueda de exoplanetas. Lanzado el 27 de diciembre de 2006, CoRoT fue el primer telescopio en órbita destinado a la búsqueda de planetas extrasolares y, en particular, planetas terrestres (Baglin (2003)). Después de 7 años y medio de operación y muchos descubrimientos, el satélite fue desactivado el 17 de junio de 2014, lo que marcó el final de la misión. El objetivo de la misión espacial CoRoT fue medir continuamente durante dos a seis meses la luz de 120.000 estrellas en el espesor del disco de la Vía Láctea. Sus tres principales objetivos científicos fueron: 1) El estudio de la astrosismología (designado en la primera parte de su nombre: Convección, Rotación); 2) La búsqueda de planetas extrasolares (designado en la segunda parte de su nombre: Tránsito); 3) Programas de investigación complementarios.

Kepler fue un telescopio espacial desarrollado por la agencia espacial estadounidense (*NASA*), para detectar exoplanetas. Lanzado en 2009 y con una órbita heliocéntrica de seguimiento terrestre de 372,5 d. *Kepler* tuvo como objetivo realizar un censo de exoplanetas detectables ubicados en una región de la Vía Láctea de 115 grados cuadrados observando durante un período de más de 3 años la intensidad de luz de 145.000 estrellas preseleccionadas (Koch et al. (2010)). *Kepler* fue diseñado para que la sensibilidad de su detector le permitiera identificar planetas de tipo terrestre y así pudiera identificar planetas similares a los del sistema Solar. La misión principal de 3,5 años fue extendida por la misión K2 (*Kepler 2*) hasta 2019, con objetivos revisados debido a la pérdida de dos de sus ruedas de reacción (hmong (2018)). La misión finalizó en octubre de 2018 tras agotar sus propulsores.

Kepler observó un mismo campo estelar con una sensibilidad aproximada de 12 en magnitud aparente, ubicado en la constelación del Cisne en el Hemisferio Norte (α =19h 22m 40s, δ =+44° 30' 00') durante 4 años (2009-2013). Recopilo datos fotométricos de luz blanca para una muestra aproximada de 160.000 estrellas que cubren un campo de visión de 115 grados cuadrados. El objetivo principal de la misión es la detección de planetas similares a la Tierra que orbitan estrellas similares al Sol dentro de la zona habitable. Los detalles de los objetivos de la misión y el diseño son descritos por Koch et al. (2010) y Borucki et al. (2010). las observaciones fueron de 30 minutos (1800 segundos), al menos 3 lecturas de 1800 segundos que duro la vida útil de Kepler; dichas estrellas se sitúan en una zona fija del cielo, situadas entre las constelaciones del Cisne y Lira. Se ha calculado que si un planeta del tamaño de la Tierra cruzase delante de una estrella similar al Sol, la variación en la luminosidad de la estrella sería de tan solo 84 partes por millón, el cual Kepler era capaz de detectar estas variaciones hasta **20 ppm**. Sí, a lo largo de los tres años y medio de la misión, la sonda hubiera captado al menos tres pequeñas fluctuaciones en una misma estrella, y se comprobara que éstas siguieran intervalos regulares, se podría inferir que existía un planeta orbitando dicha estrella. Por otra parte la Sonda Kepler tomaba dos tipos de datos: 1) Datos de Cadencia Larga, técnica que consiste en tomar imágenes cada 29.4 minutos con

270 exposiciones, esta incluye todos los objetivos planetarios en los que se buscará señales de tránsitos planetarios; y 2) 512 objetivos de Cadencia Corta, tomados cada 58.85 segundos. Las observaciones de Kepler son clasificadas en intervalos de tres meses. Al completar un mes de observación los datos son descargados desde la sonda a través de la red del espacio profundo (Deep Space Network, DSN) por sus siglas en inglés (Gilliland et al. (2010)). Una comparación cercana de los datos de cadencia corta y larga publicados antes del 1 de noviembre de 2011, Murphy (2012) presento algunas diferencias sutiles que hacen que los datos de cadencia corta sean superiores a sus contra partes de cadencia larga. Los datos de cadencia corta proporcionan una mayor resolución de tiempo para eventos de corta duración, contienen menos picos de alta amplitud a baja frecuencia y permiten una determinación más precisa de la pulsación (frecuencias), amplitudes y fases. Adicionalmente, para poder acceder a los datos de Kepler a través de MAST, estos son almacenados en fragmentos de tres meses, lo que corresponde a una cuarta parte de las observaciones. Al combinar y normalizar estas observaciones separadas, se puede formar una única curva de luz que abarque todos los cuartos observados. Utilizar todos los datos disponibles es especialmente importante cuando se observan señales repetidas, como tránsitos planetarios y oscilaciones estelares, tal como lo es adicionalmente la sonda TESS, tema que se abarcara mas adelante en detalle en el capitulo llamado: "Observatorio espacial TESS".

Gaia, misión espacial astrométrica, dedicada a la medición de la posición, la distancia y el movimiento de las estrellas , desarrollada por la Agencia Espacial Europea (ESA). El proyecto fue seleccionado en 2000 como piedra angular del programa científico Horizon 2000+. El satélite Gaia fue lanzado con éxito el 19 de diciembre de 2013, para una misión de cinco años que se extiende durante la operación hasta finales de 2020. Es la continuación del satélite Hipparcos , lanzado en 1989, que demostró brillantemente las capacidades de las naves espaciales en el campo de la astrometría. Gaia tiene como objetivo medir las características de más de mil millones de objetos celestes (*estrellas, asteroides, galaxias, etc.*) hasta magnitud 20. Los datos recopilados deberían mejorar nuestro conocimiento sobre la estructura, formación y evolución de la Vía Láctea , pero también hacen contribuciones significativas en los campos científicos relacionados con los planetas extrasolares , el sistema solar , las galaxias exteriores y la física fundamental.

CHEOPS, (*CHaracterising ExOPlanet Satellite*) telescopio espacial de pequeño tamaño desarrollado conjuntamente por la Universidad de Berna y la Agencia Espacial Europea (**ESA**). **CHEOPS** tiene como objetivo medir el tamaño y, en la medida de lo posible, las características de la atmósfera de exoplanetas ya identificados que orbitan estrellas brillantes (*magnitud aparente entre 6 y 12*) ubicados en las proximidades del Sistema Solar. Además cuenta con un telescopio óptico Ritchey-Chrétien con una apertura de 30 cm, y una órbita heliosincrónica de unos 700 km de altitud.

Euclid, es un telescopio espacial de la Agencia Espacial Europea (**ESA**), cuyo lanzamiento está previsto para 2022. El objetivo de la misión Euclid es comprender mejor la energía oscura y la materia oscura midiendo con precisión la aceleración del universo. Para lograr esto, el telescopio tipo Korsch medirá las formas de las galaxias a diferentes distancias de la Tierra e investigará la relación entre la distancia y el corrimiento al rojo. En general, se acepta que la energía oscura contribuye a la mayor aceleración del universo en expansión, por lo que comprender esta relación ayudará a refinar la forma en que los físicos y astrofísicos la entienden. La misión de Euclid avanza y complementa al telescopio Planck de la ESA (2009 a 2013). La misión lleva el nombre del antiguo matemático griego Euclides de Alejandría.

PLATO (*PLAnetary Transits and Oscillations of stars*), es un observatorio espacial desarrollado por la Agencia Espacial Europea, uno de cuyos principales objetivos es el descubrimiento y caracterización de exoplanetas de tipo terrestre alrededor de estrellas cercanas de magnitud aparente entre 4 y 16. Al recopilar datos sobre estos planetas por el método fotométrico y sobre su estrella por astrosismología , esta misión debe determinar en qué medida nuestro Sistema Solar y la Tierra constituyen un conjunto atípico o si tales conjuntos están muy extendidos en el Universo. La carga útil de PLATO consta de 26 conjuntos ópticos que le permiten observar casi la mitad del cielo durante la misión principal, que debe ser de al menos 6 años. PLATO debe lanzarse a finales de 2026 y colocarse alrededor del punto de Lagrange L 2 del sistema Tierra-Sol.

2.7.2. Cartografiados desde la Tierra

LSST, El Observatorio Vera C. Rubin, hospeda al llamado Simonyi Survey Telescope con el que se realizará el censo del cielo LSST (Legacy Survey of Space and Time en inglés); es un telescopio en construcción con un espejo primario de 8,4 metros que será capaz de observar la totalidad de su cielo disponible cada pocas noches debido a su amplio campo de visión. Se construye en el norte de Chile v prevé entrar en funcionamiento en el año 2022. Su nombre se debe a la astrónoma estadounidense Vera Rubin, pionera en la medición de la rotación de las estrellas dentro de una galaxia. El telescopio utiliza un novedoso diseño de 3 espejos, una variante anastigmática de tres espejos, que permite que un telescopio compacto brinde imágenes nítidas en un amplio campo de visión de 3,5 grados de diámetro. Las imágenes se grabarán con una cámara de imágenes CCD de 3,2 gigapíxeles, la cámara digital más grande jamás construida. El telescopio está ubicado en el pico El Peñón de Cerro Pachón, una montaña de 2,682 metros de altura en la Región de Coquimbo, en el norte de Chile, junto con los Telescopios de Investigación Astrofísica del Sur y del Sur de Géminis. La Instalación Base LSST se encuentra a unos 100 kilómetros (62 millas) por carretera, en la ciudad de La Serena. Sus principales objetivos son: 1) Medir lentes gravitacionales débiles en el espacio para detectar materia oscura, así como energía oscura. 2) Reconocer objetos pequeños en el sistema solar, en particular asteroides cercanos a la Tierra y objetos del Cinturón de Kuiper. 3)Detectar eventos ópticos transitorios, como las novas y supernovas. 4)Realizar un mapa de la Vía Láctea.

Pan-STARRS (*The Panoramic Survey Telescope and Rapid Response System [Pan-STARRS1 and Pan-STARRS2]*), ubicado en el observatorio Haleakala, Hawái, EEUU. Sistema compuesto por cámaras astronómicas, telescopios y una instalación informática que inspecciona el cielo en busca de objetos en movimiento o variables de forma continua. Produce también astrometría y fotometría precisa de objetos ya detectados. En enero de 2019, se anunció la segunda publicación de datos de Pan-STARRS. Con 1,6 petabytes, es el mayor volumen de datos astronómicos jamás publicado. Por otra parte, al comparar diferencias con las observaciones anteriores de las mismas áreas del cielo, **Pan-STARRS**, descubrió muchos nuevos asteroides, cometas, estrellas variables, supernovas y otros objetos celestes. Su misión principal ahora es detectar objetos cercanos a la Tierra que amenazan con eventos de impacto y se espera que cree una base de datos de todos los objetos visibles desde Hawái (*tres cuartas partes de todo el cielo*) hasta una magnitud aparente de 24.

ASAS-SN (All-Sky Automated Survey for Supernovae), es un programa automatizado para buscar nuevas supernovas y otros transitorios astronómicos, encabezado por astrónomos de la Universidad Estatal de Ohio. Tiene 20 telescopios robóticos en los hemisferios norte y sur. Puede examinar todo el cielo aproximadamente una vez al día. Inicialmente, había cuatro telescopios en Haleakala, Hawaii y otros cuatro en Cerro Tololo, parte de la Red Global de Telescopios del Observatorio Las Cumbres. Otros doce telescopios estuvieron desplegados en 2017 en Chile, Sudáfrica y Texas, con fondos de la Fundación Gordon y Betty Moore, la Universidad Estatal de Ohio, la Fundación Astronómica Monte Cuba, China, Chile, Dinamarca, y Alemania. El objetivo principal del proyecto es el de buscar supernovas brillantes, y detectar objetos nuevos con magnitudes entre 18 y 8.2.

Observatorio Astrofísico de Javalambre, es una **ICTS** (*Infraestructura Científica y Técnica Singular*) astronómica española ubicada en Arcos de las Salinas (*Teruel*) y perteneciente a la Red nacional de Infraestructuras de Astronomía (RIA). Las instalaciones se encuentran en el Pico del Buitre (1957 *metros de altitud*), en la Sierra de Javalambre. El observatorio está gestionado por el Centro de Estudios de Física del Cosmos de Aragón (*CEFCA*), dependiente del Departamento de Ciencia, Universidad y Sociedad del Conocimiento Gobierno de Aragón. Ligado al observatorio, está actualmente en desarrollo el proyecto Galáctica, programa que tendrá como objetivo ser un centro de difusión y práctica de la Astronomía.

2.8. Observatorio espacial TESS

Transiting Exoplanet Survey Satellite (*TESS*, Explorer 95 o MIDEX-7): TESS es un telescopio espacial del programa Explorer de la NASA, diseñado para buscar planetas extrasolares utilizando el método de tránsito. El principal objetivo de la misión de *TESS* es estudiar las estrellas más brillantes cerca de la Tierra en busca de exoplanetas en tránsito durante un período de dos años. El proyecto TESS utiliza una serie de cámaras de campo amplio para realizar un estudio de todo el cielo. Escaneará estrellas cercanas en busca de exoplanetas en un área 400 veces mayor que la cubierta por la misión Kepler. Se lanzó el 18 de abril de 2018, sobre un vehículo de lanzamiento Falcon 9 y se colocó en una órbita altamente elíptica de 13,70 días alrededor de la Tierra (*resonancia 2:1 con la Luna, a 90 grados de desfase con respecto a la Luna en el apogeo*), órbita que se calcula que sea estable durante al menos 20 años, lo que lleva a utilizar muy poco combustible. La primera imagen de luz de *TESS* se tomó el 7 de agosto de 2018 y se hizo pública el 17 de septiembre del mismo año.

Adicionalmente, TESS, realiza el primer sondeo de tránsito espacial de todo el cielo (Tomando imágenes alrededor del 75 % del cielo), podrá identificar planetas que van desde el tamaño de la Tierra hasta gigantes gaseosos, que orbitan una amplia gama de tipos estelares y distancias orbitales. El objetivo principal de la misión TESS es detectar pequeños planetas con estrellas anfitrionas brillantes en la vecindad solar, a menos de 300 años luz de distancia y entre 30 y 100 veces más brillantes que las observadas por el satélite Kepler, por consiguiente, se podrá realizar caracterizaciones detalladas de los planetas y sus atmósferas. TESS monitoreará los brillos de más de 200,000 estrellas durante una misión de dos años, buscando caídas temporales en el brillo causadas por tránsitos planetarios. Se espera que TESS catalogue más de 1.500 candidatos a exoplanetas en tránsito, entre ellos, pequeños planetas de roca (~500 planetas del tamaño de la Tierra y "Super Tierra") y hielo que orbiten una amplia gama de tipos estelares y cubran una amplia gama de períodos orbitales, incluidos mundos rocosos en las zonas habitables de sus estrellas anfitrionas. Por lo tanto, los planetas TESS deberían ser mucho más fáciles de caracterizar con observaciones de seguimiento, los cuales ayudaran a proporcionar mediciones refinadas de sus masas, tamaños, densidades y propiedades atmosféricas. Además, el brillo de estas estrellas objetivo permitirá a la comunidad científica poder utilizar la espectroscopia (estudio de la absorción y emisión de luz, para determinar la masa, la densidad y la composición atmosférica de un planeta), con el objetivo de poder encontrar agua y otras moléculas vitales en las atmósferas planetarias para el sostenimiento de la vida.

Referente al sistema de control desde tierra, *TESS* está controlado desde ocho sitios de Estados Unidos. Entre ellos se encuentran la Red Espacial de la NASA y la Red del Espacio Profundo del Laboratorio de Propulsión a Reacción para el comando y telemetría, el Centro de Operaciones de Misiones Orbitales ATK, el Centro de Operaciones de Carga útil del Massachusetts Institute of Technology (**MIT**)(*institución principal de la misión*), el Centro de Operaciones de Procesamiento de Ciencias del Centro de Investigación Ames, la Instalación de Dinámica de Vuelo del Centro de vuelo espacial Goddard, el Observatorio Astrofísico Smithsoniano, la Oficina de Ciencia TESS, y el **Archivo Mikulski para Telescopios Espaciales** (*Lugar donde se almacenaran los datos obtenidos sin procesar y procesados*).

Como se observa en la figura 11, *TESS* supervisará los hemisferios celestes sur (año 1) y norte (año 2). Durante su misión dividirá el cielo en 26 segmentos separados, cada segmento será estudiado aproximadamente durante 27,4 días. El único instrumento con el que opera el telescopio es con un paquete de **cuatro cámaras** que llevan un total de **16 dispositivos** de carga acoplada (*CCD*) de amplio campo de visión. Cada cámara cuenta con un detector CCID-80 de 16,8 megapíxeles de bajo consumo y bajo nivel de ruido creado por el Laboratorio Lincoln de MIT. Cada uno tiene un campo de visión de $24^{\circ} \times 24^{\circ}$, una apertura de 100 mm (4 in), una lente compuesta por siete elementos ópticos y una banda de rango de 600 a 1000 nm. Las lentes del telescopio tienen un campo de visión combinado de $24^{\circ} \times 96^{\circ}$ (2.300 grados²) y una relación focal de f/1.4. *TESS* realiza fotometría de alta precisión durante toda la misión con una cadencia de aproximadamente 2 minutos ($y \ 20 \ segundos \ en \ la \ misión \ extendida \ para \ objetivos \ seleccionados$); las *CCD* producen un flujo continuo de imágenes con un tiempo

de exposición de 2 segundos (ver la figura 13). Estos son recibidos y se suman en grupos consecutivos de 60, dando un tiempo de exposición efectivo de 2 minutos. Estos objetivos se leen como "poststamps" y se ponen a disposición de la comunidad como archivos de píxeles de objetivos (TPF) y curvas de luz calibradas. Además, el cuadro de imagen completo se lee cada 30 minutos (10 minutos en la misión extendida) (ver la figura 13). Entiéndase como misión extendida, al giro de TESS, para reanudar la inspección del sur. Asimismo, el equipo de TESS ha introducido mejoras en la forma en que el satélite recopila y procesa los datos. Sus cámaras ahora capturan una imagen completa cada 10 minutos, tres veces más rápido que durante la misión principal. Un nuevo modo rápido permite medir el brillo de miles de estrellas cada 20 segundos (grupos de 10 capturas de 2 segundos), junto con el método anterior de recopilar estas observaciones de decenas de miles de estrellas cada dos minutos (ver la figura 13). Las mediciones más rápidas permitirán a TESS resolver mejor los cambios de brillo causados por las oscilaciones estelares y capturar llamaradas explosivas de estrellas activas con mayor detalle. Estos cambios permanecerán vigentes durante la duración de la misión extendida, que se completará en septiembre de 2022. Después de pasar un año tomando imágenes del cielo del sur, TESS tardará otros 15 meses en recopilar observaciones adicionales en el norte y examinar áreas a lo largo del eclíptica, el plano de la órbita de la Tierra alrededor del Sol, que el satélite aún no ha fotografiado.

Las imágenes de cuadro completo (FFI), permitirán a los usuarios realizar fotometría en cualquier objetivo dentro del campo de visión de 24x96 grados. Los datos en general se transmiten cada 13,7 días en el **perigeo orbital**, las operaciones científicas se interrumpen durante no más de 16 horas para apuntar la antena de *TESS* hacia la Tierra, descargar datos y reanudar la observación. Esto incluye un período nominal de 4 horas para el enlace descendente de datos científicos en banda *Ka* utilizando la *DSN* (*Red de espacio profundo*) de la NASA. Además, la descarga de momento es ocasionalmente necesaria debido a la acumulación de momento angular de ~1,5 N.m (newton-metros) inducida por la presión de la radiación solar. Para ello, *TESS* utiliza sus propulsores de **hidracina** (*propelente*). Durante el primer año de operaciones del satélite, cada uno de sus CCD capturó 15.347 imágenes científicas de 30 minutos. Estas imágenes son solo una parte de más de 20 terabytes de datos del cielo del sur que TESS ha devuelto, esto es comparables con la transmisión de casi 6000 películas de alta definición. La figura 12 se puede apreciar el mosaico del cielo del sur construida en el 2019.

Respecto a los datos, la misión TESS tiene varios productos de datos que van desde el catálogo de entrada de TESS hasta un catálogo de candidatos a planetas. TESS obtiene fotometría de series de tiempo en algunas cadencias diferentes con una línea de base que va desde ~27 días hasta un año completo, según la superposición del sector. la figura 13 muestra una descripción general de los principales productos científicos a nivel de píxel. La totalidad de los CCD se conocen como imágenes de cuadro completo (FFI). Ciertos grupos de píxeles también se descargan con una cadencia más corta para obtener una cadencia más rápida para un subconjunto de objetivos, estos se conocen como archivos Target Pixel (TP). Los píxeles alrededor de una estrella seleccionada se almacenan como matrices en estos archivos de píxeles objetivo, una imagen por marca de tiempo. La fotometría de apertura se realiza en cada imagen creando una matriz de flujos; estos se conocen como archivos Light Curve (LC). 1)Imágenes de cuadro completo (FFI) (sin calibrar: _ffir.fits, calibrado: _ffic.fits): estos archivos contienen la serie de tiempo de cadencia de 30 minutos (o 10 minutos) de todo el campo de visión, tanto calibrado como no calibrado. 2) Archivos de píxel de destino (TP) (_tp.fits, _fast-tp.fits): estos archivos contienen una serie temporal de los píxeles " raw " y calibrados descargados con una cadencia de 2 minutos y 20 segundos. 3)Archivos de curva de luz (LC) (*lc.fits*, *fast-lc.fits*): estos archivos contienen la serie temporal de flujo derivada de los píxeles objetivo calibrados de 2 minutos y 20 segundos. Estos archivos contienen varias series temporales, incluida la fotometría de apertura simple, una curva de luz sin tendencia, vectores de posición e indicadores de calidad. La serie de flujo de fotometría de apertura se conoce como **SAP_FLUX**, mientras que la serie de flujo que tiene la sistemática instrumental común eliminada usando los archivos CBV (*Cotrending Basis Vectors*) se conoce como PDCSAP_FLUX. Las curvas de luz PDCSAP_FLUX también corrigen la cantidad de flujo capturado por la apertura fotométrica y el apiñamiento de estrellas cercanas conocidas. Por otra parte, los vectores de base de cotendencia (CBV) representan el conjunto de tendencias sistemáticas presentes en los datos de la curva de luz del conjunto para cada CCD. 4)Vectores de base de cotendencia (CBV) (_cbv.fits): los vectores de base de cotendencia representan el conjunto de tendencias sistemáticas presentes en los datos de la curva de luz del conjunto para cada CCD y se pueden usar para eliminar la sistemática instrumental común de los datos. Estos vectores son creados por la canalización para producir la serie temporal de flujo sin tendencia (**PDCSAP_FLUX**) en los archivos de curva de luz. Los CBV se pueden ajustar a curvas de luz de fotometría de apertura individual (*conocidas como* **SAP_FLUX**) en el mismo canal para ajustar la eliminación de tendencia. (*No hay CBV asociados con las curvas de luz rápidas de 20 segundos*).

Figura 11: **Izquierda**: El FOV combinado instantáneo (campo de visión combinado - combined field-ofview) de las cuatro cámaras de TESS. **Medio**: División de la esfera celeste en 26 sectores de observación (13 por hemisferio). **Derecha**: Duración de las observaciones en la esfera celeste, teniendo en cuenta el solapamiento entre sectores. **El círculo negro punteado** que encierra el polo de la eclíptica muestra la región que JWST podrá observar en cualquier momento TESS (2018a).

Figura 12: Mosaico del cielo del sur, se armó a partir de 208 imágenes tomadas por TESS durante su primer año de operaciones científicas, completado en julio de 2019. La misión dividió el cielo del sur en 13 sectores, cada uno de los cuales fue fotografiado para casi un mes por las cuatro cámaras de la nave espacial. Entre los muchos objetos celestes notables visibles está la banda brillante (*izquierda*) de la Vía Láctea, nuestra galaxia natal vista de canto, la Nebulosa de Orión (*arriba*), un vivero de estrellas recién nacidas, y la Gran Nube de Magallanes (*centro*), una galaxia cercana ubicado a unos 163.000 años luz de distancia. Las líneas oscuras prominentes son espacios entre los detectores en el sistema de cámaras de TESS (2019).

Figura 13: Productos de datos fotométricos de TESS (2018b).

Capítulo 3

Datos, ejecución y análisis

3.1. Objetivo del proceso

El objetivo final de todos los procesos descritos en este capitulo, consisten en: "Para un conjunto arbitrario de curvas de luz, que compartan la misma cadencia. Determinar las curvas prototipo, que representen lo mas fielmente posible los diferentes grupos de estrellas variables que puedan existir en dicho conjunto original".

Ahora bien, la utilidad practica de conocer estas curvas prototipo, se encuentra en el hecho de que al tomar una nueva estrella no clasificada y someterla a este proceso de forma individual; se puede comparar visualmente el resultado obtenido contra la colección de curvas prototipo y en base a ello, estimar el tipo de estrella variable al cual pertenece esta nueva estrella desconocida.

Por ultimo, cabe mencionar que las curvas prototipo, son aproximaciones plausibles y abstractas, por la cual no se les debe atribuir características de valor computable exacto, sino que deben ser usadas como plantillas guía para la identificación de miembros concretos de tipos formales de estrellas variables.

3.2. Obtención de los datos

Con el propósito de lograr los objetivos del presente proyecto se hace necesario aprovisionar un conjunto significativamente grande de datos, los cuales se encuentran disponibles en dos repositorios en la **INTERNET**, a saber: El índice de Estrellas Variables de VSX y el registro de Curvas de Luz de MAST.

Para recuperar y centralizar dichos datos, se recurrió a desplegar un entorno híbrido de base de datos **SQL** (*relacional y orientada a objetos*); el cual, se alimenta por medio de procesos de sincronización basados en consultas **HTTP** a los servidores de los repositorios anteriormente mencionados.

3.2.1. Obtención del Catálogo VSX

Para almacenar los datos obtenidos del catalogo de VSX, se construyo una tabla, en la base de datos con la estructura representada en la imagen 14. Adicionalmente se construyo el script de Python3 llamado get_data.py disponible en Perez (2022i), el cual, mediante la librería ASTROQUERY accede al catalogo B/vsx/vsx, alojado en los servidores públicos del proyecto VizieR (2022a) y sincroniza de forma dinámica todos los registros de dicho catalogo sobre la base de datos local mediante una consulta SQL con *buffer adaptable* gracias a la librería pandas (2022). Terminado este proceso, el siguiente paso fue depurar el total de los registros descargados, eliminando todos aquellos que cumplían con las siguientes condiciones: A)Campo Type que contenga (:). B)Campo Period que contenga (-). C) Campos I_Period y u_Period, que se encuentren vacíos. Esto significa que el valor o la clasificación de esa estrella en particular es incierta. Un ejemplo, es el caso de la estrella identificada con OID 1547600, donde su campo Type registra una clasificación EW:.

El siguiente *script* lleva acabo el proceso de depuración según los argumentos anteriormente descritos:

WHERE Period NOT LIKE '%-%' AND
 "+criteria+" NOT LIKE '%-%'AND
 Type <> '' AND
 Type NOT LIKE '%:%' AND
 l_Period='' AND
 u_Period=''

Por otra parte, un carácter vertical (/) entre dos tipos diferentes significa un OR lógico; la clasificación no es precisa y se indican todos los tipos posibles. Un ejemplo de esto es ELL/DSCT, donde la estrella puede ser un sistema binario *elipsoidal* o en una variable de tipo pulsante como DSCT. El carácter más (+) interpreta un AND lógico; se ven dos tipos diferentes de variabilidad en la misma estrella o sistema. Un ejemplo de esto sería ELL+DSCT, donde uno de sus componentes se encuentra en un sistema binario elipsoidal y aparenta ser también una variable pulsante de tipo DSCT.

+	+	++	+	++	++
Field	Туре	Null	Key	Default	Extra
+	+	+	+	+	++
OID	varchar(50)	NO	PRI	NULL	
n_OID	varchar(50)	YES		NULL	i i
Name	varchar(50)	YES		NULL	i i
V	varchar(50)	YES		NULL	i i
Туре	varchar(50)	YES		NULL	
l_max	varchar(50)	YES		NULL	i i
max	varchar(50)	YES		NULL	i i
u_max	varchar(50)	YES		NULL	i i
n_max	varchar(50)	YES		NULL	i i
f_min	varchar(50)	YES		NULL	i i
l_min	varchar(50)	YES		NULL	i i
min	varchar(50)	YES		NULL	i i
u_min	varchar(50)	YES		NULL	i i
n_min	varchar(50)	YES		NULL	i i
l_Period	varchar(50)	YES		NULL	i i
Period	varchar(50)	YES		NULL	i i
u_Period	varchar(50)	YES		NULL	i
RAJ2000	varchar(50)	YES		NULL	i
DEJ2000	varchar(50)	YES		NULL	i
+					

Figura 14: Tabla de almacenamiento para los datos de VSX (2022) VizieR (2022b).

3.2.2. Obtención de las Curvas de Luz desde MAST

Para obtener las curvas de luz almacenadas en **MAST**, fue necesario recurrir a un proceso en dos pasos. En primer lugar se requirió convertir el índice interno del catalogo VSX en el Identificador Único de Objeto Astronómico compatible con los registros de **MAST**; para ello, se recurrió al método **search_lightcurve** de la librería LightKurve (2022) el cual recibe como parámetro una coordenada estelar y retorna como resultado un objeto de tipo **lightkurve.SearchResult**, el cual puede contener un registro de una colección de curvas de luz de una determinada estrella o simplemente vació (*coordenada sin registros de curvas de luz en MAST*). Este proceso se realiza mediante el **script de Python3** llamado **sync_curves.py** disponible en Perez (2022i); el cual genera un archivo de texto, con la lista de todos los objetos VSX, cuyas coordenadas enlazan a una colección de curvas de luz validas en MAST Perez (2022l).

En segundo lugar, fue necesario diseñar un mecanismo capaz de encontrar, descargar y almacenar estructuralmente tanto los datos descriptivos de las curvas de luz, como los ficheros concretos de estas mismas. Es preciso mencionar que la descarga de datos desde los servidores de *MAST*, esta restringida por numero de consultas y ancho de banda consumido, por lo que no es viable hacer una única descarga masiva; esto sumado al enorme volumen de información a tratar, requirió del despliegue de un sistema capaz de ejecutarse continuamente durante un muy prolongado periodo de tiempo y capaz de recuperarse de interrupciones. El **script de Python3** llamado **save_curves.py** disponible en Perez (2022i), consulta secuencialmente todas las coordenadas validadas anteriormente, invocando sobre cada una de ellas una función que descarga todas las curvas de luz disponibles para el objeto referenciado por esta, las almacena en un directorio estructurado por **Origin/Mission/FileDescriptor/**, decodifica los metadatos de cada curva de luz y los almacena en la tabla **curve** de la base de datos representada en la figura 15 Perez (2022c).

FieldTypeNullKeyDefaultExtraOIDvarchar(50)NOPRINULLSUBvarchar(50)NOPRINULLauthorvarchar(50)YESNULLdecvarchar(50)YESNULLravarchar(50)YESNULListancevarchar(50)YESNULLexptimevarchar(50)YESNULLmissionvarchar(50)YESNULLzonevarchar(50)YESNULLitarget_namevarchar(50)YESNULLyearvarchar(50)YESNULLitarget_nametarchar(50)YESNULLjearvarchar(50)YESNULLjearvarchar(50)YESNULLjearvarchar(50)YESNULLjeanvarchar(50)YESNULLjeanvarchar(50)YESNULLjeanvarchar(50)YESNULLjeanvarchar(50)YESNULLjeanvarchar(50)YESNULLjeanvarchar(50)YESNULLjeanvarchar(50)YESNULL	+			++		
OIDvarchar(50)N0PRINULLSUBvarchar(50)N0PRINULLauthorvarchar(50)YESNULLdecvarchar(50)YESNULLravarchar(50)YESNULLdistancevarchar(50)YESNULLexptimevarchar(50)YESNULLmissionvarchar(50)YESNULLzonevarchar(50)YESNULLtarget_namevarchar(50)YESNULLjearvarchar(50)YESNULLfilenametextYESNULL	Field	Туре	Null	Key	Default	Extra
++	OID SUB author dec ra distance exptime mission zone target_name filename	varchar(50) varchar(50) varchar(50) varchar(50) varchar(50) varchar(50) varchar(50) varchar(50) varchar(50) varchar(50) varchar(50)	N0 N0 YES YES YES YES YES YES YES YES YES	PRI PRI	NULL NULL NULL NULL NULL NULL NULL NULL	

Figura 15: Tabla de propiedades de las curvas de luz.

Una vez completado el proceso de descarga de datos, se consolido los diferentes recursos de almacenamiento necesario para suplir las características descritas en la tabla numero 3.

Recurso	Tamaño	Unidad
Estrellas catalogadas en VSX	2.117.467	Registros
Total de grupos catalogados en \mathbf{VSX}	441	Registros
Estrellas catalogadas en VSX (después de los filtros de	457.757	Registros
indeterminado) encontrados en MAST		
Estrellas catalogadas en VSX (después de los filtros de	343.714	Registros
indeterminado) encontrados en MAST que pudieron		
ser leídas por <i>Lightkurve v2.3</i>		
Archivos de curvas de luz válidos descargados de ${\bf MAST}$	1.519.028	Archivos
Total de curvas de luz con cadencia de 120 s	42.698	Archivos
Total de curvas de luz con cadencia de 120 s seleccio-	16.895	Archivos
nadas después del proceso Better Factor		
Total de curvas de luz con cadencia de 120 s candidatas	447	Archivos
para ser clasificadas del grupo RR-RR Lyrae		
Total de curvas de luz con cadencia 120 s candidatas	106	Archivos
para ser clasificadas del grupo HADS-Delta Scuti		
Total de curvas de luz con cadencia de 120 s candida-	257	Archivos
tas para ser clasificadas del grupo DCEP-δ Cephei-		
Cefeidas		
Total de curvas de luz con cadencia de 120 s candidatas	314	Archivos
para ser clasificadas del grupo TTS-T Tauri		
Tamaño total de los archivos descargados	928	Gigabytes
Tamaño total de la base de datos	38	Gigabytes

Tabla 3: Resumen de datos descargados desde las diferentes fuentes de información.

3.3. Identificación de la mejor Curva de Luz

Para una misma estrella se pueden encontrar múltiples curvas de luz agrupadas por cadencia (*exptime*); e incluso, pueden existir múltiples curvas de luz para la misma estrella en la misma cadencia, según como se observa en la figura 16. Por tal motivo fue necesario desarrollar un mecanismo para identificar la mejor curva de luz para cada estrella en una determinada cadencia.

++	++	++
type	target_name	exptime
++	+	++
RRAB	376503648	120.0 s
RRAB	406413012	120.0 s
RRAB	434166245	120.0 s
RRAB	434166245	120.0 s
RRAB	434166245	120.0 s
RRAB	220512467	120.0 s
RRAB	151828882	120.0 s
RRAB	181915503	120.0 s
RRAB	34040141	120.0 s
RRAB	301158182	120.0 s
+		++

Figura 16: Ejemplo de estrella con múltiples curvas de luz para la misma cadencia.

El algoritmo de selección de la mejor curva de luz se basa en tres valores a saber: 1)Longitud total de la curva de luz. 2)Numero de observaciones nulas (**NaN**) eliminadas de la curva. 3)Error medio en la columna de flujo de luz.

Estos valores se operan mediante la ecuación: l=longitud, r=NaN eliminadas, e=error, b=better factor.

Un Atlas de Estrellas Variables
$$b = \frac{l * (1 - r)}{e}$$

Una vez calculado el **better factor** para cada curva de luz, se escoge aquella con el valor mas grande. Este proceso se realiza mediante el **script de Python3** llamado **block_better.py** disponible en Perez (2022i), el cual recibe como entrada, la cadencia objetivo para las estrellas a considerar.

A partir del siguiente script que realiza la consulta SQL:

SELECT target_name, filename, period, type
FROM vsx, curve
WHERE vsx.oid=curve.oid AND
 exptime='exptime' AND
 filename<>'NOT SUPPORTED' AND
 mission='TESS'
ORDER BY type ASC

Permite acceder a los ficheros **.fits** correspondientes a cada curva de luz, la cual es cargada, mediante el método **read** de la librería LightKurve (2022). Posteriormente, para cada curva de luz se eliminan los valores **NaN** del flujo de luz, mediante el método **remove_nans** el cual es propio de cada objeto del tipo **LightCurve**. Mediante el método **mean** de la columna **flux_err** se calcula el error medio de la curva de luz. Y finalmente, mediante la función **len** se obtiene la longitud total de la curva. Una vez se poseen estos tres valores, se procede a calcular el **better factor** para la curva de luz en cuestión.

Este proceso se repite para todas las curvas de luz de una misma estrella, las cuales se agrupan en un *vector*, que posteriormente es ordenado de forma descendente en virtud del *better factor*. Siendo la mejor curva de luz, aquella que se encuentre al inicio del vector, luego de realizar este proceso.

Una vez determinada la mejor curva de luz, se procede a normalizarla mediante el método *normalize* del objeto *Curve*, para luego calcular su periodograma mediante el método *to_periodogram* y el algoritmo *bls*. De este periodograma se extrae el periodo calculado de la curva. Finalmente se pliega la curva a un factor de dos veces el periodo calculado. Y se almacena en un diccionario binario para ser usada posteriormente.

Como resultado final de este proceso, se obtiene un fichero binario el cual contiene las mejores curvas de luz para todas las estrellas con cadencia igual a la indicada al inicio del proceso (*block_better_120.bin*, para curvas de 120 s).

Dado que el repositorio local construido para generar estos ficheros, es excesivamente grande y por tanto difícil de aprovisionar en la mayoría de los casos; se ofrecen a la comunidad científica los ficheros resultantes de este proceso en la siguiente dirección: https://starwalker.app/.

3.4. Suavizado y refinado de la Curva de Luz

Debido a que las curvas de luz presentan datos con tendencia a dispersarse lejos de la forma concreta de la curva, se hace necesario aplicar un método de suavizado, el cual permita sintetizar una curva con forma geométrica concreta, sobre la cual se puedan aplicar los procedimientos posteriores.

3.4.1. Suavizado por Kernel Gauss

El script de Python3 llamado block_smooth.py disponible en Perez (2022i), recibe como parámetros de entrada el fichero binario que contiene el diccionario con las mejores curvas de luz y un valor que representa el *wing_factor* a aplicar mediante el método de suavizado del *Kernel Gauss*.

Para cada curva, en el diccionario original se aplica el método de suavizado y se almacena en un nuevo diccionario. Una vez finalizado el proceso, este diccionario se exporta como fichero binario portable, el cual puede ser usado como base para los procesos posteriores.

Es importante mencionar que dada la cantidad de estrellas que puede contener uno de estos diccionarios y el tamaño de las curvas de luz de las mismas, los archivos contenedores pueden ser bastante grandes y en general tardar bastante tiempo en ser producidos. Razón por la cual, se decidió, que en cada fase del proceso se genere un archivo portable y reutilizable a fin de optimizar el tiempo necesario en caso de requerir repetir un proceso con diferentes valores de entrada.

3.4.2. Eliminación de puntos no relevantes

A partir de este punto, se hace necesario comparar cada curva de luz con todas las demás existentes en el diccionario; esto implica por tanto, una complejidad computacional que tiende a: $O(n^2)$ (*O-grande, comúnmente escrito como O, es una notación asintótica para el peor caso, o el techo de crecimiento para una función determinada*). Lo cual degenera rápidamente en tiempos de procesamiento excesivamente largos a medida que crece la cantidad de curvas de luz a evaluar.

Este problema se ve agravado por la longitud (**cantidad de observaciones**) de la curva de luz. Teniendo esto en cuenta y considerando que el objetivo final de este proceso se centra en determinar la forma prototipo de todas las curvas de luz y no en procesar los valores puntuales internos de cada curva; resulta en extremo beneficioso, eliminar todas aquellas observaciones que no constituyan un factor relevante para la constitución de la forma concreta de cada curva de luz.

Para este fin se ha construido el **script de Python3** llamado **reduce.py** disponible en Perez (2022i), el cual recibe como parámetros de entrada el fichero binario que contiene el diccionario de las curvas de luz suavizadas, un valor entero que indica la cantidad de cifras decimales que se han de considerar como relevantes (C) y un valor en coma flotante que representa el valor máximo de salto (J) en el eje X.

Este *script*, calculará la distancia simple entre cada par de puntos de la curva de luz y eliminará todos aquellos cuya distancia calculada sea menor a $1/(100^{C})$; donde *C*, es la cantidad de cifras decimales significativas suministrada. Adicionalmente, el *script* revisará cada par de puntos consecutivos en el eje *X* y calculará su diferencia; sí esta es superior al valor máximo de salto *J*, se considerará la curva como no continua y se le descartará del diccionario.

Como resultado final de este proceso, se obtiene un fichero binario equivalente al de las curvas de luz suavizadas pero notablemente mas compacto. Dado que se han reemplazado los vectores de la curva de luz original por su versión simplificada.

Es preciso mencionar que, para cálculos futuros el trabajar con un fichero de curvas simplificado, puede significar una mejora sustancial en el rendimiento y una reducción de tiempo del orden de horas a minutos o de días a horas. Si bien es cierto que, este paso se puede omitir ya que los proceso posteriores son compatibles, tanto con curvas de luz completas como simplificadas, es en extremo beneficioso usar la versión reducida ya que mejora mucho la experiencia de procesamiento, especialmente si se tiene en cuenta que los procesos posteriores, requerirán generalmente varias ejecuciones para obtener un resultado satisfactorio.

3.5. Alineamiento por puntos de inflexión

Con el fin de agilizar los procesos posteriores y en base a la conjetura de que dos curvas del mismo tipo tendrán en general, la misma cantidad de puntos de inflexión distribuidos de la misma forma; se ha desarrollado el script llamado align.py disponible en Perez (2022i), el cual recibe como parámetros un fichero binario de curvas de luz reducidas, una cadena de texto con los pseudo tipos a considerar separados por coma, un número decimal que indicará la prominencia mínima para considerar a una deformación como punto de inflexión y un número entero que representa la distancia mínima de puntos en el eje X que deben recorrerse antes de registrar un nuevo punto como valle o pico. El script calculará los puntos de inflexión para todas las curvas de luz en el diccionario, posteriormente identificará si se tratan de valles o picos y creará una etiqueta de texto que represente la secuencia de estos (por ejemplo: VPVPV, que significa que la curva tiene una secuencia del siguiente tipo; Valle, Pico, Valle, Pico, Valle); cada curva sera etiquetada, con su respectiva secuencia y se agrupará a priori con todas aquellas que compartan la misma etiqueta. Para todas las curvas de luz en el mismo pseudo grupo, se calculará la posición relativa del punto de inflexión más cercano a la mitad del eje X y se desplazarán proporcionalmente para que todos coincidan sobre una misma coordenada. Finalmente, se determinará la curva cuyo origen se ubique mas alejado del 0 en el eje X y la curva cuyo final se ubique mas alejado del 1 en el eje X; estos puntos se considerarán como las fronteras efectivas de las curvas y por tanto se eliminaran todas las coordenadas cuvo valor de X se encuentren fuera de este rango.

Como resultado de este proceso se obtendrá un fichero binario el cual contendrá un diccionario de curvas, con aquellas cuyo tipo coincida parcial o totalmente con el indicado al inicio; dichas curvas estarán alineadas y recortadas según el procedimiento anteriormente mencionado. Es importante aclarar que el resultado de este proceso variará en virtud del valor suministrado para la prominencia mínima y por la distancia mínima, por tanto es posible que se requiera ejecutar este proceso en repetidas ocasiones hasta obtener un resultado satisfactorio. Se ha suministrado la herramienta de apoyo llamada **draw_aligns.py** disponible en Perez (2022i), la cual permite generar las gráficas de todos los pseudo grupos generados en este proceso. Un ejemplo de esta funcionalidad puede observarse en la figura 17.

(a) Ej. limite de frontera para 1 grupo de curvas de luz.

(b) Ej. de un grupo de curvas de luz alineadas.

Figura 17: Limitación de fronteras y alineación de curvas de luz (solo para apoyo visual).

3.6. Calculo de similitud entre Curvas de Luz

Para continuar con el proceso del agrupamiento estelar, fue necesario poseer un indicador numérico de cuan similares son dos curvas de luz; se realizaron pruebas con cuatro de los métodos soportados por similaritymeasures (2022), entre ellos: Curve Leng (CL), Partial curve mapping (PCM), Area y Dynamic Time Warpingy (DTW). Este ultimo, es el más efectivo pero inviable por la limitación de tiempo, DTW, permite obtener una distancia no métrica entre dos curvas de series temporales; no requiere aplicar reducciones por alineamiento de curvas; su desventaja, refiere al largo tiempo de procesamiento para los cálculos comparativos entre estrellas. Por ejemplo, para un grupo de 400 curvas de luz, comparar una de ellas con el resto de su pseudo grupo, llego a tomar tiempos aproximados de hasta 3 horas. Referente al combinado de PCM / CL, sus resultados no fueron tan satisfactorios como los encontrados con el método del Área Jekel and Venter (2018), método que requiere un alineamiento por puntos de inflexión; su métrica hace referencias al área que se forma entre cada par de curvas de un mismo pseudo grupo, formando con ello una estructura de tipo grafo. Donde cada nodo del grafo es una curva de luz y los diferentes valores de las áreas formadas respecto a las demás curvas del grupo son sus aristas. Esta distribución permite aplicar algoritmos de optimización de caminos como base para el agrupamiento final, sin embargo la necesidad de calcular un total de N * (N - 1) áreas, requiere un considerable esfuerzo computacional.

Para llevar a cabo esta labor, se ha desarrollado el **script** llamado **similarity.py** disponible en Perez (2022i), el cual recibe como parámetro de entrada un fichero binario que contenga un diccionario de curvas de luz alineadas. Este *script* reconocerá los pseudo grupos al interior del diccionario y creará paquetes de cuatro curvas pivote; para las cuales calculará, el área que forman con las demás curvas de luz pertenecientes al mismo pseudo grupo. Es de aclarar que cada curva pivote se evalúa en un hilo maestro del procesador, por lo cual este *script* debe ejecutarse en un ordenador con al menos cuatro hilos reales en su *CPU*. Ejecutar este *script* consumirá la mayor parte de los recursos de procesamiento de maquina y hará uso intensivo del acceso a disco, por lo cual se recomienda ejecutar este proceso como única tarea prioritaria.

Este proceso es un punto critico para alcanzar los objetivos del presente proyecto y se ve seriamente afectado por el volumen de datos que deba procesar; tal que, dependiendo del nivel de simplificación de las curvas de luz y los pseudo tipos seleccionados en el paso anterior, este proceso puede tardar entre varios minutos o varios días en completarse. Razón por la cual, genera como resultado un tipo especial de fichero binario designado con extensión **.pod**, el cual contiene una versión optimizada del esquema del grafo mencionado anteriormente y esta diseñado para ser abierto siempre en modo de solo lectura.

Se ha desarrollado una herramienta de apoyo llamada **describe.py** disponible en Perez (2022i), el cual permite obtener un resumen de los datos almacenados en el archivo **.pod**; dicho archivo contiene los grupos identificados, el total de elementos en el diccionario y una fila con los valores del área mínima, máxima y promedio calculada para cada grupo. Un ejemplo de esta funcionalidad puede verse en la siguiente figura 18.

Figura 18: Ejemplo del resumen del fichero de grafos.

Es importante mencionar que, al escalar las curvas de luz en un intervalo de [0, 1], tanto en el eje X, como en el eje Y, el área calculada siempre estará en el rango de 0 a 1 unidades cuadradas. Lo cual resulta poco practico a la hora de usar esta medida como discriminante para futuros procesos; por tanto se ha optado por multiplicar el valor real del área calculada por un factor de 100, logrando con ello una representación mas sencilla y fácil de operar a futuro.

3.7. Agrupamiento preliminar

Tomando como base el grafo generado en el proceso anterior, se procede a evaluar cada pseudo grupo tal que, el área máxima entre dos curvas cualesquiera no supere un determinado umbral. Una vez eliminadas todas las aristas no compatibles con el limite de área, se procede a evaluar todos los nodos, verificando la cantidad de nodos vecinos restantes. Para un determinado nodo con X cantidad de vecinos se trata de reclamar cada uno de estos, de todos los demás nodos que compartan dicho vecino; siendo este proceso exitoso sí y solo sí, la cantidad de vecinos para el nodo reclamante es mayor que para el nodo indagado. En caso de no conseguir una reclamación exitosa, el nodo vecino se elimina de la lista de nodos disponibles y se repite este proceso hasta explorar todo el grafo. Al concluir la evaluación del grafo, se obtendrá una lista de grupos de al menos dos nodos que respetan el umbral de área máxima impuesto y una lista de nodos que han quedado inaccesibles y por tanto serán descartados del proceso de agrupamiento.

Para ejecutar el algoritmo anteriormente descrito, se ha desarrollado el *script* llamado **compare.py** disponible en Perez (2022i), el cual recibe como parámetros de entrada un *fichero binario* que contenga un diccionario de curvas de luz alineadas, un fichero en formato **.pod** el cual contiene el *grafo* con las áreas calculadas entre las curvas, una *cadena de texto* que represente un directorio de sistema de archivos para almacenar los resultados y un *numero en coma flotante* que representa el umbral de área máxima. El *script* leerá el archivo **.pod** y ejecutará el algoritmo de *optimización de grupos*, obteniendo como resultado la lista de grupos que respetan el umbral del área máxima y la lista de nodos descartados.

Posteriormente creará el directorio del sistema necesario para almacenar los resultados, los cuales constan de: un fichero *summary.csv* el cual contiene el resumen de la ejecución del *script*. Un fichero $G_{\#.csv}$ para cada uno de los grupos construidos, el cual contiene la lista de estrellas que se han

designado como miembros del grupo en cuestión. Un fichero $all_G_\#.png$ para cada grupo construido, el cual contiene la gráfica de las curvas de las estrellas asociadas a dicho grupo. Un fichero $smooth_G_\#.png$ para cada uno de los grupos, el cual contiene una gráfica con la curva resumida y suavizada que representa a todas las curvas del grupo. Un fichero unmatched.csv el cual contiene la lista de estrellas que han sido descartadas. Un fichero unmatched.png el cual contiene la gráfica con las curvas de las estrellas que han sido eliminadas. Y un fichero summary.bin el cual contiene toda esta información en un formato binario compatible con los procesos posteriores.

En la figura 19a puede observarse un ejemplo de salida del *script* **compare.py**. Las figuras 19b y 19c representan las gráficas resultantes para un conjunto de curvas agrupadas y su respectiva curva resumida y suavizada.

(c) Ejemplo de curva resumen.

Figura 19: Ejemplos de las salidas del proceso de agrupamiento preliminar (solo para apoyo visual).

3.8. Súper agrupamiento

Esta fase del proceso global consiste esencialmente en ejecutar nuevamente las tareas de simplificación, alineado, calculo de similitud y comparación; con la única diferencia que en este escenario se trabajará no con las curvas puntuales de cada estrella, sino con las curvas resumen obtenidas en el paso anterior.

3.8.1. Eliminación de puntos no relevantes

Este paso puede considerarse como opcional, dado que sí en faces anteriores se ha realizado la simplificación de las curvas, entonces en este momento las *curvas resumen* no deberían poseer un numero muy grande de puntos. Sin embargo, sí en apartados anteriores no se realizo la simplificación o sí se trabajo con grupos muy grandes de estrellas, es posible que las curvas resumen posean un volumen complejo de procesar; por tanto es posible que sea necesario aplicar este procedimiento.

Para este fin se ha construido el **script** llamado **super_reduce.py** disponible en Perez (2022i), el cual recibe como parámetros de entrada el fichero binario que contiene el diccionario de las *curvas resumen*, un valor entero que indica la cantidad de cifras decimales que se han de considerar como relevantes (C) y un valor en coma flotante que representa el valor máximo de salto (J) en el eje X. El funcionamiento de este *script* es idéntico al del **script reduce.py**, excepto que este valida los puntos de las curvas resumen y no de las curvas de luz dentro del grupo representado por estas.

3.8.2. Alineamiento por puntos de inflexión

En la presente etapa se tiene como objetivo realizar un proceso de agrupamiento rápido mediante la identificación de los puntos de inflexión en las *curvas resumen*. Para ello se ha desarrollado el **script** llamado **super_align.py** disponible en Perez (2022i), el cual recibe como parámetros un fichero binario de *curvas resumen*, un número decimal que indicará la prominencia mínima para considerar a una deformación como punto de inflexión y un número entero que representa la distancia mínima de puntos en el eje X que deben recorrerse antes de registrar un nuevo punto como valle o pico. El funcionamiento de este *script* es idéntico al del **script align.py**, excepto que este valida los puntos de las *curvas resumen* y no de las curvas de luz dentro del grupo representado por estas.

Es importante mencionar que este proceso es de vital importancia para obtener un resultado satisfactorio, es por ello que se deberán ejecutar múltiples iteraciones con diferentes valores de prominencia y distancia hasta que se logre un agrupamiento satisfactorio. Considerando como satisfactoria una agrupación en la cual se logre diferenciar claramente la distribución entre un tipo de curva y otro; es decir, que el área relativa entre curvas similares sea evidentemente menor a la formada respecto a curvas diferentes; un ejemplo de distribución satisfactoria puede observarse en la figura 20, donde las curvas $G_23, G_24 y$ G_25 que son similares entre sí, forman áreas relativamente pequeñas comparadas con las que formarían con cualquiera de las otras curvas que son evidentemente diferentes.

Figura 20: Ejemplo de súper alineamiento con agrupación correcta (*VPVP=Valley Peack Valley Peack*) (solo para apoyo visual).

El resultado final de este proceso puede observarse en la figura 21, donde todas las *curvas resumen* han sido correctamente alineadas con respecto al segundo valle y han sido recortadas de tal forma que todas compartan un mismo origen y final. Son precisamente estos dos detalles (alineamiento y corte), los cuales incrementan notablemente la eficacia del proceso final de comparación.

Figura 21: Ejemplo de resultado final del proceso de súper alineamiento (*VPVP=Valley Peack Valley Peack*) (solo para apoyo visual).

3.8.3. Calculo de similitud entre Curvas de Luz

Una vez sea conseguido una distribución aceptable de súper alineamiento es necesario recalcular el área formada entre cada **curva resumen** y sus respectivas compañeras de grupo. Para ello se ha desarrollado el **script** llamado **super_similarity.py** disponible en Perez (2022i), el cual recibe como parámetro un único fichero binario que contiene un diccionario con las **curvas resumen** correctamente alineadas y recortadas. La ejecución de este script es análoga a la del script similarity.py, con la única diferencia de que en este se procesan las curvas como vectores bidimensionales y no como una lista de dos vectores unidimensionales. Esto debido a que las curvas resumen son el resultado de un proceso previo de comparación, el cual adopta el formato bidimensional en función de mejorar su rendimiento. El resultado de este proceso puede ser consultado mediante la herramienta *describe.py*; accediendo al fichero *.pod* resultante, un ejemplo del resultado obtenido en este proceso puede verse en la figura 22. Para el caso ejemplificado, se tiene un resultado óptimo dado que, el máximo valor obtenido para las áreas mínimas de todos los grupos (AG_5:4.10) es menor o igual al valor mínimo calculado para el área promedio de todos los grupos (AG_7:6.06); cuando se da este caso al usar un valor entre estos dos rangos para el paso final de comparación se obtendrá casi con total seguridad un agrupamiento completo, es decir que ninguna *curva resumen* sera descartada. En caso de no cumplirse este escenario y en base al valor dado al umbral del área para el proceso de comparación, se descartarían una o varias *curvas resumen*.

Figura 22: Ejemplo del resultado obtenido del proceso de súper calculo de similitudes.

3.8.4. Comparación final

Este proceso tiene como objetivo general la agrupación óptima de curvas resumen en base al algoritmo de optimización de grupos por *grafos* descrito en apartados anteriores. Para ello se ha desarrollado el **script** llamado **super_compare.py** disponible en Perez (2022i), el cual recibe como parámetro un fichero binario que contiene las curvas resumen alienadas, un fichero **.pod** con el *grafo* de las áreas calculadas para todas las curvas resumen, una cadena de texto indicando el directorio de salida donde se almacenarán los resultados y un número en coma flotante que indica el umbral del área máxima aceptable para formar un grupo.

Como resultado de este proceso se obtiene: 1) Un fichero **summary.bin**, el cual puede ser usado para repetir la fase de súper agrupamiento todas las veces que que se requiera. 2) Un fichero **summary.csv**, que contiene el resumen de la ejecución del *script*. 3) Un grupo de ficheros **S_#.csv**, los cuales almacenan la lista de estrellas que pertenecen a cada súper grupo. 4) Un conjunto de ficheros **all_S_#.png**, con las gráficas de todas las curvas resumen incluidas en el súper grupo. 5) Un grupo de archivos

noise_S_#.png, representando el perfil de ruido de cada súper grupo. 6) Un conjunto de archivos **smooth_S_#.png**, que contienen las curvas finales suavizadas de cada súper grupo. Y 7) Un fichero **unmatched.png** y un fichero **unmatched.csv** los cuales contienen la información de las curvas resumen que fueron descartadas.

En la figura 23a, se puede observar un ejemplo de gráfica que contiene todas las curvas resumen que se han seleccionado para un súper grupo, como resultado del proceso de comparación.

Un ejemplo de perfil de ruido generado para un súper grupo, puede verse en la figura 23b, la región de color verde que rodea a núcleo de color rojo, representa el espacio relativo en el cual puede deformarse la curva de una determinada estrella que pertenezca a este súper grupo.

Un ejemplo de curva final prototipo de un súper grupo, para cualquier estrella que contenga parcial o totalmente el tipo **RR** en su previa clasificación en **VSX**, se puede observar en la figura 23c.

(a) Ejemplo de todas las curvas resumen pertenecientes a un súper grupo.

(b) Ejemplo de un perfil de ruido de un súper grupo.

(c) Ejemplo de curva final suavizada de un súper grupo.

Figura 23: Ejemplos de las salidas del proceso de agrupamiento final (solo para apoyo visual).

3.9. Vista general del proceso

El proceso descrito en las secciones anteriores puede visualizarse de forma completa, mediante la representación contenida en las figuras 24 y 25.

Figura 24: Flujo de consulta de datos.

Figura 25: Flujo de análisis de datos.

Capítulo 4

Resultados

4.1. Análisis estructural de los datos

4.1.1. Diferencia entre los periodos de VSX / TESS para 16.895 estrellas seleccionadas con cadencia de 120 s

La figura 26, permite observar la distribución de las diferencias que existen en los periodos registrados en el catalogo de VSX y sus correspondientes pares calculados en base a las curvas de luz obtenidas de la misión *TESS*. La figura 26a, representa la diferencia absoluta de los periodos para cada una de las estrellas individuales, a partir de la cual se puede inferir que, en términos generales las diferencias entre ambos valores no son mayormente significativas, excepto por un reducido numero de casos puntuales, los cuales exceden drásticamente lo que podría considerarse como un rango de variación aceptable. La figura 26b, representa la distribución de grupos de VSX segmentados en base a los rangos de diferencia promedio de sus periodos; tal que, de un total de **441 grupos** contenidos en el *set* de datos original, **225** de estos poseen una diferencia media inferior a **1 día**, y otros **66 grupos** posee una diferencia media menor a **3** días: Representando así la mayor parte de la población estelar.

Por otra parte, la figura 26b en sus primeras 3 lineas, expone cerca del ~66 % de los grupos estelares registrados en VSX, con la menor diferencia en sus periodos comparados frente a los de TESS; tipos estelares dominados esencialmente por estrellas pulsantes regulares: RR - RR Lyrae, EW - Variables eclipsantes, EC-Binarias de contacto y GDOR - γ Doradus, las cuales exhiben algunas características importantes como: estrellas gigantes A-F radialmente pulsantes; variables eclipsantes no radiales en modo g de alto orden (A7-F7); con un total de población de 12795 estrellas regulares (~76%), de 16895 muestras.

Referente al ~34% restante de los periodos calculados de TESS vs los de VSX, que no tuvieron correspondencia cercana o próxima entre sí, obedece esencialmente por ser objetos con **periodos irregulares** que no pueden ser medidos con las curvas de luz de TESS; en su gran mayoría, estos grupos estelares poseen clasificaciones de tipo **SR** - **variables semi-regulares** y sus subgrupos como SRA / SRB / SRC, **MISC** - **Miscellaneous variable**, **M-variables de periodo largo**, y **L** o **LB** - **variables irregulares lentas**, las cuales comparten características comunes entre sí, tales como pertenecer a grupos espectrales intermedios y tardíos con períodos que oscilan entre los ~20 a los más de 2000 días. Particularmente, el grupo **L** y sus derivados LB, son variables irregulares lentas; las variaciones de luz de estas estrellas no muestran evidencia de periodicidad, o cualquier periodicidad presente está muy mal definida y aparece solo ocasionalmente. Estas estrellas a menudo se atribuyen a este tipo debido a que no se han estudiado lo suficiente. Muchas variables de tipo L son en realidad semirregulares o pertenecen a otros tipos; con un total de **4100 estrellas irregulares** (~**24**%), de 16895 muestras.

La figura 27a, muestra la distribución continua de estrellas por periodos obtenidos del catalogo de VSX; mientras que, la figura 27b, lo hace en base a los periodos calculados a partir TESS. Resulta evidente que la distribución obtenida a partir de los periodos de TESS, es significativamente mas consistente respecto a VSX; siendo la principal causa de esto, el hecho de que los periodos calculados no contienen valores extremos, como si ocurren en el caso de los valores recuperados de VSX. Estos últimos cubren cuanto mucho **27 días**, es decir, no hay suficientes datos en las curvas de luz de TESS para calcular periodos (*orbitales, rotacionales o de pulsación*) fiables superiores a **14 días**. Causa por la cual, se define como periodos íntegros del proyecto, todos aquellos que provengan de los productos construidos por la misión TESS; lo anterior, con el fin de evitar sesgos de información derivados de la presumible inexactitud de los periodos registrados en VSX.

La figura 28, muestra la dispersión de las estrellas respecto a sus periodos, estando en el eje X el periodo obtenido de VSX y en el eje Y el calculado a partir de las curvas de luz de *TESS*. La figura 28a, presenta estos datos en escala lineal, y la gráfica 28b en escala logarítmica para el eje X. Es posible observar que, la mayor parte de las estrellas posicionan sus valores de forma consistente en el eje Y, para aquellos periodos inferiores a **12 días**; lo cual, concuerda con los valores máximos esperables para las observaciones obtenidas de los instrumentos de *TESS* (*Periodos entre 240s - 14 días*).

Los cuatro grupos de estrellas estudiadas en el presente proyecto $(RR, HADS, DCEP \ y \ TTS)$, todas ellas poseen una regularidad y ajuste en sus periodos calculados como los sustraídos de VSX; tres de ellas son pulsadores regulares (RR, HADS, DCEP) y una (TTS) es extrínseca - rotatoria. La gráfica 29, proyecta, como las rotatorias en su mayor parte de su población forman el primer brazo mas prominente de la imagen con rangos de sus periodos entre ~0.2 y ~14 días (ver figura 50b); valores que se encuentran dentro del marco de la literatura que constituyen rangos oscilantes entre 0.2 y 100 días (sesgo observacional limitado a 14 días); referente al primer grupo $(RR, HADS \ y \ DCEP)$ (ver figuras 34b, 40b y 45b), poseen una relación periodo - luminosidad Leavitt and Pickering (1992); cuanto más largo es el período, más brillante es la estrella Dbenford (2019) (ver figura 32) y cuanto mayor sea la luminosidad mayor es su masa Mosser (2001),

$L\alpha M^3$

; esto explica, el porque las Cefeidas (~ 4 - ~20 M_{\odot}) presentan periodos mas extensos, entre ~ 1 - ~10 días; las RR lyrae con un ~ 0.5 M_{\odot} , presentan periodos mas cortos, entre ~ 0.2 y ~1 día; a pesar, que las RR lyrae poseen menor masa que las Delta Scuti (~1.5 a ~2.5 M_{\odot}), estas ultimas presentan periodos mas acelerados, menores a ~ 0.5 días; la razón, es por que la curva de luz de estas estrellas, es una curva de luz compleja, formada esencialmente por un periodo principal, y sus respectivos armónicos (máximos computados: 8); a medida que aumenta el numero del armónico, aumenta su frecuencia y por ende disminuye el periodo. Siguiendo con la gráfica 29, la concentración de estrellas irregulares ubicadas entre ~14 días y ~36000 días, de VSX, son estrellas que no pudieron ser estudiadas, por las limitaciones de las curvas de luz de TESS.

La figura 30, muestra la distribución continua de las estrellas respecto a su magnitud, estando la figura 30a, basada en las magnitudes del catalogo de VSX y la figura 30b, en las magnitudes obtenidas de las curvas de luz de *TESS*. Es posible observar que ambas distribuciones son muy similares entre sí y corresponden con una distribución estadística normal, cuyo eje de mayor población se ubica alrededor de magnitud 12; sin embargo, la distribución obtenida a partir de las magnitudes de *TESS*, presenta un eje de población secundario alrededor de 5, y en general se extiende de forma mas regular. Esto presumiblemente debido a la mejor sensibilidad de los instrumentos utilizados para obtener los datos de la misión *TESS* y su **enfoque** en el estudio de estrellas cercanas de tipo G, K y M con magnitudes aparentes más brillantes que la **magnitud 12**.

La figura 31, muestra la dispersión de las estrellas que sustenta el periodo en el eje X y su magnitud en el eje Y; si bien es cierto que ambas dispersiones presentan formas equiparables, es igualmente cierto que los datos mejor acotados que proceden de *TESS* facilitan el proceso del análisis de los mismos y por consiguiente favorecen la obtención de resultados mas asertivos. En la figura 31b y 32, es posible observar 3 grandes estructuras, a saber: 1 - Magnitud ~ de 2 a 12 y periodo ~ de 6 a 10 días; convergen la mayor cantidad de estrellas irregulares que requieren mayor estudio; 2 - Magnitud ~ de 5 a 12 y periodo ~ de 0.8 a 6 días; se sitúa un gran numero de estrellas regulares de gran masa (*Cefeidas y T Tauri*), en especial T Tauri - rotatorias; 3 - Magnitud ~ de 7 a 12 y periodo ~ de 0.1 a 0.8 días; se ubican las estrellas regulares pulsantes de menor masa del total de los grupos estudiados (*RR-Lyrae, Delta Scuti*).

Las tablas 4 y 5 exhiben una muestra de las estrellas con mayor diferencia en sus periodos junto con sus grupos y cantidades mas relevantes. Una copia completa de los datos se encuentra disponible en Perez (2022e).

Tipo VSX	Id MAST	P. VSX	P. Calculado	\neq Absoluta
MISC	51033628	4202.00	0.473256	4201.53
MISC	130792766	4334.00	0.394318	4333.61
MISC	410298770	4764.00	1.82660	4762.17
ACV	165327084	4900.00	0.332254	4899.67
EA/GS	116553919	5329.10	5.43790	5323.66
MISC	124171923	5841.00	7.97718	5833.02
EA/GS+SRC	412120154	7498.00	0.336718	7497.66
EA/GS	260590721	9892.00	8.09722	9883.90
GCAS+LERI SPB	346626171	12630.0	0.570828	12629.4
MISC	317096540	25960.0	0.332710	25959.7
MISC	266851670	35320.0	2.88864	35317.1

Tabla 4: Estrellas con mayor diferencia en el periodo entre VSX y TESS Perez (2022e).

Tipo	Estrellas	≠ P.A.Mínimo	≠ P.A. Máximo	\neq P.A.Medio
MISC	612	5.78112e-07	35317.11	354.56
SRC	61	41.73	1011.00	334.13
М	122	122.399	614.33	331.23
SRA	57	35.2089	864.66	277.31
SR	421	0.60	1555.64	200.59
L	6	14.80	380.60	159.90
LB	87	3.29522	1513.20	113.43

Tabla 5: Cantidad de estrellas por grupo de VSX con mayor diferencia del periodo entre VSX y TESS Perez (2022k).

Los grupos y sus estrellas nombradas en las tablas 4 y 5, poseen tiempos muy tardíos, representan grupos de estrellas con periodos largos no accesibles por la sonda *TESS*, como es el caso de la estrella **266851670**, con un periodo estimado de **35320** días, según **VSX** (ver tabla 4). Por otra parte, es importante recalcar, que si la fuente de datos proviene de los archivos originales **FITS**, descargados directamente de los repositorios de la misión de *TESS*, se hace pertinente usar, procesar o construir cualquier tipo de dato o información que provenga idealmente de la misma fuente y no de una diferente.

50

(a) Cantidad de estrellas por diferencia absoluta (periodo de VSX vs TESS) .

(b) Numero de tipos estelares (VSX) por rango de diferencia absoluta (periodo de VSX vs TESS).

Figura 26: Diferencia del periodo absoluto entre VSX y TESS Perez (2022e) / Perez (2022k).

Figura 27: Número de estrellas por periodo de VSX y TESS. Perez (2022e).

(a) Periodo de VSX vs TESS en escala lineal. (b) Periodo de VSX vs TESS en escala logarítmica.

Figura 28: Periodo de VSX vs TESS Perez (2022e).

Figura 29: Superposición de los periodos de VSX vs TESS en escala logarítmica para los grupos RR, HADS, DCEP y TTS Perez (2022e), Perez (2022a).

(a) Número de estrellas por magnitud al máximo de (b) Número VSX. TESS.

(b) Número de estrellas por magnitud al máximo de TESS.

Figura 30: Número de estrellas por magnitud al máximo de VSX y TESS Perez (2022e).

(a) Periodo vs Magnitud al máximo de VSX.

(b) Periodo vs Magnitud al máximo de TESS.

Figura 31: Periodo vs Magnitud al máximo de VSX y TESS Perez (2022e).

Figura 32: Superposición del periodo / magnitud al máximo de TESS para los grupos RR, HADS, DCEP y TTS Perez (2022e), Perez (2022a).

4.1.2. Diferencia entre los periodos de VSX / TESS para 447 estrellas seleccionadas con cadencia de 120 s para el tipo RR - RR Lyrae

En la tabla 7 / Perez (2022h), se puede observar las diferencias de los periodos entre VSX / TESS; las estrellas de tipo RR Lyrae tienen un período relativamente corto de variación en el brillo, que va de ~0,3 a 1 día; son gigantes (A-F), variables pulsantes colocadas en la rama horizontal del diagrama de Hertzsprung-Russell, ubicadas comúnmente en los cúmulos globulares, con ~ 0.5 M_{\odot} ; varían de manera similar a las Cefeidas, con algunas diferencias: 1- Son relativamente antiguas, llamadas población II, de baja metalicidad. 2- Menos masivas, por lo tanto, son más numerosas que las Cefeidas, pero menos luminosas. 3- La magnitud absoluta promedio de un RR Lyrae típico es de alrededor de +0,75, o 50 veces la luminosidad solar.

Las RR Lyrae se clasifican en tres subgrupos principales: RRAB (variables con curva de luz asimétrica), RRC (variables casi simétricas) y las RRD (estrellas de doble modo de pulsación); las RRC, poseen los períodos más cortos y junto con las primeras poseen los periodos mas regulares; Las RRAB, oscilan según su modo fundamental de vibración y son las estrellas mas comunes de las RR Lyrae; su curva de luz es asimétrica, con un rápido aumento de brillo seguido de una disminución más lenta; las RRC, son pulsadores armónicos pero con una curva de luz mucho más regular, en forma de sinusoide y son las menos comunes de las RR Lyrae; y las RRD, que poseen dos períodos de pulso superpuestos, y su población solo abarca cuanto mucho el 1% de la población total. Los subgrupos estelares RRAB y RRC, ostentan casi el 100% de las muestras estudiadas. Ver gráfica 35b y tabla 7.

Los periodos registrados en VSX del subgrupo **RRC**, son la mitad de los calculados por las curvas de luz de *TESS*; estos valores pueden ser complementarios entre sí, ya que son estrellas pulsantes en modo armónico. Ver tabla 7. Adicionalmente, de las **447** estrellas estudiadas, 3 de ellas no se ajustan a lo esperado según su clasificación teórica; las cuales se identifican con los siguientes **target_name**: **45230945**, **331995495**, y **196419689**. De igual forma en la figura 33a y 33b en conjunto, puede obser-

varse claramente como estas 3 estrellas se exceden notablemente a la tendencia de la diferencia absoluta para el resto del grupo.

Los datos que despliega las figuras 35 y 36, en especial esta ultima, exhibe una concentración de estrellas de tipo RRC, de periodo corto entre las magnitudes de 10 a 12 aproximadamente; y otra, con las mismas magnitudes pero con periodos largos de 0.5 a 0.7 días, el cual representa a las estrellas de tipo RRAB. La magnitud mas prominente observada se encuentra al rededor de 11.

(a) Número de estrellas por periodo VSX para el tipo RR.

(b) Número de estrellas por periodo TESS para el tipo RR.

Figura 33: Numero de estrellas por periodo de VSX y TESS para el tipo RR, ver tabla 7 / Perez (2022h).

(a) Periodo de VSX vs TESS en escala lineal para el tipo RR.

(b) Periodo de VSX vs TESS en escala logarítmica para el tipo RR.

Figura 34: Periodo VSX vs TESS para el tipo RR, ver tabla 7 / Perez (2022h).

(a) Número de estrellas por magnitud al máximo de VSX para el tipo RR.

(b) Número de estrellas por magnitud al máximo de TESS para el tipo RR.

Figura 36: Periodo vs Magnitud de TESS para el tipo RR Perez (2022e).

4.1.3. Diferencia entre los periodos de VSX / TESS para 106 estrellas seleccionadas con cadencia de 120 s para el tipo HADS - Delta Scuti

En la tabla 8 / Perez (2022d), se puede analizar las diferencias de los periodos entre VSX / TESS; para las estrellas del subtipo **HADS-Delta Scuti** (*Variables Estrellas & Scuti de gran amplitud*) en VSX; los periodos calculados oscilan desde una similitud de **1 a 1** comparados contra VSX, hasta **incrementos lineales en los periodos de 2 hasta 8 veces su valor**, el cual representaría, el **pulso fundamental** (*1 a 1*) y **los diversos armónicos de pulsación encontrados en los resultados (2-8)**. Dichas oscilaciones son el resultado de ondas sonoras o acústicas que resuenan en el interior estelar. Estas ondas, implicadas en los modos radiales de pulsación estelar, son esencialmente ondas estacionarias (*ondas en* las cuales ciertos puntos, llamados nodos, permanecen inmóviles) similares a las que ocurren en el tubo de un órgano que está abierto en uno de sus extremos. La estrella y el tubo del órgano pueden sustentar varios modos de oscilación. La onda estacionaria, para cada modo, tiene un nodo al final (el centro de la estrella) donde los gases no se mueven, y un antinodo al otro extremo, que para el caso de la estrella seria su superficie. En el modo fundamental los gases se mueven en la misma dirección en cada punto de la estrella. Para tal caso, sí hay un sólo nodo entre el centro y la superficie, es el llamado primer armónico, con los gases moviéndose en direcciones opuestas a ambos lados del nodo, y para la instancia de los posibles armónicos habrían en consecuencia dos, tres, cuatro, cinco, seis o mas nodos (ver figura 37 y 40b); entre mas alto sea el armónico, mayor es su frecuencia y por ende menor su periodo; esta ultima gráfica presenta una disminución de objetos estelares a medida que aumenta la oscilación. Para este tipo de estrellas los modos radiales de movimiento del material estelar ocurre principalmente en las regiones superficiales.

La figura 38 (*limite ajustado a solo 9 días*) y 39, visualiza el periodo del armónico o modo fundamental calculado por cada estrella del presente grupo; además, resalta la presencia de la estrella **91592810**, con un periodo de **8.948** días, el cual no coincide con lo esperado según la teoría con periodos regulares de 0.19375 días, por ende no se ajustaría a lo esperado según su clasificación teórica.

Al observar el comportamiento de las estrellas de este grupo respecto a su magnitud obtenida a través de los datos de *TESS*, se puede deducir que, la mayor parte de la población estelar se concentra alrededor de 11 a 13 magnitudes, con un crecimiento semi progresivo desde una magnitud de 7 y decreciente hasta un mínimo poblacional de 14. Ahora bien, las distribuciones que representan a *VSX / TESS* de la gráfica 41, exhiben una confiable consistencia en sus datos, sin manifestar diferencias acentuadas excepto por la estrella **91592810**. Estos valores de magnitud, entre 11 y 13 magnitudes (*ver figura 42*), siguen la tendencia de los objetivos de la misión *TESS*, que consiste en centrarse en la búsqueda de estrellas cercanas de tipo G, K y M con magnitudes aparentes más brillantes que la magnitud 12. Además, cabe mencionar que, las δ *Scuti*, se pueden considerar *Cefeidas* de baja masa, pero a diferencia de estas tienen múltiples períodos de pulsación superpuestos, lo que da como resultado una curva de luz compleja; son estrellas de Población I, subgigantes o gigantes, de tipo espectral A0 a F6.

Figura 37: Ejemplo de armónicos y nodo / antinodo.

Figura 38: Diferencia absoluta entre el periodo de VSX y el de TESS para el tipo HADS-Delta Scuti, ver tabla 8 / Perez (2022d).

(a) Número de estrellas por periodo VSX para el tipo HADS-Delta Scuti.

(b) Número de estrellas por periodo TESS para el tipo HADS-Delta Scuti.

Figura 39: Numero de estrellas por periodo de VSX y TESS para el tipo HADS-Delta Scuti, ver tabla 8 / Perez (2022d).

(a) Periodo de VSX vs TESS en escala lineal para el tipo HADS-Delta Scuti.

(b) Periodo de VSX vs TESS en escala logarítmica para el tipo HADS-Delta Scuti.

Figura 40: Periodo VSX vs TESS para el tipo HADS-Delta Scuti, ver tabla 8 / Perez (2022d).

(a) Número de estrellas por magnitud al máximo de VSX para el tipo HADS-Delta Scuti.

(b) Número de estrellas por magnitud al máximo de TESS para el tipo HADS-Delta Scuti.

Figura 41: Número de estrellas por magnitud al máximo de VSX y TESS para el tipo HADS-Delta Scuti Perez (2022e).

Figura 42: Periodo vs Magnitud de TESS para el tipo HADS-Delta Scuti. Perez (2022e).

4.1.4. Diferencia entre los periodos de VSX / TESS para 257 estrellas seleccionadas con cadencia de 120 s para el tipo DCEP - δ Cephei - Cefeidas

En la tabla 9 / Perez (2022f), se pueden analizar las diferencias de los periodos entre VSX / TESS; para las estrellas del subtipo **DCEP** - δ Cephei - Cefeidas en VSX; son estrellas de población I que pulsan radialmente, variando tanto en temperatura como diámetro para producir cambios de brillo con un periodo y una amplitud muy regular y estable, además las Cefeidas presentan modulaciones periódicas de luminosidad extremadamente regulares y, de las variables pulsantes, son las que presentan menores alteraciones en la duración del período de pulsación; esto se puede evidenciar en la tabla 9. figura 43 y 45, donde el \sim 70 % de los periodos comparados entre VSX / TESS, son bastante regulares entre sí; el ~25% restante, exponen armónicos desde el segundo hasta el sexto orden para el caso de los periodos registrados en VSX (ver figura 44a); en su defecto, los periodos calculado a partir de las curvas de luz de TESS, representan el pulso (frecuencia) fundamental (ver figura 44b); la gráfica 45b, se puede observar la tendencia de las estrellas que presentan los periodos de los pulsos fundamentales como la tendencia de aquellas estrellas donde sus periodos pueden ser sus múltiplos o armónicos. Por otra parte $\sim 5\%$ de las estrellas analizadas, se encuentran pre-clasificadas al mismo tiempo con otras grupos de tipo indeterminado o no lo suficientemente estudiados, como lo es el grupo MISC de VSX; tal es el caso de las estrellas con target_name 255589393 196419689 146339718, con periodos de 140.4, 198 y 446 días respectivamente; los periodos regulares en este tipo de estrellas oscilan entre 0,2 y 100 días, solo 6 estrellas pre clasificadas por VSX para este grupo, presentan periodos superiores a estos, con gran probabilidad de estar mal clasificadas y/o poco estudiadas; tal como se puede evidenciar en la figura 43. No obstante, cabe mencionar que la misión de TESS solo podrá brindar curvas de luz para periodos inferiores a 14 días en promedio, periodos superiores no tendrán una correcta precisión. Tal como se observa en la figura 45b.

Al observar el comportamiento de las estrellas de este grupo respecto a su magnitud obtenida a través de los datos de *TESS*, se puede deducir que, la mayor parte de la población estelar se concentra alrededor de 7 a 13 magnitudes, con un crecimiento semi progresivo desde una magnitud de 4 y decreciente hasta un mínimo poblacional de 16. Ahora bien, las distribuciones que representan a VSX / TESS de la gráfica 46, exhiben una confiable consistencia en sus datos, pero con un claro movimiento a magnitudes mucho mas brillantes (1-8), lo cual se ajusta a las magnitudes teóricas esperadas (3-6). Además la figura 46a

de VSX, presenta un decaimiento sobre las 9 magnitudes, el cual se ve compensado con un corrimiento general de las observaciones a magnitudes mas brillantes; esto debido muy seguramente a la mayor sensibilidad de los instrumentos implícitos dentro de la misión de *TESS*. Adicionalmente, la gráfica 47, presenta una distribución muy uniforme de las observaciones entre 2 y 9 días, con periodos entre 4 y 12 magnitudes, sin concentraciones estelares bien definidas en el diagrama periodo - magnitud; se observa el típico comportamiento descrito por Henrietta Leavitt, cuanto más largo es el período, más brillante es la estrella Dbenford (2019).

Figura 43: Diferencia absoluta entre el periodo de VSX y el de TESS para el tipo DCEP, ver tabla 9 / Perez (2022f).

(a) Número de estrellas por periodo VSX para el tipo(b) Número de estrellas por periodo TESS para el tipoDCEP.

 ${\it Figura}$ 44: Numero de estrellas por periodo de VSX y TESS para el tipo DCEP, ver tabla 9 / Perez (2022f).

(a) Periodo de VSX vs TESS en escala lineal para el tipo DCEP.

(b) Periodo de VSX vs TESS en escala logarítmica para el tipo DCEP.

Figura 45: Periodo VSX vs TESS para el tipo DCEP, ver tabla 9 / Perez (2022f).

(a) Número de estrellas por magnitud al máximo de VSX para el tipo DCEP.

(b) Número de estrellas por magnitud al máximo de TESS para el tipo DCEP.

Figura 46: Número de estrellas por magnitud al máximo de VSX y TESS para el tipo DCEP. Perez (2022e).

Figura 47: Periodo vs Magnitud de TESS para el tipo DCEP. Perez (2022e).

4.1.5. Diferencia entre los periodos de VSX / TESS para 314 estrellas seleccionadas con cadencia de 120 s para el tipo TTS - T Tauri

En la tabla 10 / Perez (2022g), se pueden analizar las diferencias de los periodos entre VSX / TESS; para las estrellas del subtipo **TTS -T Tauri**; el total del muestreo poblacional de este grupo, poseen características de tipo **extrínsecas - rotacionales** (ROT-Rotacional), con excepción de una estrella, identificada con target_name: **96680953**; es la única con clasificación **intrínseca - eruptiva**; poseen dos subgrupos: **CTTS** (Clásicas) y **WTTS** (Débiles), de las cuales el 91% de las 314 estrellas seleccionadas son de tipo TTS y el restante de tipo WTTS y CTTS; la figura 48 y 49, exhiben el 80% de consistencia comparativa entre VSX y TESS; el restante es coherente con los periodos de 12 días teóricos esperados por rotación, con excepción de 2 estrellas que presentan periodos de 22 y 104 días ($target_name: 150002984 \ y \ 243237647$). La figura 49b, expresa el total de los valores calculados a través de las curvas de luz de TESS, las cuales se encuentran por debajo de los 10 días, incluyendo las dos estrellas anteriormente nombradas, probablemente esto indique una clasificación errónea o sean periodos relacionados con periodos orbitales, ya que, un gran numero de estrellas $T \ Tauri$ se encuentran en sistemas binarios. Los subtipos WTTS y CTTS, en su mayoría no dieron ajuste entre periodos.

Aproximadamente la mitad de las estrellas T Tauri estudiadas poseen discos circunestelares, denominados en este caso discos protoplanetarios, dado que se trata de los posibles progenitores de sistemas planetarios como el sistema solar; son variables irregulares nombradas a partir del objeto prototípico del grupo, la estrella T Tauri; estrellas jóvenes que aún no han entrado en la secuencia principal (estrellas presecuencia principal). Se encuentran cerca de nubes moleculares y se identifican por su variabilidad estelar y la presencia de líneas intensas en su cromosfera. Las estrellas T Tauri son las estrellas más jóvenes visibles, de tipo espectral F, G, K y M y con una masa inferior a dos masas solares. Las estrellas T Tauri, han llegado a alcanzar magnitud aparente +9,3 para llegar a palidecer hasta magnitud 14, con una variabilidad que tiene lugar en diferentes escalas de tiempo. Tanto las magnitudes entregadas por VSX (figura 51a), como las de TESS (figura 51b), son coherentes con los valores descritos por la literatura; no obstante, las lecturas de luminosidad de VSX (5.4 a 17.5) se encuentran 1 magnitud por debajo de las obtenidas de TESS, entre 0 a 2 días y con magnitudes entre 9 y 11, en su diagrama periodo/magnitud (figura 52), exhibe el mayor agrupamiento estelar.

Figura 48: Diferencia absoluta entre el periodo de VSX y el de TESS para el tipo TTS-T Tauri, ver tabla 10 / Perez (2022g).

(a) Número de estrellas por periodo VSX para el tipo(b) Número de estrellas TTS-T Tauri.(c) TTS-T Tauri.

(b) Número de estrellas por periodo TESS para el tipo TTS-T Tauri.

 ${\it Figura}$ 49: Numero de estrellas por periodo de VSX y TESS para el tipo TTS-T Tauri, ver tabla 10 / Perez (2022g).

(a) Periodo de VSX vs TESS en escala lineal para el tipo TTS-T Tauri.

(b) Periodo de VSX vs TESS en escala logarítmica para el tipo TTS-T Tauri.

Figura 50: Periodo VSX vs TESS para el tipo TTS-T Tauri, ver tabla 10 / Perez (2022g).

(a) Número de estrellas por magnitud al máximo de VSX para el tipo TTS-T Tauri.

(b) Número de estrellas por magnitud al máximo de TESS para el tipo TTS-T Tauri.

Figura 51: Número de estrellas por magnitud al máximo de VSX y TESS para el tipo TTS-T Tauri. Perez (2022e).

Figura 52: Periodo vs Magnitud de TESS para el tipo TTS-T Tauri. Perez (2022e).

4.2. Curvas de luz eliminadas por discontinuidad

Dado que el éxito del proceso de agrupamiento depende en gran medida, del calculo correcto del área que se forma entre cada una de las curvas de luz; es imperativo que, todas estas respeten un mínimo margen de continuidad. Para el caso concreto del presente proyecto se impuso un margen máximo de salto para las coordenadas del eje X de 0.025 unidades; tal que, cualquier curva de luz que presente una distancia mayor a esta para dos puntos consecutivos en el eje X, se considerara discontinua y por tanto sera descartada para todos los procesos de agrupamiento.

En la tabla 11, descrita en los anexos, se podrá encontrar la lista de los identificadores únicos de objetos astronómicos (*target_name*) que han sido descartados por discontinuidad.

4.3. Resultados obtenidos al evaluar el tipo RR - RR Lyrae

En esta sección se presentan los resultados obtenidos, al someter a todas las curvas de luz de cadencia de 120 segundos; cuyas estrellas poseen, el marcador " \mathbf{RR} " de forma parcial o total en su tipo de clasificación según el catalogo VSX.

4.3.1. Gráficas de perfil de ruido

Las imágenes contenidas en la figura 53, corresponden a los perfiles de ruido obtenidos al procesar todas las curvas de luz del tipo **RR**; teniendo en cuenta que la estela de color verde representa el margen en el cual la curva de luz se puede deformar para cada estrella particular, siendo aún compatible con el súper grupo definido por el núcleo de color rojo. Adicionalmente es importante mencionar que, a mayor cantidad lineas verdes en un segmento, es mas probable que la curva se deforme en dicho segmento.

(a) Perfil de ruido para el súper grupo S1

(c) Perfil de ruido para el súper grupo S3 $\,$

(e) Perfil de ruido para el súper grupo S5

(g) Perfil de ruido para el súper grupo S7

(b) Perfil de ruido para el súper grupo S2

(d) Perfil de ruido para el súper grupo S4

(f) Perfil de ruido para el súper grupo S6

(h) Perfil de ruido para el súper grupo S8

Figura 53: Perfiles de ruido para el tipo de estrellas variables RR.

4.3.2. Protoformas finales suavizadas

Las imágenes contenidas en la figura 54, corresponden a las formas genéricas finales que puede adoptar una estrella variable cuyo tipo corresponda con una clasificación parcial o total del tipo " \mathbf{RR} "" en el catalogo VSX. Es importante mencionar que en ningún momento se afirma que todas las estrellas variables de tipo \mathbf{RR} deban ser exactamente iguales a una de estas curvas prototipo; sino que, al someter una curva de luz de una determinada estrella al proceso de plegado y suavizado descrito en este proyecto, es posible que el resultado sea una curva bastante aproximada a uno de estos prototipos y que por tanto se puede inferir que dicha estrella es probablemente un miembro del tipo \mathbf{RR} .

(a) Curva prototipo para el súper grupo S1 $\,$

(c) Curva prototipo para el súper grupo S3

(e) Curva prototipo para el súper grupo S5 $\,$

(g) Curva prototipo para el súper grupo S7

(b) Curva prototipo para el súper grupo S2 $\,$

(d) Curva prototipo para el súper grupo S4

(f) Curva prototipo para el súper grupo S6

(h) Curva prototipo para el súper grupo S8

Figura 54: Curvas prototipo para estrellas variables RR (ver tabla 12).

4.3.3. Agrupación de estrellas variables

La tabla 12, especificada en los anexos, contiene la lista completa de todas las estrellas que han sido correctamente identificadas como miembros de un **súper grupo** y 8 subcategorías catalogadas desde el S1 al S8, pertenecientes al tipo RR; se suministra como referencia el tipo original del catalogo VSX y el identificador único del objeto estelar de la base de datos MAST (target_name).

4.3.4. Estrellas variables descartadas

En la tabla 13, descrita en los anexos, se consignan todas aquellas estrellas que no pudieron ser plenamente identificadas como miembros de algún súper grupo del tipo RR; ya sea, por diferencias morfológicas o porque el área que forma con todas las demás estrellas de los súper grupos exceden el umbral máximo implementado en los proceso de comparación y súper comparación, que para este tipo concreto fueron de 5 y 15 unidades cuadradas respectivamente.

4.4. Resultados obtenidos al evaluar el tipo HADS - Delta Scuti

En esta sección se presentan los resultados obtenidos, al someter a todas las curvas de luz de cadencia de 120 segundos; cuyas estrellas poseen, el marcador "HADS-Delta Scuti" de forma parcial o total en su tipo de clasificación según el catalogo VSX.

4.4.1. Gráficas de perfil de ruido

Las imágenes contenidas en la figura 55, corresponden a los perfiles de ruido obtenidos al procesar todas las curvas de luz del tipo **HADS-Delta Scuti**; teniendo en cuenta que la estela de color verde representa el margen en el cual la curva de luz se puede deformar para cada estrella particular, siendo aún compatible con el súper grupo definido por el núcleo de color rojo. Adicionalmente es importante mencionar que, a mayor cantidad lineas verdes en un segmento, es mas probable que la curva se deforme en dicho segmento.

(a) Perfil de ruido para el súper grupo S1

(c) Perfil de ruido para el súper grupo S3

 ${\it Figura}$ 55: Perfiles de ruido para el tipo de estrellas variables HADS-Delta Scuti.

(b) Perfil de ruido para el súper grupo S2 $\,$

(d) Perfil de ruido para el súper grupo S4

(f) Perfil de ruido para el súper grupo S6

4.4.2. Protoformas finales suavizadas

Las imágenes contenidas en la figura 56, corresponden a las formas genéricas finales que puede adoptar una estrella variable cuyo tipo corresponda con una clasificación parcial o total del tipo **"HADS-Delta Scuti"** en el catalogo *VSX*. Es importante mencionar que en ningún momento se afirma que todas las estrellas variables de tipo **HADS-Delta Scuti** deban ser exactamente iguales a una de estas curvas prototipo; sino que, al someter una curva de luz de una determinada estrella al proceso de plegado y suavizado descrito en este proyecto, es posible que el resultado sea una curva bastante aproximada a uno de estos prototipos y que por tanto se puede inferir que dicha estrella es probablemente un miembro del tipo **HADS-Delta Scuti**.

(a) Curva prototipo para el súper grupo S1

(c) Curva prototipo para el súper grupo S3

(b) Curva prototipo para el súper grupo S2

(d) Curva prototipo para el súper grupo S4

(e) Curva prototipo para el súper grupo S5

(f) Curva prototipo para el súper grupo S6

Figura 56: Curvas prototipo para estrellas variables HADS-Delta Scuti (ver tabla 14).

Como se puede notar a simple vista, las curvas prototipo para los súper grupos S5 y S6 son esencialmente idénticas; sin embargo, al prestar atención a su perfil de ruido, se observa que el súper grupo S6permite un mayor grado de deformación en la parte lateral derecha de la curva. No obstante, sí se realizase un nuevo proceso de súper agrupamiento, el resultado seria que estos dos súper grupos terminarían colisionando en uno solo.

4.4.3. Agrupación de estrellas variables

La tabla 14 contenida en los anexos, despliega la lista completa de todas las estrellas que han sido correctamente identificadas como miembros de un **súper grupo** y 6 subcategorías catalogadas desde el S1 al S6, del tipo HADS-Delta Scuti; se suministra como referencia el tipo original del catalogo VSX y el identificador único del objeto estelar de la base de datos MAST (target_name).

4.4.4. Estrellas variables descartadas

En la tabla 15, referida en los anexos, se consignan todas aquellas estrellas que no pudieron ser plenamente identificadas como miembros de algún súper grupo del tipo HADS-Delta Scuti; ya sea, por diferencias morfológicas o porque el área que forma con todas las demás estrellas de los súper grupos exceden el umbral máximo implementado en los procesos de comparación y súper comparación, que para este tipo concreto fueron de 5 y 50 unidades cuadradas respectivamente.

4.5. Resultados obtenidos al evaluar el tipo DCEP - δ Cephei-Cefeidas

En esta sección se presentan los resultados obtenidos, al someter a todas las curvas de luz de cadencia de 120 segundos; cuyas estrellas poseen, el marcador "**DCEP**" de forma parcial o total en su tipo de clasificación según el catalogo *VSX*.

4.5.1. Gráficas de perfil de ruido

Las imágenes contenidas en la figura 57, corresponden a los perfiles de ruido obtenidos al procesar todas las curvas de luz del tipo **DCEP** - δ **Cephei-Cefeidas**; teniendo en cuenta que la estela de color verde representa el margen en el cual la curva de luz se puede deformar para cada estrella particular, siendo aún compatible con el súper grupo definido por el núcleo de color rojo. Adicionalmente es importante mencionar que, a mayor cantidad lineas verdes en un segmento, es mas probable que la curva se deforme en dicho segmento.

(a) Perfil de ruido para el súper grupo S1

(c) Perfil de ruido para el súper grupo S3

(b) Perfil de ruido para el súper grupo S2 $\,$

(d) Perfil de ruido para el súper grupo S4

(e) Perfil de ruido para el súper grupo S5

Figura57: Perfiles de ruido para el tipo de estrellas variables DCEP - δ Cephei-Cefeidas.

4.5.2. Protoformas finales suavizadas

Las imágenes contenidas en la figura 58, corresponden a las formas genéricas finales que puede adoptar una estrella variable cuyo tipo corresponda con una clasificación parcial o total del tipo "**DCEP**" en el catalogo *VSX*. Es importante mencionar que en ningún momento se afirma que todas las estrellas variables de tipo **DCEP** - δ **Cephei-Cefeidas** deban ser exactamente iguales a una de estas curvas prototipo; sino que, al someter una curva de luz de una determinada estrella al proceso de plegado y suavizado descrito en este proyecto, es posible que el resultado sea una curva bastante aproximada a uno de estos prototipos y que por tanto se puede inferir que dicha estrella es probablemente un miembro del tipo **DCEP** - δ **Cephei-Cefeidas**.

(e) Curva prototipo para el súper grupo S5

Figura 58: Curvas prototipo para estrellas variables DCEP - δ Cephei-Cefeidas (ver tabla 16).

4.5.3. Agrupación de estrellas variables

La tabla 16, detallada en los anexos, contiene la lista completa de todas las estrellas que han sido correctamente identificadas como miembros de un **súper grupo** y 5 subcategorías catalogadas desde el S1 al S5 del tipo $DCEP - \delta$ Cephei-Cefeidas; se suministra como referencia el tipo original del catalogo VSX y el identificador único del objeto estelar de la base de datos MAST (target_name).

4.5.4. Estrellas variables descartadas

En la tabla 17, descrita en los anexos, se presenta todas aquellas estrellas que no pudieron ser plenamente identificadas como miembros de algún **súper grupo** del tipo $DCEP - \delta$ Cephei-Cefeidas; ya sea, por diferencias morfológicas o porque el área que forma con todas las demás estrellas de los súper grupos exceden el umbral máximo implementado en los proceso de comparación y súper comparación, que para este tipo concreto fueron de 5 y 7 unidades cuadradas respectivamente.

4.6. Resultados obtenidos al evaluar el tipo TTS - T Tauri

En esta sección se presentan los resultados obtenidos, al someter a todas las curvas de luz de cadencia de 120 segundos; cuyas estrellas poseen, el marcador "**TTS**" de forma parcial o total en su tipo de clasificación según el catalogo *VSX*.

4.6.1. Gráficas de perfil de ruido

Las imágenes contenidas en la figura 59, corresponden a los perfiles de ruido obtenidos al procesar todas las curvas de luz del tipo **TTS-T Tauri**; teniendo en cuenta que la estela de color verde representa el margen en el cual la curva de luz se puede deformar para cada estrella particular, siendo aún compatible con el súper grupo definido por el núcleo de color rojo. Adicionalmente es importante mencionar que, a mayor cantidad lineas verdes en un segmento, es mas probable que la curva se deforme en dicho segmento.

(a) Perfil de ruido para el súper grupo S1

(c) Perfil de ruido para el súper grupo S3

(b) Perfil de ruido para el súper grupo S2

(d) Perfil de ruido para el súper grupo S4

Figura 59: Perfiles de ruido para el tipo de estrellas variables TTS-T Tauri.

4.6.2. Protoformas finales suavizadas

Las imágenes contenidas en la figura 60, corresponden a las formas genéricas finales que puede adoptar una estrella variable cuyo tipo corresponda con una clasificación parcial o total del tipo **"TTS-T Tauri"** en el catalogo *VSX*. Es importante mencionar que en ningún momento se afirma que todas las estrellas variables de tipo **TTS-T Tauri** deban ser exactamente iguales a una de estas curvas prototipo; sino que, al someter una curva de luz de una determinada estrella al proceso de plegado y suavizado descrito en este proyecto, es posible que el resultado sea una curva bastante aproximada a uno de estos prototipos y que por tanto se puede inferir que dicha estrella es probablemente un miembro del tipo **TTS-T Tauri**.

(c) Curva prototipo para el súper grupo S3

Figura 60: Curvas prototipo para estrellas variables TTS-T Tauri (ver tabla 18).

4.6.3. Agrupación de estrellas variables

La tabla 18, referida en los anexos, contiene la lista completa de todas las estrellas que han sido correctamente identificadas como miembros de un **súper grupo** y 4 subcategorías catalogadas desde el S1 al S4 del tipo TTS-T Tauri; se suministra como referencia el tipo original del catalogo VSX y el identificador único del objeto estelar de la base de datos MAST (target_name).

4.6.4. Estrellas variables descartadas

En la tabla 19, especificada en los anexos, se consignan todas aquellas estrellas que no pudieron ser plenamente identificadas como miembros de algún súper grupo del tipo TTS-T Tauri; ya sea, por

diferencias morfológicas o porque el área que forma con todas las demás estrellas de los súper grupos exceden el umbral máximo implementado en los proceso de comparación y súper comparación, que para este tipo concreto fueron de 8 y 5 unidades cuadradas respectivamente.

4.7. Condiciones de solapamiento

Debido a que en el catalogo VSX, una misma estrella puede ser etiquetada con varios marcadores de tipo diferente; y dado que, la selección de las estrellas objetivos para el proceso realizado se basa en un identificador sencillo (*DCEP*, *HADS*, *RR*, *TTS*), se llegan a presentar muchos casos en los cuales una misma estrella participa en el agrupamiento de varios súper grupos. Por ejemplo, la estrella con **target_name 275382580**, fue evaluada para los casos de *RR* - *RR Lyrae* y *DCEP* - *Cefeidas*. Sin embargo cabe mencionar que la gran mayoría de estas estrellas con tipos indeterminados resultan ser descartadas dado que no comparten características de similitud con aquellas que si están correctamente identificadas (ver tablas 12 y 16).

Capítulo 5

Conclusiones

Una vez realizado el presente proyecto, se puede concluir que:

1. En el catalogo VSX existen muchas estrellas tipificadas incorrectamente, la gran mayoría pertenecientes a los siguientes grupos y características: VAR, estrellas variables de tipo no especificado y/o son variables sospechosas que carecen de estudios más profundos; LPV, variables de período largo (estrellas rojas); PULS, variables pulsantes de tipo no especificado; YSO (Young Stellar Object) de tipo variable no diferenciado (Pre-SP) y que probablemente puedan ser TTS; CV, variables cataclísmicas no caracterizadas; PER, variable periódica de tipo no especificado, presentan cambios de amplitud y/o fase o los cambios de sus periódicos se superponen a la variabilidad en una escala de tiempo más larga; y la mayoría de variables semirregulares entran en esta categoría, tales como las L, LB, LC, SR, SRB, * GCAS, I, IA, IB, IN, IS, ISA, ISB, MISC (clasificada como otros objetos). El factor común que rodea a este tipo de estrellas son las variaciones de luz que no muestran evidencia de periodicidad (**pulsantes irregulares**), o cualquier periodo presente está muy mal definida y aparece solo ocasionalmente; grupos espectrales intermedios y tardíos o gigantes variables de periodo largo; no han sido estudiadas lo suficiente y muchas de ellas realmente pertenecen a otros tipos. Del total de la población estudiada (16.895 estrellas con cadencia de 120 s), aproximadamente el $\sim 24\%$ (4100) de ellas pertenecen a este conjunto, su diferencia $(\sim 76\%)$, 12795 son estrellas **pulsantes regulares**. Distribución que podremos observar en la imagen 29 / 32.

2. Las curvas de luz originales extraídas de los ficheros FITS de MAST, son en general poco amigables con los procesos de análisis gráfico, pues no se logra obtener de ellas una única forma continua y bien definida, sino una nube difusa de puntos. Esta naturaleza implica la forzosa necesidad de implementar medios de corrección para obtener un sustrato viable con el cual trabajar; sin embargo, estas técnicas de corrección implican una significativa perdida de datos, lo cual ineludiblemente repercute en la fiabilidad y exactitud de los resultados finales. Como aporte adicional para un siguiente análisis, se construyo un archivo en formato binario que contiene todas las Curvas de Luz descargadas de MAST, dobladas tres veces según el periodo calculado (Perez (2022b)); esto permitiría obtener resultados morfológicos mas íntegros, ya que la información completa de la curva de luz estaría, entre el primer y tercer periodo.

3. La existencia de identificadores de grupos compuestos, en el catalogo VSX, implica una clasificación inicial pobremente diferenciada, y degenera en el hecho de que una curva pueda ser considerada en mas de un proceso de agrupamiento. Dicho tarea, sumada a las perdidas de información que es relativamente necesaria en determinadas partes del desarrollo, aumenta de manera significativa la entropía en los resultados obtenidos. Prueba de ello es, que varias de las curvas prototipo generadas son muy similares entre sí, aun cuando pertenecen teóricamente a tipos muy diferentes. Por tanto si se repitiese el proceso de agrupamiento en mas ocasiones solo se lograría des-diferenciar aún mas los resultados, obteniendo curvas prototipo influenciadas principalmente por los efectos de la probabilidad al acumularse cada vez

mas con casos inespecíficos.

4. Desarrollar el agrupamiento en base a los datos obtenidos de las curvas de luz de TESS es mas acertado; sus productos poseen mayor consistencia y presumible precisión, sobre todo para aquellas estrellas con periodos entre 240 segundos y 14 días. Toda población estelar diferente a este rango, genera un conjunto de datos no susceptible a ser procesados mediante el flujo de trabajo desarrollado en el presente proyecto. Por tanto seria recomendable eliminar este tipo de estrellas del conjunto de objetos iniciales a procesar. Con excepción de aquellas estrellas observadas que se encuentren en determinadas zonas superpuestas (ver figura 11), las cuales fueron inspeccionadas durante: 54, 81, 181 y 351 días, con periodos efectivos de: 27, 40.5, 90.5 y 175.5 días.

5. Dada la naturaleza de los datos con que se trabajó y en base al enfoque orientado a un análisis gráfico, es posible decir que el tratar de alcanzar los objetivos del presente proyecto en un periodo de tiempo tan limitado, fue cuanto menos ingenuo. El colosal volumen da datos, la inconsistencia de los ficheros *FITS*, lo poco fiable de la guía de clasificación de *VSX* y en general, todos lo problemas estructurales de las curvas de luz, hacen muy complicado abordar los procesos de clasificación desde una perspectiva netamente procedimental. Por tanto, para alcanzar mejores resultados, se requiere el despliegue de técnicas mas sofisticadas, idealmente una red neuronal con un modelo de aprendizaje reforzado. El problema con este enfoque, es que en el mejor de los casos, un entrenamiento decente de este tipo de entidad, toma entre 6 y 12 meses, por lo cual resulta imposible de implementar en el marco de este proyecto.

6. Las curvas de luz estudiadas siguen una tendencia en su patrón morfológico dependiendo del tipo de variabilidad (*orbital, pulsante o rotatoria*) y/o **regularidad/irregularidad** de sus periodos, donde cada una de ellas expone su física en sus diferentes pseudo-grupos obtenidos, sin importar de que tipo o subclase se clasifique; las curvas RR - Lyrae (*figura 34b*), Delta Scuti (*figura 40b*) y Cefeidas (*figura 45b*), comparten algo en común: son pulsadores radiales, pero una de ellas (*Cefeidas*); produce cambios de brillo con un periodo y amplitud muy estable y regular. La irregularidad en sus pulsaciones hace que los dos primeros grupos (*RRC - RRD / \delta Scuti*) tengan diversidad o múltiples formas morfológicas, debidos a sus armónicos o cuantiosos tonos de pulsación; sin embargo, las RR - lyrae (*RRAB*), oscilan según su modo fundamental de vibración y varían de manera similar a las Cefeidas. La regularidad en sus periodos, es una de las características principales que comparte las T - Tauri (*figura 50b*); este grupo sumado a los dos anteriores poseen tendencias morfológicas similares. Figuras 54, 56, 58 y 60.

7. Resulta no trivial, en términos prácticos, buscar una única curva genérica que identifique a todas las estrellas de un tipo especifico de VSX; en su lugar, es mucho mas provechoso tratar de identificar los subconjuntos de estrellas variables que pueden estar suscritos bajo un mismo tipo, y explorar su posible existencia en otros, a fin de conseguir una clasificación mejor diferenciada.

8. Posible caracterización por subgrupo, con mayor ajuste según la literatura, para los cuatro tipos de estrellas estudiadas: A- RR Lyrae; figura 54; RRAB: curva de luz asimetría, 91% de las mas comunes, pulsa en el 1er tono y son de periodo largo; S1, S2, S3 y S8; RRC: curva de luz simétrica, 9% menos comunes, pulsa en el 2do tono y son de periodo corto; S4, S6 y S7; RRD: curva de luz en sobretono, poco comunes (<1%) y son de periodo largo; S5. B - Delta Scuti; figura 56; múltiples tonos de pulsación, entre 1 y 8 armónicos obtenidos; armónico 5: S1; armónico 2 o 3: S2, S5 y S6; multitono: S3; armónico 1 o 2: S4. C - Cefeidas; figura 58; estrellas muy regulares en su pulsación, principalmente en su modo fundamental; la morfología resultante presento 5 subtipos: S1, S2, S3, S4 y S5. D - T Tauri; figura 60; poseen discos circunestelares; estrellas presecuencia principal; regulares - rotatorias y se encuentran en sistemas binarios; los pseudo grupos finales fueron 4: S1, S2, S3 y S4.

9. Valores agregados del proyecto: A. Tablas con datos acopiados de VSX / TESS para las 16.895 estrellas seleccionadas Perez (2022e); B. Total de curvas de luz descargadas de MAST (HLSP/K2/Kepler/TESS), para el global de registros encontrados en el índice VSX Perez (2022c); C. Curvas de Luz descargadas de MAST, dobladas tres veces el periodo Perez (2022b); D. Análisis del proyecto y gráficas de dispersión Perez (2022a). E. Resultados de todo el proyecto Perez (2022j); y total del código fuente desarrollado Perez (2022i).

Apéndice A

Anexos

Variable	Description	Main	Main
types within	_ · · · · · F · · · · ·	varia-	varia-
main groups		bility	bility
01		, v	groups
-	Variability is due to eclipse of one star by another or the effect		
Extrinsic	of stellar rotation Extrinsic variable stars are divided into three		
	groups: Eclipsing, Rotating and Microlensing events.		
Eclipsing	Orbital plane coincident with our line of sight.		
Rotating	Spots, reflection, or ellipsoidal shape.		
Microlensing	Unique chance encounters to discover exoplanets. If a star mo-		
events	ves in front of a more distant star (relative to an observer on		
	Earth), the light from the distant star is bent by the gravitatio-		
	nal pull of the closer star, and the more distant star is magni-		
	fied.		
Intrinsic	Variation is due to physical changes in the star or stellar sys-		
	tem. Intrinsic variable stars are divided into four groups: Pul-		
	sating, Eruptive, Cataclysmic and X-ray.		
Pulsating	Contraction and expansion.		
Eruptive	Mass ejection or chromospheric activity.		
Cataclysmic	Interacting binary systems with white dwarfs or stars showing		
	large amplitude outbursts.		
X-ray	Binary systems with neutron stars or black holes.		
E	Eclipsing binary systems. These are binary systems with orbital	Extrinsic	Eclipsing
	planes so close to the observer's line of sight (the inclination of		
	the orbital plane to the plane orthogonal to the line of sight is		
	close to 90 deg.) that the components periodically eclipse each		
	other. Consequently, the observer finds changes of the apparent		
	combined brightness of the system with the period coincident		
	with that of the components' orbital motion.		

-04	84
-----	----

EA	β Persei-type (Algol) eclipsing systems. Binaries with spherical or slightly ellipsoidal components. It is possible to specify, for their light curves, the moments of the beginning and end of the eclipses. Between eclipses the light remains almost constant or varies insignificantly because of reflection effects, slight ellip- soidality of the components, or physical variations. Secondary minima may be absent. An extremely wide range of periods is observed, from 0.2 to \geq 10000 days. Light amplitudes are also quite different and may reach several magnitudes.	Extrinsic	Eclipsing
EB	β Lyrae-type eclipsing systems. These are eclipsing systems having ellipsoidal components and light curves for which it is impossible to specify the exact times of onset and end of eclip- ses because of a continuous change of the system's apparent combined brightness between eclipses; secondary minimum is observed in all cases, its depth usually being considerably sma- ller than that of the primary minimum; periods are mainly lon- ger than 0.5 days. The components generally belong to early spectral types (B-A). Light amplitudes are usually <2 mag. in V.	Extrinsic	Eclipsing
EP	Stars showing eclipses by their planets. Prototype: V0376Peg (2022)	Extrinsic	Eclipsing
EW	W Ursae Majoris-type eclipsing variables. These are eclipsers with periods usually shorter than 1 day, consisting of ellipsoidal components almost in contact and having light curves for which it is impossible to specify the exact times of onset and end of eclipses. The depths of the primary and secondary minima are almost equal or differ insignificantly. Light amplitudes are usually <0.8 mag. in V. The components generally belong to protocomponents and have	Extrinsic	Eclipsing
EC	Survey types. Contact binaries in ASAS-3. Both components filling or close to filling their Roche lobes. These are mostly EW variables.	Extrinsic	Eclipsing
ED ESD	Survey types. Detached eclipsing binaries (EA) in ASAS-3. Survey types. Semi-detached eclipsing binaries (EA or EB) in ASAS-3.	Extrinsic Extrinsic	Eclipsing Eclipsing
AR	Subtype. Detached systems of the AR Lacertae type. Both components are subgiants not filling their inner equipotential surfaces.	Extrinsic	Eclipsing
D	Subtype. Detached systems, with components not filling their inner Boche lobes	Extrinsic	Eclipsing
DM	Subtype. Detached main-sequence systems. Both components	Extrinsic	Eclipsing
DS	Subtype. Detached systems with a subgiant. The subgiant also	Extrinsic	Eclipsing
DW	Subtype. Systems similar to W UMa systems in physical pro-	Extrinsic	Eclipsing
EL	<i>Subtype.</i> EL CVn-type binaries, consisting of a core helium- composition pre-white dwarf and an early-type main-sequence companion.	Extrinsic	Eclipsing
GS	Subtype. Systems with one or both giant and supergiant com-	Extrinsic	Eclipsing
HW	Subtype. HW Vir-type systems consisting of a hot subdwarf and a red or brown dwarf companion. These show a significant reflection effect.	Subtype. Extrin- sic	Eclipsing

Un Atlas de Estrellas Variables

K	Subtype. Contact systems, both components filling their inner critical surfaces	Extrinsic	Eclipsing
KE	Subtype. Contact systems of early (O-A) spectral type, both components being close in size to their inner critical surfaces	Extrinsic	Eclipsing
KW	Subtype. Contact systems of the W UMa type, with ellipsoidal components of F0-K spectral type. Primary components are main-sequence stars and secondaries lie below and to the left of the main sequence in the (MV, B-V) diagram.	Extrinsic	Eclipsing
PN	Subtype. Binary systems having, among their components, nuclei of planetary nebulae. Example: UUSge (2022).	Extrinsic	Eclipsing
SD	Subtype. Semi-detached systems in which the surface of the less massive component is close to its inner Roche lobe.	Extrinsic	Eclipsing
WD	Subtype. Binary systems with at least one white-dwarf component, or a single rotating white dwarf.	Extrinsic	Eclipsing
ACV BY	α^2 Canum Venaticorum variables. These are main-sequence stars with spectral types B8p-A7p and displaying strong mag- netic fields. Spectra show abnormally strong lines of Si, Sr, Cr, and rare earths whose intensities vary with rotation. They exhi- bit magnetic field and brightness changes (periods of 0.5-160 days or more). The amplitudes of the brightness changes are usually within 0.01-0.1 mag. in V. BY Draconis-type variables, which are emission-line dwarfs of dKe-dMe spectral type showing quasi-periodic light changes with periods from a fraction of a day to 120 days and am- plitudes from several hundredths to 0.5 mag. in V. The light variability is caused by axial rotation of a star with a variable degree of non-uniformity of the surface brightness (spots) and chromospheric activity. Some of these stars also show flares si- milar to those of UV Ceti stars, and in those cases they also	Extrinsic	Rotating
CTTS/ROT	eruptive variables. Classical T Tauri stars showing periodic variability due to spots. They have extensive disks that result in strong emission lines (FW(Ha) > 10Å). CCVS types INT and IT	Extrinsic	Rotating
ELL	Rotating ellipsoidal variables. These are close binary systems with ellipsoidal components, which change combined brightnesses with periods equal to those of orbital motion because of changes in emitting areas toward an observer. Eclipsing binaries may also show ellipsoidal variability but the ELL objects listed in VSX are those showing no eclipses. Light amplitudes usually do not exceed 0.1 mag. in V but may reach 0.3 mag. in some cases. Examples: bPer (2022).	Extrinsic	Rotating

FKCOM	FK Comae Berenices-type variables. These are rapidly rotating single G and K-type giants with nonuniform surface bright- nesses. Their photometric behaviour is similar to that of RS CVn systems but the absorption lines and Ca II reversals exhi- bit extreme rotational broadening, with a projected equatorial velocity of 100-160 km/s. They have strong magnetic activity and X-ray emission and contain the hottest coronal plasmas among active stars. Periods of light variation (up to several days) are equal to rotational periods, and amplitudes are seve- ral tenths of a magnitude. It is not excluded that these objects are the product of further evolution of W UMa close binary sys- tems (binary coalescence). Examples: FKCom (2022), YYMen (2022).	Extrinsic	Rotating
НВ	Heartbeat stars. A type of eccentric binary stars ($e > 0.2$) whose light curves resemble a cardiogram. They are ellipsoidal varia- bles that undergo extreme dynamic tidal forces. As the two stars pass through periastron, brightness variations occur as a consequence of tidal deformation and mutual irradiation. There may also be tidally induced pulsations present. The morpho- logy of the photometric periastron variation (heartbeat) de- pends strongly on the eccentricity, inclination and argument of periastron. The amplitude of variations is very small, usually below 0.01 mag. but it may exceed 0.3 mag. in extreme cases.	Extrinsic	Rotating
LERI	λ Eri type variables. Be stars with the light variation caused by rotational modulation or non-radial pulsations. Their light curves are usually double-waved and with changing amplitude. Periods in the order of 0.3 - 3 d.	Extrinsic	Rotating
PSR	Optically variable pulsars, which are rapidly rotating neutron stars with strong magnetic fields, radiating in the radio, optical, and X-ray regions. Pulsars emit narrow beams of radiation, and periods of their light changes coincide with rotational periods (from 0.004 to 4 s), while amplitudes of the light pulses reach 0.8 mag. Example: CMTau (2022).	Extrinsic	Rotating
R	Close binary systems characterized by the presence of strong reflection (re-radiation) of the light of the hot star illuminating the surface of the cooler companion. Light curves are sinusoidal with the period equal to Porb, maximum brightness coinciding with the passage of the hot star in front of the companion. The eclipse may be absent. The range of light variation may reach 1 mag, in V. Example: KVVel (2022).	Extrinsic	Rotating
ROT	Spotted stars that weren't classified into a particular class. All the SPOTTED stars in the UNSW list and the very small am- plitude spotted stars found by Kepler are included here. Also, some stars that don't fit the current subtypes due to their phy- sical properties have been classified as such (brown dwarfs and white dwarfs with spots). It may be used as a subtype when a T Tauri star shows rotational variability (<i>TTS/ROT</i> , <i>CTTS/-</i> <i>ROT or WTTS/ROT</i>).	Extrinsic	Rotating

RS	RS Canum Venaticorum-type binary systems. The primaries are usually giants from late F to late K spectral type. A signi- ficant property of these systems is the presence in their spectra of strong Ca II H and K emission lines of variable intensity, indicating increased chromospheric activity of the solar type. These systems are also characterized by the presence of ra- dio and X-ray emission. Their light curves look like sine waves outside eclipses, with amplitudes and positions changing slowly with time. The presence of this wave (often called a distortion wave) is explained by differential rotation of the star, its surface being covered with groups of spots; the period of the rotation of a spot group is usually close to the period of orbital motion but still differs from it, which is the reason for the slow chan- ge (migration) of the phases of the distortion wave minimum and maximum in the mean light curve in the case of the eclip- sing binaries (E/RS). The variability of the wave's amplitude (which may be up to 0.5 mag. in V) is explained by the existen- ce of a long-period stellar activity cycle similar to the 11-year solar activity cycle, during which the number and total area of spots on the star's surface vary. Small amplitude flares are often observed too.	Extrinsic	Rotating
SXARI	SX Arietis-type variables. These are main-sequence B0p-B9p stars with variable-intensity He I and Si III lines and magnetic fields. They are sometimes called helium variables. Periods of light and magnetic field changes (about 1 day) coincide with rotational periods, while amplitudes are approximately 0.1 mag. in V. These stars are high-temperature analogs of the ACV variables.	Extrinsic	Rotating
SXARI/E	sigma Ori E stars. Subset of the SXARI variables. Rapidly and rigidly rotating stars with strong magnetic fields that show eclipse-like dimmings probably caused by magnetospherically confined circumstellar disk material that occults the central star.	Extrinsic	Rotating
TTS/ROT	T Tauri stars showing periodic variability due to spots, but not yet classified as Classical $(CTTS/ROT)$ or Weak-lined $(WT-TS/ROT)$.	Extrinsic	Rotating
WTTS/ROT	Weak-lined T Tauri stars showing periodic variability due to spots. A T Tauri star that lacks strong emission lines in its optical spectrum (EW(H α) <10Å), and lacks both strong stellar winds and a circumstellar accretion disk. Also known as naked T Tauri star. GCVS types <i>INT</i> and <i>IT</i> .	Extrinsic	Rotating
NSIN ELL	<i>Survey types.</i> Designation in the OGLE catalogues for stars with strictly periodic light curves, which are evidently non-sinusoidal and are likely to be ellipsoidal variables.	Extrinsic	Rotating
PSR	Subtype. Binary systems having a pulsar as the compact object that strongly irradiates a low mass companion. Example: QXSge (2022) (E/PSR) .	Extrinsic	Rotating
ROT	Subtype. T Tauri stars showing periodic variability due to spots. For those members of this class where special features are well known, the subtype classifications of $CTTS/ROT$ or $WTTS/ROT$ may be applied. Where not precisely known, the subtype of TTS/ROT is used.	Extrinsic	Rotating

0	0
0	0

\mathbf{RS}	Used as a <i>subtype</i> . for eclipsing or ellipsoidal systems showing chromospheric activity (RS-type variability).	Extrinsic	Rotating
ACEP	Anomalous Cepheids. Stars with periods characteristic of com- paratively long-period <i>RRAB</i> variables (0.4 to 2 days), but con- siderably brighter by luminosity. They are more massive (1.3 to 2.2 solar masses) than <i>RR Lyrae stars</i> . They are metal-poor A and early F-type stars. GCVS type <i>BLBOO</i> .	Intrinsic	Pulsating
ACYG	Variables of the α Cygni type, which are non-radially pulsa- ting supergiants of Bep-AepIa spectral types. The light changes with amplitudes of the order of 0.1 mag. often seem irregular, being caused by the superposition of many oscillations with close periods. Cycles from several days to several weeks are observed.	Intrinsic	Pulsating
AHB1	. ^A bove Horizontal Branch" variables of subtype 1, also known as XX Vir variables. Pulsating variables with periods between 0.7 and 3 d. showing highly asymmetric light curves (rise du- rations $<25\%$) of large amplitude and low metallicity ([Fe/H] <-1), crossing the instability strip from the blue to the red on their way to the AGB after helium core exhaustion. They ha- ve low masses and higher luminosities (Mv = +0.2 to -1.4; 1 mag. brighter) than the RR Lyrae stars of the same period. There is controversy in the literature about their nomenclatu- re. They were originally called RRD but now that designation is used for the double-mode RR Lyrae stars. They were also called "short period type II cepheids. ^a nd have been classified among the CWB variables but their light curves are different from the BL Her stars (which show humps in their light curves and longer rise durations) and are very similar to the light cur- ves of RRAB-type stars with periods around 0.5 d. AHB1 stars occupy the same region in the HR-diagram as the anomalous cepheids (ACEP) but their light curves are different (Sanda- ge et al. (1994)). Some researchers (OGLE team) have explai- ned this saying that the AHB1 variables are fundamental mode ACEP while the other ACEP with more symmetrical light cur- ves and smaller amplitudes are supposed to be first overtone ACEP. However, AHB1 and ACEP show different evolutionary paths and masses. ACEP are more massive (1.3 - 2.2 solar mas- ses), they are not post-HB stars and appear predominantly in the dwarf spheroidal galaxies, but are almost absent in Galac- tic globular clusters, while the AHB1 stars are absent in dwarf spheroidals but are present in globular clusters (Sandage and Tammann (2006)). Examples: XXVir (2022), BFSer (2022).	Intrinsic	Pulsating

BCEP	Variables of the β Cephei type (β Cep, β CMa), which are non-superigiant pulsating O8-B6 stars with light and radial- velocity variations caused by low-order pressure and gravity mode pulsations. Periods are in the range of 0.1 - 0.6 days and light amplitudes go from 0.01 to 0.3 mag. in V. The light curves are similar in shape to average radial-velocity curves but lag in phase by a quarter of the period, so that maxi- mum brightness corresponds to maximum contraction, i.e., to minimum stellar radius. The majority of these stars probably show radial pulsations, but some display nonradial pulsations; multi-periodicity is characteristic of many of these stars. Exam- ple:V0469Per (2022).	Intrinsic	Pulsating
BCEPS	A short-period group of β Cep variables. The spectral types are B2-B3 IV-V; periods and light amplitudes are in the ranges 0.02 - 0.04 days and $0.015 - 0.025$ days, respectively, i.e., an order of magnitude smaller than the normally observed ones. Elimination of this type proposed by GCVS.	Intrinsic	Pulsating
BLAP	Blue large-amplitude pulsators. Blue stars with similar tempe- rature ($\approx 30,000$ K) as hot subdwarfs but lower surface gra- vity, which points to the presence of inflated envelopes. They might be core helium-burning stars that suffered significant mass loss or -more likely- hydrogen shell-burning stripped red giants. They show very regular brightness variations with pe- riods in the range of 20-40 minutes and amplitudes from 0.2 to 0.4 magnitudes in the optical passbands. The light curve shape is similar to those of the RRAB-type stars.	Intrinsic	Pulsating
BXCIR	Hydrogen-deficient B stars (Extreme Helium stars) showing low-amplitude variations in light (0.1 mag. in V) and radial ve- locity due to radial pulsations driven by the κ (kappa) mecha- nism through Z-bump instability. They show a unique and very regular period of around 0.1 days. Examples: BXCir (2022), V0652Her (2022).	Intrinsic	Pulsating
CEP	Cepheids. Radially pulsating, high luminosity (classes Ib-II) variables with periods in the range of 1-135 days and amplitudes from several hundredths to 2 mag. in V (in the band, the amplitudes are greater). Spectral type at maximum light is F; at minimum, the types are G-K. The longer the period of light variation, the later is the spectral type. The maximum of the surface-layer expansion velocity almost coinciding with maximum light. There are several subtypes (see DCEP, DCEP(B), DCEPS, DCEPS(B), CWA, CWB and ACEP). Some DCEP and CW stars are quite often called Cepheids because it is often impossible to discriminate between them on the basis of the light curves for periods in the range 3 - 10 days. However, these are distinct groups of entirely different objects in different evolutionary stages. One of the significant spectral differences between W Virginis stars and Cepheids is the presence, during a certain phase interval, of hydrogen-line emission in the former and of Ca II H and K emission in the latter.	Intrinsic	Pulsating

ċ.
l

CW	Variables of the W Virginis type. These are pulsating variables of the galactic spherical component (old disk) population with periods of approximately 0.8 to 35 days and amplitudes from 0.3 to 1.2 mag. in V. They obey a period-luminosity relation different from that for δ Cep variables (see <i>DCEP</i>). For an equal period value, the W Vir variables are fainter than the δ Cep stars by 0.7 - 2 mag. The light curves of W Vir variables for some period intervals differ from those of δ Cep variables for corresponding periods either by amplitudes or by the presence of humps on their descending branches, sometimes turning into broad flat maxima. W Vir variables are present in globular clusters and at high galactic latitudes. They may be separated into the subtypes <i>CWA</i> and <i>CWB</i> .	Intrinsic	Pulsating
CWA	W Virginis variables with periods longer than 8 days. The longer period ones start showing different minima getting mixed with the RVA class.	Intrinsic	Pulsating
CWB	W Virginis variables with periods shorter than 8 days. Also known as BL Herculis variables.	Intrinsic	Pulsating
CWB(B)	BL Herculis cepheids displaying the presence of two pulsation modes (the fundamental mode and the first overtone).	Intrinsic	Pulsating
CWBS	BL Herculis cepheids pulsating in the first overtone. Discovered by the OGLE team in the Large Magellanic Clouds.	Intrinsic	Pulsating
DCEP	These are the classical Cepheids, or δ Cephei-type variables. Comparatively young objects that have left the main sequence and evolved into the instability strip of the Hertzsprung-Russell (H-R) diagram, they obey the well-known Cepheid period- luminosity relation and belong to the young disk population. <i>DCEP</i> stars are present in open clusters. They display a cer- tain relation between the shapes of their light curves and their periods. They are fundamental mode pulsators.	Intrinsic	Pulsating
DCEP(B)	Classical cepheids displaying the presence of two or more simul- taneously operating pulsation modes (usually the fundamental tone with the period P0 and the first overtone P1). The pe- riods P0 are in the range from 2 to 7 days, with the ratio P1/P0 = 0.70-0.71. GCVS type $CEP(B)$. Examples: TUCas (2022).V0367Sct (2022).	Intrinsic	Pulsating
DCEPS	These are δ Cep variables having light amplitudes <0.5 mag. in V (<0.7 mag. in B) and almost symmetrical light curves (M-m approx. 0.4 - 0.5 periods); as a rule, their periods do not exceed 7 days. They are first-overtone pulsators	Intrinsic	Pulsating
DCEPS(B)	First/second overtone double-mode Cepheid variables. Period ratio $P2/P1 = 0.80$. GCVS type $CEP(B)$.	Intrinsic	Pulsating

DSCT	Variables of the δ Scuti type. These are pulsating variables of spectral types A0-F5 III-V displaying light amplitudes from 0.003 to 0.9 mag. in V (those with amplitudes larger than 0.15 mag. and assymetric light curves are designated HADS) and periods from 0.01 to 0.2 days. The shapes of the light curves, periods, and amplitudes usually vary greatly. Radial as well as non-radial pulsations are observed. The variability of so- me members of this type appears sporadically and sometimes completely ceases, this being a consequence of strong amplitude modulation with the lower value of the amplitude not excee- ding 0.001 mag. in some cases. The maximum of the surface layer expansion does not lag behind the maximum light for more than 0.1 periods. DSCT stars are representatives of the galactic disk (flat component), <i>SXPHE</i> stars are halo objects.	Intrinsic	Pulsating
DSCTC	Low-amplitude group of δ Scuti variables (light amplitude <0.1 mag. in V). The majority of this type's representatives are stars of luminosity class V; objects of this subtype generally are representative of the δ Sct variables in open clusters. This type has become obsolete in VSX since most DSCT have small amplitudes and the only clear distinction is the one between DSCT and HADS (amplitudes <0.15 mag.).	Intrinsic	Pulsating
DWLYN	Hybrid sub-dwarf pulsators showing both V1093HER and	Intrinsic	Pulsating
GDOR	V361HYA-type variability. γ Doradus stars. They are high order g-mode non-radial pulsa- tors, dwarfs (luminosity classes IV and V) from spectral types A7 to F7 showing one or multiple frequencies of variability. Periods range from 0.25 to 4 days. Amplitudes usually do not exceed 0.1 mag. but there is a subgroup of high amplitude mul- tiperiodic objects (HAGDOR) that may reach amplitudes of up to 0.4 mag. Example: NSV1858 (2022).	Intrinsic	Pulsating
HADS	High Amplitude δ Scuti stars. They are radial pulsators showing asymmetric light curves (steep ascending branches) and amplitudes >0.15 mag.	Intrinsic	Pulsating
HADS(B)	First/second overtone double-mode δ Scuti variables. Period ratios P1/P0 = 0.77 and P2/P1 = 0.80.	Intrinsic	Pulsating
L	Slow irregular variables. The light variations of these stars show no evidence of periodicity, or any periodicity present is very poorly defined and appears only occasionally. Stars are often attributed to this type because of being insufficiently studied. Many type L variables are really semi-regulars or belong to other types.	Intrinsic	Pulsating
LB	Slow irregular variables of late spectral types (K, M, C, S); as a rule, they are giants. This type is also ascribed, in the GCVS, to slow red irregular variables in the case of unknown spectral types and luminosities. Example: COCyg (2022).	Intrinsic	Pulsating
LC	Irregular variable supergiants of late spectral types having am- r^{1}	Intrinsic	Pulsating
М	produces of about 1 mag. in V. Example: 12Cas (2022). o (omicron) Ceti-type (<i>Mira</i>) variables. These are long-period variable giants with characteristic late-type emission spectra (Me, Ce, Se) and light amplitudes from 2.5 to 11 mag. in V. Their periodicity is well pronounced, and the periods lie in the range between 80 and 1000 days. Infrared amplitudes are usually less than in the visible and may be <2.5 mag. For example, in the K band they usually do not exceed 0.9 mag.	Intrinsic	Pulsating

PPN	Yellow supergiant post-AGB stars embedded in protoplanetary nebulae and displaying SRD variability with periods ranging from 35 to 200 days. They are early F to late G-type super- giants with infrared excess at high Galactic latitudes.	Intrinsic	Pulsating
PVTEL	Variables of the PV Telescopii type. These are hydrogen- deficient supergiants. They were subdivided in three types (I, II and II) in IBVS 5817.	Intrinsic	Pulsating
PVTELI	Hydrogen-deficient A or late-B supergiants showing low- amplitude quasi-periodic light variations due to radial pulsa- tions driven by strange-mode instability on a time-scale of 5 - 30 days; radial velocity variations are also seen.	Intrinsic	Pulsating
PVTELII	Hydrogen-deficient O or early-B supergiants showing low- amplitude quasi-periodic light variations due to non-radial g- mode pulsations driven by strange-mode instability on a time- scale of 0.5 - 5 days; radial velocity and line-profile variations are also seen.	Intrinsic	Pulsating
PVTELIII	Hydrogen-deficient and carbon-rich F or G supergiants showing low-amplitude quasi-periodic light variations on a time-scale of 20 - 100 days but not deep minima like the <i>RCB</i> stars; radial velocity variations are also seen.	Intrinsic	Pulsating
roAm	Rapidly oscillating Am variables. Pulsation periods are in the range of 60 to 170 cycles/day (8-22 min.), while amplitudes of light variation caused by the pulsation are less than 0.01 mag. in V.	Intrinsic	Pulsating
roAp	Rapidly oscillating Ap variables. These are pulsating variables oscillating in high-overtone, low-degree, non-radial pressure modes. Pulsation periods are in the range of 0.003-0.015 days (4-21 min.), while amplitudes of light variation caused by the pulsation are about 0.01 mag. in V. The pulsational variations are superposed on those caused by rotation. GCVS type $ACVO$.	Intrinsic	Pulsating
RR	Variables of the RR Lyrae type, which are radially-pulsating giant A-F stars having amplitudes from 0.2 to 2 mag. in V. Cases of variable light-curve shapes as well as variable periods are known. If these changes are periodic, they are called the "Blazhko effect" (denoted by the subtype BL). The majority of these stars belong to the spherical component of the Galaxy; they are present, sometimes in large numbers, in some globular clusters, where they are known as pulsating horizontal-branch stars. Like Cepheids, maximum expansion velocities of surface layers for these stars practically coincide with maximum light.	Intrinsic	Pulsating
RRAB	RR Lyrae variables with asymmetric light curves (steep ascending branches), periods from 0.3 to 1.0 days, and amplitudes from 0.5 to 2 mag. in V. They are fundamental mode pulsators.	Intrinsic	Pulsating
RRC	RR Lyrae variables with nearly symmetric, sometimes sinusoi- dal, light curves, periods from 0.2 to 0.5 days, and amplitudes not greater than 0.8 mag. in V. They are overtone pulsators. Example: SXUMa (2022).	Intrinsic	Pulsating
RRD	Double-mode RR Lyrae stars which pulsate in the fundamental mode as well as in the first overtone with a period ratio of 0.74 and a fundamental period near 0.5 days (or in the first and second overtones with a period ratio of 0.80). GCVS class $RR(B)$.	Intrinsic	Pulsating

RV	Variables of the RV Tauri type. These are radially pulsating supergiants having spectral types F-G at maximum light and K-M at minimum. The light curves are characterized by the presence of double waves with alternating primary and secondary minima that can vary in depth so that primary minima may become secondary and vice versa. The complete light amplitude may reach 3-4 mag. in V. Periods between two adjacent primary minima (usually called formal periods) lie in the range 30-150 days (these are the periods appearing in the Catalogue). Two subtypes, <i>RVA</i> and <i>RVB</i> , are recognized.	Intrinsic	Pulsating
RVA	RV Tauri variables that do not vary in mean magnitude. Example: ACHer (2022)	Intrinsic	Pulsating
RVB	RV Tauri variables that periodically (with periods from 600 to 1500 days and amplitudes up to 2 mag in V) vary in mean magnitude Examples: DFCvg (2022) RVTau (2022)	Intrinsic	Pulsating
SPB	Slowly pulsating B stars showing both light and line profile variability. Main sequence B2-B9 stars (3-9 solar masses) that pulsate in the high radial order low degree g-modes. Periods may be multiple and range from 0.4 to 5 days and amplitudes are smaller than 0.1 magnitudes. Also known as 53 Persei stars. GCVS type LPB. Examples: ι (iota) Her, V0469Per (2022), V0539Ara (2022)	Intrinsic	Pulsating
SPBe	Rapidly rotating Be stars showing g-mode non-radial pulsa- tions. Unlike SPB stars, prograde modes are predominantly excited among the high-order g-modes in SPBe stars. Ampli- tudes range from undetectable to about 0.2 mag. Example: betCMi (2022)	Intrinsic	Pulsating
SR	Semi-regular variables, which are giants or supergiants of inter- mediate and late spectral types showing noticeable periodicity in their light changes, accompanied or sometimes interrupted by various irregularities. Periods lie in the range from 20 to >2000 days, while the shapes of the light curves are rather dif- ferent and variable, and the amplitudes may be from several hundredths to several magnitudes (usually 1-2 mag in V)	Intrinsic	Pulsating
SRA	Semi-regular late-type (M, C, S or Me, Ce, Se) giants displa- ying persistent periodicity and usually small (<2.5 mag. in V) light amplitudes. Amplitudes and light-curve shapes generally vary and periods are in the range of 35-1200 days. Many of these stars differ from Miras only by showing smaller light am- plitudes. Example: ZAqr (2022).	Intrinsic	Pulsating
SRB	Semi-regular late-type (M, C, S or Me, Ce, Se) giants with poorly defined periodicity (mean cycles in the range of 20 to 2300 days) or with alternating intervals of periodic and slow irregular changes, and even with light constancy inter- vals. Every star of this type may usually be assigned a certain mean period (cycle), which is the value given in the catalog. In a number of cases, the simultaneous presence of two or more pe- riods of light variation is observed. Examples: RRCrB (2022), AFCyg (2022).	Intrinsic	Pulsating
SRC	Semi-regular late-type (M, C, S or Me, Ce, Se) supergiants with amplitudes of about 1 mag. and periods of light variation from 30 days to several thousand days. Example: mu.Cep (2022).	Intrinsic	Pulsating

SRD	Semi-regular variable giants and supergiants of F, G, or K spectral types, sometimes with emission lines in their spectra. Amplitudes of light variation are in the range from 0.1 to 4 mag. and the range of periods is from 30 to 1100 days. Examples: ULup (2022), SVUMa (2022).	Intrinsic	Pulsating
SRS	Semi-regular pulsating red giants with short periods (several days to a month), probably high-overtone pulsators. Prototype: AUAri (2022).	Intrinsic	Pulsating
SXPHE	Phenomenologically, these resemble <i>HADS</i> variables but they are pulsating sub-dwarfs of the spherical component, or old disk galactic population, with spectral types in the range A2- F5. They may show several simultaneous periods of oscillation, generally in the range 0.04-0.08 days, with variable-amplitude light changes that may reach 0.7 mag. in V. These stars are present in globular clusters.	Intrinsic	Pulsating
SXPHE(B) V361HYA	Old population analogs to the double-mode $HADS(B)$ stars. Very rapidly pulsating hot sub-dwarf B stars with periods between 90 and 600 seconds exhibiting pressure-mode pulsations. Amplitudes are within several hundredths of a magnitude. Also known as EC 14026 variables. GCVS class <i>RPHS</i> . Prototype: V0361Hya (2022) = EC 14026-2647.	Intrinsic Intrinsic	Pulsating Pulsating
V1093HER	Slowly pulsating sub-dwarf B stars with periods between 45 and 180 minutes exhibiting gravity-mode pulsations. Also known as $PG \ 1716$ variables.	Intrinsic	Pulsating
ZZ	ZZ Ceti variables. These are non-radially pulsating white dwarfs that change their brightnesses with periods from 30 s. to 25 min. and amplitudes from 0.001 to 0.2 mag. in V. They usually show several close period values.	Intrinsic	Pulsating
ZZA	ZZ Cet-type variables of DA spectral type (DAV stars) having only hydrogen absorption lines in their spectra. These are the classical ZZ Cet stars. A subset of them shows outbursts and are listed in the eruptive group as ZZA/Q .	Intrinsic	Pulsating
ZZB	ZZ Cet-type variables of DB spectral type (DBV stars) having only helium absorption lines in their spectra. Also known as V777 Herculis stars.	Intrinsic	Pulsating
ZZ/GWLIB	GW Librae stars. Non-radially pulsating white dwarfs in ca- taclysmic systems with low accretion rates having hydrogen and helium absorption lines in their spectra. They show low- amplitude and non-commensurate periodic signals which are roughly constant over a few days, but somewhat transient in frequency and amplitude on longer time-scales.	Intrinsic	Pulsating
ZZO	ZZ Cet type variables of the DO spectral type $(DOV \text{ stars})$ showing HeII and and CIV absorption lines in their spectra. Also known as GW Virginis stars.	Intrinsic	Pulsating
ZZLep	ZZ Leporis stars: variable central stars of planetary nebulae. These are hot stars (spectral type O) with temperatures less than 50000 K and with hydrogen-rich spectra, showing varia- tions on the order of hours and of days. The most plausible mechanisms for the variability are pulsation or variations in the stellar mass loss rate, or both. Reference: Handler (2003).	Intrinsic	Pulsating
LPV	<i>Survey types.</i> Long Period Variables (red stars) of unspecified type (survey type).	Intrinsic	Pulsating

CW-FO	Survey types. First Overtone CW stars in ASAS-3. All of the stars originally classified as first overtone pulsators of the CW class in ASAS have been found to be in error, as this type of star does not exist.	Intrinsic	Pulsating
CW-FU DCEP-FO	<i>Survey types.</i> Fundamental mode CW stars in ASAS-3. <i>Survey types.</i> First Overtone classical Cepheids (<i>DCEPS</i>) in ASAS-3.	Intrinsic Intrinsic	Pulsating Pulsating
DCEP-FU	Survey types. Fundamental mode classical Cepheids (<i>DCEP</i>) in ASAS-3.	Intrinsic	Pulsating
DSCTr	Survey types. δ Scuti subtype in ASAS-3. They show larger amplitudes but most of them are actually contact binaries with twice the period given in the ASAS catalogue.	Intrinsic	Pulsating
PULS (B)	Survey types. Pulsating variables of unspecified type. Subtype. Double-mode ("beat") pulsators of the types $BCEP(B)$, $DSCT(B)$, $HADS(B)$, $SXPHE(B)$, $DCEP(B)$, and $DCEPS(B)$. Double-mode RR Lyrae stars are denoted by the type RRD .	Intrinsic Intrinsic	Pulsating Pulsating
BL GWLIB	Subtype. RR Lyrae stars showing the Blazhko effect. Subtype. GW Librae stars, subtype of ZZ Ceti stars, non- radially pulsating white dwarfs in cataclysmic systems, see ZZ/GWLIB.	Intrinsic Intrinsic	Pulsating Pulsating
0	Subtype. Some DAV stars (ZZA-type) with temperatures between 10600 and 11300 K show repeated outbursts, recurring on irregular intervals of order days and lasting for several hours. These are given as ZZA/O stars.	Intrinsic	Pulsating
BE	GCVS-type for Be stars that show variability but no light outbursts ($GCAS$ variables). Most of them may be $LERI$ variables.	Intrinsic	Eruptive
cPNB[e] CTTS	Compact proto-planetary and planetary nebulae B[e] stars. Classical <i>T Tauri stars</i> . They have extensive disks that result in strong emission lines (EW(H α) \geq 10Å). GCVS types <i>INT</i> and <i>IT</i> .	Intrinsic Intrinsic	Eruptive Eruptive
DPV	Double Periodic Variables. They are semi-detached interacting binaries (with a B-type component) with optically thick disks around the gainer, that experience regular cycles of mass loss into the interstellar medium and are characterized by orbital photometric variability (ellipsoidal, DPV/ELL or eclipsing, DPV/E) in time scales of few days and a long photometric cycle lasting roughly 33 times the orbital period.	Intrinsic	Eruptive
DYPer	Hydrogen-deficient stars that show unpredictable fading events but slower declines and roughly symmetric recoveries rather than the rapid decline and slow recovery observed in RCB stars. The amplitude of the declines is smaller than those of RCB stars. Spectroscopically they seem to be normal C-type stars with evidence for C13 in their spectra, whereas one of the defining characteristics of RCB stars is the lack of this isoto- pe of carbon. At maximum they show semiregular behaviour with periods typical of SR stars and longer than the pulsations seen in RCB stars. They are also 10 times fainter on average. Example: DYPer (2022).	Intrinsic	Eruptive

EXOR	Named after EX Lupi, and collectively known in the literature as EXors, these are eruptive T Tauri stars that show brigh- tening episodes of several magnitudes in time scales of seve- ral months or a few years. The EXor stage appears to follow the FUor one, more than being a less evident manifestation of the same phase. They are less luminous and present dif- ferent emission-line spectra than those of FUors (which are dominated by absorption features). They also show repetitive outbursts instead a unique major one. Also known as Subfuors. Examples: EXLup (2022), V1118Ori (2022), V1143Ori (2022).	Intrinsic	Eruptive
FF	Final Flash objects. Stars undergoing final helium shell flash burning, a very late thermal pulse in the post-AGB stage. They undergo RCB-like fadings after the initial brightening befo- re being hidden by a thick dust debris cloud which results in extremely large amplitudes (>10 mag.). Examples: V4334Sgr (2022), V0605Aql (2022), FGSge (2022).	Intrinsic	Eruptive
FSCMa	B[e]-type stars (spectral types ranging from O9 to A2) that exhibit much stronger Hydrogen emission lines than those seen in classical Be stars and also exhibit forbidden (low excitation) lines of FeII, [FeII], [NII], [OI] and strong IR excesses, which are indicative of compact dust envelopes. They are also not fast rotators like the Be stars. They are most likely binary systems that currently undergo or have recently undergone a phase of a rapid mass exchange, associated with dust formation. The secondaries are typically 2-3 magnitudes fainter than their pri- maries. Complex structure of the circumstellar environments significantly veils the underlying stars and requires multitech- nique investigation. They are located outside star formation re- gions and they probably main sequence stars (not supergiants). Their light curves show irregular long-term variations with long term (years) mean magnitude changes up to 2 magnitudes in V. Most of the stars in this group were previously considered as Unclassified B[e] stars. Examples: FSCMa (2022), V0743Mon (2022).	Intrinsic	Eruptive
FUOR	Variables of the FU Orionis type, which are collectively known in the literature as FUors. Characterized by a unique major gradual increase in brightness by about 4-6 mag. following which they show a complex absorption spectrum much like that of a F or G-type supergiant star, a powerful shortward-shifted P Cyg-like absorption component at H α and a strong Li I λ 6707 absorption line. They may stay constant at maximum bright- ness or decline slowly by 1-2 mag. several months after the initial rise. These variables probably mark one of the evolutio- nary stages of <i>T Tauri-type stars</i> as evidenced by an outburst of one member, V1057Cyg (2022), but its decline (2.5 mag. in 11 years) commenced immediately after maximum bright- ness was attained. All presently known FUors are coupled with	Intrinsic	Eruptive
GCAS	reflecting cometary nebulae. GCVS type FU . Eruptive irregular variables of the γ Cassiopeiae type. These are rapidly rotating O9-A0 III-Ve stars with mass outflow from their equatorial zones. The formation of equatorial rings or disks is accompanied by a temporary brightening (pole-on stars like omeCMa (2022)) or fading (equator-on stars like Pleione (2022)). Light amplitudes may reach 1.5 mag. in V.	Intrinsic	Eruptive

I	Poorly studied irregular variables with unknown features of light variations and spectral types. This is a very inhomogeneous group of objects. It is usually applied to young stellar objects (YSO), if they are evolved red giants they are given the type L .	Intrinsic	Eruptive
IA IB	Poorly studied irregular variables of early (O-A) spectral type. Poorly studied irregular variables of intermediate (F-G) to late (K-M) spectral type	Intrinsic Intrinsic	Eruptive Eruptive
IN	Orion variables. Irregular, eruptive variables connected with bright or dark diffuse nebulae or observed in the regions of these nebulae. Some of them may show cyclic light variations caused by axial rotation. In the Spectrum-Luminosity diagram, they are found in the area of the main sequence and subgiants. They are probably young objects that, during the course of further evolution, will become light-constant stars on the zero- age main sequence (ZAMS). The range of brightness variations may reach several magnitudes.	Intrinsic	Eruptive
INA	Orion variables of early spectral types (B-A or Ae). They are often characterized by occasional abrupt Algol-like fadings. Example: TOri (2022).	Intrinsic	Eruptive
INAT	INT-type stars with abrupt fadings (<i>INA</i> type).	Intrinsic	Eruptive
INB	Orion variables of intermediate and late spectral types, F-M or Fe-Me (BH Cep, AH Ori). F-type stars may show Algol-like fadings similar to those of many <i>INA</i> stars; K-M stars may produce flares along with irregular light variations.	Intrinsic	Eruptive
INS	IN stars showing rapid light variations (up to 1 mag. in 1-10 days).	Intrinsic	Eruptive
INSA	ISA stars observed in nebulosity.	Intrinsic	Eruptive
INSB	ISB stars observed in nebulosity.	Intrinsic	Eruptive
INST	INT stars showing rapid light variations.	Intrinsic	Eruptive
INT	Orion variables of the T Tauri type observed only in diffuse nebulae. Stars are assigned to this type on the basis of the following (purely spectroscopic) criteria: spectral types are in the range Fe-Me. The spectra of most typical stars resemble the spectrum of the solar chromosphere. The feature specific to the type is the presence of the fluorescent emission lines Fe II 4046, 4132 Å (anomalously intense in the spectra of these stars), emission lines [Si II] and [O I], as well as the absorption line Li I λ 6707. Known as <i>CTTS</i> (Classical T Tauri Stars).	Intrinsic	Eruptive
15	Kapid irregular variables having no apparent connection with diffuse nebulae and showing light changes of about 0.5 - 1.0 mag. within several hours or days.	Intrinsic	Eruptive

0	Q
9	0

ISA	Rapid irregular variables of the early spectral types, B-A or Ae. UX Orionis (<i>ISA</i> in the GCVS) is the prototype of a subgroup of Herbig Ae/Be stars knows as UXOR that show irregular va- riations with a wide range of amplitudes from barely detectable to more than 4 mag. in V. Large-amplitude variability is con- fined to stars with spectral types later than B8. There are two principal components: (1) irregular variations on time-scales of days around a mean brightness level that changes on a much longer time-scale (typically years), sometimes in a quasi-cyclic fashion, and (2) occasional episodes of deep minima, occurring at irregular intervals but more frequently near the low points of the brightness cycles. Examples: UXOri (2022), CQTau (2022), BFOri (2022).	Intrinsic	Eruptive
ISB	Rapid irregular variables of the intermediate and late spectral types. F-M and Fe-Me.	Intrinsic	Eruptive
RCB	Variables of the R Coronae Borealis type. These are hydrogen- deficient, carbon- and helium-rich, high-luminosity stars be- longing to the spectral types Bpe-C, which are simultaneously eruptive and pulsating variables. They show slow non-periodic fadings by 1-9 mag. in V lasting from a month or more to seve- ral hundred days. These events show a rapid decline and slow recovery and are superposed on cyclic pulsations with ampli- tudes up to several tenths of a magnitude and periods in the range 30-100 days. These stars may be the result of a merger of a helium and a carbon white dwarfs. Some post-AGB ob- jects, especially carbon stars showing fadings, may show RCB properties but they don't share the same origin and they ha- ve been classified as <i>DY Per stars</i> . Examples: RCrB (2022), RYSgr (2022).	Intrinsic	Eruptive
SDOR	Variables of the S Doradus type. These are eruptive, high- luminosity Bpec-Fpec stars showing irregular (sometimes cy- clic) light changes with amplitudes in the range 1-7 mag. in V. They belong to the brightest blue stars of their parent galaxies. As a rule, these stars are connected with diffuse nebulae and surrounded by expanding envelopes. Examples: PCyg (2022), etaCar (2022). Also known as LBV. The SDOR variability is known in the literature as an aspect of the LBV phenomenon, consisting of photospheric pulsations with time scales of hun- dreds to thousands of days and excursions to the redder part of the HR-diagram when the star is brighter (<i>SDOR</i> phases). Be- sides, they also display micro-variations, stochastic variability and eruptions	Intrinsic	Eruptive
TTS	T Tauri Stars. When their properties are well-known, they are classified in two sub-groups: <i>CTTS</i> (Classical) and <i>WTTS</i> (Weak-lined). GCVS types <i>IT</i> and <i>INT</i> .	Intrinsic	Eruptive
UV	Eruptive variables of the UV Ceti type, these are K Ve-M Ve stars sometimes displaying flare activity with amplitudes from several tenths of a magnitude up to 6 mag. in V. The amplitude is considerably greater in the ultraviolet spectral region. Maxi- mum light is attained in several seconds or dozens of seconds after the beginning of a flare; the star returns to its normal brightness in several minutes or dozens of minutes.	Intrinsic	Eruptive

UVN	Flaring Orion variables of spectral types Ke-Me. These are phe- nomenologically almost identical to UV Ceti variables observed in the solar neighborhood. In addition to being related to nebu- lae, they are normally characterized by being of earlier spectral type and greater luminosity, with slower development of flares (Example: V0389Ori (2022)). They are possibly a specific sub- group of <i>INB</i> variables with irregular variations superimposed by flares	Intrinsic	Eruptive
UXOR	UX Orionis stars, which are collectively known in the literature as UXors. Subgroup of Young Stellar Objects that show irre- gular variations with a wide range of amplitudes from barely detectable to more than 4 mag in V. Most of them are Herbig Ae/Be stars but there are some T Tauri stars with later spec- tral types also showing the same behaviour. Large-amplitude variability is confined to stars with spectral types later than B8. There are two principal components: (1) irregular variations on time-scales of days around a mean brightness level that chan- ges on a much longer time-scale (typically years), sometimes in a quasi-cyclic fashion, and (2) occasional episodes of deep mi- nima, occurring at irregular intervals but more frequently near the low points of the brightness cycles. UXors show increased polarization when the optical light of the star becomes fainter (presence of clumps in our line of sight) and redder, while in ex- treme visual minima there is a color reversal. Currently mixed among the <i>ISA</i> , <i>INA or INSA</i> classes in the GCVS. Examples: UXOri (2022), CQTau (2022), BFOri (2022).	Intrinsic	Eruptive
WR	Eruptive Wolf-Rayet variables. Stars with broad emission fea- tures of He I and He II as well as C II-C IV, O II-O IV, and N III-N V. They display irregular light changes with amplitudes up to 0.1 mag. in V, which are probably caused by physical processes, in particular, by non-stable mass outflow from their atmospheres	Intrinsic	Eruptive
WTTS	Weak-lined <i>T Tauri stars</i> . A T Tauri star that lacks strong emission lines in its optical spectrum (EW(H α) <10Å), and lacks both strong stellar winds and a circumstellar accretion disk. Also known as naked T Tauri star. GCVS types <i>INT and</i> <i>IT</i> .	Intrinsic	Eruptive
ZZA/O	DAV stars (ZZA type) with temperatures between 10600 and 11300 K showing repeated outbursts, recurring on irregular intervals of order days and lasting for several hours. They show rich pulsation spectra dominated by low-frequency (800-1400 s. period) pulsations that are unstable in amplitude and period.	Intrinsic	Eruptive
YSO	Survey types. Young Stellar Object of unspecified variable type Pre-main sequence star, likely TTS	Intrinsic	Eruptive
DIP	Subtype. Dippers, stars showing dips in their light curve. These are usually YSOs of spectral types K and M (example: EPIC204278916 (2022)) but in some cases the dips may not be associated to stellar youth and appear in earlier type stars (example: KIC8462852 (2022)). The amplitude of the dips may be deeper than 1 mag. Some are quasi-periodic and some are irregular. The possible explanation for the dips involves circumstellar disks and transiting cometary-like debris.	Intrinsic	Eruptive
WR	Subtype. Binary systems with at least one Wolf-Rayet component.	Intrinsic	Eruptive

(YY)	Subtype. When this suffix is added to any of the <i>YSO-type</i> eruptive variables (prototype YY Orionis) it indicates the presence of absorption components on the redward sides of emission lines, which is a sign of the infall of matter toward the stars' surfaces.	Intrinsic	Eruptive
AM	AM Herculis-type variables; close binary systems consisting of a dK-dM type dwarf and a superstrong magnetic white dwarf primary, in which the magnetic field of the primary not only prevents the formation of an accretion disk but also synchroni- zes the primary's rotation with its orbital period. They are cha- racterized by variable linear and circular polarization of light. The total range of light variations may reach 4-5 mag. in V. Also known as polars.	Intrinsic	Cataclysmic
CBSS	Close-binary supersoft source. Super soft X-rays are believed to be produced in high luminosity close binary systems by steady nuclear burning on the surface of an accreting white dwarf (WD). Orbital periods range from 0.15 to 4 d. The high mass transfer rate has been suggested to be caused by dynamical instability, expected when the donor star is more massive than the accreting object. When the orbital period is smaller than 6 hours, this mechanism does not work and the CBSS with such periods are believed to be fed by a distinct mechanism: the wind-driven accretion. Their spectra show high-ionization spe- cies like O VI and N V; the emission of He II λ 4686 is stronger than twice the strength of H β . There may be indication of jets. The orbital light curve can have shapes of either double eclipse or sine wave. Examples: QRAnd (2022), MRVel (2022).	Intrinsic	Cataclysmic
CBSS/V	V Sagittae-type stars. They belong to the CBSS class but are not detected as supersoft X-ray emitters. In V Sge stars, lines are usually stronger and broader when compared to the rest of the CBSS but this might be a selection effect associated with chemical abundance. Environments and stars with low chemical abundance have weaker winds so supersoft X-rays can escape and not be absorbed by the interstellar medium or the stellar wind. This is the case of the Magellanic Clouds. The opposite happens in stars and environmets with high chemical abundance where the soft photons are either absorbed by the stellar wind or by the interstellar medium (or both). Examples: VSge (2022), WXCen (2022).	Intrinsic	Cataclysmic
DQ	DQ Herculis type. Magnetic cataclysmic variables with a red dwarf secondary and a white dwarf primary component that generates a magnetic field weaker than the field associated with AM Herculis stars and that is not strong enough to synchronize the orbits of the rotating white dwarf with the orbital period of the system. Also known as intermediate polars (IP).	Intrinsic	Cataclysmic
DQ/AE	Propellers. AE Aqr subtype of intermediate polars with a per- sistent outflow whose expulsion from the binary is powered by the spin-down of a rapidly rotating, magnetized white dwarf. Example: AEAqr (2022).	Intrinsic	Cataclysmic

IBWD	Interacting Binary White Dwarfs . Close binary systems with ultra short periods (5-70 minutes). Also known as AM CVn-type stars or Helium dwarf novae because they lack hydrogen lines in their spectra. Outbursting IBWD objects can be identified by some outburst properties: short (5-6 d.) superoutbursts (that may be double); rapid fadings but long-fading tails lasting 100-200 d. and without IR-excess; smaller amplitudes than UGWZ stars and fainter superoutburst absolute magnitudes (<4).	Intrinsic	Cataclysmic
N	Novae. Close binary systems with orbital periods from 0.05 to 230 days. One of the components of these systems is a hot white dwarf star that suddenly, during a time interval from one to several dozen or several hundred days, increases its brightness by 7-19 mag. in V, then returns gradually to its former brightness over several months, years, or decades. Small changes at minimum light may be present. Cool components may be giants, subgiants, or dwarfs of K-M type. The spectra of novae near maximum light resemble A-F absorption spectra of luminous stars at first. Then broad emission lines (bands) of hydrogen, helium, and other elements with absorption components indicating the presence of a rapidly expanding envelope appear in the spectrum. As the light decreases, the composite spectrum begins to show forbidden lines characteristic of the spectra of gas nebulae excited by hot stars. At minimum light, the spectra of novae are generally continuous or resemble the spectra of Wolf-Rayet stars. Only spectra of the most massive systems show traces of cool components. Some novae reveal pulsations of hot components with periods of approximately 100 s. and amplitudes of about 0.05 mag. in V after an outburst. Some novae eventually turn out to be eclipsing systems. According to the features of their light variations, novae are subdivided into fast (NA), slow (NB), very slow (NC), and recurrent (NR) categories.	Intrinsic	Cataclysmic
NA	Fast novae displaying rapid light increases and then, having achieved maximum light, fading by 3 mag. in 100 or fewer days. Example: GKPer (2022).	Intrinsic	Cataclysmic
NB	Slow novae that fade after maximum light by 3 mag. in \geq 150 days. Here the presence of the well-known "dipïn the light curves of novae similar to T Aur and DQ Her is not taken into account: The rate of fading is estimated on the basis of a smooth curve, its parts before and after the "dip"being a direct continuation of one another. Example:RRPic (2022).	Intrinsic	Cataclysmic
NC	Novae with a very slow development and remaining at maxi- mum light for more than a decade, then fading very slowly. Before an outburst these objects may show long-period light changes with amplitudes of 1-2 mag. in V; cool components of these systems are probably giants or supergiants, someti- mes semi-regular variables, and even Mira variables. Outburst amplitudes may reach 10 mag. High excitation emission spec- tra resemble those of planetary nebulae, Wolf-Rayet stars, and symbiotic variables (they are called "symbiotic novae"). The possibility that these objects are planetary nebulae in the pro- cess of formation is not excluded. Example: RRTel (2022).	Intrinsic	Cataclysmic

NL	Nova-like stars. Cataclysmic variables where the mass transfer rate is above a certain limit and their accretion disks are stable because they are nearly fully ionized to their outer (tidal cut off) boundary and this condition suppresses dwarf nova out- bursts. Also known as UX (UX Ursae Majoris stars).	Intrinsic	Cataclysmic
NL/VY	Anti-dwarf novae. VY Sculptoris stars. They are cataclysmic binary systems with a hot (35,000-65,000 K) and luminous white dwarf that occasionally undergo fadings of more than 1 magnitude (up to several magnitudes) due to a low rate of mass transfer. These fadings might last from days to years. At maximum they vary up to 1 magnitude. They show no out- bursts even though at minimum they fall into the dwarf novae instability strip. This could be caused by the possible magnetic nature of the white dwarf. Orbital periods usually range bet- ween 0.12 and 0.18 d. Examples: VYScl (2022), MVLyr (2022).	Intrinsic	Cataclysmic
NR	Recurrent novae, which differ from typical novae by the fact that two or more outbursts (instead of a single one) separated by 10-80 years have been observed. Examples: TCrB (2022), TPyx (2022).	Intrinsic	Cataclysmic
SN	Supernovae. Stars that increase, as a result of a final explo- sion, their brightnesses by 20 mag and more, then fade slowly. The spectrum is characterized by the presence of very broad emission bands, their widths being several times greater than those of the bright bands observed in the spectra of novae. The expansion velocities of SN envelopes are in the thousands of km/s. According to the light curve shape and the spectral fea- tures, supernovae are subdivided into types I and II. Examples: BCas (2022) CMTau (2022)	Intrinsic	Cataclysmic
SN I	Type I supernovae. Absorption lines of Ca II, Si, etc., but no hydrogen lines are present in the spectra. The expanding envelope almost lacks hydrogen. During 20-30 days following maximum light, the brightness decreases by approximately 0.1 mag per day, then the rate of fading slows and reaches a constant value of 0.014/day.	Intrinsic	Cataclysmic
SN Ia	CO white dwarf accreting matter from (or merging with) a companion till it reaches the Chandrasekhar limit. No hydrogen. Silicon and iron lines. My -19.3. Detonation, no remnant.	Intrinsic	Cataclysmic
SN Iax	Also known as SN Ia 02cx-like. CO white dwarf accreting mat- ter from a nondegenerate He star that lost its outer hydrogen envelope. Mv -14.2/-18.9. The white dwarf is likely not destro- yed (partial deflagration). Prototype: SN 2002cx.	Intrinsic	Cataclysmic
SN Ia-00cx- like	Subclass of SNe Ia. Their spectra are dominated by persistent Fe III lines and maintain a high ionisation and excitation in its ejecta for a longer time than most other SNe Ia. They are ex- tremely rare and seem to stem from relatively old progenitors.	Intrinsic	Cataclysmic
SN Ia-02es- like	Subclass of SNe Ia that are subluminous but with slowly declining light curves that show wide maximum peaks, with longer rise times of 19-20 d. and slower decline. They are similar to 91bg / 86G-like SNe in most respects.	Intrinsic	Cataclysmic

SN Ia-06gz- like	Extremely luminous SNe Ia. Also called "super- Chandrasekhar" supernovae. They show broad light curves and moderately low ejecta velocities and are characterised by an unusually high U-band and UV flux and blue UV optical colours. Their peak luminosities lie between MB -19.5 and -20.4 and -unlike any other subclass of SNe Ia-, they are also overluminous by 1 mag. in the NIR. They show a tendency to explode in rather low-mass galaxies.	Intrinsic	Cataclysmic
SN Ia-86G- like	Objects with properties intermediate between 91bg-like and normal SNe Ia. Their light curves show rapid declines and peak around MB -18, showing double maxima in the NIR, with the first peak preceding those in bluer bands, in analogy to normal SNe Ia. However, the secondary maxima are very weak, and occur soon after the first peaks	Intrinsic	Cataclysmic
SN Ia-91bg- like	Subclass of SNe Ia that have peak luminosities that are 1.5- 2.5 mag. fainter than normal SNe Ia (MB -16.7-17.7). They have faster declining light curves, and their ejecta velocities are small at any epoch in comparison with normal SNe Ia. They show rather red maximum-light colours (B-V 0.5-0.6). They are mostly found in massive elliptical or S0 galaxies with a low stan formation rate	Intrinsic	Cataclysmic
SN Ia-91T- like	Subclass of SNe Ia characterised by high peak luminosities (0.2- 0.5 mag. brighter than normal SNe Ia) and broad light curves, but especially by a peculiar pre-maximum spectroscopic evo- lution with Fe III lines dominating the early spectra. They predominantly explode in late-type galaxies and are therefore likely associated with young stellar populations.	Intrinsic	Cataclysmic
SN Ia-99aa- like	Objects with properties intermediate between 91T-like and normal SNe Ia. Ca II lines are predominant in the very early spectra and their transition to a normal SN Ia-like appearance is much faster than in 91T-like SNe Ia	Intrinsic	Cataclysmic
SN Ia-Ca- rich	Extremely short-lived, fast-declining transients residing in the luminosity gap between classical novae and supernovae (peak magnitudes between -14.0 and -16.5). Their light curves are similar to 91bg-like SNe or fast-evolving SNe Ib/c, with sin- gle peaks in the NIR bands, rise times of 9-15 d., fast post- maximum declines and relatively red colours at peak (B-V 0.6). These objects are characterised by He-rich and H-free early- time spectra, formally leading to an SN Ib classification. They turn nebular very early, so that after 50-100 d. the ejecta seem to be transparent. They have rather low inferred ejecta masses. They are different from both SNe Ia and stripped core-collapse SNe during the nebular phase, but closer to core-collapse SNe than to SNe Ia with their Fe dominated nebular spectra. They are usually located at very large distances from the centres of their hosts, which tend to be E or S0 galaxies, so they seem to	Intrinsic	Cataclysmic
SN Ia-CSM	be low mass old stars. Subclass of SNe Ia that show spectral ambiguities arising from a strong contribution from circumstellar material interaction. They do not showing evidence for intermediate-mass elements and their spectra exhibit broad iron features, a low [Fe III]/[Fe II] ratio most similar to the super-Chandrasekhar supernovae (also similar absolute magnitudes, brighter than -19.5) and strong [Ca II] at late epochs.	Intrinsic	Cataclysmic

SN Ib	Intermediate mass WN progenitor. He lines. "Stripped core- collapse supernovae"	Intrinsic	Cataclysmic
SN Ic	WC or WO progenitors. No H and He. O, Mg and Ca lines. My -17/-20. "Stripped core-collapse supernovae".	Intrinsic	Cataclysmic
SN Ic-BL	Broad-lined SN Ic supernovae. Some are associated with soft, long gamma ray bursts. Broad lines require high photospheric velocities. They are sometimes referred to as hypernovae.	Intrinsic	Cataclysmic
SN II	Type II supernovae. Lines of hydrogen and other elements are apparent in their spectra. The expanding envelope consists mainly of H and He. Light curves show greater diversity than those of type I supernovae. Usually after 40-100 days since ma- ximum light, the rate of fading is 0.1 mag per day.	Intrinsic	Cataclysmic
SN IIa	CO white dwarf with a 6-7 solar masses main sequence compa- nion. Mix of SN Ia and SN IIn. SN Ia surrounded by circums- tellar matter (H) stripped from the companion. My -20/-21.	Intrinsic	Cataclysmic
SN IIb	Intermediate mass WN progenitor? Massive binary? Rapidly declining light curve. Spectra evolve from strong H lines to strong He lines (Mix of II and Ib subclasses). Outer layers stripped by companion?.	Intrinsic	Cataclysmic
SN IId	SN II-L supernovae with Double P-Cygni profiles indicating the occurrence of strong wind episodes shortly before the ex- plosion. Flattening in the light curve at later stages because of the interaction between the ejecta and the circumstellar mate- rial.	Intrinsic	Cataclysmic
SN II-L	Intermediate mass late WN progenitor. Rapid and Linear decline in its light curve. Strong He lines. H envelope <2 SM. Mv -18.	Intrinsic	Cataclysmic
SN IIn	LBV progenitors. Strong Narrow H-lines indicative of copious mass loss. Mv -17/-20.	Intrinsic	Cataclysmic
SN II-P	Low mass red supergiants progenitors. Extended Plateau optical light curves. H envelope 10 SM. Mv -16/-18.	Intrinsic	Cataclysmic
SN-pec	When a supernova resembles one of the types but shows different features (e.g. under-luminosity) the suffix -pec is added to the type. (SN Ib-pec).	Intrinsic	Cataclysmic

UG	U Geminorum-type variables, quite often called dwarf novae. They are close binary systems consisting of a dwarf or subgiant	Intrinsic	Cataclysmic
	K-M star that fills the volume of its inner Roche lobe and a whi-		
	te dwarf surrounded by an accretion disk. Orbital periods are in the range 0.003 0.5 days. Usually only small, in some cases		
	rapid, light fluctuations are observed, but from time to time the		
	brightness of a system increases rapidly by several magnitudes		
	and, after an interval of from several days to a month or more,		
	returns to the original state. Intervals between two consecutive		
	characterized by a certain mean value of these intervals, i.e., a		
	mean cycle that corresponds to the mean light amplitude. The		
	longer the cycle, the greater the amplitude. The period given		
	in VSX is usually the orbital period. Outburst cycles are gi-		
	of X-ray emission. The spectrum of a system at minimum is		
	continuous, with broad H and He emission lines. At maximum		
	these lines almost disappear or become shallow absorption li-		
	nes. Some of these systems are eclipsing, possibly indicating		
	that the primary minimum is caused by the eclipse of a hot spot that originates in the accretion disk from the infall of a		
	gaseous stream from the K-M star. According to the characte-		
	ristics of the light changes, U Gem variables may be subdivided		
	into three types: SS Cyg-type ($UGSS$), SU UMa-type ($UGSU$), and Z Cam-type (UGZ).		
UGER	ER Ursae Majoris-type subclass of $UGSU$ dwarf novae. These	Intrinsic	Cataclysmic
	stars typically spend a third of their time in super-outburst with a super cycle of 20 00 days. Outside of super outburst		
	they typically pack in a rapid succession of normal outbursts.		
	The period given in VSX is usually the orbital period. Outburst		
	cycles are given between parentheses. Amplitudes are smaller		
	(around 3 mag.) than in other dwarf novae due to a higher		
UCSS	mass transfer rate. SS Cyapi type variables. They increase in brightness by 2.6	Intrinsic	Catachysmic
0055	mag. in V in 1-2 days and in several subsequent days return to	mumsic	Cataciysinic
	their original brightnesses. The values of the cycle are in the		
	range 10 days to several thousand. The period given in VSX is		
	usually the orbital period. Outburst cycles are given between		
UGSU	SU Ursae Majoris-type variables. These are characterized by	Intrinsic	Cataclysmic
ease	the presence of two types of outbursts called "normal. ^a nd	mormsic	Cataciysiiiie
	"super-outbursts". Normal, short outbursts are similar to those		
	of $UGSS$ stars, while super-outbursts are brighter by 2 mag.,		
	are more than five times longer (wider), and occur several times		
	superposed periodic oscillations (super-humps), their periods		
	being close to the orbital ones and amplitudes being about		
	$0.2\mathchar`-0.3$ mag. in V. Orbital periods are shorter than 0.1 days;		
	companions are of dM spectral type. The period given in VSX		
	is usually the orbital period. Outburst cycles are given between parentheses		
l	Post offerfulloop.		

UGWZ	WZ Sagittae type subclass of <i>UGSU</i> dwarf novae in which the interval between super-outbursts is unusually long (>4 years) due to a very low mass-transfer rate, while normal outbursts are few or absent. They show double-waved early superhumps coincident with the orbital period (as a manifestation of the 2:1 resonance) for several days at the beginning of their outbursts (the low inclination systems may show a similar period of time without variations before the onset of ordinary superhumps). They undergo re-brightenings. Orbital periods range from 0.05 to 0.08 d. Amplitudes are larger than 7 magnitudes.	Intrinsic	Cataclysmic
UGZ	Z Camelopardalis-type stars. These also show cyclic outbursts, differing from UGSS variables by the fact that sometimes after an outburst they do not return to the original brightness, but during several cycles retain a magnitude between maximum and minimum. The values of cycles are from 10 to 40 days, while light amplitudes are from 2 to 5 mag. in V. The period given in VSX is usually the orbital period. Outburst cycles are given between parentheses.	Intrinsic	Cataclysmic
UGZ/IW	IW And stars. Also known as anomalous Z Cam stars. A sub- set of the UGZ class. They show outbursts arising from stands- tills and eclipsing-like light curves. Examples: IWAnd (2022), V0513Cas (2022).	Intrinsic	Cataclysmic
V838MON	Luminous red transients of the V838 Monocerotis type that become redder in outburst and are thought to be the result of the merger of a contact binary. After the outburst they get hidden in a dusty disk. The amplitudes are 9-13 mag. Also known as Luminous Red Novae (LNR). Examples: V0838Mon (2022), V1309Sco (2022), V4332Sgr (2022).	Intrinsic	Cataclysmic
WDP	White dwarf pulsars. Binary systems with a rapidly rotating white dwarf that is highly magnetized (up to 500 MG). Mag- netic interactions between the two component stars, coupled with synchrotron radiation from the white dwarf, power the ob- served polarized and non-polarized emission. Example: ARSco (2022).	Intrinsic	Cataclysmic
ZAND	Symbiotic variables of the Z Andromedae type. They are clo- se binaries consisting of a hot star, a star of late type, and an extended envelope excited by the hot star's radiation. The com- bined brightness displays irregular variations with amplitudes up to 4 mag. in V. A very inhomogeneous group of objects.	Intrinsic	Cataclysmic
CV IBWD	Survey types. Cataclysmic Variables of unspecified type. Subtype. Interacting Binary White Dwarfs. Close binary sys- tems with ultra short periods (5-70 minutes). Also known as AM CVn-type stars or Helium dwarf novae because they lack hydrogen lines in their spectra. Outbursting IBWD objects can be identified by some outburst properties: short (5-6 d.) super- outbursts (that may be double); rapid fadings but long-fading tails lasting 100-200 d. and without IR-excess; smaller ampli- tudes than UGWZ stars and fainter superoutburst absolute magnitudes (<4).	Intrinsic Intrinsic	Cataclysmic Cataclysmic
V VY	Subtype. V Sge subtype of the CBSS variables. They belong to the CBSS class but are not detected as supersoft X-ray emit- ters. In V Sge stars, lines are usually stronger and broader when compared to the rest of the CBSS but this might be a selection effect associated with chemical abundance. Environments and stars with low chemical abundance have weaker winds so super- soft X-rays can escape and not be absorbed by the interstellar medium or the stellar wind. This is the case of the Magellanic Clouds. The opposite happens in stars and environmets with high chemical abundance where the soft photons are either ab- sorbed by the stellar wind or by the interstellar medium (or both). Examples: VSge (2022), WXCen (2022). Subtype. VY Scl subtype. They are cataclysmic binary sys- tems with a hot (35,000-65,000 K) and luminous white dwarf that occasionally undergo fadings of more than 1 magnitude (up to several magnitudes) due to a low rate of mass transfer. These fadings might last from days to years. At maximum they vary up to 1 magnitude. They are usually nova-like variables that show no outbursts but some dwarf nnovae also show si- milar fadings. Orbital periods usually range between 0.12 and 0.18 d. Examples: VYScl (2022), MVLyr (2022).	Intrinsic	Cataclysmic
---------	---	-----------	----------------
HMXB	High Mass X-ray Binaries. Systems with a massive star (usually an O or B star, a Be star or a blue supergiant) and a compact object (generally a neutron star, a black hole or a white dwarf). A fraction of the stellar wind of the normal star is captured by the compact object and produces X-rays as it falls onto it or onto an accretion disk that's surrounding it. In X-ray binaries, the subtypes indicate which kind of behavior the binary dis- plays, like X-ray bursts (XB), large amplitude outbursts also in the visual (XN), reflection effect (XR) or it may also inform about the object's nature, e.g.: if the compact object is a pulsar (XP). Refer to the subtypes list below. Intermediate-mass X-ray binaries. Binary systems where a compact object – black hole (BH), neutron star (NS) or white dwarf (WD) – is accreting matter from a companion star of spectral type A or F. IMXBs are rarely observe because when the companion is more massive than the accretor but not mas- sive enough to have strong winds, wind accretion proceeds at a very low rate and Roche lobe accretion is thought to be uns- table. For NSs and WDs in IMXBs mass flows from the more massive to the lighter star and angular momentum conserva- tion shrinks the orbit, leading to enhanced mass transfer. The bright XRB phase is therefore intense and short lived.	Intrinsic	X-RAY X-RAY

108

LMXB	Low Mass X-ray Binaries. Systems where one of the compo- nents is either a black hole or a neutron star. The other, donor, component usually fills its Roche lobe and therefore transfers mass to the compact object. The donor can be a normal dwarf, a white dwarf, or an evolved star (red giant). X-rays are emitted as the mass falls onto the compact object or onto an accretion disk that's surrounding it. The X-ray emission is incident upon the atmosphere of the cooler companion of the compact object and is reradiated in the form of optical high-temperature ra- diation (reflection effect), thus making that area of the cooler companion's surface an earlier spectral type. These effects lead to quite a peculiar complex character of optical variability in such systems. In X-ray binaries, the subtypes indicate which kind of behavior the binary displays, like X-ray bursts (XB) , large amplitude outbursts also in the visual (XN) , reflection ef- fect (XR) or it may also inform about the object's nature, e.g.: if the compact object is a pulsar (XP) . Refer to the subtypes list below.	Intrinsic	X-RAY
x	Sources of strong, variable X-ray emission which do not be- long to or are not yet attributed to any other type of variable stars. Most of the X-type variables turn out to be <i>HMXB</i> , <i>IMXB</i> , <i>LMXB</i> , <i>AM or DQ-type binary systems</i> . The subty- pes of <i>HMXB</i> and <i>LMXB</i> systems are listed in the subtypes section.	Intrinsic	X-RAY
BHXB	Subtype. Black Hole X-ray Binaries. Interacting binary systems where X-rays are produced by material accreting from a secondary companion star onto a black hole (BH) primary through an accretion disk. Most of them (the transient sources) are a subtype of the LMXB but there are also some $HMXB$ that are $BHXB$ (usually the persistent sources, which spend most of their time in an X-ray bright state). They show outbursts as a consequence of instabilities developing in the accretion disk that cause more rapid mass transfer onto the BH and lead to bright X-ray emission. They also get brighter in the optical bands by several magnitudes. Example: V0404Cyg (2022).	Intrinsic	X-RAY
XB	X-ray bursters. Close binary systems showing X-ray and op- tical bursts, their duration being from several seconds to ten minutes, with amplitudes of about 0.1 mag. in V. Examples: V0801Ara (2022), V0926Sco (2022).	Intrinsic	X-RAY
XJ	Subtype. X-ray binaries characterized by the presence of relativistic jets evident at X-ray and radio wavelengths, as well as in the optical spectrum in the form of emission components showing periodic displacements with relativistic velocities. Examples: V1343Aql (2022).	Intrinsic	X-RAY
XN	Subtype. X-ray systems that occasionally rapidly increase in brightness by 1-9 mag. in V simultaneously with the X-ray range.	Intrinsic	X-RAY
ХР	Subtype. X-ray pulsar systems. The primary component is usually an ellipsoidal early-type supergiant. The reflection effect is very small and light variability is mainly caused by the ellipsoidal primary component's rotation. Periods of light changes are between 1 and 10 days; the period of the pulsar in the system is from 1 s. to 100 min. Light amplitudes usually do not exceed several tenths of a magnitude. Example: GPVel (2022).	Intrinsic	X-RAY

XPR XBR	Subtype. X-ray pulsar (XP) systems featuring the presence of the reflection effect. The mean light of the system is brigh- test when the primary component is irradiated by X rays; it is faintest during a low state of the X-ray source. The total light amplitude may reach 2-3 mag. in V. Example: HZHer (2022). Subtype. X-ray bursters (XB) featuring the presence of the	Intrinsic	X-RAY X-RAY
	reflection effect. Example: V0801Ara (2022).		0.1
AGN	Active Galactic Nuclei. Optically variable extragalactic objects only included for historical reasons or observing campaigns. GCVS type <i>GAL</i> .	-	Other Objects
BLLAC	Extragalactic BL Lacertae-type objects. These are compact quasi-stellar objects showing almost continuous spectra with weak emission and absorption lines and relatively rapid irre- gular light changes with amplitudes up to 3 mag. in V or mo- re. Sources of strong X-ray radiation and radio waves, their emission displays strong and variable linear polarization in the visible and infrared spectral regions.	-	Other Objects
GRB	Optical counterparts of gamma ray bursts (GRBs). Bursts can last from ten milliseconds to several minutes. The initial burst is usually followed by a longer-lived . ^a fterglow. ^{em} itted at longer wavelengths.	-	Other Objects
TDE	Tidal disruption event. Flare of electromagnetic radiation ob- served when a star approaches sufficiently close to a supermas- sive black hole in an active galaxy nucleus and is pulled apart by the black hole's tidal forces, with a fraction of its mass being captured into an accretion disk around the black hole. In the case of a partial TDE, the star survives the encounter with the SMBH and only a fraction of the stellar material is tidally strip- ped, leaving the stellar core intact. Partial TDEs can repeat, causing episodic mass transfer from the star to the SMBH at every pericenter passage, resulting in a series of low-level flares that repeat on the orbital timescale. Example: ASASSN-14ko (2022)	-	Other Objects
QSO	Optically variable quasi-stellar extragalactic sources (quasars) that earlier were erroneously considered to be variable stars	-	Other Objects
Microlens	Microlensing event. Symmetric brightening of a star caused by the presence of a separate gravitational influence intervening in line of sight. It may last from seconds to years. Microlensing events, which are a kind of extrinsic variables that, like super- novae, are a once in a lifetime event, and the star won't be observed as variable again. Example: GSC03656-01328 (2022).	-	Other Objects
*	Unique variable stars outside the range of the classifications. These probably represent either short stages of transition from one variability type to another or the earliest and latest evolu- tionary stages of these types, or they are insufficiently studied members of future new types of variables.	-	Other Objects
CST	Non-variable stars (constant), formerly suspected to be variable and hastily designated. Further observations have not confir- med their variability.	-	Other Objects
S	Unstudied variable stars with rapid light changes.	-	Other Objects
VBD	Variable brown dwarfs.	-	Other Objects

110

APER	Used in the OGLE catalogues for stars that show aperiodic	-	Other
	light variations.		Objects
MISC	Miscellaneous variable stars. Usually red variables (L, SR) or	-	Other
	other types of irregular stars I, BE) that can't be classified mo-		Objects
	re specifically by the automatic analysis made by the surveys.		
non-cv	Stars that were once classified as CVs but then were found to	-	Other
	be constant or belong to other types of variable stars or objects.		Objects
	Used in Downes Catalogue and Atlas of Cataclysmic Variables		
NSIN	Designation in the OGLE catalogues for stars with strictly pe-	-	Other
	riodic light curves, which are evidently non-sinusoidal.		Objects
PER	Periodic variable of unspecified type. Used in the OGLE cata-	-	Other
	logues for stars with a dominating periodicity, but showing also		Objects
	amplitude and/or phase changes or the periodic changes super-		
	imposed on the variability on a longer rime-scale. A majority		
	of semi-regular variables fall into this category.		
SIN	Designation in the OGLE catalogues for stars with sinusoidal	-	Other
	light curves showing the evidence of a single periodicity. This		Objects
	category may include such variables as the mono-periodic SPB,		
	ACV, GDOR, also some ELL (with half the orbital period) and		
	chromospherically active stars, etc.		
Transient	Ultraviolet transient source. Used in the GALEX Ultraviolet	-	Other
	Variability Catalog.		Objects
VAR	Variable star of unspecified type. Used for suspected variables	-	Other
	lacking deeper studies.		Objects

Tabla 6: Variable Star type designations in VSX. VSX (2022).

Tipo VSX	Id MAST	P. VSX	P. TESS	\neq Absoluta
RRAB/BL	251036086	5.74454e-01	5.74451e-01	3.35490e-06
RRC	282759645	3.36031e-01	3.36036e-01	4.50210e-06
RRAB	9726732	5.28926e-01	5.28934 e-01	7.63875e-06
EC RRC DSCT	308055615	4.25328e-01	4.25336e-01	8.04543e-06
EC RRC BCEP DSCT ESD	388940613	4.52598e-01	4.52607 e-01	8.88722e-06
RRAB/BL	98991911	6.50319e-01	6.50310 e-01	9.15244e-06
RRAB	59759791	3.90745e-01	3.90755e-01	9.86653e-06
RRC EC ESD	91606450	3.81483e-01	3.81473e-01	1.04523e-05
RRAB/BL	262713403	4.87372e-01	4.87383e-01	1.05435e-05
RRAB	29172806	5.97434e-01	5.97423 e-01	1.11409e-05
RRAB	443584715	6.72853e-01	6.72865 e-01	1.13149e-05
RRAB/BL	373013371	5.79722e-01	5.79710e-01	1.15615e-05
RRAB	314248004	6.34276e-01	6.34288e-01	1.18199e-05
EC RRC	41173515	5.93050e-01	5.93038e-01	1.24310e-05
RRAB	63172763	5.01130e-01	5.01144e-01	1.33596e-05
RRAB	25894218	4.55285e-01	4.55271e-01	1.44551e-05
RRAB	376503648	6.35665e-01	6.35681e-01	1.57150e-05
RRAB	39084536	6.84309e-01	6.84324e-01	1.58898e-05
RRAB	264005191	5.88941e-01	5.88960e-01	1.87913e-05
EC RRC DSCT ESD	464665587	4.36982e-01	4.36961e-01	2.05417 e- 05
RRC	403228093	3.52261e-01	3.52240e-01	2.14253e-05

RRAB	234518883	6.42238e-01	6.42260e-01	2.19115e-05
RRAB	55268447	5.48518e-01	5.48495e-01	2.22338e-05
RRAB/BL	386836589	3.67338e-01	3.67361e-01	2.28140e-05
RRAB	257159481	6.32410e-01	6.32386e-01	2.43057e-05
BBC	467176582	3 45280e-01	3 45255e-01	2 52762e-05
RRAB	424428104	5.83400e-01	5.83372e-01	2.76805e-05
RRAB	89358641	5 86926e-01	5 86897e-01	2 87507e-05
RRAB	339541239	4 71108e-01	4 71138e-01	3 02009e-05
RRAB	277752269	5.32850e-01	5.32881e-01	3 13010e-05
RRAB	320911963	5.68423e-01	5.68455e-01	3 16165e-05
BBAB	351126671	5.00120e-01	5.27099e-01	3 17223e-05
BBAB	166674568	5 73245e-01	5 73277e-01	3 18211e-05
BBAB	54075933	5.04915e-01	5.04948e-01	3 32684e-05
BBAB/BL	120302010	5.04910e-01 5.27/10e-01	5.049400-01 5.27445e-01	3 502330-05
RRAB/BL	120302313	5 705770 01	5.274400-01 5.706120.01	3 515540 05
BBCIECIESD	380127556	4 51076e-01	4.51041e-01	3 520260-05
FC BBC ESD	445024001	4.630810.01	4.640170.01	3 610060 05
ECIPPC	140122201	4.03901e-01 6 57200o 01	4.04017e-01 6 57352o 01	3 780880 05
	216214728	0.37390e-01 5.00757e.01	0.07552e-01 5.00710e.01	3.785610.05
NNAD DDD	310314730 150202787	2.62058e.01	3.00719e-01 2.62020a.01	2.265910.05
	109202787	5.05058e-01	3.03020e-01 2.77280a.01	5.80581e-05
	409575422	5.77559e-01	5.77580e-01 5.0020401	4.08009e-05
	00701077	5.90437e-01	5.90394e-01	4.250816-05
RRAB	339258033	5.67173e-01	5.67216e-01	4.31569e-05
RRAB/BL	85771080	5.59491e-01	5.59445e-01	4.53620e-05
RRAB/BL	279737991	4.92010e-01	4.91962e-01	4.75293e-05
RRAB/BL	207343225	6.53954e-01	6.53906e-01	4.75383e-05
EC RRC	27108542	5.75430e-01	5.75380e-01	4.97166e-05
RRAB	149398996	5.47199e-01	5.47148e-01	5.07974e-05
RRAB	337440887	5.24984e-01	5.24932e-01	5.13489e-05
RRAB	398328564	5.48254e-01	5.48200e-01	5.40732e-05
RRAB/BL	34069197	5.73508e-01	5.73451e-01	5.70175e-05
RRAB	197217727	5.45782e-01	5.45723e-01	5.94175e-05
RRAB	161888379	3.56943e-01	3.56883e-01	5.95691e-05
RRAB	131251909	3.35714e-01	3.35653e-01	6.08420e-05
RRAB	151828882	5.31036e-01	5.31098e-01	6.16538e-05
RRAB	48528720	6.87216e-01	6.87154e-01	6.22505e-05
RRAB/BL	235864102	4.73797e-01	4.73861e-01	6.40543e-05
RRAB	259590223	4.40375e-01	4.40310e-01	6.47473e-05
RRC	126321357	3.37429e-01	3.37362e-01	6.66753e-05
RRAB/BL	16371155	6.22291e-01	6.22219e-01	7.15159e-05
RRAB	23870913	5.51759e-01	5.51685e-01	7.34272e-05
RRAB	389477267	6.55640e-01	6.55566e-01	7.36476e-05
RRAB/BL	14231596	4.78840e-01	4.78765e-01	7.49627e-05
RRAB	148894072	5.69670e-01	5.69745e-01	7.55552e-05
RRAB	234507163	4.14529e-01	4.14452e-01	7.63087e-05
RRAB	337274166	5.88572e-01	5.88495e-01	7.75009e-05
RRAB	27488257	5.13528e-01	5.13607 e-01	7.87895e-05
RRC	32398153	3.77364e-01	3.77445e-01	8.09854e-05
RRAB	135149671	6.37812e-01	6.37897 e-01	8.53315e-05
RRAB	335683602	5.88674e-01	5.88588e-01	8.55753e-05
RRAB	444039477	6.36438e-01	6.36524 e-01	8.62278e-05
RRAB	406732854	5.86587 e-01	5.86673 e-01	8.62616e-05
RRAB	23382367	5.26471e-01	5.26558e-01	8.64131e-05
$\mathrm{EC} \mathrm{RRC} \mathrm{ESD}$	124227849	4.75727e-01	4.75639e-01	8.78956e-05

1	1	0
Т	Т	4

RRAB/BL	156508002	5.85210e-01	5.85298e-01	8.80289e-05
RRAB	406141363	6.02849e-01	6.02761e-01	8.85906e-05
RRAB/BL	334957332	6.00580e-01	6.00669e-01	8.93521e-05
RRAB	14432447	5.42810e-01	5.42901e-01	9.11579e-05
RRAB/BL	236287909	5.81402e-01	5.81493e-01	9.11871e-05
RRAB	367316610	4.56090e-01	4.55994e-01	9.62279e-05
RRAB	220512467	6.34916e-01	6.34818e-01	9.79979e-05
RRAB	23532972	5.77123e-01	5.77222e-01	9.95416e-05
RRAB	239125411	5.79282e-01	5.79181e-01	1.01161e-04
RRAB	47291018	4.89001e-01	4.88899e-01	1.01666e-04
BRAB	278193101	5 37323e-01	5 37429e-01	1.05524e-04
BRAB/BL	286554287	4.34053e-01	4 34159e-01	1.06024601 1.06728e-04
BRAB/BL	72636949	4 95430e-01	4 95323e-01	1.00120001 1.07361e-04
BRAB	144203939	6 71873e-01	6 71764e-01	1.09001e-01
BBAB	178288638	6.08810e-01	6 086000-01	1 109830-04
BRAB	68076619	5 32273e-01	5 32161e-01	1.105050-04 1 11678e-04
BBAB/BL	186452465	7.92757_{-01}	7.22860 - 01	1.110700-04 1.11070-04
RRAB	14632403	5.814700.01	5.813650.01	1.115476-04
	140324929	5.014796-01	5.424660.01	1.133740-04
RRAD/DL DDAD	291401010	5.42560e-01	0.42400e-01 7 90519 01	1.137000-04
	200427297	7.80052e-01	7.803186-01	1.15925e-04
RRAB	1129237	5.10598e-01	5.10714e-01	1.103710-04
RRU/BL	231065067	3.75026e-01	3.74909e-01	1.17533e-04
RRU	76304643	5.72727e-01	5.72857e-01	1.29581e-04
RRAB/BL	172647059	5.22072e-01	5.22203e-01	1.30550e-04
RRAB/BL	80982520	6.11283e-01	6.11152e-01	1.31202e-04
RRAB	232570970	6.09722e-01	6.09589e-01	1.32350e-04
RRAB	181719523	8.27038e-01	8.27173e-01	1.35565e-04
RRAB/BL	201859481	5.72857e-01	5.72993e-01	1.35942e-04
RRAB/BL	253708643	5.89345e-01	5.89208e-01	1.36035e-04
RRAB/BL	394239801	5.43469e-01	5.43605e-01	1.36060e-04
RRAB	356345502	5.45870e-01	5.45731e-01	1.38711e-04
RRAB	360618578	7.28556e-01	7.28417e-01	1.38773e-04
RRAB	173105394	5.67433e-01	5.67572e-01	1.39527e-04
RRAB	142848794	6.60420e-01	6.60278e-01	1.41799e-04
RRAB	121085386	6.82026e-01	6.81884e-01	1.42259e-04
RRAB	376689735	6.97795e-01	6.97647e-01	1.47753e-04
RRC	424721218	3.87544e-01	3.87392e-01	1.51874e-04
RRAB	41833926	5.10912e-01	5.10753e-01	1.58636e-04
RRAB	416535516	6.27300e-01	6.27139e-01	1.61059e-04
RRC	158186773	4.12156e-01	4.12318e-01	1.62157e-04
RRAB/BL	302041425	6.09912e-01	6.10076e-01	1.64241e-04
RRAB	23710135	5.49664e-01	5.49494e-01	1.70097e-04
RRAB	38246079	5.88224e-01	5.88054e-01	1.70480e-04
RRAB/BL	117638854	4.19860e-01	4.20039e-01	1.79442e-04
RRAB	233066920	5.79270e-01	5.79085e-01	1.84740e-04
RRAB	233639199	5.63661e-01	5.63476e-01	1.85389e-04
RRAB	67397022	5.99476e-01	5.99662e-01	1.85597e-04
RRAB	362672910	6.05860e-01	6.05674e-01	1.85889e-04
RRAB	317170031	4.11382e-01	4.11569e-01	1.86650e-04
BBC/BL	373241493	3.31200e-01	3.31389e-01	1.88972e-04
BBAB	266523981	5.34870e-01	5 35064e-01	1 940976-04
BBAB	38211431	5 51935e-01	5 51734-01	2.00474e-04
BBC	176762002	3 74410-01	3 742030-01	2.004140-04 2.07311 - 04
BBAB	135170919	6 000720 01	6 002880-01	2.010110-04
IIIIAD	100110212	0.030136-01	0.032000-01	2.1020000-04

BBC	371815044	3.62860e-01	3 63090e-01	2 30452e-04
RBAB	397615363	6 56907e-01	6.56672e-01	2.36792e-04
BRAB/BL	417569965	4 70028e-01	4 70270e-01	2.00102c-04 2.42063e-04
BBCIEC	38465274	3.45610e-01	3 453610-01	2.42000 - 04 2.487/10 - 04
BBAB	175402625	8.037610.01	8.04013o.01	2.407410-04
RRAB	201058672	$5,72027_{-0.01}$	5.04013e-01 5.71768e-01	2.51075e-04 2.58955e-04
RRAB/BI	48506680	6 13240o 01	6.13500o.01	2.509556-04
RRAD/DL PPC	43300089	0.13240e-01 3.444530.01	0.15500e-01 3 44103o 01	2.098940-04
PPC	438000110	3.444030-01	3.44195e-01 3.62180o.01	2.00102e-04
	120416441	5.244710.01	5.02100e-01	2.714000-04 $2.72071_{0.04}$
RRAD/DL DDAD/DI	159410441	5.244716-01	5.24199e-01 5.24256a.01	2.72071e-04 2.75546a.04
RRAD/DL DDAD/DI	330329807 211001 7 19	2.60007a.01	2.545500-01	2.755400-04
RRAD/DL DDAD	511091712 67519500	5.09907e-01	5.70165e-01 7.97108a.01	2.10407e-04
RRAD DDC	07012000	7.20824e-01 2.78960a.01	7.27108e-01 2.77067a-01	2.838956-04
RRU DDC/DI	310107079	3.78200e-01	3.77907e-01	2.93301e-04
RRC/BL	39945739	4.05264e-01	4.04963e-01	3.00575e-04
RRU	236392102	3.31690e-01	3.31389e-01	3.01134e-04
RRC	96051791	3.50232e-01	3.50536e-01	3.03592e-04
RRAB/BL	453469791	4.78550e-01	4.78855e-01	3.04732e-04
ESD RRC EC	294124071	5.41750e-01	5.42064e-01	3.13912e-04
RRC	201252114	3.33233e-01	3.32914e-01	3.19496e-04
RRAB	320193278	6.03380e-01	6.03050e-01	3.29653e-04
RRAB	252987510	5.75395e-01	5.75056e-01	3.39054e-04
RRAB/BL	329349834	5.55600e-01	5.55256e-01	3.43779e-04
RRC/BL	79442349	3.36427e-01	3.36083e-01	3.44602e-04
RRC/BL	311135713	3.39333e-01	3.38976e-01	3.56565e-04
RRAB	44645230	5.16569e-01	5.16933e-01	3.63392e-04
RRAB/BL	117221441	5.02080e-01	5.01716e-01	3.64389e-04
RRAB/BL	313935068	4.93355e-01	4.93722e-01	3.67185e-04
RRAB/BL	288550977	5.10519e-01	5.10148e-01	3.71231e-04
RRAB	301158182	3.74040e-01	3.73641e-01	3.98128e-04
RRAB	383531064	5.58608e-01	5.59009e-01	4.01644e-04
RRAB	166463208	5.79570e-01	5.79162 e- 01	4.07967e-04
RRAB	73017653	3.68735e-01	3.68305e-01	4.29939e-04
RRAB/BL	147022379	4.75758e-01	4.75320e-01	4.37624e-04
RRAB	152972542	6.25180e-01	6.25621 e- 01	4.40507e-04
RRAB	233652708	4.58666e-01	4.58222e-01	4.43613e-04
RRC	179000100	3.43231e-01	3.43677e-01	4.46523e-04
RRAB/BL	347330112	4.90778e-01	4.91241e-01	4.63309e-04
RRD	62455702	4.20793e-01	4.20327e-01	4.65733e-04
RRAB	424733948	5.98921e-01	5.98451e-01	4.69501e-04
RRAB/BL	258812822	5.01694e-01	5.01220e-01	4.73235e-04
RRAB	454859654	4.15422e-01	4.14937e-01	4.85097e-04
RRAB/BL	199608291	4.42917e-01	4.42426e-01	4.90597e-04
RRC	299891213	3.39560e-01	3.40051e-01	4.90679e-04
RRAB	271404999	4.24503e-01	4.25001e-01	4.97929e-04
RRAB/BL	372758482	6.21447e-01	6.20936e-01	5.10770e-04
RRAB/BL	77474432	4.19783e-01	4.19265e-01	5.18578e-04
RRD	24658137	7.11238e-01	7.10718e-01	5.19497e-04
RRAB/BL	267808239	4.66600e-01	4.66077e-01	5.22584e-04
RRC	21027962	3.47541e-01	3.48069e-01	5.28729e-04
RRAB	358019276	6.51446e-01	6.51976e-01	5.29466e-04
RRAB	383554625	5.71170e-01	5.70636e-01	5.33864e-04
RRAB/BL	118447670	3.90596e-01	3.90062e-01	5.34088e-04
RRAB DCEP-FO	182892499	9.66140e-01	9.65579e-01	5.60890e-04

RRAB	59661876	6.42293e-01	6.41731e-01	5.62165e-04
RRC	461637324	3.66970e-01	3.67532e-01	5.62471e-04
RRAB	321475459	6.68062e-01	6.68628e-01	5.65755e-04
RRAB	34040141	7.27779e-01	7.27208e-01	5.70248e-04
RRC	386966241	4.48587e-01	4.49175e-01	5.88138e-04
RRAB	3941985	4.52402e-01	4.51812e-01	5.89942e-04
RRAB	392693384	4.44488e-01	4.45082e-01	5.93740e-04
RRAB/BL	362168897	5.82559e-01	5.83181e-01	6.22488e-04
RRAB	328588068	3.91675e-01	3.92304e-01	6.29623e-04
RRAB/BL	418789562	4.55680e-01	4.56310e-01	6.29756e-04
RRAB/BL	467177475	4.68060e-01	4.67427e-01	6.33472e-04
RRAB	139418954	4.56950e-01	4.56304e-01	6.46001e-04
RRAB	241174387	4.81866e-01	4.82521e-01	6.55092e-04
RRAB	219249305	4.12013e-01	4.11351e-01	6.62024e-04
RRC	368112224	4.24979e-01	4.25645e-01	6.66614e-04
RRAB/BL	165642663	5.91637e-01	5.90969e-01	6.68049e-04
RRAB	406728249	5.87268e-01	5.88014e-01	7.45953e-04
RRC	374910314	3.74512e-01	3.73750e-01	7.61823e-04
RRC	241179533	3.39630e-01	3.38867e-01	7.62944e-04
RRC/BL	52205451	4.05795e-01	4.05025e-01	7.69865e-04
RRAB	414291509	4.18257e-01	4.17484e-01	7.72618e-04
EC RRC DSCT	436660156	4.15020e-01	4.15793e-01	7.73219e-04
BBD	28262292	3 52990e-01	3 53784e-01	7 94033e-04
BRAB/BL	343935118	5.93752e-01	5 92957e-01	7 94982e-04
BBC	137830316	3 37490e-01	3 38287e-01	7.96896e-04
BRAB	144376546	5.57659e-01	5.56817e-01	8 41829e-04
BRAB/BL	20495472	5.63449e-01	5.64298e-01	8 49219e-04
BRAB	8963901	4 81872e-01	4 81011e-01	8.61046e-04
DCEP-FOIRBAB	275382580	6.84240e-01	6.85111e-01	8 71180e-04
	150166721	4 857450-01	4 866220-01	8 772800-04
BBAB	82300314	653/120-01	6 525140-01	8 981960-04
RRAB	21/012//8	8 831040 01	8 840150 01	0.111510.04
RRAB	214912440	7 105760 01	7 205000 01	9.111010-04
	229005258	5.07313o.01	5.062720.01	9.238986-04
RRAB/BL	208310724	6.23841o.01	6.22800o.01	9.41278e-04
PDC/PI	52606202	0.23041e-01 3 30446a 01	3 313800 01	9.41976e-04
	150717514	5.50440e-01	5.515896-01	9.429706-04
	202710761	5.00782e-01 6.46586a.01	6.45620c.01	9.456410-04
	266610248	0.4000000-01	0.450596-01	9.40019e-04
	200010240	4.054596-01	4.024796-01	9.00515e-04
	1200770	5.07751e-01	0.00788e-01	9.05529e-04
	105529507	0.30230e-01	0.01194e-01	9.05519e-04
RRAB/BL	8001500	4.40320e-01	4.393500-01	9.701116-04
RRAB	49291533	5.96060e-01	5.97050e-01	9.90438e-04
RRU	07473852	3.45650e-01	3.44054e-01	9.95896e-04
RRAB	111443222	5.94132e-01	5.93132e-01	9.99915e-04
RRAB	155899158	6.11755e-01	6.10706e-01	1.04884e-03
RRAB	259001820	5.92082e-01	5.93133e-01	1.05153e-03
RRAB/BL	302911300	3.97311e-01	3.96242e-01	1.06817e-03
RRAB	256615653	5.07504e-01	5.06430e-01	1.07394e-03
RRC	229536143	3.32970e-01	3.34051e-01	1.08084e-03
KKAB	347458370	4.55249e-01	4.54167e-01	1.08232e-03
KRD DD 4D	22442201	4.06442e-01	4.05355e-01	1.08719e-03
KKAB	458427220	5.99577e-01	5.98469e-01	1.10788e-03
RRAB	10581605	3.99600e-01	3.98476e-01	1.12401e-03

114

RRAB/BL	381559060	4.51848e-01	4.50714e-01	1.13405e-03
RRC	207318741	3.75370e-01	3.76525e-01	1.15486e-03
RRAB	156828848	4.36736e-01	4.35580e-01	1.15560e-03
RRAB	323282620	6.05342e-01	6.04171e-01	1.17140e-03
RRAB/BL	23675290	4.78508e-01	4.77335e-01	1.17344e-03
RRC	141760499	3.92750e-01	3.91567e-01	1.18289e-03
RRAB	311866171	6.13073e-01	6.11880e-01	1.19334e-03
RRAB	129081118	5.10239e-01	5.09015e-01	1.22457e-03
RRAB/BL	69657463	5.39415e-01	5.40654 e-01	1.23966e-03
RRC	92239585	3.30148e-01	3.31389e-01	1.24088e-03
RRAB	294832702	4.71800e-01	4.70557e-01	1.24350e-03
RRC	397424972	4.22630e-01	4.23882e-01	1.25231e-03
RRAB	259476330	7.32075e-01	7.30822e-01	1.25304e-03
RRAB	306392378	5.86284e-01	5.85023e-01	1.26171e-03
RRC	365058811	3.39611e-01	3.40886e-01	1.27484e-03
RRAB	111716252	6.94033e-01	6.92756e-01	1.27680e-03
EC RRC ESD	294205251	5.37582e-01	5.38869e-01	1.28688e-03
RRAB	126910093	4.79602e-01	4.78293e-01	1.30899e-03
RRC/BL	206460831	3.63714e-01	3.65032 e-01	1.31809e-03
RRAB	9843991	7.13877e-01	7.15204e-01	1.32663e-03
RRAB	236438635	5.60705e-01	5.62033e-01	1.32779e-03
RRAB	408443599	5.62392e-01	5.61027 e-01	1.36470e-03
RRAB	194872493	4.76371e-01	4.74984e-01	1.38674e-03
RRC	408568560	3.54290e-01	3.55693e-01	1.40294e-03
RRAB	344299442	5.53028e-01	5.51569e-01	1.45981e-03
RRAB/BL	212250731	5.26239e-01	5.24756e-01	1.48240e-03
RRAB	393702163	5.64537e-01	5.66038e-01	1.50112e-03
RRAB/BL	352478596	5.63448e-01	5.61893e-01	1.55416e-03
RRAB	16281705	4.56921e-01	4.55339e-01	1.58141e-03
RRAB	302305250	6.17540e-01	6.15945 e-01	1.59524e-03
RRAB	441584047	6.28408e-01	6.30025 e-01	1.61735e-03
RRAB	158553034	5.27398e-01	5.29019e-01	1.62050e-03
RRAB	149060456	6.49678e-01	6.48017e-01	1.66141e-03
RRAB	336410894	5.25268e-01	5.26947e-01	1.67972e-03
RRAB	383186165	6.34348e-01	6.32655e-01	1.69298e-03
RRAB	98367248	5.47201e-01	5.45457e-01	1.74387e-03
RRC	229962923	3.29630e-01	3.31389e-01	1.75891e-03
RRAB/BL	1029392	6.23410e-01	6.25173e-01	1.76266e-03
RRAB	388906678	4.77984e-01	4.76202e-01	1.78156e-03
RRAB/BL	337187727	4.62674e-01	4.60859e-01	1.81533e-03
RRAB/BL	95311094	4.82834e-01	4.81003e-01	1.83083e-03
RRAB	165281003	5.43919e-01	5.42046e-01	1.87293e-03
RRAB/BL	381975513	5.16104e-01	5.14220e-01	1.88433e-03
RRAB/BL	301035041	5.29746e-01	5.31674e-01	1.92877e-03
RRAB/BL	229913521	4.76497e-01	4.74562e-01	1.93487 e-03
RRAB/BL	421439297	4.82092e-01	4.80145 e-01	1.94773e-03
RRAB/BL	458457951	6.50902e-01	6.48918e-01	1.98365e-03
RRAB	204528074	6.15451e-01	6.13443 e-01	2.00833e-03
RRAB	397589987	7.01110e-01	7.03153e-01	2.04295e-03
RRAB	147559104	6.60880e-01	6.58810e-01	2.07039e-03
RRAB/BL	188622083	6.26955e-01	6.24842e-01	2.11317e-03
RRAB	377228609	5.42991e-01	5.45206e-01	2.21539e-03
RRC	103024917	3.29127e-01	3.31389e-01	2.26236e-03
RRAB	168276785	5.74343e-01	5.72069e-01	2.27348e-03
I	I	I	Ι	

RRAB	23675526	5.40026e-01	5.42311e-01	2.28452e-03
RRAB/BL	267930751	4.53195e-01	4.55490e-01	2.29554e-03
RRAB	49417864	6.26335e-01	6.28635e-01	2.30037e-03
RRAB/BL	152231997	6.91035e-01	6.88722e-01	2.31264e-03
RRAB	114923989	5.87245e-01	5.84828e-01	2.41749e-03
RRAB	175377197	6.37023e-01	6.34546e-01	2.47636e-03
RRAB	365368501	6.51180e-01	6.48701e-01	2.47834e-03
RRAB/BL	358147674	6.16758e-01	6.19240e-01	2.48147e-03
RRAB	388914193	5.98652e-01	5.96159e-01	2.49270e-03
RRAB	16285096	5.50184e-01	5.52726e-01	2.54257e-03
BRAB/BL	144189704	7 32821e-01	7 35462e-01	2.64064e-03
BRAB/BL	150355581	5 22353e-01	5 25019e-01	2.66630e-03
BRAB	299893237	6 25523e-01	6 22772e-01	2.75092e-03
BRAB/BL	355577451	6.05140e-01	6.02353e-01	2.78736e-03
BRAB	319405759	5.97145e-01	5.94321e-01	2.101500 05 2.82350e-03
BRAB	171630791	5.04050e-01	5.07075e-01	3.02507e-03
BRAB	156922373	6.17715e-01	6 20772e-01	3.05674e-03
BBAB	30000072	4 606820-01	4 666200-01	3.062560-03
RRAB/BI	377179491	4.03082c-01 5.87084o.01	5 00173o 01	3.080100.03
	82606185	7.388050.01	7 420220 01	3 138620 03
PP A P	22000105	6.228870.01	6 106560 01	3.130030-03
	406412012	0.22887e-01 7.24186a.01	7 20028 01	2 25912 02
NNAD DDAD/DI	400413012	6.21250c.01	6 05178 01	3.236120-03
RRAD/DL DDAD	404378743	0.21850e-01	0.23178e-01 5.07002a.01	3.32782e-03
	421700091	5.94550e-01	5.97902e-01	3.33100e-03
	2000000000	5.70590e-01 5.27718-01	5.75975e-01	3.303400-03
	101164050	5.57718e-01	5.41110e-01	3.39209e-03
RRAB/BL	229009445	5.89020e-01	5.92097e-01	3.07059e-03
RRAB	425803844	5.96407e-01	0.00276e-01	3.86860e-03
RRU DDAD/DI	46260231	3.39507e-01	3.35534e-01	3.97286e-03
RRAB/BL	314186678	5.91074e-01	5.95151e-01	4.07717e-03
RRAB	300153507	7.39201e-01	7.35001e-01	4.20068e-03
RRAB	317956051	5.71194e-01	5.66821e-01	4.37371e-03
RRAB	29752683	7.31892e-01	7.36465e-01	4.57357e-03
RRAB	181915503	6.81150e-01	6.85740e-01	4.58967e-03
RRAB	232968332	7.09040e-01	7.03919e-01	5.12105e-03
RRAB	416606926	5.40540e-01	5.33308e-01	7.23173e-03
RRAB	1000665707	5.40540e-01	5.33308e-01	7.23173e-03
RRC	357386910	3.29045e-01	3.36903e-01	7.85807e-03
RRC	131080328	3.50797e-01	3.66613e-01	1.58163e-02
RRAB	91307412	5.33900e-01	5.15883e-01	1.80170e-02
RRC	27349742	3.11327e-01	3.32067e-01	2.07400e-02
RRC	56939922	2.87259e-01	3.35712e-01	4.84534e-02
RRC	93593996	2.90003e-01	3.47599e-01	5.75959e-02
RRAB	1000665296	5.40540e-01	5.98188e-01	5.76477e-02
RRC	308094680	3.51326e-01	4.12132e-01	6.08060e-02
RRAB	416606963	5.96172e-01	5.33515e-01	6.26571e-02
RRAB	1000665578	5.96172e-01	5.33308e-01	6.28637e-02
RRAB	416606941	5.96172e-01	5.33308e-01	6.28637e-02
RRC	321846217	2.46108e-01	3.69178e-01	1.23070e-01
RRD	396915272	5.49751e-01	4.08518e-01	1.41233e-01
EC RRC ESD	363919467	7.51310e-01	6.02431e-01	1.48879e-01
RRC	1000665551	3.78788e-01	5.33515e-01	1.54727e-01
RRC	1000665352	3.78788e-01	5.33515e-01	1.54727e-01
RRC	268686130	3.04631e-01	4.66738e-01	1.62107e-01

RRD	1000665682	3.54200e-01	5.33308e-01	1.79108e-01
RRC	321602146	1.81000e-01	3.73315e-01	1.92315e-01
RRC	50529082	3.66797e-01	5.79239e-01	2.12442e-01
RRC	264053843	2.14752e-01	4.29457 e-01	2.14705e-01
RRC	415224879	2.14948e-01	4.30083e-01	2.15135e-01
RRC DSCT DSCTr EC ESD	381236322	2.17802e-01	4.35527 e-01	2.17725e-01
RRC	76392012	2.19408e-01	4.38951e-01	2.19543e-01
RRC	300892362	2.21348e-01	4.43045e-01	2.21697e-01
RRAB	434166245	5.78816e-01	3.50863e-01	2.27953e-01
RRC/BL	105769104	2.30808e-01	4.61719e-01	2.30911e-01
RRCIECIESD	61003803	2.31702e-01	4.63980e-01	2.32278e-01
RRC	20541663	2.35934e-01	4.72015e-01	2.36081e-01
RRC	292826577	2.37412e-01	4.74849e-01	2.37437e-01
RRAB	186461402	6.77329e-01	4.37831e-01	2.39498e-01
RRC	157798407	2.40651e-01	4.81250e-01	2.40599e-01
RRC EC ESD	156832130	2.43548e-01	4.86544e-01	2.42996e-01
RRC	66398320	2.42811e-01	4.85844e-01	2.43033e-01
BBC EC ESD	441219121	2 43420e-01	4 86673e-01	2 43253e-01
BBC	396537777	2.49433e-01	4 98818e-01	2.49385e-01
BBC	67957953	2.53990e-01	5.07895e-01	2.19905e-01
BBC	165735253	2.5555500-01 2.54000e-01	5.08149e-01	2.555505e-01 2.54149e-01
BBCIEC	401667272	2.54000001 2.563200-01	5.001490-01 5.125530-01	2.54143 ± 01 2 56233 -01
BBC	401007272	2.505200-01 2.574780-01	5.12555C-01	2.50255-01 2.57402-01
BBC	380/1328	2.574786-01	5 101360 01	2.574020-01
BBC	30341320 21288741	2.094000-01 2.60020 -01	5.191300-01 5.218070-01	2.59048e-01 2.60068e-01
BBCIEC	407010470	2.005250-01 2.621410.01	5.24263o.01	2.003000-01
BBC	300850200	2.021416-01	5.24203e-01	2.02122e-01
PPC	309830209 441610744	2.04400e-01 2.67042e-01	5.200440-01 5.241750.01	2.043786-01
	441019744	2.07042e-01 2.67046a.01	5.25086a.01	2.07133e-01
RRC	10111201 200020207	2.07940e-01	5.55960e-01	2.06040e-01
	500059207 152426951	2.085500-01	5.50745e-01 5.20627a-01	2.08407e-01
RRC/DL	100400201	2.09772e-01	5.59027e-01	2.09855e-01
RRC	500047595 75061510	2.09923e-01 2.70260a 01	5.59656e-01 5.40520a 01	2.09910e-01 2.70270e-01
RRU	157446909	2.70200e-01	5.40539e-01	2.70279e-01
RRU	107440808	2.72000e-01 2.72691 - 01	5.45008e-01	2.73002e-01
RRU	342004873	2.73081e-01	5.47404e-01	2.73723e-01
	1938/8/29	2.80250e-01	5.00344e-01	2.80094e-01
RRU/BL	139232532	2.81106e-01	5.62197e-01	2.81091e-01
RRU/BL	150405251	2.85665e-01	5.71120e-01	2.85455e-01
RRU	170804079	2.86085e-01	5.72078e-01	2.85993e-01
RRU	220486712	2.86430e-01	5.72869e-01	2.86439e-01
RRU	331877455	2.86692e-01	5.73251e-01	2.86559e-01
RRC	238870487	2.87131e-01	5.74261e-01	2.87130e-01
RRC/BL	456857185	2.87793e-01	5.75516e-01	2.87723e-01
RRC	285118453	2.92738e-01	5.85568e-01	2.92830e-01
RRC	258412311	2.93973e-01	5.88024e-01	2.94051e-01
RRC/BL	168382153	2.94456e-01	5.88747e-01	2.94291e-01
RRC	175263505	2.95780e-01	5.91700e-01	2.95920e-01
RRC	76305643	2.97101e-01	5.94261e-01	2.97160e-01
RRC	138887802	2.97244e-01	5.94420e-01	2.97177e-01
RRC	417837450	2.98490e-01	5.97217e-01	2.98727e-01
RRC	420134346	3.00310e-01	6.00457 e-01	3.00147e-01
RRC/BL	101433435	3.00240e-01	6.00484 e-01	3.00244e-01
RRC EC	175532970	3.00939e-01	6.01783e-01	3.00844e-01
RRC/BL	280799052	3.03261e-01	6.06464e-01	3.03202e-01

RRC	242304187	3.05363e-01	6.10926e-01	3.05563e-01
RRC EC	55007847	3.05856e-01	6.11851e-01	3.05995e-01
RRC	207433522	3.06260e-01	6.12383e-01	3.06123e-01
RRC	422752878	3.06257 e-01	6.12670e-01	3.06412e-01
RRC	157262181	3.11276e-01	6.22449e-01	3.11173e-01
RRC	142240683	3.11331e-01	6.22763e-01	3.11432e-01
RRC EC ESD	192542237	3.12168e-01	6.24465 e-01	3.12297e-01
RRC/BL	176797766	3.12424e-01	6.24903e-01	3.12480e-01
RRC/BL	168709463	3.12561e-01	6.25141e-01	3.12579e-01
RRC	340843996	3.12750e-01	6.25352e-01	3.12602e-01
RRC	142383896	3.12990e-01	6.26007e-01	3.13017e-01
RRC	26261539	3.13619e-01	6.27077e-01	3.13458e-01
RRC	294271676	3.14169e-01	6.28237e-01	3.14068e-01
RRC EC	286036831	3.15967e-01	6.31966e-01	3.15999e-01
RRC	364424144	3.16099e-01	6.32305e-01	3.16206e-01
RRC	1000665400	2.16851e-01	5.33308e-01	3.16457 e-01
RRC	416606921	2.16851e-01	5.33308e-01	3.16457 e-01
RRC	1000665298	2.16851e-01	5.33308e-01	3.16457e-01
RRC	1000665269	2.16851e-01	5.33515e-01	3.16664 e- 01
RRC	1000665557	2.16851e-01	5.33515e-01	3.16664 e- 01
RRC	416606923	2.16851e-01	5.33515e-01	3.16664e-01
RRC	143765469	3.16901e-01	6.33711e-01	3.16810e-01
RRC	209394970	3.16852e-01	6.33824e-01	3.16972e-01
RRC	313500207	3.17900e-01	6.35725e-01	3.17825e-01
RRC	39140880	3.18020e-01	6.36029e-01	3.18009e-01
RRC/BL	157376436	3.17152e-01	6.35842 e-01	3.18690e-01
RRC	429238967	3.19404e-01	6.38777e-01	3.19373e-01
RRC	206311113	3.19546e-01	6.39238e-01	3.19692e-01
RRC	33740419	3.20102e-01	6.40319e-01	3.20217e-01
RRC	92980015	3.21061e-01	6.42087e-01	3.21026e-01
RRC	207463256	3.21017e-01	6.42124e-01	3.21107e-01
RRC	389869955	3.21776e-01	6.43484e-01	3.21708e-01
RRC	453429627	3.23060e-01	6.46244 e-01	3.23184e-01
RRC	302515557	3.23680e-01	6.47218e-01	3.23538e-01
RRC	275254541	3.24698e-01	6.49344e-01	3.24646e-01
RRC	178349470	3.27091e-01	6.54275e-01	3.27184e-01
RRAB	307108725	3.27782e-01	6.55469e-01	3.27688e-01
RRC	34713545	3.28282e-01	6.56345 e-01	3.28063e-01
RRC	398265069	3.28270e-01	6.56542 e-01	3.28272e-01
RRC	30531417	3.28936e-01	6.57837e-01	3.28901e-01
$\mathrm{EC} \mathrm{RRC} \mathrm{ESD}$	345180632	7.69900e-01	3.85056e-01	3.84844e-01
$\mathrm{ESD} \mathrm{RRC} \mathrm{EC}$	5480687	7.78360e-01	3.88769e-01	3.89591e-01
$\mathrm{EC} \mathrm{RRC}$	46384498	8.12410e-01	4.05587e-01	4.06823e-01
$\mathrm{EC} \mathrm{RRC} \mathrm{ESD}$	298808701	8.20270e-01	4.09657e-01	4.10613e-01
$\mathrm{EC} \mathrm{RRC} \mathrm{ESD}$	68070101	8.69210e-01	4.32381e-01	4.36829e-01
RRAB	457230945	5.37095e-01	7.14088e + 00	6.60379e + 00
RRAB CW-FO EC ESD	331955495	8.83650e-01	7.91168e + 00	7.02803e+00
MISC RRAB DCEP-	196419689	1.98000e+02	3.33001e-01	1.97667e + 02
FO EC ESD				

Tabla 7: Diferencia entre los periodos de $V\!S\!X$ y $T\!E\!S\!S$ para 447 estrellas seleccionadas con cadencia de 120 s para el tipoRRPerez (2022h).

118

Tipo VSX	Id MAST	P. VSX	P. TESS	\neq Absoluta
HADS(B)	406894356	6.69001e-01	5.15956e-01	1.53045e-01
HADS	393420032	1.66364 e-01	3.32237e-01	1.65873e-01
HADS	241843363	1.66997e-01	3.33754e-01	1.66757 e-01
HADS(B)	427148365	1.73799e-01	3.47390e-01	1.73591e-01
HADS	270617514	1.76643e-01	3.53326e-01	1.76683e-01
HADS(B)	366632312	1.78364e-01	3.56710e-01	1.78347e-01
HADS	16381609	1.79845e-01	3.60045 e-01	1.80200e-01
HADS(B)	210548440	1.84300e-01	3.68720e-01	1.84420e-01
HADS(B)	360736543	1.49090e-01	3.38392e-01	1.89302e-01
HADS	241265211	1.43965e-01	3.33821e-01	1.89856e-01
HADS	200624064	1.91057e-01	3.81946e-01	1.90889e-01
HADS(B)	69546708	1.94772e-01	3.89655e-01	1.94883e-01
HADS	158498107	1.97702e-01	3.95350e-01	1.97648e-01
HADS(B)	457035927	1.53380e-01	3.53256e-01	1.99876e-01
HADS	269750762	2.01260e-01	4.01841e-01	2.00581e-01
HADS	150276417	2.03194e-01	4.06618e-01	2.03424e-01
HADS(B)	196497806	1.25566e-01	3.31814e-01	2.06248e-01
HADS(B)	355687188	1.57838e-01	3 65854e-01	2.08016e-01
HADS(B)	281695001	1.33986e-01	350095e-01	2.16109e-01
HADS(B)	352619386	1.69751e-01	3 90297e-01	2.20546e-01
HADS(B)	467050003	1.00701001	3 32420e-01	2.200100-01 2.21618e-01
HADS(B)	81709032	1.10001001	3 34739e-01	2.210100 01 2.23165e-01
HADS(B)	289711518	2 23389e-01	4 46757e-01	2.23109c-01 2.23368e-01
HADS(D)	144300524	2.200000-01 1 114200 01	3 350000 01	2.235000-01 2.235800.01
HADS	03441606	2.251480.01	4.507550.01	$2.25607_{0.01}$
HADS	304106107	2.201400-01 1 133750 01	4.00700e-01	2.230076-01 2.270720.01
HADS	121251117	1.133736-01 1 141780 01	3.404476-01	2.270726-01
HADS(B)	218886638	1.14176e-01 2.28715c 01	3.42028e-01 4.573630.01	2.284500-01
HADS(D)	2100000000	2.26715e-01 1 14665a 01	4.37303e-01 3.43708o.01	2.280480-01 2.201330.01
HADS(B)	102210172	1.14005e-01 1 152180 01	3.456300.01	2.291336-01 2.204130.01
HADS(D)	195510172	1.152100-01 1.155070.01	3.450300-01	2.304136-01
	19496099	1.15507e-01 1.16740a 01	3.40392e-01 2 50185 01	2.310000-01
	17152005	1.10740e-01 1.17021e-01	2.50105e-01	2.334430-01
	240272909	1.17051e-01 1.17154c.01	3.51055e-01 2.51462a.01	2.34024e-01 2.24200a 01
	102020152	1.17104e-01 1.20525.01	3.31403e-01	2.343096-01
	192939132	1.20555e-01 1.21506 ± 01	3.01196e-01	2.40003e-01
	334872308 454665709	1.21390e-01 1.21762a 01	3.03093e-01	2.434976-01
	404000792	1.21702e-01	5.05282e-01 2.65125a 01	2.45520e-01
	00914100	1.1700000-01	3.02132e-01	2.44524e-01
	200328148	1.229750-01	3.08441e-01	2.45407e-01
HADS(B)	241/8/384	1.17783e-01	3.03319e-01	2.45536e-01
HADS	191406237	1.24908e-01	3.745866-01	2.49678e-01
HADS	440071800	8.35819e-02	3.33988e-01	2.50406e-01
HADS	194025647	8.49300e-02	3.37891e-01	2.52961e-01
HADS	349696156	1.43153e-01	3.96378e-01	2.53225e-01
HADS(B)	46937596	1.26747e-01	3.80281e-01	2.53534e-01
HADS(B)	358502706	8.56598e-02	3.42862e-01	2.57203e-01
HADS	242302902	1.30939e-01	3.92753e-01	2.61815e-01
HADS(B)	423085168	8.85350e-02	3.54206e-01	2.65671e-01
HADS	155005957	8.86621e-02	3.54421e-01	2.65759e-01
HADS(B)	290277380	2.67297e-01	5.34570e-01	2.67273e-01
HADS	126659093	6.71792e-02	3.35827 e-01	2.68648e-01

HADS	148357344	9.00923e-02	3.60359e-01	2.70267e-01
HADS	67265166	1.36126e-01	4.08301e-01	2.72175e-01
HADS	16283570	9.07092e-02	3.62922e-01	2.72213e-01
HADS	155128092	6.80990e-02	3.40583e-01	2.72484e-01
HADS	229154157	9.10027e-02	3.63972e-01	2.72969e-01
HADS	384620975	1.36684e-01	4.09976e-01	2.73292e-01
HADS	137803552	9.13422e-02	3.65293 e-01	2.73951e-01
HADS	219788401	1.37186e-01	4.11676e-01	2.74490e-01
HADS	408074920	6.89195e-02	3.44701e-01	2.75782e-01
HADS	187386415	6.89910e-02	3.45139e-01	2.76148e-01
HADS	142619583	5.58110e-02	3.34807e-01	2.78996e-01
HADS(B)	415333069	1.39791e-01	4.19394e-01	2.79602e-01
HADS(B)	306517089	9.31281e-02	3.72751e-01	2.79622e-01
HADS	261948194	9.32530e-02	3.72946e-01	2.79693e-01
HADS	99091734	9.33580e-02	3.73306e-01	2.79948e-01
HADS(B)	259703453	9.39656e-02	3.75777e-01	2.81812e-01
HADS	266794067	9.42060e-02	3.76758e-01	2.82552e-01
HADS	364399376	1.41295e-01	4.23912e-01	2.82617e-01
HADS	355547586	9.51260e-02	3.80548e-01	2.85422e-01
HADS	129128212	9.52560e-02	3.81012e-01	2.85756e-01
HADS(B)	233931219	9.57838e-02	3.83106e-01	2.87322e-01
HADS	56914404	9.58695e-02	3.83329e-01	2.87459e-01
HADS	231632224	1.44602e-01	4.33863e-01	2.89261e-01
HADS(B)	166979292	5.80806e-02	3.48515e-01	2.90434e-01
HADS(B)	423261565	1.45559e-01	4.36655e-01	2.91096e-01
HADS	139845816	1.47012e-01	4.40859e-01	2.93847e-01
HADS	348217860	9.81176e-02	3.92572e-01	2.94455e-01
HADS	32089898	5.89269e-02	3.53462e-01	2.94535e-01
HADS	56882581	9.82729e-02	3 93045e-01	2.94772e-01
HADS(B)	448892817	7.44303e-02	3.72200e-01	2.97770e-01
HADS	79662102	5.98212e-02	3 58913e-01	2.99092e-01
HADS	176019421	4 28526e-02	3 42835e-01	2.99982e-01
HADS	308396022	7.57368e-02	3 78780e-01	3 03044e-01
HADS	409231441	7.59339e-02	3 79551e-01	3.03617e-01
HADS	445762233	7.60977e-02	3 80437e-01	3 04339e-01
HADS	34137913	7.61521e-02	3 80767e-01	3 04615e-01
HADS	97937351	1.01821e-02	4.07505e-01	3.05673e-01
HADS(B)	410038602	7.65156e-02	$3.82407e_{-}01$	3.050810-01
HADS	289325437	1.00150e-02	4.08608e-01	3.06457e-01
HADS	178616716	1.021010-01 1.02420e-01	4.09566e-01	3.07146e-01
HADS	360220405	1.024200-01 1.03098e-01	4.19412e-01	3.09314e-01
HADS(B)	401744720	7.74590e-02	3.87336e-01	3.09877e-01
HADS	278062831	1.149500-02 1.039530-01	4 15766e-01	3 118130-01
HADS	139729335	5.23677e-02	3.66536e-01	3 14168e-01
HADS	136546358	7 868280-02	3.005500-01 3.035220-01	3 1/8300-01
HADS	490940990	6 32027e-02	3.70238_{-01}	3 160360-01
HADS	977063978	8.00054o.02	3.000600.01	3 100550 01
HADS HADS(B)	211903218	$1.07103 \circ 01$	3.99900e-01 4.28740a.01	3.19955e-01
	90322332	1.07193e-01 1.07400a 01	4.207496-01	2.210000-01
	414779900 287697100	2.074096-01	4.290740-01	3.22100e-01
	001021109 169994096	0.003036-02	4.001010-01	3.22320e-01
	100304030	1.000070-01 5 41120-02	4.322730-01	3.242000-01
	142940044	0.41100e-02	3.787900-01 4.25217-01	3.240376-01
	33149129 22502051	1.088276-01	4.333170-01	3.20490e-01
HADS	335826251	8.21125e-02	4.10749e-01	3.28637e-01

91592810

8.88364e + 00

Tabla 8: Diferencia entre los periodos de VSX y TESS para 106 estrellas seleccionadas con cadencia de 120 s para el tipo HADS Perez (2022d).

Tipo VSX	Id MAST	P. VSX	P. TESS	$\neq \mathbf{Absoluta}$
ACV DCEP-FU ESD ED	81336558	1.08503e+00	1.08497e+00	6.29429e-05
DCEP	456763140	4.28537e + 00	4.28546e + 00	8.52925e-05
DCEP	410218473	3.45296e + 00	3.45306e + 00	1.04748e-04
DCEP-FO	123478066	7.50410e-01	7.50261 e- 01	1.49340e-04
DCEP	318669260	$4.97513e{+}00$	$4.97485e{+}00$	2.84553e-04
DCEP	353939279	2.26324e+00	2.26361e + 00	3.69062e-04
DCEPS	239568126	$2.49921e{+}00$	2.49968e + 00	4.61827 e-04
DCEPS(B)	263385369	5.98278e-01	5.97801e-01	4.77285e-04
RRAB DCEP-FO	182892499	9.66140e-01	9.65579 e-01	5.60890e-04
DCEPS	438112973	3.90531e-01	3.89907 e-01	6.23561e-04
DCEP	95665973	4.25483e+00	4.25552e + 00	6.83247 e-04
DCEP	75696685	3.76510e-01	3.75807 e-01	7.03217e-04
DCEPS	293042002	2.39810e+00	2.39882e + 00	7.18567 e-04
DCEP	177405368	4.49728e+00	$4.49651e{+}00$	7.63939e-04
DCEP-FO RRAB	275382580	6.84240e-01	6.85111e-01	8.71180e-04
DCEP	307242697	2.30821e+00	2.30731e+00	8.98785e-04
DCEP	132316449	5.08431e+00	5.08525e + 00	9.37047e-04
DCEP	466116029	4.58569e + 00	4.58454e + 00	1.15209e-03
DCEP	303443210	1.17040e+00	1.16924e + 00	1.15871e-03
DCEP	14206846	3.43808e+00	3.43924e + 00	1.16064e-03
DCEPS	451797322	5.50691e + 00	5.50566e + 00	1.24684e-03
DCEP-FO MISC	35420590	1.39578e + 00	1.39725e + 00	1.46581e-03
DCEP	95520859	4.67001e+00	4.67178e + 00	1.76502e-03
DCEPS	126035858	2.62594e + 00	2.62789e + 00	1.95107e-03
DCEPS	280536157	2.77470e+00	2.77273e + 00	1.97400e-03
DCEPS(B)	400100492	1.78410e+00	1.78612e + 00	2.02028e-03
DCEPS	29455183	2.10232e+00	2.10437e + 00	2.04896e-03
DCEPS(B)	262859209	6.31272e-01	6.33449 e-01	2.17715e-03
DCEPS(B)	364898211	1.39136e+00	1.38918e + 00	2.18459e-03
DCEPS	372096094	2.06347e + 00	2.06576e + 00	2.29059e-03
DCEPS	269286872	2.39813e+00	2.40047e + 00	2.34227e-03
DCEP	80688900	3.17502e + 00	3.17747e + 00	2.44420e-03
DCEP-FO	432191995	1.45162e + 00	1.44917e + 00	2.44621e-03
DCEPS	293354074	2.48196e + 00	2.47939e + 00	2.57423e-03
DCEP	373767044	6.78367e + 00	6.78104e + 00	2.63099e-03
DCEP	77853537	3.95508e + 00	3.95245e + 00	2.63440e-03
DCEP	277172772	4.04871e+00	4.05137e + 00	2.65387e-03
DCEP	42362686	4.36484e+00	4.36769e + 00	2.84988e-03
DCEP	465512201	4.75995e+00	4.75706e + 00	2.88935e-03
DCEP	144809134	5.85842e + 00	5.86156e + 00	3.13880e-03
DCEP(B)	81100755	2.59289e + 00	2.59611e + 00	3.21910e-03
DCEPS	267685608	5.69482e + 00	5.69150e + 00	3.31737e-03
DCEP	301703541	3.01394e+00	3.01021e + 00	3.73227e-03
DCEP	220295598	$2.70554e{+}00$	2.70172e+00	3.81590e-03

DCEPS	461237766	2.42829e + 00	2.43211e+00	3.82006e-03
DCEP	177932603	3.28994e+00	3.28577e + 00	4.16539e-03
DCEP	460864765	5.20466e + 00	5.20020e+00	4.46410e-03
DCEP	407704687	4.80937e+00	4.81392e + 00	4.54872e-03
DCEP(B)	297830203	2.56842e + 00	2.56370e+00	4.72157e-03
DCEP	464936311	5.10184e+00	5.10661e + 00	4.77079e-03
DCEP	168055184	3.13545e+00	3.14038e+00	4.93038e-03
DCEP	234073331	2.48381e+00	2.48888e+00	5.06275e-03
DCEP	364663158	3.08614e+00	3.09164e + 00	5.49366e-03
DCEP-FO/EC/ESD	340175256	8.10090e-01	8.15923e-01	5.83287e-03
DCEP	459512025	4.67681e+00	4.68285e+00	6.04027e-03
DCEP	282298684	545647e+00	5.45037e+00	6.10581e-03
DCEPS	459816609	3.57792e+00	3.58405e+00	6 12716e-03
DCEPS	467090540	5.72557e+00	5.73173e+00	6 16084e-03
DCEP	291766513	$5.49393e\pm00$	5.50011e+00	6 18155e-03
DCEP	463407668	$4.93261e\pm00$	$4.92638e \pm 00$	6 22859e-03
DCEP-FO	76999088	1.332010+00 1 71950e+00	1.520000 + 00 1.71325e+00	6 25199e-03
ACVIDCEP-FOIECIESD	298532001	1.113000+00 1.18700e+00	1.110200+00 1.19368e+00	6.67639e-03
DCEPS	78965114	1.107000+00 $1.79300e\pm00$	1.195000 + 00 1 78627 $e \pm 00$	6.72713 - 03
DCEP	282382880	3.95794 ± 00	3.95118 ± 00	6.76208_{-03}
DCEPS	408574766	1.940320 ± 00	$1.94251_{0}\pm00$	6.813540.03
DCEP	465348700	1.94952e+00 4.67461e+00	1.942510 ± 00 4 681540±00	6 027020 03
DCEP	200012201	4.074010 ± 00 6.453200±00	4.08134e+00 6.46034a+00	7 125260 02
DCED	299013301	0.403200 ± 00	0.40034e+00 6 70452a + 00	7.135306-03
DCED	310020920	0.09008e+00 5.825750+00	5.81775 ± 00	7.044010-03
DCEP	460416021	5.82373e+00 5.31803a+00	5.31779e+00 5.32700o+00	8 15161 ₀ 02
DCED	400410931	5.518930 ± 00 5.542720\pm00	5.527090+00 5.52547a+00	8.15101e-05 8.25825a.02
DCEP	400552502	5.545750 ± 00	5.555470+00 6.67220a+00	8.2000000
DCEP	182109130	0.00500e+00	0.073500 ± 00	0.297996-03
DCEP(D)	200540554	3.00522e+00	3.07300e+00	0.302300-03
DCEP(B)	390342334	2.87598e+00	2.88439e+00 2.90227a+00	8.41247e-03
DCEPS	313/1/014	3.21194e+00	3.20337e+00	8.57108e-03
DCEP	308280008	7.71855e+00	7.72727e+00	8.71522e-03
DCEP	129928192	5.25080e+00	5.24180e+00	8.94060e-03
DCEP	10826277	4.17540e+00	4.10640e+00 4.10570a+00	9.002576-03
DCEP	52814004	4.09058e+00	4.10579e+00	9.208516-03
DCEP	285448217	3.84555e+00	3.83568e+00	9.867276-03
DCEP	272943843	4.92545e+00	4.91453e+00	1.091976-02
DCEP DCEP(D)	36665009	6.06133e+00	6.07260e+00	1.12731e-02
DCEP(B)	321164489	3.33434e+00	3.32265e+00	1.16857e-02
DCEP	458991248	4.86000e+00	4.84814e+00	1.18645e-02
DCEPS	443665153	6.45965e+00	6.44744e+00	1.22064e-02
DCEPS	272588795	3.34280e+00	3.33030e+00	1.24952e-02
DCEPS	389700132	8.37700e+00	8.38975e+00	1.27514e-02
DCEP	457425111	3.68225e+00	3.66844e+00	1.38102e-02
DCEP	125022869	8.01425e+00	8.02867e+00	1.44156e-02
DCEP	297978269	5.48438e+00	5.49933e+00	1.49474e-02
DCEP	171855358	3.72831e+00	3.74387e+00	1.55692e-02
DCEP	465905231	4.26593e+00	4.28307e+00	1.71412e-02
DCEP	436530385	3.88939e + 00	3.87223e + 00	1.71639e-02
DCEP	375534411	7.99068e+00	8.00886e+00	1.81874e-02
DCEP	92645571	5.95459e + 00	5.97311e + 00	1.85217e-02
DCEP	281810034	7.09684e + 00	7.07821e+00	1.86275e-02
DCEP	123888036	3.45470e+00	3.43566e+00	1.90367e-02
DCEPS	202636440	6.71815e+00	6.73768e + 00	1.95263e-02

DCEP-FO EC ESD	307936247	5.50901e-01	5.31110e-01	1.97912e-02
DCEP	52671548	3.37248e + 00	3.39228e + 00	1.97996e-02
DCEP	247585034	4.03430e+00	4.05612e + 00	2.18170e-02
DCEPS	305108041	3.99782e+00	3.97594e + 00	2.18811e-02
DCEP	315836258	5.30975e + 00	5.33230e + 00	2.25521e-02
DCEPS	268874414	2.67498e+00	2.65213e + 00	2.28550e-02
DCEP	419855341	6.22009e+00	6.19713e + 00	2.29603e-02
DCEP-FU	419637489	6.06800e + 00	6.04421e + 00	2.37857e-02
DCEP	405565109	3.83727e + 00	3.86267e + 00	2.53987e-02
DCEP	208050265	5.07909e + 00	5.05294e + 00	2.61498e-02
DCEP	68179248	4.68997e + 00	4.71958e + 00	2.96055e-02
DCEPS	315035146	5.62310e + 00	5.65429e + 00	3.11881e-02
DCEPS	118592633	3.14873e+00	3.18022e + 00	3.14917e-02
DCEP	141134087	7.52326e + 00	7.55536e + 00	3.20987e-02
DCEP	40515306	5.79139e + 00	5.82770e + 00	3.63035e-02
DCEP	31511595	8.15255e+00	8.19295e + 00	4.04048e-02
DCEP	55581166	$6.99549e{+}00$	6.95179e + 00	4.36969e-02
DCEPS	168597634	2.71390e+00	2.66981e + 00	4.40935e-02
DCEP	207042079	5.09026e+00	5.04583e + 00	4.44264e-02
DCEP	301694113	4.13364e+00	4.08772e+00	4.59202e-02
DCEPS	311218292	4.47085e+00	4.42480e+00	4.60437e-02
DCEP	466073202	7.63870e+00	7.59035e+00	4.83503e-02
DCEP	397886324	7.06595e+00	7.01517e + 00	5.07783e-02
DCEP	456997268	$3.78798e \pm 00$	3.73339e+00	5.45943e-02
DCEP	378819794	7.58017e+00	7.63798e+00	5.78136e-02
DCEP	37169108	4.70775e+00	4.64969e + 00	5.80622e-02
DCEP	282421297	6.31959e+00	6.37924e + 00	5.96480e-02
DCEP	277022692	6.93623e+00	7.00161e+00	6.53836e-02
DCEP-FU DCEP-FO	304102832	6.98500e+00	6.91610e+00	6.88963e-02
DCEP(B)	457801419	3.63976e+00	3.71076e+00	7.09957e-02
DCEP-FOIDCEP-	296882445	2.31000e+00	2.38519e+00	7 51931e-02
FUECESD	_0000_110		2.000100 00	
DCEPS	59617576	$3.13749e{+}00$	$3.05931e\pm00$	7 81756e-02
DCEP	408200371	4.61221e+00	$4.52599e \pm 00$	8 62247e-02
DCEP	301783031	4.02269e+00	3.93465e+00	8.80456e-02
DCEPS	303256075	3.96960e+00	3.87665e+00	9 29525e-02
DCEP	229296935	6.73190e+00	$6.82576e \pm 00$	9.38594e-02
DCEP	436811829	$4.37099e\pm00$	4.46583e+00	9.48432e-02
DCEP	262929483	$3.38926e \pm 00$	3.29381e+00	9.54461e-02
DCEP	179164516	$4.67825e\pm00$	$4.56454e \pm 00$	1 13711e-01
DCEP	431829287	$5.02729e\pm00$	$4.89826e\pm00$	1.19111e 01 1.29023e-01
DCEPS	450203043	$4.43082e\pm00$	$4.29739e\pm00$	1.23025e-01
DCEP	310883625	4.430020+00 6 73331e+00	4.291350+00 6 59874e+00	1.34573e-01
DCEP	465935419	$5.49488e\pm00$	5.35942e+00	1.35461e-01
DCEP	141227331	4.63974e+00	$4.78699e \pm 00$	1.001010001 1.47253e-01
DCEP	362511390	5.90474e+00	5.73482e+00	1.69916e-01
DCEP	407190486	$7.59498e\pm00$	$7.41519e\pm00$	1.09910e-01
DCEP	469339385	7.091300+00 7.19673e+00	7.11915e + 00 7 37965e+00	1.191900 01 1.82919e-01
MISCIDCEP	201301082	1.13070e+00 1.98020e+00	$2.18376e \pm 00$	2.03562e-01
DCEPS	4672318/5	$753304e\pm00$	$774915e\pm00$	2.16110-01
DCEP	934999794	7.000040+00 7.457400 ± 00	7.94083 ± 00	2.166540-01
DCEP	280287051	$7.13357_{0}\pm00$	7.389/0010000000000000000000000000000000000	2.100340-01
DCEP	458042392	$6.98457e\pm00$	$7.23429e\pm00$	2.407206_01
DCEP	5696108	5.80837o±00	5.6482200 +000	2.491200-01 2.501/80-01
	0000100	0.000016+00	0.040220700	2.001400-01

DCEP	184535525	7.20094e+00	6.93269e+00	2.68247e-01
DCEP	126800165	6.92366e+00	7.19555e+00	2.71897e-01
DCEP-FU	390279364	8.56507e + 00	8.86097e+00	2.95900e-01
DCEP	32792896	7.42818e+00	7.13050e+00	2.97680e-01
DCEP	328476086	7.51021e+00	7.84921e+00	3.39002e-01
DCEP	445610119	7.57000e+00	7.20793e+00	3.62074e-01
DCEP	295600977	5.27327e+00	4.83357e + 00	4.39697e-01
DCEP	281320028	5.37867e+00	5.81964e + 00	4.40966e-01
DCEP	307375161	7.91378e+00	7.42247e+00	4.91304e-01
DCEP	385904228	7.56688e+00	7.06683e+00	5.00050e-01
DCEP	149346418	9.84267e+00	9.33387e+00	5.08809e-01
DCEP	337713834	9.46600e+00	$8.89979e{+}00$	5.66210e-01
DCEP	217540881	6.79699e + 00	6.20206e+00	5.94931e-01
EC DCEP-FO ESD	308751185	1.36171e+00	6.80484e-01	6.81226e-01
EC DCEP-FO ESD	41533230	1.42051e+00	7.10206e-01	7.10304e-01
DCEP	313263000	9.66007e+00	8.90405e+00	7.56018e-01
DCEP	464882300	9.19940e+00	8.43695e+00	7.62447e-01
DCEP	126032758	8.93705e+00	8.12906e+00	8.07991e-01
DCEP	208411338	9.75411e+00	8.61786e+00	1.13625e+00
DCEP	113997319	9.31686e+00	8.17066e+00	1.14620e+00
ESD DCEP-FU ED	97807414	2.43620e+00	1.21754e+00	1.21866e+00
DCEP	378327941	9.76896e+00	8.45635e+00	1.31261e+00
DCEP	430551101	9.54993e+00	8.18006e+00	1.36987e+00
DCEP	281897530	8.70173e+00	7.24031e+00	1.46142e+00
DCEP	289861700	1.09533e+01	8.90482e+00	2.04848e+00
DCEP	436949033	1.01498e+01	8.09416e+00	2.05565e+00
DCEP-FO/EC/ESD/ELL	166850552	7.37380e-01	2.81365e+00	2.07627e+00
DCEPS	262339603	3.38033e+00	6.77997e+00	3.39964e+00
DCEP	145313336	9.84226e+00	6.29282e+00	3.54944e+00
DCEP-FO	340003212	4.15910e+00	$7.86552e \pm 00$	3.70642e+00
ESDIDCEP-FUIDCEP-FO	169764995	7.58300e+00	3.78625e+00	3.79675e+00
DCEPS	81352154	4.22717e+00	$8.15499e\pm00$	$3.92782e\pm00$
DCEP	298333633	1.11992e+01	$7.25102e\pm00$	$3.94818e\pm00$
DCEP	466220817	1.11332c+01 $1.24348e\pm01$	8.37923 ± 00	$4.05560e\pm00$
DCEP-FUIEC	381286075	1.243400+01 1 10275e+01	$6.76545e\pm00$	4.055000 + 00 $4.26202e \pm 00$
DCEP	467453630	1.10270c+01 $1.07170e\pm01$	6.15057 ± 00	4.202020 + 00
DCEP	368040266	1.07170c+01 $4.43542e\pm00$	$8.84757e\pm00$	4.200400+00
DCEP	163380530	4.433420+00 4.527810 ± 00	8.071050 ± 00	4.412140+00
DCEP	81050100	4.527810 ± 00 1 130240±01	6.721500 ± 00	4.44414e+00 $4.58076o\pm00$
DCEP	380200003	1.13024e+01 1.16000a+01	6.121390+00	4.38070e+00 4.70861a+00
DCED	373202340	1.1000000 ± 01	0.001390+00 8 133760 + 00	4.198010 ± 00
DCED	40367319	1.10275 + 01	6.03464 ± 00	4.00094e+00
	40307312	1.19275e+01 1.191110+01	0.93404e+00 5.05878a+00	4.992000 ± 00
	274076095	1.12111e+01 1.42121a+01	3.938780 ± 00	5.25226e+00 5.26647e+00
	211290333	1.421210+01 1.207640+01	6.524540 ± 00	5.50047e+00
DCEP	90978033	1.29704e+01 1.24592a+01	0.034040+00	6.40742 ± 00
	409470104	1.34382e+01 1.22241e+01	6.90077e+00	0.49743e+00
DOEP	373422330	1.525410+01	0.052890+00	0.001210+00
DCEPS	277101239	1.05590e+00 1.24572-01	(.79122e+00)	0.7332e+00
	129883310	1.34373e+01	0.112000 ± 00	0.14402e+00
DOEP FO	144032045	1.307276+01	0.181830+00	0.884870+00
DUEP-FU DCED	309010051	1.07032e+00	8.00303e+00	0.932(10+00)
DCEP	378237360	1.40070e+01	(.0201/e+00)	7.04083e+00
DOED EULEOD	408908060	1.40971e+01	0.98402e+00	7.11305e+00
DUEP-FU ESD	382410630	1.43600e+01	0.99110e+00	1.30890e+00

DCEP	304523301	$1.16361e{+}01$	4.22554e + 00	7.41059e + 00
DCEP	220411080	7.79430e+00	3.32026e-01	7.46227e + 00
DCEP	188312699	1.51097e+01	7.60905e+00	7.50060e+00
ESD DCEP-FU	388131944	1.48800e+01	7.37539e + 00	7.50461e+00
DCEP	465822554	1.57162e+01	7.96452e + 00	7.75172e + 00
DCEP	107776902	1.23610e+01	4.36367e + 00	7.99733e + 00
DCEP	100406081	$1.63863e{+}01$	8.32646e + 00	8.05988e + 00
DCEP-FO $ EC ESD$	317244353	9.47570e-01	9.03280e + 00	8.08523e + 00
DCEP	130097219	$1.41468e{+}01$	4.81918e + 00	9.32762e + 00
DCEP	263284321	$1.52328e{+}01$	5.45272e + 00	9.78006e + 00
DCEP	127495181	$1.35963e{+}01$	2.72354e + 00	$1.08728e{+}01$
DCEP	14323558	2.00467e+01	8.95347e + 00	$1.10932e{+}01$
DCEP	466463101	$1.66514e{+}01$	5.51630e + 00	$1.11351e{+}01$
DCEP	457332854	$1.81680e{+}01$	7.02180e+00	1.11462e + 01
DCEP	460909565	1.80606e + 01	5.78404e + 00	$1.22766e{+}01$
DCEP	30404041	$1.72690e{+}01$	$4.58953e{+}00$	$1.26795e{+}01$
DCEPS	304040681	$1.31560e{+}01$	3.31902e-01	$1.28241e{+}01$
DCEP	106222137	1.70740e+01	4.09005e+00	$1.29839e{+}01$
DCEP	461612949	2.03982e+01	7.33205e+00	1.30662e + 01
DCEPS	465731771	$1.35960e{+}01$	3.31989e-01	1.32640e + 01
DCEP	444612237	2.03230e+01	6.41462e + 00	1.39084e + 01
DCEP	458830388	1.88900e + 01	4.70416e + 00	1.41858e + 01
DCEP	110793065	$2.31750e{+}01$	7.96677e + 00	1.52082e + 01
DCEP	465556103	2.30180e+01	7.59064e + 00	1.54274e + 01
DCEP	430541321	2.34070e+01	7.96260e + 00	1.54444e + 01
DCEP	459840151	2.32302e+01	5.52484e + 00	1.77053e + 01
DCEP	206703838	2.70246e + 01	8.32743e + 00	1.86972e + 01
EC DCEP-FU ESD	450888405	2.86700e+01	8.29557e + 00	2.03744e + 01
DCEP	463984624	2.81357e + 01	6.26851e + 00	2.18672e + 01
DCEP	130091386	3.01490e+01	8.12630e + 00	2.20227e + 01
MISC DCEP-FO EC ESD	347448542	2.77300e+01	5.24645e + 00	2.24835e+01
DCEP	416925825	3.32470e + 01	7.13713e + 00	2.61099e+01
DCEP	303519120	3.88290e + 01	6.55414e + 00	3.22749e + 01
DCEP	145870698	4.14800e+01	6.91866e + 00	3.45613e + 01
DCEP	11145790	4.49930e+01	8.85741e + 00	3.61356e + 01
DCEP	81716434	4.93260e + 01	8.17872e + 00	4.11473e+01
DCEP	31013470	4.21669e + 01	3.35518e-01	4.18314e + 01
DCEP	425058250	5.22710e+01	8.89968e + 00	4.33713e+01
DCEP	40716446	4.83500e + 01	3.38874e-01	4.80111e+01
DCEP	31183609	5.29900e + 01	3.36023e-01	5.26540e + 01
DCEP	465014446	$6.46511e{+}01$	6.20191e + 00	5.84492e + 01
DCEP-FU	180618091	6.57000e+01	5.75799e + 00	5.99420e + 01
DCEP	435554567	6.84640e + 01	3.37157e-01	6.81268e + 01
DCEP	181446812	7.35800e + 01	2.23908e + 00	7.13409e + 01
DCEP	389564663	7.43000e+01	3.35590e-01	7.39644e + 01
DCEP	181043309	8.43300e+01	4.28299e + 00	8.00470e+01
DCEP	179435530	1.18850e + 02	8.38090e+00	1.10469e + 02
DCEP	267547804	1.27447e + 02	5.75833e + 00	1.21689e + 02
DCEP	30526897	1.33450e + 02	6.06060e + 00	1.27389e + 02
MISC DCEP-FO	255589393	1.40400e+02	3.35216e-01	1.40065e+02
MISC RRAB DCEP-	196419689	1.98000e+02	3.33001e-01	1.97667e + 02
FO EC ESD				
MISC DCEP-FO	146339718	4.46000e+02	6.04915 e-01	$4.45395e{+}02$

Tabla 9: Diferencia entre los periodos de VSX y TESS para 257 estrellas seleccionadas con cadencia de 120 s para el tipo DCEP Perez (2022f).

Tipo VSX	Id MAST	P. VSX	P. TESS	\neq Absoluta
TTS/ROT	148091129	7.26000e-01	7.25934e-01	6.60331e-05
TTS/ROT	71304330	5.40900e-01	5.40793e-01	1.06860e-04
TTS/ROT	425940082	3.77000e-01	3.77124e-01	1.23929e-04
WTTS/ROT	99210610	2.27380e+00	2.27367e + 00	1.32934e-04
TTS/ROT	162143408	6.27700e-01	6.27930e-01	2.30473e-04
WTTS/ROT	58231482	1.87197e+00	1.87172e + 00	2.49013e-04
TTS/ROT	435907158	7.14200e-01	7.13922e-01	2.77677e-04
TTS/ROT	58229237	1.41270e+00	1.41300e + 00	2.97606e-04
TTS/ROT	21438160	3.51400e-01	3.51081e-01	3.19227e-04
TTS/ROT	206605718	$2.35800e{+}00$	$2.35765e{+}00$	3.48997e-04
WTTS/ROT	23110990	4.64824e-01	4.65184 e-01	3.60339e-04
TTS/ROT	54245747	9.73200e-01	9.72832e-01	3.68329e-04
TTS/ROT	243013712	5.73160e-01	5.73657 e-01	4.96818e-04
TTS/ROT	101544662	8.36800e-01	8.37405e-01	6.04787e-04
TTS/ROT	260164371	4.18480e-01	4.17851e-01	6.29270e-04
TTS/ROT	17459776	6.96200e-01	6.96842 e-01	6.41793 e- 04
TTS/ROT	140357492	$1.51500e{+}00$	$1.51428e{+}00$	7.15908e-04
TTS/ROT	50620064	2.88667e + 00	$2.88591e{+}00$	7.52716e-04
TTS/ROT	7242537	1.11600e+00	1.11523e + 00	7.65817e-04
TTS/ROT	68750684	1.46100e+00	1.46012e + 00	8.80301e-04
TTS/ROT	270677813	1.20800e+00	$1.20911e{+}00$	1.11036e-03
TTS/ROT	157212164	5.71000e-01	5.69779e-01	1.22062e-03
TTS/ROT	302970587	1.24159e+00	1.24030e+00	1.29024e-03
TTS/ROT	385508854	5.27251e-01	5.25914 e-01	1.33726e-03
TTS/ROT	201426753	1.71700e+00	$1.71552e{+}00$	1.47639e-03
TTS/ROT	148551290	6.32520e-01	6.34064 e-01	1.54353e-03
TTS/ROT	152176559	3.30327e+00	$3.30168e{+}00$	1.58589e-03
TTS/ROT	371733347	1.81640e+00	1.81804e + 00	1.63897 e-03
TTS/ROT	160404487	8.73700e-01	8.72016e-01	1.68371e-03
TTS/ROT	399639698	3.55600e+00	3.55422e + 00	1.77661e-03
TTS/ROT	91853165	5.05070e-01	5.06884 e-01	1.81429e-03
TTS/ROT	436998675	$1.25350e{+}00$	1.25167e + 00	1.83249e-03
TTS/ROT	425976940	1.26200e+00	$1.26011e{+}00$	1.88587e-03
TTS/ROT	23220549	5.46000e+00	5.46210e + 00	2.09564 e- 03
TTS/ROT	383615666	4.37900e-01	4.40016e-01	2.11599e-03
TTS/ROT	401820823	6.97500e-01	6.99675 e-01	2.17527e-03
TTS/ROT	219998026	2.24000e+00	2.24229e + 00	2.28598e-03
TTS/ROT	733027940	5.13900e-01	5.11534e-01	2.36586e-03
TTS/ROT	149248196	5.13900e-01	5.11534e-01	2.36586e-03
TTS/ROT	24608426	1.14300e+00	$1.14539e{+}00$	2.39465e-03
TTS/ROT	24450869	9.69900e-01	9.72338e-01	2.43825e-03
WTTS/ROT	50721722	$1.48582e{+}00$	1.48321e + 00	2.60751e-03
TTS/ROT	360323842	1.81900e+00	1.82177e + 00	2.76826e-03
TTS/ROT	293507177	5.69500e-01	5.66673 e-01	2.82686e-03
TTS/ROT	231867117	1.75220e+00	$1.75515e{+}00$	2.94747e-03

TTS/ROT	355235442	1.22400e+00	1.22102e+00	2.98358e-03
TTS/ROT	279640409	4.87500e-01	4.90501e-01	3.00120e-03
TTS/ROT	383664368	9.19800e-01	9.23113e-01	3.31263e-03
TTS/BOT	363773536	6 90000e-01	6 86515e-01	3 48506e-03
TTS/BOT	382701193	2.92400e+00	2.92041e+00	3 59177e-03
TTS/BOT	359767082	1.53600e+00	1.53967e+00	3.66772e-03
TTS/BOT	72564426	$1.82500e \pm 00$	1.893010+00 1.82129e+00	3 71271e-03
TTS/BOT	57916666	1.020000+00 1.76200e+00	1.021290+00 1.76578e+00	3 77830e-03
TTS/BOT	114021052	$5.04000e\pm00$	$5.04379e\pm00$	3.78736e-03
WTTS/BOT	58285785	$1.54830e\pm00$	1.54441e+00	3.89294e-03
TTS/BOT	24207703 24207713	2.72300 ± 00	2.72690 ± 00	3 805/30-03
WTTS/ROT	4200608	2.125000+00 3.247200 ± 00	2.120300+00 3.243270 ± 00	3.026800.03
TTS/ROT	4200008 166808151	5.24720e+00 7 400000 01	7.245270+00 7.440500.01	1.040750.03
TTS/ROT	200714006	7.40000e-01 7.0000e-01	7.440506-01	4.049706-03
WTTS/ROT	509714900 60016267	7.90000e-01 2.01410e+00	7.940386-01 2.000760 ± 00	4.037910-03
TTS/ROT	09910207	2.01410e+00 4.85000e+00	2.00970e+00 4.85468e+00	4.559400-03
TTS/ROT	441420230 262791494	4.8500000 ± 00 1.122000±00	4.034000 ± 00 1.127010 ± 00	4.001000-00
115/101	303701404 970674002	1.12500e+00	1.127910 ± 00 0.12646a 01	4.91300e-03
115/RO1	270074095	9.07500e-01	9.12040e-01 4.14174a+00	5.14051e-05
115/101	119269797	4.13000e+00	4.14174e+00	5.74104e-05
WIIS/ROI	240830707	2.42380e+00	2.42938e+00	5.78352e-03
TTS/ROT	399247311	1.03050e+00	1.03054e+00	6.03609e-03
11S/RO1	20096356	7.88300e-01	7.82087e-01	6.21331e-03
WTTS/ROT	456942208	7.33200e-01	7.39539e-01	6.33878e-03
TTS/ROT	33006416	2.84500e+00	2.85140e+00	6.39550e-03
TTS/ROT	200527281	8.54749e-01	8.61290e-01	6.54058e-03
TTS/ROT	148158169	2.84800e+00	2.84139e+00	6.61057e-03
TTS/ROT	435160829	2.83100e+00	2.83768e+00	6.67570e-03
TTS/ROT	84752981	7.53640e-01	7.60347e-01	6.70688e-03
TTS/ROT	335376063	1.98900e+00	1.99595e+00	6.94723e-03
T ^a TS/ROT	56359956	2.65380e+00	2.64639e+00	7.40931e-03
TTS/ROT	383432898	1.94200e+00	1.94946e + 00	7.45933e-03
T ^T TS/ROT	58108662	3.37424e + 00	3.36629e + 00	7.95243e-03
CTTS/ROT	95977956	5.72000e+00	5.71203e + 00	7.96617e-03
WTTS/ROT	389133646	3.07130e+00	3.06320e + 00	8.10439e-03
TTS/ROT	436588012	1.10180e+00	1.11022e + 00	8.41586e-03
TTS/ROT	93704259	2.82400e+00	2.81520e + 00	8.79749e-03
TTS/ROT	445330462	1.03800e+00	1.02913e+00	8.87024e-03
TTS/ROT+UV	452763353	4.41400e+00	4.40502e + 00	8.97512e-03
TTS/ROT	255590987	1.28400e+00	1.27469e + 00	9.31350e-03
WTTS/ROT	50897755	1.41342e+00	1.40397e + 00	9.44561e-03
TTS/ROT	152594022	2.36100e+00	2.37058e + 00	9.57732e-03
CTTS/ROT	58467533	1.52150e+00	1.53125e + 00	9.75469e-03
WTTS/ROT	58606906	3.21000e+00	3.22002e+00	1.00159e-02
TTS/ROT	27289835	6.21100e+00	6.20078e + 00	1.02210e-02
TTS/ROT	235071608	1.26500e+00	1.25459e + 00	1.04117e-02
TTS/ROT	348892087	1.70600e+00	$1.69543e{+}00$	1.05714e-02
TTS/ROT	59500324	1.34100e+00	1.35176e + 00	1.07554e-02
CTTS/ROT	17308640	2.81000e+00	2.82138e+00	1.13786e-02
TTS/ROT	294098955	1.51450e+00	$1.52605e{+}00$	1.15515e-02
TTS/ROT	345135732	5.00730e+00	$4.99569e{+}00$	1.16092e-02
TTS/ROT	322054057	1.46100e+00	1.47288e + 00	1.18817e-02
TTS/ROT	348665441	6.02550e-01	5.90354 e-01	1.21957e-02
TTS/ROT	323354855	4.84000e+00	4.82775e + 00	1.22490e-02
TTS/ROT	118301927	7.77000e-01	7.89576e-01	1.25756e-02

TTS/BOT	403202091	$4.08400e\pm00$	$4.09680e\pm00$	$1.27989e_02$
TTS/BOT	398987387	3.62500e+00	3.63790e+00	1.21909e-02
TTS/ROT	346704136	1.98200e+00	1.96854e + 00	1.34631e-02
TTS/BOT	93125144	1.51200e+00	1.49821e+00	1.37902e-02
TTS/BOT	464646604	2.24500e+00	2.25923e+00	1.42284e-02
WTTS/ROT	397350519	1.55530e+00	1.54050e+00	1.48039e-02
TTS/BOT	17067694	1.82320e+00	1.80834e+00	1.48638e-02
WTTS/ROT	264742215	1.29500e+00	1.27982e+00	1.51793e-02
TTS/ROT+UV	96681015	2.23930e+00	2.22357e+00	1.57281e-02
TTS/ROT	318785502	4.83100e+00	4.81519e + 00	1.58149e-02
TTS/ROT	456946694	2.68700e+00	2.70314e+00	1.61378e-02
TTS/ROT	265179710	1.37300e+00	1.35654e+00	1.64614e-02
TTS/ROT	394210384	2.55900e+00	2.57549e + 00	1.64866e-02
TTS/ROT	359740883	3.87600e+00	3.85907e+00	1.69278e-02
TTS/ROT	142513032	2.87500e+00	2.85799e+00	1.70085e-02
TTS/ROT	333680372	3.88100e+00	3.86398e+00	1.70232e-02
TTS/BOT	364075921	2.53280e+00	2.55001e+00	1.72107e-02
WTTS/ROT	52588257	1.49950e+00	1.48193e+00	1.75658e-02
TTS/BOT	54006139	3.48000e+00	3.46181e+00	1.81897e-02
TTS/BOT	396032536	2.84194e+00	2.86052e+00	1.85810e-02
TTS/ROT	400598180	2.04000e+00	2.00002e+00 2.02121e+00	1.87910e-02
TTS/BOT	359137193	4.81000e+00	4.82915e+00	1.01010002 1.01499e-02
CTTS/BOT	58467657	5.60000e+00	5.62022e+00	2.02225e-02
TTS/BOT	262876401	$2.73500e\pm00$	$2.71386e\pm00$	2.02220e 02 2.11407e-02
TTS/ROT	406277015	4.56000e+00	$4.53755e\pm00$	2.11107e-02 2.24477e-02
TTS	96680953	$2.93790e\pm00$	$2.96048e\pm00$	2.21111e-02 2.25791e-02
TTS/BOT	261236136	$1.85800e\pm00$	1.88087e+00	2.28703e-02
TTS/ROT	58288494	5.53000e+00	5.55314e+00	2.20100e 02 2.31424e-02
TTS/ROT	23325655	$4.84640e\pm00$	$4.82108e\pm00$	2.51121e 02 2.53236e-02
TTS/ROT	312803013	5.13700e+00	5.16262e+00	2.56152e-02
TTS/ROT	198051539	2.61800e+00	2.59234e+00	2.56619e-02
TTS/ROT	360631514	4.01900e+00	3.99301e+00	2.59864e-02
TTS/BOT	50722398	$4.92810e\pm00$	4.90205e+00	2.60520e-02
TTS/ROT	176873028	3.83700e+00	$3.80850e\pm00$	2.85041e-02
TTS/ROT	450060052	6.43100e+00	6.40045e+00	3.05547e-02
TTS/BOT	24451239	5.96000e+00	5.92832e+00	3.16798e-02
TTS/BOT	144996866	1.26150e+00	1.29464e+00	3.31402e-02
WTTS/ROT+UV	397287246	3.75590e+00	3.72273e+00	3.31727e-02
WTTS/ROT	4293984	4.27285e+00	4.30623e+00	3.33802e-02
TTS/BOT	149640056	2.53500e+00	2.50137e+00	3.36325e-02
CTTS/BOT	268444804	4.61000e+00	$4.64368e \pm 00$	3 36840e-02
CTTS/ROT	60068392	242000e+00	$2.38606e \pm 00$	3 39362e-02
TTS/BOT	160417350	2.51200e+00	2.000000 + 00 2.47722e + 00	3 47807e-02
TTS/ROT	260351540	3.85300e+00	3.88852e+00	3.55159e-02
TTS/BOT	32930236	3.46100e+00	3.42485e+00	3.61478e-02
TTS/ROT	302831708	3.13741e+00	3.1210053e+00	3 68864e-02
TTS/ROT	259645014	4.62800e+00	4.58761e+00	4 03949e-02
TTS/ROT	54172975	$4.34500e\pm00$	4.38572e+00	4 07233e-02
TTS/ROT	231907973	$4.35000e\pm00$	$4.30845e\pm00$	4.15461e-02
TTS/BOT	325178532	$4.45600e\pm00$	$449799e\pm00$	4 19946e-02
TTS/BOT	268217504	$3.91149e\pm00$	$3.95560e \pm 00$	4 41134e-02
TTS/BOT	201391310	3.39100 ± 00	$3.43841e\pm00$	4 741410-02
TTS/ROT	291551403	$3.89000e\pm00$	$3.84222e\pm00$	4 77805e-02
TTS/ROT	57513388	7.76700e-01	7.28621e-01	4.80793e-02
	2.0100000			1.00.000.04

TTS/ROT	259648079	4.35000e+00	4.39895e+00	4.89550e-02
CTTS/ROT	49178630	3.56000e+00	$3.60991e{+}00$	4.99110e-02
TTS/ROT	161476008	2.83900e+00	2.89036e + 00	5.13575e-02
TTS/ROT	429152610	4.63800e+00	4.69044e + 00	5.24394e-02
TTS/ROT	93456758	4.47000e+00	4.41732e + 00	5.26823e-02
TTS/ROT	124612531	6.54000e+00	6.48732e + 00	5.26835e-02
TTS/ROT	464410508	5.37256e + 00	5.42531e + 00	5.27496e-02
WTTS+EP	264461976	4.48413e-01	5.01348e-01	5.29346e-02
TTS/ROT	57151431	5.56000e+00	5.50641e + 00	5.35856e-02
CTTS/ROT	58287935	8.10000e+00	8.04620e + 00	5.38041e-02
TTS/ROT	13981777	6.53000e+00	6.58887e + 00	5.88659e-02
TTS/ROT	130297425	4.36900e+00	4.42924e + 00	6.02411e-02
TTS/ROT	197597944	4.15000e+00	4.08814e + 00	6.18569e-02
TTS/ROT	178969585	2.32000e+00	2.38276e + 00	6.27647e-02
TTS/ROT	333386671	2.58320e+00	2.64613e+00	6.29297e-02
TTS/ROT	389120689	5.18700e+00	5.25102e + 00	6.40159e-02
TTS/ROT	323172801	4.49500e+00	4.43085e+00	6.41517e-02
TTS/ROT	50619426	7.99232e + 00	8.05680e + 00	6.44728e-02
TTS/ROT	99039842	4.29400e+00	4.22902e+00	6.49802e-02
TTS/ROT	357105141	4.44600e+00	4.51581e + 00	6.98062e-02
WTTS/ROT	150097417	5.51100e+00	5.58086e + 00	6.98619e-02
WTTS/ROT	24405622	2.81600e+00	2.74357e + 00	7.24293e-02
TTS/ROT	7491381	2.20400e+00	2.27754e + 00	7.35450e-02
TTS/ROT	404012623	7.20000e-01	6.44404e-01	7.55958e-02
TTS/ROT	397287362	3.88000e+00	3.80226e + 00	7.77396e-02
TTS/ROT	130572079	3.96000e+00	4.03952e + 00	7.95245e-02
TTS/ROT	7491678	4.50000e+00	4.58660e + 00	8.66042e-02
TTS/ROT	302762006	5.61340e + 00	5.52655e + 00	8.68535e-02
TTS/ROT	278024057	5.10000e+00	5.18939e + 00	8.93923e-02
TTS/ROT	50726190	6.64200e + 00	6.54942e + 00	9.25764e-02
TTS/ROT	278036258	4.29000e+00	4.38534e + 00	9.53363e-02
TTS/ROT	143141922	2.47000e+00	2.56628e + 00	9.62789e-02
TTS/ROT	290716988	4.54200e+00	4.64774e + 00	1.05736e-01
TTS/ROT	201919099	7.41200e+00	7.30394e + 00	1.08062e-01
TTS/ROT	100479167	3.84600e+00	3.96016e + 00	1.14157e-01
TTS/ROT	302830676	5.32688e + 00	5.21104e + 00	1.15846e-01
TTS/ROT	54147487	5.05000e+00	4.93273e + 00	1.17273e-01
CTTS/ROT	268016868	7.18000e+00	7.05525e + 00	1.24751e-01
TTS/ROT	405077613	5.10100e+00	4.96001e+00	1.40987e-01
TTS/ROT	339668420	4.61400e+00	4.46747e + 00	1.46526e-01
TTS/ROT	79403675	3.54000e+00	3.38262e + 00	1.57380e-01
TTS/ROT	357898147	5.48410e-01	3.85006e-01	1.63404e-01
TTS/ROT	176852917	8.48200e+00	8.31475e + 00	1.67249e-01
TTS/ROT	206592394	3.57000e+00	3.39487e + 00	1.75131e-01
TTS/ROT	61171984	5.40180e+00	5.57947e + 00	1.77669e-01
TTS/ROT	92845906	1.89500e+00	2.07489e + 00	1.79890e-01
CTTS/ROT	268279773	8.18000e+00	7.99321e + 00	1.86791e-01
CTTS/ROT+UV	268511247	6.32000e+00	6.13318e + 00	1.86815e-01
TTS/ROT	57151429	5.56000e+00	5.37008e + 00	1.89916e-01
CTTS/ROT	660470993	8.18000e+00	7.97186e + 00	2.08143e-01
TTS/ROT	173560788	4.07200e+00	3.86289e + 00	2.09111e-01
TTS/ROT	122189102	2.11200e+00	1.89879e + 00	2.13210e-01
TTS/ROT	323350447	1.71000e+00	1.92526e + 00	2.15258e-01
TTS/ROT	434101713	5.66700e+00	5.45009e+00	2.16910e-01

	1 40001 505	0.05550 01	4 50550 01	0.04000.01
TTS/ROT	140891597	2.35576e-01	4.70558e-01	2.34982e-01
TTS/ROT	156758257	2.35330e-01	4.70672e-01	2.35342e-01
TTS/ROT	160633268	3.11200e-01	6.23411e-01	3.12211e-01
CTTS/ROT	268219495	6.25000e+00	6.57411e+00	3.24114e-01
TTS/ROT	167123841	2.12800e-01	5.40313e-01	3.27513e-01
TTS/ROT	173088921	3.82300e+00	4.15392e+00	3.30920e-01
TTS/ROT	357105301	4.43600e+00	4.08655e+00	3.49445e-01
WTTS/ROT	279493804	4.45700e-01	8.05940e-01	3.60240e-01
CTTS/ROT	118681038	6.03000e+00	$6.39809e{+}00$	3.68087e-01
TTS/ROT	356900912	7.99400e+00	7.61548e + 00	3.78522e-01
TTS/ROT	385012516	3.48400e+00	3.88478e + 00	4.00781e-01
TTS/ROT	375034557	2.60000e+00	3.01672e + 00	4.16720e-01
TTS/ROT	18645919	4.77700e-01	9.17148e-01	4.39448e-01
TTS/ROT	406095880	9.45700e-01	4.71960e-01	4.73740e-01
CTTS/ROT	96533063	6.02000e+00	$6.52729e{+}00$	5.07294e-01
TTS/ROT	462146834	2.81300e+00	2.28323e+00	5.29774e-01
TTS/ROT	259573397	8.40500e+00	7.86569e + 00	5.39308e-01
TTS/ROT	118301925	2.39600e-01	7.86276e-01	5.46676e-01
TTS/ROT	7586485	2.33200e+00	1.77315e+00	5.58849e-01
TTS/ROT	282051790	1.14350e+00	5.69372e-01	5.74128e-01
TTS/ROT	14254646	1.16830e+00	5.86237e-01	5.82063e-01
TTS/ROT	382794993	1.23400e+00	6.12403e-01	6.21597e-01
TTS/ROT	144996772	1.43700e+00	7.63653e-01	6.73347e-01
TTS/ROT	45059728	1.24000e+00	5.54798e-01	6.85202e-01
WTTS/ROT	50619529	1.06353e+00	3.56934e-01	7.06592e-01
TTS/ROT	66534229	7.13000e+00	6.42075e+00	7.09252e-01
TTS/ROT	362413145	2.42500e+00	1.71496e+00	7.10045e-01
TTS/BOT	18372863	4.41753e+00	3.68084e+00	7.36690e-01
TTS/BOT	385626253	1.50000e+00	7 56883e-01	7 43117e-01
TTS/BOT	166852312	1.27500e+00	5 20010e-01	7 54990e-01
TTS/BOT	112603301	1.210000+00 1.64200e+00	8 22246e-01	8 19754e-01
TTS/ROT	349003025	1.012000+00 1.18465e+00	3 38604e-01	8 46041e-01
TTS/ROT	220473309	$8.72900e\pm00$	$7.86871e\pm00$	8.60287e-01
CTTS/BOT	673694132	2.72000e+00	$3.63450e\pm00$	9.34498e-01
TTS/BOT	142178693	2.100000 ± 00 8 80000e \pm 00	$7.83114e\pm00$	9.68856e-01
CTTS/BOT	18372864	2.000000 ± 00	$3.68084e\pm00$	9.80837e-01
TTS/ROT	345135733	3.980000 ± 00	4.99569 ± 00	1.01569 ± 00
CTTS/ROT	50625200	3.052030 ± 00	4.990050 + 00	1.013030+00 1.137230 ± 00
	58582428	3.052350 ± 00	4.13010e+00 1.12710e+00	1.13723e+00 1.14472a+00
TTS / POT	375058105	2.27105e+00	7.127100+00	1.14472e+00 1.10570e+00
TTS/ROT	119527527	9.003000 ± 00	6.57660 ± 01	1.19570e+00 1.26522a+00
TTS/ROT	210700151	1.92300e+00 1.84200e+00	5.25186c.01	1.205550 ± 00
115/RO1	219790131	1.84200e+00	3.231800-01	1.510810+00
W I I S / RO I WTTS / DOT	0000910 4255404	1.89000e+00	5.21992e+00 1.25008a+00	1.32992e+00 1.25084a+00
W I I S / RO I	4500494	2.70092e+00	1.33008e+00	1.33084e+00 1.27512 + 00
	208017134	0.3000000 ± 00	4.92487e+00	1.37513e+00
TTS/ROT	15/34442	2.22368e+00	8.47954e-01	1.37573e+00
TTS/ROT	439971546	2.91593e+00	1.48306e+00	1.43287e+00
	278991483	0.05000e+00	(.48515e+00)	1.43515e+00
	32705970	1.83000e+00	3.91400e-01	1.43854e+00
WTTS/ROT	50727365	1.80818e+00	3.31471e-01	1.47671e+00
TTS/ROT TTTS/POT	67699049	6.80000e-01	2.17734e+00	1.49734e+00
TTS/ROT	323292484	1.84000e+00	3.32164e-01	1.50784e+00
UTTS/ROT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	58231519	5.74000e+00	7.28088e+00	1.54088e+00
TTS/ROT	245908031	3.08040e+00	1.53712e+00	1.54328e+00

$\begin{array}{llllllllllllllllllllllllllllllllllll$	WTTS/ROT	268510346	3.04000e+00	1.49070e + 00	1.54930e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CTTS/ROT	442623945	8.40000e+00	6.82477e + 00	1.57523e + 00
TTS/ROT 65203528 1.43000e+00 3.21509e+00 1.78503e+00 TTS/ROT 363252180 2.7380e+00 9.33421e-01 1.80538e+00 TTS/ROT 169380520 9.85000e-01 2.82476e+00 1.83179e+00 TTS/ROT 26998572 5.22650e-01 2.64028e+00 2.10763e+00 CTTS/ROT 58467184 7.60000e+00 5.40644e+00 2.19763e+00 CTTS/ROT 58467184 7.60000e+00 5.40644e+00 2.23456e+00 CTTS/ROT 39812943 1.36396e+00 3.6313ae+00 2.32737e+00 TTS/ROT 11928666 5.13800e+00 3.15155e+00 2.45028e+00 CTTS/ROT 13928666 5.13800e+00 2.45028e+00 2.45028e+00 TTS/ROT 70596114 1.3560e+00 3.3305e+00 2.45028e+00 CTTS/ROT 97014510 3.9300e+00 1.33056e+00 2.45028e+00 TTS/ROT 268148974 7.65000e+10 3.33736e+00 2.87926e+00 CTTS/ROT 268148974 7.65000e+10 3.16729e+00 3.16327e+00 <td>TTS/ROT</td> <td>34637068</td> <td>9.70000e-01</td> <td>2.74899e + 00</td> <td>1.77899e + 00</td>	TTS/ROT	34637068	9.70000e-01	2.74899e + 00	1.77899e + 00
TTS/ROT 363252180 2.73880e+00 9.33421e-01 1.80538e+00 TTS/ROT 407942227 3.25876e+00 1.44077e+00 1.8179e+00 TTS/ROT 169330520 9.55000e-01 2.82476e+00 1.83976e+00 TTS/ROT 269958752 5.32650e-01 2.64028e+00 2.10763e+00 CTTS/ROT 58470814 7.60000e+00 5.78551e+00 2.232737e+00 CTTS/ROT 339812943 1.36396e+00 3.32310e-01 2.32368e+00 CTTS/ROT 139285666 5.13800e+00 3.32310e-01 2.32368e+00 TTS/ROT 1264438 7.09000e+00 4.4368e+00 2.44532e+00 TTS/ROT 1969155 4.2537e-01 2.37612e+00 2.45019e+00 TTS/ROT 9701451 3.3300e+00 5.1890e+00 2.65706e+00 TTS/ROT 26674662 3.0200e+00 5.8572e+00 2.6710e+00 TTS/ROT 26674662 3.0200e+00 3.73806e+00 2.86720e+00 TTS/ROT 26674662 3.0200e+00 3.8720e+00 3.06332e+00 <tr< td=""><td>TTS/ROT</td><td>65203528</td><td>1.43000e+00</td><td>3.21509e + 00</td><td>1.78509e + 00</td></tr<>	TTS/ROT	65203528	1.43000e+00	3.21509e + 00	1.78509e + 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TTS/ROT	363252180	2.73880e+00	9.33421e-01	1.80538e + 00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	TTS/ROT	407942227	3.25876e+00	1.44077e+00	1.81799e+00
TTS/ROT 380679651 3.94200e+00 1.96073e+00 1.98127e+00 TTS/ROT 269958752 5.32650e-01 2.64028e+00 2.19356e+00 CTTS/ROT 59879081 8.0800e+00 5.78551e+00 2.29449e+00 CTTS/ROT 339812943 1.36396e+00 3.69133e+00 2.32737e+00 TTS/ROT 141914082 2.66099e+00 3.8013e+00 2.37559e+00 CTTS/ROT 141914082 2.66099e+00 3.80619e+00 2.45019e+00 WTS/ROT 1969155 4.25357e-01 2.87612e+00 2.45076e+00 TTS/ROT 1969155 4.25357e-01 2.87612e+00 2.67110e+00 CTTS/ROT 26674662 3.0200e+00 5.88720e+00 2.67110e+00 CTS/ROT 26674662 3.0200e+00 3.7806e+00 2.95196e+00 TS/ROT 306451533 6.13000e+00 3.10729e+00 3.02271e+00 TS/ROT 15759000 3.43894e+00 3.7500e+01 3.1805e+00 TS/ROT 26844139 9.3500e+00 4.0251e+00 3.1805e+00	TTS/ROT	169380520	9.85000e-01	2.82476e+00	1.83976e+00
TTS/ROT 269958752 5.32650-01 2.64028+00 2.10763e+00 CTTS/ROT 58467184 7.60000e+00 5.40644e+00 2.19356e+00 CTTS/ROT 59879081 8.0800e+00 3.69133e+00 2.32439e+00 CTTS/ROT 139285666 5.1360e+00 3.32310e-01 2.32858e+00 TS/ROT 139285666 5.13800e+00 3.32310e-01 2.32858e+00 CTTS/ROT 266444803 7.09000e+00 4.64368e+00 2.44632e+00 TS/ROT 1969155 4.25357e-01 2.87612e+00 2.45076e+00 CTTS/ROT 9704510 3.3000e+00 5.81890e+00 2.6702e+00 CTS/ROT 268148974 7.6600e+00 4.81177e+00 2.8323e+00 CTS/ROT 268148974 7.66100e+01 3.75020e-01 3.06392e+00 TS/ROT 266746662 3.0200e+00 5.8720e+00 2.86720e+00 TS/ROT 30451533 6.13000e+00 3.7520e-01 3.06392e+00 TS/ROT 13759000 3.43894e+00 3.75020e-01 3.06392e+00 C	TTS/ROT	380679651	3.94200e+00	1.96073e+00	1.98127e+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TTS/ROT	269958752	5.32650e-01	2.64028e+00	2.10763e+00
CTTS/ROT 59879081 8.08000e+00 5.78551e+00 2.29449e+00 CTTS/ROT 339812943 1.36396e+00 3.69133e+00 2.32737e+00 TS/ROT 14191482 2.66099e+00 3.32310e-01 2.32868e+00 CTTS/ROT 13928566 5.13800e+00 7.51359e+00 2.44632e+00 CTTS/ROT 268444803 7.09000e+00 4.64368e+00 2.44632e+00 TTS/ROT 10699155 4.2537e-01 2.87612e+00 2.45076e+00 TS/ROT 97014510 3.3000e+00 5.1890e+00 2.59905e+00 CTTS/ROT 268148974 7.6500e+00 4.81177e+00 2.8822e+00 TS/ROT 266746622 3.02000e+00 5.1890e+00 3.02271e+00 TS/ROT 30618e57 7.86100e-01 3.1729e+00 3.02271e+00 TS/ROT 30618e582 8.37500e+00 5.19495e+00 3.1805e+00 TS/ROT 343844e+00 3.1672e+00 3.32976e+00 CTTS/ROT TS/ROT 26844139 9.3500e+00 6.02024e+00 3.67834e+00	CTTS/BOT	58467184	7.60000e+00	5.40644e + 00	2.19356e+00
CTTS/ROT 339812943 1.36396e+00 3.69133e+00 2.32737e+00 TTS/ROT 141914082 2.66099e+00 3.32310e-01 2.32868e+00 CTTS/ROT 139285666 5.13800e+00 7.51359e+00 2.37559e+00 CTTS/ROT 268444803 7.0900e+00 4.64368e+00 2.46032e+00 TTS/ROT 1969155 4.2537e-01 2.87612e+00 2.45019e+00 TTS/ROT 1969155 4.2537e-01 2.87612e+00 2.45076e+00 TTS/ROT 1969157 8.19000e+00 5.81890e+00 2.67110e+00 CTTS/ROT 26814874 7.65000e+00 4.81177e+00 2.8323e+00 TS/ROT 26674662 3.0200e+00 5.1890e+00 2.95196e+00 TTS/ROT 15759000 3.43894e+00 3.1022e+00 3.0632e+00 TS/ROT 144155582 8.37500e+00 5.19496e+00 3.1805e+00 CTTS/ROT 26844139 9.35000e+00 4.02246e+00 3.31627e+00 CTS/ROT 26844139 9.35000e+00 4.02246e+00 3.31627e+00 <tr< td=""><td>CTTS/BOT</td><td>59879081</td><td>8.08000e+00</td><td>5.78551e+00</td><td>2.29449e+00</td></tr<>	CTTS/BOT	59879081	8.08000e+00	5.78551e+00	2.29449e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CTTS/BOT	339812943	$1.36396e \pm 00$	3.69133e+00	2.32737e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	TTS/ROT	141914082	2.66099e+00	3.32310e-01	2.32868e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	TTS/BOT	139285666	5.13800e+00	$7.51359e \pm 00$	2.32559e+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CTTS/BOT	268444803	7.09000e+00	$4.64368e \pm 00$	2.44632e+00
TTS/ROT 19699155 4.2537e-01 2.87612e+00 2.45076e+00 TTS/ROT 97014510 3.93000e+00 1.33095e+00 2.5995e+00 2.67110e+00 TTS/ROT 268510757 8.19000e+00 5.51890e+00 2.67110e+00 2.83823e+00 TTS/ROT 266148974 7.65000e+00 4.81177e+00 2.83823e+00 2.86720e+00 TTS/ROT 266746662 3.02000e+00 5.88720e+00 2.95196e+00 3.06322e+00 TTS/ROT 30651533 6.13000e+00 3.10729e+00 3.02271e+00 3.06322e+00 TTS/ROT 144155582 8.37500e+00 5.19495e+00 3.31637e+00 3.31627e+00 CTTS/ROT 26844139 9.35000e+00 4.08281e+00 3.32976e+00 3.41719e+00 CTTS/ROT 5817703 7.50000e+00 3.02169e+00 3.8379e+00 3.8173e+00 CTTS/ROT 56624875 8.25000e+00 4.63489e+00 3.85819e+00 TTS/ROT TS/ROT 40913214 3.74000e+00 7.86811e+00 4.22751e+00 3.85819e+00 TTS/ROT </td <td>TTS/BOT</td> <td>70596114</td> <td>1.35600e+00</td> <td>3.80619e+00</td> <td>2.45019e+00</td>	TTS/BOT	70596114	1.35600e+00	3.80619e+00	2.45019e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	WTTS/BOT	19699155	4 25357e-01	2.87612e+00	2.45076e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	TTS/BOT	97014510	$3.93000e\pm00$	1.33095e+00	$2.59905e\pm00$
TTS/ROT 268148974 7.65000e+00 5.81177e+00 2.8322e+00 TTS/ROT 266148974 7.65000e+00 5.88720e+00 2.8322e+00 TTS/ROT 266746662 3.02000e+00 5.88720e+00 2.85220e+00 TTS/ROT 306451533 6.13000e+00 3.10729e+00 3.02271e+00 TTS/ROT 15759000 3.43894e+00 3.75020e-01 3.06392e+00 TTS/ROT 144155582 8.37500e+00 5.19495e+00 3.18005e+00 CTTS/ROT 268444139 9.35000e+00 6.02024e+00 3.32976e+00 CTTS/ROT 26844139 9.35000e+00 6.02024e+00 3.32976e+00 CTTS/ROT 2684475 8.25000e+00 4.0281e+00 3.67831e+00 CTTS/ROT 96205005 6.70000e+00 3.02169e+00 3.85489e+00 TTS/ROT 429152614 7.80000e+00 4.03489e+00 3.85489e+00 TTS/ROT 429152614 7.8000e+00 5.26051e+00 4.22751e+00 TTS/ROT 401913214 3.7400e+00 5.85874e+00 5.0534e+00 TTS/ROT 142391477 1.03300e+00 5.26051e+00	TTS/BOT/DIP	268510757	8.19000e+00	$5.51890e \pm 00$	2.655000 ± 00 2.67110 ± 00
TTS/ROT 266746662 3.02000+00 5.88720+00 2.86720+00 TTS/ROT 366718627 7.86100-01 3.73806e+00 2.95196e+00 TTS/ROT 306451533 6.13000e+00 3.10729e+00 3.02271e+00 TTS/ROT 15759000 3.43894e+00 3.75020e-01 3.06392e+00 TTS/ROT 144155582 8.37500e+00 5.19495e+00 3.1805e+00 TTS/ROT 26844139 9.35000e+00 6.02024e+00 3.32976e+00 CTTS/ROT 26844139 9.35000e+00 6.02024e+00 3.41719e+00 CTTS/ROT 9620505 6.70000e+00 4.08281e+00 3.81479e+00 CTTS/ROT 9620505 6.7000e+00 4.0215e+00 3.8549e+00 TTS/ROT 429152614 7.8000e+01 4.63489e+00 3.8549e+00 TTS/ROT 401913214 3.7400e+00 7.86811e+00 4.2811e+00 TTS/ROT 142391477 1.0330e20+00 5.2651e+00 4.59480e+00 TTS/ROT 50658278 8.53470e-01 5.85874e+00 5.00534e+00 <tr< td=""><td>CTTS/BOT</td><td>268148974</td><td>7.65000e+00</td><td>4.81177e+00</td><td>$2.83823e\pm00$</td></tr<>	CTTS/BOT	268148974	7.65000e+00	4.81177e+00	$2.83823e\pm00$
TIS/ROT Display and the second s	TTS/BOT	266746662	3.02000e+00	5.88720e+00	2.86720e+00
TIS/ROT Dot 1051 Instruction Distribution TTS/ROT 306451533 6.13000e+00 3.10729e+00 3.06392e+00 TTS/ROT 144155582 8.37500e+00 5.19495e+00 3.18055e+00 CTTS/ROT 268444139 9.35000e+00 6.02024e+00 3.31627e+00 CTTS/ROT 268444139 9.35000e+00 4.08281e+00 3.41719e+00 CTTS/ROT 96205005 6.70000e+00 3.02169e+00 3.67831e+00 CTTS/ROT 56624875 8.25000e+00 4.41251e+00 3.8549e+00 TS/ROT 50619550 4.19738e+00 3.8549e+00 3.8549e+00 TS/ROT 401913214 3.74000e+00 7.86811e+00 4.12811e+00 TS/ROT 401913214 3.74000e+00 8.53489e+00 3.8549e+00 TS/ROT 401913214 3.74000e+00 8.53480e+00 4.22751e+00 TS/ROT 457227617 3.9400e+00 8.53480e+00 4.59480e+00 TS/ROT 978658278 8.53407e-01 5.85874e+00 5.0534e+00 TS/ROT <td>TTS/BOT+DIP</td> <td>366718627</td> <td>7.86100e-01</td> <td>$3.73806e \pm 00$</td> <td>2.001200+00 2.95196e+00</td>	TTS/BOT+DIP	366718627	7.86100e-01	$3.73806e \pm 00$	2.001200+00 2.95196e+00
TIS/ROT 1575/ROT 15759000 3.43894e+00 3.75020e-01 3.06392e+00 TTS/ROT 144155582 8.37500e+00 5.19495e+00 3.18005e+00 CTTS/ROT 268441139 9.35000e+00 6.0224e+00 3.32976e+00 CTTS/ROT 268441139 9.35000e+00 4.08281e+00 3.41719e+00 CTTS/ROT 58177093 7.50000e+00 4.0224e+00 3.67831e+00 CTTS/ROT 96205005 6.70000e+00 3.02169e+00 3.67831e+00 CTTS/ROT 56624875 8.25000e+00 4.41251e+00 3.85489e+00 TTS/ROT 429152614 7.8000e+01 4.63489e+00 3.85489e+00 TTS/ROT 401913214 3.74000e+00 3.85489e+00 4.12811e+00 TTS/ROT 401913214 7.4000e+00 8.53480e+00 4.59480e+00 TTS/ROT 457227617 3.94000e+00 8.53480e+00 4.59480e+00 TTS/ROT 97815168 2.52000e+00 7.54655e+00 5.0255e+00 TS/ROT 97866479 2.94000e+00 8.06703e+00 <t< td=""><td>TTS/BOT</td><td>306451533</td><td>$6.13000e \pm 00$</td><td>3.10729e+00</td><td>3.02271e+00</td></t<>	TTS/BOT	306451533	$6.13000e \pm 00$	3.10729e+00	3.02271e+00
TTS/ROT 144155882 8.37500e+00 5.19495e+00 3.18005e+00 TTS/ROT 383134735 4.99400e-01 3.81567e+00 3.31627e+00 CTTS/ROT 268444139 9.35000e+00 6.02024e+00 3.32976e+00 CTTS/ROT 58177093 7.50000e+00 4.08281e+00 3.41719e+00 CTTS/ROT 96205005 6.70000e+00 4.0281e+00 3.67331e+00 CTTS/ROT 56624875 8.25000e+00 4.41251e+00 3.85749e+00 TTS/ROT 429152614 7.8000e+01 4.63489e+00 3.85489e+00 TTS/ROT 401913214 3.74000e+00 7.86811e+00 4.12811e+00 TTS/ROT 142391477 1.03300e+00 5.26051e+00 4.22751e+00 WTTS/ROT 457227617 3.94000e+00 8.53480e+00 4.59480e+00 TTS/ROT 97815168 2.52000e+00 7.54655e+00 5.02655e+00 TTS/ROT 97866479 2.94000e+00 8.6733e+01 5.89260e+00 TTS/ROT 257482141 3.20800e+00 9.11324e+00 5.99264e+00	TTS/BOT	15759000	343894e+00	3 75020e-01	3.06392e+00
TTS/ROT TH35363 H353640 H353640 CTTS/ROT 383134735 4.99400e-01 3.81567e+00 3.31627e+00 CTTS/ROT 268444139 9.35000e+00 6.02024e+00 3.32976e+00 CTTS/ROT 58177093 7.50000e+00 4.08281e+00 3.41719e+00 CTTS/ROT 96205005 6.70000e+00 3.02169e+00 3.67831e+00 CTTS/ROT 56624875 8.25000e+00 4.41251e+00 3.83749e+00 TTS/ROT 429152614 7.80000e-01 4.63489e+00 3.85489e+00 TTS/ROT 401913214 3.74000e+00 7.86811e+00 4.12811e+00 TTS/ROT 142391477 1.0330e+00 5.26051e+00 4.22751e+00 WTTS/ROT 457227617 3.94000e+00 8.53480e+00 4.59480e+00 TTS/ROT 97815168 2.52000e+00 7.54655e+00 5.02655e+00 TTS/ROT 966479 2.94000e+00 8.21273e+00 5.27273e+00 CTTS/ROT 79566479 2.94000e+00 8.21273e+00 5.27273e+00 TTS/ROT <td>TTS/BOT</td> <td>144155582</td> <td>8.37500e+00</td> <td>$5.19495e \pm 00$</td> <td>3.18005e+00</td>	TTS/BOT	144155582	8.37500e+00	$5.19495e \pm 00$	3.18005e+00
TTS/ROT 26844139 9.35000e10 6.02024e+00 3.32976e+00 CTTS/ROT 26844139 9.35000e+00 4.08281e+00 3.41719e+00 CTTS/ROT 96205005 6.70000e+00 3.02169e+00 3.67831e+00 CTTS/ROT 96205005 6.70000e+00 4.04281e+00 3.83749e+00 CTTS/ROT 429152614 7.80000e-01 4.63489e+00 3.85489e+00 TTS/ROT 401913214 3.74000e+00 7.86811e+00 4.12811e+00 TTS/ROT 142391477 1.03300e+00 5.26051e+00 4.22751e+00 WTTS/ROT 50658278 8.53407e-01 5.85874e+00 5.00534e+00 TTS/ROT 97815168 2.52000e+00 7.54655e+00 5.02655e+00 TTS/ROT 97866479 2.94000e+00 8.21273e+00 5.27273e+00 CTTS/ROT 660499504 6.85844e+00 9.65839e-01 5.89260e+00 TTS/ROT 2546655 6.85844e+00 9.65839e-01 5.89260e+00 TTS/ROT 22043363 1.49600e+00 7.86822e+00 6.37222e+00 <	TTS/BOT	383134735	4 99400e-01	3.81567e+00	3.31627e+00
CTTS/ROT 5371093 0502000100 4.0828100 05020100 05020100 CTTS/ROT 96205005 6.700000+00 3.02169e+00 3.67831e+00 CTTS/ROT 56624875 8.25000e+00 4.41251e+00 3.83749e+00 TTS/ROT 429152614 7.80000e-01 4.63489e+00 3.85489e+00 TTS/ROT 401913214 3.74000e+00 7.86811e+00 4.12811e+00 TTS/ROT 401913214 3.74000e+00 5.26051e+00 4.22751e+00 WTTS/ROT 457227617 3.94000e+00 5.2655e+00 5.00534e+00 TTS/ROT 50658278 8.53407e-01 5.85874e+00 5.00534e+00 TTS/ROT 79815168 2.52000e+00 8.21273e+00 5.27273e+00 TTS/ROT 79566479 2.94000e+00 8.21273e+00 5.27273e+00 TTS/ROT 56625542 2.64000e+00 8.06703e+00 5.89260e+00 TTS/ROT 5863655 6.85844e+00 9.65839e-01 5.89260e+00 TTS/ROT 22043363 1.49600e+00 7.86822e+00 6.372	CTTS/BOT	268444139	9.35000e+00	6.02024e+00	3.32976e+00
CTTS/ROT 96205005 6.70000e+00 3.02169e+00 3.67831e+00 CTTS/ROT 56624875 8.25000e+00 4.41251e+00 3.83749e+00 TTS/ROT 429152614 7.80000e-01 4.63489e+00 3.85489e+00 TTS/ROT 50619550 4.19738e+00 3.39197e-01 3.85489e+00 TTS/ROT 401913214 3.74000e+00 7.86811e+00 4.12811e+00 TTS/ROT 142391477 1.03300e+00 5.26051e+00 4.22751e+00 WTTS/ROT 457227617 3.94000e+00 5.26051e+00 4.59480e+00 TTS/ROT 50658278 8.53407e-01 5.85874e+00 5.00534e+00 TTS/ROT 97815168 2.52000e+00 8.21273e+00 5.27273e+00 CTTS/ROT+CTTS 366752542 2.64000e+00 8.06703e+00 5.42703e+00 TS/ROT 58636655 6.85844e+00 9.65839e-01 5.89260e+00 TTS/ROT 257482141 3.20800e+00 9.11324e+00 5.90524e+00 TTS/ROT 24278523 1.76400e+00 8.86570e+00 7.20170e+00	CTTS/BOT	58177093	7.50000e+00	4.08281e+00	3.41719e+00
CTTS/ROT 56624875 8.25000+00 4.41251e+00 3.83749e+00 TTS/ROT 429152614 7.80000e-01 4.63489e+00 3.85489e+00 TTS/ROT 50619550 4.19738e+00 3.39197e-01 3.85489e+00 TTS/ROT 401913214 3.74000e+00 7.86811e+00 4.12811e+00 TTS/ROT 142391477 1.03300e+00 5.26051e+00 4.22751e+00 WTTS/ROT 457227617 3.94000e+00 8.53480e+00 4.59480e+00 TTS/ROT 50658278 8.53407e-01 5.85874e+00 5.00534e+00 TTS/ROT 97815168 2.52000e+00 7.54655e+00 5.02655e+00 TTS/ROT 79566479 2.94000e+00 8.06703e+00 5.42703e+00 TTS/ROT 58636655 6.85844e+00 9.65839e-01 5.89260e+00 TTS/ROT 58636655 6.85844e+00 9.65839e-01 5.90524e+00 TTS/ROT 22043363 1.49600e+00 7.86822e+00 6.3722e+00 CTTS/ROT 22043363 1.49600e+00 7.8682e+00 7.91474e+00	CTTS/BOT	96205005	6.70000e+00	3.02169e+00	3.67831e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CTTS/ROT	56624875	8.25000e+00	4.41251e+00	3.83749e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	TTS/ROT	429152614	7.80000e-01	4.63489e+00	3.85489e+00
TTS/ROT 401913214 3.74000e+00 7.86811e+00 4.12811e+00 TTS/ROT 142391477 1.03300e+00 5.26051e+00 4.22751e+00 WTTS/ROT 457227617 3.94000e+00 8.53480e+00 4.59480e+00 TTS/ROT 50658278 8.53407e-01 5.85874e+00 5.00534e+00 TTS/ROT 97815168 2.52000e+00 7.54655e+00 5.02655e+00 TTS/ROT 79566479 2.94000e+00 8.21273e+00 5.27273e+00 CTTS/ROT+CTTS 366752542 2.64000e+00 8.06703e+00 5.42703e+00 TTS/ROT 660499504 6.85844e+00 9.65839e-01 5.89260e+00 TTS/ROT 257482141 3.20800e+00 9.11324e+00 5.90524e+00 TTS/ROT 22043363 1.49600e+00 7.86822e+00 6.37222e+00 CTTS/ROT 2245830955 1.03000e+01 3.83563e+00 7.91474e+00 TTS/ROT 224278523 1.76400e+00 8.96570e+00 7.91474e+00 CTTS/ROT 146522418 1.33000e+01 5.38526e+00 7.91474e+00	TTS/ROT	50619550	4.19738e+00	3.39197e-01	3.85819e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	TTS/ROT	401913214	3.74000e+00	7.86811e+00	4.12811e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	TTS/ROT	142391477	1.03300e+00	5.26051e+00	4.22751e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	WTTS/ROT	457227617	3.94000e+00	8.53480e+00	4.59480e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	TTS/ROT	50658278	8.53407e-01	5.85874e + 00	5.00534e + 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TTS/ROT	97815168	2.52000e+00	$7.54655e \pm 00$	5.02655e+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TTS/ROT	79566479	2.94000e+00	8.21273e+00	5.27273e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CTTS/ROT+CTTS	366752542	2.64000e+00	8.06703e+00	5.42703e+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TTS/ROT	660499504	6.85844e+00	9.65839e-01	5.89260e+00
TTS/ROT2574821413.20800e+009.11324e+005.90524e+00TTS/ROT2204333631.49600e+007.86822e+006.37222e+00CTTS/ROT2458309551.03000e+013.83563e+006.46437e+00TTS/ROT2242785231.76400e+008.96570e+007.20170e+00TTS/ROT1465224181.33000e+015.38526e+007.91474e+00CTTS/ROT612595761.52000e+016.59065e+008.60935e+00WTTS/ROT506251311.06940e+013.31389e-011.03626e+01TTS/ROT728587601.37600e+012.89666e+001.08633e+01TTS/ROT157344231.47874e+011.18725e+001.36002e+01CTTS/ROT1500029842.20000e+013.02870e+001.89713e+01	TTS/ROT	58636655	$6.85844e \pm 00$	9.65839e-01	5.89260e+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TTS/BOT	257482141	3.20800e+00	9.11324e+00	5.90524e+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TTS/ROT	220433363	1.49600e+00	7.86822e+00	6.37222e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CTTS/ROT	245830955	1.03000e+01	3.83563e+00	6.46437e+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TTS/ROT	224278523	1.76400e+00	8.96570e+00	7.20170e+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TTS/ROT	146522418	1.33000e+01	5.38526e + 00	7.91474e+00
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CTTS/BOT	61259576	1.52000e+01	6.59065e+00	8.60935e+00
TTS/ROT728587601.37600e+012.89666e+001.08633e+01TTS/ROT2854669011.36928e+013.37430e-011.33554e+01TTS/ROT157344231.47874e+011.18725e+001.36002e+01CTTS/ROT1500029842.20000e+013.02870e+001.89713e+01	WTTS/BOT	50625131	1.06940e+01	3.31389e-01	1.03626e+01
$\begin{array}{c cccccc} TTS/ROT \\ TTS/ROT \\ CTTS/ROT \\ CTTS/ROT \\ TTS/ROT \\ $	TTS/ROT	72858760	1.37600e+01	2.89666e + 00	1.08633e+01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TTS/ROT	285466901	1.36928e+01	3.37430e-01	1.33554e+01
CTTS/ROT 150002984 2.20000e+01 3.02870e+00 1.89713e+01	TTS/ROT	15734423	1.47874e+01	1.18725e+00	1.36002e+01
	CTTS/ROT	150002984	2.20000e+01	3.02870e+00	1.89713e+01
TTS/ROT 243237647 1.04600e+02 4.99999e-01 1.04100e+02	TTS/ROT	243237647	1.04600e+02	4.99999e-01	1.04100e+02

Tabla 10: Diferencia entre los periodos de $V\!S\!X$ y $T\!E\!S\!S$ para 314 estrellas seleccionadas con cadencia de 120 s para el tipoTTS Perez (2022g).

| Id MAST |
|-----------|-----------|-----------|-----------|-----------|
| 234813367 | 443995718 | 375965538 | 252980390 | 270070443 |
| 238283603 | 309148260 | 342005851 | 215896225 | 355807959 |
| 190987176 | 4616407 | 287263680 | 218449155 | 128036815 |
| 57065604 | 446796937 | 73614905 | 239795363 | 2603937 |
| 454963026 | 49314893 | 41557467 | 322055308 | 454855280 |
| 469055655 | 371670020 | 94767259 | 400453875 | 462877348 |
| 395762512 | 148152979 | 259587315 | 270304671 | 298197561 |
| 348890811 | 268460597 | 440238782 | 361948797 | 173895935 |
| 459407365 | 193099601 | 131115562 | 381447988 | 123216594 |
| 162027140 | 462660606 | 76098926 | 285651536 | 78566138 |
| 423437629 | 366598434 | 96315731 | 437105956 | 316642863 |
| 33298241 | 407929868 | 382515892 | 238559148 | 364151367 |
| 459537285 | 80466973 | 441119035 | 184737443 | 159190692 |
| 50530053 | 25559430 | 374255076 | 59881425 | 53178075 |
| 219792161 | 298262684 | 436014101 | 50663019 | 455000299 |
| 334555674 | 56551765 | 298961861 | 51443167 | 238432056 |
| 33949202 | 313274615 | 99499229 | 50897666 | 900379291 |
| 4355347 | 272845419 | 245863570 | 198304072 | 272833681 |
| 385589386 | 35205530 | 258177728 | 125737020 | 341772777 |
| 289726188 | 4351044 | 350738203 | 58601465 | 166646191 |
| 353969903 | 454961345 | 47757785 | 115582977 | 60903678 |
| 74066619 | 224269420 | 279674929 | 367371680 | 11665403 |
| 397368422 | 664915372 | 23228849 | 351603103 | 19843696 |
| 169465955 | 74066628 | 176487942 | 29477348 | 82549571 |
| 159409935 | 37778297 | 124494439 | 204325302 | 287855538 |
| 247354675 | 16045498 | 346540537 | 67829748 | 440700750 |
| 224305606 | 67829849 | 114061043 | 302545647 | 125754781 |
| 346540567 | 85334035 | 385589388 | 101924039 | 118681038 |
| 61259576 | 58231519 | 268016868 | 268219495 | 442623945 |
| 96533063 | 268511247 | 381987118 | 8999195 | 456514484 |
| 375534411 | 277022692 | 208411338 | 55581166 | 303519120 |
| 277298335 | 145313336 | 126800165 | 458042392 | 459478164 |
| 179435530 | 280287051 | 299013301 | 328476086 | 182169136 |
| 407190486 | 141134087 | 465822554 | 465556103 | 385904228 |
| 144632645 | 100406081 | 445610119 | 310026926 | 31511595 |
| 380290003 | 469339385 | 40367312 | 416925825 | 307375161 |
| 184535525 | 129883516 | 467453639 | 461612949 | 457332854 |
| 145870698 | 458908660 | 81059100 | 90978655 | 113997319 |
| 298333633 | 274078095 | 378237360 | 188312699 | 308280008 |
| 466073202 | 373422350 | 397886324 | 309616651 | 317244353 |
| 390279364 | 304102832 | 381286075 | 382416630 | 467231845 |
| 389700132 | 234548714 | 139825582 | 33911462 | 12470841 |
| 30906332 | 219332123 | 80474886 | 240663587 | 68164464 |
| 18028547 | 115172103 | 171158545 | 364763181 | 308255000 |
| 141179247 | 443970332 | 12723924 | 63071165 | 320524751 |

261656371	92912903	101124725	764279408	927554
355215987	63588946	5001059	62576534	67559369
161668117	169820068	350743714	21499609	33912852
259260957	9787257	289044378	468827257	102305337
394728064	386166904	97667368	331860062	171097823
270341486	169319248	159441328	103605167	284613090
404646640	234288940	342645261	169467727	18319090
24935204	233374895	92774987	138333980	120689878
14209654	121966220	116380226	176551075	425284468
161710825	157018051	159757364	44883470	375854079
198358825	281885301	87251422	299552483	24133365
362043085	397177642	277502552	75938206	20436558
274129522	144000467	233738458	400206795	325469795
117921039	420574964	279741942	172900988	63121862
140736015	179009619	97489285	428064231	189397763
458267524	60382241	268704157	427398881	393824894
9146275	21499327	27307817	351240404	186942457
63291675	356340346	192201543	47124392	366577510
121393780	272650576	202444594	165470014	177995773
104134987	95330264	2761545	153741139	118687860
29664907	178431738	112857453	269833435	290571126
28224552	434159772	440817830	405685900	186302615
459915346	234814409	242937935	273131564	433977629
79681126	439861938	271040947	230063769	162035117
281562429	126236473	271548206	441694629	386622782
394177355	299096355	268380299	160648169	272720444
121277143	386624472	63126950	159510109	284350181
299096773	179958960	63427664	97356407	4723156
342010156	449256892	417277789	138951779	202295392
358517121	11491822	399832376	274945059	60658382
424719589	1883519478	13389059	71531463	55497281
298967445	229057817	64951042	381009148	13037534
269126567	238005553	396779850	378268070	101547609
367782212	182294086	393803650	400940488	241180974
263074592	201432628	459278502	35159657	20299889
11704852	219173590	430808126	458559498	405427022
271205943	46127223	270168566	295527759	450888405
332607100	346767664	306756493	234347951	209707952
308991822	384031569	469022819	116044425	203452834
81908247	92352620	281541555	290131778	279741379
293460551	158623531	394137592	135043332	211438925
40001645	52368076	183985250	7020254	380255458
127530399	260128333	410153553	363516247	268379849
388131944	31105684	97361918	170635351	140797524
273761281	69817792	169458450	56912817	65457985
427395774	233569141	126098356	268397434	91415838
346704014	95716058	119489880	4204015	86481449
389357758	341200426	317958083	349977461	176649257
87601287	5494171	401795729	155087931	184893364
177354054	247701325	5851342	458524570	462487317
436209773	376920428	123446661	372052377	196316313
14780007	318789688	156196742	426665045	256628240
55111498	274600480	184427250	123317865	437025062
118417121	388327285	310965252	29266563	123313769
		1	1	1

233072275	303217455	310627323	272366991	23676007
280464928	236853965	55384162	214923764	316417053
120524565	270841724	441827802	30854159	158870584
630222973	99329913	53871278	138074750	262291056
441706783	410622915	154182243	463472968	137270992
255419149	27082559	312763933	423658228	354046338
286627061	298486629	320228013	374827166	162798862
38215537	318791268	13090585	280912523	449049068
299654048	67688213	101798758	278398229	139697052
3517554	24735123	413328822	80659079	155013086
381858244	452314602	122402517	46265415	262424906
36225549	149303443	101651937	119153371	74200453
296179024	425041861	337719841	674797	248575547
135153201	37376262	177431511	394485271	377678109
452739008	48782268	298686422	113415545	347478515
296099642	346592926	257387852	181147127	288280770
408232375	337631596	302444319	320964222	126970160
398217467	177890657	28834220	102755663	375121320
6173726	191703558	18542277	131349807	236756676
227036168	304450835	258553469	211789263	253940344
345230643	270835079	150609052	441210585	279829322
201753281	451346424	376629907	272848617	397400623
238969374	102628186	864879159	404968457	422414814
19810158	97524963	300513650	61105426	272618594
359118417	147212019	264313563	139282432	30312677
248146147	255303048	6780465	389672830	155774922
27087000	458616500	150167002	176957810	318417618
394811200	290732717	103138689	186818732	424829832
301452641	166181174	211313448	217139649	200955016
212516077	447464613	245177563	311887732	314445368
400701200	192729553	380321932	412556742	69183622
145620527	342021932	437060512	1956837940	69855370
385507996	372913626	375838965	398383670	168790235
461307978	58472992	440686627	287485553	127572976
271548021	67786856	46476638	113922031	444859043
283733325	392752914	137411036	74188694	399954267
405483203	309271494	427736349	235037761	46634036
125736708	89291139	114084199	229650995	152113197
5533795	197892635	113978124	270038761	307526685
182833999	383582909	258066795	408448085	339308290
25961038	387226277	348638621	42015200	434158297
114060219	54595692	25841461	238778712	138300304
446973978	120577867	279649057	121711329	440690776
173871956	83919683	385558026	195165333	440724921
427346731	404393507	67829632	270211145	125736811
65673065	170882537	464772659	294754396	453416841
137408433	35154685	407229898	385508418	35085814
172163764	46481251	121107718	269516224	405483073
382288432	283920208	61145874	405430348	26018997
287584993	304217972	272607848	331609888	26103751
156883253	114060720	270520275	298784838	54667962
114060900	304133717	121658841	61139677	77708274
350813406	32286378	255617213	440689443	399827186
106504049	675445	102304013	123229796	448513620
	I			

159098206	114085501	385508007	20886254	385508618
302541052	243271623	159515804	457230945	331955495
4250239	77422977	60005364	99817388	140991683
165943952	262588562	415030187	34884744	279614617
399916610	439446186	17150156	386494481	140968117
318613756	98827212	28188206	350655963	158075382
29701408	207386347	405415381	241351537	114026906
61849366	417832776	389871619	180671254	139037047
461427315	162497422	237336734	374098537	291249313
408773065	296120063	358325879	202052614	377511073
364425394	408748947	14841673	80891926	377098257
290228730	383726256	429854150	224629377	119155266
41439326	266634534	392486056	83153075	461406245
154761164	175300427	241873142	371520493	253009271
422383606	29942377	199730970	344232719	279840678
448026016	247332514	144929989	219083778	290549352
218232212	307985697	177022253	393637864	58677594
255635196	126428940	146420334	387679884	164998908
378382790	65276727	229535119	278992145	66270623
170359888	296107877	113510619	368010654	157949276
185675883	341791637	289903170	261353333	451566414
69769073	119054770	259540147	389791002	424119259
444271112	362226726	281190588	122716303	274280254
282640161	188836205	78757506	468304044	455124438
429294217	315540876	321447827	382625134	443799244
311090214	177590238	22200486	264320367	410056410
144598569	201938311	118203927	147643683	13118768
46560321	15389320	7321572	93723838	97666734
354103297	31929199	299123676	91364158	377248190
38841673	58588425	101109404	470084960	461162378
4841822	119186321	39894739	75880145	233006012
40613822	274911740	307297481	319433485	171729199
144248958	255776006	410071121	351564058	47636304
201723935	401967131	15788257	29236990	70728183
412187339	47510590	160165974	167720039	27973812
418416600	372927939	387190281	56557252	73649979
296561077	241409833	339129239	127051472	201922554
91415126	455032522	302066927	398327107	124541490
420129036	465416044	50483564	312854670	230979227
245113750	158371849	398962657	439878605	293845153
397059905	9138987	310965017	370227780	190250274
65133819	346727757	383479819	165323000	445366377
81816148	321553685	288741638	170584991	371217478
155776548	145326165	166500725	255270777	37254377
63289148	51995257	284627777	320208969	400357523
165064829	323423878	36588473	383514377	34308493
52492351	233185267	62778085	354314959	396170579
410057499	412825055	85287514	237649385	129646354
236629434	396139114	48830068	136887637	411255011
329792680	317293583	50998401	200545562	257741041
285444688	152827173	179027432	244611733	450147792
108589181	298294588	384839186	348528265	423407817
400818529	57378518	186747751	300138745	342607729
95853888	191246608	281983908	160422180	292643105
		'		

234524385	405211717	276011822	114121623	291363463
274671128	219876685	410010991	131003697	13611698
94421401	25299762	17889301	166425461	81438135
302029006	294476927	422871828	241849415	153414304
452996874	359553757	266006879	406707661	334303004
310422069	67919764	375297910	461299672	55269828
346364984	270535673	165549272	22579190	303948831
370327507	403365293	47583918	133709015	320003784
427393350	13981777	50726190	278991483	356900912
97815168	201919099	139285666	27289835	124612531
28062141	103632402	36756798	236763903	50620873
453428902	366642981	218450024	190696047	82051953
353690983	398792541	286689153	412059865	471013582
335682765	252475779	150023493	247248981	202507376
233738348	378769242	236005060	96680681	163751870
131842163	350475145	345599766	206550614	440731523
17144636	333681859	440341127	89369201	298441573
218978409	140204398	101576233	445723902	70963454
5227087	107255339	206241379	98225936	13099148
35155396	88632544	357530228	403577133	393946386
340484005	468354803	327918130	365961623	238925893
143779404	158622711	392038114	237093898	173110024
176283540	23076555	440701014	367683115	142520407
30330192	335800300	69839125	390693415	348722861
128919534	291008142	321599245	241470109	84453551
352561597	18148055	17518225	265340943	392846336
236217289	188573314	418159863	158367057	238647401
285175786	316278486	369457005	116486054	79016952
69763457	275218863	56933779	417117130	467462749
345466405	270139335	1001170427	144048277	188473369
156838018	253931784	102032194	363550521	242963615
201244425	416151906	161263740	455343400	453796356
242986934	161267453	410996127	68328624	28288523
176902922	380542602	460002136	52044923	243013094
257090553	423193084	17409372	30255157	469464762
120428555	410195299	240716209	313302924	400095700
15857447	61525144	417836916	364489881	321542996
458427597	425282449	309054349	323350946	160070294
307697238	7147484	146579304	14331880	7679229
258202644	194230330	233162401	415503287	63791778
175636600	286561576	154550298	17409603	149980659
7773413	366560229	67985749	243479687	21744215
363496745	903079824	188580319	288843874	348768951
435304208	441396067	240766734	92566327	64527278
273768158	408337335	257183134	435332460	43274838
26163031	157847399	219120579	135855476	357639411
15931024	8398131	193872669	374097221	70111285
139355311	15756558	1843850478	267046689	420645991
46428778	4601721	69817787	264101177	303495210
46428778	4601721	69817787	264101177	30349521

Tabla 11: Identificadores únicos de estrellas variables que han sido descartadas por discontinuidad.

Tipo VSX	Id MAST	S #	Tipo VSX	Id MAST	S #
RRAB/BL	139416441	S1	RRAB	181915503	S1
RRAB/BL	188622083	S1	RRAB	161888379	$\mathbf{S1}$
RRC	310167079	S1	RRAB	23675526	$\mathbf{S1}$
RRAB/BL	358147674	S1	RRAB	101184036	S1
RRAB/BL	229609445	S1	RRAB	441584047	S1
RRAB	156922373	S1	RRAB	356345502	S1
RRAB/BL	150166721	S1	RRAB	317170031	S1
RRAB	82606185	S1	RRAB	314248004	S1
RRAB/BL	301035041	S1	RRAB	16285096	S1
RRAB/BL	404378743	S1	RRAB	181719523	S1
RRAB/BL	279737991	S1	RRAB	214912448	S1
RRAB	29752683	S1	RRAB	320193278	S1
RRAB	9843991	S1	RRAB	421755891	S1
RRAB/BL	314186678	S1	RRAB	131251909	S1
RRAB	425863844	S1	RRAB	377228609	S1
RRAB	10581605	S1	RRAB/BL	201859481	$\mathbf{S1}$
RRAB	271404999	S1	RRAB/BL	377172421	$\mathbf{S1}$
RRAB	171630791	S1	RRAB	152972542	$\mathbf{S1}$
RRAB	255638398	S1	RRAB	44645230	$\mathbf{S1}$
RRAB	416535516	S1	RRAB	135149671	$\mathbf{S1}$
RRAB	9726732	S1	RRAB/BL	48506689	$\mathbf{S1}$
RRAB/BL	267930751	S1	RRAB/BL	1029392	S1
RRAB	398328564	S1	RRAB	233066920	S1
RRAB	229605238	S1	RRAB	38246079	$\mathbf{S1}$
RRAB	397615363	S1	RRAB	232570970	S1
RRAB	414291509	S1	RRAB	67512500	S1
RRAB	49291533	S1	RRAB	337274166	S1
RRAB/BL	417569965	S1	RRAB	89358641	S1
RRAB	337440887	S1	RRAB/BL	23675290	S1
RRAB/BL	144189704	S1	RRAB	67397022	S1
RRAB	320911963	S1	RRAB/BL	236287909	S1
RRAB/BL	235864102	S1	RRAB/BL	117221441	S1
RRAB	321475459	S1	RRAB	316314738	S1
RRAB/BL	165642663	S1	RRAB	252987510	$\mathbf{S1}$
RRAB	328588068	S1	RRAB	234518883	$\mathbf{S1}$
RRAB/BL	69657463	S1	RRAB	135170212	$\mathbf{S1}$
RRAB	183529567	S1	RRAB/BL	347330112	$\mathbf{S1}$
RRAB	443584715	S1	RRAB	142848794	$\mathbf{S1}$
RRAB	406728249	S1	RRAB	393702163	$\mathbf{S1}$
RRAB	166674568	S1	RRAB	1129237	$\mathbf{S1}$
RRAB	39084536	S1	RRAB/BL	72636949	$\mathbf{S1}$
RRAB	23532972	S1	RRAB	336410894	$\mathbf{S1}$
RRAB/BL	117638854	S1	RRAB/BL	147022379	$\mathbf{S1}$
RRAB	264005191	S1	RRAB/BL	386836589	$\mathbf{S1}$
RRAB/BL	286554287	S1	RRAB	409373422	$\mathbf{S1}$
RRAB/BL	85516380	S1	RRAB/BL	34069197	S1
RRAB/BL	302041425	S1	RRAB/BL	394239801	$\mathbf{S1}$
RRAB	55268447	S1	RRAB/BL	16371155	$\mathbf{S1}$
RRAB	278193101	S1	RRAB/BL	267808239	$\mathbf{S1}$
RRAB	233639199	S1	RRAB	241174387	$\mathbf{S1}$
RRAB/BL	159717514	S1	RRAB	197217727	S1
RRAB	358019276	S1	RRAB/BL	311091712	S1

RRAB	148894072	S1	RRAB/BL	291451813	S1
RRAB	173105394	S1	RRAB	259590223	S1
RRAB	158553034	S1	RRAB	239125411	S1
RRAB	424428104	S1	RRAB/BL	156508002	S1
RRAB	367316610	S1	RRAB	59759791	S1
RRAB	41833926	S1	RRAB	68076619	S1
RRAB/BL	453469791	S1	RRAB/BL	418789562	S1
RRAB	351126671	S1	RRAB/BL	172647059	S1
RRAB	266523981	S1	RRAB/BL	313935068	S1
RRAB	406732854	S1	RRAB	146324929	S1
RRAB	259001820	S1	RRAB	49417864	S1
RRAB	397589987	S1	RRAB	392693384	S1
RRAB	66751677	S1	RRAB	406141363	S1
RRAB	234507163	S1	RRAB/BL	262713403	S1
BRAB/BL	207343225	S1	RRAR	236438635	S1
RRAB	178288638	S1	RRAB/BL	362168897	S1
BRAB/BL	20495472	S1	RRAR	362672910	S1
BRAB	27488257	S1	RRAR	335683602	S1
BRAB	20172806	S1	RRD	28262202	S1
RRC/BI	23112500	S1 S1	RRC	20202292	
	272241402	S1 S1	PPC/PI	229000140	Q1
DDC	127020216	S1 S1	DDC	200400031	G1
DDC	137830310	51 S1	RRC	408568560	G1
RRC DDC	179000100	51 C1	nnu DDC	408308300	
RRC	240940400	51 61	nnu DDC	397424972	
RRC DDC	282739043	51 C1	nnu DDC	3/1010044	
RRC	299891213	51 C1	RRC	131080328	51
RKC	368112224	51	RRC	32398153	
RRC	386966241	S1 G1	RRC	467176582	SI
RRC	21027962	SI	RRC	461637324	SI
EC RRC ESD	345180632	SI	RRC	365058811	SI
RRC	96051791	SI	DCEP-FO RRAB	275382580	SI
RRAB	291058672	S1	RRC/BL	79442349	S1
RRAB	383531064	S1	RRAB/BL	120302919	S1
RRAB	25894218	S1	RRAB	47291018	S1
RRAB	233652708	S1	RRAB	339541239	S1
RRAB	63172763	S1	RRC EC ESD	91606450	S1
RRC	158186773	S1	RRC	424721218	S2
RRD	396915272	S2	RRAB	383186165	S2
RRAB	458427220	S2	RRD	62455702	S2
RRAB	149060456	S2	RRAB DCEP-FO	182892499	S2
RRAB	129081118	S2	RRAB	319405759	S2
RRAB/BL	302911300	S2	RRAB	73017653	S2
RRAB/BL	421439297	S2	RRAB	408443599	S2
RRAB	344299442	S2	RRAB	16281705	S2
RRAB/BL	467177475	S2	RRAB/BL	14231596	S2
RRAB/BL	229913521	S2	RRAB/BL	258812822	S2
RRAB/BL	199608291	S2	RRAB/BL	80982520	S2
RRAB/BL	186452465	S2	RRAB	121085386	S2
RRAB/BL	118447670	S2	RRAB/BL	343935118	S2
RRAB	144203939	S2	RRAB/BL	251036086	S2
RRAB/BL	41233728	S2	RRAB	166463208	S2
RRAB	23382367	S2	RRAB	389477267	S2
RRAB/BL	334957332	S2	RRAB	38211431	S2
RRAB ['] /BL	88508110	S2	RRAB	339258033	S2
1	-				1

RRAB	23710135	S2	RRAB	48528720	S2
RRAB/BL	253708643	S2	RRAB	257159481	S2
RRAB/BL	373013371	S2	RRAB	277752269	S2
RRAB	376689735	S2	RRAB	220512467	S2
RRAB	23870913	S2	RRAB/BL	77474432	S2
RRAB	383554625	S2	RRAB	424733948	S2
RRAB	149398996	S2	RRAB/BL	85771680	S2
RRAB	194872493	S2	RRAB/BL	288550977	S2
RRAB	250427297	S2	RRAB	54075933	$\tilde{S2}$
RRAB/BL	329349834	S2	RRAB	301158182	$\tilde{S2}$
RRAB	347458370	S2	RRAB	360618578	$\tilde{S2}$
RRAB	175377197	S2	RRC	403228093	$\tilde{S2}$
BBC	103024917	S2	BBC	126321357	$\tilde{S2}$
RRD	159202787	S^2	RRAR	376503648	S2
RRAR	14432447	S^2	BBC	357386910	S2
RRAB	1000665296	S2	RRAR	175492625	S2
RRAB	444039477	S2	RRAB	388914193	S2
RRAB	388906678	S2	RRAR	126910093	S2
RRAB/BL	381975513	S2	RRAB/RL	98991911	S2
RRAB	20/832702	S2 S2	RRAB	200803237	S2
RRAB/BL	212250731	S2 S2	RRAB/RL	259055251	S2
RRAB	147550104	52 52	RRAB	317056051	52 S2
	05211004	52 52	PPD	24658127	52 52
	95511094 266610248	52 52	RRAB/BI	24050157	52 S2
RRAB	200010248	52 52	RRAB/DL RRAB	8063001	52 S2
RRAB	155800158	52 52	RRAR/RI	337187797	52 S2
	52606202	52 53	RIGAD/DL BBC	226202102	55 63
	000000000000000000000000000000000000000	ເວ ເອ	PPC	230392102	ເວ ເອ
	22442201	ເວຍ ເຕຍ		170702992	ເວຍ ເຕຍ
RRAD	300133307 255577451	ວວ ຕາ	NNAD DDC/DI	230073397	ສວ ຕາ
RRAD/DL	500077401 041170599	30 C2	nnC/DL DDC	02200401	50 02
DDC	241179000	30 C2	nnC	07473632	50 02
RRC	92239383	53 C2	RRC	141700499	53 02
RRU DDC/DI	229902923	53 C2	RRC	374910314	53 02
RKC/BL ECIDDCIECD	231065067	53	RRC	201252114	53 02
EC RRC ESD	298808701	53 C2	RRAD DDC	232908332	53 02
	39945739	53	RRC	438600110	53
EC RRC ESD	363919467	S3	EC RRC ESD	68070101	S3 C2
ESD RRC EC	5480687	53	RRCIEC	38465274	53
EC RRC	46384498	S3	RRAB	454859654	S3 C2
RKAB/BL	152231997	S3	RRAB	98367248	S3
RKAB	311866171	S3	RRAB	34040141	S3
RRAB	82309314	S3	RRAB	259476330	S3
RRAB	406413012	S3	RRAB	114923989	S3
RRAB	165281003	S3	RRAB	156828848	S3
RRAB	256615653	S3	RRAB	365368501	S3
RRAB	168276785	S3	EC RRC	140132301	S4
RRC EC ESD	380127556	S4	RRC	308094680	S4
EC RRC DSCT ESD	464665587	S4	RRC	453429627	S4
RRC	39140880	S4	RRC	34713545	S4
RRC	292826577	S4	RRC	138887802	S4
RRC	309850209	S4	RRC/BL	280799052	S4
RRC/BL	176797766	S4	RRC	30531417	S4
RRC	193878729	S4	RRC	67957953	$\mathbf{S4}$
RRC	165735253	S4	RRC	398265069	S4

RRAB	1000665578	S5	RRD	1000665682	S5
RRC	1000665400	S5	RRC	1000665298	S5
RRAB	416606941	S5	RRC	416606921	S5
RRAB	416606926	S5	RRAB	1000665707	S5
RRC	416606923	S5	RRC	1000665269	S5
RRC	1000665557	S5	RRC	1000665551	S5
RRC	1000665352	S5	RRAB	416606963	S5
EC RRC	41173515	S6	RRC EC	175532970	S6
RRC	268686130	S6	RRCEC	55007847	S6
RRC EC ESD	192542237	S6	EC RRC	27108542	S6
RRC	76304643	S6	RRC	258412311	S6
RRC	396537777	S6	RRC	157262181	$\mathbf{S6}$
RRC	142240683	S6	RRC/BL	105769104	S6
RRC/BL	168382153	S6	RRC	441619744	S6
RRC	285118453	S6	RRC	206311113	S6
RRC	33740419	S6	RRC	76305643	$\tilde{S6}$
RRC	75961510	S6	RRC	429238967	S6
RRC	275254541	S6	RRC	313500207	S6
RRC/BL	139232532	S6	RRC	209394970	S6
BBC	10111251	S6	BRC/BL	101433435	S6
BBC	264053843	S6	RRC/EC	286036831	S6
BBC	66398320	S6	BRC/BL	153436251	S6
BBC/BL	168709463	S6	RRC	207433522	S7
BBC	157798407	S7	RRC	364424144	S7
BBC	417837450	S7	RRC	92980015	S7
BBC	142383896	S7	RRC/BL	156465251	S7
BBC EC	401667272	S7	RRC	415224879	S7
BBCIDSCTIDSCTrIECIESD	381236322	S7	ECIBBCIESD	445924091	S7
BBC	242304187	S7	BBC	26261539	S7
BBC	306647595	S7	RRC	389869955	S7
BBC	422752878	S7	RRC	170804079	S7
BBC	340843996	S7	BBC	220486712	S7
BBCIECIESD	441219121	S7	BBC	157446808	S7
ESDIBBCIEC	294124071	S7	RBC/BL	456857185	S7
BBCIEC	407010479	S7	RRC/EC/ESD	156832130	S7
BBC/BL	157376436	S7	RRC	21288741	S7
BBC	93593996	S7	RRC	302515557	S7
BBC	300039207	S7	RECIECIESD	61003803	S7
BBC	300892362	S7	RRC	178349470	S7
BBC	321602146	S7	RBC	238870487	S7
BBC	205/1663	S7	RRC	76302012	S7
BBC	20041000	S7	RRC	207463256	S7
ECIBBCIDSCT	308055615	S7	RRC	380/1328	S7
ECIBBCIDSCT	436660156	S7	RBC	420134346	S7
BBC	430000130 294271676	S7	RRC	331877455	S7
BBAB	204528074	58	RRAR	144376546	58
RRAB	111716959	50	RRAB	208310794	50
BBAB	383719761	58 S8	RRAR	111443999	58 S8
BRAB/BL	458457051	58 58	RRAR	306302378	58 58
BRAB	59661876	50 58	RRAR	393989690	58 58
BBAB	2102/0205	50 58	RRAR	30/1085	50
BBAB	1955778	50 58	RRAR	130/1805/	50 58
1010/1D	1200110	50	IIIIAD	100410004	50

Tabla 12: Estrellas identificadas correctamente como miembros de un súper grupo del tipo RR.

Tipo VSX	Id MAST	Tipo VSX	Id MAST
EC RRC BCEP DSCT ESD	388940613	RRC	143765469
RRC	4161582	RRAB	151828882
RRAB	39999072	RRC	50529082
$\mathrm{EC} \mathrm{RRC} \mathrm{ESD}$	124227849	RRAB	307108725
RRAB	91307412	RRC	175263505
$\mathrm{EC} \mathrm{RRC} \mathrm{ESD}$	294205251	RRAB/BL	350329807
MISC RRAB DCEP-	196419689	RRC	56939922
FO EC ESD			
RRC	27349742	RRAB/BL	372758482
RRAB	434166245	RRC	46260231
RRAB	186461402	RRC	321846217

Tabla 13: Estrellas que no pudieron identificarse como miembros de un súper grupo del tipo RR.

Tipo VSX	Id MAST	S #	Tipo VSX	Id MAST	S #
HADS	445762233	S1	HADS	436546358	S1
HADS	155128092	S1	HADS	277963278	S1
HADS	308396022	S1	HADS(B)	401744720	S1
HADS	219788401	S2	HADS	144309524	S2
HADS(B)	457035927	S2	HADS	67265166	S2
HADS	131351117	S2	HADS	384620975	S2
HADS	349273898	S2	HADS	85914188	S2
HADS(B)	241787384	S3	HADS	412773968	S3
HADS	266794067	S3	HADS	33149129	S3
HADS(B)	90322352	S3	HADS	168384036	S3
HADS	138735041	S3	HADS	242302902	S3
HADS	17153995	S3	HADS	304196197	S3
HADS	139845816	S3	HADS	270617514	S4
HADS(B)	289711518	S4	HADS(B)	218886638	S4
HADS(B)	281695001	S4	HADS	158498107	S4
HADS	191466237	S4	HADS(B)	423261565	S4
HADS(B)	46937596	S4	HADS	364399376	S5
HADS(B)	360736543	S5	HADS	266328148	S5
HADS(B)	81709032	S5	HADS(B)	193310172	S5
HADS	454665792	S6	HADS	192939152	$\mathbf{S6}$
HADS	328073484	S6	HADS(B)	355687188	$\mathbf{S6}$
HADS	18426988	S6	HADS	231632224	S6

Tabla 14: Estrellas identificadas correctamente como miembros de un super grupo del tipo HADS	m 1	1	-1 /	T / 11	•	1 1	1 1		• 1	1		/		1	1 . •		TTA	$\mathbf{n} \alpha$
$1abia$ 14 , $1bitoliab$ idollinoadab correctamente como micmoros de un super quapo del tipo $111D_c$	Tar	บล	14.	ESTREUS	19 10	rentincada	s correctamente	como	miemr	$\operatorname{nrog} G$	ie iin	super	arnin	n ai	<u> </u>	no	HA	115
	Tar	na	тт.	LOUICIR	60 IV	aominicada	5 concountinence	como	mom	nos u	ic un	Super	yr up	lo u	JI UI	p_{0}	11/1.	DD

Tipo VSX	Id MAST	Tipo VSX	Id MAST
HADS	354872568	HADS	139729335
HADS	178616716	HADS	32089898
HADS	91592810	HADS	137803552
HADS(B)	406894356	HADS	241265211

HADS	142945544	HADS	176019421
HADS	79662102	HADS	56914404
HADS	348217860	HADS	16381609
HADS(B)	69546708	HADS(B)	210548440
HADS(B)	290277380	HADS	241843363
HADS(B)	366632312	HADS	150276417
HADS	93441696	HADS(B)	352619386
HADS	349696156	HADS(B)	467050003
HADS	200624064	HADS	393420032
HADS(B)	196497806	HADS	187386415
HADS(B)	448892817	HADS(B)	410038602

Tabla 15: Estrellas que no pudieron identificarsen como miembros de un súper grupo del tipo HADS.

Tipo VSX	Id MAST	S #	Tipo VSX	Id MAST	S #
DCEPS	258935093	S1	DCEPS	269286872	S1
DCEPS	126035858	S1	DCEPS	451797322	S1
DCEP-FO MISC	35420590	S1	DCEP	130097219	S1
DCEP-FO EC ESD ELL	166850552	S1	ACV DCEP-	298532001	S1
			FO EC ESD		
DCEP	457425111	S1	EC DCEP-	308751185	S1
			FOESD		
DCEP-FO	432191995	S1	DCEP	107776902	S1
DCEP-FO DCEP-	296882445	S1	DCEP-FO	123478066	$\mathbf{S1}$
FU EC ESD					
EC DCEP-FO ESD	41533230	S1	DCEP	295600977	S1
DCEP	373767044	S1	DCEP-FO RRAB	275382580	$\mathbf{S1}$
DCEPS(B)	262859209	S1	DCEP	378819794	S2
DCEPS	450203043	S2	DCEPS	305108041	S2
DCEPS	59617576	S2	DCEPS	267685608	S2
DCEP	110793065	S2	DCEP	125022869	S2
DCEPS	168597634	S2	DCEP	281810034	S2
DCEP	36665009	S2	DCEP	430551101	S2
DCEPS	311218292	S2	DCEPS	467090540	S2
DCEP	14206846	S2	DCEP	106222137	S2
DCEP	407704687	S3	DCEP	52671548	S3
DCEP	315836258	S3	DCEP	127495181	S3
DCEP	177932603	S3	DCEP	80688900	S3
DCEP	126032758	S3	DCEP	177405368	S3
DCEP	465348709	S3	DCEP	181446812	S3
DCEP	436530385	S3	DCEP	465512201	S3
DCEP	459512025	S3	DCEP	460864765	S3
DCEP	307242697	S3	DCEP	95520859	S3
DCEP	466116029	S3	DCEP	291766513	S3
DCEP	10826277	S3	DCEP	141227331	S3
DCEP	408200371	S3	DCEP	301694113	S3
DCEP	37169108	S3	DCEP	247585034	S3
DCEP	460416931	S3	DCEP	431829287	S3
DCEP	42362686	S3	DCEP	297978269	S3
DCEP	410218473	S3	DCEP	207042079	S3
DCEP 32792896 S3 DCEP 419855341 S3 DCEP 217540881 S3 DCEP 466463101 S3 DCEP 217540881 S3 DCEP 466463101 S3	3 3 3 3				
--	------------------				
DCEP 217540881 S3 DCEP 466463101 S	3 3 3				
	3 3				
DCEP 364663158 S3 DCEP 464936311 S	3				
DCEPS 443665153 S3 DCEP 436811829 S	-				
DCEPS 118592633 S3 DCEP 171855358 S	3				
DCEP 337713834 S4 DCEP 378327941 S	4				
MISC DCEP 291301082 S4 DCEPS 438112973 S	4				
DCEPS(B) 400100492 S5 DCEP 95665973 S	5				
DCEP 144809134 S5 DCEP 311768360 S	5				
DCEP 229296935 S5 DCEP 456997268 S	5				
DCEP 220295598 S5 DCEP 168055184 S	5				
DCEP 282421297 S5 DCEP 92645571 S	5				
DCEP 301703541 S5 DCEP 282298684 S	5				
DCEP 460532362 S5 DCEP(B) 390542554 S	5				
DCEPS 408574766 S5 DCEPS(B) 364898211 S	5				
DCEP-FO 76999088 S5 DCEPS 272588795 S	5				
DCEPS 29455183 S5 DCEPS 293042002 S	5				
DCEPS 280536157 S5 DCEPS 372096094 S	5				
DCEPS(B) 263385369 S5 DCEP- 307936247 S	5				
FO EC ESD					
DCEPS 315035146 S5 DCEPS 459816609 S	5				
DCEPS 315717614 S5 DCEPS 268874414 S	5				
DCEP 463407668 S5 DCEP 318669260 S	5				
DCEP 405565109 S5 DCEP 132316449 S	5				
DCEP 362511390 S5 DCEP 234073331 S	5				
DCEP 123888036 S5 DCEP 40515306 S	5				
DCEP 129928192 S5 DCEP 456763140 S	5				
DCEP 68179248 S5 RRAB DCEP-FO 182892499 S	5				
DCEP 460909565 S5 DCEP 262929483 S	5				
DCEP 313263000 S5 DCEP- 340175256 S	5				
FO EC ESD					
ESD DCEP-FU DCEP-FO 169764995 S5 DCEPS 303256075 S	5				
DCEP 272943843 S5 DCEPS 461237766 S	5				
DCEP 301783031 S5 DCEP(B) 457801419 S	5				
DCEP 75696685 S5 DCEP(B) 297830203 S	5				
DCEPS 78965114 S5 DCEPS 293354074 S	5				
DCEP 77853537 S5 DCEP 277172772 S	5				
DCEP 206703838 S5 DCEP 430541321 S	5				

Tabla 16: Estrellas identificadas correctamente como miembros de un súper grupo del tipo DCEP.

Tipo VSX	Id MAST	Tipo VSX	Id MAST
DCEP	459840151	DCEP	181043309
DCEP	285448217	DCEP	465014446
DCEP	31013470	DCEP	281320028
DCEP-FU	180618091	DCEP	463984624
DCEP	444612237	ESD DCEP-	97807414
		$\mathrm{FU} \mathrm{ED}$	
DCEP	389564663	DCEP	30404041

DCEPS	262339603	DCEP	267547804
DCEPS	277101239	DCEP	263284321
DCEP	464882300	DCEP	304523301
DCEPS	304040681	DCEP	436949033
DCEP	40716446	DCEP	11145790
DCEP	458830388	DCEP	163389530
DCEPS	202636440	DCEPS	81352154
DCEP	368040266	DCEP	220411080
MISC RRAB DCEP-	196419689	DCEP	31183609
$\mathrm{FO} \mathrm{EC} \mathrm{ESD}$			
DCEP	435554567	DCEP	14323558
DCEP	289861700	DCEPS	465731771
DCEPS	373202340	MISC DCEP-FO	255589393
DCEP-FO	340003212	MISC DCEP-	347448542
		FO EC ESD	

Tabla 17: Estrellas que no pudieron identificarsen como miembros de un súper grupo del tipo DCEP.

Tipo VSX	Id MAST	S#	Tipo VSX	Id MAST	S#
TTS/ROT	394210384	S1	TTS/ROT	99039842	S1
TTS/ROT	24297713	S1	TTS/ROT	445330462	S1
TTS/ROT	279640409	S1	TTS/ROT	243013712	S1
TTS/ROT	58108662	S1	CTTS/ROT	59879081	S1
TTS/ROT	33006416	S1	TTS/ROT	17067694	$\mathbf{S1}$
TTS/ROT	201391310	S1	TTS/ROT+UV	96681015	$\mathbf{S1}$
TTS/ROT	434101713	S1	TTS/ROT	359767082	$\mathbf{S1}$
TTS/ROT	166808151	S1	TTS/ROT	302831708	$\mathbf{S1}$
TTS/ROT	166852312	S1	TTS/ROT	79403675	$\mathbf{S1}$
TTS/ROT	68750684	S1	WTTS/ROT	58285785	$\mathbf{S1}$
TTS/ROT	255590987	S1	TTS/ROT	312803013	$\mathbf{S1}$
TTS/ROT	339668420	S1	TTS/ROT	435160829	$\mathbf{S1}$
TTS/ROT	363781484	S1	TTS/ROT	259648079	$\mathbf{S1}$
TTS/ROT	93456758	S1	TTS/ROT	302762006	$\mathbf{S1}$
WTTS/ROT	4293984	S1	TTS/ROT	84752981	S1
TTS/ROT	357105141	S1	TTS/ROT	206592394	$\mathbf{S1}$
TTS/ROT	50620064	S1	TTS/ROT	407942227	$\mathbf{S1}$
TTS/ROT	15734442	S1	TTS/ROT	57916666	$\mathbf{S1}$
WTTS/ROT	23110990	S1	WTTS/ROT	50721722	S1
TTS/ROT	197597944	S1	TTS/ROT	464410508	$\mathbf{S1}$
TTS/ROT	149640056	S1	TTS/ROT	383664368	$\mathbf{S1}$
TTS/ROT	24451239	S1	TTS/ROT+DIP	366718627	$\mathbf{S1}$
TTS/ROT	260164371	S1	WTTS/ROT	52588257	$\mathbf{S1}$
TTS/ROT	261236136	S1	TTS/ROT	161476008	$\mathbf{S1}$
CTTS/ROT	268279773	S1	TTS/ROT	425976940	$\mathbf{S1}$
TTS/ROT	364075921	S1	TTS/ROT	348892087	$\mathbf{S1}$
TTS/ROT	7242537	S1	TTS/ROT	333680372	S1
TTS/ROT	269958752	S1	CTTS/ROT	96205005	S1
WTTS/ROT	24405622	S1	TTS/ROT	235071608	$\mathbf{S1}$
WTTS+EP	264461976	S1	CTTS/ROT	660470993	S1
TTS/ROT	148551290	S1	TTS/ROT	160417350	S1

Estrellas pulsantes y rotatorias

TTS/ROT	57151431	S1	TTS/ROT	140357492	S1
TTS/ROT	436588012	S1	TTS/ROT	93704259	S1
TTS/ROT	404012623	S1	TTS/ROT	148158169	S1
TTS/ROT	91853165	S1	TTS/ROT	23325655	S1
TTS/ROT	335376063	S1	TTS/ROT	405077613	S1
TTS/ROT	290716988	S1	TTS/ROT	142391477	S1
TTS/ROT	406277015	S1	TTS/ROT	259645014	S1
TTS/ROT	7586485	S1	WTTS/ROT	150097417	S1
TTS/ROT	383134735	S1	TTS/ROT	385626253	S1
TTS/ROT	363252180	S1	TTS/ROT	322054057	S1
TTS/ROT	173088921	S1	TTS/ROT	72858760	S1
TTS/ROT	130572079	S1	TTS/ROT	278024057	S1
TTS/ROT	57513388	S1	TTS/ROT	383615666	S1
TTS/ROT	406095880	S1	TTS/ROT	70596114	S1
TTS/ROT	401820823	S1	TTS/ROT	385012516	S1
TTS/ROT	318785502	S1	WTTS/ROT	19699155	S1
TTS/ROT+UV	452763353	S1	TTS/ROT	399247311	S1
TTS/ROT	396032536	S1	CTTS/ROT	60068392	S1
CTTS/BOT	17308640	S1	TTS/ROT	200527281	S1
WTTS/BOT	389133646	S1	WTTS/BOT	4200608	S1
TTS/BOT	346704136	S1	TTS/BOT	54172975	S1
CTTS/BOT	245830955	S1	TTS/ROT	462146834	S1
TTS/BOT	72564426	S1	TTS/ROT	357105301	S1
CTTS/BOT	58467184	S1	TTS/ROT	231907973	S2
TTS/ROT	325178532	S2	TTS/ROT	14254646	S2
TTS/BOT	439971546	S2	WTTS/BOT+UV	397287246	S2
CTTS/BOT	673694132	S2	CTTS/BOT	18372864	S2
TTS/BOT	18372863	S2	TTS/ROT	169380520	S2
TTS/BOT	58288494	S2	TTS/ROT	359740883	S2
TTS/BOT	201426753	S2	TTS/ROT	119289797	S2
TTS/BOT	306451533	S2	TTS/ROT	362413145	S2
TTS/BOT	58229237	S2	TTS/ROT	382794993	S2
TTS/BOT	17459776	S2	TTS/ROT	450060052	S2
TTS/BOT	294098955	S2	TTS/ROT	162143408	S2
WTTS/BOT	456942208	S2	TTS/ROT	160404487	S2
TTS/BOT	435907158	S2	TTS/ROT	309714906	S2
TTS	58582428	S2	TTS/ROT	118301925	S2
TTS/BOT	270674093	S2	TTS/ROT	152594022	S2
TTS/BOT	429152610	S2	TTS/ROT	173560788	S2
TTS/BOT	32930236	S2	TTS/ROT	18645919	S2
TTS/BOT	360631514	S2	TTS/ROT	270677813	S2
WTTS/BOT	268510346	S2	TTS/ROT	278036258	S2
TTS/BOT	363773536	S2	TTS/ROT	178969585	S2
TTS/BOT	34637068	S2	TTS/ROT	130297425	S2
TTS/BOT	157212164	S2	WTTS/ROT	264742215	S2
TTS/BOT	92845906	S2	TTS/BOT	359137193	S2
TTS/BOT	122189102	S2	TTS/ROT	7491678	S2
TTS/BOT	7491381	S2	TTS/ROT	243237647	S2
TTS/BOT	24608426	S2	WTTS/ROT	4355494	S2
TTS/BOT	355235442	S2	TTS/ROT	302830676	S2
TTS/BOT	54245747	S2	TTS/ROT	397287362	S2
TTS/BOT	140248106	S2	TTS/ROT	733027940	S2
CTTS/BOT	268148974	S2	TTS/ROT	464646604	S^2
TTS/BOT	3578981/7	S2	TTS/ROT	67699049	S2
1 1 D/ 100 1	001000141	04	110/1001	01033043	

WTTS/ROT	245830707	S2	WTTS/ROT	69916267	S2
TTS/ROT	45059728	S2	TTS/ROT	21438160	S2
TTS/ROT	333386671	S2	TTS	96680953	S2
TTS/ROT	61171984	S2	TTS/ROT	323172801	S2
TTS/ROT	32705970	S2	TTS/ROT	375034557	S2
TTS/ROT	293507177	S2	TTS/ROT	383432898	S2
TTS/ROT	144996866	S2	TTS/ROT	144996772	S2
TTS/ROT	143141922	S2	TTS/ROT	112603301	S2
TTS/ROT	54006139	S2	WTTS/ROT	279493804	S2
TTS/ROT	101544662	S2	WTTS/ROT	50897755	S2
TTS/ROT	146522418	S2	TTS/ROT	59500324	S2
TTS/ROT	142513032	S2	TTS/ROT	360323842	S2
CTTS/ROT	58467533	S2	TTS/ROT	24450869	S2
TTS/ROT	176873028	S3	TTS/ROT	114021052	S3
CTTS/ROT	339812943	S3	TTS/ROT	436998675	S3
TTS/ROT	219998026	S4	TTS/ROT	400598180	S4
TTS/ROT	58636655	S4	TTS/ROT	660499504	S4
TTS/ROT	429152614	S4	TTS/ROT	148091129	S4
TTS/ROT	206605718	S4	TTS/ROT	456946694	S4
TTS/ROT	57151429	S4	WTTS/ROT	58231482	S4
WTTS/ROT	397350519	S4	TTS/ROT	20096356	S4

Tabla 18: Estrellas identificadas correctamente como miembros de un súper grupo del tipo TTS.

Tipo VSX	Id MAST	Tipo VSX	Id MAST
DCEP	459840151	DCEP	181043309
DCEP	285448217	DCEP	465014446
DCEP	31013470	DCEP	281320028
DCEP-FU	180618091	DCEP	463984624
DCEP	444612237	ESD DCEP-	97807414
		$\mathrm{FU} \mathrm{ED}$	
DCEP	389564663	DCEP	30404041
DCEPS	262339603	DCEP	267547804
DCEPS	277101239	DCEP	263284321
DCEP	464882300	DCEP	304523301
DCEPS	304040681	DCEP	436949033
DCEP	40716446	DCEP	11145790
DCEP	458830388	DCEP	163389530
DCEPS	202636440	DCEPS	81352154
DCEP	368040266	DCEP	220411080
MISC RRAB DCEP-	196419689	DCEP	31183609
FO EC ESD			
DCEP	435554567	DCEP	14323558
DCEP	289861700	DCEPS	465731771
DCEPS	373202340	MISC DCEP-FO	255589393
DCEP-FO	340003212	MISC DCEP-	347448542
		$\rm FO EC ESD$	

Tabla 19: Estrellas que no pudieron identificarsen como miembros de un súper grupo del tipo TTS.

Bibliografía

- ACHer: 2022, AC Her: https://www.aavso.org/vsx/index.php?view=detail.top&oid=14868
- AEAqr: 2022, AE Aqr: https://www.aavso.org/vsx/index.php?view=detail.top&oid=904
- AFCyg: 2022, AF Cyg: https://www.aavso.org/vsx/index.php?view=detail.top&oid=10980
- ANTARES: 2022, Curso de Astronomia y Astrofísica ANTARES http://atenea.pntic.mec.es/ Antares/modulo5/m5_u303.html
- ARSco: 2022, AR Sco: https://www.aavso.org/vsx/index.php?view=detail.top&oid=32887
- ASASSN-14ko: 2022, ASASSN-14ko: https://www.aavso.org/vsx/index.php?view=detail. top&oid=835525
- AUAri: 2022, AU Ari: https://www.aavso.org/vsx/index.php?view=detail.top&oid=3756
- Baglin, A.: 2003, Advances in Space Research 31(2), 345
- BCas: 2022, B Cas: https://www.aavso.org/vsx/index.php?view=detail.top&oid=7297
- betCMi: 2022, bet CMi: https://www.aavso.org/vsx/index.php?view=detail.top&oid=5638
- BFOri: 2022, BF Ori: https://www.aavso.org/vsx/index.php?view=detail.top&oid=23147
- BFSer: 2022, BF Ser: https://www.aavso.org/vsx/index.php?view=detail.top&oid=34675
- Borucki, W. J., Koch, D., y Kepler Science Team: 2010, in AAS/Division for Planetary Sciences Meeting Abstracts #42, Vol. 42 of AAS/Division for Planetary Sciences Meeting Abstracts, p. 47.03
- bPer: 2022, b Per: https://www.aavso.org/vsx/index.php?view=detail.top&oid=26212
- Busqueda: 2022, lightkurve.search_lightcurve: https://docs.lightkurve.org/reference/api/ lightkurve.search_lightcurve.html#lightkurve.search_lightcurve
- BXCir: 2022, BX Cir: https://www.aavso.org/vsx/index.php?view=detail.top&oid=9500
- CMTau: 2022, CM Tau: https://www.aavso.org/vsx/index.php?view=detail.top&oid=35130
- COCyg: 2022, CO Cyg: https://www.aavso.org/vsx/index.php?view=detail.top&oid=11035
- CQTau: 2022, CQ Tau: https://www.aavso.org/vsx/index.php?view=detail.top&oid=35134
- Dbenford: 2019, Relación periodo luminosidad https://upload.wikimedia.org/wikipedia/ commons/0/0e/Storm2011_Cepheid_Data.svg
- Descarga: 2022, lightkurve.SearchResult.download: https://docs.lightkurve.org/reference/ api/lightkurve.SearchResult.download.html?highlight=load#lightkurve.SearchResult. download

DFCyg: 2022, DF Cyg: https://www.aavso.org/vsx/index.php?view=detail.top&oid=11049

DYPer: 2022, DY Per: https://www.aavso.org/vsx/index.php?view=detail.top&oid=25671

Eggen, O. J.: 1951, Astrophysical Journal, vol. 113, p.367 113, 367

- EPIC204278916: 2022, EPIC 204278916: https://www.aavso.org/vsx/index.php?view=detail. top&oid=474767
- etaCar: 2022, eta Car: https://www.aavso.org/vsx/index.php?view=detail.top&oid=6328
- EXLup: 2022, EX Lup: https://www.aavso.org/vsx/index.php?view=detail.top&oid=17760
- Eyer, L. y Mowlavi, N.: 2008, Journal of Physics: Conference Series, Volume 118, Issue 1, id. 012010 (2008) 118
- FGSge: 2022, FG Sqe: https://www.aavso.org/vsx/index.php?view=detail.top&oid=27512
- FKCom: 2022, FK Com: https://www.aavso.org/vsx/index.php?view=detail.top&oid=9776
- FSCMa: 2022, FS CMa: https://www.aavso.org/vsx/index.php?view=detail.top&oid=5335
- Gaia Collaboration, . y Eyer, L.: 2019, Astronomy and Astrophysics, Volume 623, id.A110, 20 pp. 623
- Gilliland, R. L., Brown, T. M., Christensen-Dalsgaard, J., Kjeldsen, H., Borucki, W. J., Bryson, S., Caldwell, D. A., Jenkins, J. M., Koch, D., y Kepler Team: 2010, in American Astronomical Society Meeting Abstracts #215, Vol. 215 of American Astronomical Society Meeting Abstracts, p. 305.04
- GKPer: 2022, GK Per: https://www.aavso.org/vsx/index.php?view=detail.top&oid=25717
- GPVel: 2022, GP Vel: https://www.aavso.org/vsx/index.php?view=detail.top&oid=37614
- GSC03656-01328: 2022, GSC 03656-01328: https://www.aavso.org/vsx/index.php?view= detail.top&oid=142063
- Handler, G.: 2003, in C. Sterken (ed.), Interplay of Periodic, Cyclic and Stochastic Variability in Selected Areas of the H-R Diagram, Vol. 292 of Astronomical Society of the Pacific Conference Series, p. 183
- Hellier, C.: 2001, Cataclysmic Variable Stars, Springer, 2001, Springer; 2001er edición (1 Enero 2001)
- hmong: 2018, Rueda de reacción https://hmong.es/wiki/Reaction_wheel
- Horne, J. H. y Baliunas, S. L.: 1986, \apj 302, 757
- HZHer: 2022, HZ Her: https://www.aavso.org/vsx/index.php?view=detail.top&oid=15037
- IWAnd: 2022, IW And: https://www.aavso.org/vsx/index.php?view=detail.top&oid=240
- Jeffery, C. S.: 2014, Precision Asteroseismology, Proceedings of the International Astronomical Union, IAU Symposium, Volume 301, pp. 297-304 **301**, 297
- Jekel, C. F. y Venter, G.: 2018, in Similarity measures for identifying material parameters from hysteresis loops using inverse analysis, Vol. 12 of Springer Link, p. 0
- Jekel, C. F., Venter, G., Venter, M. P., Stander, N., y Haftka, R. T.: 2019, International Journal of Material Forming
- kernel: 2022, kernel Gauss: https://pages.stat.wisc.edu/~mchung/teaching/MIA/reading/ diffusion.gaussian.kernel.pdf.pdf

Kholopov, P. N.: 1956, Peremennye Zvezdy, Volume 11, p.325 11, 325

Un Atlas de Estrellas Variables

- KIC8462852: 2022, KIC 8462852: https://www.aavso.org/vsx/index.php?view=detail.top& oid=410131
- Koch, D. G., Borucki, W. J., Basri, G., Batalha, N. M., Brown, T. M., Caldwell, D., Christensen-Dalsgaard, J., Cochran, W. D., DeVore, E., Dunham, E. W., Gautier, Thomas N., I., Geary, J. C., Gilliland, R. L., Gould, A., Jenkins, J., Kondo, Y., Latham, D. W., Lissauer, J. J., Marcy, G., Monet, D., Sasselov, D., Boss, A., Brownlee, D., Caldwell, J., Dupree, A. K., Howell, S. B., Kjeldsen, H., Meibom, S., Morrison, D., Owen, T., Reitsema, H., Tarter, J., Bryson, S. T., Dotson, J. L., Gazis, P., Haas, M. R., Kolodziejczak, J., Rowe, J. F., Van Cleve, J. E., Allen, C., Chandrasekaran, H., Clarke, B. D., Li, J., Quintana, E. V., Tenenbaum, P., Twicken, J. D., y Wu, H.: 2010, \appli 713(2), L79

Kov\'acs, G., Zucker, S., y Mazeh, T.: 2002, \aap 391, 369

- KVVel: 2022, KV Vel: https://www.aavso.org/vsx/index.php?view=detail.top&oid=37671
- Leavitt, H. S. y Pickering, E. C.: 1992, Harvard College Observatory Circular, vol. 173, pp.1-3 173, 1

LightCurve: 2022, Lightkurve: https://docs.lightkurve.org/reference/lightcurve.html

LightKurve: 2022, LightKurve v2.3: https://docs.lightkurve.org/

- MAST: 2022, Search Tools: https://archive.stsci.edu/missions-and-data/tess# section-d3589174-12f4-4b93-b213-07a3392f1cb2
- Mosser: 2001, Relación masa luminosidad https://media4.obspm.fr/public/VAU/temperatura/ evolucion/vida/masa-luminosidad/APPRENDRE.html
- MRVel: 2022, MR Vel: https://www.aavso.org/vsx/index.php?view=detail.top&oid=37696
- mu.Cep: 2022, mu. Cep: https://www.aavso.org/vsx/index.php?view=detail.top&oid=9069

Murphy, S. J.: 2012, Astronomische Nachrichten 333(10), 1057

MVLyr: 2022, MV Lyr: https://www.aavso.org/vsx/index.php?view=detail.top&oid=18324

- NaN: 2022, lightkurve.LightCurve.remove_nans: https://docs.lightkurve.org/reference/api/ lightkurve.LightCurve.remove_nans.html
- Normalizada: 2022, lightkurve.LightCurve.normalize: https://docs.lightkurve.org/reference/ api/lightkurve.LightCurve.normalize.html?highlight=normalize#lightkurve. LightCurve.normalize
- NSV1858: 2022, NSV 1858: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 40482
- omeCMa: 2022, ome CMa: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 5514
- pandas: 2022, Libreria pandas https://pandas.pydata.org/
- PCyg: 2022, P Cyg: https://www.aavso.org/vsx/index.php?view=detail.top&oid=13286
- Perez: 2022a, Análisis del proyecto gráficas de dispersión https://starwalker.app/atlas/analitic/
- Perez: 2022b, Curvas de Luz descargadas de MAST, dobladas tres veces el periodo https:// starwalker.app/atlas/3X/
- Perez: 2022c, Curvas de Luz descargadas de MAST https://starwalker.app/atlas/curves/
- Perez: 2022d, Diferencia entre los periodos de VSX y el calculado para 106 estrellas seleccionadas con cadencia de 120 s para el tipo HADS https://starwalker.app/atlas/structure/hads_period_diff.html

- Perez: 2022e, Diferencia entre los periodos de VSX y el calculado para 16.895 estrellas seleccionadas con cadencia de 120 s https://starwalker.app/atlas/structure/base/general_data_diff.html
- Perez: 2022f, Diferencia entre los periodos de VSX y el calculado para 257 estrellas seleccionadas con cadencia de 120 s para el tipo DCEP https://starwalker.app/atlas/structure/dcep_period_diff.html
- Perez: 2022g, Diferencia entre los periodos de VSX y el calculado para 314 estrellas seleccionadas con cadencia de 120 s para el tipo TTS https://starwalker.app/atlas/structure/tts_period_diff.html
- Perez: 2022h, Diferencia entre los periodos de VSX y el calculado para 447 estrellas seleccionadas con cadencia de 120 s para el tipo RR https://starwalker.app/atlas/structure/rr_period_diff. html
- Perez: 2022i, Repositorio GitHub que contiene los archivos fuentes del proyecto: https://github.com/ aperez137/atlas
- Perez: 2022j, Resultados del proyecto https://starwalker.app/atlas/structure/
- Perez: 2022k, Tabla con los datos generales de periodo y magnitud obtenidos del catalogo de VSX y calculados a partir de las curvas de luz de MAST https://starwalker.app/atlas/structure/ descriptors.html
- Perez: 20221, Índice de VSX (después de los filtros de indeterminado) encontrados en MAST https: //starwalker.app/atlas/star-index.txt
- Periodograma: 2022, lightkurve.periodogram.Periodogram: https://docs.lightkurve.org/ reference/api/lightkurve.periodogram.Periodogram.html?highlight=periodogram# lightkurve.periodogram.Periodogram
- Plavchan, P., Jura, M., Kirkpatrick, J. D., Cutri, R. M., y Gallagher, S. C.: 2008, \appis 175(1), 191
- Plegado: 2022, lightkurve.LightCurve.fold: https://docs.lightkurve.org/reference/api/ lightkurve.LightCurve.fold.html?highlight=fold#lightkurve.LightCurve.fold
- Pleione: 2022, BU Tau: https://www.aavso.org/vsx/index.php?view=detail.top&oid=35115
- QRAnd: 2022, QR And: https://www.aavso.org/vsx/index.php?view=detail.top&oid=326
- QXSge: 2022, QX Sge: https://www.aavso.org/vsx/index.php?view=detail.top&oid=27673
- RCrB: 2022, R CrB: https://www.aavso.org/vsx/index.php?view=detail.top&oid=10600
- RRCrB: 2022, RR CrB: https://www.aavso.org/vsx/index.php?view=detail.top&oid=10609
- RRPic: 2022, RR Pic: https://www.aavso.org/vsx/index.php?view=detail.top&oid=26343
- RRTel: 2022, RR Tel: https://www.aavso.org/vsx/index.php?view=detail.top&oid=36253
- RVTau: 2022, RV Tau: https://www.aavso.org/vsx/index.php?view=detail.top&oid=35031
- RYSgr: 2022, RY Sgr: https://www.aavso.org/vsx/index.php?view=detail.top&oid=27717
- Sandage, A.: 1958, Astrophysical Journal, vol. 128, p.150 128, 150
- Sandage, A., Diethelm, R., y Tammann, G. A.: 1994, \aap 283, 111
- Sandage, A. y Tammann, G. A.: 2006, \araa 44(1), 93
- Scargle, J. D.: 1982, \apj 263, 835

similaritymeasures: 2022, Curve Lengthx method: https://pypi.org/project/ similaritymeasures/

SSCyg: 2022, SS Cyg: https://www.aavso.org/vsx/index.php?view=detail.top&oid=10939

Stankov, A. y Handler, G.: 2005, VizieR On-line Data Catalog: J/ApJS/158/193. Originally published in: 2005ApJS..158..193S 0

Stellingwerf, R. F.: 1978, \apj 224, 953

- SVO: 2022, Spanish Virtual Observatory: http://svo2.cab.inta-csic.es/svo/theory/fps3/ index.php?mode=browse@gname=GAIA@asttype=, Gaia filters
- SVUMa: 2022, SV UMa: https://www.aavso.org/vsx/index.php?view=detail.top&oid=37126

SXUMa: 2022, SX UMa: https://www.aavso.org/vsx/index.php?view=detail.top&oid=37128

TCrB: 2022, T CrB: https://www.aavso.org/vsx/index.php?view=detail.top&oid=10602

TESS: 2018a, Missions and Data TESS: https://archive.stsci.edu/missions-and-data/tess

- TESS: 2018b, Productos de datos fotométricos de TESS: https://outerspace.stsci.edu/display/ TESS/2.0+-+Data+Product+Overview
- TESS: 2019, Mosaico del cielo del sur en 13 sectores: https://www.nasa.gov/feature/goddard/ 2019/nasa-s-tess-presents-panorama-of-southern-sky

TOri: 2022, T Ori: https://www.aavso.org/vsx/index.php?view=detail.top&oid=23066

- TPyx: 2022, T Pyx: https://www.aavso.org/vsx/index.php?view=detail.top&oid=27184
- Tropea: 2016, Universo a la vista http://lacienciaconhumor.blogspot.com/2016/08/ y-donde-esta-proxima-centauri-en-el.html

TUCas: 2022, TU Cas: https://www.aavso.org/vsx/index.php?view=detail.top&oid=6358

TZCas: 2022, TZ Cas: https://www.aavso.org/vsx/index.php?view=detail.top&oid=6363

UGem: 2022, U Gem: https://www.aavso.org/vsx/index.php?view=detail.top&oid=14298

ULup: 2022, ULup: https://www.aavso.org/vsx/index.php?view=detail.top&oid=17597

UUSge: 2022, UU Sge: https://www.aavso.org/vsx/index.php?view=detail.top&oid=27375

UXOri: 2022, UX Ori: https://www.aavso.org/vsx/index.php?view=detail.top&oid=23100

- V0361Hya: 2022, V0361 Hya: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 16320
- V0367Sct: 2022, V0367 Sct: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 34483
- V0376Peg: 2022, V0376 Peg: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 25499
- V0389Ori: 2022, V0389 Ori: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 23452
- V0404Cyg: 2022, V0404 Cyg: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 11324
- V0469Per: 2022, V0469 Per: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 25993

V0513Cas: 2022, V0513 Cas: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 6844 V0539Ara: 2022, V0539 Ara: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 3342 V0605Aql: 2022, V0605 Aql: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 1744 V0652Her: 2022, V0652 Her: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 15463 V0743Mon: 2022, V0743 Mon: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 19571 V0801Ara: 2022, V0801 Ara: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 3604 V0838Mon: 2022, V0838 Mon: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 19666 V0926Sco: 2022, V0926 Sco: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 33742 V1057Cyg: 2022, V1057 Cyq: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 11977 V1118Ori: 2022, V1118 Ori: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 24181 V1143Ori: 2022, V1143 Ori: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 24206 V1309Sco: 2022, V1309 Sco: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 179423 V1343Aql: 2022, V1343 Aql: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 2482 V4332Sgr: 2022, V4332 Sgr: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 32032 V4334Sgr: 2022, V4334 Sgr: https://www.aavso.org/vsx/index.php?view=detail.top&oid= 32034 Vincent: 2001, Fast and accurate parametric curve length computation: https://www.researchgate. net/publication/234818916_Fast_and_Accurate_Parametric_Curve_Length_Computation VizieR: 2022a, Variable Star indeX, Version 2022-05-30 (2117411 rows): http://vizier.u-strasbg. fr/viz-bin/VizieR?-source=B%2Fvsx VizieR: 2022b, VizieR B/vsx/vsx http://vizier.u-strasbg.fr/viz-bin/VizieR VSge: 2022, V Sge: https://www.aavso.org/vsx/index.php?view=detail.top&oid=27346 VSX: 2022, Variable Star Type Designations in VSX: https://www.aavso.org/vsx/index.php? view=about.vartypes, Variable Star Type VYScl: 2022, VY Scl: https://www.aavso.org/vsx/index.php?view=detail.top&oid=34052 Warner, B.: 2003, Cataclysmic Variable Stars, Cambridge University Press (18 Septiembre 2003)

Un Atlas de Estrellas Variables

Witowski, K. y Stander, N.: 2012, in Parameter Identification of Hysteretic Models using Partial Curve Mapping, Vol. 12 of 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 16

WXCen: 2022, WX Cen: https://www.aavso.org/vsx/index.php?view=detail.top&oid=7343

XXVir: 2022, XX Vir: https://www.aavso.org/vsx/index.php?view=detail.top&oid=37857

YYMen: 2022, YY Men: https://www.aavso.org/vsx/index.php?view=detail.top&oid=18685

ZAqr: 2022, Z Aqr: https://www.aavso.org/vsx/index.php?view=detail.top&oid=854

Zechmeister, M. y K\ürster, M.: 2009, \aap 496(2), 577

Lista de Figuras

1.	Versión actualizada del árbol de variabilidad presentado en Eyer and Mowlavi (2008), separado según la causa de los fenómenos de variabilidad: variabilidad inducida por pulsa- ciones, rotación, erupciones, eclipses y eventos cataclísmicos. Gaia Collaboration and Eyer (2019).	7
2.	Diagramas Hertzsprung-Russell (H-R), para estrellas variables Delta Scuti y Cefeidas AN- TARES (2022), Tropea (2016)	10
3.	Diagrama de color y magnitud absoluta (CaMD) de Estrellas variables pulsantes conocidas Gaia Collaboration and Eyer (2019). Para la referencia de los filtros véase la figura 8	10
4.	Igual que la figura 3, pero para los tipos de variabilidad inducidos por la rotación Gaia Collaboration and Eyer (2019). Para la referencia de los filtros véase la figura 8	12
5.	Igual que la figura 3, pero para las binarias eclipsantes (de tipo EA, EB y EW) y las estre- llas anfitrionas conocidas que muestran tránsitos de exoplanetas. Las binarias eclipsantes pueden estar en cualquier lugar del CaMD, lo que explica que sean la principal fuente de contaminación de las estrellas pulsantes Gaia Collaboration and Eyer (2019). Para la referencia de los filtros véase la figura 8.	12
6.	Igual que la figura 3, pero para los tipos de variabilidad eruptiva. Esta región está poblada por estrellas pulsantes, como las estrellas γ Doradus y δ Scuti, presentadas en la figura 3. Además, las estrellas WR, las estrellas R Coronae Borealis y las estrellas S Doradus se encuentran entre las estrellas más luminosas de este diagrama Gaia Collaboration and Eyer (2019). Para la referencia de los filtros véase la figura 8.	14
7.	Igual que la figura 3, pero para las variables cataclísmicas y algunos subtipos Gaia Collaboration and Eyer (2019). Para la referencia de los filtros véase la figura 8	15
8.	Filtros usados en la misión GAIA (DR2) SVO (2022)	15
9.	Forma de una curva de Gauss. FWHM=1.25.	21
10.	Asignación de curva parcial de la Curva a (en rojo) a la Curva a´ con compensación. Witowski and Stander (2012)	23

11.	Izquierda : El FOV combinado instantáneo (campo de visión combinado - combined field- of-view) de las cuatro cámaras de TESS. Medio : División de la esfera celeste en 26 sectores de observación (13 por hemisferio). Derecha : Duración de las observaciones en la esfera celeste, teniendo en cuenta el solapamiento entre sectores. El círculo negro punteado que encierra el polo de la eclíptica muestra la región que JWST podrá observar en cualquier momento TESS (2018a).	29
12.	Mosaico del cielo del sur, se armó a partir de 208 imágenes tomadas por TESS durante su primer año de operaciones científicas, completado en julio de 2019. La misión dividió el cielo del sur en 13 sectores, cada uno de los cuales fue fotografiado para casi un mes por las cuatro cámaras de la nave espacial. Entre los muchos objetos celestes notables visibles está la banda brillante (<i>izquierda</i>) de la Vía Láctea, nuestra galaxia natal vista de canto, la Nebulosa de Orión (<i>arriba</i>), un vivero de estrellas recién nacidas, y la Gran Nube de Magallanes (<i>centro</i>), una galaxia cercana ubicado a unos 163.000 años luz de distancia. Las líneas oscuras prominentes son espacios entre los detectores en el sistema de cámaras de TESS (2019).	30
13.	Productos de datos fotométricos de TESS (2018b)	30
14.	Tabla de almacenamiento para los datos de VSX (2022) Vizie R (2022b)	32
15.	Tabla de propiedades de las curvas de luz	33
16.	Ejemplo de estrella con múltiples curvas de luz para la misma cadencia	34
17.	Limitación de fronteras y alineación de curvas de luz (solo para apoyo visual)	37
18.	Ejemplo del resumen del fichero de grafos	39
19.	Ejemplos de las salidas del proceso de agrupamiento preliminar (solo para apoyo visual)	40
20.	Ejemplo de súper alineamiento con agrupación correcta (<i>VPVP=Valley Peack Valley Peack</i>) (solo para apoyo visual)	42
21.	Ejemplo de resultado final del proceso de súper alineamiento (<i>VPVP=Valley Peack Valley Peack</i>) (solo para apoyo visual)	42
22.	Ejemplo del resultado obtenido del proceso de súper calculo de similitudes	43
23.	Ejemplos de las salidas del proceso de agrupamiento final (solo para apoyo visual)	45
24.	Flujo de consulta de datos.	46
25.	Flujo de análisis de datos.	47
26.	Diferencia del periodo absoluto entre VSX y TESS Perez (2022e) / Perez (2022k). \ldots .	51
27.	Número de estrellas por periodo de VSX y TESS. Perez (2022e)	51
28.	Periodo de VSX vs TESS Perez (2022e)	52
29.	Superposición de los periodos de VSX vs TESS en escala logarítmica para los grupos RR, HADS, DCEP y TTS Perez (2022e), Perez (2022a)	52

Estrellas pulsantes y rotatorias

30.	Número de estrellas por magnitud al máximo de VSX y TESS Perez (2022e). \ldots	53
31.	Periodo vs Magnitud al máximo de VSX y TESS Perez (2022e)	53
32.	Superposición del periodo / magnitud al máximo de TESS para los grupos RR, HADS, DCEP y TTS Perez (2022e), Perez (2022a)	54
33.	Numero de estrellas por periodo de VSX y TESS para el tipo RR, ver tabla 7 / Perez (2022h)	55
34.	Periodo VSX vs TESS para el tipo RR, ver tabla 7 / Perez (2022h)	55
35.	Número de estrellas por magnitud al máximo de VSX y TESS para el tipo RR Perez (2022e).	56
36.	Periodo vs Magnitud de TESS para el tipo RR Perez (2022e)	56
37.	Ejemplo de armónicos y nodo / antinodo	57
38.	Diferencia absoluta entre el periodo de VSX y el de TESS para el tipo HADS-Delta Scuti, ver tabla 8 / Perez (2022d).	58
39.	Numero de estrellas por periodo de VSX y TESS para el tipo HADS-Delta Scuti, ver tabla 8 / Perez (2022d).	58
40.	Periodo VSX vs TESS para el tipo HADS-Delta Scuti, ver tabla 8 / Perez (2022d)	59
41.	Número de estrellas por magnitud al máximo de VSX y TESS para el tipo HADS-Delta Scuti Perez (2022e).	59
42.	Periodo vs Magnitud de TESS para el tipo HADS-Delta Scuti. Perez (2022e)	60
43.	Diferencia absoluta entre el periodo de VSX y el de TESS para el tipo DCEP, ver tabla 9 / Perez (2022f)	61
44.	Numero de estrellas por periodo de VSX y TESS para el tipo DCEP, ver tabla 9 / Perez (2022f).	61
45.	Periodo VSX vs TESS para el tipo DCEP, ver tabla 9 / Perez (2022f)	62
46.	Número de estrellas por magnitud al máximo de VSX y TESS para el tipo DCEP. Perez (2022e).	62
47.	Periodo vs Magnitud de TESS para el tipo DCEP. Perez (2022e)	63
48.	Diferencia absoluta entre el periodo de VSX y el de TESS para el tipo TTS-T Tauri, ver tabla 10 / Perez (2022g).	64
49.	Numero de estrellas por periodo de VSX y TESS para el tipo TTS-T Tauri, ver tabla 10 / Perez (2022g).	64
50.	Periodo VSX vs TESS para el tipo TTS-T Tauri, ver tabla 10 / Perez (2022g)	65
51.	Número de estrellas por magnitud al máximo de VSX y TESS para el tipo TTS-T Tauri. Perez (2022e)	65

156

52.	Periodo vs Magnitud de TESS para el tipo TTS-T Tauri. Perez (2022e)	66
53.	Perfiles de ruido para el tipo de estrellas variables RR	67
54.	Curvas prototipo para estrellas variables RR (ver tabla 12)	69
55.	Perfiles de ruido para el tipo de estrellas variables HADS-Delta Scuti.	71
56.	Curvas prototipo para estrellas variables HADS-Delta Scuti (ver tabla 14). $\ldots\ldots\ldots$	72
57.	Perfiles de ruido para el tipo de estrellas variables DCEP - δ Cephei-Cefeidas	74
58.	Curvas prototipo para estrellas variables DCEP - δ Cephei-Cefeidas (ver tabla 16)	75
59.	Perfiles de ruido para el tipo de estrellas variables TTS-T Tauri	77
60.	Curvas prototipo para estrellas variables TTS-T Tauri (ver tabla 18).	78

Lista de Tablas

1.	Estrellas en función del tipo de variabilidad. Gaia Collaboration and Eyer (2019) 6
2.	Variables del algoritmo Lomb-Scargle
3.	Resumen de datos descargados desde las diferentes fuentes de información
4.	Estrellas con mayor diferencia en el periodo entre VSX y $TESS$ Perez (2022e) 50
5.	Cantidad de estrellas por grupo de VSX con mayor diferencia del periodo entre VSX y TESS Perez (2022k)
6.	Variable Star type designations in VSX. VSX (2022)
7.	Diferencia entre los periodos de VSX y $TESS$ para 447 estrellas seleccionadas con cadencia de 120 s para el tipo RR Perez (2022h)
8.	Diferencia entre los periodos de VSX y TESS para 106 estrellas seleccionadas con cadencia de 120 s para el tipo HADS Perez (2022d)
9.	Diferencia entre los periodos de VSX y TESS para 257 estrellas seleccionadas con cadencia de 120 s para el tipo DCEP Perez (2022f)
10.	Diferencia entre los periodos de VSX y TESS para 314 estrellas seleccionadas con cadencia de 120 s para el tipo TTS Perez (2022g)
11.	Identificadores únicos de estrellas variables que han sido descartadas por discontinuidad 136
12.	Estrellas identificadas correctamente como miembros de un súper grupo del tipo $RR.$ 140
13.	Estrellas que no pudieron identificarse como miembros de un súper grupo del tipo $RR. \ . \ . \ 141$
14.	Estrellas identificadas correctamente como miembros de un súper grupo del tipo $HADS$. 141
15.	Estrellas que no pudieron identificarsen como miembros de un súper grupo del tipo HADS. 142
16.	Estrellas identificadas correctamente como miembros de un súper grupo del tipo $DCEP$. 143
17.	Estrellas que no pudieron identificarsen como miembros de un súper grupo del tipo DCEP. 144

- 18. Estrellas identificadas correctamente como miembros de un súper grupo del tipo TTS. . . 146
- 19. Estrellas que no pudieron identificarsen como miembros de un súper grupo del tipoTTS.. 146

UN ATLAS DE ESTRELLAS VARIABLES TESS

ENG. M. SC. ANTONIO MARIA PEREZ

MASTER'S DEGREE IN ASTRONOMY AND ASTROPHYSICS MASTER'S DEGREE IN ELECTRONIC ENGINEERING SPECIALTY'S DEGREE IN TELECOMMUNICATIONS COMPUTER SCIENCE BACHELOR'S DEGREE