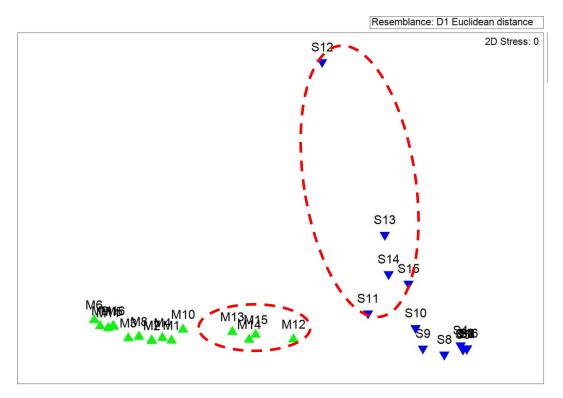
SUPPLEMENTARY MATERIAL

Impacts of bottom fishing on the sediment infaunal community and biogeochemistry of cohesive and non-cohesive sediments

Marija Sciberras¹, Ruth Parker², Claire Powell², Craig Robertson¹, Silke Kröger², Stefan Bolam², Jan Geert Hiddink¹

¹School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom, +44 (0)1248 388150


²Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, United Kingdom

Corresponding author email: <u>m.sciberras@bangor.ac.uk</u> <u>T: (0044) 01248388150</u>

Site	Fishing	Water	Mean tide	Mean wave	Grain size distribution (%)				
code	frequency (yr ⁻¹)	depth (m)	stress (Nm ⁻²)	stress (Nm ⁻²)	Gravel	Sand	Mud		
Nephroj	os fishing ground, of	f Cumbri	ia, England (Mu	ıd)					
M1	2.95	30.3	0.21	0.92	0.0	33.3	66.7		
M2	3.87	35.0	0.17	0.69	0.0	29.0	71.0		
M3	4.60	33.1	0.18	0.81	0.0	23.6	76.4		
M4	4.99	31.5	0.22	0.68	0.0	31.3	68.7		
M5	5.41	40.9	0.22	0.52	0.0	20.3	79.7		
M6	5.67	34.4	0.21	0.64	0.0	15.8	84.2		
M7	5.92	35.7	0.16	0.52	0.0	28.9	71.1		
M8	6.09	43.0	0.22	0.42	0.0	26.4	73.6		
M9	6.99	33.7	0.19	0.61	0.0	17.2	82.8		
M10	7.98	38.1	0.19	0.59	0.0	36.2	63.8		
M11	8.51	34.4	0.18	0.72	0.0	19.0	81.0		
Isle of N	Aan fishing ground ((Sand)							
S 1	0.00	26.3	0.20	0.76	0.3	99.7	0.0		
S2	0.05	27.1	0.23	0.79	0.1	99.9	0.0		
S 3	0.11	19.6	0.14	1.43	0.0	100	0.0		
S4	0.25	23.9	0.17	1.00 2.4		97.6	0.0		
S 5	0.35	27.0	0.25	0.70	1.3	98.7	0.0		
S6	0.51	23.7	0.17	1.14	0.1	99.9	0.0		
S7	1.16	29.4	0.20	0.74	0.2	99.8	0.0		
S8	1.63	33.0	0.11	0.73	0.4	95.0	4.6		

SM 1. Summary of the abiotic habitat characteristics and fishing frequency at each sampling site within the two study locations, Isle of Man fishing ground (sandy sediment) and *Nephrops* fishing ground (muddy sediment). Fishing frequency is expressed as the number of times an area is fished with bottom fishing gear in a year.

SM 2. MDS plot of the sediment parameters of the 32 sampling sites. Dotted red lines indicate outlier sites in terms of their environmental variables (% sand, % mud, water depth, tide stress and wave stress) – these sites were excluded from the statistical analyses. M represents muddy sites, S represents sandy sites.

Results of the Pearson's correlation analysis between fishing frequency and environmental parameters (water depth, tide and wave bed stress, percentage sand composition) for the muddy and sandy sites retained for the statistical analyses.

	Muddy study sites	Sandy study sites
Water depth (m)	r = 0.35, p = 0.28	r = 0.65, p = 0.08
Mean tide bed stress (Nm ⁻²⁾	r = 0.17, p = 0.61	r = 0.46, p = 0.25
Mean wave bed stress (Nm ⁻²)	r = 0.46, p = 0.15	r = 0.35, p = 0.39
% sand composition	r = 0.28, p = 0.41	r = 0.65, p = 0.08

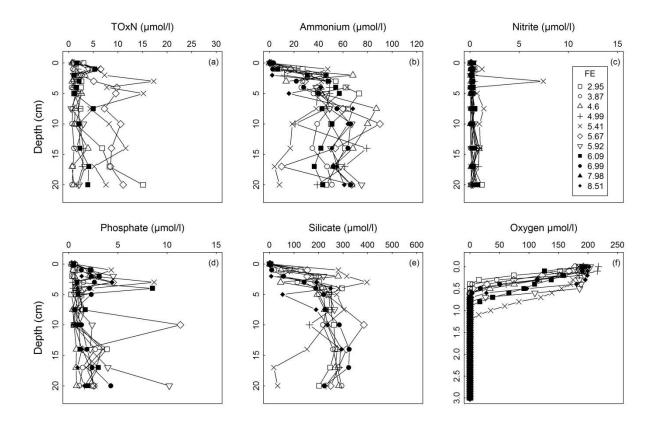
SM 3. Description of traits and modalities used in the biological trait analysis (adapted from Bolam et al. 2014b).

Trait	Modality	Trait Definition	Functional significance and/or vulnerability to fishing
	Suspension	The removal of particulate food taken from the water column, generally via filter-feeding	
	Surface deposit	Active removal of detrital material from the sediment surface. This class includes species which scrape and/or graze algal matter from surfaces	Feeding mode has important implications for the potential for transfer of carbon between the sediment and water and within the sediment matrix. Feeding mode also has important repercussions for
Feeding group	Subsurface deposit	Removal of detrital material from within the sediment matrix	many biogeochemical processes (Rosenberg, 1995). Furthermore, whilst scavengers may benefit from
	Scavenger / opportunist	Species which feed upon dead animals	higher food availability as a result of carrion, suspension feeders may suffer damage to their filtering devices due to high concentration of
	Predator	Species which actively predate upon animals (including the predation on smaller zooplankton)	suspended sediment following the fishing disturbance event.
	Parasite	Species which have a parasitic mode of life on other invertebrate species	
	Sessile	Species in which the adults have no, or very limited, mobility either because they are attached or are limited to a (semi-) permanent tube or burrow	Adults of faster moving species are more likely to
Mobility	Burrower	Infaunal species in which adults are capable of active movement within the sediment	evade capture by trawl gear than slow-moving or sessile individuals. Mobility also affects the ability for adult recolonization of disturbed areas.
	Crawl/creep/climb	Capable of some, generally limited, movement along the sediment surface or rocky substrata	

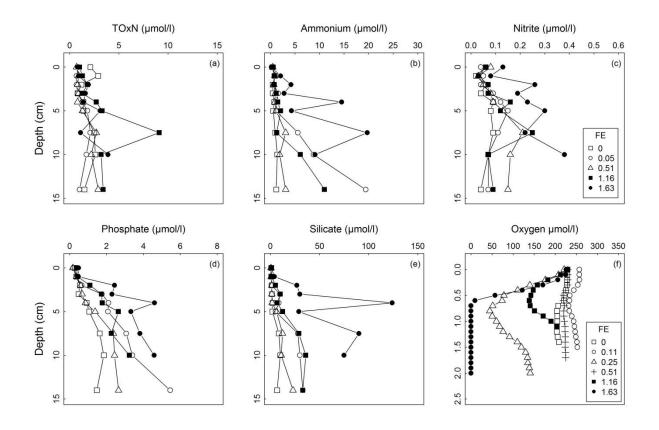
		Swim	Species in which the adults actively swim in the water column (many usually return to the bed when not feeding)	
		Diffusive mixing	Vertical and/or horizontal movement of sediment and/or particulates	
		Surface deposition	Deposition of particles at the sediment surface resulting from e.g. defecation or egestion (pseudofaeces) by, for example, filter and surface deposit feeding organisms	Describes the ability of the organism to rework the
	Bioturbation mode	Upward conveyor	Translocation of sediment and/or particulates from depth within the sediment to the surface during subsurface deposit feeding or burrow excavation	sediments. Can either be upward, downward, onto the sediment or mixing of the sedimentary matrix. Bioturbation mode has important implications for sediment-water exchange and sediment biogeochemical properties.
		Downward conveyor	The subduction of particles from the surface to some depth by feeding or defecation	
		None	Do not perform any of the above and/or not considered as contributing to any bioturbatory capacity	

SM 4A. The macroinfaunal species that contributed to more than 85% of total abundance in sand and mud habitats. R_i and M_i are the reworking and mobility traits, respectively, and Ft_i is the corresponding sediment reworking functional types. M_i scores: 1 for organisms that live in fixed tubes; 2 indicates limited movement; 3 indicates slow, free movement through the sediment matrix; 4 indicates free movement, that is, via burrow system. R_i scores: 1 for epifauna; 2 for surficial modifiers; 3 for upward and downward conveyors; 4 for biodiffusors; and 5 for regenerators. Reworking types (Ft_i): "S" for surficial modifiers; "B" for biodiffusors; "UC" and "DC" for upward and downward conveyors; "R" for regenerators; and "E" for epifauna.

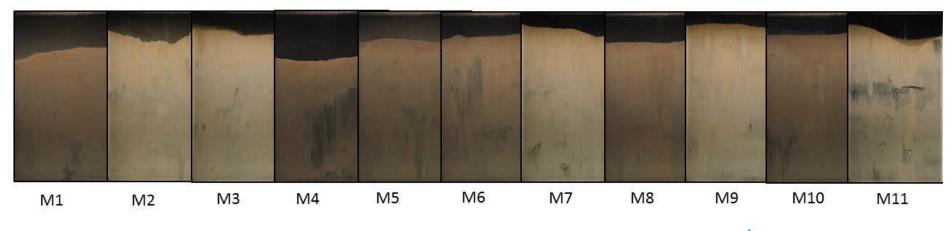
Class	Species name	Abundance (%)	R _i	Mi	Fti	Class	Species name	Abundance (%)	R _i	Mi	Ft _i
Echinoidea	Echinocardium spp.	18.8	4	3	В	Phoronida	Phoronis sp.	34.0	2	1	S
Polychaeta	Lagis koreni	9.8	3	1	UC	Polychaeta	Nepthys incisa	17.4	4	3	В
Bivalvia	Ensis sp. (juvenile)	9.8	2	2	S	Polychaeta	Nepthys sp.	8.4	4	3	В
Polychaeta	Poecilochaetus serpens	5.9	2	2	S	Bivalvia	Saxicavella jeffreysi	6.4	1	2	Е
Polychaeta	Phoronis sp.	5.9	2	1	S	Polychaeta	<i>Minuspio (Prionospio)</i> sp.	3.0	3	2	UC/DC
Bivalvia	Phaxas pellucidus	5.8	2	2	S	Enteropneust a	Enteropneusta sp.	2.9	5	4	R
Bivalvia	Parvicardium spp.	5.7	2	2	S	Malacsotraca	Callianassa subterranea	2.7	4	4	В
Polychaeta	Owenia fusiformis	4.11	2	1	S	Bivalvia	Abra alba	2.1	2	2	S
Bivalvia	Mya arenaria	2.4	2	2	S	Polychaeta	Polydora sp.	1.8	3	1	UC/DC
Polychaeta	Sthenelais limicola	2.3	4	3	В	Echiura	Maxmuelleria lankesteri	1.8	5	4	R
Bivalvia	Thracia phaseolina	2.0	3	2	DC	Polychaeta	Tharyx killariensis	1.7	2	2	S
Polychaeta	Spiophanes bombyx	1.5	3	1	UC/DC	Polychaeta	<i>Glycera</i> sp.	1.6	4	3	В
Malacostraca	Pseudocuma longicornis	1.5	2	3	S	Polychaeta	Glyphohesione klatti	1.5	4	3	В
Polychaeta	Scoloplos armiger	1.2	4	3	В						
Malacostraca	Argissa hamatipes	1.0	2	3	S						


Bivalvia	Moerella pygmaea	1.0	2	2	S			
Polychaeta	Magelona filiformis	1.0	2	2	S			
Ophiuroidea	Ophiuroidea juvenile	1.0	2	2	S			
Bivalvia	Spisula elliptica	0.9	2	2	S			
Polychaeta	Scalibregma inflatum	0.8	4	4	В			
Polychaeta	<i>Spio</i> sp.	0.8	3	2	UC/DC			
Bivalvia	Abra prismatica	0.8	2	2	S			
Polychaeta	Aricidea cerruti	0.8	2	3	S			
Malacostraca	Bathyporeia gracilis	0.7	2	3	S			
Polychaeta	Magelona johnstoni	0.7	2	2	S			
Bivalvia	Ensis ensis	0.7	2	2	S			
Palaeonemerte a	Tubulanus polymorphus	0.6	-	-	-			
Polychaeta	Glycera oxycephala	0.6	4	3	В			
Polychaeta	Orbinia sertulata	0.6	4	3	В			
Holothuroidea	<i>Thyone</i> sp.	0.6	2	3	S			

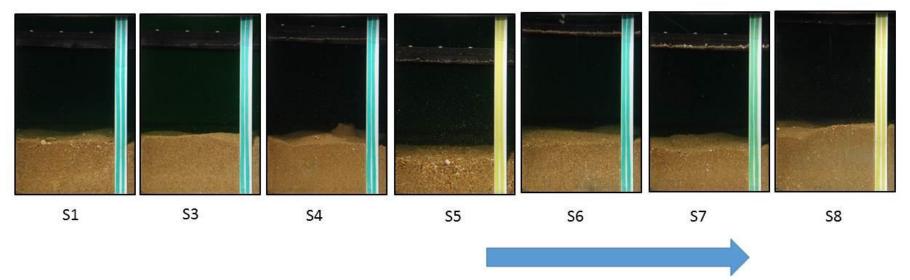
SM 4B. The macroinfaunal species that contributed to more than 85% of total biomass in sand and mud habitats. R_i and M_i are the reworking and mobility traits, respectively, and Ft_i is the corresponding sediment reworking functional types. M_i scores: 1 for organisms that live in fixed tubes; 2 indicates limited movement; 3 indicates slow, free movement through the sediment matrix; 4 indicates free movement, that is, via burrow system. R_i scores: 1 for epifauna; 2 for surficial modifiers; 3 for upward and downward conveyors; 4 for biodiffusors; and 5 for regenerators. Reworking types (Ft_i): "S" for surficial modifiers; "B" for biodiffusors; "UC" and "DC" for upward and downward conveyors; "R" for regenerators; and "E" for epifauna.


Class	Species name	Biomass (%)	R _i	M _i	Ft _i	Class	Species name	Biomass (%)	R _i	Mi	Fti
Polychaeta	Polychaeta biomass	10	-	-	-	Echiura	Maxmuelleria lankesteri	71.0	5	4	R
Holothuroidea	Labidoplax sp.	8.5	2	3	S	Malacsotraca	Callianassa subterranea	8.2	4	4	В
Anthozoa	Cerianthus sp.	8.3	2	1	S	Polychaeta	Nepthys incisa	4.7	4	3	В
Bivalvia	Ensis ensis (juvenile)	7.8	2	2	S	polychaeta	Notomastus sp.	1.9	3	2	UC
Bivalvia	Bivalvia biomass	5.2	-	-	-	Polychaeta	Spio sp.	1.5	3	2	UC/DC
Bivalvia	Lucinoma borealis	4.7	2	2	S	Polychaeta	Nepthys sp.	1.3	4	3	В
Asteroidea	Astropecten irregularis	3.2	2	3	S	Polychaeta	Glycera unicornis	1.2	4	3	В
Phoronida	Phoronis sp.	2.9	2	1	S						
Polychaeta	Clymenella torquata	2.4	3	1	UC						
Polychaeta	Clymenella cincta	2.3	3	1	UC						
Bivalvia	Thracia phaseolina	2.3	3	2	DC						
Bivalvia	Abra prismatica	2.3	2	2	S						
Polychaeta	Lagis koreni	2.3	3	1	UC						
Anopla	Cerebratulus sp.	1.9	4	3	В						
Echinoidea	Echinocardium spp.	1.9	4	3	В						
Polychaeta	Maldanidae biomass	1.6	-	-	-						

Polychaeta	Orbinia sertulata	1.6	4	3	В			
Bivalvia	Nucula hanleyi	1.6	2	3	S			
Polychaeta	Aglaophamus rubella	1.5	4	3	В			
Malacostraca	Bathyporeia gracilis	1.4	2	3	S			
Polychaeta	Anaitides groenlandica	1.3	4	3	В			
Ophiuroidea	Ophiura albida	1.2	2	2	S			
Polychaeta	Lepidasthenia argus	1.2	-	-	-			
Gastropoda	Euspira nitida	1.2	2	3	S			
Bivalvia	Mya arenaria	1.2	2	2	S			
Polychaeta	Owenia fusiformis	1.1	2	1	S			
Polychaeta	Nepthys cirrosa	1.1	4	3	В			
Bivalvia	Ensis sp. (juvenile)	1.0	2	2	S			
Anthozoa	Actinaria sp.	0.9	-	-	-			


SM 5A. Concentration (μ mols/l) profiles at the **muddy sites** for total inorganic nitrogen (TOxN), ammonium (NH₄⁺), nitrite (NO₂⁻), phosphate (PO₄³⁻), silicate (SiO₄⁻) and oxygen. Different symbols represent different fishing frequency (shown in the legend FE).

SM 5B. Concentration (μ mols/l) profile at the **sandy sites** for total inorganic nitrogen (TOxN), ammonium (NH₄⁺), nitrite (NO₂⁻), phosphate (PO₄³⁻), silicate (SiO₄⁻) and oxygen. Different symbols represent different fishing frequency (shown in the legend FE).


SM 6A. Sediment profile images obtained using the **SPI-camera at the muddy study area** (*Nephrops* fishing ground). The difference in the sediment colour seen between NP 2, 4, 8, 9, 10, 11 (darker colour) and NP 1, 3, 5, 6, 7 (lighter colour) is due to a light artefact produced by the SPI-camera rather than changes associated with the aRPD.

Fishing frequency increasing

Reference SPI-images of undisturbed soft sediments in the North Sea SM 6B. Sediment profile images obtained using the SPI-camera at the sandy study area (Isle of Man fishing ground).

Fishing frequency increasing

Reference SPI-images of undisturbed soft sediments in the North Sea