
   

 

Universidade de Aveiro  Departamento de Biologia 

MARIA CLARISSE 
SILVA FERREIRA 
 
 

ABUNDÂNCIA E DIVERSIDADE DE CRUSTÁCEOS 
DOS CANHÕES PORTUGUESES 
 

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos 
requisitos necessários à obtenção do grau de Mestre em Biologia Marinha, 
realizada sob a orientação científica da Professora Doutora Marina Ribeiro da 
Cunha, Professora Auxiliar do Departamento de Biologia da Universidade de 
Aveiro 

 
 
 
 
 
 

   
 

 



 
  

 

 
 
 

 
 

o júri   
 

Presidente Prof.º Dr.º Victor Manuel dos Santos Quintino  
Professor auxiliar do Departamento de Biologia da Universidade de Aveiro  
 

  
 

 Prof.ª Dr.ª Maria Marina Pais Ribeiro da Cunha  
Professora auxiliar do Departamento de Biologia da Universidade de Aveiro 
 

  
 

 Doutor Ricardo Jorge Guerra Calado   
Investigador auxiliar do Centro de Estudos do Ambiente e do Mar da Universidade de 
Aveiro 

  
 

 
 
 



   

 
  

  
 

agradecimentos 
 

Nasci numa aldeia perto do mar. O meu avô materno foi pescador e morreu 
com as sequelas que o mar sabe deixar nas gentes desta faina. Sem saber 
porquê ou como, aprendi a amar os “bichos”. A biodiversidade sempre esteve 
perto de mim, escolhi tirar um curso de Biologia e Geologia para poder ensinar 
às novas gerações a respeitarem a riqueza natural do nosso planeta. Neste 
caminho traçado pela ciência e pela experimentação, de centro de ciência em 
centro de ciência, de destacamento em destacamento, inspirada na riqueza de 
espécies das poças de maré da praia da Aguda e na Estação Litoral da Aguda, 
resolvi aprofundar os meus conhecimentos sobre os seres que habitam as 
profundezas do Oceano Atlântico, mais precisamente sobre os crustáceos que 
vivem nos canhões submarinos portugueses. A entrevista da investigadora 
Teresa Amaro sobre a fauna destes lugares inóspitos e sem luz foi crucial na 
tomada da decisão. Ter encontrado a minha professora de Ecologia -
Professora Doutora Marina Cunha foi sem dúvida uma agradável surpresa e 
agradeço-lhe a possibilidade de integrar a equipa de investigação do 
Laboratório de Ecologia Marinha e Estuarina (LEME) e de usufruir dos seus 
ensinamentos, que não serão guardados, mas serão utilizados quer para 
ensinar quer para comunicar ciência. Ainda, por despertar em mim o gosto 
pelos crustáceos peracarídeos. 
Quero agradecer ao Capitão, equipa multidisciplinar do Projecto HERMES e 
toda a tripulação dos cruzeiros, RRS Discovery (NOCS) 297, RRS Charles 
Darwin (NOCS) 179 e RV Pelagia (NIOZ) 64PE252.  
Aos meus superiores hierárquicos que acompanharam o decorrer deste 
trabalho e sempre valorizaram a investigação no oceano profundo 
proporcionando-me a possibilidade de realizar mais um sonho da minha vida, 
deixo aqui um agradecimento especial. Aos colegas da equipa do LEME e da 
Fábrica – Centro Ciência Viva da Universidade de Aveiro que respirando, 
transpirando, investigando ou divulgando Ciência, contribuíram de forma 
directa ou indirecta para a finalização deste trabalho. 
Por fim, mas não menos importante à memória do meu pai e à minha família, 
especialmente à minha mãe que me mostrou a beleza e desenvolveu em mim 
desde pequenina o sentimento de respeito pelo Mar, pelos seres vivos que o 
habitam e que sempre me deu apoio nas horas mais difíceis da minha vida. Ao 
meu marido agradeço toda a atmosfera com a qual pude levar avante dois 
anos de trabalho; e ao meu filho, as horas em que fez o trabalho de casa, 
enquanto a mãe contava e tentava identificar os pequeninos crustáceos, no 
laboratório. 
 

 
 
 
 
 



 

 
 

 

 

 

 

        “No one ought to feel surprise at much remaining as yet 
unexplained in regard to the origin of species and varieties, if 
he make due allowance for our profound ignorance in regard to 
the mutual relations of the many beings which live around us. 
Who can explain why one species ranges widely and is very 
numerous, and why another allied species has a narrow range 
and is rare? Yet these relations are of the highest importance, 
for they determine the present welfare and, as I believe, the 
future success and modification of every inhabitant of this 
world.” 
 

 

                    Charles Darwin “The Origin of Species”, 1859. 



   

 
  

 
 
 
 
 
 
 
 
 
 

  

resumo 
 

 

O conhecimento da fauna de crustáceos que habita os fundos 
marinhos, particularmente a dos ecossistemas existentes nos canhões é 
escasso. Esta tese investiga a abundância e diversidade de crustáceos dos 
canhões centrais de Portugal: Nazaré, Cascais e Setúbal e taludes adjacentes. 
Contribui para o conhecimento de padrões na estrutura da comunidade de 
crustáceos e pretende identificar diferenças entre as amostras recolhidas nos
taludes e canhões e entre canhões, relacionando-as com o gradiente vertical 
de profundidade e gradiente vertical no sedimento, ao nível de espécie. 

A amostragem decorreu em Agosto de 2005, com o cruzeiro 
RRSDiscovery (D297-NOCS), entre Abril e Maio de 2006, com o cruzeiro RRS 
Charles Darwin (CD179-NOCS) e em Setembro de 2006, com o cruzeiro RV 
Pelagia (64PE252-NIOZ). As amostras foram recolhidas usando USNEL-box 
corer (área=0.25m2), UKORS megacorer (área=0,00785m2) e NIOZ box corer 
(área=0.196m2) respectivamente.  Num total de 1260 indivíduos descritos e
157 taxa, 6 ordens, 9 sub-ordens e 47 famílias. Tanaidacea foi a ordem mais 
abundante seguida da ordem Isopoda (grupo com maior número de espécies, 
61 taxa), Amphipoda, e finalmente Cumacea. Os decápodes e misídaceos
foram os grupos com menor abundância. O padrão na distribuição vertical no 
sedimento indica que geralmente existe uma diminuição na densidade, de 0-1 
até 5-10 cm. Estes animais revelam uma diversidade de estilos de vida e 
formas de se alimentar, ficando muitas vezes enterrados e alimentando-se de 
detritos, vivendo principalmente nas camadas superficiais ou sub-superficiais. 
A análise multivariavel das amostras revela diferenças significativas entre 
canhões e taludes; nos canhões e entre canhões e também entre 
amostradores/ano e profundidade. As comparações entre canhões indicam 
que existe uma maior similaridade entre as amostras dos canhões de Cascais e 
da Nazaré, do que entre estes canhões e o canhão da Nazaré. Sendo que o 
último exibe uma maior dominância de espécies, menor riqueza de taxa e 
maior abundância. As amostras de Cascais e de Setúbal apresentam maior 
equitatibilidade e maior diversidade. A 3400m todas as amostras recolhidas 
dos canhões apresentam uma maior abundância e riqueza de espécies, 
quando comparadas com as amostras recolhidas a 4300m. Estes padrões são 
discutidos tendo em atenção dados ambientais destes habitats, publicados 
recentemente.  

Os resultados ilustram uma riqueza elevada de espécies e 
heterogeneidade nas amostras dos crustáceos peracarídeos dos canhões 
portugueses, sugerindo que a comunidade de crustáceos, das diferentes áreas 
analisadas, apresenta uma grande variabilidade na composição ao nível de 
espécie. Em conclusão, a conservação da biodiversidade dos canhões, 
nomeadamente dos portugueses, pode ser crucial para a sustentabilidade e o 
funcionamento do maior ecossistema da biosfera.  

 



 
  

 
 
 
 
 
 
 
 
 
 

  

abstract Knowledge of the deep-sea crustacean faunal composition, 
particularly on canyon ecosystems is scarce. This thesis investigates 
crustacean abundance and diversity from central Portuguese submarine 
canyons: Nazaré, Cascais and Setúbal and adjacent slopes. Contribute to the 
knowledge of crustacean assemblages patterns and aimed to identify 
differences between open slope and canyon, between canyons assemblages 
and  related to the depth and sediment gradients at species level. 

Sampling was performed in August 2005 during RRS Discovery cruise 
(D297-NOCS), between April and May 2006 during RRS Charles Darwin cruise 
(CD179-NOCS) and in September 2006 during RV Pelagia (64PE252-NIOZ) 
cruise. Samples were collected using: USNEL-pattern box corer (area=0.25m2), 
UKORS megacorer (area=0,00785m2) and NIOZ circular box corer 
(area=0.196m2) respectively.  A total of 1260 specimens were ascribed to 157 
nominal taxa, 6 orders, 9 subOrders and 47 families. Tanaidacea was the most 
abundant followed by Isopoda (the most speciose group with 61 taxa), 
Amphipoda, and finally Cumacea. Decapods and mysids were the groups with 
lowest abundance. The trends in the vertical distribution within the sediment 
indicate generally that there is a decreasing in density from 0-1 to 5-10cm. 
These animals show a diversity of life styles and ways of feeding, they are 
burrowing detritivore peracarids species that live mainly in the surface or 
subsurface. Multivariate analyses of samples revealed significative differences 
between: canyons and open slopes; within and between canyons and also 
sampling gear/year and depths. The comparisons between canyons indicate 
higher similarities between the assemblages of Cascais and Setúbal than 
between these canyons and Nazaré. The latter exhibits greater dominance, 
lower taxa richness and higher abundance. The Cascais and Setúbal 
assemblages are more evenness and revel higher diversity. At 3400m all the 
canyons revel a higher abundance and diversity when compare to the 4300m 
assemblages. These patterns are discussed attending environmental 
conditions in these particular deep sea habitats. 

The results illustrate the high taxa richness and heterogeneity of 
peracarida crustacean assemblages in Portuguese canyons, suggest that 
community structure of the different areas analyzed show a great variability in 
species composition. In conclusion, the conservation of deep-sea biodiversity 
of Portuguese canyons can be crucial for the sustainability of the functions of 
the largest ecosystem of biosphere. 
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INTRODUCTION 
 

1.1 Deep sea Biodiversity and Habitats 

 The oceans cover three quarters of the earth’s surface and have a huge impact on 

the biosphere. The largest ecosystem on earth is not an environment with stable 

conditions; it is in fact very dynamic throughout time. However, the hydrologic, physical 

and chemical characteristics divide the oceans in four main ecological zones: one 

euphotic sublittoral or coastal zone (low water to 200m), and three deep-sea zones 

where sunlight penetration is to low to support primary production - bathyal (from 200 to 

2000m), abyssal (2000 to 6000m), and hadal (more than 6000m) (Gage & Tyler 1991). The 

coastal waters occupy about 5% of the world’s oceans, and the average depth of the 

oceans is approximately 3.8 kilometres with 88% are deeper than 1000m (Herring 2002). 

Up to now only 0.0001% of the deep sea floor has been investigated by biologists (UNEP 

2007). 

 Our knowledge of the deep sea benthic boundary organisms and environmental 

conditions is intimately related to the evolution of the scientific methods. Qualitative and 

quantitative methods such as, box cores, multicores, epibenthic sledges, multibeam 

bathymetry, sidescan sonar; showed the outstanding heterogeneity of the deep sea 

habitats  inhabited by a diversity of organisms with different shapes, sizes and life styles 

(Gage & Tyler 1991). In the last twenty to twenty - five years oceanographic research 

vessels with sophisticated sampling gear and research submersibles are being used to 

further explore this deep sea biodiversity in a variety of geological features, such as 

canyons, seamounts, hydrothermal vents and cold seeps (Gage & Tyler 1991; UNEP 2007) 

that is now acknowledged as playing a crucial role for the health and sustainability of all 

the ocean’s ecosystems (Smith & Hughes 2008).   

The tridimensional environment of the oceans exhibits several gradients of abiotic 

factors such as: pressure, temperature, salinity, oxygen, sediment type, organic matter, 
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seasonality, disturbance and bottom currents. Hydrostatic pressure is one of the most 

predictable gradients; 1 atmosphere increase per 10 m depth (Gage & Tyler 1991). The 

temperature at the deep seafloor usually varies from ca. -1° to 4°C, but in the Antarctic 

waters it may reach -1.9°C (Sverdrup et al. 1942). In most oceans the temperature reach ~ 

0.8°C at 1300m, although in North Atlantic ocean the 4°C isotherm is located at about 

4000m, owing to the influence of the Mediterranean outflow (Gage & Tyler 1991). At 

depths greater than 2000m the salinity is ca. 34.8psu ±0.3 reaching 34.65psu in deeper 

regions (Sverdrup et al. 1942). Oxygen concentration is usually near saturation but may 

reach minimum values at ca. 500 to 600m in certain geographical regions (Gage & Tyler 

1991). The sediment type in the deep sea is predominantly characterized by very fine 

grain sizes but other sediments such as coarse sediments of terriginous origin, mud from 

submarine volcanoes, rocky outcrops at the oceanic ridges and seamounts, deposits 

around hydrothermal vents and others play an important role in creating heterogeneous 

habitats inhabited by different organisms. 

Considering that deep-sea organisms live in the absence of sunlight, the 

biodiversity of the assemblages depends on factors other than the photosynthetic 

primary production, such as the input of material from the photic zone and localised 

sources of chemosynthetic production. According to Brunel (2006) benthic animals, 

seaweeds and protists account for 98% of marine species biodiversity, the remaining 2% 

being pelagic. The deep sea prevailing heterotrophic benthic assemblages depends on 

autotrophic production from the photic zone to obtain organic matter. The exceptions are 

the areas where chemoautotrophic bacteria on the base of the trophic chains in 

hydrothermal vents and cold seeps, biosynthesize organic carbon compounds from CO2, 

using sulfide (H2S) and methane(CH4) as energy sources (Dubilier et al. 2008). Ecosystem 

functioning in the deep sea is related with production, consumption and transfer of 

organic matter from the basis of food chain to the higher throphic levels, decomposition 

of organic matter and nutrient regeneration are processes of utmost importance to 

understand benthic biodiversity (Danovaro et al. 2008). Microbial processes involved in 

nutrient regeneration, are essential to sustain primary and secondary production and are 

a major player in global nutrient cycles. The microbial assemblages can limit rates of 
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biological production and are therefore important structural drivers in these marine 

ecosystems (Gage &Tyler 1991; Arrigo 2005). Interactions between species, such as 

predation, competition (Gage & Tyler 1991; Gage 1995) and symbiosis (Dubilier et al. 

2008) are other biological factors that influence biodiversity. 

Blooms of phytoplankton, the falls of dead animals and plants contribute greatly 

to the input of organic matter in the deep sea. Particulate organic matter (POM) or 

dissolved organic matter (DOM), can reach the seabed as “marine snow” and “feed” the 

benthic assemblages. This main source of energy to the deep sea fauna can accumulate, 

can be redistributed by bottom currents or create patches with high concentrations of 

resources from drifting organic matter related to small-scale natural physical disturbances 

(Thistle 1981; Gage & Tyler 1991). According to Rowe (1991) the biomass (organic carbon) 

of benthic animals is more correlated to the particulate organic matter flux than directly 

to the depth gradient. Epifauna (mostly scavengers but also detritivores) can efficiently 

remove the food that reaches the deep sea floor (Smith 1986) and therefore most of the 

organic matter is consumed at the sediment surface. 

Inputs of seasonal fluxes of material through the water column can reach the 

seabed as phytodetritus deposits inducing a temporal variability in the benthic 

community response. This is well-established for bacteria and protozoa but studies on 

metazoans (meio, macro or megafauna) are less common and confined to continental 

margins (Gooday 2002). Temporal variation at tidal rhythm scales may be induced by 

bottom currents that control sediment deposition and the concentration of organic 

matter; when currents exceed 7cm.s-1 the materials at the seafloor are resuspended (Row 

& Menzies 1969; Lampit et al. 1985) with important implications for the distribution of 

suspension feeders that can be favoured in some specific regions by the abundant 

suspend organic matter (Row & Menzies 1969). 

At a high taxonomic level, biodiversity is much greater in the sea than in terrestrial 

and freshwater ecosystems (Brunel 2006). The depth gradient is probably the best known 

biodiversity pattern, where species diversity generally appears to show a peak at middle 

slope depths (Rex 1981; Paterson & Lambshead 1995; Levin et al. 2001). This unimodal 
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pattern, parabolic distribution with depth, has been explained by production, predation 

and competition based hypotheses (Rex 1981). However, regional deep sea diversity 

patterns are linked to several environmental factors and unimodal patterns do not appear 

to be universal (Levin et al. 2001). Boundary constrains and species ranges, sediment 

heterogeneity, productivity and food supply, bottom-water oxygen concentration, deep 

sea currents and catastrophic disturbance are processes and factors that can regulate 

species diversity and are subjected to a spatiotemporal variation in deep sea at local, 

regional and global scales. A conceptual model by Levin et al. (2001) shows the direct and 

indirect effects of various environmental factors on species richness of local communities 

(Fig. 1). 

 

 
 
 
Figure 1: Conceptual model indicating direct and indirect effects of various environmental factors 
on species richness of local communities (adapted from Levin et al. 2001). 
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1.2 West Iberian Margin  

The Iberian Peninsula is the south-westernmost region of the Eurasian Plate with 

an origin placed at the Cretaceous, Middle Cenomanian (late aptian, 117-94Ma.). It is an 

example of a rifted and non-volcanic continental margin (Arzola et al. 2008; Lastras et al. 

2009).  

The West Iberian Margin is characterized by a continental shelf with a gently 

sloping, thin shelf of 10 to 65km wide (Weaver & Canals 2003; Lastras 2009). This margin 

is incised, from north to south, by a number of submarine canyons, with a northeast–

southwest trend (Arzola et al. 2008; Lastras et al. 2009). There are three large abyssal 

plains: Iberia, Tagus and Horseshoe, from north to south, and located at c.a. 4500m water 

depth. The first two abyssal plains are separated by Estremadura Spur (Lastras et al. 2009) 

and by the major canyons: Nazaré, Setubal and São Vincente into three distinct sections 

(Vanney & Mougenot 1981; Mougenot 1988).  

 

1.2.1 North Atlantic Oceanography  

The oceanography of west Iberian margin is complex. Analysing the depth 

variations, near the 50m and near the thermocline zone the salinity decreases from 35.8 

or 36.0psu to a minimum of 35.6psu at 450-500m of depth. Here the North Atlantic 

Central Water is predominant (Van Aken 2000). From 500-800m to 1400m the salinity 

increases to 36.19psu due to the Mediterranean Water (MW) (McCave & Hall 2002). 

Beneath this lies the North Atlantic Deep Water Current (NADWC) that reaches ~2.5°C 

(Fiúza et al. 1998). The NADWC formed in the Norwegian Sea and traveling southwards, 

and the MW are of extreme importance for the faunal distributional patterns in the west 

Iberian marginrents (Gage & Tyler 1991). 

Vitorino (2002) and Oliveira (2007) documented the influence of the seasonal 

upwelling in summer and the downwelling in winter as prevailing meteorological factors 

for the current patterns in the west Iberian margin. 
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1.2.2 Submarine Canyons  

Canyons are common geological features along most ocean margins (Vetter & 

Dayton 1998; Weering & Stiger 2002; Stiger 2007), varying in shape and size from shallow 

systems to deeply incised sinuous valleys. In the past, when the sea level was lower, they 

were probably more active, but at the present time canyons are mostly sites of 

sedimentation (Weering & Stiger 2002). Canyons show a morphological similarity with 

erosional landforms (Stiger et al. 2007) and act as conduits of land and coastal materials 

to the deep sea floor. Canyons are preferential sinks for organic matter, and their 

biological activity indicate an input of fresh organic matter (Vetter & Dayton 1998; 

Duineveld et al. 1997). Due to this fact, these topographical features are thought to play 

an important role for the secondary production and may enhance benthic abundance 

and/or biodiversity in the deep sea (Vetter & Dayton 1998). 

The main Portuguese canyons are gouf type with a deeply incised narrow, V-

shaped thalweg flanked by small gullies and terraces, where landslides and rockfalls occur 

(Arzola et al. 2008). Morphologically canyons can be divided in three sections: the upper, 

middle and lower parts (Weering & Stiger 2002; Stiger et al. 2007; Arzola et al. 2008). 

Because they are complex systems in terms of hydrography, sedimentology, 

biogeochemistry and biology they present great variability within or between canyons. 

Turbidity currents are the dominant process of sediment transport, erosion and 

deposition in Nazaré and Setúbal canyons, due to the dominance of gravity flow deposits 

and erosive episodes. Probably the origin of terriginous sediments is the continental shelf. 

There are two types of turbidity currents: first, small volume, high frequency, 

carbonaceous and enriched in mica minerals, which deposit in shallower intra canyon 

terraces; second type, large volume, low frequency, canyon flushing turbidity currents 

that deposit mainly in the deeper parts of the canyon and  in the abyssal plains (Arzola et 

al. 2008).  
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1.3 Crustacean Fauna  

The crustaceans exhibit a huge diversity in morphology, adaptation, development 

and strategies of feeding. They live in all marine habitats, from supralitoral to the deeper 

parts of the oceans, but can also be found in terrestial habitats. Crustaceans range in size 

from less than 0.5mm to more than 1m. Their morphological diversity and all adaptative 

features make them a difficult phylum to define satisfactorily (Hayward & Ryland 1996). 

Above all, they have an important ecological role as they constitute a major food source 

to many marine invertebrates, vertebrates and mammals (Rehm 2007).  

 

1.3.1 Systematics and Morphology 

Eucarids are malacostraceans that always have a carapace covering the entire 

thorax usually dorsally fused. The representatives of this group do not possess oostegites 

nor a brood pouch to incubate the eggs. The reproduction strategy consists in the 

dispersion of eggs directly to the environment. The eggs can also be maintained in the 

thoracic appendices, or adherent to the ventral part or to the abdomen. Juveniles hatch 

and have a larval stage before reaching the adult stage (Hessler & Watling 1999). 

Peracarids are malacostracan crustaceans known from many habitats:  land, 

freshwater, brackish and marine waters. They have a wide world distribution and exhibit 

all sorts of feeding strategies (Hessler & Watling 1999; Brusca & Brusca 2003). They are 

frequently detritus feeders with a free living epibenthic or bathypelagic lifestyle but may 

also burrow in the sediment or be tube dwellers (Gage & Tyler 1991). Peracarids range in 

size from a few millimetres to 500 mm in length and some are capable to live in hot 

springs, at 30-50°C. Morphologically they are characterized by the possession of a telson 

without rami; one or rarely 2-3 pairs of maxilipeds; mandibles with an articulated tooth 

(lacinia mobilis); carapace small and not fused with the posterior pereonites (once 

present); the gills are thoracic or abdominal; they possess oostegites, that form the 

marsupium (except in the Order Thermosbaenacea) (Fig. 2). Frequently juveniles hatch as 

mancas and do not have free living larval stages (Hessler & Watling 1999; Gutu & Sieg 

1999; Brusca & Brusca 2003).  
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Figure 2: Anatomy and diversity in some peracarid crustaceans, AMP=amphipods, ISO=isopods, 
TAN=tanaids, CUM=cumaceans and MYS=mysids (adapted from Brusca & Brusca 2003). 
 

 

Figure 3: Anatomy and diversity in Isopoda. A 1st =first antennae; A 2nd =second antennule; E=eye; 
H=head; M=marsupium; PE=pereon; PL=pleon; T=telson and U=urosome. 
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Table 1 summarizes the principal morphological features of five peracaridan 

orders. In deep sea samples peracarida crustacean fauna represent between 31%-51% of 

all macrobenthic species (Gage & Tyler 1991).  

 

Table 1: Main morphological features of five peracarida orders (adapted from: Shram 1983; 
Bacescu & Petrescu 1999; Gutu & Sieg 1999; Nouvel, Casanova & Lagardere, 1999; Roman & 
Dalens 1999 and  Santinni 1999). 
 

         ORDER 
 

MORPHOLOGY   
 

AMPHIPODA 
 

ISOPODA 
 

CUMACEA 
 

TANAIDACEA 
 

MYSIDACEA 

 
CARAPACE 

 
absent 

 
absent 

present, fused with 
the first 3 (or up to 
6) thoracomeres  

present, fused to 
the first two 
thoracicomeres  

present, covering 
the 1-3 
thoracomeres 

 
EYES 

present, sessile 
compound or not  

present, sessile 
compound or not  

present , sessile 
compound or not  

 absent or present 
on lobes 

stalked , 
compound 

 
ANTENNAE 

(1ST) 

5 segments, 
uniramous 

4, 5 or 6 segments, 
uniramous 

1-5 segments, a 
long  flagellum on 
males 

2 segmented 
protopod 

3 segmented 
protopod 

 
ANTENNULE 

(2ND) 

3 segments, 
biramous 

uniramous;  
2, 3 or 4 segments 

3 segments and 
two flagella in each 

4 segments 3 segments and 
two well 
developed flagella 

HEAD 

fused with 1st 
thoracomere 

fused with 1st 
thoracomere 

pseudorostrum Fused with the first 
two thoracomeres 

rostrum small 

 
MARSUPIUM 

oostegites present variable number of 
oostegites on 2-6 
pereopods 

oostegites present 
on maxillipedes 3 
and pereopods 1-3 

oostegites on 1-5 or 
2-5 pereopods  

oostegites present, 
in all or some 
pereopods 

 
PEREON 

7 pairs of 
pereopods (1-2 as 
subchelate 
gnathopods) 

7 pairs of 
uniramous 
pereopods 

5 pereopods 7 pairs of 
pereopods (1st  pair 
as chelipedes) 

pereopods 
biramous 

 
PLEON 

3 pairs of pleopods 5 pairs of pleopods 
biramous 

5 pairs, one or few 
pleopods when 
present in males  

absent, or 1-5 pairs 
of pleopods when 
present 

5 pairs of pleopods  

UROSOME 
3 pairs of uropods 3 pairs of uropods 1 pair of uropods 1 pair of uropods tail fan 

 
TELSON 

when present is 
free  or bilobate 

 fused with 
 1-6 pleomeres 

free or fused with 
the six pleomere 
(pleotelson) 
 

pleotelson  with a variety of 
forms 

STATOCYSTS 
not present sometimes present not present not present present 

LACINIA 
MOBILIS 

present present present present present 

SHAPE latterally flattened dorsoventrally 
flattened 

comma shaped subcylindrical and 
flattened 

shrimp-like  
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1.4 Study Context 

This work is integrated in the 6th Framework Programme and EU-funded project 

HERMES - Hotspot Ecosystem Research on the Margins of European Seas - that aims to 

provide scientific knowledge about the biodiversity and community structure, the deep 

sea floor geology, physical and chemical aspects, microbiology and biogeochemistry, in 

deep-sea ecosystems along the European margins (Atlantic Ocean, Mediterranean and 

Black Seas). 

On the Portuguese margin, Nazaré, Cascais and Setúbal canyons were selected as 

target areas for the study of biodiversity and ecosystem functioning of submarine 

canyons as these geological features are amongst the most important in Europe and even 

worldwide. 

 

1.4.1 Aims of the Study 

The benthic assemblages in the upper, middle and lower sections of Nazaré, 

Cascais and Setúbal canyons and slopes were sampled during three main cruises carried 

out in 2005 and 2006. The present work focuses on the crustacean fauna and investigates 

the variability in the composition and structure of the assemblages. The specific 

objectives include the study of: 

- the vertical distribution within the sediment (upper 20cm) 

- the differences between canyon and open slopes; 

- the changes along the depth gradient within canyons  

- the variability between canyons  

- the possible implications of using different sampling gears. 
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Methodology 

2.1 Study Area 

The study area compromises the section of the Portuguese Atlantic margin between 

37°49.98’N to 39°35.02’N latitude and 9°06.00’W to 10°20.06’W longitude, where three 

major canyons are located: Nazaré, Cascais and Setúbal.  

The Nazaré canyon is one of the largest submarine canyon of the world (Vitorino et 

al. 2005) and the northernmost of the central Portuguese canyons. Located at c.a. 

39°45′N, it dissects the west Iberian margin, from east to west, starting at 50m water 

depth, and extending through almost 210km, to the Iberian abyssal plain at depths 

exceeding 4900 m (Arzola et al. 2008; Lastras et al. 2009). De Stiger et al. (2007) separate 

the canyon in upper, middle and lower sections: the first section ranges from 50 to 

2700m, with a V shaped valley; the second from 2700 to 4000m, with a broad 

meandering valley, with terraces and V shaped valley axial channel and the last at depths 

greater than 4000m, with a flat valley. The Nazaré canyon is not connected to a major 

river, or drainage system on land. Despite this fact it still acts as a major conduit for 

sediment (Arzola et al. 2008; Lastras et al. 2009). 

The Cascais canyon is the shortest, the steepest (›10°gradient) and the most central 

of the central Portuguese canyons. Located at latitudes of ca.38°25′N, it starts in the shelf 

at depths of ~175m and runs to the abyssal plain, at more than 4600m depth. This 

complex canyon in the vicinity the mouth of Tagus estuary and it sinuous (index=1.44) 

traject takes ca. 90km in an open U valley, and then continues 62km more as a single 

broader channel. Cascais canyon does probably receive its main input of organic matter 

from the Tagus River (Lastras et al. 2009).  

The Setúbal Canyon is linked with Lisbon canyon, located at 37N°, is a more complex 

system and the southernmost of Central Portuguese Canyons. It also cuts the continental 

shelf starting at 150m water depth until the abyssal plain, to more than 4800m depths. 

The Setúbal branch starts in the mouth of Sado River and is 175km in length; Lisbon 
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branch is 167km long. Setúbal canyon is linked to Tagus and Sado rivers that are the two 

major source of organic matter (Lastras et al. 2009). 

The open slopes of the West Portuguese margin are subjected to different 

environmental factors, such as landslides, current flow, sediment instability, constant flux 

and are considered in this study as control areas for the investigation on the canyon 

assemblages.  

 

2.2 Sample Collection and Processing 

The sampling of the benthic assemblages was carried out from 8th to 11th August 

2005, on board of RRS Discovery (D297 cruise, NOCS); 21st April to 14th May 2006, on 

board RRS Charles Darwin (CD179 cruise, NOCS) and 6th 17th September 2006, on board 

RV Pelagia (64PE252 cruise, NIOZ) cruises, as we can sea in figure 2.1. A total of eleven 

stations, nine in the canyons and two in the open slopes were considered (Fig. 4). 

 

Figure 4: Bathymetric map of the 11 sampling stations, from central Portuguese canyons (NC-
Nazaré Canyon, CC-Cascais Canyon and SC-Setúbal Canyon), during 2005 (D297) and 2006 (CD179 
and 64PE252). 
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In 2005, (D297) only Nazaré canyon was sampled. Samples (three replicates each) 

were taken on the middle canyon terrace (ca. 3400m) and on the lower canyon floor 

adjacent to the thalweg (ca. 4300m), using a USNEL-box corer (area=0.25m2) (Weaver 

2005). In 2006, two cruises were carried out. During CD179, samples were taken from 

Nazaré, Setúbal and Cascais canyons, using a UKORS megacorer (multiple cylindrical cores 

of 0,00785m2 internal area). In each canyon two depths (ca. 3400 and ca. 4300m) were 

sampled, with 4 to 5 replicates at each station (a total of 27 megacore replicates) (Billet 

2006). During 64PE252 cruise, samples were taken from the three canyons and two open 

slope sites, one adjacent to Nazaré canyon (OS South) and one adjacent to Setúbal 

canyon (OS Sines) all at ca. 1000m. These 5 stations were sampled with the NIOZ circular 

box corer (Area=0.196m2) (Stiger 2006).The metadata of the 45 samples considered in 

this study are presented in Table 2. 

Table 2 - List of the samples taken for crustacean fauna in the Portuguese canyons during HERMES 
cruises: RSS Discovery (D297-2005), RSS Charles Darwin (CD179-2006) and RV Pelagia (64PE252-
2006), using USNEL box core, UKORS megacore and NIOZ box core, respectively. Samples were 
taken in Nazaré (N), Cascais (C) and Setúbal (S) canyons and open slopes (OSO South of Nazaré, 
OSI off Sines). 

Sites CRUISE Date 
Depth 

(m) 
 Sampled area 

(m2) 
Latitude Longitude 

15755#1 D297 8-Aug-05 3461 N 0.25 39° 30.62’N 09° 56.19’W 
15758#2 D297 9-Aug-05 4364 N 0.25 39° 35.02’N 10° 18.95’W 

15758#6 D297 10-Aug-05 4367 N 0.25 39° 34.99’N 10° 19.00’W 

15760#1 D297 10-Aug-05 3465 N 0.25 39° 30.02’N 09° 56.17’W 

15762#1 D297 11-Aug-05 3464 N 0.25 39° 30.02’N 09° 56.22’W 

15765#2 D297 11-Aug-05 4336 N 0.25 39° 35.00’N 10° 19.04’W 

56804#5 CD179 21-Apr-06 3275 S 0.063 38° 09.27’N 09° 36.93’W 

56804#6 CD179 21-Apr-06 3275 S 0.063 38° 09.26’N 09° 36.94’W 

56806#1 CD179 21-Apr-06 3275 S 0.063 38° 09.29’N 09° 36.96’W 

56810#1 CD179 23-Apr-06 3224 S 0.063 38° 09.22’N 09° 37.02’W 

56816#1 CD179 25-Apr-06 3275 S 0.063 38° 09.27’N 09° 36.94’W 

56821#1 CD179 26-Apr-06 3219 C 0.063 38° 17.96’N 09° 46.87’W 
56821#2 CD179 27-Apr-06 3214 C 0.063 38° 17.97’N 09° 46.89’W 
56823#2 CD179 27-Apr-06 3218 C 0.055 38° 18.01’N 09° 47.02’W 
56823#3 CD179 28-Apr-06 3219 C 0.055 38° 17.99’N 09° 47.07’W 
56828#1 CD179 29-Apr-06 3199 C 0.063 38° 18.02’N 09° 46.98’W 
56837#2 CD179 02-May-06 4245 C 0.063 38° 22.49’N 09° 53.40’W 
56837#5 CD179 02-May-06 4241 C 0.063 38° 22.50’N 09° 53.48’W 
56837#7 CD179 03-May-06 4243 C 0.063 38° 22.49’N 09° 53.52’W 
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Sites CRUISE Date 
Depth 

(m) 
 Sampled area 

(m2) 
Latitude Longitude 

56837#8 CD179 03-May-06 4244 C 0.063 38° 22.49’N 09° 53.52’W 

56838#2 CD179 03-May-06 4482 S 0.063 38° 06.50’N 09° 59.98’W 

56838#3 CD179 04-May-06 4482 S 0.063 38° 06.49’N 09° 59.94’W 

56838#4 CD179 04-May-06 4485 S 0.055 38° 06.52’N 09° 59.99’W 

56842#1 CD179 05-May-06 4482 S 0.063 38° 06.45’N 09° 59.94’W 
56842#2 CD179 05-May-06 4485 S 0.063 38° 06.49’N 09° 59.97’W 
56851#1 CD179 09-May-06 3517 N 0.063 39° 29.99’N 09° 55.97’W 
56851#2 CD179 09-May-06 3517 N 0.063 39° 29.99’N 09° 56.01’W 
56856#1 CD179 11-May-06 3519 N 0.039  39° 29.95’N 09° 56.00’W 
56856#2 CD179 11-May-06 3522 N 0.055 39° 30.00’N 09° 55.98’W 
56847#6 CD179 08-May-06 4403 N 0.063 39° 35.57’N 10° 19.99’W 
56847#7 CD179 08-May-06 4404 N 0.055 39° 35.55’N 10° 20.06’W 
56859#1 CD179 12-May-06 4418 N 0.055 39° 35.58’N 10° 20.00’W 
56861#1 CD179 14-May-06 4404 N 0.047 39° 35.57’N 10° 20.02’W 

27BC1 64PE252 06-Sep-06 1030 OSSO 0.196 39° 10.36’N 10° 15.23’W 
27BC2 64PE252 06-Sep-06 1030 OSSO 0.196 39° 10.36’N 10° 15.23’W 
36BC2 64PE252 18-Sep-06 935 C 0.196 38° 27.89’N 09° 28.51’W 
36BC3 64PE252 18-Sep-06 1014 C 0.196 38° 27.86’N 09° 28.49’W 
36BC4 64PE252 18-Sep-06 1020 C 0.196 38° 27.90’N 09° 28.50’W 

43BC1 64PE252 11-Sep-06 897 N 0.196 39° 35.80’N 09° 24.25’W 

43BC3 64PE252 11-Sep-06 897 N 0.196 39° 35.80’N 09° 24.24’W 

56BC1 64PE252 16-Sep-06 1001 OSSI 0.196 37° 49.99’N 09° 28.50’W 

56BC2 64PE252 16-Sep-06 1001 OSSI 0.196 37° 49.95’N 09° 28.49’W 

56BC3 64PE252 16-Sep-06 1001 OSSI 0.196 37° 49.98’N 09° 28.49’W 

61BC1 64PE252 17-Sep-06 970 S 0.196 38° 17.10’N 09° 05.98’W 

61BC2 64PE252 17-Sep-06 970 S 0.196 38° 17.10’N 09° 06.01’W 
61BC3 64PE252 17-Sep-06 970 S 0.196 38° 17.10’N 09° 06.00’W 

 

For the biological analyses, the upper 20cm of the sediment cores were sliced in to 

six different layers, whenever possible: A: 0-1cm; B: 1-3cm; C: 3-5cm; D: 5-10cm; E: 10-

15cm and F: 15-20cm (Fig. 4). This methodology follows the standard techniques 

discussed in the Census of Marine Life workshop on the study of “Biodiversity of Deep-sea 

Sediments” and adopted as general practice in HERMES. In some sites, only the 10cm of 

the sediment were sampled, and the sediments with more than 10cm, that were not 

sieved, were only examined for larger fauna. Prior to sieving, the sediment layers 0-1 and 

1-3cm where placed at once in formalin. All material from the six layers including the 

overlying water in the 0-1cm sample, were carefully washed with seawater through 

500µm and 300µm sieves. The sieved material was fixed in 10% buffered formalin in 
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seawater, or in 96% ethanol (in the case of the cruise 64PE252). Than the material was 

stored and brought to the laboratory on land where the material was sieved.  

 

 

 

 

 

 

 

 

Figure 5: Procedure adopted on the three cruises, resulting: A=0-1cm, B=1-3cm, C=3-5cm, D=5-
10cm, E=10-15cm and F=15-20cm sediment layers.   

Crustacean specimens were identified to the lowest possible taxonomic level and 

counted under a stereoscope microscope. All Amphipoda and Isopoda species were 

photographed using Nikon NIS-Elements digital system and software. The taxonomic list 

of the collected species is in the Appendix 1 and the Amphipoda and Isopoda species 

photos are in the Appendix 2 and Appendix 3 respectively. As many species could not 

match the descriptions found in the available literatures many of them were identified by 

a unique code (eg. AMPSP077). 

 

2.3 Data Analysis  

2.3.1 Univariate and Distributional Analyses 

The data were built in a species vs station abundance matrix integrating all 

sediment layers, in order to investigate the variability of the crustacean assemblages from 

the Portuguese canyons.  
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Univariate measures such as: Shannon-Wiener diversity index (H’) and Pielou’s 

evenness index (J’) were estimated using the software PRIMER v6 (Clarke & Warwick 

1994) Distributional analysis was carried out using K-dominance curves. K-dominance 

curves consist of plotting the cumulative ranked abundances (y-axis) against species (x-

axis) that are ordered by decreasing abundances, in a logarithmic scale. The shape of the 

curve and the Y intersection allow some interpretation of community structure. 

Communities dominated by a small number of species have a high value of y-axis 

intersection point. Curves with a long “tail” indicate a large quantity of rare species in the 

community.  

 

2.3.2 Multivariate Analysis 

Multivariate analysis was performed using the statistical package PRIMER v6. Non-

metric MDS ordination was performed using the Bray-Curtis similarity measure, after 

fourth root transformation of the data. An analysis of similarities by permutation tests 

(ANOSIM) was performed on each MDS results.  

Because different sampling gears were used in different cruises the data were 

analyzed according to the following objectives and test designs: 

 One-way ANOSIM was performed to assess the significance of differences between 

canyons and open slopes using the data (obtained in two open slope sites and three 

canyon sites at ca. 1000m depth during 64PE252.  

 A two-way crossed layout ANOSIM was performed to assess the significance of 

differences between depths (3400m vs 4300m) and between canyons (Nazaré, Cascais 

and Setúbal) using the data obtained during CD179. 

 A two-way crossed layout ANOSIM was performed to assess dissimilarities between 

different samplers (box core vs megacore) and between different depths (3400m vs 

4300m) using the data obtained for Nazaré canyon during D297 and CD179. 
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Results 

A total of 1260 specimens were counted and ascribed to 157 nominal taxa, in 47 

families and six crustacean orders in the material gathered from Nazaré, Cascais and 

Setúbal Canyons and Open slopes of central West Iberian margin, between 2005 and 

2006. The Tanaidacea were represented by 619 specimens in 40 nominal taxa and were 

the most abundant group, followed by the most speciose group, the Isopoda with 376 

specimens in 61 nominal taxa, and then the Amphipoda with 183 specimens in 32 

nominal taxa, Cumacea with 80 specimens with 22 nominal taxa and finally Decapoda and 

Mysidacea with only one specimen in one taxa each (Fig. 6).  

 
Figure 6: Crustacean specimen examined showing a total of 1260 individuals, data collected 
during D297, CD179 and 64PE252 cruises, between 2005 and 2006.  AMP (Amphipoda), ISO 
(Isopoda), CUM (Cumacea), TAN (Tanaidacea), MYS (Mysidacea) and DEC (Decapoda).  

 

The lowest species richness (Fig. 7) was observed in Nazaré at 3400m in 2006 (20 

taxa) and the highest in Setúbal canyon at 3400m in 2006 (47 taxa). Globally the taxa 

richness was consistently higher in Cascais and Setúbal than in Nazaré canyon at all 

depths. Amphipoda and Cumacea showed the highest diversity at lower depths, while 

Isopoda and Tanaidacea revealed the opposite trend.  
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Figure 7: Species richness in the different sampling station from the Portuguese Canyons. The 
values are pooled from all replicates in one site. Samples taken in the same site at consecutive 
years (Nazaré 3400m and 4300m) were kept separate.*Samples taken during D297 in 2005. 

 

The crustacean abundance (Fig. 8) showed the lowest values in open slopes (OSO: 

36ind.m -², OSI: 93ind.m-²) and high variability within and between canyons although the 

highest values were found consistently at 3400m in all canyons (Nazaré: 537 ind.m-²; 

Cascais Canyon: 624 ind.m-²; Setúbal Canyon: 477 ind.m-²).  

The composition and structure of the assemblages also showed important 

differences either within and between canyons or between open slopes and canyons (Fig. 

9). Some crustacean groups were dominant (eg. Gammaridea and Cumacea) and 

sometimes almost restricted to the shallower depths (eg. Apseudomorpha, Cymothoida 

and Corophiidea) while others were dominant at greater depths (eg. Tanaidomorpha); 

Asellota was the most speciose group and could be found at all locations and depths, 

nervetheless with high consistently higher abundance at greater depths.  

The estimated indices of diversity and evenness (Table 3) reflect some of the 

features in the structure of the assemblages such as the high dominance (low evenness 

and diversity) in Nazaré canyon at 3400m and the consistently highly diverse crustacean 

assemblage at Cascais canyons. 

 

 

* 

* 
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Figure 8: Crustacean abundance in the different studied sites, during D297, CD179 and 64PE252 
cruises. The values are averages from the replicates taken in each site expressed as ind.m-². 
Samples taken in the same site at consecutive years (Nazaré 3400m and 4300m) were kept 
separate. *Samples taken during D297 in 2005. 
 

 

Table 3: Univariate biodiversity indices for each station sampled during D297, CD179 and 64PE252 
cruises. Values are average from replicates in each station: n= number of replicates; S: number of 
species; N: densities (ind.m-²); J’: Pielou’s evenness index and H’ (log e) Shannon-Wiener diversity 
index.  

 

 n S N J' H'(loge) 
OSO 2 11 35.7 0.961 2.30 
N1 2 14 191.3 0.689 1.82 
N3D 3 20 336.0 0.289 0.87 
N4D 3 20 185.3 0.743 2.22 
N3C 4 10 533.5 0.392 0.90 
N4C 4 13 112.7 0.914 2.34 
      
C1 3 37 192.2 0.872 3.15 
C3 5 46 510.7 0.898 3.44 
C4 4 33 281.7 0.940 3.29 
      
OSI 3 23 93.5 0.883 2.77 
S1 2 21 135.2 0.896 2.73 
S3 5 47 476.2 0.881 3.39 
S4 5 23 139.3 0.950 2.98 
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Figure 9: Composition and structure of the crustacean assemblages from the study sites in the 
Portuguese canyons: Nazaré (N), Cascais (C), and Setúbal (S) and Open slope South Nazaré (OSO) 
and Open slope Sines (OSO) at 1000, 3400 and 4300m of depth, until subOrder taxonomic level. 

 

The variability in the composition and structure of the crustacean assemblages will 

be further discussed in relation to the results of the multivariate analyses. 
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3.1 Vertical Distribution Within the Sediment 

The results on the vertical distribution of the crustacean fauna within the 

sediment layers (first 20 cm) are presented in figures 10 (cruise D297), 11 (cruise CD179), 

and 12 (cruise 64PE252). 

The assemblages sampled during 2005 in Nazaré canyon (2005) at 3400m and 

4300m (Fig.10) reveal similar trends with crustacean densities decreasing with sediment 

layer although at 3400m the maximum density is observed at subsurface (1-3cm). 

 

 

 

Figure 10: Vertical distribution of crustacean fauna within the sediment (ind.m-2). Data from 
Nazaré canyon at 3400m and 4300m depths, obtained during D297 cruise, in 2005.  
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Figure 11: Vertical distribution of crustacean fauna within the sediment (ind.m-²). Data from 
Nazaré, Cascais and Setúbal canyons at 3400m and 4300m depths, obtained during CD179 cruise, 
in 2006. 
 



Universidade de Aveiro 
Crustacean Abundance and Diversity in Portuguese Canyons  

 
 

23

The trends in the vertical distribution observed in the samples collected during the 

cruise CD179 (2006) indicate generally that there is a decrease in density, from 0-1 to 5-

10cm (Fig. 11). The only exception is Nazaré canyon at 4300m where a slight increase at 

the subsurface (1-3cm) is recorded. Cumaceans are only recorded at the surface of the 

sediments while Isopoda and Tanaidacea usually also reach high densities deeper in the 

sediment.  

 

 

 

 

Figure 12: Vertical distribution of crustacean fauna within the sediment (ind.m-²). Data from 
Nazaré, Cascais and Setúbal canyons and Slopes (OSO; OSI) at 1000m depth, obtained during 
64PE252 cruise, in 2006.  
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The analysis of the data from 64PE252 cruise at 1000m depths in canyons and 

slopes shows heterogeneous results. Nazaré and Setúbal show an increase in the density 

of crustaceans at the subsurface (1-3cm). The maximum density is reached at 3-5cm 

sediment layer In Cascais and at 5-10 cm in OSI. A decreasing trend in the vertical 

distribution of crustaceans at the stations located at 1000m is only observed in OSO (Fig. 

12). At 1000m depths the amphipods and cumaceans are found burrowing deeper in the 

sediment than in the stations sampled at greater depths.  

 

3.2 Canyons vs Open Slopes (cruise 64PE252) 

A total of 310 specimens were sampled in Pelagia cruise, from the five stations 

sample at 1000m depth. Amphipoda was the most abundant order (117 ind.) followed by 

Isopoda (76 ind.) and then Tanaidacea and Cumacea (69 and 48 ind., respectively). The 

Decapoda order is represent only by one specimen. To assess differences between 

canyons and slopes the data was subjected to multivariate analysis. The MDS plot (Fig. 

13) shows a clear segregation of the two groups of samples. The one way ANOSIM results 

confirm the significance of differences between canyons and slopes (R: 0.473; significance 

level: 0.1%) 

Except for the lower densities observed in the open slopes (Fig. 8) there is no clear 

trend in the composition and structure of the crustacean assemblages at 1000m. The 

assemblages are very heterogeneous: the species richness in OSO and OSI (Fig. 7) were 

similar to the adjacent canyons (Nazaré and Cascais, respectively). Cumacea show a high 

species richness and density in Cascais canyon but also occur in the other stations; 

Apseudomorpha are abundant in the open slopes but also in Setúbal while Cymothoidae 

occur in Cascais and Setúbal canyons but are also present in OSO (Figs 8 and 9). 
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Figure 13: MDS plot of the analysis performed on the crustacean data from samples collected 
during 64PE252 cruise. Labels of sampling station as in Table 2.  

 

The k-dominance curves (Fig. 14) show that the assemblages of Cascais and 

Setúbal canyons are slightly less dominated than the open slope assemblages but the 

lowest diversity and evenness occurs in Nazaré canyon (Fig. 14 and Table 4). In fact, 

diversity indices are higher for Cascais and Setúbal (Table 4) but the highest evenness 

occurs at OSO. 

The analysis of the most dominant species (Table 5) also illustrates the high 

heterogeneity in the crustacean assemblages at 1000m. The amphipod Carangoliopsis 

spinulosa (in Nazaré, Setúbal and OSI) and the tanaid Apseudidae SP044 (in OSO, OSI and 

Setúbal) are the only species that rank amongst the six dominant in three sites. From the 

Amphipoda two Phoxocephalidae (Metaphoxus SP050 and Harpinia spp.065) and one 

Ampeliscidae (Haploops cf. setosa) species were dominant in Cascais and OSI, respectively 

and from the Tanaidacea a few other species are ranked among the dominant in all sites 

except Cascais. There were several dominant Isopoda, namely some Desmosomatidae 

(eg. Chelator cf. verecundis in Setúbal and OSI, Chelator cf. insignis in Nazaré; Eugerda 
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tetarta in OSI and Cascais), Anthuridea (Bullowanthura cf. aquitanica OSO; Paranthura 

SP066 in Cascais) and Munnopsidae (Ilyarachna SP078 in Setúbal OSO).  

 

 

 

Figure 14: k –dominance curves for the five 64PE252 cruise sampling sites. 

 

 

Table 4: Univariate biodiversity indices for the five stations sampled during 64PE252 cruise. Values 
are average from replicates in each station: n= number of replicates; S= number of species; N= 
densities (ind.m-²); J’= Pielou’s evenness index and H’ (log e)= Shannon-Wiener diversity index.  

Site n S N J' H'(loge) 
N 2 9.5 191.3 0.710 1.59 
C 3 18.7 192.2 0.917 2.67 
S 2 14.0 135.2 0.930 2.44 

OSO 2 6.0 35.7 0.975 1.60 
OSI 3 11.0 93.5 0.923 2.20 

 

Among the Cumacea two species of Leucon SP004 are dominant in Cascais and 

Nazaré; Nannastacidae SP013 and Diastylidae SP014 also rank as dominant in OSO. 

Although Nazaré canyon and the adjacent open slope (OSO) show highly divergent 

assemblages, Setúbal Canyon shares three dominant species with its adjacent open slope 

(Carangoliopisis spinulosa, Apseudidae SP044  and Chelator cf. verecundis). 
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Table 5: Six dominant crustacean species for each studied site and depth (canyons and slopes; 
1000 m, 3400 m and 4300 m) expressed in percentage.*Dominant species obtained during D297 
cruise were kept separate. 
 

 1000 m %CUM 3400 m %CUM 4300 m %CUM 

OSS Bullowanthura cf. aquitanica  21.43     
 Apseudidae SP044 35.71     
 Sphyrapus malleolus 42.86     
 Nannastacidae SP013 50.00     
 Diastylidae SP014 57.14     
 Ilyarachna SP078 64.29     

OSI Carangoliopsis spinulosa  21.82     
 TANSP037 32.73     
 Apseudidae SP044 41.82     
 Haploops cf. setosa  49.09     
 Chelator cf. verecundis 54.55     
 Eugerda tetarta  60.00     

N*   Pseudotanaidae SP051 83.33 TANSP066 31.65 
   Chauliodoniscus SP046 88.10 TANSP052 48.92 
   Harpinia spp. SP065 90.48 Pseudotanaidae SP051 65.47 
   TANSP068 92.06 Desmosomatidae spp. 70.50 
   Desmosomatidae spp. 93.25 Anarthuridae SP013 75.54 
   Eugerda tetarta  94.05 Macrostylis aff. subinermis  79.86 

N Carangoliopsis spinulosa  38.67 Pseudotanaidae SP051 78.73 Pseudotanaidae SP051 19.14 
 TANSP046 69.33 TANSP064 87.76 Momedossa SP089 35.96 
 Chelator cf. insignis 74.67 lyarachna SP077 90.73 Chelator cf. insignis 51.59 
 Leucon SP004 78.67 Pseudotanaidae SP041 92.68 Macrostylis aff. longiremis 60.34 
 Desmosomatidae spp. 82.67 Eudorella SP017 94.62 Eugerdella SP091 67.89 
 cf.Tanaellidae  SP040 85.33 Eugerda tetarta  96.57 Thambematidae SP098 72.62 

C Leucon SP004 11.50 Macrostylis cf. abyssicola 11.90 Rapaniscus SP095 11.27 
 Metaphoxus  SP050 20.35 Lampropidae SP018 21.38 Chelator cf. insignis 18.31 
 Harpinia spp. SP065 29.20 Chelator cf. insignis 26.57 Harpinia spp. SP065 23.94 
 Eugerda tetarta  37.17 TANSP057 31.40 Haploniscus aff. antarticus  29.58 
 Leucon SP005 44.25 cf.Agathotanaidae SP048 35.96 Macrostylis magnifica 35.21 
 cf. Paranthura SP066 50.44 cf. Thambema SP093 39.99 Eurycope SP079 39.44 

S Carangoliopsis spinulosa  16.98 Haploniscus cf. charcoti  12.00 Pseudotanaidae SP051 11.73 
 Apseudidae SP044 30.19 Harpinia spp. SP065 20.00 Ischnomesus cf. 

norvegicus  
21.18 

 cf. Tanaellidae SP040 37.74 Macrostylis cf. abyssicola 27.33 Chelator cf. insignis 30.29 
 Desmosomatidae spp. 45.28 AMPSP072 34.67 Desmosomatidae spp. 37.46 
 Chelator cf. verecundis 52.83 Haploniscus cf. foresti  40.67 TANSP052 42.69 
 Ilyarachna SP078 60.38 Mirabilicoxa sp. SP037 45.33 TANSP063 47.24 

 

 

3.3. Variability Within and Between Canyons (CD179 cruise) 

A total of 559 specimens (101 taxa) were sampled in CD179 cruise, from Nazaré, 

Cascais and Setúbal canyons at 3400 and 4300m depths. Isopoda was the most abundant 

order, with 250 individuals (49 taxa) fallowed by Tanaidacea with 223 individuals (27 taxa) 
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and then Amphipoda and Cumacea, with 54 (14 taxa) and 31 (10 taxa) individuals 

respectively. The Mysidacea order is represent only by one specimen.  

The MDS plot in Figure 15 shows the variability between and within the three 

canyons samples. Along the horizontal axis there is a clear separation of the three 

canyons (Nazaré, Setúbal and Cascais, from left to right) while the vertical axis separated 

samples according depths (Cascais and Setúbal at 3400m and Nazaré at 4300m in the 

bottom and the remaining in the top). The samples from Cascais and Setúbal at 3400m 

show a low dispersion indicating a high similarity of these assemblages. 
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Figure 15: MDS plot of the analysis performed on the crustacean data from samples collected 
during CD179 cruise. Labels of sampling station as in Table 2.  
 

The two-way crossed ANOSIM results show that the differences between canyons 

and between depths are both highly significant with a slight predominance of depth 

differences (R: 0.79) over canyon differences. Pairwise tests confirm the significant 

differences between canyons pointing out to a higher dissimilarity between Nazaré and 

Cascais or Nazaré and Setúbal than between Cascais and Setúbal (Table 6). 
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Table 6: Results of the ANOSIM global and pairwise tests for the MDS performed for the samples 
collected during CD179 cruise. Two-way crossed analysis; Factors: depth (3400 and 4300m); site N 
(Nazaré), S (Setúbal) and C (Cascais).   

 

Sample 
statistic 
(Global R) 

Permutations 
used 

 

Significant 
statistics 

 

Significance 
level 

% 
Global test     

Depth 0.79 999 0 0.1***  
Canyon 0.72 999 0 0.1***  
Pairwise tests     
N, C 0.869 999 0 0.1***  
N, S 0.711 999 0 0.1***  
C, S 0.561 999 1 0.2**  

 

In terms of species richness the crustacean assemblages in Nazaré canyon show 

much lower values than Cascais and Setúbal (Fig. 7) but the difference in densities is not 

so remarkable. In fact the major differences in densities are related to the depth gradient 

with the deeper assemblages showing lower densities in all canyons (Fig. 8). The 

composition and structure of the assemblages (Fig. 9) in Cascais and Setúbal is dominated 

by Asellota and Tanaidomorpha with also an important contribution of Gammaridea at 

3400m; in Nazaré the assemblage is highly dominated by Tanaidomorpha at 3400m while 

at 4300m the structure of the assemblage at the sub-order level is closer to the other 

canyons.  

The higher dominance of the Nazaré assemblages is reflected by the elevated k-

dominance curves (Fig. 16); in the other two canyons at both depths, the k-dominance 

curves are low and almost overlapping. These features are confirmed by the univariate 

diversity and evenness indices with globally higher values in Cascais and Setúbal and 

rather low values in Nazaré. The depth trend is towards a decrease in diversity and 

increase in evenness at the deeper stations in Cascais and Setúbal while in Nazaré both 

the diversity and the evenness are higher at 4300m (Table 7).  
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Table 7: Univariate biodiversity indices for the 27 stations sampled during 27 CD179 cruise. Values 
are average from replicates in each station: n= number of replicates; S= number of species; N= 
densities (ind.m-2); J’= Pielou’s evenness index and H’(log e)= Shannon-Wiener diversity index.  

 n S N J' H'(loge) 
N3400 4 10 533.5 0.392 0.90 
N4300 4 13 112.7 0.914 2.34 
C3400 5 46 510.7 0.898 3.44 
C4300 4 33 281.7 0.940 3.29 
S3400 5 47 476.2 0.881 3.39 
S4300 5 23 139.3 0.950 2.98 

 

 

Figure 16: k –dominance curves for the twenty seven CD179 cruise sampling sites.  

 

Although the crustacean assemblages in the three canyons are dominated by 

Tanaidomorpha and Asellota only one tanaid and one isopod are common to more than 

two stations in the listing of dominant taxa (Table 5; Pseudotanaidae SP051 in Nazaré 

3400, Nazaré 4300m and Setúbal 4300m and Chelator cf. insignis in Nazaré 4300m, 

Cascais 3400m, Cascais 4300m and Setúbal 4300m). Several other species of 

Tanaidomorpha are among the dominant in Nazaré 3400m, Cascais 3400m and Setúbal 

4300m and other different species of Desmosomatidae in Nazaré and Setúbal at both 
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depths. Other dominant isopods include Macrostylidae (4 species in Nazaré 4300m, 

Setúbal 3400m and Cascais at both depths), Haploniscidae (3 species in Setúbal 3400m 

and Cascais 4300m), Munnopsidae (2 species), Thambematidae (2 species), 

Nannoniscidae (1 species) and Ischnomesidae (1 species). Amphipoda (Phoxocephalidae) 

and Cumacea rank among the dominant only in Setúbal 3400m and Cascais 4300m and in 

Nazaré 3400m and Cascais 3400m, respectively (Table 5).  

 

 

3.4 Variability Between Sampling Gears / years (D297 vs CD197) 

Samples from the Nazaré canyon at 3400 and 4300m were collected in 2005 

(D297) and in 2006 (CD179) using different sampling gears (USNEL box core vs UKORS 

megacore) and covering different sampling areas (see Table 2). The change in 

methodology may influence the biological collection and difficults the interpretation of 

putative interannual variability in the composition and structure of the assemblages. The 

MDS plot of the Nazaré samples (Fig. 17) show a clear segregation of the 3400m and 

4300m samples along the horizontal axis and of the sampling gear/year along the vertical 

axis. 
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Figure 17: MDS plot of the analysis performed on the crustacean data from samples collected in 
Nazaré canyon during D297 and CD179 cruises. Labels of sampling station as in Table 2.  
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The two way crossed ANOSIM results confirm that both the differences between 

samplers/years and depths are very significant (Table 8). 

Table 8: Results of the ANOSIM global tests for the MDS performed for the samples collected 
during D297 and CD179 cruises. Two-way crossed analysis, factors: depth (3400 and 4300m) and 
sampler/year (Box core/2005 and megacore/2006) in Nazaré Canyon. 

 

Sample 
statistic 

(Global R) 

Permutations 
used 

 

Significant 
statistics 

 

Significance level 
 

% 

Global test     

Depth 0.887 350 1 0.3**  
Sampler 0.722 999 1 0.2**  

 

The effect of the smaller area collected during 2006 is readily noticed by the 

decrease in the average number of species per replicate (S in Table 9). This decrease is 

also seen in the pooled taxa richness per station (Fig. 7) but only at 3400m. Although the 

number of individuals collected was lower in 2006 (smaller sampling area) the estimated 

density of the assemblages suffers an increase at 3400m and a decrease at 4300m (Fig.8). 

The composition and structure of the assemblages at the sub-order level (Fig. 9) changes 

little at 3400m with the Tanaidomorpha accounting for more than 80% of the total 

abundance in both years. However, at 4300m there is a marked shift in dominance from 

Tanaidomorpha in 2005 to Asellota in 2006. Apparently this strong taxonomic shift in 

dominance has little effect in the k-dominance curves (Fig. 17): the curves for the 4300m 

assemblages are close together and much lower than the ones for the 3400m 

assemblages.  

Despite the high dominance at the sub order level of all crustacean assemblages 

from Nazaré the H’ and J’ values show a high evenness and rather high diversity at 4300m 

and low evenness and low diversity at 3400m (Table 9). Differences between gears/years 

are less marked but point out to a decrease in diversity and increase in evenness from the 

box core samples in 2005 to the megacore samples in 2006. 
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Figure 18: k –dominance curves for the fourteen D279 and CD179 cruises sampling sites. 

  

Table 9: Univariate biodiversity indices for the 14 stations sampled with a box-core during the 
D297 cruise (2005) and with a megacore during the CD179 cruise (2006). Values are average from 
replicates in each station: n= number of replicates; S= number of species; N= densities (ind.m-2); 
J’= Pielou’s evenness index and H’(log e)= Shannon-Wiener diversity index.  

Cruise/Depth n S N J' H'(loge) 
D297/3400m 3 9.7 336.0 0.348 0.782 
D297/4300m 3 12.3 185.3 0.814 2.03 
CD179/3400m 4 4.8 533.5 0.492 0.733 
CD179/4300m 4 5.0 112.7 0.966 1.53 

 

Besides Pseudotanaidae SP051 that accounts for ~80% of the total abundance at 

3400m in both years, 32% at 4300 in 2005 and 16% at 4300m in 2006 there is a marked 

change in the species composition of the assemblages at both depths from one year to 

the following (Table 5); at 3400m the asellote Eugerda tetarta ranks among the dominant 

species in both years but at 4300m there are no other common species in the six 

dominant listing. 
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Discussion and Conclusion 

The results on the vertical distribution of Crustaceans in the Portuguese canyons 

show that these animals remain mostly at the surface or subsurface layers (0-3cm below 

the seafloor). At 1000m there was a greater percentage of the crustacean fauna living 

deeper in the sediment mostly because of the occurrence of larger sized amphipods (eg. 

Carangoliopsis spinulosa) and leuconid cumaceans that may burrow in the sediments. The 

results obtained with crustacean fauna from canyons and slopes in the present work are 

coherent with previous studies on vertical distribution within the sediment on canyons 

from west Iberia Margin reporting that in general there are decreasing faunal abundance 

with increasing sediment depth (Cúrdia 2001; Cúrdia et al. 2004; Tiago 2008). The 

decreasing abundance towards deeper sediment layers may be associated to the 

distribution of total organic carbon (TOC) that reveals the same trend (Ingels et al. 2009). 

The analyses on the data obtained during the Pelagia cruise allowed to compare 

the biodiversity and abundance patterns in canyons and slopes at 1000m. Multivariate 

analysis confirmed the significant differences between slopes and canyons but the 

interpretation of the results showed that the assemblages sampled at this depth were 

highly heterogeneous and that the only consistent pattern was the higher density of the 

canyon assemblages. The organically enriched sediment present in the canyons (Garcia et 

al. 2007). Is likely to provide trophic conditions that favour the increased densities of 

macrofauna in canyons. These results follow previous comparisons between canyons and 

open slopes, where higher abundances and biomass were found in canyons (Sarda et al. 

1994; Tiago 2008). 

 The data collect from Charles Darwin 176 cruise was analyzed to assess differences 

within and between canyons (depth-related differences). Globally the results of the 

multivariate analyses confirmed that are significant differences both between and within 

canyons, with the Nazaré canyon assemblages clearly segregated from the Cascais and 

Setúbal that revealed less dissimilarities. The Nazaré canyon showed low diversity and 

high abundance resulting in highly dominated assemblages, while Cascais and Setúbal 

showed assemblages with opposite features. 
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Because Nazaré canyon is not connected with a major river basin and Cascais and 

Setúbal canyon are linked to Tejo and Sado Rivers (Arzola et al. 2008) it could be expected 

that the latter should be more active and organically enriched favouring in this case high 

abundance and assemblages dominated by small-sized opportunistic detritivore species. 

In fact, recent studies show that in Nazaré canyon the Total organic carbon (TOC) content 

of the sediments much higher than in others canyons or in slopes but the C/N ratios also 

support that these high concentrations of organic matter are of terrestial origin 

(Kiriakoulakis et al. 2009), meaning that they have poor quality as food for the benthos 

when compared to more labile matter of marine origin. Furthermore Stiger et al. (2009) 

based on sedimentation rates measured in sediment traps, defend that Setúbal canyon 

(and probably also Cascais) are, at the moment, canyons where the transport of 

sediments from shallow waters to deep sea is not effective. These characteristics are 

crucial for setting trophic conditions in the Nazaré canyon contrasting with the other two 

studied canyons. The occurrence of a constant source of high concentrations of refractory 

organic matter in Nazaré may lead to the occurrence of a less diverse but abundant 

assemblage of crustaceans almost dominated by small-sized opportunist detritivore 

species such as the pseudotanaids (Tanaidaomorpha) and desmosomatids (Asellota). 

Presumably higher quality food in the other two canyons associated with more stable 

hydrodynamic conditions may support assemblages that are lower in density but also 

much more diverse. 

Differences within canyons are expressed mainly by the higher densities and 

species richness at 3400m and globally impoverished assemblages at 4300m in all 

canyons. These results agree with previous studies in the Nazaré canyon (Cúrdia et al. 

2004) and comparing the assemblages from Setúbal canyon at 3400m and the Tagus 

abyssal plain at ~5000m (Gage et al. 1995; Lamont et al. 1995). Recently, studies of the 

nematode assemblages of the Nazaré canyon revealed similar trends (Ingels et al. 2009) 

and explain these depth related differences by the higher TOC content in the middle 

canyon (3.70% at 3400m and 3.03% at 4300m). In Setúbal canyon a well developed 

nepheloid layer and moderate to strong tidal currents able to resuspend fine grained 

sediment characterize the middle depths while at greater depths the seafloor is covered 
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by thick and relatively undisturbed hemipelagic deposits (Stiger et al. 2009). Again these 

factors may set different conditions with higher food availability and intermediate levels 

of environmental disturbance at the middle canyon favouring higher densities and slightly 

lower evenness but also higher species richness and subsequently higher diversity. 

The use of different sampling gear with different areas sampled in the three 

cruises carried out during this study is a considerable limitation for the interpretation of 

the results. Because the NIOZ box core was the only sampler used at 1000m a comparison 

between the assemblages at this depth and greater ones was not considered. However, 

the use of the USNEL box core and the UKORS megacore in consecutive years in the 

middle and lower Nazaré canyon allowed some considerations on the implications of the 

methodological change for the interpretation of results. 

 Since 1949, the United States Naval Electronics Laboratory (USNEL) box core is 

used worldwide for the quantitative investigation of the deep sea which makes this 

technique almost the standard for benthic biological investigations (Hessler & Jumars 

1974; Gage & Tyler 1991). The UKORS device provide an alternative method to obtain 

small diameter cores; it was designed to reduce penetrating velocity and bow wave, using 

an hydraulic mechanism and it keeps both sediment and the overlying water tightly 

sealed after the sampling (Shirayama et al. 1995) decreasing the loss of epibenthic 

crustaceans and other highly mobile organisms. 

In principle, the UKORS megacore is considered more efficient but, as it collects 

smaller areas than the USNEL box core, it may require more replicate sampling. The lower 

number of species collected in 2006 at both depths in Nazaré is clearly influenced by the 

smaller area sampled by the UKORS megacore but, the similarity in the community 

structure of the assemblages collected in consecutive years indicates that both sampling 

devices can be used effectively to represent the benthic assemblages. Once the UKORS is 

considered more efficient for the collection of mobile organisms, such as many 

peracarids, it would be expected to obtain higher density estimates for the crustacean 

assemblages collected in 2006, however this was not the case at 4300m suggesting that 

interannual variability must be considered in the interpretation of results. In fact the 

significant differences confirmed by the multivariate analysis between samples collected 
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during D297 and C179 cruises are more likely to be explained by interannual variability 

then to the difference in the samplers’ efficiency. This is clearly illustrated, for instance, 

by the marked change in the dominant species at both depths. 

The importance of crustacean studies from the deep sea is well recognized; the 

diversity of feeding modes and life styles of peracarid crustacean is crucial for the 

functioning of the benthic communities and the burrowing detritivore species (several 

Isopoda and Tanaidacea) that contribute to the carbon cycling in benthic environments 

(Brandt 1995) may be especially important in canyons due to their characteristic organic 

enrichment.  

Studies on canyon ecosystems are scarce and the main difficulties of the present 

work were the comparison to other benthic assemblage studies and the interpretation of 

the results in relation to environmental data. This thesis investigated crustacean 

abundance and diversity from the Portuguese canyons at the species level which is a rare 

achievement and despite the limitations in data analysis and interpretation we expect to 

contribute to a better knowledge of the biodiversity and understanding of the functioning 

of these interesting but still understudied deep sea ecosystems. 
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Reino Animalia Linneaus, 1753 

Phylum Arthropoda Latreille,1829 

Subphylum Crustacea Brunnich, 1772 

Classe Malacostraca Latreille, 1802 

Subclasse Eumalacostraca Grobben, 1892 

SUPERORDEM EUCARIDA Calman, 1904 

Order Decapoda Latreille, 1802 
 

SubOrder Pleocyemata Burkenroad, 1963 
 
Infra order Brachyura Latreille, 1803 
Family Cymonomidae Bouvier, 1897 
 Cymonomus Milne-Edwards, 1881 

            Cymonomus granulatus Thomson, 1873 
 

SUPERORDER PERACARIDA Calman, 1904 
 
Order Mysidacea Haworth, 1825 
 

SubOrder Mysida Haworth, 1825 
 
Family Mysidae Dana, 1850 

Mysidae sp.A (MYSPSP001) 
 

Order Amphipoda Latreille, 1816 
 

SubOrder Gammaridea Latreille, 1803 
 
Family damage/undetermined (AMPSP072) 
 
Family Ampeliscidae Costa, 1857 

  Ampelisca Kroyer, 1842  
    Ampelisca sp.A (AMPSP074) 

Ampelisca sp.B (AMPSP075) 
 

Haploops Liljeborg, 1856 
   Haploops cf. setosa Boeck, 1871 
     
 Family Eusiridae Stebbing, 1888 

Eusirus Krøyer, 1845 
Eusirus longipes Boeck, 1861 
 

 Family Haustoriidae Stebbing, 1906 
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  Bathyporeia Lindstrom, 1855 
Bathyporeia sp. (AMPSP063) 
 

 Family Liljeborgiidae Stebbing, 1899 
  Liljeborgia Bate, 1862 

Liljeborgia sp. (AMPSP068) 
 

 Family Lysianassidae Dana, 1849 
  Lysianassa Milne-Edwards, 1830 
   Lysianassa sp.A (AMPSP066) 
   Lysianassa sp.B (AMPSP076) 

Lysianassa sp.C (AMPSP077) 
Lysianassidae?  
 

Family Melitidae Bousfield, 1973 
Eriopisa Wrzesniovsky, 1890 

Eriopisa elongata Bruzelius, 1859 
 

Family Carangoliopsidae Bousfield, 1977 
Carangoliopsis 

Carangoliopsis spinulosa Ledoyer, 1970 
 

Family Oedicerotidae Lilljeborg, 1865 
  Perioculodes Sars, 1895 

  Perioculodes cf. aequimanus Korssman, 1880 
 

Monoculodes Stimpson, 1853 
Monoculodes sp. (AMPSP069) 
 

Bathymedon Sars, 1892 
Bathymedon sp.A (AMPSP080) 
Bathymedon sp.B (AMPSP081) 
 

Synchelidium Sars, 1892 
Synchelidium cf. longidigitatum Ruffo, 1947 
 

  Halicreion Boeck, 1871 
cf. Halicreion sp. (AMPSP083) 
 

Family Pardaliscidae Boeck, 1871 
  Halice abyssi Boeck, 1871 
  Pardaliscidae SP. A (AMPSP079) 
  Pardaliscidae? 
 

Family Phoxocephalidae Sars, 1891 
 Harpinia Boeck, 1876 

Harpinia spp. (AMPSP065) 
 

Leptophoxus G. O. Sars, 1891  
Leptophoxus falcatus Sars, 1882 
 

Metaphoxus Bonnier, 1896  
Metaphoxus sp.A (AMPSP064) 
Metaphoxus sp.B (AMPSP070) 
Metaphoxus sp.C (AMPSP050) 
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Family Synopiidae Dana, 1853 
 

   Syrrhoites sp. (AMPSP067) 

Family Urothoidae Bousfield, 1978 
 Carangolia J.L. Barnard, 1961 

Carangolia barnardi Barnard, 1961 
 
 

SubOrder Corophiidea Leach, 1814 
 

 Family Caprellidae Leach, 1814 
  Liropus Mayer, 1890 

Liropus elongatus Mayer, 1890 
 

Family Dulichiidae Dana, 1849 
Dulichiopsis Laubitz, 1977  

  Dulichiopsis nordlandicus Boeck, 1871 
 

Order Isopoda Latreille, 1817 
 
 SubOrder Cymothoida Leach, 1818 
 

Family Cirolanidae Dana, 1852 
Eurydice Leach, 1815 

Eurydice sp. (ISOSP064) 
 

  Metacirolana Nierstrasz, 1931 
   Metacirolana sp. (ISOSP065) 
 

Family Hyssuridae Wagele, 1981 
Kupellonura Barnard, 1925 

Kupellonura sp. (ISOSP067) 
 

Family Paranthuridae Menzies & Glynn, 1968 
Paranthura Bate & Westwood, 1866 

cf. Paranthura sp. (ISOSP066) 
 

 SubOrder Asellota Latreille, 1802 
 

Family damage/undetermined  
 

Family Leptanthuridae Poore, 2001 
Bullowanthura Poore, 1978 

cf. Bullowanthura sp. (ISOSP068) 
Bullowanthura cf. aquitanica Kensley, 1982 
 

Family Dendrotionidae Vanhoffen, 1914 
 Dendrotion G.O. Sars, 1872  

Dendrotion cf. elegans Lincoln & Boxshall, 1983 
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 Family Desmosomatidae G. O. Sars, 1897 
  Mirabilicoxa Hessler, 1970  

Mirabilicoxa aff. gracilepes 
   Mirabilicoxa cf. similis 

Mirabilicoxa cf. acuminata Hessler, 1970 
   Mirabilicoxa sp. (ISOSP037) 
 

Eugerdella Kussakin, 1965 
Eugerdella aff. pugilator Hessler, 1970 
Eugerdella pugilator Hessler, 1970 
Eugerdella cf. Ischnomesoides Hessler, 1970 
Eugerdella sp. A 
Eugerdella sp. B 
Eugerdella sp. C 
 

 Prochelator Hessler, 1970 
Prochelator aff. abyssalis Hessler, 1970 
Prochelator sp. (ISOSP086) 
cf. Prochelator sp. 
 

Eugerda Meinert, 1890 
Eugerda tetarta Hessler, 1970 
Eugerda sp.  
 

Chelator Hessler, 1970 
Chelator cf. verecundus Hessler, 1970 
Chelator cf. insignis 
Chelator sp. (ISOSP085) 
 

Momedossa Hessler, 1970  
Momedosa sp.A (ISOSP087) 
Momedosa sp.B (ISOSP089) 
 

Paradesmosoma Kussakin, 1965  
cf. Paradesmosoma sp. 
 

Desmosomatidae spp. 
 

Family Eurycopidae 
  Acanthocope Beddard, 1885 

Acanthocope sp. (ISOSP052) 
Eurycope Sars, 1864 

   Eurycope sp.A (ISOSP079) 
   Eurycope SP.B? (ISOSP080) 
  Munnopsurus Richardson, 1912 

Munnopsurus sp. (ISOSP054) 
 

Family Haploniscidae Hansen, 1916 
  Haploniscus Richardson, 1909 

Haploniscus cf. antarticus Vanhoff, 1914 
   Haploniscus cf. charcoti Chardy, 1975 
   Haploniscus cf. foresti Chardy, 1974 
   Haploniscus cf. angustus Lincoln, 1985 
  Chauliodoniscus Lincon, 1985  

Chauliodoniscus sp. nov. (ISOSP046) 
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Family Ilyarachnidae Hansen, 1916 
  Ilyarachna Sars, 1870 

Ilyarahcna sp. A (ISOSP077) 
Ilyarachna sp. B (ISOSP078) 

 
Family Ischnomesidae Hansen, 1916 

  Haplomesus Richardson, 1908  
Haplomesus sp. A (ISOSP057) 
Haplomesus sp. B (ISOSP058) 

   Haplomesus sp. C (ISOSP060) 
 

Ischnomesus Richardson, 1908  
   Ischnomesus gracilis Chardy, 1974 
   Ischnomesus cf. norvegicus Svavarsson, 1984  
 

Family Janirellidae Menzies, 1956 
  Janirella Menzies, 1956    

Janirella cf. hanseni Bonnier, 1896 
 

 Family Macrostylidae Hansen, 1916 
Macrostylis Sars, 1864 

   Macrostylis cf. abyssicola Hansen, 1916 
   Macrostylis aff. longiremis Meinert, 1890 
   Macrostylis magifica Wolff, 1962 
   Macrostylis aff. subinermis Hansen, 1916 
 

Family Nannoniscidae Hansen, 1916 
  Nannoniscus G.O. Sars, 1870  

Nannoniscus sp. A (ISOSP094) 
Nannoniscus sp. B (ISOSP097) 
 

  Rapaniscus Siebenaller & Hessler, 1981 
Rapaniscus sp. A (ISOSP095) 
 

Regabellator Siebenaller & Hessler, 1981 
   Regabellator profugus Siebenaller & Hessler, 1981 
 
  Thaumatosoma Hessler, 1970 

cf. Thaumatosoma sp. 
 

 Family Paramunnidae Vanhöffen, 1914 
Pleurogonium G.O. Sars, 1864  

   Pleurogonium cf. rubicundum Sars, 1864 
 
 Family Thambetamatidae? Stebbing, 1913 

cf. Thambetamatidae  
sp.A (ISOSP098) 
SP.B (ISOSP063) 

Thambema 
cf. Thambema (ISOSP093) 
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Order Cumacea Kroyer, 1846 
 

Family damage/undetermined 
 

 Family Diastylidae Bate, 1856 
   SP. A (CUMSP002) 
   SP. B (CUMSP003) 
   SP. C (CUMSP007) 
   SP. D (CUMSP008) 
   SP. E (CUMSP014) 
 
 Family Lampropidae Sars, 1878 
   SP. A (CUMSP011) 
   SP. B (CUMSP018) 
 

Family Leuconidae Sars, 1878 
  Leucon Kroyer, 1846  

Leucon sp. A (CUMSP004) 
Leucon sp. B (CUMSP005) 
Leucon sp. C (CUMSP012) 
Leucon sp. D (CUMSP019) 
Leucon sp. E (CUMSP020) 
Leucon sp. F (CUMSP021) 
Leucon sp. G (CUMSP022) 

Eudorella Norman, 1867 
   Eudorella sp. A (CUMSP017) 

 Family Nannastacidae Bate, 1866 
   sp. A (CUMSP006) 

sp. B (CUMSP009) 
sp. C (CUMSP010) 
sp. D (CUMSP013) 
sp. E (CUMSP015) 

Nannastacidae spp. 
  
Order Tanaidacea Dana, 1849 
 

SubOrder Tanaidomorpha Sieg, 1980 
 
Family damage/undetermined (TANSP001) 

sp. A (TANSP002?) 
sp. B (TANSP037) 
sp. C (TANSP046) 
sp. D (TANSP047) 
sp. E (TANSP052) 
sp. F (TANSP054) 
sp. G (TANSP057) 
sp. H (TANSP059) 
sp. I (TANSP060) 
sp. J (TANSP062) 
sp. K (TANSP063) 
sp. L (TANSP064) 
sp. M (TANSP065) 
sp. N (TANSP066) 
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sp. O (TANSP067) 
sp. P (TANSP068) 
sp. Q (TANSP069) 
sp. R (TANSP070) 
sp. S (TANSP999) 

 
 Family Anarthuridae Lang, 1971 
   sp. A (TANSP013) 

sp. B (TANSP043) 
sp. C (TANSP056) 
 

 Family Pseudotanaidae Sieg, 1976 
sp. A (TANSP039) 
sp. B (TANSP051) 
sp. C (TANSP041) 

 Family Tanaellidae Larsen &Wilson, 2002 
   sp. A (TANSP040) 
   sp. B (TANSP058) 
   sp. C (TANSP049) 
    

Family Agathotanaidae Lang, 1971 
   Sp. A (TANSP048) 

 Family Colleteidae Larsen & Wilson, 2002 
   sp. A (TANSP053) 

 Family Typhlotanaidae Sieg, 1986 
   sp. A TANSP042 
   sp. B TANSP045 
   sp. C TANSP050 

sp. D TANSP055 
   sp. E TYP 
 
 SubOrder Apseudomorpha Sieg, 1980 
 
 Family Apseudidae Leach, 1814 
   Sp. A (TANSP017) 
   Sp. B (TANSP044) 

Apseudes Leach, 1814 
   Apseudes grossimanus Norman & Stebbigng, 1886 
 

Family Sphyrapidae Gutu, 1980 
 Sphyrapus Sars, 1882 

   Sphyrapus malleolus Norman & Stebbigng, 1886 
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Family Dulichiidae

Dulichiopsis norlandicus Boeck, 1977
(AMPHSP013)

SubOrder Corophiidea

Liropus elongatus 
Mayer, 1890 (AMPHSP011)

Family Caprelidae



Family Ampeliscidae

Haploops cf. setosa
Boeck, 1871 (AMPHSP062)

Ampelisca sp. A
(AMPHSP074)

Ampelisca sp. B
(AMPHSP075)

SubOrder Gammaridea



Family Eusiridae

Eusirus longipes 
Boeck, 1861 (AMPHSP029)

SubOrder Gammaridea

Bathyporeia sp.
(AMPHSP063)

Family Haustoridae

Liljeborgia sp.
(AMPHSP068)

Family Liljeborjiidae



Family Lysianassidae

(AMPHSP076)
(AMPHSP066)

(AMPHSP077)

(Lysianassidae und)

SubOrder Gammaridea



Family Melitidae

Eriopisa elongata 
Bruzelius, 1859 (AMPHSP018)

Carangoliopsis spinulosa
Ledoyer, 1970 (AMPHSP040)

SubOrder  Gammaridea

Family Carangoliopsidae



Family Oedicerotidae

Synchelidium cf. longiditatum 
Ruffo, 1947 (AMPHSP082) cf. Halicreion sp.

(AMPHSP083)

cf. Bathymedon sp. B
(AMPHSP081)cf. Bathymedon sp. A

(AMPHSP080)

Perioculodes cf. aequimanos 
Korssman, 1880 (AMPHSP057)

Monoculodes sp. 
(AMPHSP069)

SubOrder Gammaridea



Family Phoxocephalidae

Metaphoxus sp.C
(AMPHSP050)

Leptophoxus falcatus, Sars, 1882
(AMPHSP058)

Metaphoxus sp.A
(AMPHSP064)

Harpinia spp. 
(AMPHSP065)

Metaphoxus sp.B 
(AMPHSP070)

SubOrder Gammaridea



Family Synopiidae

Syrrhoites sp.
(AMPHSP067)

Carangolia barnardi Barnard, 1961 
(AMPHSP051)

Family Urothoidae

SubOrder Gammaridea



Family Pardalaliscidae

Halice abyssi
Boeck, 1871 (AMPHSP078)

Pardalacisdae? 

Pardalacisdae sp.A
(AMPHSP079)

SubOrder Gammaridea
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Eurydice sp.
(ISOSP064)

Metacirolana sp.
(ISOSP065)

SubOrder Cymothoidea

Family Cirolanidae

Kupellonura sp.
(ISOSP067)

Family Hyssuridae
cf. Paranthura sp.

(ISOSP066)

Family Paranthuridae



Family Leptanthuridae

cf. Bullowanthura
(ISOSP068)

Bullowanthura cf. aquitanica
Kensley, 1982 (ISOSP076)

SubOrder Asellota

Dendrotion cf. elegans
Lincon & Boxshall, 1983 (ISOSP047)

Family Dendrotiidae



Family Desmosomatidae

Mirabilicoxa cf. similis
(ISOSP081) Mirabilicoxa aff. gracilepes

(ISOSP082)

SubOrder Asellota

Mirabilicoxa cf. acuminata
Hessler, 1970 (ISOSP036)

Mirabilicoxa sp.
(ISOSP037)



Family Desmosomatidae

Eugerdella aff. Pugilator
Hessler, 1970 (ISOSP083)

Eugerdella pugilator
Hessler, 1970 (ISOSP084)

SubOrder Asellota

Eugerdella sp.B
(ISOSP091)Eugerdella sp.A

(ISOSP090)

Eugerdella cf. 
Ischnomesoides

Hessler, 1970 (ISOSP092)



Family Desmosomatidae

Eugerda tetarta
Hessler, 1970 (ISOSP005)

Chelator cf. verecundis
Hessler, 1970 (ISOSP003)

SubOrder Asellota

Chelator sp.
(ISOSP085)

Chelator cf. insignis
(ISOSP002)



Family Desmosomatidae

Momedosa? sp.A
(ISOSP087)

Momedosa sp.B
(ISOSP089)

SubOrder Asellota

Prochelator aff. abyssalis
Hessler, 1970 (ISOSP039)

Prochelator sp.
(ISOSP086)

cf. Paradesmosoma sp.
cf. Prochelator sp.



Family Eurycopidae

Acanthocope sp.
(ISOSP052) Eurycope sp.A

(ISOSP079)

SubOrder Asellota

Eurycope sp.?B
(ISOSP080)

Munnopsurus
(ISOSP054)



Family Haploniscidae

Haploniscus cf. antarticus
Vanhoff, 1914 (ISOSP042)

Haploniscus cf. charcoti
Chardy, 1975 (ISOSP043)

SubOrder Asellota

Haploniscus cf. foresti
Chardy, 1974 (ISOSP044)

Haploniscus cf. angustus
Lincoln, 1985 (ISOSP045)

Chauliodoniscus (sp.nov)
(ISOSP046)



Family Ilyaracnidae

Ilyaracna sp.B
(ISOSP078)

Ilyaracna sp.A
(ISOSP077)

SubOrder Asellota



Family Ischnomesidae

Haplomesus sp.A
(ISOSP057)

Haplomesus sp.B
(ISOSP058)

SubOrder Asellota

Haplomesus sp.C
(ISOSP060)

Ischnomesus gracilis
Chardy, 1974 (ISOSP059)

Ischnomesus cf. norvegicus
Svavarsson, 1984 (ISOSP056)



Family Macrostylidae

Macrostylis aff. Longiremis
Meinert, 1890 (ISOSP050)

Macrostylis cf. abyssicola
Hansen, 1916 (ISOSP049)

SubOrder Asellota

Macrostylis aff. subinermis
Hansen, 1916 (ISOSP051)

Macrostylis magnífica
Wolff, 1962 (ISOSP048)



Family Nannoniscidae

Regabellator profugus
Siebenaller & Hesseler, 1981

(ISOSP096)

Nannoniscus sp. A
(ISOSP094)

SubOrder Asellota

cf. Thaumatosoma sp.
(ISOSP088)

Rapaniscus sp. A
(ISOSP095)

Nannoniscus sp. B
(ISOSP097)



SubOrder Asellota

Pleurogonium cf. rubicundum
Sars, 1864 (ISOSP055)

Family Paramunnidae

Janirella cf. hanseni
Bonnier, 1896 (ISOSP029)

Family Janirellidae

cf. Thambema
(ISOSP093)

Family Thambetamatidae


