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Summary 

The widespread common shipworm Teredo navalis L., 1758 is a marine wood-boring bivalve and 

causes immense economic damages through the infestation of natural (e.g. mangrove roots, drift-

wood) and anthropogenic wood sources (e.g. groyne piles, harbor facilities). The destruction of 

coastal protection structures and underwater cultural heritage results in substantial consequential 

costs and requires reliable species identification for statements about the current distribution area. 

First scientific reports on T. navalis for Central Europe date back to 1731 for the North Sea and to 

1835 for the Baltic Sea, respectively. In the following decades, several sporadic mass occurrences 

have been stated for both areas. Since the end of the 20th century, a permanent, self-reproducing 

population has been monitored in the Baltic Sea. In this thesis, 430 specimens of Teredinidae 

from sampling sites in Europe and North America were investigated using molecular taxonomy. 

Several molecular markers, two nuclear (18S/28S) as well as one mitochondrial marker 

(cytochrome-c-oxidase subunit I, hereafter COI) were used. For the first time, a newly developed 

specific primer pair for T. navalis allowed PCR and sequencing of a 675 bp COI gene fragment 

and species identification via the DNA barcoding approach. Thus, it could be scientifically proven 

that all specimens belong to only one species and no sibling species of T. navalis exist in the in-

vestigated area. The classification into the system of wood-boring bivalves by using the nuclear 

dataset for a phylogenetic tree calculation revealed no differentiation between specimens of 

T. navalis from Europe and North America.  

The mtDNA analyses showed high COI haplotype diversities in combination with low nucleotide 

diversities and a star-like network phylogeny with a predominant central haplotype. Various 

common population genetic indices, e.g. fixation index (FST) and an AMOVA analysis were cal-

culated to reveal the present population structure. Finally, these calculations could not determine 

differentiated populations or any kind of different demes or lineages. Therefore, the results of this 

thesis point to a regional panmictic population in Central Europe reflected by a high gene flow 

with unhindered migration of individuals (e.g. via pelagic larvae). In addition, the past demo-

graphic structure of T. navalis was analyzed. The calculated values of Tajima’s D, Fu’s F and the 

mismatch distribution indicate a recent sudden population expansion but no signs of either a bot-

tleneck or a founder effect.  

To determine whether a range expansion of T. navalis in the Baltic Sea is observable, the larval 

settlement has been monitored over a period of four years. Wooden test panels were deployed 

along the prevailing salinity gradient and temperature and salinity were recorded in the adjacent 

water. During the investigation period, strong variations of the borehole abundances were found. 

However, no correlation was found between the key factors temperature and salinity and the 

borehole abundances. Analogous to previous studies, no current range expansion of T. navalis 

towards the east and thus areas of the Baltic Sea with lower salinities could be detected. 

 

 

 



 
 
Zusammenfassung 
Die marine Schiffsbohrmuschel Teredo navalis L., 1758 (Mollusca: Bivalvia: Teredinidae) ist 
weltweit verbreitet und verursacht durch den Befall natürlicher (z.B. Mangrovenwurzeln, 
Treibholz) sowie anthropogener Holzquellen (z.B. Buhnenpfähle, Hafenanlagen) immense 
ökonomische Schäden. Die Zerstörung von Küstenschutzbauwerken und des Unterwasserkultur-
erbes kann zu erheblichen Folgekosten führen und erfordert für Aussagen zum aktuellen Verbrei-
tungsgebiet eine zuverlässige Artidentifikation. 
Erste Berichte über T. navalis in Mitteleuropa stammen aus den Jahren 1731 für die Nordsee und 
1835 für die Ostsee. In den folgenden Jahrzehnten wurden für beide Gebiete mehrere unregelmä-
ßig auftretende Massenvorkommen beschrieben und erst seit Ende des 20. Jahrhunderts ist in der 
Ostsee eine permanente, sich selbst reproduzierende Population bekannt. In dieser Arbeit wurden 
insgesamt 430 Exemplare der Teredinidae aus Europa und Nordamerika molekular-taxonomisch 
untersucht. Es wurden zwei Kernmarker (18S/28S) sowie ein mitochondrialer Marker (Cy-
tochrom-c-Oxidase Untereinheit I, nachfolgend COI) verwendet. Neu entwickelte, spezifische 
Primer für T. navalis erlaubten zum ersten Mal die Vervielfältigung und Sequenzierung eines 
675 bp langen COI Genfragmentes und die Artbestimmung mittels ‚DNA barcoding‘. Es konnte 
festgestellt werden, dass alle untersuchten Exemplare aus Nordsee und Ostsee zur Art T. navalis 
gehören und im Untersuchungsgebiet keine Geschwisterarten existieren. Der 18S/28S Datensatz 
wurde für eine phylogenetische Stammbaumberechnung verwendet und zeigte keine Differenzie-
rung zwischen Individuen von T. navalis aus Europa und Nordamerika. 
Die mtDNA-Analysen zeigten eine große genetische Diversität und eine sternförmige 
Haplotypennetzwerk-Phylogenie mit einem dominierenden zentralen Haplotyp. Verschiedene 
populationsgenetische Indizes wie z.B. der Fixierungsindex (FST) und eine AMOVA-Analyse 
wurden berechnet, konnten aber keine differenzierten Populationen aufzeigen. Die Ergebnisse 
deuten vielmehr auf eine regionale panmiktische Population in Mitteleuropa hin, die durch einen 
hohen Genfluss mit ungehinderter Migration von Individuen (z.B. über pelagische Larven) cha-
rakterisiert ist. Darüber hinaus wurde die historische demographische Struktur von T. navalis ana-
lysiert. Die berechneten Werte von Tajima's D und Fu's F sowie eine Mismatch-Analyse deuten 
auf eine plötzliche Populationsexpansion hin. Dabei konnten keine Anzeichen für einen Flaschen-
hals- oder Gründereffekt ermittelt werden.  
Um festzustellen, ob eine Ausbreitung von T. navalis in der Ostsee in Richtung Osten beobachtet 
werden kann, wurden die Larvenansiedlungen über einen Zeitraum von vier Jahren beobachtet. 
Entlang des vorherrschenden Salzgehaltsgradienten wurden Testhölzer im Wasser exponiert, 
während gleichzeitig Wassertemperatur und Salzgehalt erfasst wurden. Im Untersuchungszeit-
raum wurden starke Schwankungen der Bohrlochabundanzen, jedoch keine Korrelation zwischen 
den Schlüsselfaktoren Temperatur und Salzgehalt und der Bohrlochanzahl als Maß des Larven-
falls ermittelt. Analog zu früheren Studien konnte keine Ausdehnung des Verbreitungsgebietes 
von T. navalis nach Osten und damit in Gebiete der Ostsee mit geringerem Salzgehalt nachgewie-
sen werden. 
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Figure 1 | Plate with the first known scientific illustration of 
shipworms sampled in the Netherlands, most likely Teredo navalis, 
made by Godofredus Sellius (Sellius, 1733). 

 

1 Introduction  
1.1 Bivalve wood-boring mollusks 

 
Marine wood-boring organisms are of various shapes and originate from different groups such 

as Crustacea or Bivalvia. The Teredinidae (commonly known as shipworms) are distributed 

worldwide from the polar to the tropical zones probably representing the group of the most 

wood-destructive and cost-incurring marine invertebrates (Turner, 1966; Distel et al., 2011; 

Borges et al., 2012). Shipworms (Mollusca: Bivalvia: Teredinidae; Fig. 2) are phylogenetical-

ly closely related to common mussels like Mya arenaria or Macoma balthica. However, body 

shape, life cycle, nutrition and habitat requirements are rather different in comparison to other 

marine bivalves.  

At first glance, with the elongated body lacking a shell cover (Fig. 6), they are worm-like in 

their general appearance. This general appearance is the reason for the misleading name as-

signment ‘shipworm’. The first nature observers like Aristotle and Pliny the elder perceived 

that these wood-destroying organisms are a kind of special marine species but they were not 

able to classify them. The meaning of the word ‘shipworm’ is ambiguous at this time and is 

used e.g. by Aristotle for wood-boring beetles and termites as well as shipworms (Moll, 

1914). Therefore, it happened quite early that these organisms were sorted into wrong groups, 

usually to the insects (Moll, 1914). The first author who described them scientifically was 

Godofredus Sellius in his very detailed monograph “Historia naturalis teredinis seu Xyloph-

agi marini, tubulo-conchoidis speciatim belgici: cum tabulis ad vivum coloratis” in 1733 

(Sellius, 1733). He mentioned, however, that the famous personal doctor of the Queen of Eng-

land Elisabeth I., Lister (“Cochle-

arum Angliae Libri”), was the first 

to place shipworms among mus-

sels because of their intestines 

(Moll, 1914, 1928). Nowadays, 

there is no doubt about their taxo-

nomic classification.  

For a long time, many authors 

(e.g. Roch, 1937) reported ship-

worm species numbers of up to 

150 - 160 species. Moll (1942) 

even reported a list with 300 

names of recent and 170 names of 
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Figure 2 | Scheme for the taxonomical classification of Teredo navalis: The three other shipworm species 
(Nototeredo norvagica, Lyrodus pedicellatus, Teredothyra dominicensis) have been partly processed in the first 
publication of this thesis and are therefore mentioned here. 

fossil teredinids, but only containing half as many species. These numbers must certainly be 

considered with caution, as many scientific synonyms were given to the different species from 

various authors because of their great similarities and a lack of knowledge concerning their 

identification. For example, the WORMS database (World Register of Marine Species, 

http://www.marinespecies.org, 10.10.18) contains 16 different scientific synonyms for the 

common shipworm Teredo navalis, e.g. Teredo beachi, Teredo japonica or Teredo sinensis. It 

is confusing and not known whether these synonyms can really all be assigned to T. navalis or 

whether they might be distinct or even sibling species. Nevertheless, this phenomenon is also 

well-known for other shipworm species like e.g. Lyrodus pedicellatus (33 synonyms) or 

Bankia carinata (20 synonyms). It seems to be mainly caused by the difficult taxonomic 

determination of these wood-boring bivalves in contrast to organisms that do not drill into 

wood. Due to this possible overestimation, it can be questioned as to whether there are over 

150 different species of shipworms. Today, the confirmed number is much lower. Various 

authors state the present known number of currently existing shipworm species of 68 

(Calloway & Turner, 1988; Shipway, 2013). According to Voight (2015), there are 127 spe-

cies of wood-boring bivalves (68 teredinids and 59 xylophagaids) in total that are known so 

far. 

Biology 

Overall, shipworms display the same basic anatomical structure as other mollusks such as 

clams and oysters. The predominantly biggest modification is the elongation of the body and 

the inner organs that represents an adaptation to the wood-boring way of living (Quayle, 
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1992). In adult shipworms, the location of the mouth and anus corresponds to the typical posi-

tion of these organs in Bivalvia (Turner, 1966). The neural system is also typical for the Bi-

valvia and consists of three symmetrically arranged ganglia pairs: the merged pedals and vis-

ceral ganglia, as well as the cerebral ganglia (Moll, 1914).  

Furthermore, there are some unique features that distinguish the teredinids from other Bival-

via, as described in detail by Turner (1966): “Other unique features in the anatomy of the Te-

redinidae include: 1) the anal canal, which extends from the anus over the visceral mass to the 

suprabranchial cavity; 2) the caecum, or wood-storing pouch, which extends posteriorly from 

the stomach (except in Kuphus which lacks a caecum); 3) the pallets with muscles which 

work them; and 4) the insertion of the siphonal retractor muscle on the calcareous lining of 

the burrow rather than on the valves from which they are, of course, greatly separated.” 

The structure of the shells resembles that of all Bivalvia and consists of three layers: Peri-

ostracum, Ostracum and Hypostracum (May, 1929). However, in contrast to all other Bival-

via, the shells do not enclose and cover the soft body of the animal. All Teredinidae are pro-

vided with a drilling unit that originated from the greatly reduced bivalve shell. This drilling 

unit starts to develop a few days after the settlement onto wood by the byssus filaments, once 

the metamorphosis from the free-swimming pediveliger larvae to the adult has taken place 

(Nair & Saraswathy, 1971). This way of life with planktonic larvae is found in all teredinids, 

albeit to varying degrees in the individual species.  

The reproduction is diverse within the different species. Basically, there are three different 

methods of fertilization. Some species release the sex products via the excurrent siphon and 

the fertilization will take place in the water column. Other species show an internal ferti-

lization process within the females with the subsequent development of the larvae in the 

breeding pouch (Nair & Saraswathy, 1971). Moreover, direct fertilization via the siphons of 

animals living next to each other has also been found. This so-called ‘pseudocopulation’ has 

been observed for the species Bankia gouldi (Clapp, 1951).  

The adult phase is always benthic as animals are firmly attached to the living tube in the area 

of the entrance borehole (Hahn, 1956). As the entrance borehole is only 1 - 2 mm in diameter 

and the drilled living tube is always conical, the adults spend their whole life in this calcare-

ous-lined tube (Nair & Saraswathy, 1971). However, the animals are able to contract in the 

tube to about one third of their body size (Grave, 1928; Roch, 1932). The maximum body 

length is limited by the inhabited wood but is indicated with up to 30 - 150 cm depending on 

the species (e.g. Grave, 1928; Nair & Saraswathy, 1971). 

At the posterior end, two siphons for watering and draining as well as two hard calcareous 

structures, so-called pallets, and the connected muscles are located. The incurrent siphon is 

responsible for the supply of oxygen-rich water, plankton and the inflow of sperm cells, the 
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Figure 3 | General anatomy of a shipworm (Example: Bankia setacea): A) anus, AA) anterior 
adductor, C) caecum, DG) digestive gland, F) foot, G) gill, Gd) gonad, H) heart, I) intestine, K) 
kidney, LP) labial palps, M) mantle, PA) posterior adductor, St) stomach, V) valve, (Modified 
after Distel et al., 2011). 
 

excurrent siphon for the removal of feces and the discharge of larvae (e.g. Roch, 1940; Hahn, 

1956). The two siphons can be fully retracted and the borehole can be hermetically sealed 

through the pallets. Due to their shape, the pallets are well-suited to hermetically seal the 

living tube in case of danger or unfavorable environmental conditions. There are reports that 

this may take up to six weeks, depending on the species (Schütz, 1961). 

The inner organs do not all find space between the two adductor muscles, which has led to a 

large prolongation of the gonads and gills. In special cells of the gills, the bacteriocytes, the 

xylotrophic teredinids contain symbiotic gram positive bacteria. Since the degradation product 

of the scraped wood chips mainly consists of cellulose and hemicellulose, which is difficult to 

digest, different endosymbiotic bacteria have been described for many teredinid species. 

These bacteria, living in symbiosis with the host, supply them with various enzymes such as 

cellulase and dinitrogenase. This enables the Teredinidae to use wood as their main food 

source and hence as a source of carbon (Distel et al., 2002a, 2002b).  

 

 

 

 

 

 

 

 

 

 

 

According to a study by Dore & Miller (1923), teredinids digest about 80 % of cellulose and 

15 % to 56 % of hemicellulose, depending on the species of wood. This process does take 

place in the digestive tract whereas the bacteria are located in the gills. Therefore, the en-

zymes are required to be transported into the intestine in a hitherto unknown process (Distel et 

al., 2011).  

Paalvast & van der Velde (2013) assumed that shipworms obtain their carbon mainly by filter 

feeding. However, the analysis of the carbon isotope ratios between five species of teredinids 

and the surrounding wood has shown that they selectively use cellulose, with wood being the 

most important carbon source of the Teredinidae (Nishimoto et al., 2009). That also invali-

dates the views of many former authors who have denied the nutritional value of wood and 

regarded drilling as a purely protective function (Dore & Miller and references therein, 1923). 

A common representative of these bacteria is the cellulolytic, dinitrogen-fixing bacterium 
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Teredinibacter turnerae. It was found in different wood-boring mollusks and seems to be the 

predominant symbiont of the Teredinidae (Distel, 2002a). An additional benefit of this 

symbiosis with bacteria is the air nitrogen-fixing capability of some of them. This makes the 

Teredinidae one of few animal groups that is able to compensate for a one-sided diet (Distel et 

al., 2011). In addition, as supplementary food, plankton can also be taken up from the sur-

rounding water column via the incurrent siphon (Turner, 1961; Nair & Saraswathy, 1971). A 

pure plankton diet does not seem to be sufficient, as Roch's experiments with teredinids 

(T. navalis) outside the living tube have shown (Roch, 1932, 1940). 

 

Habitats  

The different species of Teredinidae are capable of tolerating a wide range of water tempera-

tures and salinities. This is reflected in the above-mentioned widespread distribution from the 

cold Arctic waters through the temperate zone to the warm waters of the tropics. The pre-

ferred salinity usually ranges in the full-marine spectrum, although there are different species 

that populate other habitats, like brackish water (e.g. T. navalis) or even fresh water (e.g. Nau-

sitora dunlopei).  

Except for some completely different habitats inhabited by marine boring mussels, such as the 

rhizome of seaweed by Zachsia zenkewitschi or the benthos by Kuphus polythalamia, almost 

all members of the Teredinidae are mandatory wood-borers. They certainly require wood for 

building their living tubes, and almost all of them are obligate xylotrophic wood feeders 

(Turner, 1966). This ability to use wood as a source of food is unusual in the animal kingdom 

and is mostly known from the terrestrial environment. In the marine milieu, this part is mainly 

taken over by the wood-boring bivalvia (Distel et al., 2011). In one of the first molecular bio-

logical studies on shipworms, the latter authors discovered through phylogenetic investiga-

tions of the nuclear loci 18S and 28S, that xylotrophy evolved only once in the class Bivalvia. 

However, for shipworms it is irrelevant whether the source of wood is of natural origin, such 

as mangrove roots or trees washed into the sea, or man-made such as ships or bridges. Due to 

its structure, elasticity and good price-performance ratio, wood is still widely used in the 

construction of harbors (piers, pile moorings, landing stage) and, above all, in coastal 

protection. In particular, the so-called groynes that are used to protect the shore from waves 

and currents are widespread, especially at the German Baltic Sea coast, where about 1023 

rows with several tens of thousands of wooden groyne piles exist (M. Bugenhagen, StALU 

MM; pers. com.). Consistency seems to play a decisive role in the settlement of wood. Thus, 

it appears that the hardness of wood, the content of toxic alkaloids and silica are the most 

important factors (Bavendamm & Roch, 1970), with cellulose content and density also being 

relevant (Eriksen et al., 2017). 
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The drilled tubes are always lined with calcareous material, with the exception of the anterior 

end where further excavation takes place. The calcareous material is secreted from the surface 

of the body or mantle and is mainly used to protect the soft body of the animals (Grave, 

1928). It can be replaced if the tube is damaged and the anterior burrowing can be sealed in 

that way too. This is an irreversible reaction to unfavorable environmental conditions such as 

timber limitation due to overpopulation (Grave, 1928). Even though an extremely large num-

ber of animals colonize a piece of wood it is not likely that another tube will be drilled (Nel-

son, 1922). The animals recognize existing tubes in proximity or the approximation to the end 

of the wood through a hitherto unknown sensory achievement and continue drilling in another 

direction (sometimes up to 180° in the other direction, own observation). However, the ani-

mals do not seem to use gravity as a mode of orientation as wood positioned vertically in the 

water is being drilled in both directions, upwards and downwards (Grave, 1928). This wood-

boring way of life also includes a form of natural dispersal. Drilled into driftwood, almost all 

species are able to cover long distances with the prevailing water currents (e.g. Turner, 1966; 

Nair & Saraswathy, 1971; Scheltema, 1971). In this respect, a highly specialized species is 

Uperotus clava, which drifts long distances across the sea drilled only into the seed cases of 

Xylocarpus granatum mangroves (Roch, 1955; Voight, 2015). 

Wood that has been attacked and destroyed by wood-borers represents a biocoenosis which 

has been poorly investigated so far. Roch (1931) reports several groups of animals (including 

e.g. polychaetes, bryozoans and crustaceans) associated with pieces of wood infested by T. 

navalis but did not distinguish between outer settlements and secondary use of abandoned 

Teredo tubes. Only few recent works dealing with this topic are known. In 2013 and 2014, 

Hendy et al. investigated the function of teredinids as ecosystem engineers in mangroves. It 

was found that the tunneled wood was used as refuge by different groups of animals (e.g. 

spiders, polychaetes, juvenile octopuses, small fishes) and that the temperature inside the 

infested wood was significantly lower than the outside air temperature. Teredinids, as ecosys-

tem engineers, are therefore not only involved in the faster decomposition of wood but also 

actively influence their habitat by creating niches and habitats for nursery. Do they not only 

create an increased habitat complexity (Hendy et al., 2013) but also release nutrients by de-

composing more than 50 % of the fallen wood (Voight, 2015). In regions inhabited by man-

groves, the wood-boring mollusks are of great importance as ecosystem engineers in the de-

cay of wood as they decompose wood faster than marine fungi or bacteria (Borges, 2007).  
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Historical background and previous distribution 

From a historical and geological retrospect, the infestation of wood by teredinids is not a re-

cent phenomenon as the Teredinidae are an evolutionary ancient animal group. The first pre-

cursors of the trees are already known from the Carboniferous period. With the development 

of seed plants, the trees widely spread in the Triassic (252.2 - 201.3 Mya) and reached a large 

number of species. This roughly corresponds with the emergence of shipworms that date back 

a few million years later. According to Moll (1942), the origin of the genus Teredo dates back 

to the Jurassic (~ 150 - 200 Mya) where they spread across the earth. Various authors report 

that fossilized residues of different teredinids or fossilized living tubes, so-called Teredolites, 

can be found in rock formations of the Jurassic period (Moll, 1942). Tauber (1954) describes 

Teredo pulchella as the oldest known species of teredinids from the Middle Jurassic in 

Europe, although no pallets were found. For the family Teredinidae, Distel et al. (2011) 

determined a monophyletic origin, which means that all recent species originated from only 

one common ancestor. 

However, in the geological literature, almost all wood-boring species are only identified up to 

the genus level. For a specific identification, not only the fossilized living tubes but also the 

calcareous shells and pallets are needed (detailed description in chapter 1.2). Though, these 

are only to be found in some rare cases. Thus, a clear identification of fossils down to the spe-

cies level is almost impossible. However, Tauber (1954) reports that numerous fossilized pal-

lets were found in the area of the Vienna basin and the Eisenstädter Basin in Europe. For the 

first time, these findings have enabled a clear systematic classification of fossil teredinids and 

eight species or subspecies have been identified. Teredolites can also be detected in the sedi-

ments of the North Sea and the Baltic Sea (Moll, 1942; Schulz, 1995). 

 

Sailors have been aware of the problem of wood-boring animals destroying harbor piers and 

ships for a long time. Especially the shipworms have always been suspected by seafarers and 

were feared as ‘summa calamitas navium’ - a disaster for ships (Roch, 1935). Many descrip-

tions have been found of how sailors have tried to protect their ships, for example by using 

copper plates or lead nails (Moll, 1914). Another method was to build double-walled ships 

and fill the interstitial space with e.g. charcoal or ash to prevent the inner shell from being 

attacked (Moll, 1914).  

The first trustworthy records of shipworms date back to the authors of the classical antiquity 

of the area around the Mediterranean Sea (Roch, 1940). In this region, the Greeks and later 

also the Romans had already struggled with the infestation of their fleets by shipworms. There 

are also reports of infestations of parts of a Viking ship in the Haithabu Museum. Gollasch et 
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Figure 4 | A) Fossilized driftwood with tunnels of shipworms from the debris (Sternberg Rock). Location: 
Gravel pit Kobrow, Mecklenburg-Western Pomerania B). The calcareous linings of the burrows are still largely 
intact (enlarged details of picture A). © Paleontological Museum Nierstein 

A B 

al. (2009) rule out retrospective infestation as the ship was found in fresh water. Nevertheless, 

it is not clear which species is responsible for the infestation. 

Over the following centuries, the knowledge about shipworms seemingly decreased due to a 

lack of records (Moll, 1914; Hill & Kofoid, 1927). It was not until the 16th and 17th centuries 

that there was an increase in the amount of reports on shipworms in Europe. In particular, the 

frequent voyages of discovery to the various continents and the emerging trade relations 

brought along many reports of shipworms to Europe (Moll, 1914). From this time of the post-

Columbian area, sailors told many stories about shipworms from their voyages to Europe and 

aroused interest in these organisms (Moll, 1914).  

Since then, there have been various scientific publications covering the distribution, anatomy 

and physiology of shipworms in different parts of the world. This continues to date as numer-

ous publications from the last decades demonstrate dealing with different aspects of these 

animals. 

 

Recent distribution 

Today xylotrophic shipworms are distributed worldwide, mainly in temperate and tropical 

regions (Borges et al., 2012). They occur in almost all seas and the number of presumptive 

species increases from the poles to the equator (Roch, 1955). Above all, the habitat range of 

shipworms from the family Teredinidae is restricted by salinity, temperature and the availabil-

ity of wood as habitat and food source (Turner, 1966; Borges et al., 2012). For instance, there 

are four to five known shipworm species in Scandinavian waters and the North Sea, and about 

ten in the Mediterranean Sea. In the tropics, however, shipworms occur both in higher abun-

dances and in larger species numbers. It is common for up to 20 species to occur in a single 

harbor (Roch, 1955). 
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Shipworms can also colonize Arctic waters, even though there are significantly fewer species 

with lower abundances. There are reports, both older and more recent, about occurrences 

(mostly Psiloteredo megotara and Teredo norvagica) in the areas around Greenland, Iceland 

and Svalbard (e.g. Roch, 1931). Many reports dealt with infested driftwood without knowing 

the original location of it, but there is evidence of wood which has been submerged at these 

sites and therefore must have been infested there (J. Berge, University of Tromsø; pers. com.). 

Another extreme habitat, the deep sea, is also inhabited by shipworms. Deep sea wood-borers 

belong to the family Pholadidae (subfamily Xylophagainae) which exclusively occur there 

(Turner, 2002; Distel et al., 2011). 

 

There are some, though rare, reports of damages caused by shipworms in various regions. 

Contemporary estimates of up to 615 million US Dollar (in 1992 US Dollar) for damages to 

maritime structures in the Bay of San Francisco in the early years of the 20th century (Cohen 

& Carlton, 1995) and 50 million Euro for the Baltic Sea region (Wichmann, 2005) for the 

period from 1993 - 2005, to name a few. This is approximately in the order of magnitude 

caused by other marine invertebrate species such as Dreissena polymorpha by clogging of 

cooling pipes or by Mnemiopsis leidyi, which caused the entire fishing industry of the Black 

Sea to collapse in the 1990s. 

 

1.2 Teredo navalis 

 

Anatomy and morphology  

There are few anatomical features specific to the genus Teredo some of which are briefly 

mentioned here. The gills are blade-like to u-shaped. The esophagus is short while the caecum 

is large and cylindrical. The elongated heart and gonads are located dorsal to the caecum. The 

feces are shaped as pellets and are transported through the posteriorly opened anal canal. The 

two siphons are separated from each other. By fusion of adjacent gill filaments, the brood 

pouch is formed at the dorsal surface of the gills (Turner, 1966). 

Figure 5 | Calcareous living tube of Teredo navalis with living animal inside. 
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Reproduction and Life cycle 

The species is a protandric hermaphrodite and can change its sex several times a year whereby 

the male characteristics are always developed first (Coe, 1941). Remarkably, the females al-

ways outnumber the males, even though the underlying process is not yet known (Moll, 1914; 

Grave, 1928). The gametes are released into the water column by the males and pass through 

the incurrent siphon into the adjacent female animals. The following fertilization is internal in 

the epibranchial chamber, where the comparatively small eggs (diameter ~ 50 - 60 µm) are 

brooded (Calloway & Turner, 1988).  

Since the larvae are retained in this breeding pouch until they reach a length of approximately 

100 µm, this type of breeding is called larviparous (Quayle, 1992). For the short brooding 

period in these chambers there are different data reported: they range from five (at 25 °C) to 

eight days (at 20 °C) (Calloway & Turner, 1988) up to a period of two to three weeks (Grave, 

1928). Therefore, the species is called short-term larviparous (Borges et al., 2014b) and the 

larvae will be released at the straight-hinged veliger stage into the plankton (Shipway, 2013). 

Depending on the body size of the individual (Grave, 1928) the females release up to five 

million larvae per year (Kaestner, 1982). The development to the pediveliger stage continues 

in water for another two to four weeks depending on the water temperature (Calloway & 

Turner, 1988). Accordingly, Roch (1940) reported a free-swimming larval stadium of approx-

imately two to three weeks. Similarly, Grave (1928) stated about five weeks for the complete 

larval period. 

The largest infestation of wood with larvae seems to be about 50 - 100 cm above the mud line 

(Grave, 1928). When the larvae are attached to a piece of wood by the byssus filaments at an 

approximately length of 250 µm (Quayle, 1992), the velum gets lost and a metamorphosis 

follows. The bivalve shells hitherto enclosing the body are converted into a drilling unit and 

Figure 6 | Dissected specimen of Teredo navalis with drilling unit on 
the left side and pallets and siphons on the right side. 
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the larva starts drilling. The growth takes place rapidly and two to three weeks after settling 

the organisms already reach a size between 0.35 and 1 mm. Within 30 days, lengths of up to 

7 mm and a diameter of 2.5 mm are reached. Growth continues to reach a length of up to 

75 mm and up to 4.5 mm in diameter after 60 days (Grave, 1928). The size of the adults in the 

North Sea and Baltic Sea is stated 10 to 20 cm (Hahn, 1956) or rather 20 to 25 cm with a 

maximum of up to 30 cm (Schütz, 1961). The information for the life span in this region var-

ies between one to two and a half (Schütz, 1961), one to three (Nakel, 1954) and finally two 

to three years (Hahn, 1956). After a relatively short generation time of 40 - 45 days after met-

amorphosis (Grave, 1942) and a length of approximately 3 - 5 cm they become sexually ma-

ture. Sordyl et al. (1998) reported developed eggs already in specimens of 2 cm body length 

and larvae from 3 cm upwards. There is no known periodicity in spawning of this species pre-

sumably taking place all year round (Grave, 1928). Therefore, three to four generations per 

year are possible under favorable conditions (Coe, 1941). The temperature range for spawning 

activities is differently specified by various authors. Grave (1928) reported spawning for the 

US East Coast region when water temperatures between 11 and 12 °C are reached. Several 

other authors, however, state that there is no reproduction below 15 °C. There are various 

spawning temperatures given in the literature such as 15 °C or 18 °C, respectively tempera-

ture ranges of 15 - 16 °C or 15 - 20 °C (Nair & Saraswathy and references therein, 1971).  

 

Ecophysiology of Teredo navalis 

Salinity 

Several authors specify an optimum salinity range from 7 to 35 for species development (e.g. 

Blum, 1922; Nair & Saraswathy, 1971). The reported maximum salinity that adults are able to 

tolerate ranges between 35 (Nair & Saraswathy, 1971) and 39 (Borges et al., 2014b). Howev-

er, adults always tolerate lower salinities than the larvae (Nair & Saraswathy, 1971). The 

adults show a normal behavior with regard to the drilling activity and mobility of the siphons 

down to a salinity of 9 (Blum, 1922). The drilling activity of T. navalis is completely stopped 

below a salinity of 7 and the required minimum salinity for the survival of adults is 5 - 6. Oth-

er authors reported a lethal salinity of 4 - 5, respectively (Nair & Saraswathy and references 

therein, 1971). If the salinity drops further below the limit of 5 - 6 during longer periods the 

siphons are completely retracted and the tubes are sealed with the pallets (Blum, 1922). Tere-

do navalis can survive these low salinity conditions for up to six weeks without major effects 

on vitality as can be detected when salinity returns to the optimal range (Roch, 1932; Schütz, 

1961). A salinity of around 10 was reported to be harmful to the larvae (M´Gonigle, 1926 in 

Nair & Saraswathy, 1971). In the Baltic Sea, the species tolerates salinities down to 8 and is, 



1.2 Teredo navalis 
 

 
 | 12  

 

surprisingly and for the first time observed, still able to reproduce in this brackish water con-

ditions (Sordyl et al., 1998).  

 

Temperature 

Various studies state that the optimum temperature for the development of T. navalis is be-

tween 15 - 25 °C while the tolerated temperature range is between 5 - 30 °C (e.g. Roch, 1932; 

Nair & Saraswathy, 1971). Outside this range, survival is still possible but with limitations. 

Even a short-term increase of temperature to above 30 °C leads to a rapid mortality of all in-

dividuals (Roch, 1932). Laboratory experiments have shown that the larvae drilled most ac-

tively when the temperature was between 17 - 22 °C and did not drill below 14 °C or above 

26 °C (Imai in Norman, 1976b). 

Once the temperature decreases below 9 to 10 °C the metabolism is reduced and the activity 

of the siphons is severely restricted. Below 5 °C the siphons are completely retracted, drilling 

activity is stopped and the tube is being sealed with the pallets (Roch, 1932). Temporary de-

creases in temperature down to 0 °C or even -1.4 °C cause inactivity that, however, can lead 

to a recovery in case of a change to appropriate conditions (Nair & Saraswathy, 1971). Only 

in cold icy winters with long periods below 0 °C it might happen that the organisms are 

extinguished (Roch, 1932). 

 

Interspecific interactions 

Due to their wood-boring way of life, shipworms are hardly threatened by natural enemies. 

Various groups of organisms, such as annelids, protozoa and bacteria are named (e.g. Nair & 

Saraswathy, 1971) as potential enemies of T. navalis. However, due to good protection pro-

vided by the almost hermetically sealed living tubes these seem to be only scavengers. How-

ever, it cannot be ruled out that attacks on shipworms occasionally occur. 

As one of a few exceptions, Grave (1928) mentioned the protist Architophrya (a holotrich) 

which is said to attack T. navalis to death when the housing tube is damaged. Nakel (1954) 

reports of the worm Nereis fucata that was found only in the empty tubes of T. navalis. This 

behavior was also observed on another polychaete (Alitta succinea) in the Baltic Sea (own 

observation).  

 

Taxonomic classification 

The reason why T. navalis, according to various authors, is the most important species of 

shipworms can be explained by its scientific name. The genus name Teredo originates from 

the Greek word ‘teredon’ and means ‘wood worm’. The species name navalis means ‘living 

in ships’. Hence, the species name Teredo navalis means ‘the wood worm living in ships’. 
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Figure 7 | First detailed illustration of the 
Teredo navalis pallets by Godofredus Sellius 
(Sellius, 1733). 

 

Figure 8 | A) Pallets of Teredo navalis from the sampling site 
Kiel. B) Pallets of the Genus Bankia from a sample from the 
Mediterranean Sea. 

 

Consequently, this has been the most common synonym for shipworm species having been 

detected in ships for a long time. This is well reflected in a wide variety of non-scientific 

names T. navalis has to date: ‘shipworm’, ‘common shipworm’, ‘naval shipworm’, ‘great 

shipworm’, ‘European pileworm’ (all English), ‘paalworm’, ‘gewone paalworm’ (Dutch), 

‘almindelig pæleorm’ (Danish) ‘Pfahlwurm’, ‘Pfahlmuschel’, ‘Bohrwurm’ and 

‘Schiffsbohrwurm’ (German), just to name a few. 

Linnaeus performed the first taxonomic classification in 1758. The specimens for this 

classification were collected in the Netherlands by Sellius in the early years of the 18th centu-

ry. But Linnaeus made a mistake. In the 10th issue of the ‘Systema naturæ’ he categorized 

Teredo into the so-called 'Intestina' (roundworms) and did not correct this error until the 12th 

issue. Even then did he class them with the single-walled shell animals as he thought the cal-

careous tube was a main part of the animal and identified Teredo as a kind of tube snail 

(Roch, 1931). Aggravating for Linnaeus was that he only knew one species while Spengler 

mentioned four different species in 1792 and Jeffreys described 18 species in 1869 (Roch, 

1931). Although there may be more synonyms for other shipworms, Teredo navalis is 

presumably the best known. If a single species name like T. navalis was synonymously used 

for a whole group of slightly different species (Moll, 1914) it is challenging to trust records or 

animal descriptions from former times.  

Species identification of shipworms is difficult. Although there are several characteristics 

such as the grain of the siphons or the number of the small teeth on the shell, the most widely 

used is the shape of the calcareous pallets (Turner, 1966; Borges et al., 2012). These pallets 

(Fig. 7, 8 A, 8 B) consist of a stalk, which sticks in a membranous handle sheath, and a pallet 

blade (Roch, 1940). Depending on the species, the stalk is oval, round or flat. Both the length 

and the shape (e.g. curved, straight, thickened) are different. The blade, too, can be very 

diverse in form. In the genus Teredo they usually look like paddles or spoons with a forked 

end. In addition, the pallets, which are usually convex on the outside and concave on the in-

A B 
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side, are often fitted with two small channels into which the two siphons can be retracted 

(Roch, 1940). The first more or less complete - and still the best - systematic species identifi-

cation key was written by Turner (1966). Although even with this reference book, a reliable 

identification is often not possible, since it is very difficult to prepare the filigree pallets as a 

whole. However, only the large groups such as e.g. Bankia (segmented) and Teredo (unseg-

mented) can be easily distinguished from each other as the pallets have different shapes (Fig. 

8 A, 8 B). The shape of the pallets can also differ between juveniles and adults within a 

species or between animals of different regions. For example, subspecies such as Teredo 

navalis borealis in Scandinavian waters have also been described but were later retracted 

(Roch, 1931). 

Apart from the difficulties described above, these misidentification are partly due to the fact 

that species identifications have been exclusively based on the analysis of morphological 

characteristics so far. To be prepared to allocate damages and spreading to a certain species it 

is necessary to have a fast, accurate and reproducible way of shipworm species identification. 

Recently, some attempts have been made to use modern molecular taxonomic approaches. 

This so-called DNA barcoding approach (Hebert et al., 2003) has successfully been used for 

the identification of shipworm species (Teredothyra dominicensis; Shipway et al., 2014) and 

the identification of a putative species complex (L. pedicellatus; Borges et al., 2012). Borges 

et al. (2012) tried to combine the morphological taxonomy with the molecular taxonomical 

DNA barcoding approach. This approach has worked for some shipworm species (e.g. L. ped-

icellatus, N. norvagica), but not for T. navalis (L. Borges, pers. com.). For this reason, 

T. navalis was not accessible at this time with regard to this molecular species identification 

method. 

Therefore, one of the major aims of this thesis was to develop specific molecular tools for an 

unambiguous identification of T. navalis. 

 

Historical and known recent distribution in Europe 

Since the classical antiquity, the word ‘τερηδών’, which means ‘the boring one’, has been 

known for all wood-boring pests (Roch, 1940). The Latinized form ‘Teredo’ was then re-

ceived by the Romans through Ovid and Pliny and was retained in later years by Sellius and 

Linnaeus for the scientific naming (Roch, 1931, 1940). From this antique period, in one of 

these writings Ovid (Ex Ponto, Liber primus, verses 69 - 74 in Roch, 1935) compares 'the 

immensity of his soul anguish with the ship-destroying activity of Teredo' (Roch, 1940). 

However, the first reliable mentions of the species T. navalis for the Mediterranean Sea were 

not made until 1792 by the Italian author Giuseppe Olivi (Roch, 1940). In 1829, the author 

Delle Chiaje described three different species (presumably T. navalis, T. utriculus and Bankia 
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Figure 9 | Facsimile of the original species description of 
Linnaeus (1758). 

carinata) from the area around Na-

ples. Prior to that, probably all ship-

worms in the Mediterranean were 

referred to as T. navalis (Roch, 

1940).  

Moll (1940) described T. navalis as 

the cosmopolitan species of the cold 

temperate zone, while L. pedicellatus 

is supposed to be the equivalent for 

the warm temperate zone. Nowadays, 

several authors regard T. navalis as a 

species that is distributed worldwide 

(e.g. Turner, 1966; Appelqvist et al., 

2015a). Based on Turner's data, Nair 

& Saraswathy (1971) identified six 

contiguous regions for the occurrenc-

es of T. navalis: Australia/New Zealand, Southeast Asia, Japan, West Coast of North Ameri-

ca, East of North America/Greenland and Europe/Atlantic Coast. There are various references 

for this worldwide distribution: Australia (Ibrahim, 1981), Japan and India (Tsunoda, 1979; 

Ibrahim, 1981; Kasyanov et al., 1998), Persian Gulf and South Africa (Moll, 1940), Brazil 

(Barreto et al., 2000), Mexico (Naranjo-Garcia & Castillo-Rodriguez, 2017), the West (Ibra-

him, 1981; Cohen & Carlton, 1995) and East Coasts (Ibrahim, 1981, Culliney, 1975) of North 

America, the Atlantic, Baltic Sea, North Sea, Black Sea and Mediterranean Sea in Europe (see 

e.g. Tuente et al., 2002; Culha, 2010; Borges et al., 2014b). In terms of its origin, however, 

T. navalis still has to be considered cryptogenic, since the place of its origin is still unknown 

(Hoppe, 2002). 

The first trustworthy sightings of T. navalis for Central European waters are reported for the 

Netherlands. They date back to the early years of the 18th century and coincide with the great 

flood in the Netherlands (1731) which was caused by shipworm attacks of the wooden parts 

of the dykes. These infestations were assigned to T. navalis from several authors (e.g. Vrolik 

et al., 1860; Van Benthem Jutting, 1943). Further sightings from this region date back to the 

years 1770, 1827 and 1858/59. For the further eastern area of Cuxhaven the first report on 

shipworm infestation dates back to 1791 (Woltmann 1791 in Kühl, 1972). There was also a 

report of the collapse of a wooden dam in January 1860 in Wilhelmshaven, which is attributed 

to T. navalis and has considerably delayed the construction of the naval base (Gollasch et al., 

2009). 
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The first scientific record of T. navalis for the Baltic Sea dates back to the year 1835 (Meyer 

& Möbius, 1865). Specimens of this species as well as Nototeredo norvagica were noticed in 

the region of the river Schlei in the northern Bay of Kiel. Afterwards, an infestation of the 

sluice area of the Eider Canal (predecessor of Kiel Canal) was discovered in 1872 (Möbius 

1872 in Schütz, 1961) and a large distribution was also reported in the Kiel Fjord. In this area, 

a lot of wood from the coastal protection structures was infested (Schütz, 1961).  

According to Kühlmann (1909, in Sordyl et al., 1998), the first report for the coast of Meck-

lenburg-Western Pomerania dates back to 1875 for the region around Rostock. At that time, 

coastal protection structures were infested which were built around 1860 in the area of Ros-

tock/Warnemünde. However, the infestation with shipworms does not seem to have been of 

great extent at that time. In a manual of dune reconstruction from this time only other wood-

boring species (crustaceans) than T. navalis were described (Cordshagen, 1964). Another rec-

ord of the infestation of wooden structures with shipworms at the coastline of Mecklenburg-

Western Pomerania dates back to 1917 and was reported by the port builder of the Rostock 

harbor Kiecker (Cordshagen, 1964). Noteworthy occurrences of shipworms in this area were 

also recorded for the years 1925 - 1928 with the infestation of the eastern bridges of Warne-

münde (Nakel, 1954). Some years later, several authors reported a spread of T. navalis in the 

hot summers of 1933 - 1936 up to the area of the Darss Sill (Becker, 1938; Nakel, 1954). In 

the subsequent period up to 1993, only two minor infestations occurred in 1951 and 1976 

(Schulz, 1995).  

For the following years up to 1993, there have been no reports of significant damages or oc-

currences of shipworms at the coast of Mecklenburg-Western Pomerania (Sordyl et al., 1998). 

Nevertheless, the situation in the southern Baltic Sea has changed fundamentally since 1993. 

Since then, occurrences of a wood-boring bivalve species in this area have been documented 

and last until today. Whereas in the past (before 1993) only sporadic occurrences of ship-

worms were reported, there has been evidence of a stable, self-reproducing population since 

1993 (Sordyl et al., 1998). This new situation was of crucial importance since far-reaching 

consequences with regard to coastal protection maintenance depend on this occurrence of 

shipworms. Therefore, it is important for stakeholders and decision makers of coastal protec-

tion measures to be able to identify the species involved quickly and reliably and to know 

present distribution boundaries. In this context, the cooperation with the State Agency for 

Agriculture and Environment of Central Mecklenburg (StALU MM), which is responsible for 

the coastal protection management in Mecklenburg-Western Pomerania, and the idea of this 

thesis have arisen. 
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Figure 10 | Different levels of the destruction of groynes. A) An undamaged groyne field. © StALU B) A 
groyne field with lots of broken groyne piles. © StALU C) A broken groyne pile, weakened by heavy infestation 
of Teredo navalis. D) Cross-section of an infested groyne pile with visible living tubes of Teredo navalis. 

 
1.3 Aims 

In the early years of the 20th century, a lot of research has been done on shipworms in general 

and on T. navalis in particular. There are, however, many open questions, regarding taxonom-

ical identification of wood-boring bivalves, places of origin of different species and genetic 

population structures of shipworms. Studies using a modern molecular biological approach 

are rare and still missing on T. navalis. 

The present thesis focuses on European waters and the Baltic Sea in particular. With the es-

tablishment of a permanent and self-reproducing shipworm population in the Baltic Sea, a 

new situation has risen in 1993. Compared to previous occurrences in recent decades it is still 

unclear whether only one species is responsible for the ongoing destruction of wooden con-

structions or if several species or even sibling species inhabited the world's largest brackish 

sea. Furthermore, the potential of the established shipworm species to expand further into 

waters of lower salinities is under discussion.  

 

Therefore, three main aims should be clarified within the present thesis: 

1. Is the dominant shipworm species in the Baltic Sea indeed T. navalis, as commonly 

accepted, or do other shipworm species or sibling species of T. navalis occur? 
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2. Is the Baltic Sea population of the identified wood-boring bivalve species genetically 

structured and clearly differentiated from populations outside the Baltic? 

3. Where is the present distribution boundary of the occurring shipworm species located 

in the Baltic Sea and is there a range expansion into areas with lower salinities during 

the last decades? 

Well-founded knowledge of these issues is a key factor in understanding the shipworm spe-

cies composition in the Baltic Sea, its present distribution and the potential range expansion 

of shipworms in the future under changing environmental conditions. This knowledge can 

ultimately lead to sustainable coastal protection management and a better protection of 

valuable underwater heritage. Therefore, the present thesis aims to combine a modern 

molecular taxonomic with an established ecological approach to address the issues that are of 

great importance to decision makers.  
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Figure 11 | Map with an overview of all sampling sites. MS, Mediterranean Sea; US, North American East 
Coast BR, Brittany; ED, Emden; WA, Wangerooge; SY, Sylt; TJ, Tjärnö; KR, Kristineberg; LY, Lynaes; KI, 
Kiel; BH, Boltenhagen; KB, Kühlungsborn; GM, Graal-Müritz; ZI, Zingst; HI, Hiddensee; DR, Dranske; GW, 
Glowe. 

 

2 Materials and methods 
 

Study area 

Seven locations at the coast of Mecklenburg-Western Pomerania were selected for the ecolog-

ical investigations of Teredo navalis along a decreasing salinity gradient from West to East in 

the Baltic Sea (Boltenhagen, Kühlungsborn, Graal-Müritz, Zingst, Hiddensee, Dranske, 

Glowe; Fig. 1 in chapter 3.3). In agreement with the StALU MM, this sampling took place 

directly in the groyne fields of the southern Baltic Sea. From these locations, a subset of five 

sampling sites (Kühlungsborn, Graal-Müritz, Zingst, Hiddensee, Dranske) was chosen for 

genetic analyses. Further samples for phylogenetic and population genetic analyses originate 

from other parts of the Baltic Sea, from the Belt Sea, the North Sea, the Mediterranean Sea 

and the Atlantic Ocean (for details see Figure 11). 

 

Sampling strategy  

Specimens were sampled using test panels consisting of local pine (Pinus sylvestris, 10 x 20 x 

2.5 cm) exhibiting a size according to DIN EN 275 (DIN, 1992). This method is commonly 

used and has been proven suitable for sampling teredinids by several authors (e.g. Borges et 

al., 2014b, Eriksen et al., 2014). Test panels were exposed at all sampling sites introduced 

above. Directly after their removal out of the water the test panels were photographed and 

cleaned of fouling before further processing.  
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Ecological investigation 

From 2012 to 2015, test panels were placed at the seven stations introduced above and col-

lected after defined periods according to the research question. The sampling stations were 

chosen along the prevailing salinity gradient in the Baltic Sea between Boltenhagen in the 

West with the highest and Glowe in the East with the lowest salinity. At all sampling sites a 

set of test panels was deployed at the beginning of the field campaign in April/May and was 

collected in October/November to determine the total larval abundances. In addition, test pan-

els were changed monthly at four selected sampling sites (Boltenhagen, Kühlungsborn, 

Zingst, Dranske) to determine the time period of larval settlement. At the end of the field 

campaign, test panels were once again applied at all stations to prove possible latecomers dur-

ing late autumn/winter. 

At the four sampling sites of Boltenhagen, Kühlungsborn, Zingst and Dranske (Fig.16) tem-

perature and salinity were recorded simultaneously in the groyne fields to directly determine 

these two key factors. The autonomous salt water HOBO Conductivity Logger (HOBO - U24-

002, Onset Ltd., Cape Cod, Massachusetts, USA) independently recorded temperature and 

salinity hourly all year round. Data were downloaded every four weeks while cleaning the 

devices from fouling. Both the test panels and the measuring instruments were fixed with ca-

ble ties directly to the groynes at approximately 0.5 m above sea floor level. For details cf. 

material and methods in chapter 3.3. Subsequently, detectable boreholes were counted in the 

laboratory using a stereomicroscope.  

 

Handling of specimens 

For the classical and the molecular taxonomic identification, both juvenile and adult animals 

were taken of each sampling site. Until further processing, these samples were transferred to 

96 % ethanol or stored at -60 °C. A complete list of all specimens examined for this thesis is 

given in the supplementary material of the respective publications including corresponding 

sampling sites and GPS coordinates. 

 

PCR and Sanger sequencing 

The samples for these analyses were collected during two periods between 1999 - 2000 and 

2011 - 2016. For information, that is more detailed cf. the material and methods sections of 

the respective publications in chapter 3.1, 3.2 and 3.3.  

For a molecular taxonomic identification of the occurring shipworm species in the Baltic Sea, 

several COI primers were developed (cf. material and methods in chapter 3.1). For this pur-

pose, the DNA barcoding approach propagated by Hebert et al. (2003) was used. This in-
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Figure 12 | Flowchart with the individual steps during the field campaign and in the laboratory. 

 

volves the use of a certain section of the COI gene for the molecular taxonomic determina-

tion. These newly established primers were used for both PCR and Sanger sequencing. The 

number and designation of these primers as well as the respective primer sequences are shown 

in Table 1 of chapter 3.1. All sequences were determined in the own laboratory by Sanger 

sequencing. The sequences of the different genetic markers were checked manually, aligned 

and trimmed to an uniform length. All obtained sequences were deposited to NCBI GenBank. 

Detailed information about GenBank accession numbers, sequence IDs, corresponding da-

tasets and a complete list of COI haplotype titles are given in the supplementary material of 

the respective publications. 
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Phylogenetic calculations and population genetic analyses 

The determined alignments of the respective gene loci were used for different phylogenetic 

calculations. For this purpose, the alignments were converted into different file formats ac-

cording to the various phylogenetic and population genetic calculation programs used. All 

used programs and calculation methods are described in detail in the material and methods 

sections of the respective publications of chapter 3.1 and 3.2. The results were mainly dis-

played graphically and are shown in the results sections of chapters 3.1 and 3.2. 
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3 Publications  
3.1 First time DNA barcoding of the common shipworm Teredo navalis Linnaeus, 1758 

(Mollusca: Bivalvia: Teredinidae): molecular-taxonomic investigation and identification 

of a widespread wood-borer  
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3.2 Genetic population structure and demographic history of the widespread common 

shipworm Teredo navalis Linnaeus, 1758 (Mollusca: Bivalvia: Teredinidae) in European 

waters inferred from mitochondrial COI sequence data  
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3.3 Teredo navalis in the Baltic Sea: larval dynamics of an invasive wood-boring bivalve 

at the edge of its distribution 
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4 Discussion 
 
It has generally been ascertained that the infestation of wood in the Baltic Sea with shipworms 

appears to be subject to a certain spatio-temporal limitation (Cordshagen, 1964). There had 

been periods of severe attacks followed by periods with little or no infestations which may 

have lasted for several years or even decades. These strong infestation periods of 2 - 3 years 

seem roughly to correspond to the life span of T. navalis in the waters of Central Europe. In 

January 1993, a large salt water inflow into the Baltic Sea [Major Baltic Inflow (MBI); Mat-

thäus, 1993] seemed to coincide with the reoccurrence of shipworms in the Baltic Proper 

(Appelqvist, 2015). In contrast to the previous short-term outbreaks, the permanent occur-

rence of T. navalis since 1993 is an unprecedented state in the southern Baltic Sea. 

Several reasons as to why the population has become permanent since the last outbreak can be 

listed. First, established populations had not existed before, since they had usually collapsed 

within a certain timespan after the species introduction due to the prevailing living conditions. 

Secondly, regular monitoring programs did not exist during the 19th and 20th centuries so that 

even smaller refugial populations, if any existed, remained undiscovered. Thirdly, it is con-

ceivable that an existing population has adapted better to the prevailing environmental condi-

tions or the environmental conditions changed and therefore favored the establishment of a 

permanent population. Finally, it cannot be ruled out that a new species has migrated to the 

Baltic Sea showing better coping mechanisms to the prevailing environmental conditions, 

which resulted in an explosive distribution.  

 

4.1 Species identification and phylogenetic analysis of Teredo navalis 

 

Difficulties of shipworm identification 

One of the essential issues in working with marine shipworms is an unambiguous, reliable 

identification and taxonomic classification of the different teredinid species. This is mainly 

due to two factors: their hidden way of life in calcareous living tubes and the lack of appropri-

ate trustworthy, classical morphological taxonomic features, other than the pallets (Turner, 

1966; Borges et al., 2012). However, as already mentioned in chapter 1.2, a distinct classifica-

tion by means of these pallets is anything but simple. Therefore, the establishment of tools for 

molecular taxonomic species identification provide a valuable method for a fast, inexpensive 

and reliable identification. In order to be able to determine the occurring wood-boring animals 

according to the DNA barcoding approach (Hebert et al., 2003) it was necessary to develop a 

new COI primer pair specific to T. navalis. This step was essential, as the universal primers of 

Folmer et al. (1994), which are usually used in the animal kingdom, have not yielded any us-
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Figure 13 | Flowchart for the processing from the animal to the subsequent population genetic analysis. The size 
of the circles corresponds to the estimated amount of work required for each step within this thesis.  

 

able results. This was rather surprising as these primers usually yield promising results with a 

wide range of different animal groups such as fish, insects or even other marine invertebrates. 

They also work well with other teredinids for which COI sequences have been successfully 

generated (Borges et al., 2012; Shipway et al., 2014). The difficulties of ‘barcoding’ 

T. navalis can be seen in the lack of COI sequences in the relevant databases, e.g. GenBank, 

and were also reported by other research groups (L. Borges, pers. com.). There is no 

information available about possible reasons so that may only be speculated about them. The 

most likely explanation is a significant difference between primer sequence and target 

sequence consequently not allowing for a sequence match. Such mismatches are known for 

many marine metazoans and resulted in a modified version of the Folmer primers showing 

improved consensus with many groups of marine invertebrates (Geller et al., 2013). With the 

newly established COI primers (cf. chapter 3.1), developed before the redesigned primers of 

Geller et al. (2013) were created, it was possible to process both T. navalis and other 

teredinids. 

 

 

 

 

 

 

Molecular taxonomic identification of Teredo navalis 

The analysis of all specimens investigated in this thesis showed that T. navalis was present at 

all sampling sites. The samples from Brittany, the Mediterranean Sea and the North American 

East Coast (DNA isolates) had already been identified as T. navalis using classical taxonomy. 

This identification was now confirmed via COI DNA barcoding. For the North Sea, the detec-

tion of T. navalis as the only shipworm species found during the present examinations was 
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surprising as generally several shipworm species like L. pedicellatus, N. norvagica, and 

P. megotara have been reported by various authors (e.g. Turner, 1966; Borges et al., 2014b). 

One possible interpretation could be that, at least in previous studies, misidentifications might 

have occurred since only morphological taxonomic identification methods were applied. 

Nevertheless, it is also conceivable that T. navalis has a higher ecological tolerance regarding 

the prevailing environmental conditions in contrast to other shipworm species and may have 

found more suitable living conditions within the anthropogenic influenced sampling sites. 

Furthermore, it is also possible that T. navalis, due to its high reproductive potential, was 

more abundant than other species in these areas and was therefore collected with a greater 

likelihood. 

 

DNA barcoding approach  

The samples which were investigated for this thesis mainly originated from the North Sea and 

the Baltic Sea but also from Brittany, the Mediterranean Sea and the North American East 

Coast. The determined COI sequences consisted of 700 to 750 base pairs each. The final 

alignments displayed of 675 base pairs without gaps or missing data. However, since COI 

sequences of T. navalis had not been available in the relevant databases until the beginning of 

this thesis, it was not possible to successfully perform a molecular taxonomic identification. 

Therefore, and to compare the present results with those of an earlier phylogenetic work of 

Distel et al. (2011), the 18S and 28S sequences of some specimens were additionally deter-

mined. At the beginning of the present investigation, these sequences were the only ones 

available in GenBank. To illustrate the relationship of specimens from America and Europe, a 

combined dataset with the sequences of Distel et al. (2011) was created (Fig. 2 in 

chapter 3.1). 

The analysis of these sequences yielded similar results compared to the previous study. The 

combined 18S/28S data set were identical, showing no differences between the specimens 

sampled on both sides of the Atlantic. This is also reflected in the phylogenetic tree calcula-

tion, which included only a single sequence of T. navalis. Within the phylogenetic maximum 

likelihood tree, T. navalis grouped perfectly into the Teredinidae and appears as a sister group 

of the Lyrodus pedicellatus complex (Fig. 2 in chapter 3.1). This is well supported by a 

bootstrap value (probability value) of 99 %. These facts demonstrate that T. navalis is a 

species with an amphi-atlantic distribution. This is not surprising as almost all authors state a 

worldwide distribution of this species (e.g. Turner, 1966; Nair & Saraswathy, 1971; Borges et 

al., 2014b).  

By comparing the recently acquired 18S/28S sequence data with those of Distel et al. (2011), 

and a simultaneous classical taxonomic determination of the pallets of some selected speci-
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mens of the Baltic Sea, the COI sequence data of this thesis could be unambiguously assigned 

to the species T. navalis. All animals analyzed in the course of this work were identified by 

this approach. For the first time, this method enabled the molecular taxonomic identification 

of this species by using the DNA barcoding approach. Finally, both DNA datasets presented 

in this thesis genetically confirms the amphi-atlantic distribution of T. navalis. 

 

Occurrence of Teredo navalis in the Baltic Sea 

All samples from the Baltic Proper were exclusively assigned to only one species, T. navalis. 

Conversely, these results regarding the verification of T. navalis mean that the changes con-

cerning the population permanence in the Baltic Sea since 1993 are not due to a new ship-

worm species in the investigated area. This corresponds to older studies (Nakel, 1954; Hahn, 

1956) as well as recent reports on this region (Sordyl et al., 1998; Borges et al., 2014b). Ap-

pelqvist et al. (2015b) reported T. navalis to be the most abundant teredinid species in western 

Swedish waters, the entrance area of the Baltic Sea, together with only one other known 

shipworm species (Psiloteredo megotara). However, the abundances of the latter species are 

very low with only a few observations of single individuals (Norman, 1977; Appelqvist et al., 

2015b). Norman (1977) and Appelqvist et al. (2015b) uniformly reported the sampling site 

Mölle in the Kattegat as the southern boundary of the occurrence of P. megotara. These two 

studies, in conjunction with the results from the present thesis, showed that currently only one 

shipworm species exists in the Baltic Proper. 

 

Occurrence of a sibling species 

Sibling species are common and occur in all major marine groups and habitats (Knowlton, 

1993). In the North Sea and Baltic Sea region, the two species complexes of Marenzelleria 

spp. (polychaetes; Bastrop et al., 1998) and Mytilus spp. (mussels; Steinert et al., 2012) are 

particularly well known. Although the phenomenon of sibling species can be observed in ma-

rine shipworms, there are no such signs in the case of T. navalis. Since the intra-species vari-

ance of the species with respect to the COI locus is 0.19 % (K2P, pairwise distances), the val-

ue is well below the, however not very sharp, 2.2 % threshold to distinguish species 

(Ratnasingham & Hebert, 2013). Therefore, the presence of sibling species of T. navalis, at 

least for the investigated area, can be excluded.  

The COI sequences did also not show a difference between specimens of T. navalis from Eu-

rope and North America, which strongly supports the hypothesis of a single species on both 

sides of the Atlantic Ocean. This is also reflected in the determined first median-joining net-

work analysis (Fig. 3 of chapter 3.1). It is evident that two sequences of the North American 

East Coast represent the central haplotype of the network. This dominant central haplotype is 
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thus present at all sampling sites, meaning there are no differences in this COI sequence on 

either side of the Atlantic. This allows further conclusions, which will be explained in the 

following paragraphs.  

 

4.2 Population genetic calculations and analyses 

 

Collapsed populations and undiscovered cryptic populations 

Since the DNA barcoding approach was used to demonstrate that only T. navalis occurs in the 

southern Baltic Sea, this species was examined in more detail with regard to its present distri-

bution compared to past distribution patterns. Especially since little is known about the occur-

rence of the species between the various documented mass outbreaks. One reason might be 

that the population repeatedly collapsed and completely disappeared from the southern Baltic 

Sea. This may be caused by the low salinity in the Baltic Sea, which makes reproduction im-

possible and thus repeatedly leads to the collapse of the population (Sordyl et al., 1998). If the 

living conditions following the mass outbreaks in the preceding decades were not favorable 

for reproduction, the life span of 2 - 3 years could explain the duration of the mass outbreaks 

of T. navalis. 

Otherwise, the existence of several small cryptic populations in the entrance area of the Baltic 

Proper is conceivable, that may have had remained undiscovered until a new outbreak due to 

improved living conditions (Sordyl et al., 1998). However, where exactly these populations 

might be located at is completely unknown. At this point, it can be hypothesized that larvae 

from the North Sea could repeatedly be introduced either by water currents or by ballast water 

(Sordyl et al., 1998) and have thus always caused new mass outbreaks. To address whether 

these past mass outbreaks are reflected in the population structure of T. navalis, various anal-

yses of the genetic population structure in the North Sea and Baltic Sea were carried out.  

 

Genetic diversity 

For the genetic analyses, 23 specimens from each of the 13 sampling sites (Fig. 11) were ex-

amined, ranging from Brittany in the West to the island of Rügen in the East. The general 

population genetic indices as the total number of haplotypes (H), the haplotype diversity (Hd), 

the nucleotide diversity (π) and the number of average nucleotide differences (K) for all sam-

pling sites were calculated. The Hd values of all analyses carried out in this thesis range from 

a minimum of 0.692 to a maximum of 0.913 (Tab. 2 in chapter 3.2). These are generally valid 

values for Bivalvia (e.g., Mao et al., 2011; Li et al., 2015). 

In contrast, the values of the haplotype diversity of the individual sampling sites appear to be 

high compared to the work of Lasota et al. (2016) on Mya arenaria that also included sites in 
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the North and the Baltic Sea (Hd values between 0.441 and 0.699). The latter authors attribute 

this to a bottleneck effect after the Pleistocene glaciation. Such a bottleneck or founder effect 

can therefore be ruled out to T. navalis due to the results shown here. 

Comparing the COI data sets of chapter 3.1 and 3.2 of this thesis, the total Hd values are ap-

proximately equal with 0.771 (n = 172) and 0.776 (n = 299). At this point, it is noteworthy 

that the calculation in chapter 3.2 shows a higher Hd value for the Baltic Sea compared to the 

North Sea (Tab. 2 in chapter 3.2). This is unusual and hardly known for any other bivalve 

species in the Baltic Sea (Johannesson & André, 2006). In addition, the two sampling sites 

revealing the lowest haplotype diversity (Hd = 0.692; Emden, Kristineberg) are located in the 

North Sea while the highest haplotype diversity (Hd = 0.913; Dranske) was found in the Bal-

tic Sea. Remarkably, Dranske is also the most eastern sampling site in the study area.  

This is uncommon for brackish waters like the Baltic Sea. As a marginal sea, there is only 

limited water exchange with the North Sea and a strong salinity gradient from West to East. 

This leads to a minimum of species diversity around salinity values of 5 - 7, as neither full 

marine species nor species primarily inhabiting freshwater are provided optimal living condi-

tions (Snoeijs-Leijonmalm, 2017). Moreover, decreasing abundances along the salinity gradi-

ent may result in an increased genetic drift. This often leads to a loss of genetic diversity of 

populations within the Baltic Sea compared to populations of the same species outside. Jo-

hannesson & André (2006) have described this in a species-by-species meta-analysis for sev-

eral taxa in the Baltic Sea. Macoma balthica presents the only exception they found that was 

by 30 % genetically more diverse in the Baltic Sea compared to the North Sea. However, this 

seems to be due to two genetically different lineages, one Atlantic line in the western and one 

Pacific line in the eastern Baltic Sea (Nikula et al., 2008). By contrast, the results of the pre-

sent thesis exclude two different genetic lineages of T. navalis. Additionally, there is no re-

duction in genetic diversity detectable along the salinity gradient up to the distribution bound-

ary. Various authors (Johannesson & André, 2006; Johannesson et al., 2011) ascertained that 

there usually is a sharp distinction of the genetic population structure of a species inside and 

outside the Baltic Sea. For T. navalis, however, there is no sharp biogeographical break be-

tween the North Sea and the Baltic Sea and no loss of genetic diversity can be observed. Since 

the abundances of T. navalis are also decreasing along the salinity gradient towards the East, 

there must be other reasons for this phenomenon. The enormous genetic diversity could be 

attributed, among other things, to the high reproductive potential and ongoing gene flow, e.g. 

by larval drift. Moreover, the number of different haplotypes might be too high so that the 

total number was not represented by the maximum number of samples (n = 23) per sampling 

site. An increase in the number of samples could consequently result in an adjustment of hap-

lotype diversity between the different locations and thus also between the Baltic Sea and the 
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North Sea. Mainly as haplotype diversity is positively correlated with the number of individu-

als sampled per location and the number of locations surveyed in a study (Muirhead et al., 

2008). 

 

Genetic population structure analyses 

The high genetic diversity of T. navalis is also reflected in two phylogenetic network analyses 

(Fig. 3 in chapter 3.1, Fig. 2 in chapter 3.2) of the COI locus. Both median-joining networks 

display a similar star-shaped structure with the same central haplotype in the center. The 

haplotype Tn 1 occurs most frequently and is present in both networks at all locations exam-

ined. The proportion of private haplotypes occurring only at one sampling site is almost iden-

tical in both networks (75.0 %, n = 172; 72.6 %, n = 299), even if the sample size differs con-

siderably. Both the shape of the networks and the high proportion of private haplotypes are 

clear signs of an expanding population. It is likely that all private haplotypes originated from 

the predominant ancestral haplotype Tn 1 after the expected sudden population expansion. A 

similar star-like phylogeny of COI haplotypes is also known for the bivalve mussel 

M. arenaria (Lasota et al., 2016). This could be due to a similar way of life as M. arenaria is 

also a eurytopic organism with a comparatively long pelagic larval stage of three weeks 

(Lasota et al., 2016). 

In this case, however, these two networks cannot identify geographical distribution patterns 

and the presence of certain clades. These findings were underlined by the determined FST val-

ues and the calculated AMOVA analysis. Both calculations clearly show that no differentiated 

populations can be detected in the area under investigation. The calculated pairwise FST val-

ues ranged from -0.0150 to 0.0172 and were not significant for any sampling site (Tab. 3 in 

chapter 3.2). The difference between the locations is small as the values deviate far from one, 

which would mean complete differentiation (Wright, 1978). Therefore, it is not possible to 

identify a genetic population structure with the determined FST values of pairwise differences. 

The hierarchical AMOVA analysis also explains the majority of genetic variability (99.96 %) 

within the various locations but not between them. Even a differentiation between North Sea 

and Baltic Sea is very limited with a value of only 0.12 % (Tab. 4 in chapter 3.2).  

Thus, all data of the present work indicate that there are no genetically differentiated popula-

tions of T. navalis in Central Europe. Such a limited genetic population structure is common 

and can be observed for other marine Bivalvia in Europe, such as the soft-shell clam M. are-

naria (Lasota et al., 2004; Strasser & Barber, 2009). Nevertheless, this is in strong contrast to 

some other marine invertebrates of European waters like amphipods or polychaetes. Their 

populations are strongly structured showing different genetic lineages due to the survival in 

different glacial refuge (e.g. Bastrop et al., 1998; Krebes et al., 2011). This is mainly due to 
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the lack of planktonic larval stages and a limited gene flow caused by reduced reproduction 

compared to T. navalis. 

Similarly, there is no evidence of a genetically independent or isolated Baltic Sea population. 

All signs of the population genetic calculations point to a Central European panmictic popula-

tion between Brittany and the eastern distribution boundary in the Baltic Sea. However, it 

seems unlikely that individuals of all sites interbreed with the same probability as they are up 

to 3900 km apart. The unrestricted migration of the larvae prevents a greater differentiation of 

the individual locations from each other resulting in genetic homogeneity. Since limited gene 

flow can contribute to genetic population structuring (Sá-Pinto et al., 2012) the opposite 

seems to be the case in the context of this thesis. Though, a lack of population structure of a 

species over several hundred kilometers is not unusual in marine Bivalvia as they are often 

characterized by a frequent gene flow between the locations (Vierna et al., 2012, and refer-

ences therein). 

 

Larval dispersal 

At this point, both the high reproductive potential and the widespread drifting of larvae come 

into play. As a classic r-strategist, the high number of offspring ensures that at least some lar-

vae find a suitable piece of wood for colonization. In this regard, short-term larviparous ship-

worms outperform other reproduction modes and therefore show the highest abundances 

(Turner, 1966). This can be seen in fully developed planktotrophic larvae showing a higher 

ability to survive long dispersals. Since the retention time in the water column can last up to 

34 days (Nair & Saraswathy, 1971), the larvae can spread long distances through water cur-

rents. Depending on the velocity of the water currents, larvae can be dispersed over several 

hundred kilometers within a few weeks and even seem to be able to cross ocean basins 

(Scheltema, 1971). According to a biophysical model of the Baltic Sea developed by Appel-

qvist et al. (2015a), larvae of T. navalis may spread over a maximum of 400 km during one 

reproduction season. This dispersal appears to be an essential factor for the spatial distribution 

and the genetic connection between the otherwise geographically isolated populations (Schel-

tema, 1971). The importance of oceanographic connectivity for the population structure of 

marine invertebrates with pelagic larval stages has been shown by various authors (e.g., See-

bens et al., 2013; Wrange et al., 2016). In this context, oceanographic connectivity seems to 

have a greater influence on the regional genetic population structure than the geographical 

distance between the individual sites (Wrange et al., 2016). 

Therefore, other factors also need to be considered. Previous studies on marine invertebrates 

have shown that anthropogenic vectors can improve the spread of species over long distances 

(Wrange et al., 2016). Theoretically, anthropogenic influences such as transport via ballast 
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water could also contribute to a homogeneous distribution of T. navalis larvae in different 

biogeographic regions. In addition, the fact of the 13 sampling sites being located in high traf-

fic areas (e.g. the Kadetrinne in the Baltic Sea is crossed by an average of 50,000 vessels an-

nually; WSA, 2014) and the aforementioned occurrence of T. navalis larvae in ballast water 

(Gollasch, 2002) can contribute to the distribution of teredinid species (Borges et al., 2012, 

2014b; Voight, 2015). The transport of larvae in ballast water, possibly against predominant 

main currents (Seebens et al., 2013), could be responsible for larval dispersal across biogeo-

graphical boundaries (Canales-Aguirre et al., 2015) that may ultimately lead to an increased 

gene flow. 

As a second factor, adult teredinids may also use driftwood as a transport vector to travel long 

distances (Nair & Saraswathy, 1971; Scheltema, 1971). This is the case in large parts of the 

tropical and subtropical regions leading to specialists such as the aforementioned species 

Uperotus clava. Although the amount of natural driftwood in Central European waters is lim-

ited and reliable statistics do not exist, the total sum of wood in the North Sea and Baltic Sea 

would be sufficient to play a role as a distribution vector.  

In this context, it is even more important to gain a deeper understanding of the distribution 

history of this species in Central European waters in order to be able to make predictions of 

possible range expansions in the future. 

 

Demographic expansion 

For the analysis of demographic history, the sampling sites between Brittany and Dranske 

were considered a panmictic population. The results of these calculations are shown in detail 

in chapter 3.2 (Fig. 4, Tab. 5). All indications of these calculations point to a sudden demo-

graphic expansion after a historical population decrease event. Whether this is due to a bottle-

neck effect or a founder effect cannot be conclusively clarified with the present study. 

In this context, a possible starting time of the sudden demographic expansion was also calcu-

lated. Depending on different substitution rates of the COI locus for Bivalvia and an assumed 

generation time of one per year, the calculated starting time dates back to approximately 

55,556 to 111,111 years ago. In addition, the geographical starting point of this expansion 

could also not be determined with the data presented here, as the preliminary extent of sam-

pling data does not suffice for a global coverage. However, due to the last glacial period, 

which ended about 10,000 years ago in Europe, this place is most likely not located in Central 

Europe. At that time, the Baltic Sea and large parts of the North Sea were covered with glaci-

ers (e.g. Grunewald & Scheithauer, 2010) and are therefore not considered a refuge for sur-

viving populations. Some authors even assume a glacial ice shield up to the Iberian Peninsula 

(e.g. Grunewald & Scheithauer, 2010). Hence, in Europe, only the Mediterranean Sea or an 
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area south-west of the Iberian Peninsula could be a hypothetical starting point of this sudden 

expansion. Thus, the assumption that the place of origin of T. navalis is to be found in the 

estuaries of the great European rivers (Schütz, 1961) should be put into question.  

Additionally, two more theories exist that allocate the place of origin to either the region of 

the subcontinent India (Hill & Kofoid, 1927), or the Caribbean region (Moll, 1914). At first 

glance, both theories seem to be more reasonable as there are distinct mangrove forests in 

both regions, which are undoubtedly considered shipworm habitats. The validation of either 

theory, however, cannot be conclusively clarified in the context of this thesis. Voight (2015) 

speculated that T. navalis has repeatedly been introduced in different areas, both temperate 

and tropical areas, and consequently, an original area cannot be determined. Nevertheless, 

there is a high probability that T. navalis originated in full marine waters. This could be drawn 

from the fact that the species showed faster growth in test panels exposed for about the same 

time period (June - November 2012) in the more saline North Sea (approx. 4 - 5 cm) com-

pared to the Baltic Sea (approx. 1 - 2 cm). Under full marine conditions, the species seems to 

be closer to its salinity optimum in terms of the growth rate. Since the origin of T. navalis is 

still unclear, the species must furthermore be considered cryptogenic according to the defini-

tion of Carlton (1996). 

Likewise, both the number of shipworm species and their abundances are significantly higher 

in tropical regions as mentioned before. The number of teredinids from mangrove regions 

could range from 11 species in Brazil (Baretto et al., 2000) to up to 23 at the east coast of 

India (Nair & Saraswathy, 1971). Roughly a third of all known shipworm species occur in 

this habitat (Voight, 2015). Compared to the temperate zone, higher numbers of natural wood 

resources providing habitats, such as mangrove roots and fallen trees washed into the water 

from the rainforest, could explain this distribution pattern (Moll, 1940; Roch, 1955).  

The almost hermetic sealing of the tubes through the pallets, which all teredinids species are 

capable of, could be an indication of a co-evolutionary development. As mangroves can only 

be found in the tropical tidal areas, it would have been essential for the wood-boring mussel 

species to develop a protective mechanism against the regularly recurring low tide conditions.  

Even though the first reported mangrove fossils from the early Cretaceous are somewhat 

younger than the first teredinid fossils that date back to the Jurassic, it appears more than like-

ly that the worldwide distribution of mangroves in all tropical regions also led to the success-

ful distribution of the Teredinidae. 

 

Historical distribution 

The global distribution resulted in the fact that, as world trade has been increasing rapidly 

since the 15th century, teredinids have been registered in regions such as some parts of Europe 
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where they had not been present before. Consequently, the great seafaring nations of the 15th, 

16th and 17th centuries that sent their explorers and business travelers on many different ship-

ping routes around the globe were particularly affected. Therefore, the interest in the wood-

destroying organisms in Europe grew again with the strong increase of active trading between 

Europe and the rest of the known world. Many expeditions using wooden ships had to be 

postponed or canceled, such as journeys from discoverers like William Dampier, Francis 

Drake (Moll, 1914) or Christopher Columbus. Judging from a travel report that Columbus had 

written to the Spanish king before his return from his fourth voyage in 1503, he seemingly 

had to go ashore in what is now Jamaica as three of his ships were “drilled and eaten up by 

the Teredo” (Moll, 1928). 

Problems with shipworms were also reported when local wood was used for permanent struc-

tures in the water, as it had been common practice in the past centuries. Probably one of the 

best-known examples, as briefly mentioned in the introduction, is presented by the great flood 

in the Netherlands due to the breakage of wooden dyke gates in 1731. The trigger of this se-

vere infestation with shipworms was a drought following a period of hot and dry summers, 

which resulted in a reduced freshwater outflow in this region. This caused an increase of sa-

linity of inland waters followed by heavy mass occurrences of a teredinid species that seems 

to have been introduced to this area at that time (Voight, 2015). By the infestation with ship-

worms, most likely T. navalis, several parts of dyke constructions were severely damaged and 

collapsed eventually. The event went down in history to even appear in the German saying 

"Holland in Not" that originated from that time (Hahn, 1956). 

Therefore, it is likely that the first settlement of T. navalis was located in Central Europe 

along the coast of the Netherlands. The Netherlands were one of the leading colonial nations 

in Europe during the 17th and 18th centuries and one of the world's leading global trading na-

tions. Their enormous fleet enabled them to establish trade relations with numerous colonies 

overseas. These colonies were primarily located in Asia (mainly in regions of today’s India, 

Indonesia and Sri Lanka), America (partly North America but mainly Central America such 

as the Dutch Antilles) and Africa. All these regions could have been potential source habitats 

of T. navalis due to their geographic location. Consequently, it is likely that the species first 

settlement within Central Europe took place in the Netherlands during this highly active 

trading period. Especially since one infested wooden ship is sufficient to transport millions of 

shipworms across the oceans (Moll, 1940).  
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Figure 14 | Shipworms affecting wooden dike constructions, 1731 (Abraham Zeeman, 1731-1733; 
Rijksmuseum Amsterdam). 

As mentioned in the introduction, the first confirmed report from the Mediterranean dates 

back to 1792 and thus some decades later than the first documentations for Central Europe. 

This could be an indication that the colonization of Europe by T. navalis started at an initial 

point in the Netherlands to a successively range expansion to adjacent waters. 

 

Natural range expansion 

The fact that probably several entry events by numerous ships have taken place to introduce 

great quantities of larvae could explain why no signs of bottleneck or founder effect can be 

found in the genetic data. Since T. navalis has a great reproductive potential it is of course 

possible that billions of larvae enter a new habitat at once. It is indeed a special feature that 

only larvae will be introduced due to the sessile adult stadium. The great success of coloniza-

tion might also be attributed to the species tolerance towards broad ranges of temperature, 

salinity and oxygen content (Roch, 1932). Since T. navalis, as a brackish water tolerating spe-

cies, may not have had competition by other teredinids populating available wood resources 

in the introduced region (Borges et al., 2014b), the species might have spread relatively un-

hindered. Additionally, the short-term larviparous reproduction mode could have been of ben-

efit here. 

The next reports on T. navalis from Central Europe were mentioned approximately 100 years 

later in 1835 for the Baltic Sea. At this point, a successive range expansion from the North 

Sea in the area of the Netherlands to the adjacent waters seems to be the most likely explana-

tion. The expansion potential of T. navalis proves very effective in the successful colonization 
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Figure 15 | Years of confirmed sightings of Teredo navalis in different 
regions of the North Sea and Baltic Sea. p: present distribution 
boundary. 

 

of new patchy habitats (Borges et al., 2014b) and the associated further expansion into new 

areas.  

The finding that all specimens of the different sampling sites hardly genetically differ from 

each other strongly indicates that the animals originate from a single source population. This 

former founder population of Central Europe might presumably be located in the Netherlands. 

Due to the long pelagic larval stadium, it seems likely that a natural range expansion into the 

Baltic Sea via the Skagerrak, the Kattegat and through the Danish Straits has taken place. 

Such natural range expansions into the Baltic Sea are well known from other marine or-

ganisms, e.g. for the polychaete Marenzelleria viridis (Essink & Kleef, 1993; Blank et al., 

2008) or the dinoflagellate Prorocentrum minimum (Hajdu et al., 2000).  

It is quite possible that T. navalis used different wooden structures as stepping stones for a 

successive expansion. In addition, wooden resources appear sufficiently available in the 

transition area from the North 

Sea to the Baltic Sea, both in 

earlier times and nowadays, as a 

foundation for settlement. In 

addition, due to the high 

reproductive potential and the 

long retention time of the larvae 

in the water column, the 

probability of finding a suitable 

piece of wood for settling seems 

to be increased. This is proven 

by the heavily infested test 

panels, which were exposed at 

the different sampling sites in the North Sea, Beltsee and Baltic Sea. All deployed wooden 

panels showed high rates of shipworm infestations within the different years, even though the 

exact numbers of boreholes were not determined in cases when it was only a matter of 

obtaining genetic samples in some years. Therefore, using a more comprehensive sampling, 

abundances of T. navalis in the southern Baltic Sea were determined in order to ascertain 

whether there is a continuous rang expansion and where the current distribution boundary is 

located. 

 

 

 



4.3 Impact of salinity and temperature on abundances and distribution of Teredo navalis 

 
 | 69  

 

4.3 Impact of salinity and temperature on abundances and distribution of Teredo navalis 

 

Infestation of coastal protection structures by Teredo navalis 

The infestation of coastal protection structures at the southern German Baltic Sea coast can be 

traced back to the year 1917 (Cordshagen, 1964). Local wood (e.g. pine) had traditionally 

been used for hydraulic engineering for many years before, which indicates that wood-boring 

species had only marginally or not at all occurred in this region before 1917 (Cordshagen, 

1964). There may be several reasons for this. First, shipworms may have occurred only in 

small quantities and were not detected as they did not cause any major damage. Secondly, at 

that time there was potentially not enough wood as habitat available. Thirdly, and most likely, 

a reason may have been the prior absence and first appearance of shipworms during the pro-

cess of range expansion from the North Sea into the Baltic Sea. It was shown that T. navalis is 

able to tolerate low salinities and also colonize brackish waters instead of full marine sites 

unlike most other shipworm species. This is reflected in the wide tolerance of T. navalis to-

wards salinity and temperature in contrast to other shipworm species such as P. megotara or 

T. dominicensis (Borges et al., 2014b). An indication of this might be the occurrence of vari-

ous wood-boring bivalve species in the entrance area of the Baltic Sea. For the Skagerrak re-

gion, in addition to the presence of two other wood-boring bivalves (P. megotara, N. norvagi-

ca) the wood-boring isopod Limnoria lignorum is also known to occur here (Borges et al., 

2014a). Further south, in the Kattegat and Belt Sea region, at least only one other representa-

tive of wood-boring organisms is present (P. megotara) (Appelqvist et al., 2015b). For the 

Baltic Proper, on the other hand, there have always been reports of only one wood-boring 

bivalve species. 

The current situation at the German Baltic Sea coast, with a permanently established 

T. navalis population since 1993, raises discussions about the likelihood of a further species 

expansion into areas of even lower salinities. As North Sea and Baltic Sea are currently lack-

ing natural wooden sources, except for some examples when wood washed into the sea after 

coastal erosion, T. navalis is largely dependent on artificially introduced wooden structures. 

Therefore, the costs for maintenance of wooden structures are rising in regions of shipworm 

occurrences. 

Due to its texture, strength, longevity and availability, wood is still widely used in hydraulic 

engineering. It is used in the construction of marinas, as mooring pile in maritime shipping 

and, what is more, as coastal protection measures, namely groynes, for shore stabilization. 

Many other materials such as plastic, concrete or metal had been tested in the construction of 

the groynes but with unsatisfying material characteristics (M. Bugenhagen, StALU MM; pers. 

com.). In addition, the HELSINKI COMMISSION (HELCOM RECOMMENDATION 16/3) 
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recommends that only natural materials such as wood are to be preferred for coastal protec-

tion measures in the Baltic Sea. The attempt to fend off shipworms by covering the wooden 

groyne piles with geotextiles, as tested by the University of Rostock, proved laborious, expen-

sive and hence not suitable for large-scale use. 

In recent years, groynes at the Mecklenburg-Western Pomeranian coast were usually made of 

local pine and provided an ideal habitat for T. navalis. They were strongly affected which 

resulted in very high maintenance costs within the last few decades. This is mainly because 

since 1993 the groynes made of pine had only remained intact for 2 - 3 years when severely 

infested by shipworms, compared to 30 - 40 years previously without infestation (M. Bugen-

hagen, StALU MM; pers. com.). In the areas where heavy infestation is to be expected, the 

groyne piles have to be made of FSC-certified sustainably produced tropical hardwood. Due 

to its solid structure and the alkaloids contained therein, it is less prone to be colonized by 

marine shipworms (Bavendamm & Roch, 1970). Since the infestation of this hardwood is 

much lower, it is to be expected that hardwood groynes will have a similar lifespan as the pine 

groynes without shipworm infestation and hence justify the higher acquisition costs 

(M. Bugenhagen, StALU MM; pers. com.). To reduce high acquisition costs and CO2 

emissions due to long-distance transports to a minimum, this hardwood is only used where 

shipworm infestation is most likely to occur. For all other locations, the favorable local 

pinewood is preferred. 

Therefore, it is of immense importance to know what the present distribution situation looks 

like in order to be able to predict possible spreading scenarios. For this reason, an annual 

monitoring has been taken place, which has been carried out by various institutes in a suffi-

ciently consistent manner since 1995. In 2012, this project was taken over by the University 

of Rostock while roughly the same sampling sites were examined. The sampling plan hardly 

changed and was only moderately adjusted over the years to conduct a systematic study. In 

particular, the influence of the two key factors salinity and temperature on the larval dynamics 

and on the present distribution boundary were extensively studied. Details are given in the 

material and methods section of chapter 3.3.  

 

Borehole abundances 

The two key factors salinity and temperature and the combination of both are of particular 

importance for the colonization of new habitats by shipworms. For the Danish Isefjord, Kris-

tensen (1969) showed that T. navalis could tolerate lower salinities at higher temperatures. 

This finding of coupled temperature-salinity effects affecting the growth are also known for 

other teredinids such as L. pedicellatus (Eckelbarger & Reish, 1972). In this regard T. navalis 

shows the widest tolerance for salinity and temperature compared to other teredinid species 
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(e.g. L. pedicellatus I/II) investigated by Borges et al. (2014b). Appelqvist et al. (2015a) dis-

covered that favorable conditions for T. navalis are always controlled by temperature when 

salinity is above 8. This threshold value was determined around the two sites Dranske (aver-

age salinity of 8.8) and Glowe, east of Hiddensee, and thus at the eastern boundary of the area 

under investigation. This was also the lowest mean salinity value measured over the entire 

period (Tab. 1 in chapter 3.3). At both locations, only few boreholes were discovered during 

the regular sampling from 2012 - 2015 (≤ 1 dm-2).  

In contrast, the borehole abundances at the other locations investigated were very high rang-

ing between 90 (2015) and 990 (2013) boreholes dm-2 at a maximum. This is quite high com-

pared to other locations within the entrance area of the Baltic Sea. Kristensen (1979) detected 

only a maximum of 27 specimens dm-2, while Norman (1976a, 1977) and Appelqvist (2015b) 

reported abundances between 100 to 200 specimens dm-2. While the number of boreholes was 

determined by x-ray examination for the latter studies, the number of boreholes was counted 

manually using stereomicroscope in this thesis. This method can lead to an overestimation of 

the successful settlement attempts since not every borehole visible from the outside needs to 

contain a living individual. Control counts of living individuals showed a successful settling 

of approximately 70 % of the larvae in relation to the total number of boreholes counted pre-

viously (own results, not shown here). The mean values of the borehole abundance per sam-

pling site and year are shown in Figure 5 of chapter 3.3. 

Similarly, a distinct tendency in the dependence of borehole abundances with respect to the 

decreasing salinity gradient to the east could not be shown for the years under investigation. 

In 2013, for example, the borehole abundance at the eastern, and thus less saline, sampling 

site Graal-Müritz was more than twice as high compared to the sampling site of Kühlungs-

born (Fig. 5 in chapter 3.3). However, the intensity of infestations also varies greatly from 

year to year at the different locations. In Graal-Müritz for instance, the infestation fluctuates 

between more than 800 boreholes dm-2 in 2013 and only 40 boreholes dm-2 in 2015. This 

could assumedly be explained by different temperature regimes in the individual years since 

reproduction, survival and metamorphosis of the larvae are temperature-dependent (Nair & 

Saraswathy, 1971; Hoagland, 1986).  

 

Time of settlement of larvae 

An obvious tendency of the settling time of the larvae for the period under investigation could 

also not be seen. Settlement over the various years did not start, as expected due to the pre-

vailing water temperatures, by the end of June but in most years only in mid-August or even 

late August. In two years (2012, 2014) the settlement at some locations (Boltenhagen, 

Kühlungsborn, Graal-Müritz, Zingst) lasted until October (Fig. 6 in chapter 3.3). Thus, the 
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settlement period did not start until 5 to 12 weeks after the presumed trigger temperature of 

15 °C had been reached. Due to these different time intervals in the respective years, a clear 

trend for beginning and end of the main settlement period cannot be discerned. 

Paalvast & van der Velde (2011a) also identified a late settlement at the port of Rotterdam 

from August to September although the temperatures suitable for reproduction had already 

reached in April and May. Kristensen (1979) determined a settling period in the Danish 

Isefjord from mid-August to the end of September. In contrast, Appelqvist & Havenhand 

(2016) identified a settlement at the Swedish West Coast from the end of June to the begin-

ning of July. These different starting times and the different lengths of the colonization peri-

ods suggest that apart from temperature, other factors also play a role in the successful settle-

ment of larvae.  

With regard to the two key factors salinity and temperature that are vital for successful colo-

nization, no statistical correlation between the measured data and the determined larval abun-

dances could be established in the present thesis. Other factors, such as the prevailing water 

and wind currents and substrate availability, seem to play a major role. Finally, the availabil-

ity of wood in the respective regions and the associated retention time in the water column 

could have a major influence on the duration of the settlement period. However, these factors 

were not the subject of the present investigations and hence no statement can be made about 

their influence so far. 

A peak in the settlement of larvae in connection with the end of a high-temperature period as 

determined by some authors (Ryabchikov & Nikolaeva, 1963; Kristensen, 1979) could not be 

proven within this thesis. Although the results suggest a tendency of intensive colonization 

after a longer period with high water temperatures, the gaps between sampling intervals of 

this thesis were too long to clarify this. Nevertheless, the presence of different ecotypes such 

as e.g. early or late spawners has hitherto been unknown for shipworms. 

 

Influence of a Major Baltic Inflow on the occurrence of Teredo navalis  

The mass occurrences of T. navalis appear conspicuously often in a temporal relation to a 

MBI into the Baltic Sea (Appelqvist, 2015). In the case of many non-indigenous marine or-

ganisms, mass occurrences were typically described some years after their introduction (Gol-

lasch et al., 2009), leading to their discovery in these regions. 

Within this thesis, it could be demonstrated that, contrary to previous opinions, a MBI does 

not have a major impact on the abundance of T. navalis in the southern Baltic Sea. Although a 

brief increase in salinity was recorded at the sampling sites Boltenhagen, Kühlungsborn and 

Dranske, this did not appear to have any impact on larval dynamics. In contrast, the borehole 

abundances in 2015 after the MBI in 2014 were lower than they had been in previous years 
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(Fig. 5 chapter 3.3). Since the large salt water inflows usually take place in winter due to the 

necessary weather conditions, an influence on the larvae distribution seems to be uncertain as 

they are not present in the water column during this season. Nevertheless, increased salinities 

in the early summer months can lead to better reproductive conditions and thus increase larval 

production. However, this cannot be confirmed by the available data of the period under in-

vestigation. 

Thus, it also seems questionable whether the MBI of 1993, as often stated, can actually be 

related to the subsequent mass occurrence of T. navalis. For some reasons this cannot be con-

firmed. First, the MBI had taken place in January 1993 (Dahlin et al., 1993) and hence long 

before the spawning period of T. navalis in these regions. Moreover, the phenomenon of 

countless washed up groyne piles to the shore already occurred in the late summer of 1993 

(M. Bugenhagen, StALU MM; pers. com.). Even if the MBI improved reproductive condi-

tions in the early summer subsequently followed by a mass occurrence, the time for this annu-

al cohort would be too short to severely damage the groyne piles. Consequently, the infesta-

tion must have happened in the years before probably between 1990 - 1992. Even extremely 

severe attacks of shipworms do not lead to a destruction of groyne piles by waves until two to 

three years after the beginning of the attack. Consequently, there seems to be no connection 

between an MBI and a mass occurrence of T. navalis in the Baltic Sea. 

 

Present distribution boundary and possible spreading scenarios 

As mentioned before, the lowest salinity values of a four-year mean salinity of 8.8 were de-

termined at the sampling site Dranske and the borehole abundances were very low compared 

to the other sampling sites. In addition, the boreholes usually did not contain living animals. 

However, the occasional occurrence of unusually favorable conditions, for example changing 

water currents in combination with an increased water temperature, could lead to more or less 

successful single larval settling events. This can also occur at locations where the species 

seems to be at its physiological limit since the lower physiological limit in terms of salinity is 

around 7. Nevertheless, the individuals are able to develop to the adult stadium at this salinity 

and growing to a length of more than 20 cm. In the case of the sampling site Dranske, this 

occurred only in small quantities (about two animals dm-2 in 2016, own obs.). This might 

indicate that Dranske is not yet the present distribution limit within the Baltic Sea. Whether 

the animals are able to reproduce under these conditions cannot be answered now because 

neither sexually mature animals nor larvae have been detected.  

At the easternmost sampling site Glowe, only boreholes with dead larvae but no living 

animals were detected. According to the results of this thesis, the location Dranske must 
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Figure 16 | Schematic illustration of mean abundances of boreholes per dm2 test panel per year and positions of 
the autonomous data logger between 2012 - 2015. (Details in the result section in chapter 3.3.) 

 

therefore be regarded as the present eastern distribution boundary of T. navalis at the Baltic 

Sea coast of Mecklenburg Western-Pomerania.  

Whether this will also apply to the future remains to be evaluated. There are unconfirmed 

recent reports of sightings of T. navalis at shipwrecks around the small island called 

Greifswalder Oie (T. Förster, German Oceanographic Museum, Stralsund; pers. com.). This 

area is located approximately 50 km to the southeast of Glowe and is estimated to have an 

average salinity of 8. This suggests that this species has spread to the east of Rügen and would 

be the first sighting for this region, if confirmed. 

Other unconfirmed reports also mention an infestation of shipwrecks in the Gdañsk Bay 

(I. Pomian, National Maritime Museum, Gdansk; pers. com.). This sighting seems to be even 

more remarkable as the Gdańsk Bay is about 300 km further east of Rügen. The seawater sur-

face salinity of approx. 6 - 7 in this area is likely too low for successful growth and reproduc-

tion of T. navalis. Nevertheless, it is conceivable that there may have been a spread of larvae 

with the deeper, salt-rich water currents into this area (Fig. 17). There is an average surface 

water salinity of 7 to 8 up to about the southern tip of Gotland as can be seen in Figure 17. 

Considering the bottom water salinity is higher, the possible colonization range is even larger 

and reaches the Finnish south coast (Fig. 17). If so, the potential distribution area of T. navalis 

in the Baltic Sea would be considerably larger than the previously populated area. 

At this point, the MBIs of the last few years could have played a decisive role if the inflow 

was strong enough to cross the Darss Sill. However, caution should always be exercised when 
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dealing with reports like these without proof of living animals. These observations could rep-

resent old boreholes, as the ship may have already been infested before sinking. In order to 

exclude this possibility, a thorough examination by experienced specialists is required. There-

fore, a closer cooperation with underwater archaeologists could be advantageous for future 

investigations of T. navalis in the Baltic Sea.  

A report from 2003 shows that settlement of shipworm larvae in this eastern region is indeed 

possible (Olsen, 2003). However, this report by a Danish engineering company is only availa-

ble in the national language and does not meet scientific requirements in its implementation. 

This is mainly due to the lack of replicates and a poor documentation. From November 2001 

to November 2002, pine (Pinus sylvestris) test panels have been exposed at a depth of approx-

imately 50 cm below the water surface in the port of Rønne on Bornholm Island. This site is 

located about 100 km east of Rügen. During the investigation period, salinities between 5.9 

and 7.9 were measured. Unfortunately, additional information on the detected animals (e.g. 

pictures of pallets) and methods of identification are not available. Nevertheless, the test pan-

els were subjected to an x-ray examination. Thus, it seems to be undisputed that an infestation 

with shipworms was detected, most likely with T. navalis. Although it cannot be completely 

ruled out that this could have also been N. norvagica or P. megotara, so far both species have 

only been reported further north at higher salinities. Nevertheless, this is, remarkably, the first 

proof of the presence of a shipworm species in this region. For the above-mentioned reasons it 

seems essential to carry out further investigations of both the surface water around Bornholm 

and the adjacent deep water. In this case, sampling far away from the coast could be of partic-

ular interest to find the larvae that may drift within the deeper water currents. 

For the southern Baltic Sea, the data of this thesis, however, showed no changes in the distri-

bution of T. navalis over the past decades compared to the work of Sordyl et al. (1998). The 

occasional slight shifts of the distribution boundary of an animal species at the edge of its 

distribution are seemingly common. This has already been observed for T. navalis in earlier 

times. Reports of the 1950s indicate a spread of this shipworm species in the Baltic Sea lim-

ited to the virtual line Sassnitz - Trelleborg (Nakel, 1954). The later investigation by Sordyl et 

al. (1998) could only prove a distribution up to the island of Hiddensee that is situated further 

to the West. In this respect, the determined occurrences in this thesis seem to be within an 

assumed fluctuation range of a species at the edge of its distribution depending to the combi-

nation of the prevailing temperature and salinity conditions. 

However, in the face of climate change, this present distribution might change significantly 

and may result in a range expansion of T. navalis into areas of the Baltic Sea that have not 

been infested so far. Although, Appelqvist et al. (2015b) has not yet confirmed a range expan-

sion of T. navalis at the Swedish West Coast in recent years from 1973 to 2008 it appears to 
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be a possible scenario. Borges et al. (2014b) predicted probable locations that could potential-

ly be populated by the species as an outcome of their modeling calculations. The latter authors 

forecast the spread of T. navalis into the eastern Baltic Sea and discuss a possible adaptation 

to lower salinity conditions. Though, this assumption is based on the occurrence of T. navalis 

in the Baltic Sea at a salinity of 7. 

This cannot be confirmed with this thesis. As shown in chapter 3.3, the assumption of the lat-

ter authors is presumably based on an incorrect location of some exposed test panels that have 

been included in the calculation and hence without any foundation in this regard. As the larval 

distribution within deep water currents has not yet been investigated, this cannot be answered 

at the moment and requires further investigations. However, the water temperature of the Bal-

tic Sea has already increased in recent years (~ 1.3 °C between 1985 - 2005; Mackenzie & 

Schiedek, 2007) and T. navalis, as mentioned above, might tolerate lower salinities in this 

respect. Therefore, these areas further in the East must not be lost out of sight and have to be 

taken into account in future investigations and monitoring programs.  

Most recent climate projections agree that the surface water temperature of the Baltic Sea will 

increase in the near future and sea-ice covers will decrease significantly (BACC II, 2015). 

Predictions of whether salinity values will increase or decrease are still inaccurate due to the 

different calculation models. Given the expected increase in precipitation and the associated 

increase in fresh water input from rivers, the trend is towards a decreasing salinity for the 

Baltic Sea in the wake of climate change (HELCOM, 2013; BACC II, 2015). Only the study 

of Hansson et al. (2011) predicts an increase in salinity in a warmer climate. The latter 

authors suggested that the salinity in the Baltic Sea would increase as a result of reduced fresh 

water inflow through rivers. This does not, however, equally apply to all areas and will lead to 

regional differentiation. There will presumably be more rainfall in the northern Baltic Sea 

region, while less precipitation is expected in the south. Furthermore, Hansson et al. (2011) 

assume that the reduced fresh water supply in the south has a greater influence than the 

increase in the north and the Baltic Sea as a whole will thus become more saline. 

Hence, a general warming combined with local reductions of salinity in different regions of 

the Baltic Sea appears to be the most likely scenario. Due to the great inaccuracies in the hy-

drological models, no conclusions can be drawn concerning changes in salt water transport 

(BACC II, 2015). If these projections are confirmed, it is likely that the distribution of 

T. navalis will change either very slightly or not at all. Although the species can tolerate lower 

salinities at higher temperatures, the simultaneous occurrence of salinity reductions could 

prevent spreading.  

However, a presumably decreasing salinity will play a greater role in possible dispersals com-

pared to rising temperatures since the adaption to salinity changes is more strenuous than 
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Figure 17 | Schematic illustration of the average sea surface (a) and deep bottom (b) salinity in the Baltic Sea.   
© Snoeijs-Leijonmalm, 2017  

 

adapting to changing temperatures (Holopainen et al., 2016). However, rising temperatures 

can lead to an extension of the growth season of invertebrates (Holopainen et al., 2016) and 

with that to a larger dispersion potential. 

Nonetheless, more detailed physiological investigations have not been carried out recently for 

T. navalis. Such information is lacking, in particular with regard to the effects of a possible 

acidification of the Baltic Sea, which could have serious consequences for calcifying organ-

isms such as bivalve mollusks. Since key processes such as growth and reproduction are in-

fluenced, this can also affect abundances, diversity and distribution of a species (HELCOM, 

2013). 

Summing up, since the last and still ongoing mass outbreak of T. navalis in 1993, there has 

apparently not been a substantial change in the distribution of this species in the southern Bal-

tic Sea, since no extensive range expansion to the east but only slight shifts of the distribution 

boundary have been observed. 

 

4.4 Conclusions and directions of future research 

This thesis attempted to clarify the present taxonomic status of wood-boring bivalves in the 

southern Baltic Sea, the possibility of a genetically differentiated Baltic Sea shipworm popu-

lation and the present distribution boundary of the occurring shipworm species in comparison 

to the first detection of a permanent and self-reproducing population in the southern Baltic 

Sea in 1993. 
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To this end, the present distribution situation and the genetic population structure of T. navalis 

in European waters have been comprehensively investigated. A specific primer pair for the 

COI locus has been developed to provide a simple and cost-effective molecular taxonomic 

tool for the reliable identification of T. navalis. Finally, it has been shown that there is, at pre-

sent, only one shipworm species in the southern Baltic Sea, T. navalis, which had been men-

tioned there earlier. The subsequent classification into the phylogenetic system of bivalves 

and further phylogenetic calculations also excluded the existence of a sibling species for the 

area under investigation.  

Furthermore, no genetically isolated Baltic Sea population could be identified as none of the 

sampling sites are genetically differentiated from the others. On the contrary, it is indeed the 

case that all signs point to a widely connected, panmictic population.  

In contrast to the decreasing abundances of boreholes along the salinity gradient, no decrease 

of genetic diversity in eastern direction has been observed. In some cases, even higher haplo-

type diversities were observed within the Baltic Sea compared to the North Sea. This is unu-

sual for a presumably marine species in a brackish water environment. In addition, due to the 

high genetic diversity of all sampling sites, there are no signs of a founder effect or bottleneck 

effect for the area under investigation. The calculated phylogenetic networks also reflect this. 

Due to their star-shape, and in connection with the results of the other population genetic cal-

culations, a sudden demographic expansion of T. navalis in Europe can be suggested. There-

fore, all data indicate a natural range expansion of T. navalis in Central European waters from 

only one source population. Since the first scientific evidence for Central Europe reported 

from today’s Netherlands in 1731, the starting point for the subsequent range expansion 

seems to be there. At present, it cannot be conclusively clarified whether this has happened by 

a single or several different introduction events, as could have been assumed due to the trad-

ing frequency of wooden ships at that time. However, it could not be finally ascertained with-

in this thesis whether there might have also been secondary introduction events by ships into 

the Baltic Sea or whether continuous reintroductions with larvae from the North Sea occurred. 

In order to gain a deeper understanding of the settlement history in Europe and the subsequent 

spread of T. navalis, a comprehensive worldwide sampling and the processing of the samples 

with highly polymorphic markers such as microsatellites seems to be essential.  

Since it has been shown that there is only a single species of shipworms in the Baltic Proper, 

an attempt was made to determine whether a change in distribution could be demonstrated 

compared to previous investigations. For this purpose, the periods of colonization as well as 

the larval abundances of T. navalis were determined. Simultaneously recorded data of salinity 

and temperature were used to detect correlations between these two important key parameters 

and the occurrence of T. navalis. Due to the large variances of borehole abundances both in 
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the different years and between the different locations, no definitive statement could be made 

regarding these factors influencing the settlement. Perhaps the prevailing wind and water cur-

rents are responsible for a successful settling to a greater extent than previously thought. Nev-

ertheless, the present distribution boundary of T. navalis at the Mecklenburg-Western Pomer-

anian coast could be determined. The island of Hiddensee was the easternmost sampling site, 

which revealed high rates of infestation and living larvae in some of the test panels. At the 

sampling site Dranske, living animals were rarely detected and at the easternmost location 

Glowe only occasionally boreholes without living animals have been found. Therefore, the 

present distribution boundary in the coastal waters seems to be between the sampling sites 

Dranske and Glowe and thus in a region with a salinity of around 8 to 9. Consequently, no 

range expansion of this species could be determined in the investigated area for the last dec-

ades. However, since there are occasional reports of sightings located further east, these loca-

tions should in any case be sampled in the context of a subsequent monitoring.  

For predicting possible future dispersal scenarios, it is crucial to identify where the larvae that 

settle at the coast of Mecklenburg-Western Pomerania originate. In addition, if all groyne 

fields were made of sustainable tropical hardwood, that is hardly infested, and if natural 

wooden resources were scarce, where would the refuge areas of sexually mature adults be 

found? Conversely, does this imply that larvae are potentially introduced from areas that have 

not yet been identified? Alternatively, are there possibly only relatively small numbers of par-

ent animals in a few wood sources that, due to their high reproductive potential, are sufficient 

to produce these large numbers of larvae?  

These questions are interesting for future research activities and require clarification. Sam-

pling of the planktonic larvae at different times during the spawning period and at different 

locations should also be considered. For this purpose, it might be interesting to apply test pan-

els at sea signs of maritime shipping, as they are more distant from the coast. If the spawning 

sources could be detected, it would be easier to forecast various dispersal scenarios by using 

different hydrographical models. This would make it possible to identify potentially affected 

areas and use sustainable tropical hardwood or, if possible, stones for coastal protection struc-

tures.  

In addition, the complex and expensive attempt to remove (all) wooden sources from the 

system could also be launched, thereby depriving the habitat of T. navalis in the Baltic Sea. 

The question remains, however, whether such an initiative is realistically feasible, that has 

already been considered by Appelqvist et al. (2015a). 

It would involve enormous coordination efforts in several countries with a very uncertain out-

come. The attempt to identify all natural and anthropogenic sources of wood is likely to take 

several years. Such an approach would require a strong political interest in order to be provid-



4.4 Conclusions and directions of future research 

 
 | 80  

 

ed with the necessary financial resources. This is hampered by the fact that the Baltic Sea is 

one of the most wreck-rich waters in the world. Estimates predict up to 100,000 wrecks in the 

entire Baltic Sea. Although not all of them are known in detail yet, a major amount will most 

likely consist of wood. Since many of these wrecks cannot be salvaged due to their conserva-

tion status and limited financial resources, it is impossible to remove this food source of 

T. navalis from the system.  

For a deeper understanding, the analysis of prevailing wind and water current conditions dur-

ing the time of the spawning period of T. navalis also seems essential. In addition to the fur-

ther analysis of salinity and temperature - and climate change considered - it also seems nec-

essary to observe additional factors playing a role for T. navalis development, such as the pH 

value. In this context, a further examination of symbiotic bacteria might also be of interest. 

Under changing environmental conditions, they could play a decisive role in the future distri-

bution of T. navalis in the Baltic Sea. This might be in the form of better adapted bacterial 

strains of T. turnerae or possibly also by colonization of T. navalis by completely different 

bacterial species. 

 

With this thesis, the basis for such further work has been created. 
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