NALIPOITE, SODIUM DILITHIUM PHOSPHATE, A NEW MINERAL SPECIES FROM MONT SAINT-HILAIRE, QUEBEC

GEORGE Y. CHAO

Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario K1S 5B6

T. SCOTT ERCIT

Mineral Sciences Section, Canadian Museum of Nature, Ottawa, Ontario K1P 6P4

ABSTRACT

Nalipoite, the natural analogue of NaLi₂PO₄, occurs as anhedral to subhedral blocky grains up to 2 mm in sodalite or analcime and as irregular grains (0.2 mm) in cavities in sodalite syenite xenoliths in the nepheline syenite, Poudrette quarry, Mont Saint-Hilaire, Quebec. It is associated with sodalite, analcime, clinoamphibole, acgirine, cancrinite, serandite, lovozerite, villiaumite, ussingite, steenstrupine-(Ce), eudialyte, thermonatrite, natrophosphate, sidorenkite, rasvumite, revdite, vuonnemite, vitusite-(Ce), chkalovite, terskite, silinaite, lintisite and others, including many unidentified minerals. The mineral is white, very pale blue or yellow with a white streak, vitreous, transparent to translucent. The mineral is brittle with a Mohs hardness about 4, and nonfluorescent in ultraviolet light. Cleavages (100), (010), (001) and {110} are good, with another distinct direction, possibly [101]; fracture uneven; D(meas.) 2.58(1), D(calc.) 2.612 g/cm³. The mineral dissolves readily in 1:1 HNO₃, less readily in 1:1 HCl and slowly in 1:1 H₂SO₄. Nalipoite is biaxial (-), α 1.533(1), β 1.540(1), γ 1.541(1), 2V(meas.) 49(1)°, 2V(calc.) 41° (λ 589 nm). Orientation: X = a, Yc, Z = b. The mineral is orthorhombic, *Pmnb*, a 6.884(2), b 9.976(4), c 4.927(2) Å. The strongest eight X-ray-diffraction lines [d in Å(I)(hkl)] are: 4.02(100)(120), 3.507(100)(021), 3.441(100)(200), 2.833(40)(220), 2.712(40)(211), 2.493(90)(040), 2.462(90)(002), 1.721(40)(400). The chemical formula was confirmed by a crystal-structure analysis. Electron-microprobe analyses gave (average): P2O5 51.76, Na2O 24.54, Al2O3 0.06, Li2O (calc.) 22.12, sum 98.48 wt.%, corresponding to $Na_{1.07}Li_{2.00}P_{0.99}O_4$ based on 4 oxygen atoms, Z = 4. The name is derived from the composition.

Keywords: nalipoite, sodium dilithium phosphate, new mineral species, Mont Saint-Hilaire, Quebec, properties, X-ray data, composition.

SOMMAIRE

La nalipoïte, analogue naturel de NaLi₂PO₄, forme des cristaux xénomorphes à sub-idiomorphes jusqu'à une taille de 2 mm dans la sodalite ou l'analcime, et des grains irréguliers (0.2 mm) dans les cavités des xénolithes de syénite à sodalite dans la syénite néphélinique de la carrière Poudrette, au mont Saint-Hilaire (Québec). Elle

montre une association avec sodalite, analcime, clinoamphibole, aegyrine, cancrinite, serandite, lovozerite, villiaumite, ussingite, steenstrupine-(Ce), eudialyte, thermonatrite, natrophosphate, sidorenkite, rasvumite, revdite, vuonnemite, vitusite-(Ce), chkalovite, terskite, silinaïte, lintisite, et plusieurs espèces non identifiées. C'est un minéral blanc, bleu très pâle ou jaune avant une rayure blanche, à l'aspect vitreux, transparent ou translucide. La nalipoïte est cassante, possède une dureté de Mohs d'environ 4, et est non fluorescente en lumière ultra-violette. Les clivages (100), (010), (001) et (110) sont bons, et un autre, possiblement [101], est distinct. La fracture est inégale; D(mes.) 2.58(1), D(calc.) 2.612. Le minéral se dissout rapidement dans HNO₃ (1:1), moins rapidement dans HCl (1:1), et lentement dans H₂SO₄ (1:1). Biaxe négatif, α 1.533(1), β 1.540(1), γ 1.541(1), 2V 49(1)° (mesuré), 41° (calculé) (λ 589 nm). Orientation: X = a, Y = c, Z = b. Orthorhombique, Pmnb, a 6.884(2), b 9.976(4), c4.927(2) Å. Les huit raies les plus intenses en diffraction X [d en $\tilde{A}(I)(hkl)$] sont: 4.02(100)(120), 3.507(100)(021), 3.441(100)(200), 2.833(40)(220), 2.712 (40)(211), 2.493(90)(040), 2.462(90)(002), et 1.721 (40)(400). La formule chimique a été confirmée par ébauche de la structure cristalline. Les analyses à la microsonde électronique ont donné, en moyenne, P2O5 51.76, Na₂O 24.54, Al₂O₃ 0.06, Li₂O (calculé) 22.12, total 98.48% en poids, ce qui correspond à $Na_{1.07}Li_{2.00}P_{0.99}O_4$ pour quatre atomes d'oxygène, Z = 4. Le nom rappelle la composition.

(Traduit par la Rédaction)

Mots-clés: nalipoïte, phosphate de sodium et de lithium, nouvelle espèce minérale, mont Saint-Hilaire, Québec, propriétés, données de diffraction X, composition chimique.

INTRODUCTION

The chemical compound NaLi₂PO₄ was first discovered by Gale (1945) in the process of recovering lithium from Searles Lake, California. It was later reported by Barczak (1974) as one of the products in the processing of subterranean brines. The compound has been synthesized by heating a mixture of Li₂CO₃, NaHCO₃ and P₂O₅

in stoichiometric proportions to 700° C (Barczak 1974). The unidentified mineral UK63 from Mont Saint-Hilaire, Quebec (Chao *et al.* 1990) has been shown to be the natural analogue of NaLi₂PO₄. The mineral is named nalipoite for its composition (Na-Li-P-O-ite). Both the mineral and its name have been approved by the Commission on New Minerals and Mineral Names, IMA. Cotype and metatype specimens of nalipoite are deposited at the Canadian Museum of Nature, Ottawa (CMN #56467 and CMN #56468) and at the Royal Ontario Museum, Toronto (M44516 and M44517).

OCCURRENCE

Nalipoite was first collected in 1988 from a sodalite syenite xenolith in the nepheline syenite exposed in Poudrette quarry, Mont Saint-Hilaire, Quebec. The mineralogy of this xenolith is relatively simple; it contains mainly sodalite (75%), analcime (15%), and microcline (10%), with accessory cancrinite, clinoamphibole, aegirine, lovozerite, serandite. villiaumite, ussingite. steenstrupine-(Ce), and eudialyte. A number of rare species and as-yet-unidentified minerals also have been found in this xenolith in small quantities. These are vuonnemite, vitusite-(Ce), chkalovite, terskite, primary and secondary thermonatrite, natrophosphate, sidorenkite, rasvumite, revdite, UK38, UK53, UK55, and UK64 (Chao et al. 1990), and the recently established new minerals lintisite (Khomyakov et al. 1990) and silinaite (Chao et al. 1991). The presence of revdite is characteristic of this association, as the mineral has not been found in other xenoliths in this quarry. A year later, nalipoite was again found in another xenolith of sodalite syenite, in association with silinaite and seventy other minerals, as has already been briefly described by Chao et al. (1991).

PHYSICAL AND OPTICAL PROPERTIES

Nalipoite occurs as anhedral to subhedral blocky grains up to 2 mm in a matrix of sodalite or analcime, and as irregular grains (0.2 mm) in clusters in cavities in sodalite syenite xenoliths. The total weight of confirmed material is estimated to be less than 30 mg. The mineral is white, very pale blue or very pale yellow, with a white streak. It is vitreous and transparent to translucent. The Mohs hardness is about 4. The mineral is very brittle and is nonfluorescent in ultraviolet light. Two determinations of the density by flotation in bromoform diluted with acetone gave 2.58(1) g/cm³. The cleavages {100}, {010}, {001} and {110} are good, with another distinct direction, possibly {101}. The fracture is uneven. The mineral dissolves readily in 1:1 HNO₃, less readily in 1:1 HCl, and very slowly in 1:1 H_2SO_4 .

Optically, the mineral is; biaxial (-), α 1.533(1), β 1.540(1), γ 1.541(1), 2V(meas.) 49(1)° and 2V(calc.) 41°. Dispersion is not noticeable. The optical orientation is X = a, Y = c, Z = b. The mineral is nonpleochroic. All optical properties of nalipoite were obtained in sodium light (λ 589 nm) using a spindle stage and a crystal previously oriented by X-ray goniometry.

Synthetic NaLi₂PO₄ was reported (Barczak 1974) to have a prismatic habit, negative elongation, indistinct cleavage, parallel extinction, and weak birefringence (0.006). It is optically biaxial (-) with a small 2V, and minimum and maximum indices of refraction 1.530 and 1.536, respectively. The measured density is 2.53 g/cm³. These properties are similar to those reported here for nalipoite.

X-RAY CRYSTALLOGRAPHY

X-ray single-crystal precession photographs show the mineral to be orthorhombic, space group *Pmnb* or $P2_1nb$. The cell parameters obtained on a four-circle diffractometer and refined by a least-squares method are: a 6.884(2), b 9.976(4) and c 4.927(2) A. These are in excellent agreement with the values refined from powder-diffraction data: a6.877(3), b 9.977(6), and c 4.9255(7) A. The correct space-group is *Pmnb*, as determined by crystalstructure analysis (Ercit 1991).

X-ray powder-diffraction photographs were obtained using a 114.6-mm Gandolfi camera and Ni-filtered Cu $K\alpha$ radiation. The powder pattern of nalipoite is basically identical to that of the synthetic NaLi₂PO₄ and compares well with the powder pattern calculated from the crystal structure (Table 1).

CHEMICAL COMPOSITION

Nalipoite was analyzed using a Cambridge Microscan MK5 electron microprobe at an operating voltage of 15 kV and a beam current of 30 nA. Four consecutive 5-second counts were gathered, with the beam rastering over an area of 10×10 μ m. The mineral appears to be stable under the electron beam. Fluorapatite from Durango $(PK\alpha)$, albite (NaK α) and the Kakanui hornblende (AlK α) were used as standards. Elements other than P, Na, and Al were not detected in a preliminary energy-dispersion scan. Results of analyses at six different spots on the same grain are given in Table 2. The analyses show a deficiency of approximately 24 wt.%, which must be due to light elements or H₂O, not detectable by the electron microprobe. The missing constituent was initially thought to be

TABLE 1. X-RAY POWDER-DIFFRACTION DATA FOR NALI	POITE
---	-------

	Nalipoite ¹					NaLi ₂ PO ₄ ²		
hkl	I _{cele.}	dcalo.	I.	d _{mas} .	I eat.	d _{eale.}		
020	4	4.9880	10	4.99	6	5.00		
011	6	4.4176	10	4.42				
120	40	4.0391	100	4.02	41	4.04		
101	41	4.0065			39	4.00		
111	6	3.7179	10	3.715	1	3.72		
021	100	3 5053	100	3 507	100	3 51		
200		3 4430	100	2 443	26	2 43		
200	60	3.4420	100	3.441	30	3.42		
121	12	3.1236	20	3.121	10	3.12		
220	41	2.8330	40	2.833	28	2.82		
211	25	2.7151	40	2.712	3	2.71		
131	11	2.5588	20	2.557				
040	61	2.4940	90	2.493	51	2.50		
002	64	2.4635	90	2.462	62	2.46		
221	16	2 4559						
010		2 2017	10	2 202				
012		2.3917	10	2.392	-			
140	2	2.3448	5	2.345	3	2,35		
041	1	2.2251			2	2.23		
022	2	2.2088			2	2.21		
231	12	2,1515	20	2,150	1	2.15		
320	2	2.0846	10	2.081	4	2.07		
301	5	2.0801			-			
211	10	2 0262	20	3 035	7	2 02		
311	10	2.0303	30	2.035	'	2.02		
240	13	2.0196	30	2.020	-			
202	13	2.0033	30	2.002	7	2.00		
212	3	1.9641	5	1.961	1	1.959		
321	12	1.9199	30	1.918	6	1.914		
132	4	1.9024	10	1.901				
241	4	1.8687			3	1.868		
222	13	1 8590	30	1 860	-			
061	10	1 8403	50					
221		1 7625	-	1 761	-	1 353		
227		1.7035		1./01	1	1./5/		
042	14	1.7526	30	1.753				
400	21	1.7210	40	1.721	7	1.713		
340	3	1.6886	5	1.689	1	1.687		
251	2	1.6291	10	1.629				
420	2	1.6269			2	1 623		
160	2	1 6162	5	1 615	5	1 620		
102	-	1 5075	10	1 505	-	1.020		
103	3	1.39/3	10	1.595	4	1.596		
341	4	1.59/4			ې	1.593		
322	4	1.5913			з	1.589		
061	6	1.5754	10	1.577	3	1.581		
242	4	1.5618	10	1.559	3	1.562		
023	6	1.5599						
421	4	1.5448	10	1.546	2	1 540		
123	i	1 5214		1 521	7	1 5 3 3		
260	15	1 4071	20	1 406	ê	1 501		
212	12	1.4662	20	1.450	.	1.501		
122	2	1.4002	20	1.400	1	1.46/		
133	3	1.4400	10	1.440	3	1.437		
351	1	1.4399						
261	8	1.4325	20	1.433				
223	11	1.4208	20	1.421	5	1.421		
440	10	1.4165			5	1.414		
402	11	1.4108	20	1.409		1 409		
342	< i	1 3928				1.201		
062	<1 ×1	1.3791			÷	1 374		
441		1 2612		1 363	1	1.3/4		
400	-	1.3013	3	1.301				
422	1	1.3576	10	1.355				
233	6	1.3538			1	1,355		
303	1	1.3355			1	1.332		
520	2	1.3272	20	1.324	-			
501	2	1 3260		4+944				
212	<u>د</u>	1.3200						
313	2	1.3237	• •		1	1.321		
361	7	1.2988	10	1.298	2	1.301		
262	9	1.2794	20	1.280	3	1.282		
442	5	1.2280			2	1.226		
				~				

114.6 mm Gandolfi camera, CuKu radiation (λ 1.5418Å), I_{out} visually estimated, I_{outo} from crystal-structure analysis Visually estimated, I_{osl}, from crystal-structure analysis (Ercit 1991). Synthetic LiNAPO, CuKa radiation, scanning speed 1° 20/min.

(Barczak 1974).

H₂O. The average composition (Col. 7, Table 2), with the balance assumed to be H_2O , gives an empirical formula of Na_{1.07}P_{0.99}O₃•1.77H₂O or close to NaPO₃•2H₂O. However, the density calculated from the empirical formula is 2.65 g/cm³, considerably larger than the measured value of 2.58(1) g/cm³. As the amount of material available is very small, analysis for the missing light constituents by direct methods was not considered practical; therefore, a crystal-structure analysis was carried out (Ercit 1991). The missing light element was identified to be Li on the basis of its electron density, cation-to-oxygen interatomic distances [1.950(4) - 1.992(3), mean = 1.972 Å], itstetrahedral coordination and valence sum (0.97

TABLE 2. CHEMICAL COMPOSITION OF NALIPOITE

	1	2	3	4	5	6	7	8
P,0,	51.93	52.56	52.32	51.13	51.38	51.26	51,76	53,83
Na ₂ O	24.58	24.50	24.45	24.64	24.47	24.65	24.54	23.51
A1,0,	0.01	0.01	0.03	0.04	0.29	0.01	0.06	-
Li,O	22.17	22.38	22.29	21.91	22.04	21.94	22.12	22.66
Total	98.69	99.45	99.09	97.72	98.18	97.86	98.48	100.00

wt.8.

7. Average of analyses 1 through 6. Li₂O calculated from stoichiometry.

8. Ideal composition for NaLi₂PO.

v.u.). The structural formula of the mineral was established as NaLi₂PO₄, with Z = 4. The average composition of nalipoite (col. 7, Table 2) was, therefore, recalculated on the basis of 4 oxygen atoms per formula to yield the empirical formula $Na_{1,07}Li_{2}P_{0,99}O_{4}$, Li being taken to be present in stoichiometric proportions. Density values calculated from the ideal and empirical formulas are 2.587 and 2.612 g/cm³, respectively, in good agreement with the measured value of 2.58(1) g/cm³.

DISCUSSION

Gladstone-Dale calculations, using the measured density and indices of refraction, the average results of electron-microprobe analyses, and constants given by Mandarino (1981), gave a K_P of 0.209, and a K_C of 0.213; 1 – (K_P/K_C) equals 0.019. Thus, the compatibility of physical and chemical data of nalipoite is superior (Mandarino 1981).

Compositionally, nalipoite appears to be intermediate between olympite (Na₃PO₄, Pnma or Pn2₁a, a 10.154, b 14.819, c 10.143: Khomyakov et al. 1980) and lithiophosphate [Li₃PO₄, Pcmn, a 4.926(3), b 6.129(1), c 10.843(4): Bondareva et al. 1978]. In addition, the three minerals crystallize in the same space-group (D^{16}_{2h}) , with similar unit-cell parameters. However, there is no evidence of extensive solid-solution among them. Lithiophosphate from the type locality contains only 0.05 wt.% Na₂O (Matias & Bondareva 1957); material from Kings Mountain, North Carolina was reported to be 99.9% Li_3PO_4 , and the sum of all the trace elements in the mineral is less than 0.1 wt.% (White 1969). On the other hand, lithium was not reported (Khomyakov et al. 1980) to be present in olympite from the only known occurrence, the Khibina massif, Kola Peninsula, U.S.S.R. The absence of solid solution is expected, since all Li atoms in lithiophosphate (Bondareva et al. 1978) and nalipoite (Ercit 1991) occupy tetrahedral sites, whereas Na normally occupies octahedral sites, as in nalipoite, or sites with higher coordination.

ACKNOWLEDGEMENTS

We thank P.C. Jones for performing the electron-microprobe analyses and R.P. Conlon for technical assistance. The manuscript has been refereed by Drs. Eugene E. Foord and William B. Simmons, whose critical comments led to significant improvement of the paper. This work was supported by NSERC operating grant A5113 to GYC and by a Canadian Museum of Nature RAC grant to TSE.

References

- BARCZAK, V.J. (1974): Characterization of Li₂NaPO₄. J. Am. Ceram. Soc. 57, 407.
- BONDAREVA, O.S., SIMONOV, M.A. & BELOV, N.V. (1978): Crystal structure of the synthetic analog of lithiophosphatite γ -Li₃PO₄. Sov. Phys. Dokl. 23(5), 287-288.
- CHAO, G.Y., CONLON, R.P. & VAN VELTHUIZEN, J. (1990): Mont-Saint-Hilaire unknowns. *Mineral. Rec.* 21, 363-368.
- _____, GRICE, J.D. & GAULT, R.A. (1991): Silinaite, a new sodium lithium silicate hydrate mineral from Mont Saint-Hilaire, Quebec. *Can. Mineral.* 29, 359-362.

- ERCIT, T.S. (1991): The crystal structure of nalipoite. Can. Mineral. 29, 569-573.
- GALE, W.A. (1945): Lithium from Searles Lake, California. Chem. Ind. 57, 442-446.
- KHOMYAKOV, A.P., BYKOVA, A.V. & MALINOVSKII, YU.A. (1980): Olympite, Na₃PO₄, a new mineral. Zap. Vses. Mineral. Obshchest. 109, 476-479 (in Russ.).
- _____, POLEZHAEVA, L.I., MERLINO, S. & PASERO, M. (1990): Lintisite Na₃LiTi₂Si₄O₁₄·2H₂O – a new mineral. *Zap. Vses. Mineral. Obshchest.* 119, 76-80 (in Russ.).
- MANDARINO, J.A. (1981): The Gladstone-Dale relationship. IV. The compatibility concept and its application. *Can. Mineral.* **19**, 441-450.
- MATIAS, V.V. & BONDAREVA, A.M. (1957): Lithiophosphate – a new mineral. *Dokl. Akad. Nauk S.S.S.R.* 112, 124-126 (in Russ.).
- WHITE, J.S., Jr. (1969): A lithiophosphate occurrence in North Carolina. Am. Mineral. 54, 1467-1469.
- Received January 16, 1991, revised manuscript accepted April 3, 1991.