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Abstract 

The basin off the Bellingshausen Sea, in contrast to other better known areas such as the Antarctic 

Peninsula and the Ross and Weddell Seas, has been little investigated due to remoteness and the 

prevalence of ice for most of the year. The present study focuses on an analysis of polychaetes collected 

from soft bottoms of this sea and off the west coast of the Antarctic Peninsula (Gerlache Strait) by 

means of a box-corer (25 × 25 cm) in two intensive surveys carried out during austral summers of 

2002–2003 and 2005–2006 (BENTART-03 and BENTART-06). Three different polychaete 

assemblages were determined from the classification and ordination analyses of sampling stations based 

on the Bray-Curtis similarity index. One group of stations encompassed the deep stations from the shelf 

of the Bellingshausen Sea, the second one the shallower stations from the same area and the third one 

those stations located near the coast of Peter I Island and Gerlache Strait, off the Antarctic Peninsula. 

The environmental variables involved in segregating these groups were several sedimentary features 

(redox potential, gravel content) and depth. The present study provides further support to previous ones 

that considered the shelf of the Bellingshausen Sea as a differentiated region within the Southern 

Ocean, clearly distinct to the adjacent Weddell and Scott Seas and the Antarctic Peninsula. 
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Introduction 

Factors determining composition and spatial distribution of marine soft-bottom communities are 

numerous and acting at different spatial scales. The sediment characteristics (e.g., chlorophyll a 

content, sorting coefficient and organic matter content) are among those factors (Gray 1974), as the 

relationship between sediment and fauna constitutes a crucial aspect explaining the benthic ecology 

(Rhoads 1974) also in soft-bottom polar habitats (Gerdes et al. 1992). Other factors thought to be 

important as structuring agents of Antarctic benthic assemblages are hydrodynamics (Wu et 

al. 1992a, b), primary production in surface waters (Arrigo et al. 1998), flow of organic matter from 

the pelagic realm to the seabed (Grebmeier and Barry 1991) and iceberg scouring (Gutt and 

Starmans 1998, 2001; Gutt 2000, 2001; Gutt and Piepenburg 2003), the latter being particularly 

important in shallow water communities (Smale et al. 2007; Smale 2008a, b). 

The Bellingshausen Sea represents a very interesting Antarctic area because it constitutes a natural 

connection between the Ross Sea and the Antarctic Peninsula; this area also has high zoogeographical 

importance because of its role in the dispersion of species around the waters of the Antarctic 

continent and South America through the Scotia Arc (Saiz et al. 2008). Due to its remoteness and the 

prevalence of ice during most of the year, the Bellingshausen Sea was much less visited by research 

vessels and less studied compared to the Weddell and Ross Seas or the Antarctic Peninsula, where 

many countries have carried out vast research programs in past decades (e.g., Arntz et al. 1994; 

Guglielmo et al. 2000; Brandt et al. 2004). 

Polychaetes are one of the most relevant components of Antarctic soft-bottom macrobenthic 

assemblages (Arnaud 1974; Knox 2007) contributing substantially to the benthic community both in 

terms of abundance and biomass (e.g., Gerdes et al. 1992; Saiz-Salinas et al. 1997; Piepenburg et 

al. 2002). Only little and scarce information on the composition and structure of the polychaete fauna 

of the Bellingshausen Sea is yet available, whereas more information exists about these organisms in 

other parts of Antarctica (e.g., Hartmann-Schröder and Rosenfeldt 1988, 1989, 1990, 1991, 1992; 

Cantone et al. 2000; Cantone and di Pietro 2001; Hilbig 2001, 2004; Hilbig et al. 2006; Schüller and 

Ebbe 2007; Schüller and Hilbig 2007; Schüller 2008a; Schüller et al. 2009). Past data derive mainly 

from European cruises done in the first half of the twentieth century (Augener 1932; Fauvel 1936) 

and more recent US American expeditions (Hartman 1952, 1967; Maciolek and Blake 2006). 

The present study draws upon the polychaete material collected in two intensive surveys conducted 

off the north-west coast of the Antarctic continent in the frame of the Spanish BENTART-03 and 

BENTART-06 cruises. The study of the polychaete collections obtained from two previous cruises to 

the Antarctic Peninsula, namely BENTART-94 and BENTART-95, was already published by Parapar 

and San Martín (1997), San Martín and Parapar (1997) and San Martín et al. (2000). 

The aim of this work is to analyse the species composition, abundance and distribution of the 

polychaete fauna in the shelf and slope of the Bellingshausen Sea and adjacent areas in order to 

characterize their assemblages present on the sea floor, to identify the environmental factors that may 

affect and/or determine the distribution of the species and to compare our results with those available 

on other groups in the same area, either benthic or suprabenthic, such as molluscs (Troncoso et 

al. 2007; Troncoso and Aldea 2008), fishes (Matallanas and Olaso 2007) and cumaceans (Corbera et 

al. 2009), and with the whole collected infauna and suprabenthos studied at higher taxonomic level 

(Saiz et al. 2008; San Vicente et al. 2009). 

 



Materials and methods 

Study area and sample collection 

The material analysed in this study was obtained during the Spanish oceanographic cruises 

BENTART-03 (24 January to 3 March 2003) and BENTART-06 (2 January to 17 February 2006) on 

board the R/V Hespérides. Samples were collected from 40 stations distributed along the NW sector 

of the Antarctic Ocean, from the Antarctic Peninsula (mainly from Gerlache Strait) (AP) to the 

Thurston Island in the Bellingshausen Sea (BS) and the proximity of the Peter I Island (PI) (Fig. 1). 

Benthic polychaetes from the soft bottoms were collected by different sampling gears (Agassiz trawl, 

Suprabenthic sledge and box-corer) but only the material taken with the USNEL-type box-corer (BC) 

with a maximum breakthrough of 60 cm and an effective surface of sampling of 25 × 25 cm was 

considered for the present work. When possible, two duplicate samples per station were collected. 

Each BC sample was subdivided into four equal sub-samples of 0.063 m
2
. The first sub-sample was 

immediately used on board to measure redox (Eh) and later to analyse sediment grain size and 

content of carbonates and organic matter. The three remaining sub-samples (or one coming from the 

first BC and two equivalent sub-samples from the second BC if two samples were collected at the 

station) were used for quantitative assessment of the fauna. For this purpose, the collected sediment 

was sieved through three mesh sizes (5, 1 and 0.5 mm); the polychaetes collected in the two larger 

sieves were counted on board to estimate their relative abundance within the total macrobenthic fauna 

collected. Then, all the specimens were fixed on board in a buffered 4% formaldehyde seawater 

solution and afterwards preserved in 70% ethanol. More detailed description of sampling gear, 

sampling method and sediment abiotic variables analysis can be found in Saiz et al. (2008). 

The use of the box-corer and its effectiveness in sampling were limited by weather conditions; for 

this reason, only 30 stations were sampled with this gear, 28 of which provided polychaete 

specimens. The geographical positions of the stations are reported in Fig. 1, and their location and 

depth (ranging from 90 to 3,304 m), as well as the studied environmental variables, are given in 

Table 1. 

Data analysis 

A species/abundance matrix was created, summarizing the actual number of individuals of each 

polychaete species present in each station, respectively, the sum of the three sub-samples. Statistical 

analysis was carried out using the PRIMER v5.0 (Plymouth Routines In Multivariate Ecological 

Research) software package (Clarke and Warwick 1994). Univariate measures were computed for 

each station: total abundance (N), number of species (S), Margalef diversity index (d), Shannon-

Wiener diversity index (H′ loge based) and Pielou’s evenness (J′) based on Shannon-Wiener index. A 

second matrix was derived from the abundance matrix, showing the similarity between stations by 

means of the Bray-Curtis coefficient, after data have been log-transformed (X = log (x + 1)) to limit 

the influence of the most dominant species. From this matrix, a classification of the stations was 

performed by cluster analysis based on the group-average sorting algorithm. A non-metric Multi-

Dimensional Scaling (nMDS) ordination was also performed based on the similarity matrix. The 

SIMPER (similarity percentage) application was used to identify species that contributed in higher 

proportion to the differentiation of station groups. 

The BIO-ENV procedure was used to investigate the relationship between polychaete assemblages 

and the measured abiotic variables, although station AP39 was excluded from this analysis because of 

the lack of environmental data. All environmental variables were log (x + 1) transformed previously 

to analysis. The variables considered were depth (m), organic matter content (%) and percentage of 



each granulometric fraction (%), whereas carbonates were discarded from the analysis because of the 

lack of data in a large number of stations. The assessment of the importance of the redox potential at 

the surface of the sediment posed a problem, since in stations BS14 and AP25 such data were 

missing. Thus, BIO-ENV procedure was carried out in a twofold way: first the application was run 

considering all the stations without the redox potential, and then it was re-run considering all the 

variables but eliminating stations BS14 and AP25. In order to check the stability of the groups 

obtained from cluster and nMDS, these analyses were re-computed without considering the two 

rejected stations. 

The statistical level of significance of differences between groups regarding to mean values of 

faunistic and environmental parameters was checked by means of a non-parametric test (Kruskal–

Wallis), which was carried out using the SPSS v16.0 statistical package. The differences were 

considered significant when P < 0.05. 

 

Fig. 1 Study area showing box-corer sampling stations surveyed during the BENTART-03 and BENTART-06 

cruises with polychaete specimens. AP Antarctic Peninsula, BSBellingshausen Sea, PI Peter I Island 

https://static-content.springer.com/image/art:10.1007/s00300-010-0927-4/MediaObjects/300_2010_927_Fig1_HTML.gif


Table 1 Location, depth and environmental parameters at the surface of sediment of the surveyed stations: Depth (m), redox potential (mV), organic matter (%), carbonates 

(%), gravel (>2 mm, %), coarse sand (>0.5 mm, %), medium sand (>0.25 mm, %), fine sand (>0.0625 mm, %) and mud (<0.0625, %) 

Station Latitude S Longitude W Depth Redox OM Carbonates Gravel CS MS FS S + C 

BS1 70º38.22′ 95º15.36′ 534 252.2 4.81 n.d. 14.30 7.90 7.50 19.10 51.20 

BS2 70º29.25′ 95º14.83′ 780 289.3 5.02 n.d. 81.40 1.80 1.10 4.20 11.50 

BS3 70º17.58′ 95º11.86′ 1,431 259.8 5.42 n.d. 29.00 4.30 3.40 30.50 32.80 

BS4 70º52.86′ 98º26.12′ 425 271.3 4.56 n.d. 31.00 9.60 5.40 16.40 37.60 

PI5 68º56.70′ 90º35.70′ 126 199.3 1.43 n.d. 0.14 0.14 0.32 19.50 79.90 

PI6 68º49.61′ 90º48.78′ 210 122.5 1.35 n.d. 0.00 0.10 0.10 21.00 78.80 

PI7 68º42.20′ 90º40.80′ 410 174.8 1.85 n.d. 0.00 0.20 0.20 6.10 93.50 

PI8 68º50.18′ 90º51.08′ 90 155.8 1.23 n.d. 0.10 0.80 4.90 58.90 35.30 

BS9 70º14.40′ 81º47.03′ 532 261.8 5.96 n.d. 3.90 6.10 4.40 12.40 73.20 

BS10 70º44.31′ 81º27.85′ 497 260.0 4.05 n.d. 15.80 5.20 7.90 16.40 54.70 

BS11 69º27.07′ 82º06.76′ 1,289 266.0 3.81 n.d. 22.40 8.50 3.70 10.60 54.80 

BS12 69º24.27′ 82º11.88′ 2,032 261.5 5.29 n.d. 23.00 11.10 5.80 18.06 42.04 

BS13 69º49.56′ 77º43.68′ 605 240.5 4.64 n.d. 10.20 3.60 4.10 17.50 64.60 

BS14 69º21.12′ 78º04.91′ 498 n.d 3.68 n.d. 34.70 5.10 3.80 11.70 44.70 

BS17 68º54.88′ 78º14.16′ 2,044 224.7 1.98 n.d. 64.50 18.60 3.90 2.90 10.10 

AP21 64º54.01′ 63º01.11′ 107 133.5 2.49 n.d. 4.40 14.80 17.90 34.80 28.10 

AP22 64º50.58′ 62º57.91′ 294 137.0 6.40 n.d. 0.00 0.00 0.30 3.20 96.50 

AP23 64º55.95′ 63º38.40′ 655 272.5 6.75 n.d. 0.00 0.50 0.50 7.10 91.90 

AP24 64º20.11′ 61º58.82′ 1,056 170.5 8.32 n.d. 0.00 0.24 0.23 1.63 98.00 

AP25 63º52.85′ 61º48.52′ 110 n.d. 1.16 n.d. 23.80 22.90 13.50 36.30 3.50 

BS31 69º56.98′ 86º19.27′ 1,426 207.8 5.31 2.54 0.00 2.22 4.81 20.74 72.22 

BS33 70º15.90′ 84º11.45′ 438 290.2 4.02 1.38 20.11 12.99 8.86 26.32 31.72 

BS34 70º08.20′ 84º51.68′ 603 326.0 1.80 1.27 0.00 12.91 14.98 59.89 12.21 

BS35 69º56.03′ 85º11.30′ 1,117 260.7 7.36 2.40 47.65 3.78 1.73 9.13 37.72 

BS36 69º56.28′ 80º24.55′ 560 289.0 8.51 0.47 33.15 1.08 1.08 3.96 60.72 

BS37 69º26.38′ 80º51.62′ 495 244.0 5.70 0.64 35.37 17.04 10.27 16.16 21.27 

BS38 69º14.08′ 80º61.20′ 1,324 298.2 5.98 0.83 65.69 3.14 1.26 2.72 27.20 

AP39 68º07.78′ 69º35.31′ 167 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

CS Coarse sand, MS Medium sand, FS Fine sand, OM Organic matter, S + C Silt and clay, n.d.Not determined 



Results 

A total of 1,328 polychaete specimens were collected belonging to 28 families (Appendix). Seventy-

seven taxa were identified to species level; for the remaining 14 taxa, the systematic attribution was 

limited by the fact that the collected specimens were incomplete or badly damaged (“undet.”) or 

belonged to poorly known genera or family that need a thorough revision to be properly classified 

(“sp.”). 

Faunistic parameters 

The most diverse family in number of species was Maldanidae (7 species), followed by Spionidae 

and Terebellidae (6 species), while the best represented families in terms of abundance (number of 

individuals) were Maldanidae (344 specimens), Terebellidae (196) and Cirratulidae (162) with the 

maldanid Rhodine intermedia (182 individuals), the cirratulid Aphelochaeta cincinnata (120 

individuals), the terebellid Pista spinifera (91 individuals) and the spionid Laonice antarcticae (86 

individuals) being the most abundant species. 

Number of species (S), abundance (N), diversity (H′) and evenness (J′) all varied widely in the 

studied area (Table 2). The variability among stations in terms of number of species and abundance 

showed strong differences according to geographical position (Fig. 2). Values of the samples from 

Peter I Island (PI) and Antarctic Peninsula (AP) were generally higher than those in the 

Bellingshausen Sea (BS), especially regarding the abundance. The number of polychaete individuals 

occurring in each station (Table 2) ranged from 2 (stations BS12, BS31, BS33 and BS35) to 296 

(station AP21); in the same way, the species number showed its minimum (2) in the group of stations 

with lower abundances, whereas in station AP21, the highest number of species was achieved (44). 

The values of diversity indexes (Table 2) paralleled those of species number. Both Margalef and 

Shannon-Wiener indexes were lowest in stations BS12, BS31, BS33 and BS35 (d = 1.44; H′ = 0.69, 

respectively); maximum values were recorded in AP39 (d = 5.77; H′ = 2.89) and AP21 

(d = 7.56; H′ = 2.97). Values for J′ were usually higher than 0.6, except for stations PI8 (0.48) and 

AP23 (0.55). 

Polychaete assemblages and community structure 

Three major groups of stations could be identified in the plot resulting from the cluster analysis 

(Fig. 3), although the similarity was low (below 20%). Group A1 (similarity around 14.21%) 

included most of the stations located within the Bellingshausen Sea, whereas BS4, BS9 and BS33 

formed the group A2 that is a smaller cluster linked to the former at a low similarity value (23.62%). 

Group B (similarity 17.81%) included those stations located around Peter I Island or off the Antarctic 

Peninsula and Gerlache Strait. These three groups were also apparent in the nMDS analysis (Fig. 4a) 

based on Bray-Curtis similarity. The groups A1 and A2 were well defined and occupied the left half 

of the plot, whereas the group B appeared clearly segregated from them in the right half. There were 

differences among clusters in mean abundance and number of species per station. Thus, groups A1 

and A2 have similarly low average numbers of individuals (mean ± standard deviation; 7.69 ± 5.30 

and 10.00 ± 7.00, respectively) and species (5.77 ± 3.27 and 7.00 ± 4.58) while the mean number of 

individuals (118.40 ± 5.30) and species (18.20 ± 10.54) was higher in group B; differences were 

statistically significant for these two parameters (P = 0.000 for number of individuals and P = 0.001 

for number of species). Diversity values were consistently higher in stations of group B 

(average d = 3.61 ± 1.85, average H′ = 1.97 ± 0.61) than those in group A1 (average d = 2.38 ± 0.80; 

average H′ = 1.51 ± 0.58) and A2 (average d = 2.62 ± 1.13, average H′ = 1.67 ± 0.87); however, 



confidence levels were not enough to warrant statistical significance (P = 0.138 for d and P = 0.355 

for H′). 

 

Table 2 Ecological parameters at each station 

Station S N d H′ J′ 

BS1 5 5 2.49 1.61 1.00 

BS2 3 3 1.82 1.10 1.00 

BS3 9 10 3.47 2.16 0.98 

BS4 7 8 2.89 1.91 0.98 

PI5 15 88 3.13 2.09 0.77 

PI6 14 118 2.72 1.79 0.68 

PI7 18 87 3.81 2.04 0.71 

PI8 22 176 4.06 1.48 0.48 

BS9 5 6 2.23 1.56 0.97 

BS10 7 11 2.50 1.77 0.91 

BS11 8 13 2.73 1.93 0.93 

BS12 2 2 1.44 0.69 1.00 

BS13 6 9 2.28 1.58 0.88 

BS14 13 20 4.01 2.42 0.94 

BS17 4 5 1.86 1.33 0.96 

AP21 44 296 7.56 2.97 0.78 

AP22 9 70 1.88 1.48 0.67 

AP23 14 135 2.65 1.45 0.55 

AP24 7 94 1.32 1.22 0.63 

AP25 14 56 3.23 2.31 0.88 

BS31 2 2 1.44 0.69 1.00 

BS33 2 2 1.44 0.69 1.00 

BS34 11 15 3.69 2.34 0.98 

BS35 2 2 1.44 0.69 1.00 

BS36 8 13 2.73 1.99 0.96 

BS37 8 10 3.04 2.03 0.97 

BS38 6 8 2.40 1.67 0.93 

AP39 25 64 5.77 2.89 0.90 

S number of species, N number of specimens collected in 1,875 cm
2
, d Margalef diversity index, H′ Shannon-

Wiener diversity index, loge based, J′ Pielou evenness index, based on H′ 



 

Fig. 2 Number of species (a) and abundance (b) of Polychaeta at each station; stations arranged according to 

geographical position from west to east 

 

 

Fig. 3 Plot resulting from the cluster 

analysis of the similarity matrix obtained 

from the pairwise computing of the Bray-

Curtis index 
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Internal similarities and differences in the faunistical composition of the defined assemblages were 

analysed by means of the SIMPER application (Tables 3, 4; Fig. 5). The group A1 (Bellingshausen 

Sea samples) was dominated by families Paraonidae, Maldanidae, Capitellidae and Opheliidae 

(Fig. 5) and characterized by proportionately higher abundances of the capitellid species Notomastus 

latericeus and the scalibregmatid Travisia abyssorum. The maldanid Maldane sarsi antarctica, the 

paraonid Aricidea (Allia) belgicae and the glycerid Glycera kerguelensis contributed to most of the 

cumulative similarity of the group (up to 86.67%). In turn, the families that contributed most to group 

A2 were Paraonidae, Cirratulidae and Nephthyidae; this group was especially characterized by the 

paraonid species A. (A.) belgicae and the nephthyid Aglaophamus trissophyllus, with these two 

species accounting for 100% of cumulative similarity. In group B, the numerically dominant taxa 

were Maldanidae and Terebellidae. Many species contributed to the similarity within the assemblage 

(Table 3). Of these, only the lumbrinerid Lumbrineris kerguelensis contributed to more than 10% of 

cumulative similarity. The maldanid Rhodine intermedia accounted for 9.6% of similarity, and the 

maldanid M. sarsi antarctica, the cirratulid Aphelochaeta cincinnata, the spionid Laonice 

weddellia and the terebellid Pista spinifera contributed around 5% each. However, the species more 

important when explaining the differences between the group B and groups A1 and A2 varied slightly 

from the former results (Table 4); those contributing to differentiate group B from A1 and A2 were 

the maldanid R. intermedia, the terebellid P. spinifera as well as the terebellid Artacama 

proboscidea and the spionid Laonice antarcticae. 

 

Fig. 4 a Plot resulting from the Multi-Dimensional Scaling analysis of the similarity matrix obtained from the 

pairwise computing of the Bray-Curtis index. The solid line indicates separation between the two main groups 

(shelf of the Bellingshausen vs. Antarctic Peninsula and Peter I Island). Stress: 0.18.  b–d The same nMDS 

ordination of stations as in (a) showing superimposed values of variables selected by the BIO-ENV 

procedure. bdepth; c gravel; and d redox potential (Eh). Values of all environmental variables are not available 

for AP39; redox values for BS14 and AP25 were missing 

https://static-content.springer.com/image/art:10.1007/s00300-010-0927-4/MediaObjects/300_2010_927_Fig4_HTML.gif


Table 3 Species contributing to the similarity of stations within the groups identified by the Bray-Curtis similarity analysis, as defined by SIMPER 

Species AvAbnd AvSim Sim/SD Contrib% Cum% 

Group A1 (Average similarity = 18.38) 

Notomastus latericeus 1.18 8.01 0.83 43.58 43.58 

Travisia abyssorum 1.00 4.06 0.72 22.07 65.65 

Maldane sarsi antarctica 0.55 1.48 0.33 8.06 73.71 

Aricidea (Allia) belgicae 0.91 1.21 0.21 6.60 80.31 

Glycera kerguelensis 0.45 1.17 0.32 6.36 86.67 

Phyllochaetopterus monroi 0.36 0.93 0.34 5.07 91.75 

Group A2 (Average similarity = 24.52) 

Aricidea (Allia) belgicae 1.33 19.76 3.69 80.58 80.58 

Aglaophamus trissophyllus 0.67 4.76 0.58 19.42 100.00 

Group B (Average similarity = 13.96) 

Lumbrineris kerguelensis 6.40 3.39 1.35 24.28 24.28 

Rhodine intermedia 17.80 1.35 0.42 9.65 33.92 

Maldane sarsi antarctica 2.60 1.06 1.05 7.58 41.51 

Aphelochaeta cincinnata 11.90 1.04 0.48 7.48 48.99 

Laonice weddellia 3.00 0.92 0.45 6.62 55.61 

Pista spinifera 9.10 0.86 0.18 6.17 61.78 

Maldanidae gen. sp. 5.20 0.70 0.24 5.05 66.83 

Amphicteis gunneri antarctica 5.20 0.51 0.25 3.62 70.45 

Notomastus latericeus 2.10 0.48 0.59 3.44 73.89 

Laonice antarcticae 8.60 0.46 0.72 3.31 77.20 

Eulalia subulifera 1.50 0.46 0.59 3.28 80.48 

Spiophanes tcherniai 1.90 0.41 0.44 2.93 83.41 

Euchone pallida 1.70 0.34 0.49 2.46 85.87 

Ophelina breviata 2.10 0.27 0.37 1.93 87.80 

Galathowenia scotiae 1.60 0.27 0.32 1.91 89.71 

Axiothella antarctica 5.00 0.26 0.20 1.85 91.56 

AvAbnd Average abundance within the group, AvSim Average similarity groups, Sim/SDRatio value of similarity within group/standard deviation of the 

same, Contrib% Contribution to similarity within the group and Cum% Cumulative similarity within the group 

 



Table 4 Species contributing to the dissimilarity between the pairs of groups of stations identified by the Bray-Curtis similarity analysis, as defined by SIMPER 

Species Group A1 AvAbnd Group A2 AvAbnd AvDiss Diss/SD Contrib% Cum% 

A1 versus A2 (Average dissimilarity = 91.29) 

Aricidea (Allia) belgicae 0.91 1.33 13.44 1.80 14.72 14.72 

Notomastus latericeus 1.18 0.00 8.88 1.32 9.73 24.44 

Travisia abyssorum 1.00 0.00 6.63 0.91 7.27 31.71 

Aglaophamus trissophyllus 0.09 0.67 4.87 1.15 5.33 37.04 

Aphelochaetaundet. 0.00 0.67 4.55 0.65 4.98 42.02 

Jasmineira regularis 0.00 0.33 4.34 0.58 4.75 46.78 

Maldane sarsi antarctica 0.55 0.00 4.31 0.65 4.72 51.50 

Glycera kerguelensis 0.45 0.33 4.09 0.83 4.48 55.98 

Laonice weddellia 0.18 0.33 3.10 0.72 3.39 59.38 

Galathowenia scotiae 0.18 0.33 3.09 0.66 3.38 62.76 

Lumbrineris kerguelensis 0.09 0.33 2.91 0.68 3.19 65.95 

Thelepus cincinnatus 0.36 0.00 2.86 0.45 3.13 69.08 

Spionidae undet. 0.09 0.33 2.75 0.67 3.01 72.09 

Species Group A1 AvAbnd Group B AvAbnd AvDiss Diss/SD Contrib% Cum% 

A1 versus B (Average dissimilarity = 96.48) 

Rhodine intermedia 0.00 17.80 10.93 0.55 11.33 11.33 

Pista spinifera 0.00 9.10 7.86 0.51 8.14 19.47 

Artacama proboscidea 0.00 6.60 6.11 0.37 6.33 25.81 

Laonice antarcticae 0.00 8.60 6.11 0.39 6.33 32.13 

Lumbrineris kerguelensis 0.09 6.40 5.97 1.15 6.18 38.32 

Aphelochaeta cincinnata 0.09 11.90 5.93 0.67 6.14 44.46 

Axiothella antarctica 0.00 5.00 5.74 0.38 5.95 50.41 

Amphicteis gunneri antarctica 0.09 5.20 5.20 0.48 5.39 55.80 



Maldanidae gen. sp. 0.09 5.20 4.76 0.58 4.93 60.73 

Laonice weddellia 0.18 3.00 3.19 0.71 3.30 64.04 

Maldane sarsi antarctica 0.55 2.60 1.91 1.07 1.98 66.01 

Terebella ehlersi 0.00 1.70 1.77 0.33 1.84 67.85 

Notomastus latericeus 1.18 2.10 1.72 1.00 1.79 69.64 

Spiophanes tcherniai 0.00 1.90 1.68 0.69 1.74 71.38 

Species Group A2 AvAbnd Group B AvAbnd AvDiss Diss/SD Contrib% Cum% 

A2 versus B (Average dissimilarity = 97.90) 

Rhodine intermedia 0.00 17.80 11.17 0.54 11.41 11.41 

Pista spinifera 0.00 9.10 8.05 0.50 8.22 19.63 

Artacama proboscidea 0.00 6.60 6.27 0.37 6.41 26.03 

Laonice antarcticae 0.00 8.60 6.23 0.38 6.36 32.39 

Aphelochaeta cincinnata 0.00 11.90 6.07 0.67 6.20 38.59 

Lumbrineris kerguelensis 0.33 6.40 5.93 1.11 6.06 44.65 

Axiothella antarctica 0.00 5.00 5.93 0.38 6.06 50.71 

Amphicteis gunneri antarctica 0.00 5.20 5.33 0.47 5.44 56.15 

Maldanidae gen. sp. 0.00 5.20 4.86 0.57 4.96 61.12 

Laonice weddellia 0.33 3.00 3.27 0.71 3.34 64.45 

Maldane sarsi antarctica 0.00 2.60 2.16 1.10 2.20 66.66 

Terebella ehlersi 0.00 1.70 1.82 0.33 1.86 68.52 

Galathowenia scotiae 0.33 1.60 1.74 0.60 1.77 70.29 

AvAbnd Average abundance, AvDiss Average dissimilarity between groups, Diss/SD Ratio value of dissimilarity between groups/standard deviation of the 

same, Contrib% Contribution to dissimilarity between groups, Cum% Cumulative dissimilarity between groups 



In the case of group B, although the cluster analysis brought together the two groups of 

geographically distant stations (AP and PI) without a clear separation between them, certain species 

were only present in Peter I Island, such as the terebellid Pista spinifera (PI5 and PI6), whereas the 

spionid Laonice weddellia (AP39) and the cirratulid Chaetozone setosa (AP21) were found 

exclusively in the Antarctic Peninsula. Only one station in Peter I Island (PI8) showed higher 

similarity with the Antarctic Peninsula stations (AP25 and AP21) than with the rest of the stations 

located in the vicinity of the island; this affinity was mainly due to the shared greater abundance of 

the maldanid Rhodine intermedia. 

Three stations from west Bellingshausen Sea, BS31, BS34 and BS36, did not group into any cluster, 

although they were surprisingly located closer to group B (AP and PI stations) than to group A 

(remaining BS stations) in the plot (Fig. 4a). This fact seemed not to be related to sediment 

characteristics, depth or geographical position, but to the faunal composition. The few polychaete 

taxa identified in these samples revealed a number of species that were present only in these stations 

(namely G. cf. capitata, Levinsenia antarctica and Scolelepis eltaninae) as well as a number of 

species shared with stations of cluster B (M. sarsi, R. intermedia, L. kerguelensis, Ampharete 

kerguelensis and Ophelina breviata), while only one species, Aricidea(Acmira) simplex, was sheared 

with the samples forming the cluster A. 

Depth ranges of the most abundant polychaete species are depicted in Fig. 6; most of them had a wide 

distribution from the upper shelf to the slope at about 2,000 m. Only four species were not found in 

  

Fig. 5 Most abundant polychaete families in each group as defined by cluster analysis  
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shallower waters, namely T. ehlersi, A. antarctica, P. monroi and A. (A.) belgicae, while others 

seemed to be limited to the shelf (i.e., P. spinifera, S. tcherniai, E. pallida, R. intermedia, E. 

subulifera, A. cincinnata and A. gunneri antarctica). No species had a distribution restricted to the 

slope (below 1,000 m depth). 

Relationship between biotic and environmental variables 

The first run of the BIO-ENV procedure pointed out that depth and gravel content of the sediment 

showed the highest correlations with faunistical data (Table 5). Thus, the three defined groups of 

stations could be discriminated on the basis of their abiotic conditions (Table 6), with A1 comprising 

deep stations from the shelf of the Bellingshausen Sea (average depth = 1,053.83 ± 579.16 m) with 

relatively high content of gravel in the sediment (average = 37.00 ± 23.02%), A2 comprising 

relatively shallow (average depth = 465.00 ± 58.39 m) stations from the shelf of the Bellingshausen 

Sea with medium gravel content in the sediment (average = 18.34 ± 13.64%) and B comprising 

stations from the vicinity of Peter I Island and off the Antarctic Peninsula, usually shallow (average 

depth = 322.50 ± 326.2 m) and with a low gravel content in the sediment (average = 3.44 ± 2.86%). 

The differences were statistically significant for the two variables (P = 0.003 and P = 0.001, 

respectively). 

 

 

Fig. 6 Depth distribution ranges of most abundant polychaete species and position related to depth of each 

sampling station (bottom) 

https://static-content.springer.com/image/art:10.1007/s00300-010-0927-4/MediaObjects/300_2010_927_Fig6_HTML.gif


Prior to performing the BIO-ENV analysis again considering also the redox potential, the consistency 

of the clusters was tested by re-analysing the data after eliminating those stations in which this 

variable was not measured. These new analyses gave consistent and similar outputs, this time the 

three previous detected groups (A1, A2 and B) being even more clearly defined. The analysis resulted 

in only a slight modification of internal topography in the case of the cluster analysis and a virtually 

identical location of samples in the nMDS plot. In the re-run of the BIO-ENV test (Table 5), depth 

resulted secondarily important to discriminate the station groups, whereas the redox and gravel 

content in the sediment became the best variable combination. The redox potential, in particular, 

seemed important to discriminate the groups. Thus, the average redox potential was 

259.54 ± 80.95 mV in group A1 and 274.43 ± 14.6 mV in A2, while in group B, it was clearly lower 

(170.74 ± 48.20 mV), being statistically significant (P = 0.005). 

The distribution of values of the aforementioned variables superimposed on the nMDS plot suggests 

the presence of an environmental gradient in the studied area (Fig. 4b–d). This gradient involved 

gravel content, redox potential at the sediment surface and depth and it is characterized by more 

oxidized sediments with higher contents of gravel at the deeper stations, which are represented at the 

left part of the plot while the other stations are placed on the opposite side. 

 

Table 5 Best combinations of variables obtained through BIO-ENV analysis according to the values of the 

Spearman rank correlation (pw) 

Correlation (pw) Variable combination 

All stations considered; redox excluded 

 0.314 Depth, gravel 

 0.294 Depth, gravel, fine sand 

 0.293 Depth, gravel, coarse sand 

 0.288 Depth, gravel, medium sand 

 0.286 Depth, organic matter, gravel 

 0.285 Gravel, mud 

 0.281 Gravel, fine sand 

 0.280 Gravel, coarse sand, mud 

 0.276 Depth, gravel, mud 

 0.276 Gravel, medium sand, mud 

Redox considered; BS14 & AP25 excluded 

 0.326 Redox, gravel 

 0.315 Redox, gravel, coarse sand 

 0.310 Depth, redox, gravel 

 0.307 Redox, gravel, mud 

 0.301 Redox, organic matter, gravel 

 0.300 Depth, redox, gravel, mud 

 0.300 Redox, gravel, medium sand 

 0.296 Gravel, mud 

 0.294 Depth, gravel 

 0.291 Depth, gravel, mud 



Table 6 Mean values and standard deviations for environmental and ecological parameters at the stations within the groups identified by the Bray-Curtis similarity analysis 

Cluster Depth Redox OM Gravel CS MS FS Mud S N d H′ J′ 

A1 1053.83 ± 579.16 259.54 ± 80.95 4.81 ± 1.36 37.00 ± 23.02 7.51 ± 5.48 4.54 ± 2.83 13.25 ± 8.08 37.72 ± 17.60 6.08 ± 3.20 8.17 ± 5.24 2.46 ± 0.78 1.58 ± 0.55 0.96 ± 0.04 

A2 465.00 ± 58.39 274.43 ± 14.46 4.85 ± 1.00 18.34 ± 13.64 9.56 ± 3.45 6.22 ± 2.34 18.37 ± 7.17 47.51 ± 22.44 4.67 ± 2.52 5.33 ± 3.06 2.19 ± 0.73 1.39 ± 0.63 0.98 ± 0.02 

B 322.50 ± 312.37 170.74 ± 48.20 3.44 ± 2.86 3.16 ± 7.87 4.41 ± 8.44 4.22 ± 6.77 20.95 ± 19.27 67.28 ± 35.37 18.20 ± 10.54 118.40 ± 72.14 3.61 ± 1.85 1.97 ± 0.61 0.71 ± 0.13 

Depth (m), redox potential (mV), organic matter (%), carbonates (%), gravel (>2 mm, %), coarse sand (>0.5 mm, %), medium sand (>0.25 mm, %), fine sand (>0.0625 mm, 

%), and mud (<0.0625, %). CS Coarse sand, d Margalef diversity index, H′ Shannon-Wiener diversity index, loge based, J′ Pielou evenness index, based on H′, MS Medium 

sand, FS Fine sand, NNumber of specimens collected in 1,890 cm
2
, S Number of species and OM Organic matter 

 



Discussion 

Since Hartman’s contributions to the taxonomy of Antarctic polychaetes in the fifties and sixties of 

twentieth century (e.g., Hartman 1952, 1953, 1964, 1966, 1967), much effort has been made by many 

authors to increase the knowledge of this taxon, especially in the late eighties (e.g., Hartmann-

Schröder and Rosenfeldt 1988, 1989, 1990, 1991, 1992) and in more recent years (e.g., Hilbig 2004; 

Schüller and Ebbe 2007; Schüller and Hilbig 2007; Schüller 2008a, b; Schüller et al. 2009). 

Nevertheless, apart from papers by Hartman (1978) and Knox and Cameron (1998) devoted to the 

Weddell and Ross Seas, respectively, there are no recent monographs that compile this information 

and much work is still necessary to shade light in many polychaete taxa still poorly known. For 

example, the genus Ampharete Malmgren, 1866 is among the most species-rich genera in boreo-arctic 

waters, with eight species described or reported to date (Holthe 1986; Jirkov 2001), while in 

Antarctic waters is represented by just a single species: Ampharete kerguelensis McIntosh, 1885 (see 

Schüller 2008a). In addition, we agree with Gambi and Mariani (1999), who stated that many of the 

northern species traditionally reported in austral waters (e.g., P. cristata, T. cincinnatus, N. latericeus 

and C. cirratus) probably represent new species, as has already been reported for some taxa 

belonging to Scalibregmatidae (Blake 1981), Oweniidae (Blake 1984; Parapar 2003), Melinninae 

(Parapar and San Martín 1997), Sabellidae (Giangrande and Gambi 1997), Opheliidae (Maciolek and 

Blake 2006) and Trichobranchidae (Parapar and Moreira 2008). These current limitations in the 

knowledge of the polychaete taxonomy of the Southern Ocean limit in certain way the quality of the 

catalogue of species presented here, which in spite of certain lack of definition in the identification in 

some taxa, comes to fill anyway an important emptiness in the knowledge of the polychaete fauna in 

the Bellingshausen Sea. 

From the analysis of the list of species obtained, two main groups of stations could be defined. On the 

one hand, most of the stations from the Bellingshausen Sea determined the group A, which could, in 

turn, be divided into groups A1 and A2; on the other hand, the stations from off the Antarctic 

Peninsula, Gerlache Strait and the vicinity of Peter I Island formed group B, even though 

geographically Peter I belongs to the Bellingshausen Sea. Groups A and B showed sharp differences 

in their polychaete species composition as well as in abundance and number of species which were 

noticeably higher in stations of group B. There were differences in the mean values of diversity 

indexes as well they were, however, not significant. 

When environmental variables were considered, stations of group A were characterized by higher 

redox potential and gravel content in the sediment than those of group B. In turn, the two sub-groups 

within group A (A1 and A2) showed environmental differences related to depth, with group A1 

representing deeper stations. The stations included within group B were usually located at relatively 

shallow depths. 

From the present data, it can be concluded that the polychaete faunas of the Antarctic Peninsula and 

the Bellingshausen Sea (except for those from the vicinity of Peter I Island) are clearly different. Our 

results referred to the Antarctic Peninsula did not differ substantially from those previously recorded 

for the area (San Martín et al. 2000), reporting again Maldanidae, Terebellidae and Cirratulidae as the 

most abundant families. However, Hilbig et al. (2006) did not find such high abundances for 

Terebellidae in the Weddell Sea, while Terebellidae are among the most speciose family in the Ross 

Sea (Cantone et al. 2000; Cigliano and Gambi unpublished data). At the species level, all the 

characteristic taxa herein recorded were mentioned as such by the above-mentioned authors; this 

situation suggests that most of the polychaete fauna reported from the Antarctica has a wide 

distribution through the Southern Ocean. Hilbig (2004) noticed these patterns, suggesting that they 



reflect the persistence of a pre-existing polychaete fauna around Antarctica related to the 

establishment of the circum-Antarctic current in the past coupled with the characteristically high 

physiological flexibility of these animals. 

Interestingly, in spite of the remoteness of this island placed nearly in the middle of the 

Bellingshausen Sea, the stations located around Peter I Island harboured polychaete assemblages 

more similar to those found off the Antarctic Peninsula than to those typical of the shelf of 

Bellingshausen Sea. This parallelism might be, at least in part, due to the presence of the same kind 

of gravel-free sediment which revealed the absence of stones in the sediment surface. These stones 

are much more abundant in many of the BS stations, as already reported by Saiz et al. (2008), and are 

brought by icebergs on their journey from the continent, falling to the bottom as a result of the 

melting process of the ice. In addition, the disturbance created on the seabed by the iceberg scouring 

could be the cause of some environmental changes that would result in a different specific 

composition in the stations of cluster A. In fact, there were three stations at western central 

Bellingshausen Sea which were left out of the main groupings and were located closer to cluster B; 

this may highlight a greater stability of the sediment as suggested by the presence of maldanids, 

which are also typical from this group. On the contrary, group A has sediments disturbed by the 

action of iceberg scouring and therefore has a fauna dominated by polychaetes of short life cycle, 

such as capitellids and paraonids. 

In contrast to the waters around the Antarctic Peninsula, the Bellingshausen Sea has been little 

investigated to date due to the prevalence of ice for most of the year (Clarke and Johnston 2003; 

Linse et al. 2006); thus, our results cannot be compared with previous quantitative studies on the area. 

A short list of species from Peter I island was provided by Hartman (1967), and some observations on 

general benthos (not including polychaetes) have been done with remote sensing ROV (Gutt et 

al. 1996). However, when most characteristic species are considered, differences arise not only with 

the Antarctic Peninsula but also with adjacent areas such as the Weddell Sea (Hilbig et al.  2006), in 

which the amphinomid Paramphinome australis and the cirratulids Monticellina sp. 

and Chaetozone sp. were the most characteristic species in open sea stations, or the Ross Sea, in 

which Terebellidae was the most species-rich family (Cantone et al. 2000; Cantone and di 

Pietro 2001; Cigliano and Gambi unpublished data). The noticeably low values for abundance and 

diversity herein found were previously reported for comparably deep stations from the Weddell Sea 

(Hilbig 2001), although in this region the number of species tended to be quite high. 

From these results, it seems that the Bellingshausen Sea constitutes to some extent a differentiated 

area in the Southern Ocean, pointing to a well-defined biogeographical region, as proposed by Clarke 

et al. (2004). Other researches conducted with molluscs collected during the expeditions BENTART 

2003 and 2006 also showed similar results (Troncoso et al. 2007; Troncoso and Aldea 2008). At 

higher levels of taxonomic resolution, Saiz et al. (2008) described benthic assemblages characterized 

by low values of abundance and diversity and constituted by impoverished faunas dominated by 

foraminiferans, which caused the region to be described as a “benthic desert”. This paucity of species 

and individuals might be linked in part to the particular sediment composition of the shelf in 

Bellingshausen Sea, which is defined by foraminifer-bearing, opal-free sediments in the west of the 

region and diatom-bearing, carbonate-free in the east (Hillenbrand et al. 2003). 

From our results, it could be inferred that sediment characteristics, followed by depth, were the main 

environmental variables determining the structure of polychaete assemblages in the Bellingshausen 

Sea and nearby areas of the Antarctic Peninsula. However, other studies undertook in the same area 

and devoted to other taxa found depth as having greater importance than sediment features 



(Matallanas and Olaso 2007; Troncoso et al. 2007, 2008; Saiz et al. 2008); some of the sediment 

features (namely redox potential and mud content) were, however, found to act combined to depth in 

determining suprabenthic community structure (San Vicente et al. 2009). In fact, the identity of the 

most important environmental variables determining benthic communities in the Southern Ocean is 

still a matter of discrepancy. Apart of the above-commented iceberg scouring, which is a major 

source of disturbance at both shallow waters and shelf and slope depths (Gutt and Starmans 2001), 

depth has been traditionally considered a major factor determining the structure of these communities 

(Arntz et al. 1994), probably due to the limited organic input received by deeper bottoms (Smith et 

al. 2006). This scheme has recently been challenged (Gutt and Starmans 1998; Gutt 2000), proposing 

the bottom-near currents as being the main “driving force” for Antarctic benthic communities. Our 

results cannot directly provide support for any of the proposed models, since depth showed a less 

important correlation with faunal data in the two environmental analyses performed. In fact, our 

analyses revealed that sediment features such as redox potential or gravel content showed more 

relevance than depth itself. Recent studies in the Weddell Sea by Schüller et al. (2009) also point to 

sediment characteristics to be more important than depth in structuring soft-bottom polychaete 

communities. Those features might be directly linked to the current system near the bottom, thus 

suggesting that a process more complex than depth-related organic input is responsible for the 

faunistical composition of the benthic communities inhabiting the shelf of Bellingshausen Sea. 

In short, the results of this quantitative study of the polychaetes of the Bellingshausen Sea, although 

largely limited by the sample size that makes the conclusions to be taken with caution, suggest 

extreme differences in the biological parameters within the area studied. Thus, the stations off the 

Antarctic Peninsula and Peter I Island showed much more abundant and diverse polychaete 

communities than those of the Bellingshausen Sea. These differences appear to be related both to 

depth as to the characteristics of the sediment and probably the important role played by the intense 

traffic of icebergs in the area, with its plowing affect on the seabed, creates significant physical 

disturbance in the ecosystem by limiting the establishment of stable communities over the time. 
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Appendix 

Table 7 Polychaete species identified from the box-corer samples in the BENTART-2003 and 2006 

cruises in the Bellingshausen Sea and Gerlache Strait 

Ampharetidae Oweniidae 

 Amphicteis gunneri antarctica Hessle, 1917  Galathowenia scotiae (Hartman, 1978) 

 Amythas membranifera Benham, 1921  Oweniidae gen. sp. 

 Ampharete kerguelensis McIntosh, 1885 Paraonidae 

 Ampharete sp.  Aricidea (Acmira) simplex Day, 1963 

 Phyllocomus crocea Grube, 1877  Levinsenia antarctica Strelzov, 1963 

 Ampharetidae gen. sp.  Cirrophorus brevicirratus Strelzov, 1973 

Amphinomidae  Aricidea (Allia) belgicae (Fauvel, 1936) 

 Paramphinome australis Monro, 1930 Phyllodocidae 

Capitellidae  Anaitides adarensis (Benham, 1927) 

 Capitella perarmata (Gravier, 1911)  Phyllodoce sp. 

 Notomastus latericeus Sars, 1850  Eulalia subulifera Ehlers, 1897 

Chaetopteridae Polynoidae 

 Phyllochaetopterus monroi Hartman, 1967  Barrukia cristata (Willey, 1902) 

Cirratulidae  Barrukia curviseta (Monro, 1930) 

 Aphelochaeta cincinnata (Ehlers, 1908)  Harmothoe cf. acuminata Willey, 1902 

 Aphelochaeta epitoca (Monro, 1930)  Harmothoe exanthema bergstromi Monro, 1936 

 Aphelochaeta fusiformis (Monro, 1939)  Harmothoe undet. 

 Aphelochaeta undet.  Harmothoe spinosa Kinberg, 1865 

 Chaetozone setosa Malmgren, 1867 Sabellidae 

 Cirratulus cirratus (Müller, 1776)  Demonax polarsterni Gambi et al., 2001 

 Cirratulidae undet.  Euchone pallida Ehlers, 1908 

Eunicidae  Euchone scotiarum Hartman, 1978 

 Eunice antarctica Baird, 1869  Jasmineira regularis Hartman, 1978 

Flabelligeridae  Perkinsiana borsibrunoi (Giangrande and 

Gambi 1997) 

 Pherusa sp.  Sabellidae undet. 

 Brada villosa (Rathke, 1843) Scalibregmatidae 

Glyceridae  Scalibregma inflatum Rathke, 1843 

 Glycera cf. capitata Ørsted, 1843  Scalibregma sp. 

 Glycera kerguelensis McIntosh, 1885  Sclerocheilus minutus Grube, 1863 

 Glycera undet. Serpulidae 

Lumbrineridae  Serpula narconensis Baird, 1865 

 Augeneria tentaculata Monro, 1930  Vermiliopsis nigropileata (Ehlers, 1900) 

 Lumbrineris kerguelensis (Grube, 1878)  Spirorbis nordenskjoldi Ehlers, 1900 

 Lumbrineris sp. Sphaerodoridae 

 Paraninoe antarctica (Monro, 1930)  Sphaerodoropsis cf. parva (Ehlers, 1913) 

Maldanidae Spionidae 

 Axiothella antarctica Monro, 1930  Laonice antarcticae Hartman, 1953 

 Asychis amphiglyptus (Ehlers, 1897)  Laonice weddellia Hartman, 1978 

 Maldane sarsi antarctica Arwidsson, 1911  Laonice sp. 

 Lumbriclymenella robusta Arwidsson, 1911  Scolelepis eltaninae Blake, 1983 

 Nicomache sp.  Spiophanes soderstromi Hartman, 1953 

 Rhodine intermedia Arwidsson, 1911  Spiophanes tcherniai Fauvel, 1951 

 Isocyrrus yungi Gravier, 1911  Spionidae undet. 

Nephthyidae Sternaspidae 

 Aglaophamus trissophyllus (Grube, 1877)  Sternaspis scutata (Renier, 1807) 

Nereididae Syllidae 



 Neanthes kerguelensis (McIntosh, 1885)  Exogone heterosetosa McIntosh, 1885 

 Nereis eugeniae (Kinberg, 1866)  Pionosyllis dionisi Núñez and San Martín, 1991 

Onuphidae  Pionosyllis kerguelensis (McIntosh, 1885) 

 Leptoecia benthaliana (McIntosh, 1885)  Salvatoria rhopalophora (Ehlers, 1897) 

Opheliidae  Syllis sclerolaema Ehlers, 1901 

 Ophelina breviata (Ehlers, 1913) Terebellidae 

 Travisia abyssorum (Monro, 1930)  Artacama proboscidea Malmgren, 1865 

 Opheliidae gen. sp.  Pista cristata (Müller, 1776) 

Orbiniidae  Pista corrientis McIntosh, 1885 

 Leitoscoloplos kerguelensis (McIntosh, 1885)  Pista spinifera (Ehlers, 1908) 

 Leitoscoloplos mawsoni Benham, 1921  Terebella ehlersi Gravier, 1907 

 Scoloplos (Leodamas) marginatus (Ehlers, 1897)  Thelepus cincinnatus (Fabricius, 1780) 

 Phylo minima (Hartmann-Schröder and 

Rosenfeldt, 1990) 

Trichobranchidae 

   Terebellides kerguelensis McIntosh, 1885 

 


