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Abstract

Quantum Simulation of Inflationary Cosmology:
Probing Analogue Trans-Planckian Spectra in

Dipolar Bose-Einstein Condensates

Seok-Yeong Chä
Department of Physics and Astronomy

The Graduate School
Seoul National University

This study concerns the emergence of effective curved spacetime in the quasi two di-

mensional dipolar Bose-Einstein condensates, in which Bogoliubov quasiparticle excita-

tion spectrum displays, at sufficiently large gas density, a deep roton minimum due to the

spatially anisotropic behavior of the dipolar two-body potential.

The study can generally be divided into two parts. Firstly, an analogue de Sitter cosmos

in an expanding dipolar condensate is considered. It is demonstrated that a hallmark signa-

ture of inflationary cosmology, the scale invariance of the power spectrum (SIPS) of inflaton

field correlations, experiences strong modifications when, at the initial stage of expansion,

the excitation spectrum displays roton minimum. This exemplifies that dipolar quantum

gases furnish a viable laboratory tool to experimentally investigate, with well-defined and

controllable initial conditions, whether excitation spectra deviating from Lorentz invariance

at trans-Planckian momenta violate standard predictions of inflationary cosmology.

Secondly, it is investigated whether a rapid quench, performed on the speed of sound

of excitations propagating on the condensate background, leads to the dynamical Casimir

effect (DCE), which can be characterized by measuring the density-density correlation func-

tion. It is shown, for both zero and finite initial temperatures, that the continuous-variable

bipartite quantum state of quasiparticle pairs with opposite momenta, resulting from the

quench, displays an enhanced potential for the presence of entanglement, when compared
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to a gas with repulsive contact interactions only. Entangled quasiparticle pairs contain mo-

menta close to the roton, and hence the quantum correlation significantly increases in the

presence of deep roton minimum.

Keywords : Bose-Einstein Condensation, Dipole-Dipole Interaction, Inflation, Dynamical

Casimir Effect, Trans-Planckian Physics, Analogue Gravity, Roton Minimum

Student Number : 2011-23282
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Chapter 1

Introduction

Quantum field theory in curved spacetime (QFTCS) predicts that pairs of correlated parti-

cles are created from the vacuum when classical background rapidly varies in time [1]. This

process can take place in expanding (or contracting) universe, where it is coined as cosmo-

logical particle production [2, 3]. This occurs analogously in the dynamical Casimir effect

for photons generated from the electrodynamical quantum vacuum in a vibrating cavity [4].

Correlated pairs of particles can also be produced by the phenomenon of Hawking radiation

in the presence of an event horizon [5, 6].

As a major result from QFTCS, the hypothesis of a rapid initial expansion of the cos-

mos in the inflationary scenario [7–9] resolved many vexing cosmological questions plagu-

ing other theories, such as the observed flatness and homogeneity of the universe, as well as

the nonexsistence of monopoles. However the resolution of these issues came at the price of

creating another potential prolem [10]: Generally the period of inflation lasts so long that, at

the beginning of the inflationary period, the physical wavelengths of comoving scales which

correspond to the present large-scale structure of the universe were smaller than the Planck

length. Thus necessarily trans-Planckian energies become involved, for which the physics is

at present speculative. Similar issues regarding kinematical phenomena for quantum fields

propagating on a fixed curved spacetime arise when tracing back Hawking radiation emis-

sion all the way down to the black hole horizon [11–14].

On the other hand, by temporal variations of a homogeneous background, quasipar-

ticle pairs with opposite momenta can be produced and form (continuous-variable) bipar-

tite quantum states: They are entangled. The degree of quantum entanglement can be un-

derstood in hierarchical way. States exhibiting “Bell nonlocality” form a strict subset of

“steerable” quantum states. And the steerable states form a strict subset of “nonseparable”

states [15–17]. Steering [18] refers to the quantum correlations that can be observed be-

tween the outcomes of measurements applied on a half of the entangled state (Alice) and

on the resulting post-measurement state left with the other party (Bob). A criterion test-

ing quantum steering can be seen as an entanglement test where one of the parties (Alice)

1



2 CHAPTER 1. INTRODUCTION

performs uncharacterized measurements, i.e., with a procedure not accessible (hidden in a

black box) to the other party (Bob) [19]. With all these intriguing features, however, directly

observing pair creation in relativistic quantum field theory is notoriously difficult due to the

challenging experimental requirements for achieving sizable pair production rates.

To render these problems under rather general conditions accessible to experiments, the

idea of quantum simulation [20] was applied to relativistic quantum fields on an effective

curved spacetime [21, 22]. This is frequently classified under the notion of “analogue grav-

ity,” see for an extensive review and a comprehensive list of references [23]. The analogue

gravity program [21, 23–25] has been successfully theoretically implemented in ultracold

matter for various cosmological phenomena, e.g., inflaton quantum fluctuations [26,27], the

Gibbons-Hawking effect [28], cosmological particle production [29–31], the cosmological

constant problem [25,32,33], or false vacuum decay [34]. Also, several quantum simulation

experiments, in which quasiparticles propagate on a rapidly changing background, leading

to the dynamical Casimir effect, have been proposed, e.g., in [30, 35–39].

Importantly, recent experimental advances have allowed for groundbreaking observa-

tions of analogues of cosmological particle production, Sakharov oscillations, black hole

lasers, and Hawking radiation [40–44], as well as those experiments conducted for ob-

serving dynamical Casimir effect, c.f., e.g., [40, 41, 45, 46]. In the same vein, to investi-

gate the analogue event or cosmological horizons and the associated entanglement effects,

several experiments have been proposed [24, 26, 47–51] and some were realized in the

lab [42, 44, 52–54]. These experiments held promises to realize experimental cosmology:

A quantum simulation of inflationary scenario with reproducible initial conditions, which is

distinct from the current purely observational cosmology of a pregiven state of the universe.

A major original motivation of analogue gravity, so far not experimentally investigated,

is to probe consequences of trans-Planckian physics in a microscopically well understood

setup in a regime inaccessible for quantum fields in the presence of strong real (Einsteinian

or other) gravity. We here propose to realize this aim with dipolar Bose-Einstein conden-

sates, addressing the trans-Planckian problem of inflationary cosmology.

Going beyond contact interactions (in field theory language ϕ4), magnetic dipole-

dipole interaction (DDI) dominated condensates [55] have been created with chromium

[56], dysprosium [57], and erbium [58] atoms, and the realization of BECs made up of

molecules with permanent electric dipoles [59] is now at the forefront of ongoing research

cf., e.g., [60, 61]. The excitation spectrum of DDI-dominated BECs displays a roton min-
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imum [62–64]. Various ramifications of the dipolar BEC roton, originally defined for and

observed in the strongly interacting superfluid helium II [65,66], have been recently experi-

mentally investigated in ultracold dipolar quantum gases [67–70]. In addition, the significant

progress in probing correlation functions to increasing accuracy [41, 71] pave the way for

an exploration of the intricate many-body correlations due to DDI.

In dipolar Bose-Einstein condensates, the (analogue) trans-Planckian large-momentum

sector of the excitation spectrum (containing in particular the roton) is well controlled by

adjusting the relative strength of contact and dipolar interactions. We will demonstrate that,

for the creation of quasiparticle pairs in a time-dependent background, the existence of a

deep roton minimum in the excitation spectrum plays a dominant role [72, 73].

For certain classes of inflaton dispersion relations, displaying deviations from Lorentz

invariance at trans-Planckian scales, the predictions of inflation, in particular the scale in-

variance of the power spectrum (SIPS) of inflaton field correlations, remain robust, while

for others, they change significantly, cf., e.g., [74–78]. In our study, it is shown that dipo-

lar BECs, possessing trans-Planckian spectra leading to strong departures from Lorentz

invariance, yield significant changes of the standard inflationary prediction of SIPS. This

represents the first example within analogue gravity where violations of SIPS can become

experimentally manifest.

We also exploit that the (analogue) trans-Planckian sector can be engineered to explore

the consequences for the quantum many-body state of the quasiparticles created by quench.

The entanglement, here represented by the nonseparability and steerability present in a bi-

partite continuous variable system, are significantly enhanced in the presence of a deep

roton minimum, that is, for sufficiently large densities of a DDI dominated gas. In quan-

tum simulation–analogue gravity language, this is the quasiparticle production due to the

dynamical Casimir effect for a relativistic quantum field of phonons in the low-momentum

corner.





Chapter 2

Bose-Einstein Condensation

2.1 Time Line of Bose-Einstein Condensation

• 1925 : A. Einstein, on the basis of a paper by the Indian physicist S. N. Bose (1924),

devoted to the statistical description of the quanta of light, predicted the occurrence

of a phase transition in a gas of noninteracting atoms.

⇒ This phase transition is associated with the condensation of atoms in the state of

lowest energy and is the consequence of quantum statistical effects.

• 1938 : F. London, immediately after the discovery of superfluidity in liquid helium

(Allen and Misener, 1938; Kapitza, 1938), had the intuition that superfluidity could

be a manifestation of Bose-Einstein condensation.

• 1941 : The first self-consistent theory of superfluids was developed by Landau in

terms of the spectrum of elementary excitations of the fluid.

• 1947 : N. N. Bogoliubov developed the first microscopic theory of interacting Bose

gases, based on the concept of Bose-Einstein condensation.

• 1949, 1955, 1956 : The prediction of quantized vortices by Onsager (1949) and Feyn-

man and their experimental discovery by Hall and Vinen (1956).

• 1951, 1956 : Landau and Lifshitz (1951), Penrose (1951) and Penrose and Onsager

(1956) introduced the concept of the off-diagonal long-range order and discussed its

relationship with BEC.

• 1970s : The experimental studies on the dilute atomic gases started from 1970s, prof-

iting from new techniques developed in atomic physics based on magnetic and optical

trapping, and advanced cooling mechanisms(evaporative cooling) to obtain tempera-

tures very close to BEC.

5
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• 1980s : Laser-based techniques, such as laser cooling and magneto-optical trapping,

were developed to cool and trap neutral atoms. Alkali atoms were well suited to laser-

based methods because their optical transition can be excited by available lasers and

because they have a favourable internal energy-level structure for cooling to very

low temperatures. Once they are trapped, their temperature can be lowered further by

evaporative cooling.

• 1995 : By combining the different cooling techniques, the experimental teams of

Cornell and Wiemann at Boulder and of Ketterle at MIT eventually succeeded in

1995 in reaching the temperatures and densities required to observe BEC in vapours

of 87Rb (Anderson et al., 1995) and 23Na (Davis et al., 1995).

⇒ Despite the huge literature on the theory of Bose-Einstein condensation developed

in previous years, the experiments of 1995 have opened a new variety of important

questions. In particular the predictions of meanfield theory, based on the extension

of Bogoliubov theory to nonuniform gases, are now rather well settled and provide

a satisfactory description of many physical phenomena exhibited by these quantum

gases.

2.2 Off-Diagonal Long-Range Order

Long-range order, symmetry breaking and order parameter are key concepts underlying the

phenomenon of Bose-Einstein condensation. Let us start our discussion by introducing a

very general definition which applies to any system, independent of statistics, in equilibrium

as well as out of equillibrium. We consider single-particle density matrix defined by

ρ1(r, r
′) ≡ ⟨r′|ρ̂1|r⟩ =

1

N
⟨Ψ̂†(r)Ψ̂(r′)⟩, (2.1)

where Ψ̂†(r) (Ψ̂(r)) is the field operator creating (annihilating) a particle at the point r.

For a system of Bosons, the field operators of (2.1) satisfy the well-known commutation

relations

[Ψ̂(r), Ψ̂†(r′)] = δ(r− r′), [Ψ̂(r), Ψ̂(r′)] = 0. (2.2)
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If the system occupies a pure state, described by theN -body wave functionφn(r1, · · · , rN ),

then the average is taken as follows:

ρ
(n)
1 (r, r′) =

∫
dr2 · · · drN φ∗

n(r, r2, · · · , rN )φn(r
′, r2, · · · , rN ), (2.3)

involving integration over the N − 1 variables r2, · · · , rN .

For the more general case of a statistical mixture, expression (2.3) should be averaged

according to the probability for a system to occupy the different states. The most important

example is a system in thermodynamic equilibrium. In this case the states φn are eigen-

states of the Hamiltonian with energy En and the weight of each state is fixed by the factor

exp(−En/kT ), so that the density matrix becomes

ρ1(r, r
′) =

1

Q

∑
n

e−En/kTρ
(n)
1 (r, r′),

where Q =
∑

n exp(−En/kT ) is the partition function.

By setting r = r′ in the eq.(2.1), one finds the diagonal density of the system:

Nρ1(r, r) = ⟨Ψ̂†(r)Ψ̂(r)⟩ ≡ ρ(r),

where ρ(r) is the particle density of the system at point r. The total number of particles is

then

N =

∫
dr ρ(r) =

∫
dr Nρ1(r, r).

This equation defines the normalization of the single-particle density matrix.

Off-Diagonal Long-Range Order (ODLRO) is a concept that C. N. Yang [79] in-

troduced to analyze the occurrence of order in a system. A system is said to possess an

ODLRO if the single-particle density matrix

Nρ1(r, r
′) = Tr(ρ̂Ψ̂†(r)Ψ̂(r′)) = ⟨Ψ̂†(r)Ψ̂(r′)⟩ (2.4)

remains on the order of N/V as |r− r′| increases. The expression (2.4) says that the single-

particle density matrix gives the probability ampitudes that the quantum state of the system

remains unperturbed if a particle is removed from the system at r′ and added to it at r.

ODLRO implies that a particle can travel a long distance without disturbing the system.

Let’s consider a system of Bosons described by the density operator ρ̂. Let ρ̂1 be the
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reduced single-particle density operator. For convenience, let’s define

σ̂1 ≡ Nρ̂1.

In a nonequilibrium situations in which the state of a system changes in time, the density

operators can have time dependence. Since ρ̂1(and so σ̂1) is still Hermitian, we can consider

the representation in which the single-particle density operator is diagonal at all times:

σ̂1(t) =
∑
ν

nν(t)|ψν(t)⟩⟨ψν(t)|

or σ1(r, r
′; t) := ⟨r′|σ̂1(t)|r⟩ =

∑
ν

nν(t)ψ
∗
ν(r, t)ψν(r

′, t). (2.5)

For the construction of the state vectors ψν , one can reformulate the argument as follows.

Since σ1(r, r′) = (σ1(r
′, r))∗, the matrix σ1 is Hermitian and can be diagonalized. The

long-range order exhibited by the single-particle density matrix is strongly connected to the

behavior of its eigenvalues ni defined by the solution of the eigenvalue equation,∫
dr′ σ1(r, r

′)ψi(r
′) = niψi(r). (2.6)

The solutions of (2.6) provide a natural basis of orthonormal wave functions φi(r) normal-

ized to unity. By multiplying (2.6) by φ∗
i (r) and integrating over r, one finds∫

drdr′σ1(r, r
′)ψ∗

i (r)ψi(r
′) = ni. (2.7)

Taking summation over i, we obtain

N =
∑
i

ni,

which follows from the completeness relation
∑

i ψ
∗
i (r)ψi(r

′) = δ(r− r′).

Note that the single-particle wave functions ψi are well defined not only for ideal gases,

but also for interacting and nonuniform systems. The knowledge of the functions ψi and of

the eigenvalues ni permits us to write the density matrix in the diagonalized form

σ1(r, r
′) =

∑
i

niψ
∗
i (r)ψi(r

′). (2.8)
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A major consequence of the diagonalization (2.8) is given by the possibility of identify-

ing in an unambiguous way the single-particle wave functions ψi for both interacting and

nonuniform systems. These functions can be used to write the field operator Ψ̂(r) in the

form

Ψ̂(r) =
∑
i

ψ(r)âi, (2.9)

where âi are defined by

âi =

∫
dr ψ∗

i (r)Ψ̂(r). (2.10)

It is easy to check that their commutation relations are

[âi, â
†
j ] = δij , [âi, âj ] = 0.

Using the definition (2.1) and the eigenvalue equation (2.6), one finds that the expectation

value of the operators â†j âi is given by

⟨â†i âj⟩ = δijni.

We introduce an interpreation that the operators âi (â†i ) are annihilation (creation) operators

of a particle in the state φi.

2.3 Definition of Bose-Einstein Condensation

Let |ψ0(t)⟩ be the state with maximum eigenvalue. The condition for the occurance of Bose-

Einstein condensasation is formulated as [80]:

n0 = O(N).

If BEC occures only in the ν = 0 mode, nν ̸=0 = O(1). In other words, Bose-Einstein

condensation occurs when one (or several) of the single-particle states (hereafter called the

condensate, i = 0) is occupied in a macroscopic way, i.e. when n0 ≡ N0 is a number of

order N , while the other single-particle states have a microscopic occupation of order 1.

In this case eq.(2.8) can conveniently be rewritten in the separated form

σ1(r, r
′) = N0ψ

∗
0(r)ψ0(r

′) +
∑
i ̸=0

niψ
∗
i (r)ψi(r

′). (2.11)
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At large distances s = |r − r′|, the only contribution that remains finite is that from the

condensate. The contribution remains finite up to distances |r − r′| fixed by the extension

of the function ψ0.

Suppose that BEC didn’t exist, i.e., there is no macroscopically occupied state. Then in

the limit |r−r′| → ∞, every terms in (2.5) do not add up but rather cancel each other, since

ψν’s are orthogonal to each other. Thus σ1(r, r′; t) will not remain on the order of N/V ,

i.e., the system will not show ODLRO. We have just proved that ODLRO implies the onset

of BEC.

If BEC occurred only in the ν = 0 mode, that is, n0 = O(N) and nν ̸=0 = O(1), then,

in the limit |r− r′| → ∞, we have

σ1(r, r
′; t)→ n0ψ

∗
0(r, t)ψ0(r

′, t)

≡ Ψ∗(r, t)Ψ(r′, t).

We refer to

Ψ(r, t) :=
√
n0ψ0(r, t)

as condensate wavefunction or order parameter and n0 as the number of condensed

Bosons. Ψ(x, t) can be understood as an eigenfunction of the single-particle reduced density

matrix σ1(x,y; t):∫
dx σ1(x,y)Ψ(x, t) ≃ n0Ψ(y, t), n0 =

∫
dx |Ψ(x, t)|2. (2.12)

We note that if Ψ(x, t) is a solution to the eigenvalue problem (2.12), Ψ(x, t)eiϕ is also a

solution to it, where ϕ is an arbitrary real number. The global phase of the condensate wave-

function is therefore arbitrary. Making an explicit choice for the value of the order parameter

corresponds to a formal breaking of gauge symmetry, the U(1) symmetry breaking.

2.4 Uniform and Isotropic Case

Let us consider the case of uniform and isotropic system ofN particles occupying a volume

V in the absence of external potentials. In the thermodynamic limit, whereN,V →∞ with

the density n = N/V kept fixed, the single-particle density matrix depends only on the
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modulus of the relative position s = r− r′, and the solutions of (2.6) are plane waves:

ψp(r) =
1√
V
eip·r/ℏ (2.13)

with the value of p being determined by the boundary consitions and the eigenvalues are

given by

np =

∫
V
dr′ σ1(r

′)eip·r
′/ℏ.

The expansion (2.11) now becomes

σ1(s) = N0/V +
1

V

∑
p ̸=0

npe
−ip·s/ℏ. (2.14)

One finds that, in the presence of BEC, the single-particle density matrix does not vanish

at large distances but approaches a finite value: σ1(s) → N0/V as s → ∞. This be-

haviour was pointed out by Landau(1951), Penrose(1951) and Penrose and Onsager (1956)

and is often referred to as off-diagonal long-range order, since it involves the nondiagonal

components (r ̸= r′) of the single-particle density matrix (2.1).

The above considerations also hold in the presence of interactions. For example, while

in the ideal gas all the particles are in the condensate at T = 0 and N0 = N , in the presence

of interactions one has N0 < N even at T = 0. The condensate fraction N0/N depends

on the temperature of the sample and vanishes above the critical temperature Tc for Bose-

Einstein condensation. In Fig. 2.1 the behaviour of σ1(s) at different temperatures is shown.

2.5 Bogoliubov Approximation

The wave function relative to the macroscopic eigenvalue N0 plays a crucial role in the

theory of BEC and characterizes the so-called wave function of the condensate. We separate

in the field operator (2.9) the ‘condensate’ term i = 0 from the other components:

Ψ̂(r) = ψ0(r)â0 +
∑
i ̸=0

ψi(r)âi. (2.15)

The Bogoliubov approximation is to treating the macroscopic component φ0â0 of the field

operator (2.15) as a classical field be the approximation â0 ≈
√
N0 so that eq.(2.15) can be
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Figure 2.1: Off-diagonal single-particle density as a function of the relative distance s.
For temperatures below the critical temperature, σ1(s) approaches, for large s, the value
n0 = N0/V , where N0 is the number of particles in the condensate. At s = 0, σ1(s)
coincides with the diagonal density n = N/V .

rewritten as

Ψ̂(r) = Ψ0(r) + δΨ̂(r), (2.16)

where we have defined Ψ0 =
√
N0ψ0 and δΨ̂ =

∑
i ̸=0 ψiâi.

The function Ψ0(r) is called the wave function of the condensate or the order parame-

ter. It is a complex quantity, characterized by its modulus and phase:

Ψ0(r) = |Ψ0(r)|eiΦ(r). (2.17)

The phase Φ(r) plays a major role in characterizing the coherence and superfluid phe-

nomena. The order parameter (2.17) characterizes the Bose-Einstein condensed phase and

vanishes above the critical temperature. As one can see from its definition (2.11), the order

parameter Ψ0 =
√
N0ψ0 is defined only up to a constant phase factor. One can always

multiply this function by the numerical factor eiα without changing any physical property.

Making an explicit choice for the value of the order parameter corresponds to a formal

breaking of gauge symmetry.

One can write Ψ0 = ⟨Ψ̂⟩, having in mind that the states on the left have one less

particle in the condensate than the states on the right.

If we take this average over stationary states whose time dependence is governed by

the law e−iEt/ℏ, it is easy to see that the time dependence of the order parameter is given by
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the law

Ψ0(r, t) = Ψ0(r)e
−iµt/ℏ,

where µ = E(N) − E(N − 1) ∼ ∂E/∂N is the chemical potential. It is interesting to

remark that the time evolution of the order parameter is not governed by the energy, as

happens with usual wave functions, but by the chemical potential which emerges as a key

parameter in the physics of Bose-Einstein condensates.





Chapter 3

Description of the System

3.1 Lagrangian Density of the System

We start our discussion with the Lagrangian density of a Bose gas comprising atoms or

molecules of mass m,

L =
iℏ
2

(
Ψ∗∂tΨ−∂tΨ∗Ψ

)
− ℏ2

2m
|∇Ψ|2−Vext|Ψ|2−

1

2
|Ψ|2

∫
d3R′ Vint(R−R′)|Ψ(R′)|2,

(3.1)

where R = (r, z) are spatial 3D coordinates. The system is trapped by an external trapping

potential of the form

Vext(R, t) =
1

2
mω2

⊥r
2 +

1

2
mω2

zz
2,

where both ω⊥ and ωz can in general be time-dependent. We will assume that, over the

whole time evolution, the gas is strongly confined in z direction, with aspect ratio κ =

ωz/ω⊥ ≫ 1. We also assume quasi-homogeneity in the plane, i.e. that the relevant wave-

lengths of quasiparticle excitations are much shorter than the inhomogeneity scale caused

by the in-plane harmonic trapping.

The two-body interaction is given by

Vint(R−R′) = gcδ
3(R−R′) + Vdd(R−R′),

where gc is the contact interaction coupling which is given by the s-wave scattering length

as via

gc =
4πℏ2as
m

.

The scattering length arises in describing collision or scattering between particles. In scat-

tering theory, the asymptotic wavefunction for scattered particle reads

ψ(r, θ) = eikz + f(θ)
eikr

r
.

15
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The differential cross section, i.e. the probability per unit time to scatter into the direction k

can be obtained as
dσ

dΩ
= |f(θ)|2 .

In case of θ independent s-wave scattering, the total cross section becomes

σ = 4π|f |2 =: 4πa2s.

The contact coupling gc or s-wave scattering length as is positive/negative when the inter-

action between atoms is repulsive/attractive. On the other hand, Vdd(R−R′) describes the

dipole-dipole interaction (DDI) assuming the dipoles to be polarized along z-direction by

an external field, so that their interaction is given by

Vdd(R, t) =
3gd
4π

1− 3z2/|R|2

|R|3
, (3.2)

where gd = µd2m/3 for magnetic and gd = d2e/3ε for electric dipoles. Contrary to the

contact interaction, DDI is long-ranged and anisotropic. We note that, for the stability of

the condensate, the interaction should be dominantly repulsive. Thus we need the strong

confinement in z-direction so that DDI is dominantly repulsive.

In general, gc and gd can be time-dependent, depending on the protocol of condensate

expansion or contraction which is implemented, see below. We denote by gc,0 and gd,0 their

initial, t = 0, values. We have a scaling law Vint(ΛR) = ΛαVint(R) [81] for a combined

3D contact and dipolar potential with α = −3. Note that the scaling equation (3.12) below

is thus 3D.

We note here that the analysis can equivalently be formulated in Heisenberg formalism,

in which the system is described by the Hamiltonian in second quantized form,

Ĥ =

∫
d3R

[
− ℏ2

2m
Ψ̂†(R)∇2Ψ̂(R) + Ψ̂†(R)Vext(R)Ψ̂(R)

]
+

1

2

∫
d3R d3R′ Ψ̂†(R)Ψ̂†(R′)Vint(R−R′)Ψ̂(R′)Ψ̂(R).

The unitary time evolution in the Heisenberg picture, i.e., the Heisenberg equation of motion
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for the field operator reads,

iℏ
∂Ψ̂

∂t
= [Ψ̂, Ĥ] =

[
− ℏ2

2m
∇2 + Vext(R) +

∫
d3R′ Vint(R−R′)Ψ̂†(R′)Ψ̂(R′)

]
Ψ̂.

3.2 Dimensional Reduction

To ensure stability in the DDI dominated regime [63], we impose the system to stay suffi-

ciently close to the quasi-2D regime during expansion. In the limit of zero-point energy of

the axial harmonic oscillator greatly exceeding the chemical potential, and for large aspect

ratio, the longitudinal and transversal degrees of freedom decouple and we factorize the

order parameter Ψ(R, t) as follows.

Ψ(R, t) = Ψ⊥(r, t)Φz(z)e
−iωzt/2. (3.3)

Here Φz(z) describes the zero point oscillations in a harmonic oscillator potential, and is

given by

Φz(z) =
1

(πd2z)
1/4

exp
[
− z2

2d2z

]
,

where dz =
√
ℏ/mωz is the oscillator length. Improved estimates for dz can be found by

treating dz as a parameter minimizing the Gross-Pitaevskiı̌ ground-state energy [63, 82].

Substituting (3.3) into the action (3.1), and integrating out the z dependence, we obtain

the reduced Lagrangian for the horizontal in-plane mode:

L⊥ =
iℏ
2
(Ψ∗

⊥∂tΨ⊥ − ∂tΨ∗
⊥Ψ⊥)−

ℏ2

2m
|∇⊥Ψ⊥|2 −

m

2
ω2
⊥r

2|Ψ⊥|2

− 1

2
|Ψ⊥|2

∫
d2r′ V 2D

int (r− r′)|Ψ⊥(r
′)|2,

where∇⊥ = (∂x, ∂y). The interaction potential is reduced to

V 2D
int (r− r′) =

∫
dzdz′ Vint(R−R′)ρz(z)ρz(z

′), (3.4)

where ρz = |Φz|2 The nature of interactions can be seen clearly by looking at their Fourier

space representations. Here and below, we will use asymmetric Fourier convention in which

the inverse transform incorporates the whole prefactor. The Fourier transform of the density
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profile in z-direction ρz , for homogeneous density in the 2D plane, is given by

ρz(Q) = V δ
(2)
q,0 exp

[
−q

2
zd

2
z

4

]
,

where V is the area of the plane and Q = (q, qz). Substituting the inverse Fourier trans-

forms of these expressions into (3.4), we obtain [63]

V 2D
int (r− r′) =

1√
2πdz

(gc + 2gd)δ
(2)(r− r′)− 3

2

gd
V

∑
q

eiq·(r−r′)qw

[
qdz√
2

]
. (3.5)

Here we made use of an integral representation of the error function [83]

w(z) ≡ ez2erfc(z) = 2z

π

∫ ∞

0

e−t2

z2 + t2
dt (z > 0), (3.6)

where the complementary error function is defined as erfc(z) = 1 − erf(z) and erf(z) =

(2/
√
π)
∫ z
0 exp(−t2)dt. From (3.5), we see that the DDI contributes to the delta-function-

like interaction. As a result, the interaction potential has the Fourier representation,

V 2D
int (q) =

1√
2πdz

(gc + 2gd)−
3

2
gd q w

[
qdz√
2

]
≡ geff − 3

2
gd q w

[
qdz√
2

]
.

It is convenient to decompose the total (contact and dipolar) interaction into a sum of

effective contact interaction and nonlocal interaction:

V 2D
int (r− r′) = geffδ(2)(r− r′) + U2D(r− r′), (3.7)

where the effective contact coupling strength is defined by

geff ≡ g2Dc +
2gd√
2πdz

=
1√
2πdz

(gc + 2gd),

and the nonlocal interaction is written as

U2D(r− r′) = −3

2

gd
V

∑
q

eiq·(r−r′)qw

[
qdz√
2

]
.
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As a result, the action of the system becomes

L =
iℏ
2
(Ψ∗∂tΨ− ∂tΨ∗Ψ)− ℏ2

2m
|∇Ψ|2 − m

2
ω2r2|Ψ|2 − geff

2
|Ψ|4

− 1

2
|Ψ|2

∫
d2r′ U2D(r− r′)|Ψ(r′)|2, (3.8)

where we dropped subscripts for conciseness.

3.3 Scaling Transformation

We can prescribe an external time dependences not only with a temporal profile of the trap

frequencies but also to gc = 4πℏ2as/m and gd by changing the s-wave scattering length

as via Feshbach resonances [84, 85] and using a rotating polarizing field to change gd [86],

respectively. As a result, the gas cloud will adapt to these changes and will either expand

or contract. Under the usual scaling transformation [87, 88], laid down in a very general

form in [81], which is applicable to BECs with both time-dependent trapping and coupling

constants, one imposes that the scaling variables x, τ , and ψ obey

x ≡ r

b(t)
, τ ≡

∫ t

0

1

b2(t′)
dt′, Ψ(r, t) ≡ eiΦ(x,t)ψ(x, τ)

b
, (3.9)

with a scale factor b(t). Here Φ(x, t) = 1
2
m
ℏ r

2 ∂tb
b is chosen so as to describe the bulk

velocity v = ẋ = −1
b
ℏ
m∇Φ, while the phase of ψ will represent the residual velocity

potential, which can be regarded as small. The Lab time t is different from the (analogue)

cosmic time τ . See below for more details.

Insertion of these ansatz into the action (3.8) yields

L =
iℏ
2
(ψ∗∂τψ − ∂τψ∗ψ)− ℏ2

2m
|∇xψ|2 −

m

2
x2
(
d2b

dt2
b3 + ω2b4

)
|ψ|2 − geff

2
|ψ|4

− gd
2gd,0b

∫
d2x′ U2D

0 (x− x′)|ψ(x)|2|ψ(x′)|2, (3.10)

where ∇x = (∂x, ∂y). Note that the measure dtd2r gives an additional factor of b4 by the

relation dtd2r = b4dτd2x. The scaled nonlocal interaction is written as

U2D
0 (x− x′) = −3

2

gd,0
V

∑
k

eik·(x−x′)kw

[
kdz,0√

2

]
,
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where gd,0 and dz,0 are initial values. In order to obtain this expression, we have assumed a

scaling condition

dz(t) = dz,0b(t) or ωz(t) =
ωz,0

b2(t)
. (3.11)

We combine the remaining time dependences into a single factor f(t) by imposing [73, 81,

89] [b(0) = f(0) = 1]

f2 =
b3∂2t b+ b4ω2(t)

ω2
0

=
gc(t)

gc,0b
=
gd(t)

gd,0b
, (3.12)

to obtain the action of the form

L =
iℏ
2
(ψ∗∂τψ − ψ∂τψ∗)− ℏ2

2m
|∇xψ|2 − f2

[
m

2
ω2
0x

2|ψ|2 + geff0
2
|ψ|4

+
1

2

∫
d2x′ U2D

0 (x− x′)|ψ(x)|2|ψ(x′)|2
]
. (3.13)

Given experimentally prescribed time dependences of trapping and couplings, the above

relations determine the scaling expansion. On the other hand, given a desired scaling ex-

pansion or contraction b = b(t), to which, e.g., the time dependence of the speed of sound

c = c(t) is related via f(t), one can determine the required trapping frequencies, imposing

possibility in addition a temporal dependence of the coupling constants. Note that for the

scaling approach to accurately yield the expansion or contraction dependence of the field

operator in a gas with both contact and dipolar interactions present (i.e., for the scaling evo-

lution to follow a symmetry), the contact gc and dipole gd couplings are required to either

have an identical time dependence, or to both remain constant. We remark that when one of

the gc,0, gd,0 equals zero, the terms gc(t)/gc,0b or gd(t)/gd,0b, respectively, do not appear

as a constraint on the right hand side of the equation (3.12) for f2.

We recombine the interaction terms and rewrite the action (3.13) as

L =
iℏ
2
(ψ∗∂τψ − ψ∂τψ∗)− ℏ2

2m
|∇xψ|2 − f2

[
m

2
ω2
0x

2

+
1

2

∫
d2x′ V 2D

int,0(x− x′)|ψ(x′)|2
]
|ψ|2, (3.14)

where V 2D
int,0(x − x′) = (1/V )

∑
k e

ik·(x−x′)V 2D
int,0(k) with V the area of the plane, and

the quasi-2D Fourier transform of the interaction potential is, for the stationary initial state,
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given by the analytic expression [63]

V 2D
int,0(k) = geff0

{
1− 3R

2
ζw

[
ζ√
2

]}
, (3.15)

where w[z] = exp[z2](1− erf[z]) denotes the w function and ζ = kdz,0 is a dimensionless

wavenumber. Furthermore,

geff0 =
1√

2πdz,0
(gc,0 + 2gd,0) (3.16)

is an effective contact coupling. We also defined

R =

√
π/2

1 + gc,0/2gd,0
. (3.17)

The parameter R ranges from R = 0 if gd,0/gc,0 → 0, to R =
√
π/2 for gd,0/gc,0 → ∞

and expresses the relative strength of contact and dipolar interactions. In the remainder of

the thesis, we put either R = 0 (contact dominance) or R =
√
π/2 (DDI dominance).





Chapter 4

Analyzing the System

4.1 Zeroth-Order Analysis

From the action (3.14), we obtain the nonlocal Gross-Pitaevskiı̌ equation

iℏ∂τψ = − ℏ2

2m
∇2

xψ + f2
[
m

2
ω2
0x

2 +

∫
d2x′ V 2D

int,0(x− x′)|ψ(x′)|2
]
ψ. (4.1)

In terms of the Madelung representation for the scaled order parameter, ψ =
√
ρeiϕ, the

equation of motion (4.1) can be recast as

∂τρ = − ℏ
m
(∇xϕ · ∇xρ+ ρ∇2

xϕ), (4.2)

−ℏ∂τϕ = − ℏ2

2m
√
ρ
∇2

x

√
ρ+

ℏ2

2m
(∇xϕ)

2 + f2
[
m

2
ω2
0x

2 +

∫
d2x′ V 2D

int,0(x− x′)ρ(x′)

]
,

If we linearize the fields around stationary background solutions, ρ = ρ0+δρ, ϕ = ϕ0+δϕ,

the zeroth order equations are the same as (4.2) with subscripts 0 attached to the fields, and

the first order equations are the Bogoliubov equations (4.10).

We solve the zeroth order equations assuming vanishingly small residual comoving

frame velocity (vcom ≡ ℏ
m∇xϕ0 = 0) by the ansatz ψ0(x, τ) =

√
ρ0(x)e

iϕ0(τ) [27], and

neglect the kinetic energy term, which is equivalent to neglecting terms proportional to

∇2
x
√
ρ0. Then we obtain a spatially constant phase function

ϕ0(τ) = −
µ0
ℏ

∫ τ

0
dτ ′ f2(τ ′), (4.3)

where µ0 is initial chemical potential, and an integral equation for time independent density

profile ∫
d2x′ V 2D

int,0(x− x′)ρ0(x
′) = µ0 −

m

2
ω2
0x

2, (4.4)

which can be solved numerically. Because of the partially attractive nature of DDI, the

profile shows enhanced concentration at the center compared to the pure contact case, cf.

23



24 CHAPTER 4. ANALYZING THE SYSTEM

Fig. 4.1. Also, the anisotropy of the interaction results in the appearance of small wiggles in

the density profile [90, 91].
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Figure 4.1: The density profile of the gas in units of geff0 /ℏωz,0 as a function of radial
distance in units of dz,0. In (a), blue solid and red dashed line corresponds to DDI-dominant
and contact-dominant cases, repectively. We also present a visualization of the gas in (b),
using parameters appropriate for erbium atoms [92]. Namely, particle number N = 9.5 ×
104, magnetic moment dm = 7µB , Boson mass m = 168 u, aspect ratio κ0 = 30, and
transverse trapping frequency ωz,0 = 2π × 5435Hz.

4.2 First-Order Analysis

Now we consider the first order equations. We assume that the planar cloud size greatly

exceeds the wavelengths of relevant Bogoliubov excitations in the plane. Especially near the

center of cloud, density gradients are thus negligible, and we approximate the 2D comoving
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density ρ0 ≃ const. The Bogoliubov equations for density and phase fluctuations read,

(∂τ + vcom · ∇x) δρ = −ℏρ0
m
∇2

xδϕ−
ℏ
m
∇xρ0 · ∇xδϕ− (∇x · vcom)δρ, (4.5)

(∂τ + vcom · ∇x) δϕ = −f
2geff0
ℏ
Wδρ+

ℏ
2mρ0

∇x ·
[ δρ
√
ρ0
∇x
√
ρ0
]
, (4.6)

whereW is an integral operator defined by

W ≡
∫
d2x′

[
1

V

∑
k

Wke
ik·(x−x′)

]
⋆ (x′), (4.7)

Wk = 1− 3R

2
ζw

[
ζ√
2

]
+

ζ2

4Af2
, A =

mc20
ℏωz,0

, (4.8)

where ⋆ stands for the argument upon which the integral operator acts. Here, c0 =
√
geff0 ρ0/m

is the speed of sound and vcom = (ℏ/m)∇xϕ0 is the commoving frame velocity.

Rewriting in the momentum space, the Bogoliubov equations become, with comoving

momentum k, assuming vanishingly small comoving velocity and quasi-homogeneity,

(∂τ + ivcom · k)δρk =
ℏρ0
m
k2δϕk, (4.9)

(∂τ + ivcom · k)δϕk = −f
2geff0
ℏ
Wkδρk, , (4.10)

Solving (4.10) for δρk and substituting into (4.9) yields

(∂τ + ivcom ·k)2δϕk +
(
2
ȧ

a
− Ẇk

Wk

)
(∂τ + ivcom ·k)δϕk +

(
c0k

a

)2

Wkδϕk = 0, (4.11)

where overdot denotes τ derivatives. We have introduced the Friedmann-Robertson-Walker

(FRW) cosmological scale factor by a(t) ≡ 1/f(t), see below for a detailed discussion.

In an adiabatic regime [89], momentarily ignoring time derivatives of a andWk, and

assuming vanishingly small comoving velocity, vcom = 0, the dispersion relation of Bo-

goliubov excitations reads

ε2

(ℏωz,0)2
=
Aζ2

a2

(
1− 3R

2
ζw

[
ζ√
2

])
+
ζ4

4
, (4.12)

where the the dimensionless parameter, R = gd,0/(dz,0g
eff
0 ) =

√
π/2/(1 + gc,0/2gd,0),
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Figure 4.2: (a) Squared Bogoliubov excitation energy in units of ℏ4/4m2d4z,0, for DDI dom-
inance,R =

√
π/2. Counting from bottom to top at small ζ,A in (4.8) isAc/10, Amin, Ac,

and 1.1Ac. For A > Amin = 1.249, the spectrum develops a roton minimum, and becomes
unstable for A > Ac = 3.4454. (b) Time evolution of the Bogoliubov spectrum in the
course of expansion at criticality A = Ac. Initially, a roton minimum occurs, disappearing
at late times.

ranges from R = 0 if gd,0/gc,0 → 0 to R =
√
π/2 for gd,0/gc,0 → ∞. In the latter

DDI dominated case, the spectrum displays a “roton” minimum [62–64], which touches

zero when A is equal to the critical value Ac = 3.4454, see Fig.4.2. Various ramifications

of the dipolar BEC roton, originally defined for and observed in the strongly interacting

superfluid helium II [65, 66], have been recently experimentally investigated in ultracold

dipolar quantum gases [67–70].

Note here that, when working in Heisenberg formulation, we define the density and

phase perturbation fields as

δρ̂ := ψ∗
0δψ̂ + δψ̂†ψ0, δϕ̂ :=

1

2iρ0
[ψ∗

0δψ̂ − ψ0δψ̂
†], [δρ̂(x), δϕ̂†(x′)] = iδ(2)(x− x′).

Then, the density ρ̂ = ψ̂†ψ̂ and current ĵ = ℏ
2mi

[
ψ̂†∇xψ̂ −∇xψ̂

†ψ̂
]

operators have the

following expansion.

ρ̂ = ρ0 + δρ̂, ĵ = ρ0vcom + δρ̂vcom + ρ0δv, δv :=
ℏ
m
∇xδϕ̂,

where ρ0 = |ψ0|2 and vcom = (ℏ/m)∇xϕ0. The density and phase perturbation operators

defined above satisfy the same Bogoliubov equations (4.5) and (4.6).



Chapter 5

Gravitational Analogy

5.1 Effective FRW Universe in the Condensate

In the long-wavelength limit,Wk → 1, and (4.11) becomes

(∂τ + ivcom · k)2δϕk + 2
ȧ

a
(∂τ + ivcom · k)δϕk +

(
c0k

a

)2

δϕk = 0. (5.1)

Rewriting the equation (5.1) in real space, the resulting equation is equivalent to the phases

only Lagrangian,

L(2) = ℏ2/2
f2geff0

(Dδϕ)2 − ℏ2ρ0
2m

(∇xδϕ)
2, (5.2)

where D = ∂τ + vcom · ∇x is the comoving derivative. Now the gravitational analogy can

be drawn by introducing a dimensionless symmetric rank 2 tensor

gµν =
a2

Ω2

(
(c2s − v2

com)/c
2
0 vcom/c0

vcom/c0 −1

)
(5.3)

where cs(τ) = (1/a)
√
geff0 ρ0/m is the speed of sound and c0 = cs(0). The conformal

factor Ω is dimensionless and defined by

Ω =
c20m

2

ℏ2ρ0
. (5.4)

With the metric tensor (5.3), the Lagrangian becomes that of a minimally coupled free scalar

field in a curved spacetime

L(2) = mc20
2

√
|g|gµν∂µδϕ∂νδϕ, (5.5)

where repeated indices imply summation over µ = 0, 1, 2 and x0 = c0τ .

For the background solutions (4.3) and (4.4), vcom = (ℏ/m)∇xϕ0 = 0 and ρ0 is time

27
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independent. In this case the line element (5.3) becomes

ds2 = Ω−2
(
c20dτ

2 − a2dx2
)
, a =

1

f
. (5.6)

Herein, we assume that the density ρ0 is essentially homogeneous near the center of cloud.

This implies that ω0, the trapping frequency in the scaled coordinate system, is negligi-

ble compared to the time scale of the effective spacetime (that is the Hubble constant H ,

cf. (5.14)). Then Ω as defined in (5.6) becomes spatially constant, and the action (5.5) is

invariant under the conformal transformation

g̃µν = Ω2gµν and δϕ̃ = Ω−1/2δϕ, (5.7)

and the resulting metric g̃µν assumes the form of FRW universe

ds2 = c20dτ
2 − a2dx2 = g̃µνdx

µdxν , (5.8)

where g̃µν = diag(1, −a2, −a2). Now we can apply standard techniques of quantum field

theory in a FRW universe to obtain independent solutions for δϕ̃. Then the independent

solutions for original field δϕ will be obtained by δϕ = Ω1/2δϕ̃.

In this effective spacetime, the Klein-Gordon (KG) equation for massless, minimally

coupled free scalar field,

□δϕ̃ = (1/
√
|g̃|)∂µ(

√
|g̃|g̃µν∂νδϕ̃) = 0, (5.9)

takes the form

δ
¨̃
ϕk + 2

ȧ

a
δ
˙̃
ϕk +

(
c0k

a

)2

δϕ̃k = 0, (5.10)

which is the same as (5.1) provided vcom = 0 and δϕ = Ω1/2δϕ̃. Here, for ease of connect-

ing the current discussion to a standard cosmological context, we introduce the conformal

time

η ≡
∫ τ

∞

c0
a(τ ′)

dτ ′, (5.11)

which ranges from −∞ (τ → −∞) to 0 (τ → ∞). Then the metric (5.6) takes the

conformally flat form ds2 = a2[dη2− dx2], and the equation (5.1) can be recast in terms of
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an auxiliary field χk ≡
√
aδϕ̃k by

∂2ηχk +

[
k2 −

∂2ηa

2a
+

(∂ηa)
2

4a2

]
χk = 0 ⇔ ∂2ηχk + ω2

η(η)χk = 0. (5.12)

Comparing this equation with Eq. (1) in [74], one identifies ωη as an effective comoving

frame mode frequency. The choice of auxiliary field χk is motivated by removing the first

derivative term in (5.10).

5.2 Ideal de Sitter Expansion

We consider de Sitter spacetime by setting a(τ) = 1/f(τ) = eHτ . There are several simple

analytic solutions to the scaling equation (3.12) for the realization of analogue de Sitter

spacetime. For example one can consider b ≡ 1 ∀ t, so that scaling time equals lab time,

τ = t, and obtain the scale factor evolution

a−2(t) = e−2Ht =
ω2

ω2
0

=
gc
gc,0

=
gd
gd,0

. (5.13)

While this expansion has the advantage that the gas does not need to expand [b(t) = 1∀ t
and thus τ ≡ t], comes with the experimental difficulty that both couplings need to vary

exponentially rapidly in lab time, see Eqs. (5.13). While this is, in principle, possible [86],

also cf. Ref. [93], we keep for the below discussion gc as well as gd constant; then a2(t) =

b(t). For de Sitter expansion, a(τ) = 1/f(τ) = eHτ , and thence in the lab,

b(t) =
√
4Ht+ 1, ω2(t) = ω2

0/b
5 + 4H2/b4. (5.14)

The radial condensate velocity then scales as v = 2Hr/b2 and the kinetic energy per par-

ticle, relative to ωz,0, as A/b2. It thus decreases ∝ ωz , ensuring proximity to the quasi-2D

limit ∀ t. Our numerical analysis is based on this solution. Note that we assume ω0 to be

negligible compared toH in the quasihomogeneous limit. The much slower (in comoving τ

space) pre-de Sitter stage of cosmic expansion, t < 0, is conceived such that it ≈ adiabati-

cally leads to ∂tb(0) = 2H , and can be used to simulate as well the radiation- [a(τ) ∝ τ1/2]

and matter-dominated [a(τ) ∝ τ2/3] eras [94], by appropriately tuning ω(t) and/or gc,d(t).

A simple parameter can help us understand the underlying physical process and char-
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acterize appropriate asymptotic regimes. Define

s ≡ c0/H

a/k
=
c0k

Ha
, (5.15)

which is the ratio of Hubble radius to the physical wavelength of a chosen mode. The pa-

rameter s starts from ∞ and approaches zero when τ runs from −∞ to ∞, that is when

conformal time η ≡
∫ τ
∞ dτ ′c0/a(τ

′), ranges from −∞ to 0. Note that, in the de Sitter ana-

logue a = eHτ , the conformal time becomes η = −c0/Ha, and the parameter s can be

written employing conformal time simply as s = −kη. One can see that the horizon cross-

ing time ηk of a chosen wavenumber k is determined by s = 1 or k = a(ηk)H/c0. In the

de Sitter analogue, a = −c0/Hη, the horizon crossing time is the moment when

kηk = −1. (5.16)

The equation (5.1) can now be written as

δϕ̃′′k −
1

s
δϕ̃′k + δϕ̃k = 0, (5.17)

where prime denotes taking derivative with respect to s.

Large s implies that the mode is well inside the Hubble radius and does not feel the

curvature of the analogue spacetime. When a is small, i.e., before the inflation, the condition

s ≫ 1 is satisfied for wide range of k and so all the relevant modes are well inside the

Hubble radius. At this epoch, the second term in (5.17) can be neglected and we get the

WKB solution for time varying frequency ωk = c0k/a:

δϕ̃k −→
√

ℏV
2ma2Hs

exp(is) =

√
ℏV

2ma2ωk
exp

(
−i
∫ τ

∞
ωk(τ

′)dτ ′
)
, (5.18)

where coefficients are chosen by imposing a normalization condition. Define the conserved

Klein-Gordon (KG) innerproduct by [95, 96]

(f, g)KG = i
mc20
ℏ

∫
d2x

√
|γ|f∗(x, τ)

←→
∂ng(x, τ)

= i
mc20
ℏ

∫
d2x

a2

c20
f∗(x, τ)

←→
∂τ g(x, τ).

(5.19)
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Here, γ is the determinant of the metric in the spatial slice τ = const., nµ is its normal, and

∂n = nµ∂µ. Then the normalization conditions can be stated in terms of KG innerproduct:(
1

V
δϕ̃ke

ik·x,
1

V
δϕ̃ke

ik′·x
)

KG

= δ
(2)
k,k′ .

We note that, with this choice of coefficients, the canonical commutation relation,

[
δ
ˆ̃
ϕ(x, τ), δ ˆ̃π(y, τ)

]
= iℏδ(2)(x− y),

with conjugate momentum δπ̃ = ∂L(2)/∂(∂τδϕ̃) = ma2∂τδϕ̃ holds, and the proper (diag-

onalized) expression for the energy H(2) =
∑

k ℏωk(â
†
kâk + 1/2) can be obtained.

It is possible to obtain an analytic solution to (5.17) over the whole range of time.

Following [97, 98], we define a function F by F (s) = 1
sδϕ̃k. Then (5.17) becomes the

Bessel equation of order 1:

s2F ′′ + sF ′ + (s2 − 1)F = 0,

whose general solution can be written as a linear combination of Bessel functions J1 and

Y1 [83]. Thus we obtain

δϕ̃k(s) = s
[
A(k)J1(s) +B(k)Y1(s)

]
. (5.20)

We can determine the coefficients A(k) and B(k) by matching this solution with the WKB

solution (5.18) in the s → ∞ limit. Recalling the asymptotic behavior of Bessel functions

[83], we see that, for fixed η,

B(k)→ iA(k), A(k)→

√
πℏV H
4mc20k

2
as k →∞,

must be fulfilled in order to match the WKB solution (5.18) up to a constant phase.

We invoke de Sitter invariance to determine A(k) and B(k) for all k. We observe that

the metric (5.8) with a(τ) = eHτ is invariant under the transformation

τ → τ ′ = τ + τ1, x→ x′ = e−Hτ1x,
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where τ1 is arbitrary. If we define k′ ≡ keHτ1 , we have k′/a(τ ′) = k/a(τ) and k · x =

k′ · x′. Thus we obtain

δϕ̃k′(s) = s
[
A(k′)J1(s) +B(k′)Y1(s)

]
,

since s is unchanged when τ → τ ′ and k → k′. From the invariance of the metric, it follows

that δϕ̃k′(s)eik
′·x′
/V ′ = δϕ̃k(s)e

ik·x/V and so

A(k)

V
=
A(k′)

V ′

for any k and any τ1. Taking τ1 → ∞, the r.h.s. converges to (1/V )
√
πℏV H/4mc20k2.

Therefore we conclude that A(k) =
√
πℏV H/4mc20k2 for any k. The mode function now

becomes

δϕ̃k(s) = s

√
πℏV H
4mc20k

2

[
J1(s) + iY1(s)

]
=: hk(s), (5.21)

where the variable s = (c0/H)/(a/k) measures the ratio of Hubble radius to the cosmic

expansion-rescaled wavelength.

We quantize the field in the FRW Universe by imposing the canonical commutation

relation,

[
δ
ˆ̃
ϕ(x, τ), δ ˆ̃π(y, τ)

]
= iℏδ(2)(x− y), δπ̃ =

∂L(2)

∂(∂τδϕ̃)
= ma2∂τδϕ̃.

The algebra can be shown to be equivalent to that of Bogoliubov quasiparticle operators,
ˆ̃a†k,

ˆ̃ak. Now, We finally obtain the mode expansion for the phase fluctuation field:

δ
ˆ̃
ϕ(x, τ) =

∑
k

ˆ̃akf
(0)
k (x, τ) + ˆ̃a†kf

(0)∗
k (x, τ), (5.22)

where ˆ̃ak and ˆ̃a†k are time independent creation/annihilation operators obeying the commu-

tation relations [ˆ̃ak, ˆ̃a
†
k′ ] = δ

(2)
k,k′ . The mode function is written as

f
(0)
k (x, τ) =

1

V
hk(s)e

ik·x.

The vacuum corresponding to the basis ˆ̃ak is the Bunch-Davies vacuum [99]. Note that at

this stage the relation between what ˆ̃a†k creates and the Bogoliubov quasiparticles is not
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clear. We will establish a direct connection between them below in (8.15).

The Bunch-Davies vacuum yields an asymptotic Minkowski vacuum in the (formally)

infinite past equivalent to the lab’s quasiparticle vacuum. It is assumed that the initial Bunch-

Davies vacuum |0⟩ at η = −c0/H (t = τ = 0) is during the pre-de Sitter stage smoothly

connected to this asymptotic vacuum. We emphasize that “cosmological” quasiparticles are

measurable: Below we establish the equivalence of representations using cosmological co-

moving or scaling and lab frame Bogoliubov quasiparticles, also cf. [95, 96], and elaborate

on the measurement process when the expansion is stopped.

The modes oscillate almost freely for η → −∞. At kη = −1 and horizon crossing, the

mode freezes, leading to the standard theory of inhomogeneity or galaxy formation during

inflation [9]. At late times, s→ 0, and the modes do effectively not evolve anymore. Fig. 5.1

shows the evolution of khk as a function of kη; (b)∼(d) illustrate the fact that when trans-

Planckian defomation of the spectrum is included (see below), horizon crossing and mode

freezing nontrivially still occur.
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Figure 5.1: (a) Freezing process of the inflaton mode function khk in units of√
ℏHV/πmc20 =

√
HV/πAωz,0 in terms of the wavenumber dependent logarithmic

conformal time kη. Blue solid line represents the imaginary part of khk and black
dashed line represents the absolute value of khk. (a) Lorentz-invariant relativistic regime.
(b)∼(d) demonstrate that when the trans-Planckian spectrum is taken into account, solving
Eq.(7.11), freezing still occurs (A = Ac/10 and R =

√
π/2).





Chapter 6

Real Space Realization

6.1 Correlation Function

We investigate the spatially Fourier-transformed two-point correlation function, which is

defined by [26]

Cδϕ̃(k, τ) =

∫
V
d2x e−ik·x〈δ ˆ̃ϕ(0, τ)δ ˆ̃ϕ(x, τ)〉.

Now the mode expansion (5.22) is to be substituted. Recalling the asymptotic behavior of

the Bessel functions, we have

hk(s)→ −i

√
ℏV H
πmc20

1

k
, as s→ 0,

and therefore we obtain

Cδϕ̃(k, τ) =
|hk|2

V
→ ℏH

πmc20

1

k2
. (6.1)

Note that the mode function and correlation function become time independent at late times.

Thus the density fluctuations determined by (4.10) vanish at zeroth order. In order to obtain

nontrivial density fluctuations, one has to take the time dependence of the phase fluctuations

into account, which is beyond the zeroth-order frozen part.

6.2 Definition of Power Spectrum

The amplitude of quantum fluctuations is always well defined irrespective of whether the

particle interpretation of a given field is available [97]. One way to characterize the typical

fluctuations on scales L is to calculate the variance δχ2
L(τ) = ⟨0|[χ̂L(τ)]

2|0⟩ of the field

operator averaged over a region of size L:

χ̂L(τ) ≡
∫
d2x δ

ˆ̃
ϕ(x, τ)WL(x),

35
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where WL(x) is a window function which is of order 1 for |x| ≲ L and rapidly de-

cays for |x| ≫ L. It is prototypically specified in terms of Gaussian function WL(x) =

(1/2πL2) exp(−|x|2/2L2). Given the mode expansion (5.22), after straightforward alge-

bra with an approximation to the Fourier transform of the unit (L = 1) window function,

w(k) ≃ 2π[1− θ(k − 1)], one can find

δχ2
L(τ) ≃

∫ L−1

0

dk

k

k2|hk|2

V
.

We define the (two-dimensional version of) power spectrum P (k) to be proportional to the

variance per ln k:

k2P (k) ≡
dδχ2

L

d ln k
=
k2|hk|2

V
, k = L−1.

Another equivalent characterization of the power spectrum is as the Fourier transform of the

correlation function [94]:

ξ(x− y) = ⟨0|δ ˆ̃ϕ(x, τ)δ ˆ̃ϕ(y, τ)|0⟩ =:
1

V

∑
k

P (k)eik·(x−y). (6.2)

from which we have P (k) = ⟨δ ˆ̃ϕkδ ˆ̃ϕ†k⟩/V = |hk|2/V , where δ ˆ̃ϕk is the Fourier transform

of the mode expansion (5.22). Note that P (k) is nothing but the correlation function ob-

tained in (6.1). At late times, η → 0, the power spectrum P (k) converges to ℏH/πmc20k2

and we see that the quantity

∆2(k) = k2P (k)

becomes independent of k. We thus obtain, after the freezing process, a spectrum in which

∆2(k), the variance per ln k [94], is constant. This is called a scale-invariant power spectrum

(SIPS): The universe has the same degree of ‘wrinkliness’ on each resolution scale. One

can also understand this concept by observing that |δϕ̃k|2 ∝ 1
k2

, namely the probability

amplitude of a fluctuation is proportional to the wavelength of the fluctuation, so that the

shape is always the same regardless of which scale we see. Note that SIPS is not per se

related to the scaling approach to describe expansion of the gas.

It is commonly argued that the prediction of scale invariance arises because de Sitter

space is invariant under time translation: there is no natural origin of time under exponential

expansion [94]. At a given moment of time, the only length scale in the model is the horizon

size c0/H , so it is inevitable that the fluctuations that exist on this scale are the same at
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Figure 6.1: (a) Coordinate space representation of the (real) field δϕ̃(x, τ), in units of√
ℏHV/πmc20d2z,0 after the completion of the freezing process, where the 2D volume of the

system V = (2κ0dz,0)
2, with initial aspect ratio κ0, and the wavevector separation is chosen

to be ∆k = 2π/2κ0dz,0. The statistical self-similarity reveals itself by the same degree of
“wrinkliness” on each scale. (b) The field obtained from numerical implementation of the
full Bogoliubov equations (A = Ac/10, R = 0). Plots (c) through (f) are for increasing A
and dominating DDI (R =

√
π/2).

all time. If one ignores their evolution while they are outside the horizon, the resulting

fluctuations give us the scale-invariant or Harrison-Zel’dovich-Peebles spectrum [100–102].

6.3 Gaussian Random Field Method

Regarding the phase fluctuation field δ ˆ̃ϕ(x, τ) as a homogeneous and isotropic Gaussian

random field [9], i.e. a field whose Fourier coefficients δϕ̃k = ak+ibk are random variables
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with probability function of the form,

p(ak, bk) =
1

πσ2k
e−a2k/σ

2
ke−b2k/σ

2
k , (6.3)

the correlation function can be expressed as

ξ(x− y) =
1

V 2

∑
k,k′

⟨δϕ̃k(τ)δϕ̃∗k′(τ)⟩eik·x−ik′·y =
1

V

∑
k

σ2ke
ik·(x−y), (6.4)

where one has to take into account that a−k = ak and b−k = −bk. From (6.3), one can see

that ak and bk are real random variables with standard deviation σk/
√
2.

Comparing (6.2) and (6.4), we see that the variance of the random variable δϕ̃k is

given by σ2k = P (k) = |hk|2/V → ℏH/πmc20k2, from which we can obtain a real-space

realization of the phase fluctuation field δ
ˆ̃
ϕ(x, τ) in the scale-invariant fully relativistic

limit, see Fig. 6.1 (a).



Chapter 7

Incorporating Trans-Planckian Deformation

7.1 Generalized Klein-Gordon Equation

The solution (5.21) represents phonons residing in the low-momentum corner of the Bogoli-

ubov dispersion relation [see Fig. 4.2 (a)]. In order to incorporate trans-Planckian dispersion

and to describe its influence on the small k regime, we consider the more general Bogoli-

ubov equations (4.5) and (4.6). Solving (4.6) for δρ and substituting into (4.5), we obtain

(∂τ + vcom · ∇x)

[
a2

c20
W−1(∂τ + vcom · ∇x)δϕ̃

]
= ∇2

xδϕ̃, (7.1)

This is the ‘generalized’ Klein-Gordon equation with the local Lorentz invariance being

broken [96]. Rewriting (7.1) in momentum space, or equivalently, solving (4.10) for δρk
and substituting into (4.9) yields (4.11).

The normalization condition is given by

(f
(λ)
k , f

(λ)
k′ )W−KG = δ

(2)
k,k′ , (f

(λ)
k , f

(λ)∗
k′ )W−KG = δ

(2)
k,k′ , (f

(λ)∗
k , f

(λ)∗
k′ )W−KG = −δ(2)k,k′ ,

where the “generalized” KG inner product is defined by [96]

(f, g)W−KG = i
mc20
ℏ

∫
d2x

a2

c20
f∗(x, τ)

←−−−→
W−1∂τg(x, τ). (7.2)

Let us again introduce an auxiliary field and discuss in the cosmological context. In

order to remove the first derivative term of (4.11), we define χk ≡
√
a/Wkδϕ̃k, and recast

(4.11) as [assuming vcom = 0]

∂2ηχk +

[
k2Wk −

∂2ηa

2a

(
1− 2a∂ηWk

Wk

)
+

(∂ηa)
2

4a2

(
1− 3a2(∂ηWk)

2

W2
k

+
2a2∂2ηWk

Wk
+

4a∂ηWk

Wk

)]
χk = 0. (7.3)
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This equation again corresponds to Eq. (1) of [74], cf. the relativistic limit above in (5.12),

where now the effective comoving frame mode frequency ωη is the square root of the ex-

pression in the square brackets. It is easily observed that (7.3) converges to (5.12) when

Wk = 1, i.e. in the long wavelength limit. Furthermore, (7.3) becomes (5.12) except a fac-

tor of Wk multiplied to k2 when Wk is time independent (or a independent). This case is

discussed below.

7.2 An Exactly Solvable Case

Solving the general equation (4.11) requires numerical methods. We show herein that an

analytic solutions under an approximation to the interaction potential and introducing a

momentum cutoff is feasible. We replace the Fourier transform of the interaction V 2D
int,0(ζ)

by

V̄ 2D
int,0(ζ) =


(1− 1

f2
)
geff0 ζ2

4A
+ V 2D

int,0(ζ) (ζ ≤ ζc),

(1− 1

f2
)
geff0 ζ4c
4Aζ2

+ V 2D
int,0(ζ) (ζ > ζc),

(7.4)

where momentum cutoff ζc is set to include a part of trans-Planckian momenta, cf. Eq.(7.10):

ζc = ζPl × α, (7.5)

where α ≳ 1 determines the cutoff location and gives a class of spectrum lines that yields

scale invariant power spectra (cf. Eq.(7.8)). Note that initially (f = 1) the new potential

V̄ 2D
int,0 coincides with the original one V 2D

int,0 (Fig. 7.1 (a)). As time passes, the excitation

spectrum deviates from the true dispersion. However, the deviation is localized around the

cutoff momentum ζc, and the dispersion law at low energies is secured ∀t.
Below the cutoff (ζ ≤ ζc),Wk as defined in (4.8) becomes time independent:

Wk =
ζ2

4A
+

1

geff0
V 2D
int,0(ζ),

and equation (4.11) becomes

(∂τ + ivcom · k)2δϕk + 2H(∂τ + ivcom · k)δϕk +
(
c0K(k)
a

)2

δϕk = 0, (7.6)
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Figure 7.1: The squared excitation spectrum in units of (ℏ2/md2z,0)2 at various instants of
time. From left to right, the values of A are Amin, Ac and Ac×1.1, repectively. R =

√
π/2

for every case. The cutoff momentum is placed at α = 1.8 (cf. (7.5)). Blue lines represent
the original spectrum while the red dashed lines are approximations carried out to obtain an
analytic solution. Initially the two coincide and as time evolves they gradually deviate. Note
that the deviation is however localized around the cutoff momentum ζc.

which is identical to (5.1) with k now being replaced with K(k) defined by

K(k)2 ≡ k2Wk. (7.7)

We can then carry out exactly the same procedure for obtaining the mode functions (5.21)

with s = c0k/Ha being replaced with s̃ = c0K(k)/Ha and with an additional prefactor
√
Wk.

With these modified mode functions, the Fourier transformed correlation function, or

the power spectrum now becomes (after freezing)

Cδϕ̃(k, τ) =
|hk|2

V
→ ℏHWk

πmc20K(k)2
,
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and the variance per ln k becomes

∆2(k) =
2ℏHWk

mc20

k2

K(k)2
=

2ℏH
mc20

, (7.8)

which still is scale invariant. Therefore, this type of trans-Planckian deformation implied by

(7.4) has no effect on the power spectrum and on the matter distribution after the freezing

process and SIPS is retained.

7.3 Numerical Implementation

Now we implement numerical analysis of the full Bogolubov equation (4.11). We start by

rewriting (4.11) in terms of the variable s = c0k/Ha [assuming vcom = 0]:

δϕ̃′′k −
G(ζ)2 − (aζ)2/4A

G(ζ)2 + (aζ)2/4A

1

s
δϕ̃′k +

[
G(ζ)2 +

(aζ)2

4A

]
δϕ̃k = 0, (7.9)

δϕ̃k =
1√
Ω
δϕk, G(ζ)2 ≡ 1

geff0
V 2D
int,0(ζ).

Here prime(′) denotes s derivatives. Taking into account (4.12) and (4.8), the linear disper-

sion occurs for wavenumbers satisfying

(aζ)2

4A
≪ G(ζ)2 (⇒ analogue Planck scale ζPl). (7.10)

For small ζ, G(ζ)2 → 1, and Eq. (7.10) defines ζPl. Let us first analyze the condition (7.10)

in detail. Fig. 7.2 shows the plots of G(ζ)2 and (a1ζ)
2/4A for various values of A where a1

is the final value of the scale factor. We see that, for the validity of the gravitational analogy,

one can pose the later time Planck scale to be ζPl ≲ 0.1. If ζ < 0.05, the condition (7.10) is

safely satisfied for all cases.

Experiments will generally probe sub-Planckian ζ that satisfy (7.10). Therefore, we

consider (7.9) given (7.10) is fulfilled,

δϕ̃′′k −
1

s
δϕ̃′k +G(ζ)2δϕ̃k = 0. (7.11)

Before inflation, s → ∞ and the second term in (7.11) becomes negligible. Therefore, one
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Figure 7.2: Plots of G(ζ)2 and (a1ζ)
2/4A for various values of A. Here the final value of

the scale factor a1 is assumed to be e5/2, i.e., 2.5 e-folds of expansion.

finds that the mode functions would converge to a WKB solution as a→ 0:

δϕ̃k →

√
G(ζ)ℏV Hs
2mc20k

2
exp(iG(ζ)s),

where the coefficient is determined by the normalization condition(
1

V
δϕ̃ke

ik·x,
1

V
δϕ̃k′e

ik′·x
)

W−KG

= δ
(2)
k,k′

where the Generalized Klein-Gordon (W-KG) inner product is defined by the equation

(7.2). This solution and its derivative provides initial conditions to the second order differ-

ential equation (7.11). Final values (after inflation) of the mode functions hk then give the

power spectrum via P (k) = |hk|2/V and ∆2(k) = k2P (k).

From (5.14), we have 4H2 = ω2(0) (for ω2
0 ≪ 4H2). Setting κ0 = 50, ωz,0 = 2π ×

2921Hz results in H = 183.5 sec−1. Given nf e-folds of the scale factor a(tf ) = exp[nf ],

the final lab time is

tf = (exp[4nf ]− 1)/4H.

For 2.5 e-folds, then, tf ∼ 30 sec in lab time (for wz,0 = 2π × 3952 Hz, H = 248.3 sec−1,

and 2 e-folds, tf ∼ 3 sec). We introduce a momentum cutoff ζc ≲ 0.1 which meets (7.10) at

late times. Fig. 7.3 displays ∆2(k), and clearly shows the deviations from SIPS, occurring

for strongly dipolar interactions. When R = 0, Eq. (7.11) becomes identical to the wave
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Figure 7.3: ∆2(k) = k2P (k) as a function of in-plane momentum ζ, for 2.5 e-folds. Black
dashed line represent SIPS. The black solid line corresponds to contact interaction, R = 0

(A = Ac/10). The other lines correspond to DDI dominance (R =
√
π/2), with values of

A as specified in the inset. In the long-wavelength limit, they all converge to SIPS. The slope
of the R = 0 curve decreases for increasing number of e-folds, asymptotically yieldding
SIPS for pure contact interactions.

equation in analogue curved spacetime (5.1), and SIPS for long wavelengths obtains, cf.

Ref. [27] and Fig. 7.3. For high momenta, there is a slight upturn in the spectrum line. As

we increase the number of e-folds, this deviation converges to zero; for small wavelengths,

it takes longer time to exit the Hubble horizon, and settling down requires longer. Using the

power spectrum ∆2(k), one again constructs Gaussian random fields, and the coordinate-

space realization of Fig. 6.1 (b)–(f) is obtained, demonstrating the violation of SIPS for

increasing DDI by introducing short-range correlations. In other words, there is roton min-

imum imprint in the spatial distribution of the frozon fluctuations. This result becomes the

first example within analogue gravity program where violations of SIPS can become exper-

imentally manifest [73].

Whether SIPS is robust to trans-Planckian physics was studied in [74] (also cf. [75]),

where scale separation and adiabaticity in conformal time were established as sufficient

conditions for SIPS. Scale separation reads H/c0 ≪ kPl(ηk)/a(ηk), while adiabaticity

holds when
∣∣c0∂ηωη/ω

2
η

∣∣ ≪ 1 ∀ ηi < η < ηf , where ωη(η) is an effective comoving

frame mode frequency [74]. Furthermore, ηf is the ‘nonadiabatic time’ lying between ηi,

the onset of inflation, and ηk, the horizon crossing, which satisfies H/c0 ≪ k/a(ηf ) ≪
kPl(ηk)/a(ηk). Roughly speaking, ηf is the moment when the mode stops to behave WKB-
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like. For de Sitter spacetime, a = −c0/Hη, scale separation holds when k ≪ kPl(ηk). A

given k thus must lie in the linear dispersion regime at horizon crossing kηk = −1, which is

is equivalent to imposing (7.10) at this point. Therefore, in our numerical implementation of

the Bogoliubov equations which employs (7.10), scale separation is satisfied automatically.

According to [74], scale separation usually implies adiabaticity, resulting in the robustness

of the predictions of the inflationary scenario. However, when the spectrum has (even if only

initially) a deep minimum, as here, adiabaticity can be violated even when scale separation

holds, and SIPS breaks down.





Chapter 8

Connection to Lab Frame Variables

Quantum excitations in BECs can, on the one hand, be analyzed within the Bogoliubov

formalism by directly perturbing the Gross Pitaevskiı̌ equation. On the other hand, the

phase perturbations of the condensate obey a modified Klein-Gordon equation, and a cor-

responding quantization can be carried out as in (5.22). Since the de Sitter expansion is not

asymptotically flat at late times, a vacuum state cannot be unambiguously defined for late

times. However, the experimental verification obviously requires a choice of Fock vacuum

and that choice should lead to physically reasonable results. We therefore assume, follow-

ing [103], that the expansion stops at some chosen moment of time τ1 and the gas becomes

stationary, in other words, f(τ) = e−Hτ for τ < τ1, and f(τ) ≡ f1 for τ ≥ τ1.

8.1 Bogoliubov Transformation to Minkowski Vacuum at
Late Times

Suppose that we have obtained a complete set of “in” mode functions f (0)k for τ < τ1, e.g.

one obtained under (7.7):

f
(0)
k (x, τ) =

1

V
hk(η)e

ik·x, (8.1)

where the temporal part is given by

hk(η) =

√
πℏVWk

4ma2H

{
J1(−K(k)η) + iY1(−K(k)η)

}
,

where K(k) is as defined in (7.7). And suppose that a complete set of “out” mode functions

f
(1)
k which defines the vacuum state at late times τ > τ1 is given, e.g. one consists of

f
(1)
k (x, τ) =

1

V

√
ℏVWk

2ma21ωk1
e−iωk1(τ−τ1)eik·x, (8.2)

where ωk1 ≡ c0K(k)/a1. This is a solution to the Bogoliubov equation (7.6) with a ≡ a1

and H = ȧ
a set equal to zero, which represents the late time behavior of the equation. The

47
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coefficients are fixed by imposing the normalization conditions (λ = 0, 1)

(f
(λ)
k , f

(λ)
k′ )W-KG = δ

(2)
k,k′ , (f

(λ)
k , f

(λ)∗
k′ )W-KG = 0, (f

(λ)∗
k , f

(λ)∗
k′ )W-KG = −δ(2)k,k′ ,

(8.3)

where the generalized KG product (W-KG inner product) is defined by [96]

(f, g)W-KG = i
mc20
ℏ

∫
d2x

a2

c20
f∗(x, τ)

←−−−→
W−1∂τg(x, τ). (8.4)

Note thatW-KG inner product converges to the standard relativistic KG product (5.19) in

the limitW → 1.

The task at hand is to represent the “in” mode functions at τ > τ1 as a linear combi-

nation of the “out” mode functions, i.e. finding the Bogoliubov coefficients αk, βk in the

expression

f
(0)
k = α∗

kf
(1)
k + β∗kf

(1)∗
−k (8.5)

for τ > τ1. Then the creation/annihilation operators for “in” and “out” states will be related

by
ˆ̃a
(1)
k = (f

(1)
k , δ

ˆ̃
ϕ)W-KG = α∗

k
ˆ̃a
(0)
k + βk ˆ̃a

(0)†
−k .

Since H = ȧ/a in (7.6) changes at τ = τ1 in a discontinuous manner, the mode functions

and their derivatives must be matched at this point:

f
(0)
k (τ1) = α∗

kf
(1)
k (τ1) + β∗kf

(1)∗
−k (τ1),

∂τf
(0)
k (τ1) = α∗

k∂τf
(1)
k (τ1) + β∗k∂τf

(1)∗
−k (τ1),

where we suppressed x dependence for conciseness. In the case of (8.1) and (8.2), solving

this equation yields

α∗
k =

√
πωk1

8H

{
J1 + Y ′

1 +
HY1
ωk1

+ i

[
Y1 − J ′

1 −
HJ1
ωk1

]}
,

β∗k =

√
πωk1

8H

{
J1 − Y ′

1 −
HY1
ωk1

+ i

[
Y1 + J ′

1 +
HJ1
ωk1

]}
,

(8.6)

where the arguments of the Bessel functions are −K(k)η1. Note that, if the normalization

conditions, (8.3), are applied to (8.5), then one obtains the correct Bosonic Bogoliubov

unitarity condition |αk|2−|βk|2 = 1. This relation can also be checked from (8.6) by direct
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computation.

If the initial state is assumed to have no excitations, the quantum state is the initial vac-

uum denoted by |0⟩(0), i.e., ˆ̃a(0)k |0⟩(0) = 0. We consider the Heisenberg picture and the state

for δ ˆ̃ϕ is time independent. Then the expected number of quasiparticles with momentum k

after inflation is calculated to be

(0)⟨0|N̂
(1)
k |0⟩(0) = |βk|

2 → 1

2π|K(k)η1|1
, (8.7)

as η1 → 0.

8.2 Relation to Lab-Frame Bogoliubov Excitations

In order to connect quantum physics in curved spacetime to the behavior of a realistic quan-

tum fluid, Leonhardt et al. [104] investigated the Hawking effect within the Bogoliubov the-

ory of the elementary excitations in BEC. A more detailed correspondence was discussed

by Jain et al. [103], giving an analytical expression for the analogue cosmological particle

creation spectrum in terms of the Bogoliubov mode functions in the case of a homogeneous

BEC. Kurita et al. [95] demonstrated the equivalence of the two procedures in the long-

wavelength acoustic limit. They showed that the number of quanta in analogue spacetime

is different from that of Bogoliubov quasiparticles, unless the corresponding field is nor-

malized correctly. Barceló et al. [96] consolidated the equivalence of the two approaches

by generalizing the Klein-Gordon formalism beyond the limit of validity of the acoustic

approximation. They showed that both formalism lead to the same concept of positive and

negative solutions. This line of research allows us to establish a deep conceptual connection

between the two formalisms, the first one being inherently nonrelativistic while the second

is relativistic, up to corrections which are vanishingly small for long wavelengths. In the

following, we discuss the measurement implications of the predictions of previous sections,

based on a generalized version of the theory formulated in [96].

Under the scaling transformation (3.9) and the scaling conditions (3.11) and (3.12), the

Heisenberg equation of motion for the field operator ψ̂(x, τ) reads

iℏ∂τ ψ̂ =

[
− ℏ2

2m
∇2

x + f2
m

2
ω2
0x

2 + f2
∫
d2x′ V 2D

int,0(x− x′)ψ̂†(x′)ψ̂(x′)

]
ψ̂. (8.8)

Expanding the field operator in canonical way, ψ̂ = ψ0 + δψ̂, we obtain the GP equation
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(4.1) for the order parameter ψ0, and the Bogoliubov equation [105]

iℏ∂τδψ̂ = (H+A)δψ̂ + Bδψ̂†, (8.9)

where

H = − ℏ2

2m
∇2

x +
ℏ2

2m
√
ρ0
∇2

x

√
ρ0 −

1

2
mv20 − ℏ∂τϕ0, (8.10)

A = f2ψ0(x)

∫
d2x′ V 2D

int,0(x− x′)ψ∗
0(x

′) ⋆ (x′),

B = f2ψ0(x)

∫
d2x′ V 2D

int,0(x− x′)ψ0(x
′) ⋆ (x′).

In deriving (8.10), we have used (4.2). The ⋆ stands for the argument upon which A and

B acts. Note that Eq. (8.9) is a complex equation and is nonlinear: If δψ is a solution, then

αδψ is not unless α is real. Therefore we cannot directly perform a mode expansion to find

the general solution. In order to overcome this problem, we enlarge the space: We introduce

the spinor field

δΥ =

(
δψ

δψ̄

)
,

subject to the evolution equation

iℏ∂τδΥ =MδΥ, M =

(
H+A B
−B∗ −H−A∗

)
. (8.11)

This equation is now linear, and the solutions to the Bogoliubov equation (8.9) are obtained

by restricting the solutions of (8.11) by the condition

δψ̄ = δψ∗, or σxδΥ
∗ = δΥ, (8.12)

where σx,y,z are the Pauli matrices. We introduce here a conserved “Bogoliubov” inner-

product

⟨δΥ|δΥ′⟩B =

∫
d2x′ δΥ†σzδΥ

′.

One can check that the operatorM is self-adjoint with respect to this inner product

⟨δΥ|MδΥ′⟩B = ⟨MδΥ|δΥ′⟩B.
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This implies that the “Bogoliubov” inner product is conserved for solutions of (8.11). Note

that this inner product is not positive definite, since it satisfies

⟨σxδΥ∗|σxδΥ′∗⟩B = −⟨δΥ′|δΥ⟩B,

and so the physical solutions, i.e. those that satisfy σxδΥ∗ = δΥ, have zero norm.

The evolution operatorM is self-adjoint in a non-positive-definite inner product space,

and therefore it may have complex eigenvalues. We will assume that the condensate is stable

and M has complete othonormal set of eigenspinors with real eigenvalues [96]. One can

easily check that σxMσx = −M∗ holds, and in view of this property, one can see that if

Uk =

(
uk

vk

)

is an eigenspinor ofM with eigenvalue ωk, then V ∗
k = σxU

∗
k is another eigenspinor ofM

with eigenvalue−ωk. Furthermore, the modes Uk and V ∗
k are orthogonal and can be chosen

orthonormal in the Bogoliubov inner product:

⟨Uk|Ul⟩B = δ
(2)
k,l , ⟨Uk|V ∗

l ⟩B = 0, ⟨V ∗
k |V ∗

l ⟩B = −δ(2)k,l .

Any spinor solution δΥ of Eq. (8.11) can be expanded in this basis:

δΥ =
∑
k

bkUk + c∗kV
∗
k .

Note that the modes Uk and V ∗
k themselves are not physical, while physical solutions are

linear combinations of them.

Now the mode expansion for the physical spinor field becomes of the form

δΥ̂ =
∑
k

b̂kUk + b̂
†
kV

∗
k ,

where b̂k and b̂
†
k are operators for Bogoliubov quasiparticles. The (physical or unphysical)

spinor field δΥ corresponds to (complexified) density and phase fluctuations by

δρ =
√
ρ0
(
e−iϕ0δψ + eiϕ0δψ̄

)
, δϕ =

1

2i
√
ρ0

(
e−iϕ0δψ − eiϕ0δψ̄

)
. (8.13)
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The condition (8.12) that δψ and δψ̄ represent physical solutions to the Bogoliubov equa-

tion (8.11) translates into reality conditions for δρ and δϕ. The density and current oper-

ators are then expanded as ρ̂ = ψ̂†ψ̂ = ρ0 + δρ̂ and ĵ = (ℏ/2mi)(ψ̂†∇ψ̂ − ∇ψ̂†ψ̂) =

ρ0vcom + vcomδρ + (ρ0ℏ/m)∇xδϕ̂. In addition, from the Bosonic commutation relations

[δψ̂(x), δψ̂†(x′)] = δ(2)(x− x′) etc., one obtains [δρ̂(x), δϕ̂(x′)] = iδ(2)(x− x′), i.e., the

density and phase fluctuations are canonically conjugate fields. By the relation (8.13), there

is one-to-one correspondence between spinor fields δΥ and complexified density and phase

fluctuations δρ, δϕ. Provided they are physical solutions, δρ and δϕ are related by (4.10).

One can readily derive

⟨δΥ|δΥ′⟩B = (δϕ̃, δϕ̃′)W-KG, (8.14)

where δϕ̃ = Ω−1/2δϕ, and W-KG inner product is as defined in (7.2). For a given set of

mode functions {f (λ)k } for the field δϕ̃, which for example were obtained in (8.1) and (8.2),

one can find corresponding mode functions {U (λ)
k } for the spinor field by using (8.17) and

(8.18), and this gives an exact relation between analogue cosmological particles ˆ̃a
(λ)
k and

Bogoliubov quasiparticles b̂
(λ)

k :

ˆ̃a
(λ)
k = (f

(λ)
k , δ

ˆ̃
ϕ)W-KG = ⟨U (λ)

k |δΥ̂⟩B = b̂
(λ)

k . (8.15)

Therefore the number operator of cosmological particles is identical with that of Bogoliubov

quasiparticles:
ˆ̃a
(λ)†
k

ˆ̃a
(λ)
k = b̂

(λ)†
k b̂

(λ)

k . (8.16)

We note here that the operators ˆ̃a
(λ)
k and b̂

(λ)

k correspond to particles that are detected in

the comoving frame (3.9). However, experiments obviously implement particle detection in

the lab frame. Therefore, one more translation into the lab frame is needed, and is specified

below.
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8.3 Translation into Lab-Frame Variables

When a normalized mode function
√
Ωf

(λ)
k for the field δϕ =

√
Ωδϕ̃ is given, one can get

a mode function for the field δρ by the relation

δρ = −a
2ℏ
geff0
W−1∂τδϕ, (8.17)

which is immediate from Eq. (4.6). Then one gets the mode functions for δΥ via

δΥ =


δψ

δψ̄

 =


eiϕ0

[
1

2
√
ρ0
δρ+ i

√
ρ0δϕ

]

e−iϕ0

[
1

2
√
ρ0
δρ− i√ρ0δϕ

]

 , (8.18)

which have already been normalized by (8.14). The perturbed field δψ of the scaled order

parameter is related to that of the original Bose field in the lab frame by (Φ = mr2∂tb/2ℏb)

δΨ =
eiΦ

b
δψ, δΨ̄ =

e−iΦ

b
δψ̄. (8.19)

The normalization should however still be verified for this field: We form a spinor field

δΥ =

(
δΨ

δΨ̄

)
=

1

b

(
eiΦδψ

e−iΦδψ̄

)
, (8.20)

and introduce the Bogoliubov inner product

⟨δΥ|δΥ′⟩B =

∫
d2r δΥ†σzδΥ

′ =

∫
d2x δΥ†σzδΥ

′

= ⟨δΥ|δΥ′⟩B = (δϕ̃, δϕ̃′)W-KG. (8.21)

This implies that the cosmological particles are equivalent to the Bogoliubov quasiparti-

cles observed in the lab frame provided the mode functions are chosen consistent with

(8.17), (8.18), (8.19), and (8.20). It leads to the lab frame Bogoliubov quasiparticle opera-

tors when expansion stops, see above discussion between Eqs. (8.1) and (8.7), being given

by b̂
(1)
k/b1

= ˆ̃a
(1)
k , where b1 ≡ b(t1) is the final scale factor and b̂k are the annihilation

operators associated to δΥ.





Chapter 9

Pair Creation of Quasiparticles

9.1 A Practical Problem

We have developed in the preceding chapters the emergence of analogue spacetime in a

dipolar Bose-Einstein condensate with time-varying trapping frequency and/or interaction

coupling strengths. We have shown that the inflationary scenario can be simulated via the

expansion of dipolar condensates. Especially, taking adventage of well developed micro-

scopic theory of ultracold quantum gases, one can explore the influence of (analogue) trans-

Planckian physics on the sub-Planckian physics of everyday life: There will be roton imprint

in the matter distribution after the freezing process. With all these predictions, however, the

theory is basically a zero temperature theory, in which the generation of unwanted, detri-

mental thermal excitations is ignored. In a real experiment, it obviously is impossible to

avoid the thermal noise however low the temperature is, and this will dim us in observing

the pure quantum effect of cosmological particle production by the inflation.

Let us recall the measurement available for ultracold quantum gases. One can take

the in situ image of the atomic quantum gases, from which the density-density correlations

and the static structure factor can be extracted [106]. In in situ imaging, one typically di-

vides the density images into small unit cells or pixels and then evaluates the statistical

correlation of the signals in the cells. If both the dimension of the cell and the imaging

resolution are much smaller than the correlation length of the sample, the interpretation of

the result is straightforward. Recently, it has been revealed that the density-density correla-

tions are related to the quasiparticle quantum state, or the entanglement features displayed

by the emitted phonons [107]. The detection of such entanglement would provide an ulti-

mate proof of the quantum nature of the analogue cosmological particle production which

thermal excitations do not possess.

In the following, we first characterize the influence of the initial thermal noise by com-

paring the correlation function with or without the initial thermal noise. And we cosider

the entanglement measure by which one can quantify the degree of “quantumness”. This

55
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will provide the ultimate proof for the quantum nature of cosmological particle production

even in the presence of detrimental thermal noise. We also discuss the advantage that roton

minimum provides for the experimental protocol suggested.

9.2 Bogoliubov-de Gennes Equation

The quantum nature of the system can clearly be seen when we take the Hamiltonian ap-

proach. By applying Legendre transform to the Lagrangian (3.14), one obtains the Hamil-

tonian of the system. The the Heisenberg equation of motion for the field operator reads

i∂τ ψ̂ =

[
− 1

2m
∇2

x + f2
1

2
mω2

0x
2 + f2

∫
d2x′ V 2D

int,0(x− x′)ψ̂†(x′)ψ̂(x′)

]
ψ̂.

We expand the field operator by the form, ψ̂ = ψ0(1 + ϕ̂), where |ψ0(x, τ)|2 =: ρ0 repre-

sents the condensate density, and where ϕ̂ describes the perturbations (excitations) on top

of the condensate. The Bogoliubov-de Gennes equation obeyed by the fluctuation field ϕ̂

reads [105]

i∂τ ϕ̂ = Hϕ̂+A(ϕ̂+ ϕ̂†), (9.1)

in which we define the two operators

H = − 1

2m
∇2

x −
1

m
√
ρ0

(∇x
√
ρ0) · ∇x − ivcom · ∇x, (9.2)

AF = f2
∫
d2x′ V 2D

int,0(x− x′)|ψ0(x
′)|2F (x′),

where A acts by convolution on an arbitrary function F (x). Here vcom = 1
m∇xθ0, where

ψ0 =
√
ρ0e

iθ0 , denotes the comoving frame velocity [73].

Assuming vanishingly small comoving velocity, vcom = 0, and quasi-homogeneity,

∇x
√
ρ0 ≃ 0, then ρ0 and θ0 become independent of x, and we obtain

i∂τ ϕ̂ = − 1

2m
∇2

xϕ̂+ f2ρ0

∫
d2x′ V 2D

int,0(x− x′)(ϕ̂(x′) + ϕ̂†(x′)).

In momentum space, we decompose the fluctuations into their Fourier components, ϕ̂(x) =

(1/
√
N)
∑

k e
ik·xϕ̂k, ϕ̂k =

√
N
∫
d2x′e−ik·x′

ϕ̂(x′) with N being the total number of

atoms in the condensate. Here and in what follows, we set the (initial) normalization area of

the plane to unity in the definition of Fourier transforms and their inverse, and k represents
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comoving (scaling) momentum, as we work in the scaling frame of reference. Now each

terms become

i∂τ ϕ̂ =
1√
N

∑
k

eik·xi∂τ ϕ̂k,

− 1

2m
∇2

xϕ̂ = − 1

2m

1√
N

∑
k

ϕ̂k∇2
xe

ik·x =
1√
N

∑
k

eik·x
(
k2

2m
ϕ̂k

)
,

f2ρ0
1√
N

∑
k

∫
d2x′ V 2D

int,0(x− x′)
(
eik·x

′
ϕ̂k + e−ik·x′

ϕ̂†k

)
= f2ρ0

1√
N

∑
k

{
ϕ̂k

∫
dxx′′

[
V 2D
int,0(x

′′)e−ik·x′′
]
eik·x + (h.c.)

}
= f2ρ0

1√
N

∑
k

{
eik·xϕ̂kV

2D
int,0(k) + ϕ̂†−kV

2D
int,0(k)e

ik·x
}
.

Reading the equality between Fourier components, we obtain the Fourier space Bogoliubov-

de Gennes equation,

i∂τ ϕ̂k =
k2

2m
ϕ̂k + f2ρ0V

2D
int,0(k)ϕ̂k + f2ρ0V

2D
int,0(k)ϕ̂

†
−k

−i∂τ ϕ̂†−k =
k2

2m
ϕ̂†−k + f2ρ0V

2D
int,0(k)ϕ̂k + f2ρ0V

2D
int,0(k)ϕ̂

†
−k.

Define Hk ≡ k2/2m and Ak ≡ f2ρ0V
2D
int,0(k). Then the equation can be written in a

matrix form,

i∂τ

[
ϕ̂k

ϕ̂†−k

]
=

[
Hk +Ak Ak

−Ak −(Hk +Ak)

][
ϕ̂k

ϕ̂†−k

]
. (9.3)

Note that the commutation relations of ϕ̂k is inheritted from the Bosonic field operators:

[ϕ̂k, ϕ̂
†
k′ ] = N

∫
d2xd2x′ e−ik′·xeik

′·x′
[ϕ̂(x), ϕ̂†(x′)]

= N

∫
d2xd2x′ e−ik′·xeik

′·x′[ 1

ψ0(x)
ψ̂(x)− 1,

1

ψ∗
0(x)

ϕ̂†(bx′)− 1
]

=
N

ρ0

∫
dxxd2x′e−ik·x+ik′·x′

δ(x− x′) = δk,k′ .

We use the notation ϕ̂k for the original fluctuation operators and φ̂k for the Bogoliubov

quasiparticle operators. To diagonalize (9.3), we thus apply a Bogoliubov transformation
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with coefficients uk and vk as follows:[
ϕ̂k

ϕ̂†−k

]
=

[
uk vk

vk uk

][
φ̂k

φ̂†
−k

]
, (9.4)

where imposing the Bosonic algebra for φ̂k, we obtain a normalization condition for uk and

vk,

1 = [ϕ̂k, ϕ̂
†
k] = [ukφ̂k + vkφ̂

†
−k, vkφ̂−k + ukφ̂

†
k] = u2k − v2k. (9.5)

Thereby solving the eigenproblem of (9.3), we obtain

uk

vk
=

√
Hk ±

√
Hk + 2Ak

2(H2
k + 2HkAk)1/4

, (9.6)

where upper/lower sign refers to uk,vk, respectively. Then, [uk vk]T is the eigenvector with

eigenvalue ωk(τ), and [vk uk]
T is the eigenvector with eigenvalue −ωk(τ), where ωk is as

defined in (9.8).

In general, the excitation frequencies are scaling time dependent, and Eq.(9.3) yields

i∂τ

[
φ̂k

φ̂†
−k

]
=

[
ωk i∂τωk/2ωk

i∂τωk/2ωk −ωk

][
φ̂k

φ̂†
−k

]
, (9.7)

where the excitation spectrum is given by

ωk(τ) =
√
H2

k + 2HkAk(τ). (9.8)

Here we introduce the parameter,

c(τ) = f(τ)
√
geff0 ρ0/m = f(τ)c0, (9.9)

which is the (scaling time dependent) speed of sound. It is the slope of the linear, low-k

part of the dispersion relation (9.8). We may also define, in addition to R in (3.17), anotion

dimensionless parameter

A =
mc20
ωz,0

=
geff0 ρ0
ωz,0

, (9.10)
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representing an effective chemical potential as measured relative to the (initial) transverse

trapping, linear in both the codensate density and the effective contact coupling defined in

(3.16).

For a stationary state f = 1 [c(τ) = c0], the healing length is given by

ξ0 = 1/(mc0). (9.11)

The inverse of ξ0, kPl ≡ 1/ξ0, is an anlogue “Planck scale.” Close to the roton minimum at

kξ0 ≈ 0.9, then, Lorentz invariance is strongly broken and a particular variant of Planckian

(k ∼ kPl) physics can be simlated [73]. In Fig. 9.1, we plot the corresponding stationary

state Bogoliubov excitation energy, from which we see that the spectrum in a strongly dipo-

lar BEC develops a roton minimum for sufficiently large A. The system becomes unstable

past the critical value A = Ac = 3.4454 (when R =
√
π/2 [63]). In the low-momentum

corner, the spectrum is generally linear in momentum,

ωk = c0k (kξ0 ≪ 1), (9.12)

implying the (pseudo-)Lorentz invariance of the system from which the effective metric

concept for the propagating quantum field of phonons emerges [23].

R=0

A=Ac�10

A=Amin=1.249

A=3.1

A=Ac=3.4454
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Figure 9.1: Stationary state excitation spectrum. Bogoliubov excitation energy in units of
mc20, for DDI dominance, R =

√
π/2. For A > Amin = 1.249, the spectrum develops a

roton minimum and becomes unstable for A > Ac = 3.4454. R = 0 denotes the contact
interaction case where the Bogoliubov excitation energy, when normalized to mc20, as here,
is independent of A. ξ0 is healing length defined in (9.11).
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For a stationary system, we find that the operators φ̂k and φ̂†
−k decouple, and oscillate

at constant frequencies ±ωk, where τ = t for the stationary case with f = b = 1 in (3.9),

φ̂k(τ) = b̂k e
−iωkt, φ̂†

−k(τ) = b̂†−k e
iωkt. (9.13)

Here b̂k and b̂†k are, respectively, annihilation and creation operators of collective excitations

with momentum k above the stationary condensate.

9.3 Mode Mixing

As a result of a rapid temporal change of c2, as defined in (9.9), and which is encoded in the

scale factor f defined in (3.12), Eq. (9.7) engenders mode mixing between the quasiparticle

modes of momenta k and −k, which entails the amplification of quantum and thermal

fluctuations. It is convenient to characterize the mode mixing by introducing the coefficients

αk(τ) and βk(τ) [108]:

φ̂k(τ) =
[
αk(τ)b̂

in
k + β∗k(τ)b̂

in†
−k

]
exp

[
−i
∫ τ

ωk(τ
′)dτ ′

]
,

φ̂†
−k(τ) =

[
α∗
k(τ)b̂

in†
−k + βk(τ)b̂

in
k

]
exp

[
i
∫ τ

ωk(τ
′)dτ ′

]
.

(9.14)

In the limit τ → −∞, b̂ink and b̂in†−k are defined such that φ̂k(τ) → b̂ink e
−iωkτ , φ̂†

−k(τ) →
b̂in†−ke

iωkτ , or equivalently, αk → 1 and βk → 0 as τ → −∞. That is to say, the operators

b̂ink and b̂in†k are, respectively, the annihilation and creation operators of collective excitations

with momentum k in the initial stationary state. From Eqs. (9.7) and (9.14), we find that the

evolution of the operators φ̂k(τ) and φ̂†
−k(τ) is completely determined by αk(τ) and βk(τ),

and the corresponding evolution equations of αk(τ) and βk(τ) are:

∂ταk =
∂τωk

2ωk
exp

(
2i

∫ τ

ωk(τ
′)dτ ′

)
βk,

∂τβk =
∂τωk

2ωk
exp

(
− 2i

∫ τ

ωk(τ
′)dτ ′

)
αk.

(9.15)

Given the temporal change c2 = c2(τ), the above equations can be solved to obtain αk(τ)

and βk(τ), and hence φ̂k(τ) and φ̂†
−k(τ).

The phase factors of αk and βk in (9.15) determine the phase of the oscillations of

the density-density correlation function (i.e., Eq. (11.3)) around its mean value. We note in
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this regard that a typo has occurred in Eqs. (21) and (26) of Ref. [37], where the sign “−”

should be a “+”. However, this sign has no effect on the minimal values of the density-

density correlation amplitude one is interested in. To verify nonseparability and steerability

for modes with a given momentum, one therefore seeks the minimal values reached by

the Fourier space density-density correlation function during its oscillations, to determine

whether they drop below the thresholds for nonseparability and steerability, see Eqs. (10.9)

and (10.12) below, respectively [51].





Chapter 10

Measuring Quantum Correlation

A direct measurement performed on the Bose gas is for example a determination of the

instantaneous atom density (locally within a given experimental resolution), in particular

the fluctuations about its mean. The corresponding density-density correlations [106], are

related to the quasiparticle quantum state [107]. We will now demonstrate how to use these

correlations to measure nonseparability and steerability between the created quasiparticles

with opposite momenta k and −k, which are due to temporal variations of the conden-

sate background. Below, we closely follow the density-density correlation-function based

discussion of the criteria for nonseparability and steerability contained in Refs. [37, 51].

10.1 Density-Density Correlation Function

The total atom number density in the condensate is given in the fluctuations by

ρ̂(τ,x) = ψ̂†(τ,x)ψ̂(τ,x) ≃ ρ0(1 + ϕ̂†(τ,x) + ϕ̂(τ,x)), (10.1)

to linear order. In a homogeneous system, the background density ρ0 is constant, and the

relative density fluctuation is

δρ̂(τ,x)

ρ0
=
ρ̂(τ,x)− ρ0

ρ0
= ϕ̂†(τ,x) + ϕ̂(τ,x). (10.2)

We consider in situ measurements of δρ̂(τ,x) performed at some (scaling) measurement

time τ = τm. From the equal-time commutators,

[ψ̂(τ,x), ψ̂(τ,x′)] = 0, [ψ̂(τ,x), ψ̂†(τ,x′)] = δ(x− x′),

one can easily verify that δρ̂(τ,x) and δρ̂(τ,x′) commute with each other. In momentum

space, where the Fourier transform is performed by

ϕ̂k(τ) =
√
N

∫
d2x′e−ik·x′

ϕ̂(τ,x′),

63
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we express the relative density fluctuation (10.2) in terms of quasiparticle operators,

δρ̂k(τ)

ρ0
= ϕ̂k(τ) + ϕ̂†−k(τ) = (uk + vk)(φ̂k(τ) + φ̂†

−k(τ)). (10.3)

Note that taking the Hermitian conjugate of the operator (10.3) is equivalent to changing the

sign of k, as a consequence of the fact that the relative density fluctuation operator in (10.2)

is itself a Hermitian operator and thus is an observable (the results of the corresponding

measurement are real quantities). It is straightforward to show that this operator commutes

with its Hermitian conjugate, and thus the following correlation function is well defined:

G2,k(τ) =
⟨|δρ̂k(τ)|2⟩

ρ20
= (uk + vk)

2(2nk + 1 + 2ℜ[cke−2iωkτ ]), (10.4)

where nk = ⟨b̂†kb̂k⟩ is mean occupation number, and ck = ⟨b̂kb̂−k⟩ is pair amplitude.

To obtain the above relation, the relation nk = n−k has been made. The equality holds

when the background has reached a stationary state, so that the frequencies ωk become

time-independent.

The mean occupation number nk determines the time-averaged mean ofG2,k(τ), while

the magnitude and phase of the correlation ck respectively determine the magnitude and

phase of the oscillations ofG2,k(τ) around its mean value. For the vacuum case, i.e., nk = 0

(and hence ck = 0), in the correlation function there is just one constant term (the “+1”) left,

which is also measurable as well and encodes the vacuum fluctuations of the quasiparticle

field. This will become of importance later on.

For a thermal initial state with the equilibrium distribution 2nk + 1 = coth
(
ωk/2T

)
,

the term containing ck vanishes and the correlation function in Eq. (10.4) reads

G2,k =
kξ0/2√(kξ0

2

)2
+ 1− 3R

2 kξ0
√
Aw

[
kξ0√
2

√
A
]×

coth

kξ0
√(kξ0

2

)2
+ 1− 3R

2 kξ0
√
Aw

[
kξ0√
2

√
A
]

2T/mc20

 . (10.5)

In Fig. 10.1, we plot the thermal density-density correlation function (10.5) of a dipo-

lar BEC at various initial temperatures (in units of mc20), and as a function of the nondi-



10.1. DENSITY-DENSITY CORRELATION FUNCTION 65

R=0

A=Ac�10

A=Amin=1.249

A=3.1

A=Ac=3.4454

0 1 2 3 4
0

1

2

3

4

5

kΞ
0

G
2

,
k

(a)

R=0

A=Ac�10

A=Amin=1.249

A=3.1

A=Ac=3.4454

0 1 2 3 4
0

1

2

3

4

5

kΞ
0

G
2

,
k

(b)

R=0

A=Ac�10

A=Amin=1.249

A=3.1

A=Ac=3.4454

0 1 2 3 4
0

1

2

3

4

5

kΞ
0

G
2

,
k

(c)

Figure 10.1: Stationary state density-density correlations for increasing temperature (from
left to right). The density-density correlation function G2,k in thermal and quasiparticle
ground states. The initial temperatures are (a) T/mc20 = 0, (b) T/mc20 = 1/

√
3, and (c)

T/mc20 = 1. The black solid line corresponds to contact interaction, R = 0 (A = Ac/10).
DDI dominated cases (R =

√
π/2) are shown by the remaining curves with A specified in

the insets.

mensionalized momentum kξ0, with fixed A and R [109]. We see that the density-density

correlation function is strongly modified near the roton minimum of the spectrum. In par-

ticular, when the roton minimum approaches zero (near criticality), the modification of the

density-density correlation function relative to the pure contact case diverges.

We now discuss the high- and low-temperature limits of (10.5) separately. When ωk/T ≪
1, we have 2nk + 1 = coth

(
ωk/2T

)
≃ 2T/ωk + ωk/6T , so that Eq. (10.5) becomes in

the low-momentum (phonon) limit, expanding to quadratic order in kξ0,

G2,k =
T

mc20

[
1 +

3

2

√
ARkξ0

]
−
[
T

mc20

(
1

4
+

3AR√
2π

+
9AR2

4

)
− mc20

12T

]
(kξ0)

2+O((kξ0)3).

(10.6)
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For the contact interaction, i.e., R = 0 case, we reproduce the result of Ref. [37]. On the

other hand, we see that for finite relative strength R and density of dipoles encapsulated in

A, both R and A enter the correlation function. For k → 0, G2,k simply approaches the

dimensionless temperature T/mc20; one can thus determine the temperature of the gas by

examining the low-momentum density fluctuations.

When ωk/T ≫ 1, we have coth
(
ωk/2T

)
≃ 1, so that Eq. (10.5) becomes

G2,k ≃
kξ0/2√(kξ0

2

)2
+ 1− 3R

2 kξ0
√
Aw

[
kξ0√
2

√
A
] . (10.7)

Again, the difference to the contact caseR = 0 is manifest, because the relative strength and

density of dipoles are explicitly involved via R and A, respectively. In the high-momentum

limit of free particles kξ0 ≫ 1, G2,k approaches unity, regardless of temperature and inter-

actions. The function ζw[ζ] occurring in G2,k approaches a constant in this limit [63].

10.2 Criteria for Nonseparability and Steerability

Pair production in a time-dependent background can be caused by quasiparticles already

present, e.g. in a thermal state, or emerge from quasiparticle quantum vacuum fluctuations.

The created pairs possess opposite momenta k and −k and are correlated. To study the

quantum correlation between the created pairs as a consequence of temporal variations of

the condensate, we therefore restrict our considerations to a bipartite quantum state.

The bipartite Gaussian quantum state of quasiparticle pairs is called separable when-

ever the density matrix ρ̂k,−k can be written in the form [110, 111]

ρ̂k,−k =
∑
a

Paρ̂
a
k ⊗ ρ̂a−k, (10.8)

where ρ̂aj are density matrices pertaining to the subsystem j = ±k, which are in a set

indexed by a, and Pa describes the probability for obtaining ρ̂ak ⊗ ρ̂a−k with 0 ≤ Pa ≤ 1

and
∑

a Pa = 1. Conversely, if a bipartite state can not be written in the form of (10.8), such

states are nonseparable, i.e., entanglement exists between the mode k and the mode −k.

Criteria to assess the degrees of correlation between the created quasiparticles using

density-density correlations have previously been analyzed in detail in Refs. [37, 51]. The

generalized Peres-Horodecki (gPH) criterion is an algebraic condition on the covariance



10.2. CRITERIA FOR NONSEPARABILITY AND STEERABILITY 67

matrix of a two-mode system, and provides a criterion for the nonseparability of continuous

variable bipartite systems, cf. ,e.g., [50,51,107]. It leads to the following sufficient condition

for nonseparability in terms of density-density correlations [51]

G2,k(τ) < Gvac
2,k = (uk + vk)

2 for some k [Nonseparable]. (10.9)

Here, Gvac
2,k is the correlation due to quasiparticle vacuum fluctuations. Whenever G2,k dips

below its vacuum value for some times, the state is nonseparable.

One can, furthermore, investigate whether quantum steering of one quasiparticle mode

by another mode with opposite momentum takes place. The primary idea behind steering is

to infer the values of correlated quantities for one subsystem, e.g., mode −k, as depending

on the results that are obtained from the measurements performed on the other subsystem,

e.g., mode k. Steering is encapsulated in the inequality [17, 51]:

∆infA−k ·∆infB−k <
1

2

∣∣∣∣〈[Â−k, B̂−k

]〉∣∣∣∣, (10.10)

where Âk and B̂k are measurement operators. The notation

∆infA−k =

√〈(
Â−k − Ā−k(Ak)

)2〉

indicates the inferred standard deviation ofA−k on subsystem−k with the measurement Âk

having been made on subsystem k. In these relations, Ā−k(Ak) is the conditional (mean)

value of Â−k given that measurement of Âk on subsystem k yields the eigenvalue Ak; a

similar definition applies to ∆infB−k. Note that Âk, B̂k are required to be noncommuting,

in distinction to the density operators contained in the definition of G2,k. For example, the

measurement operators can be chosen to be quasiparticle quadratures [107],

X̂±k =
1√
2
(φ̂±k + φ̂†

±k), P̂±k =
i√
2
(φ̂†

±k − φ̂±k). (10.11)

The product of standard deviations on the left side of inequality (10.10) would obey

the Heisenberg uncertainty principle whenever noninferred variances are calculated: The

left hand side would be larger or equal to the right hand side. The state is steerable, how-

ever, whenever the inferred standard deviations are violating the conventional Heisenberg
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uncertainty relation, i.e., when inequality (10.10) is satisfied due to the existence of strong

correlations between the two subsystems labeled by ±k.

In Ref. [51], a sufficient condition for steerability in terms of the density-density cor-

relations G2,k(τ) and Gvac
2,k was stated

G2,k(τ) <
1

2
Gvac

2,k [Steerable]. (10.12)

Note in this regard that although steerability is originally formulated in terms of inferred

variances of noncommuting operators, Eq. (10.10), a sufficient criterion can be expressed

in terms of variances of linear combinations of operators pertaining to the two subsystems,

here the density fluctuation operators of (10.3), ϕ̂k(τ) and ϕ̂†−k [51].

Compared with the nonseparability condition in (10.9), the criterion for steerability

shown in (10.12) is more stringent due to the factor of 1/2 on the right hand side, again

reflecting the fact that quasiparticle states exhibiting steering form a subset of nonseparable

states. We also note that a concrete experimental protocol to assess quasiparticle entangle-

ment by the covariance matrix of the quasiparticle quadratures was proposed in Ref. [107].
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Analogue Dynamical Casimir Effect

11.1 Rapid Changes of Sound Speed

In order to observe sizable dynamical Casimir effect (DCE), the cavity should be vibrating

with speed comparable to the speed of light. It is demonstrated that the vibrating cavity

can be replaced with the changing speed of light, since this will change the optical length

between the wall. For analogue system, one needs to change the speed of sound [36, 40].

With this background, we now impose a time-dependent background by assuming that

c2 = c2(τ) is of the form

c2(τ)

c2f
=

1

2

(
1 +

c2i
c2f

)
+

1

2

(
1− c2i

c2f

)
tanh(aτ). (11.1)

We choose this form of the quench of the sound speed for a direct comparison with the

results of [37], and do indeed find that R = 0 reproduces the results of the latter reference.

The above c2(τ), in particular, implies two asymptotic values, c2i = c20 and c2f which are

obtained when τ → −∞ and τ → ∞, respectively, and for which the gas and thus the

quasiparticle vacuum become stationary. In the examples below, we quench the system to a

larger sound speed cf > ci.

According to (3.12) and (9.9), for constant gd and gc, the scale factor is, given a pre-

scribed form of c2(τ) as in (11.1)

b(τ) =
1

f2(τ)
=

c20
c2(τ)

. (11.2)

The gas, for cf > ci, therefore contracts, with b(tf ) < b(ti). We plot the scale factor b(t)

with respect to the lab time t in Fig. 11.1, for various quench rates a of the speed of sound

in (11.1).

As a consequence of the temporal change of c2, the quasiparticle state is probed by

the operators φ̂±k(τ) whose equation of motion is Eq. (9.7). From the time dependence of

the excitation frequencies ωk(τ), the Bogoliubov coefficients αk(τ) and βk(τ) are func-

69
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Figure 11.1: Scale factor b(t). The scale factor b in (11.2) with respect to the real lab time
t in (3.9), showing the compression of the condensate as a function of the speed of sound
quench rate a (in arbitrary units of inverse time). Here we take c2i /c

2
f = 1/2.

tions of scaling time τ as well, satisfying the evolution equations (9.15). The corresponding

correlation function in the first line of Eq. (10.4) becomes

G2,k(τ) = (uk(τ) + vk(τ))
2
[
|αk(τ)|2 + |βk(τ)|2

+ 2ℜ
{
αk(τ)β

∗
k(τ)e

−2i
∫ τ ωk(τ

′)dτ ′
}]

(2nink + 1). (11.3)

We can rewrite Eq. (11.3) in the form of Eq. (10.4), with

2nk + 1 = (|αk|2 + |βk|2)(2nink + 1),

ck = αkβ
∗
k(2n

in
k + 1).

(11.4)

For adiabatic variations (a → 0 in (11.1)), αk and βk do essentially not change and

remain very close to 1 and 0, respectively; G2,k then varies in time only because (uk+vk)2

does so. However, when we are in a nonadiabatic regime, αk and βk evolve in time, and

the degree of nonadiabaticity is encoded in them. We conclude from Eq. (11.4) that ini-

tial thermal quasiparticle noise can enhance quasiparticle production because the quantities

shown in (11.4), which occur in (10.4), are proportional to the initial thermal background

multiplicative factor 2nink + 1.

With the time evolution of c2(τ) as prescribed in Eq. (11.1), we obtain the time-

dependent ωk(τ) in (9.8), and then can solve the coupled Eqs. (9.15) numerically. In Fig. 11.2

we show some examples of the evolution of the quasiparticle frequencies at fixed momen-
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tum (left panel), and the corresponding correlation function response in Eq. (11.3) to this

evolution (right panel). In what follows, we will use the following definitions of healing

length and effective chemical potential, respectively:

ξf =
1

mcf
, Ã =

mc2f
ωz,0

= A
c2f
c2i
. (11.5)

The quasiparticle frequencies approach two asymptotics because c2(τ) approaches con-

stants in the limits of τ → −∞ and τ → ∞, respectively (left panel of Fig. 11.2). For

kξf = 1, when Ã < 1.073, the initial frequencies ωk i = limτ→−∞ ωk(τ) are smaller

than the final frequencies ωk f = limτ→∞ ωk(τ). However, when Ã is large (assuming

DDI dominance, R =
√
π/2), i.e., 1.073 < Ã ≤ 3.4454 for kξf = 1, the initial fre-

quencies ωk i = limτ→−∞ ωk(τ) are larger than the corresponding final ones, ωk f =

limτ→∞ ωk(τ). This implies that (a dominant) DDI and the density of the gas, parametrized

byR and Ã, respectively, together affect the qualitative behavior of the quasiparticle spectra

more deeply than contact interactions would. In the presence of a (sufficiently strong) DDI,

a roton minimum appears. For increasing roton depth, finite-momentum excitation frequen-

cies near the roton minimum are small; hence these modes are more sensitive to temporal

changes of the background.

In the two asymptotical regimes, one has a well defined vacuum for the quasiparticles.

These vacua are not necessarily equivalent to each other. The vacuum defined in the far-

past region are seen as a two-mode squeezed state from the viewpoint of the observer in

the far-future region. That is to say, although there are no quasiparticles at the beginning,

due to an expansion or contraction of the condensate, excitations will be created from the

quasiparticle vacuum.

The temporal behavior of the correlation function in Eq. (11.3) is strongly affected by

the strength of the DDI and the gas density (see right panel of Fig. 11.2). When the variation

in time of ωk is slow, i.e., when a is small,G2,k(τ) varies smoothly for small Ã (Ã < 1.073

in Fig. 11.2). When the change of c2 is sufficiently abrupt, the two-point density correlation

function oscillates such that it can periodically dip below its vacuum value. For large Ã

(Ã > 1.073 in Fig. 11.2), the corresponding two-point density correlations oscillate with

larger amplitude than for smaller Ã (smaller chemical potential).
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Figure 11.2: Time-dependence of Bogoliubov excitation frequencies and density-density
correlations. The Bogoliubov excitation energy ωk (plots (a) and (c)) and the corresponding
correlation function in Eq. (11.3) (plots (b) and (d)) for zero temperature as a function of the
parametrized time mc2fτ . Here we fix kξf := 1, c2i /c

2
f = 1/2. The rate of change in (11.1)

is taken as a/ωki = 0.3 for plots (a) and (b), and a/ωki = 1 for plots (c) and (d). The black
solid curves correspond to contact interaction, R = 0 (Ã = 0.1). The DDI dominated case
(R =

√
π/2) with varying values of Ã, specified in the insets of (a) and (c), is represented

by the other curves.

11.2 Quench Production of Entanglement

In an experiment, a measurement is performed on the condensate at some given time τm. To

study quantum correlations between the produced quasiparticle modes, we are thus inter-

ested in the variation of the correlation function with momentum kξf at fixed time τm. As

an example, we plot in Fig. 11.3 the variation of the correlation function in the momentum

at fixed measurement time τ = τm. To examine nonseparability and steerability between
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the produced quasiparticles, we plot the normalized correlation function, i.e. the correlation

function divided by its vacuum value

G̃2,k(τ) :=
G2,k

Gvac
2,k

=
G2,k

(uk + vk)2
. (11.6)

The nonseparability and steerability thresholds then occur according to Eqs. (10.9) and

(10.12) at G̃2,k = 1 and G̃2,k = 1/2, respectively.

The normalized density-density correlation function periodically changes and poten-

tially dips below unity. When the normalized density-density correlation function is smaller

than 1 for some times, the final quasiparticle state is nonseparable. This implies that en-

tanglement is created between quasiparticles with opposite momentum k and −k due to

the nonadiabatic variation of the speed of sound of the condensate and the excitation of the

condensate vacuum. Furthermore, even though initial thermal noise decreases the range of

nonseparable k’s (right panel of Fig. 11.3), a sufficiently dense dipolar gas close to crit-

icality still creates entanglement (comparing (d) with (c) in Fig. 11.3). Specifically, the

momentum which renders the final quasiparticle state nonseparable, that is which satisfies

the inequality (10.9), is for the dipolar gas smaller than for contact interactions.

The quantum steering of the final quasiparticle state produced due to the nonadiabatic

evolution of the condensate is enhanced in a dipolar gas. Although the sufficient condition

(10.12) for steerability might not be satisfied for any value of k in the final quasiparticle state

when only contact interactions are present, the DDI generically induces a state which does

satisfy this criterion (see the green dotted and purple long-dashed curves in (c) of Fig.11.3).

there might be no steering in the final quasiparticle state for any value of k when only con-

tact interactions are present, the DDI induces the creation of steering between quasiparticles

(see the green dotted and purple long-dashed curves in (c) of Fig. 11.3). As mentioned in

the Introduction, steerability is a more stringent correlation property of quantum states than

nonseparability is (however weaker than Bell nonlocality). Steering implies that the state is

nonseparable but not vice versa, a fact which is readily confirmed with Figs. 11.3 and 11.4.

The time-dependent speed of sound as specified in (11.1) can, for example, be adjusted

by the external potential trapping the condensate, according to the scaling equations (3.9)

and (3.12). To determine how the quench rate and final sound speed squared, c2f , affect

the creation of quasiparticle entanglement, we plot the normalized density-density corre-

lation functions in Fig. 11.4. We conclude that quantum steering between quasiparticles
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Figure 11.3: Density-density correlations as a function of kξf at zero temperature (left)
and finite temperature (right). The measurement time is τm = 5× (mc2f )

−1. Here c2i /c
2
f =

1/2, and the rate of change a/ωki = 1(kξf = 3). The solid curve corresponds to contact
interaction,R = 0 (Ã = Ãc/10). DDI dominance (R =

√
π/2) for the other curves, with Ã

specified in the insets of (a) and (b). The lower plots show correlation functions normalized
by (uk + vk)

2, such that the nonseparability and steerability thresholds occur at 1 (thick
black line) and 1/2 (dashed thick black line), respectively.

is robustly obtained whenever we are near criticality Ã ≲ Ãc. Furthermore, we observe

that an increase of c2f amplifies the fluctuations of the normalized density-density correla-

tion functions around their mean values (comparing (a) in Fig. 11.4 with (c) in Fig. 11.3),

and induces the creation of quasiparticle steering in a condensate with relatively low den-

sity (Ã < Ãmin). On the other hand, smaller sweep rates a/ωki decrease the amplitude

of the fluctuations of the normalized density-density correlation functions (comparing (c)

in Fig. 11.4 with (c) in Fig. 11.3); they however enhance the production of quasiparticle

steering near criticality.

To show the domains of nonseparability and steerability more clearly, and make the

comparison between the contact interaction case and the DDI case more readily accessible,
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(d) T = mc20

Figure 11.4: Varying c2f and sweep rate a for zero temperature (left) and finite temperature
(right). Shown is the variation of the normalized density-density correlation functions with
kξf at fixed measurement time τm = 5 × (mc2f )

−1. (a) and (b) Larger final sound speed
c2i /c

2
f = 1/8 than in Fig. 11.3 c) and (d), with identical rate of change a/ωki = 1 (kξf = 3).

(c) and (d) Smaller sweep rate than in Fig. 11.3 c) and (d), with identical c2i /c
2
f = 1/2, and

the rate of change a/ωki = 0.05 (kξf = 3). The values of Ã corresponding to the various
curves are found in the insets of Fig. 11.3 (a) and (b).

in Fig. 11.5 we plot the envelopes for the contact interaction case and the DDI case with

the critical value of Ã = 3.4454 shown in Figs. 11.3 and 11.4. It can be seen that the

created quasiparticles with frequencies near the roton minimum are steerable, which does

not occur for contact interactions. Therefore, we conclude that compared to a gas with

repulsive contact interactions, the DDI Bose gas system displays an enhanced potential for

the presence of steering in the bipartite quantum state of quasiparticle pairs resulting from

the quench. In addition, this enhancement is robust against thermal noise, and variation of

the difference between the initial and final speeds of sound as well as of the quench rate.
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Figure 11.5: Density-density correlations as a function of kξf at zero temperature (left) and
finite temperature (right). The measurement time is τm = 5× (mc2f )

−1. Here c2i /c
2
f = 1/2,

and the rate of change a/ωki = 1(kξf = 3) for (a) and (b); c2i /c
2
f = 1/8, and the rate

of change a/ωki = 1(kξf = 3) for (c) and (d); and c2i /c
2
f = 1/2, and the rate of change

a/ωki = 0.05(kξf = 3) for (e) and (f). The black solid curves corresponds to contact in-
teraction, R = 0 (Ã = Ãc/10). The solid purple curves are for the DDI-dominated case
(R =

√
π/2) at criticality, Ã = 3.4454. The dashed lines are envelopes. Correlation func-

tions are normalized by (uk+vk)
2, such that the nonseparability and steerability thresholds

occur at 1 (thick black line) and 1/2 (dashed thick black line), respectively.
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Conclusion

We have found that when there are only contact interactions between particles, R = 0,

SIPS is retained (in the limit of many e-folds), while there appear strong deviations from

scale invariance in the presence of strong DDI (Fig. 7.3), due to an initially present roton

minimum. Importantly, the influence of the trans-Planckian nonlinear dispersion is manifest

even far from criticality at Ac. When a negative slope in the excitation spectrum occurs

(A > Amin in Fig.4.2), the power spectrum shows a general tendency of increase at high

momenta. On the other hand, for monotonically increasing spectrum, i.e. when A ≤ Amin,

the power spectrum oscillates around the SIPS prediction.

The proposed experiment (or variants thereof, possibly with other engineered inter-

action potentials) adds a new example to analogue gravity program for exploring trans-

Planckian backaction in quantum simulation of kinematical effects in curved spacetime.

Hence the system will potentially lead to conclusions about the trans-Planckian physics of

quantum fields in early cosmological stages.

We stress that the presence of a minimum in the spectrum does not necessarily imply

violations of scale invariance: It is possible to construct an analytic solution to the full

Bogoliubov equations for a spectrum with minimum, which displays SIPS (cf. Sec. 7.2).

We also note in this regard that SIPS is a kinematical effect for quantum fields in de Sitter

spacetime, in analogy to Hawking radiation from black holes [6], and therefore, like the

latter, does not require the Einstein equations to hold.

We also have studied the production of quasiparticle pairs in a quasi-two-dimensional

dipolar condensate undergoing a rapid temporal variation of its speed of sound, and focused

on the density-density correlation function to determine the nonseparability and steerability

of the final quasiparticle state. As demonstrated in Figs. 11.3, 11.4 and 11.5, the DDI be-

tween the gas particles significantly enhances the potential for the creation of entanglement

and steering, being established between quasiparticle modes k and −k. This will provide

ease to detect the quantum correlations in the presence of finite temperature thermal noise.

Going beyond mean-field theory, future perspectives include to study the influence of

77
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strong quantum fluctuations of high density electrically dipolar gases [55], prevailing in an

early, possibly pre-metric stage, onto the analogue cosmological evolution in the inflationary

scenario.
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Chapter A

Cosmological Models of General Relativity

A.1 Conceptual Introduction to General Relativity

Despite the mathematical complexity, general relativity is at heart a highly intuitive theory.

The most important concepts of the theory can be dealt without requiring mathematical

sophistication, and we begin with these physical fundamentals. From the constancy of c,

the speed of light, it is simple to show that the only possible linear transformation relating

the coordinates measured by different observers is the Lorentz transformation:

dx′ = γ
(
dx− v

c
cdt
)

cdt′ = γ
(
cdt− v

c
dx
)
,

(A.1)

where γ = 1√
1−(v/c)2

> 1. We define a relativistic invariant, the proper time dτ , by

c2dτ2 = c2dt2 − dx2 − dy2 − dz2. (A.2)

Observe that the derivative of τ with respect to coordinate time t yields

c
dτ

dt
=
√
c2 − v2 ⇒ dt

dτ
=

1√
1− (v/c)2

= γ,

in terms of which we find the 4-velocity Uµ = dxµ/dτ is written as

Uµ =

(
c
dt

dτ
,
dx

dτ

)
=
dt

dτ
(c, v) = γ(c, v).

Defining the 4-momentum Pµ = mdxµ/dτ allows an immediate relativistic generalization

of conservation of mass and momentum; Newton’s second law F = mdu/dt is not a

relation between the spatial components of two 4-vectors. The obvious way to define 4-

force is

Fµ =
dPµ

dτ
. (A.3)
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But where does the 3-force F sit in Fµ? Force will still be defined as rate of change of

momentum, F = dP/dt; the required components of Fµ are Fµ = γ(∂0E,F), and the

equation (A.3) yields the correct relativistic force-acceleration relation

γF = m
d

dτ
(γu) = m

dt

dτ

d

dt
(γu) ⇒ F = m

d

dt
(γu). (A.4)

However, it turns out that, in curved spacetime, (A.3) cannot be a law of physics.

Consider how the components of dxµ transform under the adoption of a new set of

coordinates x′µ, which are functions of xν :

dx′µ =
∂x′µ

∂xν
dxν . (A.5)

This apparently trivial equation may be divided by dτ on either side to obtain a similar

transformation law for 4-velocity Uµ:

U ′µ =
∂x′µ

∂xν
Uν , (A.6)

and we conclude that Uµ is a general 4-vector. However, things unfortunately go wrong

at the next level, when we try to differentiate this new equation to form the 4-acceleration

Aµ = dUµ/dτ :

A′µ =
d

dτ
U ′µ =

∂x′µ

∂xν
Aν +

∂2x′µ

∂τ∂xν
Uν . (A.7)

The second term on the right-hand side is zero only when the transformation coefficients

are constants. This is so for the Lorentz transformation, but not in general. Hence Aµ is

not a 4-vector, and the equation Fµ = dPµ/dτ = mdUµ/dτ = mAµ cannot be a law of

physics, since mAµ is not a general 4-vector.

The Equivalence Principle

The weak equivalence principle is a statement only about space and time. It says that in any

gravitational field, however strong, a freely falling observer will experience no gravitational

effects — with the important exception of tidal forces in non-uniform fields. The spacetime

will be that of special relativity.

The strong equivalence principle takes this a stage further and asserts that not only is

the spacetime as in special relativity, but all the laws of physics take the same form in the



A.1. CONCEPTUAL INTRODUCTION TO GENERAL RELATIVITY 83

freely falling frame as they would in the absence of gravity. This form of the equivalence

principle is crucial in that it will allow us to deduce the generally valid laws governing

physics once the special-relativistic forms are known.

Many of the important features of general relativity can be obtained via rather simple

arguments that use the equivalence principle. Consider an accelerating frame, which is con-

ventionally a rocket of height h, with a clock mounted on the roof that regularly disgorges

photons towards the floor. (Fig. A.1) If the rocket accelerates upwards at g, the floor acquires

a speed v = gh/c in the time taken for a photon to travel from roof to floor. There will thus

be a blueshift in the frequency of received photons, given by ∆ν/ν = v/c = gh/c2, and it

is easy to see that the rate of reception of photons will increase by the same factor.
8 1 Essentials of general relativity

Figure 1.1. Imagine you are in a box in free space far from any source
of gravitation. If the box is made to accelerate ‘upwards’ and has a clock
that emits a photon every second mounted on its roof, it is easy to see that
you will receive photons more rapidly once the box accelerates (imagine
yourself running into the line of oncoming photons). Now, according to
the equivalence principle, the situation is exactly equivalent to the second
picture in which the box sits at rest on the surface of the Earth. Since there
is nowhere for the excess photons to accumulate, the conclusion has to be
that clocks above us in a gravitational field run fast.

A remains on Earth, while B travels a distance d on a rocket at velocity v, fires the

engines briefly to reverse the rocket’s velocity, and returns. The standard analysis of this

situation in special relativity concludes, correctly, that A’s clock will indicate a longer

time for the journey than B’s:

tA = γ tB. (1.12)

The so-called paradox lies in the broken symmetry between the twins. There are various

resolutions of this puzzle, but these generally refuse to meet the problem head-on by

analysing things from B’s point of view. However, at least for small v, it is easy to do

this using the equivalence principle. There are three stages to consider:

(1) Outward trip. According to B, in special relativity A’s clock runs slow:

tA = γ−1tB � [1− v2/(2c2)](d/v).

(2) Return trip. Similarly, A’s clock runs slow, resulting in a total lag with respect to

B’s of (v2/c2)(d/v) = vd/c2.

c
g

c
g

Figure A.1: If the box is made to accelerate ’upwards’ and has a clock that emits a photon
every second mounted on its roof, you will receive photons more rapidly. According to the
equivalence principle, the situation is exactly equivalent to the second picture in which the
box sits at rest on the surface of the Earth. Since there is nowhere for the excess photons to
accumulate, the conclusion has to be that clocks above us in a gravitational field run fast.

The conclusion of an observer on the floor of the rocket is that in a real sense the

clock on the roof is running fast. When the rocket stops accelerating, the clock on the roof

will have gained a time ∆t by comparison with an identical clock kept on the floor. The

equivalence principle can be brought in to conclude that gravity must cause the same effect.

Noting that ∆ϕ = gh is the difference in potential between roof and floor, it is simple to
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generalize this to
∆t

t
=

∆ϕ

c2
. (A.8)

The same thought experiment can also be used to show that light must be deflected in a

gravitational field: consider a ray that crosses the rocket cabin horizontally when stationary.

This track will appear curved when the rocket accelerates.

The Equation of Motion

As mentioned above, the equivalence principle allows us to bootstrap our way from physics

in Minkowski spacetime to general laws. Consider freely falling observers, who erect a

special-relativity cordinate frame ξµ in their neighborhood. The equation of motion for

nearby particles is simple:

d2ξµ

dτ2
= 0; ξµ = (ct, x, y, z), (A.9)

i.e. they have zero acceleration, and we have Minkowski spacetime

c2dτ2 = (cdt)2 − dx2 − dy2 − dz2 = ηαβdξ
αdξβ, (A.10)

where ηαβ is just a diagonal matrix ηαβ = diag(1,−1,−1,−1). Now suppose the observers

make a transformation to some other set of coordinates xµ. What results is the perfectly

general relation

dξµ =
∂ξµ

∂xν
dxν . (A.11)

Since (∂ξν/∂xµ)(∂xµ/∂ξγ) = ∂ξν/∂ξγ = δνγ , ∂xµ/∂ξγ is the inverse of ∂ξν/∂xµ. There-

fore, substituting (A.11) into (A.9) leads to

0 =
d

dτ

(
∂ξµ

∂xν
dxν

dτ

)
=

∂2ξµ

∂xρ∂xν
dxρ

dτ

dxν

dτ
+
∂ξµ

∂xν
d2xν

dτ2

⇒ d2xν

dτ2
+
∂xν

∂ξµ
∂2ξµ

∂xρ∂xν
dxρ

dτ

dxν

dτ
= 0 ⇒ d2xµ

dτ2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0, (A.12)

and the metric (A.10) becomes

c2dτ2 = ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
dxµdxν = gµνdx

µdxν .
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At this stage, the new quantities appearing in these equations are defined only in terms of

our transformation coefficients:

Γµ
αβ =

∂xµ

∂ξν
∂2ξν

∂xα∂xβ
(A.13)

gµν = ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
. (A.14)

Coordinate Transformations

What is the physical meaning of this analysis? We have taken the special relativity equa-

tions for motion and the structure of spacetime and looked at the effects of a general coordi-

nate transformation. A general transformation could be one to the frame of an accelerating

observer, but the transformation might have no direct physical interpretation at all. It is

important to realize that general relativity makes no distinction between coordinate trans-

formations associated with motion of the observer and a simple change of variable. This

flexibility of the theory is something of a problem: it can sometimes be hard to see when

some feature of a problem is ’real’, or just an artifact of the coordinate adopted. A common

term for the latter class is gauge transformation. The term gauge always refers to some

freedom within a theory that has no observable consequence (e.g. the arbitrary value of

∇ ·A, where A is the vector potential in electrodynamics).

Connection

What is the meaning of the coefficients Γµ
αβ? These are known as components of the affine

connection or as Christoffel symbols. These quantities obviously correspond roughly to

the gravitational force — but what determines whether such a force exists? The answer is

that gravitational acceleration depends on spatial change in the metric. We can differentiate

the equation for gµν , eq.(A.14), to get

∂gµν
∂xλ

= ηαβ
∂2ξα

∂xλ∂xµ
∂ξβ

∂xν
+ ηαβ

∂ξα

∂xµ
∂2ξβ

∂xλ∂xν

= ηαβ
∂2ξγ

∂xλ∂xµ
∂ξα

∂ξβ
∂ξβ

∂xν
+ ηαβ

∂2ξγ

∂xλ∂xν
ξβ

ξγ
∂ξα

∂xµ

=

(
∂2ξγ

∂xλ∂xµ
∂xσ

∂ξγ

)
ηαβ

∂ξα

∂xσ
∂ξβ

∂xν
+

(
∂2ξγ

∂xλ∂xν
∂xσ

∂ξγ

)
ηαβ

∂ξβ

∂xσ
∂ξα

∂xµ

= Γσ
λµgσν + Γσ

λνgσµ.
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Therefore we obtain

(i)
∂gµν
∂xλ

= Γα
λµgαν + Γβ

λνgβµ

(ii)
∂gλν
∂xµ

= Γα
λµgαν + Γβ

µνgβλ (µ↔ λ)

(iii)
∂gµλ
∂xν

= Γα
νµgαλ + Γβ

λνgβµ (ν ↔ λ)

Taking (i) + (ii)− (iii), we obtain

Γα
λµ =

1

2
gαν (∂λgµν + ∂µgλν − ∂νgµλ) .

A.2 Tensors and Relativity

One can only construct an invariant quantity in general relativity (i.e. one that is the same

for all observers) by contracting vector or tensor indices in pairs: AµAµ is the invariant

‘size’ or norm of the vector Aµ. Suppose we are given an equation such as AµBµ = 1, and

that Aµ is known to be a 4-vector. Clearly, the right-hand side of the equation is invariant,

and so the only way in which this can happen in general is if Bµ is also a 4-vector. This

trick of deducing the nature of quantities in a relativistic equation is called the principle of

manifest covariance.

For example, in special relativity, the 4-derivatives are given by

∂µ =

(
∂

∂ct
,∇
)

∂µ =

(
∂

∂ct
,−∇

)
.

(A.15)

Manifest covariance allows quantities like the 4-current Jµ = (cρ, j) to be recognized

as 4-vectors, since they allow the conservation law to be written relativistically: ∂µJµ =

∂tρ+∇ · j = 0.

Pseudotensors and Tensor Densities

We can take the determinant of the metric:

g = det(gµν).
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This is not an invariant scalar: thinking of tensor transformations in matrix terms,

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ ⇔ G′ = ΛTGΛ, Λab =

∂xa

∂x′b
, Gab = gab,

shows that g′ depends on the Jacobian of the coordinate transformation:

g′ = (detΛ)2g =

∣∣∣∣∂x′α∂xβ

∣∣∣∣−2

g. (A.16)

On the other hand, under a general coordinate transformation, the hypervolume element

behaves as

d4x′ =

∣∣∣∣∂x′α∂xβ

∣∣∣∣ d4x,
so that we find the invariant volume element to be

√
−g′d4x′ =

∣∣∣∣∂x′α∂xβ

∣∣∣∣−1√
−g
∣∣∣∣∂x′α∂xβ

∣∣∣∣ d4x =
√
−gd4x.

We say that an object formed from a tensor and n powers of
∣∣∂x′α/∂xβ∣∣−1 is called a tensor

density of weight n.

Proper and Improper Transformations

It is usual to distinguish between different classes of Lorentz transformations according to

the sign of their corresponding Jacobians: proper Lorentz transformations have J > 0,

whereas those with negative Jacobians are termed improper.

In special relativity, where g = −1 always, seeing (A.16), there are two possibilities:

J = ±1. Thus, a tensor density will in special relativity transform like a tensor if we restrict

ourselves to proper transformations. However, on spatial inversion, densities of odd weight

will change sign. Such quantities are referred to as pseudotensors (or, in special cases pseu-

dovectors or pseudoscalars). The mose famous example of this is the totally antisymmetric

Levi-Civita pseudotensor ϵαβγδ, which has components +1 when αβγδ is an even per-

mutation of 0123, −1 for odd permutations and zero otherwise. This frame-independent

component definition implies that this is a tensor density of weight −1:

ϵ′αβγδ =
∂x′α

∂xµ
∂x′β

∂xν
∂x′γ

∂xρ
∂x′δ

∂xσ
ϵµνρσ =

∣∣∣∣∂x′µ∂xν

∣∣∣∣ ϵαβγδ.
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Lowering indices with the metric tensor produces

ϵαβγδ = gαµgβνgγρgδσϵ
µνρσ = gϵαβγδ. (A.17)

In special relativity, ϵαβγδ is therefore of opposite sign to ϵαβγδ.

Physics in General Relativity

So far, we have dealt with gravitational dynamics only. How are other parts of physics

incorporated into general relativity? A hint at the answer is obtained by looking again at

the equation of motion (A.12), d2xµ/dτ2 + Γµ
αβ(dx

α/dτ)(dxβ/dτ) = 0. Remembering

that d2xµ/dτ2 is not a general 4-vector, we see that the addition of the term containing

the affine connection has made the equation gauge invariant. The term ‘gauge’ means that

there are hidden degrees of freedom (coordinate transformations in this case) that do not

affect physical observables. We introduce the covariant derivative:

DAµ ≡ dAµ + Γµ
αβA

αdxβ. (A.18)

Then the equation of motion under gravity is then most simply expressed by saying that the

covariant derivative of 4-velocity vanishes: DUµ/dτ = 0. By using the manifest covari-

ance, it is easy to see that covariant derivative transforms as a 4-vector: the form of DUµ

was deduced by transforming the relation dUµ/dτ = 0 from the local freely falling frame

to a general frame. If DUµ/dτ vanishes in all frames, it must be a general 4-vector.

In the presence of non-gravitational forces, the equation of motion for a particle be-

come

m
DUµ

dτ
= Fµ. (A.19)

We impose that the covariant derivative of a scalar field is the same as the ordinary deriva-

tive, and that the Leibniz rule is satisfied by the covariant derivative. Then the derivatives of

covariant vectors can be derived:

d(AµBµ) = D(AµBµ) = (DAµ)Bµ +Aµ(DBµ)

⇒ Aµ(DBµ) = d(AµBµ)− (DAµ)Bµ = AµdBµ −
(
Γµ
αβA

αdxβ
)
Bµ

= Aµ
(
dBµ − Γα

µβBαdx
β
)
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⇒ DBµ = dBµ − Γα
µβBαdx

β.

We remark here that the following relation holds.

DAµ

dxν
= ∇νA

µ = ∂νA
µ + Γµ

νρA
ρ.

Geodesics

It is easy to see that the variation xµ → xµ + δxµ applied to

δ

∫
gµνU

µUνdτ = 0

yields the correct equation of motion:

d

dτ
(2gµνU

ν)− UαUβ ∂gαβ
∂xµ

= 0

⇒ 2
∂gµν
∂xα

UαUν + 2gµν
d2xν

dτ2
− UαUβ ∂gαβ

∂xµ
= 0

⇒ d2xν

dτ2
= −1

2
gνµ

(
−
∂gαβ
∂xµ

+
∂gαµ
∂xβ

+
∂gµβ
∂xα

)
UαUβ = −Γν

αβU
αUβ. (A.20)

Energy-Momentum Tensor

The Einstein’s equation, which will be discussed in the following section, relates the dis-

tribution of matter with the metric and its derivatives. We model the matter content not by

a collection of point particles but by a fluid, a continuum characterized by macroscopic

quantities such as density, pressure, entropy, viscosity, and so on. A single momentum four-

vector field, e.g. the 4-current Jµ = (cρ, j), is insufficient to describe the energy momentum

of a fluid. We thus introduce the energy-momentum tensor Tµν which is symmetric (2, 0)

tensor. In the Minkowski spacetime, it is easy to state the physical meaning of each compo-

nents of energy-momentum tensor Tµν : “the flux of four momentum pν across a surface of

constant xµ.”

In many cosmologically interesting cases, relativists usually consider a special type of

fluid of matter, the perfect fluid, which is defined by, in the Minkowski spacetime,

Tµν = (ρ+ p/c2)UµUν − pηµν , (A.21)
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where ρ is the rest frame mass density, p is an isotropic pressure, and Uµ is the (constant)

4-velocity field of the fluid. The rest frame Tµν is given by just diag(ρc2, p, p, p).

One reason for considering such an exotic energy-momentum tensor is that the conser-

vation law ∂µT
µν = 0 reduces, in the non-relativistic limit, to the continuity equation and

the Euler equation of fluid dynamics: for the perfect fluid (A.21),

0 = ∂µT
µν = ∂µ(ρ+ p/c2)UµUν + (ρ+ p/c2)(Uν∂µU

µ + Uµ∂µU
ν)− ∂νp. (A.22)

To analyze what this equation means, it is helpful to consider separately what happens when

we project it into pieces along and orthogonal to the 4-velocity field Uµ. To project (A.22)

along the 4-velocity, we simply contract it with Uν :

0 = Uν∂µT
µν = c2∂µ(ρU

µ) + p∂µU
µ, (A.23)

where we used the normalization UνU
ν = c2 and its implication Uν∂µU

ν = 1
2∂µ(UνU

ν) =

0. Now we take the non-relativistic limit, in which

ρc2 ≫ p, Uµ = (c,u), c≫ u. (A.24)

Then the result (A.23) becomes

∂tρ+∇ · (ρu) = 0,

which is the continuity equation for mass density.

We next consider the part of (A.22) that is orthogonal to Uµ. For that purpose we

multiply it by the projection tensor

P σ
ν = δσν − UσUν/c

2.

Observe that the projection operator annihilates any vector proportional to Uν , and pre-

serves the orthogonal one. When applied to ∂µTµν , we obtain

P σ
ν∂µT

µν = (ρ+ p/c2)Uµ∂µU
σ − ∂σp+ UσUµ∂µp/c

2.

In the non-relativistic limit (A.24), setting the spatial components of this expression equal
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to zero yields ρ [∂t + u · ∇]u +∇p + u(∂tp + u · ∇p)/c2 = 0. Here we may neglect the

third term in the limit (A.24) and obtain

∂tu+ (u · ∇)u = −1

ρ
∇p,

which is the Euler equation familiar in fluid mechanics.

The following expression is clearly a tensor and reduces to the rest-frame Minkowski

expression (A.21):

Tµν = (ρ+ p/c2)UµUν − pgµν ;

thus it must be the general expression for the energy-momentum tensor of a perfect fluid by

the technique of manifest covariance.

Field Equations

The only ingredient now missing from a classical theory of relativistic gravitation is a field

equation: the presence of mass must determine the gravitational field. The existence of a

general metric says that spacetime is curved in a way that is revealed by non-zero second

derivatives of gµν . There has to be some covariant description of this curvature, and this is

exactly what the Riemann tensor provides:

Rµ
αβγ = Γµ

αγ,β − Γµ
αβ,γ + Γµ

σβΓ
σ
γα − Γµ

σγΓ
σ
βα.

The Riemann tensor is contracted to the Ricci tensor Rµν and further to the curvature scalar

R:

Rαβ = Rµ
αβµ, R = Rµ

µ = gµνRµν .

Unfortunately, these definitions are not universally agreed, and different signs can arise in

the final equations according to which convention is adopted. All authors, however, agree

on the definition of the Einstein tensor Gµν :

Gµν = Rµν − 1

2
gµνR.

This tensor has zero covariant divergence: Gµν
;ν = ∂νG

µν +Γµ
ανGαν +Gν

ανG
µα = 0. Since

Tµν also has zero covariant divergence by virtue of the conservation laws it expresses, it
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therefore seems reasonable to guess that the two are proportional:

Gµν = kTµν . (A.25)

The correct constant of proportionality will be obtained below by considering the weak-field

limit, where Einstein’s theory must go over to Newtonian gravity.

Sign Conventions

Incidentally, we mention that there are few universal conventions in general relativity. The

distinctions that exist were analysed into three signs by Misner, Thorne & Wheeler (1973):

ηµν = [S1]× diag(−1, +1, +1, +1)

Rµ
αβγ = [S2]×

(
Γµ
αγ,β − Γµ

αβ,γ + Γµ
σβΓ

σ
γα − Γµ

σγΓ
σ
βα

)
Gµν = [S3]× 8πG

c4
Tµν .

The third sign above is related to the choice of convention for the Ricci tensor:

Rµν = [S2]× [S3]×Rα
µαν .

With these definitions, Misnoer, Thorne & Wheeler classify themselves as (+++), whereas

Weinberg (1972) is (+−−), Peebles (1980, 1993) and Efstathiou (1990) are (−++). This

review is (−+−), as are Rindler (1977), Atwater (1974), Narlikar & Padmanabhan (1986),

Collins, Martin & Squires (1989), and Peacock (1999).

Newtonian Limit

To obtain the correct proportionality constant in the eq. (A.25), we consider the limit of a

stationary particle in a stationary (i.e. time-independent) weak field. To first order in the

field, we can replace τ by t, and the spatial part of the geodesic equation (A.20) is then

ẍi + c2Γi
00 = 0,
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where Γi
00 = −1

2g
ij∂jg00 =

1
2∂ig00. Thus we have

ẍ = −c
2

2
∇g00 ≡ −∇ϕ,

where we obtained a expression for Newtonian potential ϕ = c2

2 g00 in the stationary, weak-

field limit. In the Newtonian mechanics, the Newtonian potential is supposed to satisfy the

Poisson equation∇2ϕ = 4πGρ. Thus we have

Γi
00,i =

1

2
∇2g00 =

1

c2
∇2ϕ =

4πG

c2
ρ. (A.26)

Considering a classical source of gravity, with p ≪ ρc2, so that the only non-zero

component of Tµν is T 00 = c2ρ, the spatial parts of Rµν must be given by

Rij =
1

2
gijR ⇒ Ri

ν =
1

2
giνR =

1

2
δiνR ⇒ Ri

i =
1

2
δiiR =

3

2
R

⇒ R−R0
0 =

3

2
R ⇒ R− g0νR00 =

3

2
R

⇒ R = −2R00.

And hence

G00 = G00 = 2R00. (A.27)

Discarding nonlinear (2nd order) terms in the definition of the Riemann tensor leaves

Rαβ = Γµ
αµ,β − Γµ

αβ,µ ⇒ R00 = −Γi
00,i (A.28)

for the case of a stationary field.

Combining eqs. (A.26), (A.27) and (A.28), we find

G00 = 2R00 = −2Γi
00,i = −

8πG

c2
ρ = −8πG

c4
T 00,

and we obtain the field equations with correct constant of proportionallity:

Gµν = −8πG

c4
Tµν . (A.29)
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Pressure as a Source of Gravity

Newtonian gravitation is modified in the case of a relativistic fluid (i.e. where we cannot

assume p ≪ ρc2). We recast the field equations by contracting the equation to obtain R =

(8πG/c4)T . This allows us to write an equation for Rµν :

Rµν = −8πG

c4
(Tµν − 1

2
gµνT ).

Since T = c2ρ− 3p, we get a modified Poisson equation:

⇒ R00 = −8πG

c4
(T 00 − 1

2
(c2ρ− 3p))

⇒ −4πG

c2
ρ = −4πG

c2
(ρ+ 3p/c2)

⇒ ∇2ϕ = 4πG(ρ+ 3p/c2).

Energy Density of Vacuum

One consequence of the gravitational effects of pressure that may seem of mathematical

interest only is that a negative-pressure equation of state that achieved ρc2 + 3p < 0 would

produce gravitational repulsion.

When Einstein was first thinking about the cosmological consequences of general rel-

ativity, he believed the universe to be static. It should be obvious, even in the context of

Newtonian gravity, that such a universe is not stable: the mutual attraction of all particles

would cause the distribution of mass to undergo a global contraction. This could be pre-

vented only by either postulating an expanding universe (which idea Einstein unfortunately

discarded at that time), or by interfering with the long-range properties of gravity.

Einstein was loath to complicate the beautiful simplicity of the field equations, and

there seemed only one way out. He introduced the energy-momentum tensor of the vacuum:

Tµν
vac =

Λc4

8πG
gµν ,

and then the field equation has the form

Gµν + Λgµν = −8πG

c4
Tµν .

How can a vacuum have a non-zero energy density and pressure? It is well known hard
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to predict what the properties of the vacuum should be. Assuming the energy and pressure

of the vacuum to be apart from zero, the energy momentum tensor of the vacuum Tµν
vac must

be proportional to the metric tensor in order for being unaltered by Lorentz transformations.

Therefore, it is inevitable that the vacuum (at least in special relativity) will have a negative-

pressure equation of state:

pvac = −ρvacc2, ρvac =
Λc2

8πG
.

In this case, ρc2+3p is indeed negative: a positive Λ will act to cause a large-scale repulsion.

Since the vacuum energy is a constant, independent of time, there might seem to be a

problem with conservation of energy in an expanding universe. However, since the pressure

is negative, the work done by the pressure is negative, and this becomes a source of energy,

which can supply as much as is required to inflate a given region to any required size at

constant energy density. This supply of energy is what is used in ‘inflationary’ theories of

cosmology to create the whole universe out of almost nothing.

A.3 Maximally Symmetric Spacetime

Noether theorem of field theory in flat spacetime states that “symmetry of the spacetime

implies a conserved quantity.” In the context of general relativity, in which the background

geometry is generally curved, there arises the need for rigorous charaterization of concepts

of symmetry and conserved quantity.

Symmetries of a manifold are related to a special kind of transformations (isometries)

defined on the manifold. Actually, we need a continuous family of transformations to char-

acterize a symmetry of the manifold. And it can be shown that these continuous families

of transformations, each of which corresponds to a symmetry of the manifold, are in one-

to-one correspondence with vector fields, the Killing vector fields, which will be defined

soon.

It is easy to figure out a condition for a vector field to imply a symmetry of the space-

time and a conserved quantity. Suppose that a particle (massive or massless) is moving

along a geodesic in a given spacetime. Let’s denote the 4-momentm of a massive particle by

a product of its rest mass and its 4-velocity, pµ = mUµ. Here, the 4-velocity is the deriva-

tive of the spacetime position of the particle with repect to the proper time, Uµ = dxµ/dτ .
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For the case of massless particles, the affine parameter λ is chosen so that the tangent vector

dxµ/dλ gives the 4-momentum of the particle, pµ = dxµ/dλ, since the proper time for a

massless particle is identically zero (dτ = 0, null geodesic). By definition, the geodesic

is a parametrized curve which parallel transports its tangent vector (and its scalar multi-

ples of course) along the trajectory. Thus pµ∇µp
ν = 0 holds. Now, consider a vector field

Kν which is defined over the spacetime. The quantity we want to secure its constancy is

Kνpν = Kνp
ν , namely we want to show

pµ∇µ(Kνp
ν) = 0.

By expanding the left hand side, we obtain,

pµ∇(Kνp
ν) = pνpµ∇µKν +Kνp

µ∇µp
ν

= pµpν∇(µKν).

For this to vanish for any 4-momentum pµ, it is necessary and sufficient that the condition,

∇(µKν) = 0

hold. This equation is known as Killing’s equation and the vector fields satisfying this

equation are called the Killing vector fields. If the metric is independent of some coordinate

xσ∗, the vector field K = ∂σ∗ can be an easy example of Killing vector field, i.e., a vector

field satisfying the Killing’s equation : Kν = (∂σ∗)
ν = δνσ∗, Kν = Kµgµν = δµσ∗gµν ,

∇(µKν) =
1

2
(∇µ(gανδ

α
σ∗) +∇ν(gαµδ

α
σ∗)) =

1

2

(
gανΓ

α
µσ∗ + gαµΓ

α
νσ∗
)

=
1

2

(
δβν(∂µgβσ∗ + ∂σ∗gβµ − ∂βgµσ∗) + δβµ(∂nugβσ∗ + ∂σ∗gβν − ∂βgνσ∗)

)
= ∂σ∗(gµν)

= 0.

The conserved quantity along the geodesic, in this case, is the component of the 4-momentum

in ∂σ∗ direction : Kνpν = pσ∗.

Although, for each Killing vector field, there is a coordinate system in which a coordi-

nate vector coincides with the Killing vector field, there is in general no coordinate system
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in which more than one cordinate vectors are the same as given Killing vectors. This is

partly because Killing vectors don’t need to be linearly independent, and partly because

there can be more than n independent Killing vector fields in an n-dimensional manifold.

But there is a highest possible number of Killing vectors in an n-dimensional mani-

fold. For counting, let us focus on a neighborhood of a point p in an n-dimensional manifold.

Since any sufficiently small neighborhood resembles Rn with canonical metric, we count

the number of possible isometries by counting those of Rn. First, there are n independent

translations. And there are rotations around the point p. We can count the number of rota-

tions by counting the number of 2 dimensional subspaces of Rn, which is nC2 = n(n−1)/2.

If the metric signiture were not Euclidean, some of the rotations will actually be boosts, but

again the counting will be the same. Therefore, the total number of independent isometries

of Rn is

n+
1

2
n(n− 1) =

1

2
n(n+ 1).

Since our counting argument only refers to the behavior of the symmetry in a neighborhood

of p, even in the presence of curvature the counting should be the same. We refer to an

n-dimensional manifold with 1
2n(n+1) Killing vectors as a maximally symmetric space.

If a manifold is maximally symmetric, the curvature is the same everywhere and the

same in every direction. This idea ends up with an equation true in any maximally symmetric

spaces, at any point, in any coordinate system:

Rρσµν =
R

n(n− 1)
(gρµgσν − gρνgσµ), (A.30)

where the Ricci scalar R is constant over the manifold. Convince yourself that the indices

in the RHS have the symmetric properties of Riemann tensor. Conversely, if the Riemann

tensor satisfies this condition (A.30) (with R a constant over the manifold), the metric will

be maximally symmetric. We omit the proof.

Since the magnitude of the Ricci scalar R can be absorbed to the metric, we can clas-

sify the maximally symmetric spaces according to the sign of R. For Euclidean signitures,

the flat maximally symmetric spaces are planes or appropriate higher-dimensional gener-

alizations, while the positively curved ones are spheres, and negatively curved ones are

hyperboloids, denoted Hn.
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A.4 de Sitter Universe

The Copernican principle is related to two mathematically precise properties that a mani-

fold might have : isotropy and homogeniety. Isotropy applies at some specific point in the

manifold, and states that the space looks the same no matter in which direction we look.

More formally, a manifoldM is isotropic around a point p if, for any two vectors V and

W in TpM, there is an isometry ofM such that the pushforward of W under the isometry

is parallel with V (not pushed forward). Homogeniety is the statement that the metric is the

same throughout the manifold. In other words, given any two points p and q inM, there is

an isometry that takes p into q.

An extreme application of the Copernican principle would be to insist that spacetime

is maximally symmetric. But, in fact, observationally we know that the universe is homo-

geneous and isotropic in space, but not at all of spacetime. However, it would be interesting

to begin by considering spacetimes that are maximally symmetric, the de Sitter and anti-de

Sitter spacetime. We mentioned in section A.3 that the Riemann tensor for a maximally

symmetric n-dimensional manifold with metric gµν can be written as

Rρσµν = κ(gρµgσν − gρνgσµ),

where κ is a normalized measure of the Ricci curvature

κ =
R

n(n− 1)

and the Ricci scalarRwill be a constant over the manifold. For vanishing curvature (κ = 0),

a possible maximally symmetric spacetime is the well known Minkowski spacetime.

Maximally Symmetric Spacetime with Positive Curvature

The maximally symmetric spacetime with positive curvature (κ > 0) is called de Sitter

spacetime. Consider a five-dimensional Minkowski space with metric ds25 = du2 − dx2 −
dy2 − dz2 + dω2, and embed a hyperboloid given by

−u2 + x2 + y2 + z2 + ω2 = α2.
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Now introduce coordinates {t, χ, θ, ϕ} on the hyperboloid via

u = α sinh(t/α)

ω = α cosh(t/α) cosχ

x = α cosh(t/α) sinχ cos θ

y = α cosh(t/α) sinχ sin θ cosϕ

z = α cosh(t/α) sinχ sin θ sinϕ

with ranges −∞ < t < ∞, 0 < χ < π, 0 < θ < π, and 0 < ϕ < 2π. The metric on the

hyperboloid becomes

ds2 = dt2 − α2 cosh2(t/α)
[
dχ2 + sin2 χ(dθ2 + sin2 θdϕ2)

]
(A.31)

Now we perform a clever coordinate transformation to obtain conformal diagram of de

Sitter space. Consider the transformation from t to t′ via

cosh(t/α) =
1

cos(t′)

where t′ assumes −π
2 < t′ < π

2 . Then the metric (A.31) becomes

1

α
sinh(t/α)dt =

sin(t′)

cos2(t′)
dt′

⇒ 1

α2

(
cosh2(t/α)− 1

)
dt2 =

sin2(t′)

cos4(t′)
dt′2 =

1

cos2(t′)

( 1

cos2(t′)− 1

)
dt′2

⇒ dt2 =
α2

cos2(t′)
dt′2

⇒ ds2 =
α2

cos2(t′)

(
(dt′)2 − dχ2 − sin2 χdΩ2

2

)
.

Recall that the ranges are −π
2 < t′ < π

2 and 0 < χ < π. So the conformal diagram is just a

square. (Fig. A.2)

One special feature that de Sitter spacetime has is that two points can have future (or

past) light cones that are completely disconnected; this reflects the fact that the spherical

spatial sections are expanding so rapidly that light from one point can never come into

contact with light from the other.
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Figure A.2: Conformal diagram for de Sitter spacetime

If we introduce

u =
2c

H
sinh(Ht/2) +Hr′2eHt/2/4c

ω =
2c

H
cosh(Ht/2)−Hr′2eHt/2/4c

x = eHt/2x′

y = eHt/2y′

z = eHt/2z′,

where r′2 = x′2 + y′2 + z′2, them the metric becomes

ds2 = c2dt2 − eHtdr′2.

This is called the flat slicing of de Sitter spacetime, which is used to model the accelerated

expansion of the universe.

Maximally Symmetric Spacetime with Negative Curvature

Now let us consider the negative curvature case of maximally symmetric spacetime, known

as anti-de Sitter spacetime. Begin with a fictitious five-dimensional flat manifold with

metric ds25 = du2 + dv2 − dx2 − dy2 − dz2, and embed a hyperboloid given by

−u2 − v2 + x2 + y2 + z2 = −α2.
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We introduce coordinates {t′, ρ.θ, ϕ} on the hyperboloid via

u = α sin(t′) cosh(ρ)

v = α cos(t′) cosh(ρ)

x = α sinh(ρ) cos θ

y = α sinh(ρ) sin θ cosϕ

z = α sinh(ρ) sin θ sinϕ

(A.32)

with ranges −∞ < t′ < ∞, 0 < ρ < ∞, 0 < θ < π, and 0 < ϕ < 2π. Actually, there

is redundancy in the range of t′. The range 0 < t′ < 2π is enough, and it is not legitimate

to extend this interval because it will break the injectiveness of the chart. By allowing t′

to range from −∞ to∞, we actually are considering the “covering space” of the embeded

hyperboloid, which we will take as the definition of anti-de Sitter space. The metric in terms

of these new coordinates becomes

ds2 = α2
(
cosh2(ρ)(dt′)2 − dρ2 − sinh2(ρ)dΩ2

2

)
.

Now we perform coordinate transformations to derive the conformal diagram. Define a new

coordinate χ by

cosh(ρ) =
1

cosχ

with 0 < χ < π
2 , so that

ds2 = α2

(
1

cos2 χ
(dt′)2 − sin2 χ

cos4 χ

cos2 χ

sin2 χ
dχ2 − sin2 χ

cos2 χ
dΩ2

2

)
=

α2

cos2 χ

(
(dt′)2 − dχ2 − sin2 χdΩ2

2

)
=

α2

cos2 χ
ds2

where ds2 represents the metric on the Einstein static universe.

The conformal diagram is shown in Fig. A.3, which illustrates a few representative

timelike and spacelike geodesics passing through the point t′ = 0, χ = 0.

So we have three spacetimes of maximal symmetry: Minkowski (κ = 0), de Sitter

(κ > 0), and anti-de Sitter (κ < 0 ). We can ask, at this point, whether any one of these
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Figure A.3: Conformal diagram for anti-de Siter spacetime

spaces model the real world.

Unfortunately, the maximally symmetric spacetimes are not reasonable models of the

universe, which will be explained in detail later. Until now, there was no restriction on

introducing spacetime and its metric. But, in fact, not all of these spacetimes are physically

meaningful. Then what will be physically meaningful spacetime?

A.5 FRW Universe

Just as Einstein aimed to write down the simplest possible relativistic generalization of the

laws of gravity, so cosmological investigation began by considering the simplest possible

mass distribution: one whose properties are homogeneous (constant density) and isotropic

(the same in all directions).

Isotropy Implies Homogeneity

Consider an observer who is surrounded by a matter distribution that is perceived to be

isotropic. Most scientists believe that it is not reasonable to adopt a cosmological model in

which humans are privileged observers. This attitude is called the Copernican principle.

It is therefore a reasonable supposition that, if the universe appears isotropic about our

position, it would also appear isotropic to observers in other galaxies; the term ‘isotropic’

is therefore often employed in cosmology as a shorthand for ‘isotropic about all locations’.

This is a crucial shift in meaning, for the properties of such a universe are highly restricted.
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In fact, given only two points (A and B) from which conditions appear isotropic, we can

prove that they must be homogeneous everywhere. (See Fig.A.4.)

Figure A.4: Isotropy about two points A and B shows that the universe is homogeneous.
From isotropy about B, the density is the same at each of C, D, E. By constructing spheres
of different radii about A, the shaded zone is swept out and shown to be homogeneous. By
using large enough shells, this argument extends to the entire universe.

Having chosen a model mass distribution, the next step is to solve the field equations

to find the correponding metric. Since our model is a particularly symmetric one, many of

the features of the metric can be deduced from symmetry alone. These general arguments

were put forward independently by H.P. Robertson and A.G. Walker in 1936.

Cosmological Time and Foliation of Spacelike Slices

The first point to note is that a universal time exists in an isotropic universe. Consider a

set of observers in different locations, all of whom are at rest with respect to the matter in

their vicinity (these characters are usually termed fundamental observers). We can define

a global time coordinate t, which is the time measured by the clocks of these observers –

i.e. t is the proper time measured by an observer at rest with respect to the local matter

distribution. The coordinate is useful globally as well as locally because the clocks can

be synchronized by the exchange of light signals between observers, who agree to set their

clocks to a standard time when, e.g., the universal homogeneous density reaches some given

value.

It turns out to be straightforward, and consistent with observation, to posit that the uni-

verse is spatially homogeneous and isotropic, but evolving in time. In general relativity this
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translates into the statement that the universe can be foliated into spacelike slices such that

each three-dimensional slice is maximally symmetric. We therefore consider our spacetime

to be R × Σ, where R represents the cosmological time direction and Σ is a maximally

symmetric three-manifold. The spacetime metric thus takes the form

c2dτ2 = c2dt2 −R2(t)dσ2

Here, we have used the equivalence principle to say that the proper time interval between

two distant events would look locally like special relativity to a fundamental observer on

the spot: for them, c2dτ2 = c2dt2 − dx′2 − dy′2 − dz′2, and the coefficient of dt2 should

be constant(c2), not a function of r. R(t) is a function known as the scale factor, and dσ2

is the metric on Σ, which can be expressed as

dσ2 = γij(x)dx
idxj ,

where (x1, x2, x3) are coordinates on Σ and γij is a maximally symmetric three dimensional

metric. The coordinates used here, in which the metric is free of cross terms dtdxi and

coefficient of dt2 is independent of xi, are known as comoving coordinates. An observer

who stays at constant xi is also called “comoving.”

Robertson-Walker Metrics

Our interest is in maximally symmetric Euclidean three-metrics γij . We know that maxi-

mally symmetric metrics obey

(3)Rijkl = k(γilγjk − γikγjl),

where for future convenience we have introduced

k = (3)R/6,

and we put a superscript (3) on the Riemann tensor to remind that it is associated with the

three-metric γij , not the metric of the entire spacetime. The Ricci tensor is then

(3)Rjk = 2kγjk. (A.33)
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If the space is to be maximally symmetric, then it will certainly be spherically symmetric.

One requirement to preserve spherical symmetry is that we maintain the form of dΩ2, that

is, if we want our spheres to be perfectrly round, the coefficient of the dϕ2 term should be

sin2 θ times that of the dθ2 term. But we are otherwise free to multiply all of the terms by

separate coefficients, so long as they are only functions of the radial coordinate r:

dσ2 = e2β(r)dr2 + e2γ(r)r2dΩ2. (A.34)

We’ve expressed our functions as exponentials so that the signature of the metric doesn’t

change.

Unlike other theories of physics, in general relativity we simultaneously define coor-

dinates and the metric as a function of those coordinates. In other words, we don’t know

ahead of time what, for example, the radial coordiante r really is; we can only interpret it

once the solution is in our hands. Let us therefore imagine defining a new coordinate r̄ via

r̄ = eγ(r)r,

with an associated basis one-form

dr̄ =

(
1 + r

dγ

dr

)
eγdr.

In terms of this new variable, the metric (A.34) becomes

dσ2 =

(
1 + r

dγ

dr

)−2

e2β(r)−2γ(r)dr̄2 + r̄2dΩ2, (A.35)

where each function of r is a function of r̄ in the obvious way. Now let us make the following

relabelings:

r̄ → r,

(
1 + r

dγ

dr

)−2

e2β(r)−2γ(r) → e2β

Then our metric (A.35) becomes

dσ2 = e2β(r)dr2 + r2dΩ2. (A.36)

We have simply chosen a special coordinate system. Thus, (A.36) is precisely as general as

(A.34).
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The components of the Ricci tensor for such a metric can be obtained, and we will

have

(3)R11 =
2

r
∂rβ,

(3)R22 = e−2β(r∂rβ − 1), (3)R33 = [e−2β(r∂rβ − 1) + 1] sin2 θ.

We set these proportional to the metric using (A.33), and can solve for β(r):

β = −1

2
ln(1− kr2),

which yields the metric on the three-surface Σ,

dσ2 =
dr2

1− kr2
+ r2dΩ2.

It is common to normalize the value of k, which sets the curvature, so that k ∈ {+1, 0, −1},
and absorb the physical size of the manifold into the scale factor R(t). Now the metric of

the spacetime is written

c2dτ2 = c2dt2 −R2(t)

(
dr2

1− kr2
+ r2dΩ2

)
(A.37)

This is the Robertson-Walker (RW) metric. We have not yet made use of Einstein’s equa-

tion; that will determine the behavior of the scale factor R(t).

The most compact form of RW metric can be obtained by applying to (A.37) a trans-

formation

dr̃ =
R0dr√
1− kr2

,

and defining

Sk(r̃) =


R0 sin

(
r̃
R0

)
(k = +1)

R0 sinh
(

r̃
R0

)
(k = −1)

r̃ (k = 0),

where R0 is the crrent value of R(t), R0 = R(t = 0). One can make the scale factor

dimensionless, defining a(t) ≡ R(t)/R0, so that a = 1 at the present.

The metric can now be written in the preferred form that we shall use throughout:

c2dτ2 = c2dt2 − a2(t)
[
dr2 + S2

k(r)dΩ
2
]
, (A.38)



A.5. FRW UNIVERSE 107

where we replaced r̃ with r. Cosmologists generally use the metric in the form of (A.37) or

of (A.38) with comoving distance r whose value depends on which metric is being used in

the context. We will use the metric (A.38) unless there is any notice.

It is also important to note that cosmologists tend to use the term ‘distance’ as meaning

comoving distance unless otherwise specified, usually in units of Mpc.

Hubble’s Law

The physical separation rph between two points with dimensionlesss comoving distance r

is rph = a(t)r, and therefore, the relative velocity between them can be written as vph ≡
drph/dt = ȧr = Hrph, where

H =
ȧ

a
,

and the Hubble’s Law reads vph = Hrph.

Conformal Time

There is another modification of some importance; this is to define the conformal time

η =

∫ t cdt′

a(t′)
, (A.39)

which allows a factor of a2 to be taken out of the metric

c2dτ2 = a2(t)
[
dη2 − dr2 − S2

k(r)Ω
2
]

This is a special case of a conformal transformation in general relativity, such transfor-

mations correspond to gµν → fgµν , where f is some arbitrary spacetime function. The

universe with k = 0, although certainly possessing spacetime curvature, is obviously di-

rectly related to Minkowski spacetime via a conformal transformation, and so tends to be

loosely known as the ‘flat’ model. If we denote the begining of the conformal time by ηi,

the maximal distance that light could propagate in the past is

rp = η − ηi =
∫ t

ti

cdt′

a(t′)
.

We call rp the dimensionless comoving particle horizon, and corresponding distance arp is

called the particle horizon. Points far from each other by rp cannot be causally connected
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in the past times.

On the other hand, if we denote the ending of the conformal time by ηmax, the maximal

distance that light can propagate in the future is

re = ηmax − η =

∫ ∞

t

cdt′

a(t′)
.

We call re the dimensionless comoving event horizon, and corresponding distance are is

called the event horizon.

The Redshift

Since photons travel on null geodesics of zero proper time, we see directly from the metric

(A.38) that

r =

∫ tobs

temit

cdt

a(t)
.

The comoving distance between two fundamental observer is constant, whereas the domain

of integration in time extends from temit to tobs; these are the times of emission and recep-

tion of a photon. Photons that are emitted at later times temit + dtemit will be received at

later times tobs + dtobs, but these changes in temit and tobs cannot alter the integral, since r

is a comoving quantity. This requires the condition dtemit/a(temit) = dtobs/a(tobs), or

dtemit

dtobs
=
a(temit)

a(tobs)
,

which means that events on distant galaxies time-dilate according to how much the universe

has expanded since the photons we see now were emitted. We therefore get

νemit

νobs
=

R(tobs)

R(temit)
.

Cosmologists like to speak of this in terms of the redshift z between the two events, defined

by the fractional change in wavelength:

z ≡ λobs − λemit

λemit
⇒ 1 + z ≡ νemit

νobs
=

a(tobs)

a(temit)
.

In terms of the normalized scale factor a(t) we have simply a(t) = (1 + z)−1. Photon

wavelengths therefore stretch with the universe.
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This is the only correct interpretation of the redshift at large distances; it is common

but misleading to convert a large redshift to a recession velocity using the special-relativistic

formula 1 + z = [(1 + v/c)/(1− v/c)]1/2. Any such temptation should be avoided.

Causal Structure and Conservation Laws

For general RW universe spatial slices are curved. Here we consider flat RW universe. The

spacetime is provided with the metric

ds2 = c2dt2 − a2(t)[dx2 + dy2 + dz2] (A.40)

This describes a universe for which “space at a fixed moment of time” is a flat three dimen-

sional Euclidean space, which is expanding as a function of time.

Worldlines that remain at constant spatial coordinates xi are said to be comoving;

similarly, we denote a region of space that expands along with boundaries defined by fixed

spatial coordinates as a “comoving volume.” Since the metric describes (distance)2, the

relative distance between comoving points is growing as a(t) in this spacetime; the function

a is called the scale factor.

For this metric to model the physical universe, we assume the scale factor a(t) to

satisfy
(i) a(t) > 0,

(ii) lim
t→0

a(t) = 0,

(iii) lim
t→0

t

a(t)
<∞.

The first condition is needed to maintain the Lorentzian signiture of the metric. The second

and third conditions will be derived from the Einstein’s equation, the dynamical equation

that determines the metric from given energy-momentum tensor.

Note that there is a crucial difference between this metric and that of Minkowski space;

this metric has a singularity at t = 0, which restricts the range of our coordinate:

0 < t <∞.

This is a coordinate-dependent statement, and in principle there might be another coordinate

system in which everything looks finite; in this case, however, t = 0 represents a true

singularity of the geometry (the “Big Bang”), and should be excluded from the manifold.
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Let’s first look at the causal structure of the flat RW universe. We put the metric in

polar coordinates on space,

ds2 = dt2 − a2(t)[dr2 + r2dΩ2].

Because of the condition (iii) on the scale factor, the integral η =
∫ t
0

cdt
a(t) gives finite value.

The range of conformal time is thus 0 < η <∞ and, by definition,

a(η)dη = cdt,

where a(η) = a(t(η)), which can be obtained by inverting (A.39) to obtain t(η) and by

substituing this into a(t). Now the metric becomes

ds2 = a2(η)dη2 − a2(η)[dr2 + r2dΩ2]

= a2(η)
(
dη2 − dr2 − r2dΩ2

)
Now that we have our expanding-universe metric in the form of a conformal factor

times Minkowski metric, we can perform the same sequence of coordinate transformations

as in the derivation of the conformal diagram for Minkowski spacetime. Define u := η − r
and v := η+r, with corresponding ranges given by−∞ < u <∞, 0 < v <∞ and |u| ≤
v. Then the metric becomes

ds2 = a2(u, v)
(1
2
(dudv + dvdu)− 1

4
(v − u)2dΩ2

)
.

Now let U := arctanu and V := arctan v, with ranges −π
2 < U < π

2 , 0 < v <

π
2 and |U | ≤ V . Then we have

ds2 =
a2(U, V )

4 cos2 U cos2 V

[
2(dUdV + dV dU)− sin2(V − U)dΩ2

]
.

Finally we introduce T := V + U and R = V − U , with ranges 0 ≤ R < π, 0 ≤ T <

π and |T |+R < π. The metric becomes

ds2 = ω−2(T,R)
(
dT 2 − dR2 − sin2RdΩ2

)
,
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η
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Rπ

π

Figure A.5: Ranges of variables

where ω−2(T,R) is unimportant conformal factor. The ranges can be easily traced by look-

ing at the region depicted in Fig. A.5.

We obtain the conformal diagram for a flat Robertson-Walker metric.(Fig. A.6) The

important distinction between this case and that of flat spacetime is that timelike coordi-

nate ends at the singularity T = 0; otherwise the spacetime diagram is identical to that of

Minkowski spacetime. The light cones appear at 45◦. It is straightforward to choose two

events in the spacetime with the property that their past light cones will hit the singularity

before they intersect(while future light cones will always overlap).

Having understood the causal structure of the flat RW spacetime, let us investigate

the implications of the energy-momentum conservation. In the Minkowski spacetime, it is

stated as ∂µTµν = 0. But in general curved spacetime, this statment is coordinate dependent

and so cannot have physical meaning. As we will discuss more detail in the next chapter,

a simple rule of thumb is simply to replace all partial derivatives by covariant derivatives,
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Figure A.6: Conformal diagram for flat Robertson-Walker universe

and all appearance of the flat spacetime metric ηµν by the curved metric gµν . Thus the

energy-momentum conservation equation becomes

∇µT
µν = 0, (A.41)

or

∇µT
µν = ∂µT

µν + Γµ
µλT

λν + Γν
µλT

µλ = 0. (A.42)

Now we find the Christoffel symbols of the metric (A.40). Consider the functional

I =
1

2

∫ (cdt
dτ

)2
− a2(t)

[(dx
dτ

)2
+
(dy
dτ

)2
+
(dz
dτ

)2]
dτ.

Let’s start with t→ t+ δt. We have

δI =
1

2

∫
2
cdt

dτ

cdδt

dτ
− 2aȧ

[(dx
dτ

)2
+
(dy
dτ

)2
+
(dz
dτ

)2]
δt dτ

=

∫ {
−c

2d2t

dτ2
− aȧ

[(dx
dτ

)2
+
(dy
dτ

)2
+
(dz
dτ

)2]}
δt dτ,

from which we have

Γ0
00 = 0, Γ0

i0 = Γ0
0i = 0, Γ0

ij = δij
aȧ

c
.
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Next we consider x→ x+ δx, which yields

δI =
1

2

∫
2a2

dx

dτ

dδx

dτ
dτ =

∫ (2aȧ
c

dx

dτ

cdt

dτ
+ a2

d2x

dτ2

)
δx dτ.

Since the spatial part is isotropic, we would get the same result for y and z coordinates.

Thus we obtain

Γi
00 = 0, Γi

j0 = Γi
0j =

ȧ

ca
δij , Γi

jk = 0.

Now that everything is prepared, let’s face the equation (A.41). In cosmology, physicists

typically model the matter filling the universe as a perfect fluid; the corresponding energy-

momentum tensor comes from generalizing (A.21) to curved spacetime,

Tµν = (ρ+ p/c2)UµUν − pgµν .

Recall that ρ is the energy density, p is the pressure, and Uµ is the constant four-velocity of

the fluid. For metric (A.40), the components of inverse metric are

gµν =


1

−a−2

−a−2

−a−2


The energy-momentum tensor is a kind of source for the metric of the spacetime. So it

is clear that, if a fluid that is isotropic in some frame leads to a metric that is isotropic in the

same frame. That is, the fluid will be at rest in comoving coordinates, in which the metric

looks like (A.40). The four-velocity is then

Uµ = (c, 0, 0, 0),

and the energy-momentum tensor Tµν = (ρ+ p/c2)UµUν − pgµν becomes

Tµν =


ρc2

a−2p

a−2p

a−2p

 .
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The equation (A.42) has four components, one for each µ, although the three µ = i ∈
{1, 2, 3} are equivalent. Let’s first look at the ν = 0 component, piece by piece. The first

term is straightforward,

∂µT
µ0 = ∂0T

00 = ρ̇c.

The second term is

Γµ
µλT

λ0 = Γµ
µ0T

00 = 3
ȧ

a
ρc,

and the third term is

Γ0
µλT

µλ = Γ0
00T

00 + Γ0
11T

11 + Γ0
22T

22 + Γ0
33T

33 = 3
ȧ

ca
p.

altogether, then, we find

ρ̇c = −3 ȧ
ca

(ρc2 + p). (A.43)

Now let’s look at one of the spatial components, choosing ν = 1 for definiteness. Once

again working piece by piece, we have for the first term in (A.42),

∂µT
µ1 = ∂1T

11 = a−2∂xp.

The second and third terms are

Γµ
µλT

λ1 = Γµ
µ1T

11 = 0, Γ1
µλT

µλ = Γ1
00T

00 + Γ1
11T

11 + Γ1
22T

22 + Γ1
33T

33 = 0.

Equivalent results will hold for ν = 2 and ν = 3. So the spatial components of the energy-

momentum conservation equation simply amount to

∂ip = 0.

This does not involve any effect from the scale factor, thus there is no effect of curvature on

the spatial components.

Often the perfect fluids relevant to cosmology obey the simple equation of state,

p = ωρc2,

where ω is some constant independent of time. Then the (A.43) becomes ρ̇/ρ = −3(1 +
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ω)(ȧ/a), which can be solved to yield

ρ ∝ a−3(1+ω).

Further investigation neccessarily stimulates the issue of what physically meaningful space-

time is. At this moment, we have to verify the value of ω and the behavior of the scale factor

a(t). The former is determined by ‘energy conditions’, and the later is determined by the

Einstein’s equation. Therfore, in the following sections, we move to the discussion of Ein-

stein’s equation and the energy conditions.

Dynamics of RW Universe

Consider a sphere about some arbitrary point, and let the radius be a(t)r, where r is arbi-

trary. The motion of a point at the edge of the sphere will, in Newtonian gravity, be influ-

enced only by the interior mass. We can therefore write down immediately a differential

equation (Friedmann’s equation) that expresses conservation of energy:

(ȧr)2

2
− GM

ar
= const. (A.44)

In fact, the result that the gravitational field inside a uniform shell is zero does hold in

general relativity, and is known as Birkhoff’s theorem. General relativity becomes even

more vital in giving us the constant of integration in Friedmann’s equation. To this end, we

investigate the Einstein’s equation with the Robertson Walker metric (A.37):

gµν =


1 0 0 0

0 − R2

1−kr2
0 0

0 0 −R2r2 0

0 0 0 −R2r2 sin2 θ

 .

Corresponding Christoffel symbols are calculated as

Γct =


0 0 0 0

0 RṘ
(1−kr2)c

0 0

0 0 RṘr2

c 0

0 0 0 RṘr2 sin2 θ
c

 ,
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Γθ =


0 0 Ṙ

Rc 0

0 0 1
r 0

Ṙ
R

1
r 0 0

0 0 0 − sin 2θ
2

 , Γϕ =


0 0 0 Ṙ

Rc

0 0 0 1
r

0 0 0 cot θ

Ṙ
Rc

1
r cot θ 0

 ,

Γr =


0 Ṙ

Rc 0 0

Ṙ
Rc

kr
1−kr2

0 0

0 0 −(1− kr2)r 0

0 0 0 −(1− kr2)r sin2 θ

 ,

and the non-vanishing Riemann tensors are

R0r0r =
RR̈

(1− kr2)c2
R0θ0θ =

rRR̈

c2

R0ϕ0ϕ =
RR̈r2

c2
sin2 θ Rrθrθ = −

R2r2(Ṙ2/c2 + k)

1− kr2

Rrϕrϕ = −R
2r2(Ṙ2/c2 + k)

1− kr2
sin2 θ Rθϕθϕ = −R2r4(Ṙ2/c2 + k) sin2 θ.

The Ricci tensors are

R00 = 3
R̈

Rc2
Rrr = −

RR̈/c2 + 2(Ṙ2/c2 + k)

1− kr2

Rθθ = −r2
(
RR̈

c2
+ 2

Ṙ2

c2
+ 2k

)
Rϕϕ = −r2 sin2 θ

(
RR̈

c2
+ 2

Ṙ2

c2
+ 2k

)
,

and the Ricci scalar is

R = 6

 R̈

Rc2
+

(
Ṙ

cR

)2

+
k

R2

 .

(Be careful not to confuse the Ricci scalar R on the l.h.s. with the scale factor R(t).) The

energy momentum tensor, Tµν = (ρ+p/c2)UµUν−pgµν , observed in a rest frame in which

Uµ = (c,0), reads

Tµν = diag

(
ρc2,

pR2

1− kr2
, pR2r2, pR2r2 sin θ

)
.



A.5. FRW UNIVERSE 117

Now, the 00-component of the Einstein’s equation yields

R00 −
1

2
g00R = −8πG

c4
T00 ⇒

(
Ṙ

R

)2

=
8πG

3
ρ− c2k

R2
, (A.45)

which is the celerbrated Friedmann’s equation (cf. (A.44)). Looking at the trace of the

Einstein’s equation, we obtain

−R = −8πG

c4
T ⇒ R̈ = −4πG

3
R(ρ+ 3p/c2), (A.46)

from which one can show that the change of entropy of the universe during its evolution is

zero:

TdS = dE + pdV ∝ d(ρc2R) + pd(R3) = 0.

(A.46) is sometimes called the second Friedmann equation.

Note that the equation (A.45) covers all contributions to ρ, i.e. those from matter, ra-

diation and vacuum; it is independent of the equation of state. The Friedmann equation

is so named because Friedmann was the first to appreciate, in 1922, that Einstein’s equa-

tions admitted cosmological solutions containing matter only. The term Friedmann model is

therefore often used to indicate a matter-only cosmology, even though his equation includes

contributions from all equations of state. A common shorthand for relativistic cosmological

models, which are described by the Robertson-Walker metric and which obey the Fried-

mann equation, is called FRW universe.





Chapter B

Cosmological Particle Production

Identifying particle concept in a curved spacetime is controversial in that it depends on the

state of motion of the observer. Even in flat Minkowski spacetime, an accelerated detector

will register quanta from the vacuum state in the point of view of inertial observers. A

special feature of Minkowski spacetime is that there exists an agreed vacuum for all inertial

observers throughout the spacetime. This is because the agreed vacuum is invariant under

Poincaré group.

In some restricted situations, we can secure the particle concept even in the presence of

spacetime curvature. In many problems of interest, the spacetime can be treated as asymp-

totically Minkowskian in the remote past and/or future. We will refer to the remote past and

futre as in and out regions, respectively. Under these circumstances, the absence of particles

according to inertial observers in the asymptotic region can be taken to be the commonly

accepted idea of a vacuum in that region.

If we work in the Heisenberg picture, a chosen vacuum state in the remote past will

remain in that state during its subsequent evolution. However, that state may not coincide

with the vacuum state in the remote future. In that case, an inertial observer in the future

region will detect the presence of particles. We can therefore say that particles have been

‘created’ by the time-dependent external gravitational field. This is a remarkable prediction

in that a galaxy can be created out of vacuum soley from the expansion of the universe.

B.1 Scalar Field Residing on a Flat FRW Universe

Suppose we are given a spacetime with metric

ds2 = c2dt2 − a(t)2(dx2 + dy2 + dz2). (B.1)

We assume that the manifold is a simple product of temporal part and spatial part: the

temporal part is R and the spatial part is a cube of finite volume V such that the faces

standing opposite are identified (3-torus). This spacetime is called spatially flat Friedmann-

119
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Robertson-Walker universe. Define conformal time η(t) by

η(t) ≡
∫ t

0

cdt

a(t)
.

We assume a(t) > 0 so that η(t) is a strictly increasing function. In terms of conformal

time, the metric (B.1) becomes

ds2 = a(η)2
[
dη2 − dx2 − dy2 − dz2

]
= a(η)2ηµνdx

µdxν ,

where a(η) = a(t(η)), ηµν = diag(1,−1,−1,−1), and x0 = η. Setting gµν = a2ηµν , we

have gµν = a−2ηµν and g = det(gµν) = −a8. Note that (η, x, y, z) is also a coordinate

chart for the manifold. By the general covariance, the action for a real minimally coupled

massive scalar field ϕ(x) becomes

S =
1

2

∫
d4x
√
−g
[
gµν∂µϕ∂νϕ−m2ϕ2

]
=

1

2

∫
d4ϕa2

[
ϕ̇2 − (∇ϕ)2 −m2a2ϕ2

]
,

(B.2)

where ϕ̇ = ∂ϕ/∂η.

We introduce an auxiliary field χ(η,x) ≡ a(η)ϕ(η,x). Then the action can be rewrit-

ten in terms of χ as

S =
1

2

∫
d4x a2

[(
1

a
χ̇− ȧ

a2
χ

)2

−
(
1

a
∇χ
)2

−m2χ2

]

=
1

2

∫
d4x

[
χ̇2 − ȧ

a
χ̇χ− ȧ

a
χχ̇+

ȧ2

a2
χ2 − (∇χ)2 −m2a2χ2

]
.

(B.3)

Substituting − ȧ
aχχ̇ = − ∂

∂η

(
ȧ
aχχ

)
+ ∂

∂η

(
ȧ
aχ
)
χ, and discarding the boundary term (which

is constant), we obtain

S[χ] =
1

2

∫
d4x

[
χ̇2 − (∇χ)2 −

(
m2a2 − ä

a

)
χ2

]
. (B.4)

By taking Euler-Lagrange equation for χ yields,

χ̈−∇2χ+m2
effχ = 0, (B.5)
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where m2
eff(η) ≡ m2a2 − ä

a . We remark here that the field χ is a classical field and all the

derivations above are classical. We continue the classical analysis.

Expanding the field χ in Fourier modes (this is possible because the given metric (B.1)

is spatially flat), we have

χ(η,x) =
1√
V

∑
k

χk(η)e
ik·x, π(η,x) =

1√
V

∑
k

πk(η)e
ik·x, (B.6)

where π(η,x) is the conjugate momentum of χ(η,x), π(η,x) = ∂0χ(η,x). For Fourier

coefficients, we have πk(η) = χ̇k(η). Substituting this expansion into (B.5), we find

χ̈k + ω2(η)χk = 0, (B.7)

where ωk(η) ≡
√
k2 +meff(η). This is a second order homogeneous linear ODE. There-

fore, if we found two linearly independent solutions, then we can express the general solu-

tions as a linear combination of them.

B.2 Mode Expansion

Let vk(η) be a solution for (B.7). Since ωk depends only on the magnitude k = |k|, vk(η)
is a solution for any k with |k| = k. Observe that v∗k is also a solution for (B.7). Observe

also that

vk and v∗k are linearly independent. ⇔ l1vk + l2v
∗
k = 0 implies l1 = l2 = 0.

⇔

[
vk v∗k

v̇k v̇∗k

][
l1

l2

]
=

[
0

0

]
implies l1 = l2 = 0.

⇔ W [vk, v
∗
k] = det

[
vk v∗k

v̇k v̇∗k

]
̸= 0.

Given a specific ωk(η), we can find vk with non-zero Wronskian W [vk, v
∗
k]. It is easy to see

the following properties of the Wronskian W [vk, v
∗
k].

(i) d
dηW [vk, v

∗
k] = 0.

(ii) W [vk, v
∗
k]

∗ = −W [vk, v
∗
k].

(iii) W [λvk, (λvk)
∗] = |λ|2W [vk, v

∗
k] for any λ ∈ C.
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First two properties imply that the Wronskian W [vk, v
∗
k] is a pure imaginary constant. The

third property implies that we may assume that W [vk, v
∗
k] = −2i or W [v∗k, vk] = 2i hold,

by multiplying appropriate constant. We choose such vk and v∗k as two linearly independent

solutions for (B.7).

Define a sesqui-linear form (f, g), for functions f(η) and g(η), by

(f, g) ≡ 1

2i
W [f∗, g] =

1

2i
(f∗ġ − ḟ∗g).

Then (g, f) = (f, g)∗ and (f, g)∗ = −(f∗, g∗) hold. Since the solutions vk and v∗k satisfy

W [v∗k, vk] = 2i, we see that (vk, vk) = 1
2iW [v∗k, vk] = 1. Summarizing the results,

(vk, vk) = 1, (v∗k, v
∗
k) = −1, (vk, v

∗
k) = (v∗k, vk) = 0. (B.8)

Now the general solution for (B.7) can be written as a linear combination of vk and v∗k:

χk(η) =
1√
2
(akv

∗
k(η) + bkvk(η)) , (B.9)

where the prefactor 1/
√
2 is introduced for convenience. For χ(η,x) in (B.5) to be real,

χk(η) must satisfy χ∗
k = χ−k. We now have

a∗kvk + b∗kv
∗
k = a−kv

∗
k + b−kvk.

By taking inner-product with vk on the left, and using (B.8), we obtain a∗k = b−k or

bk = a∗−k. We get the same result by taking inner-product with v∗k. Now the solution (B.9)

becomes

χk(η) =
1√
2

(
akv

∗
k(η) + a∗−kvk(η)

)
. (B.10)

We can invert this relations to obtain expressions for ak and a†k in terms of χk and πk:

ak = −
√
2(v∗k, χk) = −

√
2

2i
(vkχ̇k − v̇kχk) = −

1√
2i
(vkπk − v̇kχk)

a∗k =
√
2(vk, χ−k) =

√
2

2i
(v∗kχ̇−k − v̇∗kχ−k) =

1√
2i
(v∗kπ−k − v̇∗kχ−k).



B.3. CANONICAL QUANTIZATION 123

Substituting (B.10) into (B.5), we find

χ(η,x) =
1√
2V

∑
k

(
akv

∗
k(η) + a∗−kvk(η)

)
eik·x

=
1√
2V

∑
k

akv
∗
k(η)e

ik·x + a∗kvk(η)e
−ik·x,

π(η,x) =
1√
2V

∑
k

akv̇
∗
k(η)e

ik·x + a∗kv̇k(η)e
−ik·x,

(B.11)

where in the second term the summation variable k was changed from k to −k.

B.3 Canonical Quantization

We regard χ(η,x) and its conjugate momentum π(η,x) as Hermitian operators in the

Heisenberg picture. The field operator χ̂’s being Hermitian is equivalent to say that ak
and a∗k are operators and are Hermitian conjugate to each other. We designate ak as âk, and

a∗k as â†k. Now the field operators becomes

χ̂(η,x) =
1√
2V

∑
k

âkv
∗
k(η)e

ik·x + â†kvk(η)e
−ik·x,

π̂(η,x) =
1√
2V

∑
k

âkv̇
∗
k(η)e

ik·x + â†kv̇k(η)e
−ik·x.

(B.12)

We impose the equal time commutation relations:

[χ̂(η,x), π̂(η,y)] = iδ(3)(x− y), [χ̂(η,x), χ̂(η,y)] = [π̂(η,x), π̂(η,y)] = 0. (B.13)

These are equivalent to the commutation relations for the Fourier components:

[χ̂k(η), π̂l(η)] =

∫
d3xd3ye−ik·xe−l·y[χ̂(η,x), π̂(η,y)] = iδk,−l,

[χ̂k(η), χ̂l(η)] = π̂k(η), π̂l(η)] = 0.

(B.14)

These again are equivalent to the commutation relations for âk and â†k:

[âk, â
†
l ] =

1

2
[vkπ̂k(η)− v̇kχ̂k(η), v

∗
kπ̂−l(η)− v̇∗kχ̂−l(η)]

=
1

2i
(v∗kv̇k − v̇∗kvk)δk,l =

1

2i
2i(vk, vk)δk,l = δk,l
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[âk, âl] = [â†k, â
†
l ] = 0,

which implies that â†k and âk are Bosonic creation/annihilation operators.

B.4 Bogoliubov Transformation

Consider functions defined by the expression

uk(η) = αkvk(η) + βkv
∗
k(η), (B.15)

where αk and βk are time-dependent constants satisfying

|αk|2 − |βk|2 = 1.

Then uk(η) and u∗k(η) are also solutions of (B.7) and satisfy

(uk, uk) = 1, (u∗k, u
∗
k) = −1, (uk, u

∗
k) = (u∗k, uk) = 0.

If we define b̂k and b̂†k by

b̂k ≡ −
√
2(u∗k, χ̂k(η)), b̂†k ≡

√
2(uk, χ̂−k(η)), (B.16)

we obtain

χ̂k(η) =
1√
2

(
b̂ku

∗
k(η) + b̂†−kuk(η)

)
and

χ̂(η,x) =
1√
2V

∑
k

b̂ku
∗
k(η)e

ik·x + b̂†kuk(η)e
−ik·x

π̂(η,x) =
1√
2V

∑
k

b̂ku̇
∗
k(η)e

ik·x + b̂†ku̇k(η)e
−ik·x.

From this we can deduce that the canonical commutation relation (B.15) implies the fol-

lowings hold.

[b̂k, b̂
†
l ] = δk,l, [b̂k, b̂l] = [b̂†k, b̂

†
l ] = 0.
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Observe how the operators b̂k, b̂
†
k are related to âk, â

†
k. From the definition (B.16) we have

b̂k = −
√
2(u∗k, χ̂k(η)) = −(α∗

kv
∗
k + β∗kvk, âkv

∗
k + â†−kvk) = αkâk − β∗k â

†
−k,

b̂†k = α∗
kâ

†
k − βkâ−k.

(B.17)

The coefficients αk and βk are called the Bogoliubov coefficients.

Both sets of operators, {âk, â†k} and {b̂k, b̂†k} can be used to build a basis for the Fock

space relevant to the system. There are two different vacuum states |0a⟩, |0b⟩ defined by

âk|0a⟩ = 0, b̂k|0b⟩ = 0 for all k.

We call them “a-vacuum” and “b-vacuum” respectively. If βk ̸= 0, then the a-vacuum

contains “b-particles”. To verify this statement, we calculate the expectation value of b-

particle number operator N̂ (b)
k = b̂†kb̂k in the state |0a⟩. Using (B.17), we obtain

⟨0a|N̂ (b)
k |0a⟩ = ⟨0a|(α

∗
kâ

†
k − βkâ−k)(αkâk − β∗k â

†
−k)|0a⟩

= |βk|2⟨0a|â−kâ
†
−k|0a⟩

= |βk|2 ̸= 0.

We conclude that the particle interpretation depends on the choice of mode functions. If

their were no rules in choosing mode functions, the particle concept becomes obsolete.

Suppose that the spacetime is flat in the remote past (t < −T ) and remote future

(t > T ). Then we can secure an acceptable particle interpretation. Suppose that the scale

factor a(t) in the metric (B.1) satisfies

a(t) =

{
a1 for t < −T,
a2 for t > T.

Since the conformal time η is an increasing function of t, the effective mass m2
eff(η) =

m2a2 − ä/a and the frequency ω2
k(η) = k2 +m2

eff(η) satisfy similar conditions,

ωk(η) =

{
ωin
k for η < −T ′,

ωout
k for η > T ′,

where±T ′ = η(±T ). In these asymptotic regions, the equation (B.7) becomes the equation
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for a simple harmonic oscillator. Thus we may choose mode functions uk and vk such that

uk(η) ∝ eiω
in
k η for η < −T ′,

vk(η) ∝ eiω
out
k η for η > T ′,

which becomes the initial condition for the second order ODE (B.7). If the solutions were

found, they can be related each other by the Bogoliubov coefficients,

uk(η) = αkvk(η) + βkv
∗
k(η).

The coefficients are determined by

αk(vk, uk), βk = −(v∗k, uk).

Let âk and b̂k be the annihilation operators corresponding to the mode functions uk(η) and

vk(η), respectively. The field operator can be written in two different ways:

χ̂(η,x) =
1√
2V

∑
k

âku
∗
ke

ik·x + â†kuke
−ik·x,

χ̂(η,x) =
1√
2V

∑
k

b̂kv
∗
ke

ik·x + b̂†kvke
−ik·x.

These expressions are the expansions of the field operator χ̂ in terms of the particle opera-

tors of in region and of out region, respectively. The initial and final vacuums, |0a⟩ and |0b⟩,
have physical meaning in that they are the agreed vacuum identified by the inertial observers

in the corresponding asymptotic regions. Since we are working in Heisenberg picture, the

initial vacuum state |0a⟩ remains unchanged. Thus the result ⟨0a|N̂ (b)
k |0a⟩ = |βk|

2 ̸= 0

implies that the expectation value of number of particles in the initial vacuum can become

nonzero in the remote future. Particles can be created by time-dependent gravitational back-

ground.



Chapter C

Quantum Many-Body Physics

C.1 Fock Space

Let H be a Hilbert space to which the single particle state vectors |ψ⟩ belong. To construct

a mathematical architecture that models physical quantum system consisting of many par-

ticles, we are to consider N -fold tensor product ofH:

HN ≡ H⊗ · · · ⊗ H =
N⊗
i=1

H

A quick and dirty way to define the tensor product is to pick a basis {|λ⟩ : λ ∈ I} forH, e.g.

the collection of eigenvectors corresponding to a Hermitian operator onH. ThenHN is the

vector space whose basis is given by all expressions of the form |λ1⟩⊗ · · ·⊗ |λN ⟩, λk ∈ I .

Thus a general element ofHN can be expressed as

∑
λ1···λN∈I

Cλ1···λN
|λ1⟩ ⊗ · · · ⊗ |λN ⟩

where each λi runs over the whole index set I . The dimension of HN is, if dimH were

finite, is equal to (dimH)N . The innerproduct ofHN is defined by

(
⟨λ1| ⊗ · · · ⊗ ⟨λN |

)(
|λ′1⟩ ⊗ · · · ⊗ |λ′N ⟩

)
≡ ⟨λ1 |λ′1⟩ · · · ⟨λN |λ′N ⟩

for basis vectors. For general vectors, the innerproduct is defined by linear extension.

According to the basic postulates of quantum mechanics, physical quantum many-

body systems are divided into two classes referred to as Bosonic and Fermionic system,

repectively. And the constituents of each system are called as Bosons and Fermions. We

are to construct mathematical architecture to describe these systems. It is very rare to con-

sider a mixture of Bosons and Fermions. For such cases, we can describe the system as a

statistical ensemble of quantum states, which cannot be described by a single (many-body)

wavefunction.

127
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Consider an observable A and its corresponding eigenstates which constitutes a basis

{|λ⟩ : λ ∈ I}. And consider the corresponding basis for HN , {|λ1⟩ ⊗ · · · ⊗ |λN ⟩ :

λk ∈ I, k = 1, · · · , N}. Let us denote the symmetric group of N integers (the set of

all permutations defined on {1, · · · , N}) by SN . For each σ ∈ SN , define an operator

Pσ : HN → HN by

Pσ
(
|λ1⟩ ⊗ · · · ⊗ |λN ⟩

)
= |λσ(1)⟩ ⊗ · · · ⊗ |λσ(N)⟩.

It is well known that a linear operator is determined if its images for basis vectors are

specified. If we act Pσ to a generic vector, we obtain

Pσ
( ∑
λ1···λN

Cλ1···λN
|λ1⟩ ⊗ · · · ⊗ |λN ⟩

)
=

∑
λ1···λN

Cλ1···λN
Pσ
(
|λ1⟩ ⊗ · · · ⊗ |λN ⟩

)
=

∑
λ1···λN

Cλ1···λN
|λσ(1)⟩ ⊗ · · · ⊗ |λσ(N)⟩.

Now consider special subspaces ofHN defined by

FN
B ≡

{
|Ψ⟩ ∈ HN : Pσ|Ψ⟩ = |Ψ⟩ for all σ ∈ SN

}
FN
F ≡

{
|Ψ⟩ ∈ HM : Pσ|Ψ⟩ = sgn(σ)|Ψ⟩ for all σ ∈ SN

}
FN
B and FN

F are called Bosonic and Fermionic subspace, repetively. It can easily be shown

that these form subspaces ofHN . For example,

|Ψ⟩, |Φ⟩ ∈ FN
F , α, β ∈ C,

⇒ Pσ
(
α|Ψ⟩+ β|Φ⟩

)
= αPσ|Ψ⟩+ βPσ|Φ⟩ = sgn(σ)

(
α|Ψ⟩+ β|Φ⟩

)
⇒ α|Ψ⟩+ β|Φ⟩ ∈ FN

F .

Thus we conclude that FN
F is a subspace ofHN .

To construct a basis for FN
ζ , we consider the vectors of the form

|λ1 · · ·λN ⟩ζ ≡
1√

N !
∏

λ nλ!

∑
σ∈SN

ζ(1−sgnσ)/2|λσ(1)⟩ ⊗ · · · ⊗ |λσ(N)⟩ (C.1)

where ζ = 1 for Bosons and ζ = −1 for Fermions. Note that ζ(1−sgnσ)/2 = 1 for Bosons
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and ζ(1−sgnσ)/2 = sgn(σ) for Fermions. One can check that |λ1 · · ·λN ⟩ζ is an element of

FN
ζ . For the case of fermions (ζ = −1),

Pσ
(
|λ1 · · ·λN ⟩ζ

)
= Pσ

( 1√
N !
∏

λ nλ!

∑
τ∈SN

sgn(τ)|λτ(1)⟩ ⊗ · · · ⊗ |λτ(N)⟩
)

=
1√

N !
∏

λ nλ!

∑
τ∈SN

sgn(τ)|λτ(σ(1))⟩ ⊗ · · · ⊗ |λτ(σ(N))⟩

=
1√

N !
∏

λ nλ!
sgn(σ)

∑
τ∈SN

sgn(τ ◦ σ)|λτ◦σ(1)⟩ ⊗ · · · ⊗ |λτ◦σ(N)⟩

= sgn(σ)|λ1 · · ·λN ⟩ζ

⇒ |λ1 · · ·λN ⟩ζ ∈ FN
F .

Observe that, for some τ ∈ SN ,

|λτ(1) · · ·λτ(N)⟩ζ

=
1√

N !
∏

λ nλ!

∑
σ∈SN

ζ(1−sgnσ)/2|λσ(τ(1))⟩ ⊗ · · · ⊗ |λσ(τ(N))⟩

=


1√

N !
∏

λ nλ!

∑
σ∈SN

|λσ(τ(1))⟩ ⊗ · · · ⊗ |λσ(τ(N))⟩ (Boson)

1√
N !

∏
λ nλ!

∑
σ∈SN

sgn(σ)|λσ(τ(1))⟩ ⊗ · · · ⊗ |λσ(τ(N))⟩ (Fermion).

Since
∑

σ∈SN
f(σ ◦ τ) =

∑
σ∈SN

f(σ), we have

=


1√

N !
∏

λ nλ!

∑
σ∈SN

|λσ(1)⟩ ⊗ · · · ⊗ |λσ(N)⟩ (Boson)

1√
N !

∏
λ nλ!

∑
σ∈SN

sgn(σ ◦ τ−1)|λσ(1)⟩ ⊗ · · · ⊗ |λσ(N)⟩ (fermion)

= ζ(1−sgnτ)/2|λ1 · · ·λN ⟩ζ .

Thus, we may switch the position of λ1, · · · , λN at the cost of, at most, a change of sign.

From now on, we assume that whenever we use expressions like (C.1), λ1, · · · , λN are

arranged according to a certain ordering. If we rename λ’s by its ordering label, in the case

of discrete λ, λ’s would take values 1, 2, 3, · · · ∈ N.

We see that, if the set {λ1, · · · , λN} and {λ′1, · · · , λ′N} are not identical, |λ1 · · ·λN ⟩ζ
and |λ′1 · · ·λ′N ⟩ζ must be orthogonal, since every term in the innerproduct of them must
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contain a factor ⟨λ |λ′⟩ with λ ̸= λ′, which is zero. This condition for orthogonality can

be even neater. We have introduced a certain ordering on λ1, · · · , λN . So we can assert

that |λ1 · · ·λN ⟩ζ and |λ′1 · · ·λ′N ⟩ζ are orthogonal if λi ̸= λ′i for some i. As a conclusion, a

collection of vectors of the form |λ1 · · ·λN ⟩ζ with n-tuples (λ1, · · · , λN )’s being all distinct

is linearly independent.

We have checked that |λ1 · · ·λN ⟩ζ belongs to FN
ζ and that these vectors are linearly

independent. Although we did not checked whether they can span FN
ζ , it is known that

|λ1 · · ·λN ⟩ζ forms a basis for FN
ζ , whose proof we omit here. Therefore any Bosonic or

Fermionic state vectors can be expressed uniquely as a linear combination of |λ1 · · ·λN ⟩ζ’s:

|Ψ⟩ =
∑

λ1≤···≤λN

Cλ1···λN
|λ1 · · ·λN ⟩ζ , (C.2)

where λ1 ≤ · · · ≤ λN means that one must sum over arranged tuples (λ1, · · · , λN ) only.

The prefactor in the definition (C.1) was needed to secure the normalization condition.

ζ⟨λ1 · · ·λN |λ1 · · ·λN ⟩ζ

=
1

N !
∏

λ(nλ!)

∑
σ∈SN

ζ(1−sgnσ)/2⟨λσ(1)| ⊗ · · · ⊗ ⟨λσ(N)|


×

∑
τ∈SN

ζ(1−sgnτ)/2|λτ(1)⟩ ⊗ · · · ⊗ |λτ(N)⟩


=

1

N !
∏

λ(nλ!)

∑
σ,τ∈SN

ζ(1−sgnσ)/2ζ(1−sgnτ)/2⟨λσ(1) |λτ(1)⟩ · · · ⟨λσ(N) |λτ(N)⟩.

For Fermions, nλ! = 1 for all λ. Thus

ζ⟨λ1 · · ·λN |λ1 · · ·λN ⟩ζ =
1

N !

∑
σ,τ∈SN

sgn(σ)sgn(τ)⟨λσ(1) |λτ(1)⟩ · · · ⟨λσ(N) |λτ(N)⟩

=
1

N !

∑
σ

sgn(σ)2
∑
τ

sgn(τ)⟨λ1 |λτ(1)⟩ · · · ⟨λN |λτ(N)⟩

=
∑
τ

sgn(τ)⟨λ1 |λτ(1)⟩ · · · ⟨λN |λτ(N)⟩

= 1.
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For Bosons,

ζ⟨λ1 · · ·λN |λ1 · · ·λN ⟩ζ =
1

N !
∏

λ(nλ!)

∑
σ,τ

⟨λσ(1) |λτ(1)⟩ · · · ⟨λσ(N) |λτ(N)⟩.

For fixed σ, amongN ! τ ’s, only
∏

λ(nλ!) of them make the same arrangements as σ(1), · · · ,
σ(N). Thus

=
1

N !

∑
σ

⟨λσ(1) |λσ(1)⟩ · · · ⟨λσ(N) |λσ(N)⟩

= 1.

Thus we conclude that |λ1 · · ·λN ⟩ζ is normalized. Let us omit the subscript ζ if there is no

confusion about which species we are considering.

After we respect the ordering, we can uniquely write |λ1 · · ·λN ⟩ as |n1n2 · · · ⟩. For

example, we can denote |111122333466 · · · ⟩ simply by |423102 · · · ⟩. We call this kind of

representation as the occupation number representation. Now (C.2) can be written as

|Ψ⟩ =
∑

n1n2···∑
ni=N

Cn1n2··· |n1n2 · · · ⟩. (C.3)

Although we changed our notation, the vectors |n1n2 · · · ⟩ still are the basis vectors for FN

given by (C.1).

If the eigenvalue λ can take M values (i.e. if the dimension of the Hilbert space H
were M ), we can explicitly count the dimension of FN :

dimFN =

 M !
N !(M−N)! (Fermions) ← Choose N states to occupy among M states.
(N+M−1)!
N !(M−1)! (Bosons) ← Distribute N balls into M baskets.

Altough we consideredN ≥ 1 only, we add an artificial caseN = 0.F0 is an 1-dimensional

space with a basis vector |0⟩ which is called the vacuum state. Now we form a direct sum,

F ≡
∞⊕

N=0

FN .

Direct sum V ⊕W of vector spaces V, W is defined by, for (v1, w1), (v2, w2) ∈ V ⊕W
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and α ∈ C,

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2); α(v1, w1) = (αv1, αw1).

If {v1, · · · , vn} were a basis for V and {w1, · · · , wm} were a basis for W ,
{
(v1, 0), · · · ,

(vn, 0) , (0, w1), · · · , (0, wm)
}

is a basis for V ⊕W . Thus dim(V ⊕W ) = dimV +

dimW . If we identify (vi, 0) with vi and (0, wi) with wi, the direct sum V ⊕W is just a

vector space with basis v1, · · · , vn, w1, · · · , wm.

We have shown that FN has |n1n2 · · · ⟩ (n1 + n2 + · · · = N) as its basis. Thus the

direct sum
⊕∞

N=0FN has |n1n2 · · · ⟩ as its basis with no restriction on the total number∑
i ni. The space F =

⊕∞
N=0FN is called the Fock space. A general vector in F can be

written as

|Ψ⟩ =
∑

n1n2···
Cn1n2··· |n1n2 · · · ⟩.

This differs from (C.3) in that it does not have any restriction on the total number of parti-

cles.

C.2 Creation and Annihilation Operators

Having defined the space where many-body state vectors live, we move onto the discussion

of operators defined on the Fock space. Let H be a Hilbert space, A be a Hermitian oper-

ator defined on H, and |λ⟩ be the corresponding eigenstates. And let F be the Fock space

constructed fromH. We define a special operators a†i : F → F by

a†i |n1n2 · · · ⟩ ≡
√
ni + 1ζsi |n1 · · ·ni + 1 · · · ⟩ (C.4)

where si =
∑i−1

j=1 nj . In Fermionic case, the prefactor ni + 1 has to be understood mod 2,

i.e., 1 + 1 = 0 mod 2.

Observe that, for any M ∈ N,

M∏
i=1

1√
ni!

(a†i )
ni |0⟩ = 1√

n1!
(a†1)

n1 · · · 1√
nM−1!

(a†M−1)
nM−1

1√
nM !

(a†M )nM |0⟩

= |n1 · · ·nM ⟩.
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Thus we obtain,

|n1n2 · · · ⟩ =
∞∏
i=1

1√
ni!

(a†i )
ni |0⟩. (C.5)

It would be instructive to recall that |n1n2 · · · ⟩ was originally,

|n1n2 · · · ⟩ = |λ1 · · ·λN ⟩ζ

=
1√

N !
∏

λ(nλ!)

∑
σ∈SN

ζ(1−sgnσ)/2|λσ(1)⟩ ⊗ · · · ⊗ |λσ(N)⟩.
(C.6)

Comparing (C.5) and (C.6), we see that (C.5) is easier to notice. In (C.5),N -fold application

of a† generates N -particle state. So a† are commonly called the creation operators.

Using the definition (C.4), we can show that, for i ̸= j,

a†ia
†
j |n1n2 · · · ⟩

=
√
nj + 1ζ

∑j−1
k=1 nka†i |n1 · · ·nj + 1 · · · ⟩

=

{ √
nj + 1

√
ni + 1ζ

∑j−1
k=1 nkζ

∑i−1
k=1 nk |n1 · · ·ni + 1 · · ·nj + 1 · · · ⟩ (i < j)√

nj + 1
√
ni + 1ζ

∑j−1
k=1 nkζ

∑i−1
k=1 nk+1|n1 · · ·nj + 1 · · ·ni + 1 · · · ⟩ (i > j)

a†ja
†
i |n1n2 · · · ⟩

=

{ √
nj + 1

√
ni + 1ζ

∑i−1
k=1 nkζ

∑j−1
k=1 nk+1|n1 · · ·ni + 1 · · ·nj + 1 · · · ⟩ (i < j)√

nj + 1
√
ni + 1ζ

∑i−1
k=1 nkζ

∑j−1
k=1 nk |n1 · · ·nj + 1 · · ·ni + 1 · · · ⟩ (i > j).

Thus we obtain

(a†ia
†
j − ζa

†
ja

†
i )|n1n2 · · · ⟩ = 0 ⇒ [a†i , a

†
j ]ζ := a†ia

†
j − ζa

†
ja

†
i = 0.

In the case of i = j, for Bosons, obviously [a†i , a
†
i ]+1 = a†ia

†
i − a

†
ia

†
i = 0. For Fermions

we can show as above that (a†i )
2 = 0 using the fact that 1 + 1 = 0 mod 2. Thus we get

[a†i , a
†
i ]−1 = 0. (a†i )

2 = 0 says that two-fold application of a†i to any state leads to its

annihilation. Actually, although not intuitively straightforward, this is a formal statement of

the Pauli exclusion principle.
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Now we consider the Hermitian conjugate of a†i denoted by (a†i )
† = ai.

ai|n1n2 · · · ⟩ =
∑

n′
1n

′
2···

Cn′
1n

′
2···|n

′
1n

′
2 · · · ⟩

⇒ Cn′
1n

′
2··· = ⟨n

′
1n

′
2 · · · |ai|n1n2 · · · ⟩ = ⟨n1n2 · · · |a

†
i |n

′
1n

′
2 · · · ⟩∗

=
√
n′i + 1ζ

∑i−1
j=1 n

′
jδn1n′

1
· · · δnin′

i+1 · · ·

⇒ ai|n1n2 · · · ⟩ =
∑

n′
1n

′
2···

√
n′i + 1ζ

∑i=1
j=1 njδn1n′

1
· · · δni,n′

i+1 · · · |n′1n′2 · · · ⟩

⇒ ai|n1n2 · · · ⟩ =
√
niζ

si |n1 · · ·ni − 1 · · · ⟩. (C.7)

The operators a are commonly called the annihilation operators.

Using (C.4) and (C.7), a straightforward calculation shows that

[ai, a
†
j ]ζ = δij , and [ai, aj ]ζ = [a†i , a

†
j ]ζ = 0. (C.8)

People use the following notation

[A,B]− = AB −BA, [A,B]+ = AB +BA.

Thus, for Bosons, the commutation relation between the creation/annihilation operators can

be written as

[ai, a
†
j ]− = δij , and [ai, aj ]− = [a†i , a

†
j ]− = 0.

Incidentally, it can be shown that the algebra (C.8) fully characterizes the operator ac-

tion so that we can find a unique (up to unitary equivalence) representation of these operators

and a unique state |0⟩ from which all other states can be reached by repeated application of

a†i . This is the statement of the Stone-von Neumann theorem (For more precise statement,

see [112, pp. 45-46].)

We define an operator n̂i ≡ a†iai which is called an occupation number operator.

It can be shown that n̂i|n1n2 · · · ⟩ = ni|n1n2 · · · ⟩. So far, we succeeded to express the

state vectors in Fock space using creation and annihilation operators. Now we seek for an

expression for observables in terms of these operators.
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C.3 One-Body and Two-Body Operators

Let H be a Hilbert space. Consider an observable A and its corresponding eigenstates

|λ⟩, λ ∈ I . And consider another observable B and its eigenstates |λ̃⟩, λ̃ ∈ Ĩ . By def-

inition, a†λ|0⟩ = |0 · · · 1 · · · ⟩ = |λ⟩ and a†
λ̃
|0⟩ = |0 · · · 1 · · · ⟩ = |λ̃⟩ hold. Thus we obtain

a†
λ̃
|0⟩ = |λ̃⟩ =

∑
λ

⟨λ | λ̃⟩|λ⟩ =
∑
λ

⟨λ | λ̃⟩a†λ|0⟩.

In general it is known that

a†
λ̃
=
∑
λ

⟨λ | λ̃⟩a†λ, (C.9)

i.e., creation operators transform covariantly under basis change. By taking Hermitian con-

jugate of (C.9), we get

aλ̃ =
∑
λ

⟨λ̃ |λ⟩aλ, (C.10)

i.e., annihilation operators transform contravariantly under basis change.

Let ô be a Hermitian operator defined on a Hilbert space. One-body operator Ô1

corresponding to ô is an operator acting on N -particle Fock space FN and is defined by

Ô1 ≡
N∑

n=1

ôn, ôn = 1⊗ · · · ⊗ ô⊗ · · · ⊗ 1

where ô is an ordinary single particle operator and 1 is the identity operator. Here, ôn is

an operator that applies ô only to the n-th particle while all the other particles remain un-

changed. A typical example of single-particle operator would be the kinetic energy operator

T̂ =
∑

n
p̂2
n

2m .

Let |λ⟩ be the eigenstates of ô and we introduce the occupation number representation

corresponding to these eigenstates. Then

Ô1|n1n2 · · · ⟩ =
1√

N !
∏

λ(nλ!)

∑
σ∈SN

ζ(1−sgnσ)/2
N∑

n=1

ôn|λσ(1)⟩ ⊗ · · · ⊗ |λσ(N)⟩.

One may notice here that

N∑
n=1

ôn|λσ(1)⟩ ⊗ · · · ⊗ |λσ(N)⟩ =
(∑

λ

λnλ
)
|λσ(1)⟩ ⊗ · · · ⊗ |λσ(N)⟩
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holds. Therefore we obtain

Ô1|n1n2 · · · ⟩ =
(∑

λ

λnλ

)
|n1n2 · · · ⟩ =

(∑
λ

λn̂λ

)
|n1n2 · · · ⟩.

We finally get an expression for the single-particle operator Ô1 in terms of creation/annihilation

operators:

Ô1 =
∑
λ∈I

λn̂λ =
∑

λ,λ′∈I
⟨λ|ô|λ′⟩a†λaλ′ .

Let {|µ⟩ : µ ∈ J} and {|ν⟩ : ν ∈ K} be complete set of eigenstates corresponding to some

other observables. Then,

=
∑

λ,λ′∈I
µ∈J,ν∈K

⟨λ |µ⟩⟨µ|ô|ν⟩⟨ν |λ′⟩a†λaλ′

=
∑

µ∈J,ν∈K
⟨µ|ô|ν⟩

(∑
λ∈I
⟨λ |µ⟩a†λ

)(∑
λ′∈I
⟨ν |λ′⟩aλ′

)
=
∑
µ,ν

⟨µ|ô|ν⟩a†µaν .

Thus we conclude that

Ô1 =
∑
µ,ν

⟨µ|ô|ν⟩a†µaν . (C.11)

The representation of an operator in terms of creation/annihilation operators is usually

called a second quantized form .

At this point, it would be instructive to look upon an example. Consider a single particle

Hamiltonian Ĥ = p̂2

2m + V (x̂). Using (C.11), single-particle operator corresponding to the

Hamiltonian Ĥ can be represented by (we use the same symbol for single-particle operator)

Ĥ =

∫
drdr′ ⟨r| p̂

2

2m
+ V (x̂)|r′⟩a†(r)a(r′)

=

∫
drdr′

(
− ℏ2

2m
∇2 + V (r)

)
δ3(r− r′)a†(r)a(r′)

=

∫
drdr′

(
− ℏ2

2m
∇′2 + V (r)

)
δ3(r− r′)a†(r)a(r′)

=

∫
dr a†(r)

(
− ℏ2

2m
∇2 + V (r)

)
a(r).

In this example, we applied the results we derived for discrete eigenvalues to a continuous
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eigenvalues (position). This will be justified in the following section.

Now we move onto the two-body operators, which are needed to describe pairwise

interactions. Let ô be an Hermitian operator defined on a product spaceH2 = H⊗H, i.e., ô

acts on a state vector representing a system of two particles. Let |µ⟩ (µ ∈ I) be eigenstates

of an observable Â defined on the single particle Hilbert space H. We assume that ô is a

function of Â1 and Â2, where Âi is just the observable Â defined on i-th Hilbert spaceH:

ô = o(Â1, Â2). (C.12)

If we act ô to a vector |µ⟩|ν⟩ ∈ H⊗H (here we omitted ⊗ between |µ⟩ and |ν⟩), we obtain

ô|µ⟩|ν⟩ = o(Â1, Â2)|µ⟩|ν⟩ = o(µ, ν)|µ⟩|ν⟩.

We assume further that the function o(µ, ν) is symmetric, i.e.,

o(µ, ν) = o(ν, µ). (C.13)

The conditions (C.12) and (C.13) are usual properties of operators describing pairwise in-

teractions, which we will see later.

The two-body operator Ô2 corresponding to ô = o(Â1, Â2) is an operator acting on

FN defined by

Ô2|λ1⟩ · · · |λN ⟩ =
∑

1≤i<j≤N

o(λi, λj)|λ1⟩ · · · |λN ⟩,

which means, we pick all possible pairs of two vectors |λi⟩, |λj⟩, among |λ1⟩, · · · , |λN ⟩,
and act ô = o(Â1, Â2) to obtain ô|λi⟩|λj⟩ = o(λi, λj)|λi⟩|λj⟩, and put these vectors at

the original position. A typical example of two-body operator is the coulomb potential

V (r̂1, r̂2) =
1

4πε0
e2

|r̂1−r̂2| .

Now we claim that the second quantized form of the two-body operator Ô2 is

Ô2 =
1

2

∑
µνµ′ν′

a†µa
†
ν⟨µ|⟨ν|ô|µ′⟩|ν ′⟩aν′aµ′ (C.14)

=
1

2

∑
µνµ′ν′

a†µa
†
ν o(µ

′, ν ′) δµµ′δνν′aν′aµ′ =
1

2

∑
µν

a†µa
†
ν o(µ, ν) aνaµ.



138 APPENDIX C. QUANTUM MANY-BODY PHYSICS

Here, the second and third lines are used more frequently in practical discussion.

Let’s prove the claim. To this end, recall that

|λ1 · · ·λN ⟩ζ ≡
1√

N !
∏

λ nλ!

∑
σ∈SN

ζ(1−sgnσ)/2|λσ(1)⟩ ⊗ · · · ⊗ |λσ(N)⟩ (C.15)

=
1√∏
λ nλ!

a†λ1
· · · a†λN

|0⟩ (C.16)

holds. Now we prove (C.14) as follows.

Ô2|λ1 · · ·λN ⟩ζ =
∑
σ∈SN

ζ(1−sgnσ)/2√
N !
∏

λ(nλ!)

∑
1≤i<j≤N

o(λσ(i), λσ(j))|λσ(1)⟩ · · · |λσ(N)⟩.

Here, the factor
∑

1≤i<j≤N o(λσ(i), λσ(j)) can be separated from other parts of the above

expression. For fixed σ, the pairs (λσ(i), λσ(j)), 1 ≤ i < j ≤ N sweeps every pairs

(λi′ , λj′), possibly i′ > j′. But, by the symmetric property (C.13), it doesn’t matter. Thus

we have ∑
1≤i<j≤N

o(λσ(i), λσ(j)) =
∑

1≤i<j≤N

o(λi, λj),

and thus

Ô2|λ1 · · ·λN ⟩ζ

=
∑
σ∈SN

ζ(1−sgnσ)/2√
N !
∏

λ(nλ!)

∑
1≤i<j≤N

o(λi, λj)|λσ(1)⟩ · · · |λσ(N)⟩
1√

N !
∏

λ(nλ!)

=
∑

1≤i<j≤N

o(λi, λj)|λ1 · · ·λN ⟩ζ .

From (C.16), we have

=
∑

1≤i<j≤N

o(λj , λi)√∏
λ nλ!

a†λ1
· · · a†λN

|0⟩

=
∑

1≤i<j≤N
σ∈S2

ζ(1−sgnσ)/2

2
√∏

λ nλ!
o
(
σ(λj), σ(λi)

)
a†λ1
· · · a†σ(λi)

· · · a†σ(λj)
· · · a†λN

|0⟩

=
∑

1≤i<j<≤N
σ∈S2
µ,ν

ζ(1−sgnσ)/2

2
√∏

λ nλ!
o(µ, ν)δµσ(λj)δνσ(λi)ζ

i+ja†µa
†
νa

†
λ1
· · · â†λi

· · · â†λj
· · · a†λN

|0⟩.
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Here, the wide hat implies its absence.

=
1

2
√∏

λ nλ!

∑
µ,ν
µ′,ν′

o(µ, ν)δµµ′δνν′a
†
µa

†
ν

∑
1≤i<j≤N

σ∈S2

ζi+jζ(1−sgnσ)/2δµ′σ(λj)δν′σ(λi)

· a†λ1
· · · â†λi

· · · â†λj
· · · a†λN

|0⟩

=
1

2
√∏

λ nλ!

∑
µ,ν
µ′,ν′

a†µa
†
ν⟨µ|⟨ν|ô|µ′⟩|ν ′⟩

[ ∑
1≤i<j≤N

σ∈S2

ζi+jζ(1−sgnσ)/2δµ′σ(λj)δν′σ(λi)

· a†λ1
· · · â†λi

· · · â†λj
· · · a†λN

|0⟩

]
.

We claim that the factor in the square bracket can be written as aν′aµ′a†λ1
· · · a†λN

|0⟩. This

can be shown as follows.

Imagine that we proceed aν′ and aµ′ in aν′aµ′a†λ1
· · · a†λN

|0⟩ to the vacuum state vector

|0⟩ using commutation relations. Then it will have the form

aν′aµ′a†λ1
· · · a†λN

|0⟩ =
∑

1≤i<j≤N

∑
σ∈S2

Cijσδµ′σ(λj)δν′σ(λi)a
†
λ1
· · · â†λi

· · · â†λj
· · · a†λN

|0⟩

where Cijσ are coefficients to be determined. Observe that

aν′aµ′a†λ1
· · · a†λN

|0⟩

= aν′aµ′ζ(j−1)+(i−1)a†λj
a†λi

a†λ1
· · · â†λi

· · · â†λj
· · · a†λN

|0⟩

= ζi+jζ(1−sgnσ)/2aν′aµ′a†σ(λj)
a†σ(λi)

a†λ1
· · · â†λi

· · · â†λj
· · · a†λN

|0⟩

= ζi+jζ(1−sgnσ)/2δµ′σ(λj)δν′σ(λi)a
†
λ1
· · · â†λi

· · · â†λj
· · · a†λN

|0⟩+ · · · . (C.17)

Since a†λ1
· · · â†λi

· · · â†λj
· · · a†λN

|0⟩’s are linearly independent for each 1 ≤ i < j ≤ N , we

can obtain the coefficient Cijσ = ζi+jζ(1−sgnσ)/2. Thus we have proved the claim,

aν′aµ′a†λ1
· · · a†λN

|0⟩

=
∑

1≤i<j≤N

∑
σ∈S2

ζi+j+(1−sgnσ)/2δµ′σ(λj)δν′σ(λi)a
†
λ1
· · · â†λi

· · · â†λj
· · · a†λN

|0⟩.
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Now we get

Ô2|λ1 · · ·λN ⟩ζ =
1

2
√∏

λ nλ!

∑
µ,ν
µ′,ν′

a†µa
†
ν⟨µ|⟨ν|ô|µ′⟩|ν ′⟩aν′aµ′a†λ1

· · · a†λN
|0⟩

=
1

2

∑
µ,ν
µ′,ν′

a†µa
†
ν⟨µ|⟨ν|ô|µ′⟩|ν ′⟩aν′aµ′ |λ1 · · ·λN ⟩ζ

by (C.16). Therefore we conclude that the second quantized form of the two-body operator

Ô2 is as in (C.14).

Let’s look upon an example. The coulomb interaction between electrons can be repre-

sented as second quantized form by using (C.14):

V̂ =
1

2

∫
drdr′dr′′dr′′′a†σ(r)a

†
σ′(r

′)⟨rσ|⟨r′σ′| 1

4πε0

e2

|x̂1 − x̂2|
|r′′σ′′⟩|r′′′σ′′′⟩aσ′′′(r′′′)aσ′′(r′′)

=
e2

8πε0

∫
drdr′dr′′dr′′′a†σ(r)a

†
σ′(r

′)
δσσ′′δσ′σ′′′

|r− r′|
δ3(r− r′′)δ3(r′ − r′′′)aσ′′′(r′′′)aσ′′(r′′)

=
e2

8πε0

∫
drdr′a†σ(r)a

†
σ′(r

′)
1

|r− r′|
aσ′(r′)aσ(r),

where summation on spin indices σ = ±1
2 is assumed.

For many cases, we need to express a two-body operator by another basis, e.g., by the

energy eigenstates of the system, rather than by the position eigenstates as in the example

above. We must apply a change of basis in eq.(C.14). In another basis, the two-body operator

still have the same form as before, while |µ⟩, |ν⟩ are not the eigenstates of ô (of Â, more

precisely) anymore.

We are relatively familiar with manipulations and interpretations of the (many particle)

Schrödinger equation. The concepts and structures we have developed so far seems first

somewhat abstract and impractical. And it is hard to see the connection between the many-

body wave functions and the abstract Fock space state vectors. In the following sections,

we are going to introduce a non-linear wave equation from the Fock space formalism. And

we will clarify the relation between the Fock space state vectors and the many-body wave

functions which are somewhat more tractable.
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C.4 Ordering of Eigenvalues

Let H be a Hilbert space and consider a complete set of eigenstates {|λ⟩ : λ ∈ I}. We can

construct a basis {|λ1⟩ ⊗ · · · ⊗ |λn⟩ : λk ∈ I, k = 1, · · · , n} for the n-fold tensor product

spaceHn.

Let σ be an element of symmetric group Sn. If we define an operator Pσ : Hn → Hn

byPσ(|λ1⟩⊗· · ·⊗|λn⟩) = |λσ(1)⟩⊗· · ·⊗|λσ(n)⟩, we can characterize the Bosonic/fermionic

subspaces by

Fn
ζ ≡

{
|φ⟩ ∈ Hn : Pσ|φ⟩ = ζ(1−sgnσ)/2|φ⟩ for all σ ∈ Sn

}
where ζ = +1 for Bosons and ζ = −1 for fermions. Consider vectors of the form

|λ1 · · ·λn⟩ζ ≡
1√

n!
∏

λ nλ!

∑
σ∈Sn

ζ(1−sgnσ)/2|λσ(1)⟩ ⊗ · · · ⊗ |λσ(n)⟩ (C.18)

where, in the prefactor, nλ are nothing but the number of occurance of each eigenvalues

in λ1, · · · , λn. Since we may switch the position of λ1, · · · , λn at the cost of a change of

sign, we introduce an ordering to fix the representation of the vector (C.18). In the previous

sections, we saw that these vectors form an orthonormal basis for Fn
ζ .

After we respect the ordering of eigenvalues, we can write |λ1 · · ·λn⟩ζ as |n1n2 · · · ⟩
uniquely. For example, we can denote |1111223334667 · · · ⟩ζ simply by |423102 · · · ⟩. We

call this kind of representation as occupation number representation. Now, an arbitrary vec-

tor |φ⟩ ∈ Fn
ζ can be expressed as a linear combination of |n1n2 · · · ⟩’s.

|φ⟩ =
∑

n1n2···∑
ni=n

Cn1n2···|n1n2 · · · ⟩. (C.19)

After we construct the Fock space Fζ ≡
⊕∞

n=0Fn
ζ , we define operators a†i and ai by

a†i |n1n2 · · · ⟩ ≡
√
ni + 1ζsi |n1 · · ·ni + 1 · · · ⟩

ai|n1n2 · · · ⟩ ≡
√
niζ

si |n1 · · ·ni − 1 · · · ⟩

where si =
∑i−1

j=1 nj . From this definitions we can obtain the commutation relations.

[ai, a
†
j ]± = δij , [ai, aj ]± = [a†i , a

†
j ]± = 0
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where upper signs are for fermions and lower signs are for Bosons. In terms of these cre-

ation/annihilation operators, we can express the basis vectors |n1n2 · · · ⟩ by

|n1n2 · · · ⟩ =
∞∏
i=1

1√
ni!

(a†i )
ni |0⟩. (C.20)

Although the occupation number representation (C.20) is a great simplification of the com-

plicated notation (C.18), it still has several defects. One thing is that we have to define an

ordering on the eigenvalues to arrange occupation numbers in unique way. The other de-

fect is that, in the case of continuous eigenvalues, we have to introduce continuously many

occupation numbers, which cannot be listed as before. To overcome these defects, we try

to express a state vector not by a summation over occupation numbers (C.19), but by a

summation over eigenvalues.

Let |φ⟩ ∈ Fn
ζ be an arbitrary n-particle state vector. This vector can be expressed

as a linear combination of |n1n2 · · · ⟩. Since each |n1n2 · · · ⟩ can be obtained by applying

creation operators to the vacuum state for n times, we may express the generic state vector

|φ⟩ by

|φ⟩ =
∑

ν1,··· ,νn
Cν1···νn

1√
n!
a†ν1 · · · a

†
νn |0⟩. (C.21)

Note that (C.21) involves a summation over eigenvalues while (C.19) involves a summation

over occupation numbers. The factor 1√
n!

is conventional. Note also that there is no symmet-

ric property on the indices of Cν1···νn yet. But, by using the property a†νσ(1)
· · · a†νσ(n)

|0⟩ =
ζ(1−sgnσ)/2a†ν1 · · · a

†
νn |0⟩, we can symmetrize/antisymmetrize the indices:

|φ⟩ =
∑

ν1,··· ,νn
Cν1···νn

1√
n!
a†ν1 · · · a

†
νn |0⟩

=
1

n!

∑
σ∈Sn

ζ(1−sgnσ)/2
∑

ν1,··· ,νn
Cν1···νn

1√
n!
a†νσ(1)

· · · a†νσ(n)
|0⟩.

For fixed σ ∈ Sn, define ωi ≡ νσ(i). Then

=
1

n!

∑
σ∈Sn

ζ(1−sgnσ)/2
∑

ν1,··· ,νn
Cωσ−1(1)···ωσ−1(n)

1√
n!
a†ω1
· · · a†ωn

|0⟩.
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Since (ν1, · · · , νn) 7→ (ω1, · · · , ωn) = (νσ(1), · · · , νσ(n)) is bijective,

=
1

n!

∑
σ∈Sn

ζ(1−sgnσ)/2
∑

ω1,··· ,ωn

Cωσ−1(1)···ωσ−1(n)

1√
n!
a†ω1
· · · a†ωn

|0⟩

=
∑

ω1,··· ,ωn

(
1

n!

∑
σ∈Sn

ζ(1−sgnσ)/2Cωσ(1)···ωσ(n)

)
1√
n!
a†ω1
· · · a†ωn

|0⟩.

If we define C̃ω1···ωn ≡ 1
n!

∑
σ∈Sn

ζ(1−sgnσ)/2Cωσ(1)···ωσ(n)
, then the indices of C̃ω1··· ,ωn

have desired symmetric/antisymmetric property, i.e., C̃ωσ(1)···ωσ(n)
= ζ(1−sgnσ)/2C̃ω1···ωn .

We finally obtain eq.(C.21) with Cν1···νn having symmetric/antisymmetric property.

Now we determine the coefficients Cω1···ωn . To this end, we calculate

1√
N !
⟨0|aν′N · · · aν′1a

†
ν1 · · · a

†
νN
|0⟩ 1√

N !
.

Imagine that aν′1 , · · · , a
†
ν′N

are prodeeding to |0⟩ by commuting with creation operators.

Each aν′i will meet a†νj to give δν′iνj . Thus it will become

1√
N !
⟨0|aν′N · · · aν′1aν1 · · · aνN |0⟩

1√
N !

=
1

N !

∑
σ∈SN

Cσδν′1νσ(1)
· · · δν′Nνσ(N)

where Cσ are coefficient we cannot specify yet.

To determine Cσ, observe that

1√
N !
⟨0|aν′N · · · aν′1a

†
ν1 · · · a

†
νN
|0⟩ 1√

N !
=

1

N !
ζ(1−sgnσ)/2⟨0|aν′N · · · aν′1a

†
νσ(1)
· · · a†νσ(N)

|0⟩

=
1

N !
ζ(1−sgnσ)/2δν′1νσ(1)

· · · δν′Nνσ(N)
+ · · · .

We don’t need to calculate the other terms. We see that Cσ = ζ(1−sgnσ)/2. Therefore we

conclude that

1√
N !
⟨0|aν′N · · · aν′1aν1 · · · aνN |0⟩

1√
N !

=
1

N !

∑
σ∈SN

ζ(1−sgnσ)/2δν′1νσ(1)
· · · δν′Nνσ(N)

.

(C.22)
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Now, by applying 1√
N !
⟨0|aν′N · · · aν′1 to (C.21), we obtain

1√
N !
⟨0|aν′N · · · aν′1 |φ⟩ =

∑
ν1···νN

Cν1···νN
1

N !
⟨0|aν′N · · · aν′1aν1 · · · aνN |0⟩

=
∑

ν1···νN

Cν1···νN
1

N !

∑
σ∈SN

ζ(1−sgnσ)/2δν′1νσ(1)
· · · δν′Nνσ(N)

=
1

N !

∑
σ∈SN

ζ(1−sgnσ)/2Cν′
σ(1)

···ν′
σ(N)

=
1

N !

∑
σ∈SN

Cν′1···ν′N

= Cν′1···ν′N

Therefore, we finally get

|φ⟩ =
∑

ν1···νN

1√
N !
⟨0|aνN · · · aν1 |φ⟩

1√
N !
a†ν1 · · · a

†
νN
|0⟩. (C.23)

Eq.(C.23) involves summation over eigenvalues while eq.(C.19) involves summation over

occupation numbers. This expression is convenient because we don’t need to concern the

ordering of eigenvalues. We will see how this is convenient.

C.5 Field Operators and Wavefunctions

It is desirable to see the connection between the many-body wavefunctions, which is more

tractable, and the abstract Fock space vectors. To this end, we introduce field operators.

Let Â be an observable and {|ν⟩} be the corresponding eigenbasis. We can construct

the creation/annihilation operators corresponding to the observable Â. We have the commu-

tation relations,

[âν , â
†
ν′ ]± = δνν′ , [âν , âν′ ]± = [â†ν , â

†
ν′ ]± = 0, (C.24)

where we revived the ‘hat’s to indicate that they are operators. Here ‘+’ is for Fermions and

‘−’ is for Bosons.

Now we define the field operators ψ̂(x) and ψ̂†(x) by

ψ̂(x) ≡
∑
ν

uν(x)âν , ψ̂†(x) =
∑
ν

u∗ν(x)â
†
ν , (C.25)
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where uν(x) = ⟨x | ν⟩. We used special observable Â and its eigenstates to define the field

operators. For the field operators to be a natural concept, we have to show that the definition

(C.25) does not depend on such choices.

Let B̂ be another observable, {vµ(x)} be the eigenfunctions of B̂, and b̂†µ, b̂µ be the

creation/annihilation operators corresponding to B̂. Then, by the transformation rule for

creation/annihilation operators (C.9), we obtain

∑
ν

uν(x)âν =
∑
µ,ν

⟨x | ν⟩⟨ν |µ⟩b̂µ =
∑
µ

⟨x |µ⟩b̂µ =
∑
µ

vµ(x)b̂µ.

Therefore the definition (C.25) does not depend on the choice of eigenbasis.

By using the commutation relations (C.24), we can show that

[ψ̂(x), ψ̂†(x)]± = δ(x− x′), [ψ̂(x), ψ̂(x′)]± = [ψ̂†(x), ψ̂†(x′)]± = 0. (C.26)

For example,

[ψ̂(x), ψ̂†(x′)]± =
∑
ν,ν′

uν(x)u
∗
ν′(x

′)[âν , â
†
ν′ ]± =

∑
ν

⟨x | ν⟩⟨ν |x′⟩ = δ(x− x′).

We may inverse the definition (C.25) by using orthogonality of {uν(x)} to obtain expres-

sions for âν and â†ν in terms of the field operators.

âν =

∫
dxu∗ν(x)ψ̂(x), â†ν =

∫
dxuν(x)ψ̂

†(x). (C.27)

For example,∫
dxu∗ν(x)ψ̂(x) =

∫
dxu∗ν(x)

∑
ν′

uν′(x)âν′ =
∑
ν′

δνν′ âν′ = âν .

Substituing (C.27) to (C.23), we obtain

|φ⟩ =
∑

ν1,··· ,νN

∫
dx1 · · · dx′

N u∗νN (xN ) · · ·u∗ν1(x1)uν1(x
′
1) · · ·uνN (x

′
N )

· 1√
N !
⟨0|ψ̂(xN ) · · · ψ̂(x1)|φ⟩ ·

1√
N !
ψ̂†(x′

1) · · · ψ̂†(x′
N )|0⟩

=

∫
dx1 · · · dxN

1√
N !
⟨0|ψ̂(xN ) · · · ψ̂(x1)|φ⟩ ·

1√
N !
ψ̂†(x1) · · · ψ̂†(xN )|0⟩. (C.28)
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This is the expression for a generic N -particle many-body state vector in terms of field

operators. Eq.(C.28) shows that the collection
{

1√
N !
ψ̂†(x1) · · · ψ̂†(xN )|0⟩ : xi ∈ R3

}
spans the space FN

ζ . Furthermore, we see that the operator

1N =

∫
dx1 · · · dxN

1√
N !
ψ̂†(x1) · · · ψ̂†(xN )|0⟩⟨0|ψ̂(xN ) · · · ψ̂(x1)

1√
N !

can be regarded as the identity operator if it acts on N particle Fock space states. If it acts

on a state with different number of particles, it gives zero.

Now we can reveal the connection between the Fock space vector |φ⟩ and the tractable

many-body wavefunction. Before revealing the connection, let us recall what we meant by

saying many-body wavefunction φ(x1, · · · ,xN ). Consider a set of orthonormal wavefunc-

tions {wν(x)}. These are the single particle wavefunctions that we regard to be relevant to

the system of concern. In case of hydrogenic atoms, these are products of the spherical har-

monics and the radial wavefunctions. The many-body wavefunction with ni particles being

in wνi(x) state is written as

φ(x1, · · · ,xN ) =
1√

N !
∏

λ nλ!

∑
σ∈SN

ζ(1−sgnσ)/2wνσ(1)
(x1) · · ·wνσ(N)

(xN ). (C.29)

This is a usual quantum mechanical argument.

We define operators on the Fock space by

cν ≡
∫
dxw∗

ν(x)ψ̂(x) and c†ν ≡
∫
dxwν(x)ψ̂

†(x). (C.30)

Then the commutation relations (C.26) implies

[cν , c
†
ν′ ]± = δνν′ , [cν , cν′ ]± = [c†ν , c

†
ν′ ]± = 0.

And by inverting (C.30), we get ψ̂(x) =
∑

ν wν(x)cν and ψ̂†(x) =
∑

ν w
∗
ν(x)c

†
ν .

Until this point, it is not clear why we introduced c†ν and cν . We assert that the Fock

space state vector |φ⟩ that models a system with ni particles being in wνi(x) state is

|φ⟩ = 1√∏
λ nλ!

c†ν1 · · · c
†
νN
|0⟩.
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And we claim that

φ(x1, · · · ,xN ) =
1√
N !
⟨0|ψ̂(xN ) · · · ψ̂(x1)|φ⟩ (C.31)

holds. This is the relation between the wavefunction and the field operators. The proof goes

as follows.

φ(x1, · · · ,xN ) (C.32)

=
1√

N !
∏

λ nλ!

∑
σ∈SN

ζ(1−sgnσ)/2wνσ(1)
(x1) · · ·wνσ(N)

(xN ) (C.33)

=
1√
N !

∑
ν′1···ν′N

wν′1
(x1) · · ·wν′N

(xN )
1√∏
λ nλ!

∑
σ∈SN

ζ(1−sgnσ)/2δνσ(1)ν
′
1
· · · δνσ(N)ν

′
N
.

Recalling the identity, ⟨0|cν′N · · · cν′1c
†
ν1 · · · c

†
νN |0⟩ =

∑
σ∈SN

ζ(1−sgnσ)/2δνσ(1)ν
′
1
· · · δνσ(N)ν

′
N

,

we get

=
1√
N !

∑
ν′1···ν′N

wν′1
(x1) . . . wν′N

(xN )
1√∏
λ nλ!

⟨0|cν′N · · · cν′1c
†
ν1 · · · c

†
νN
|0⟩

=
1√
N !
⟨0|ψ̂N (xN ) · · · ψ̂1(x1)

1√∏
λ nλ!

c†ν1 · · · c
†
νN
|0⟩

=
1√
N !
⟨0|ψ̂N (xN ) · · · ψ̂1(x1)|φ⟩. (C.34)

The claim (C.31) is proved.

By putting (C.31) into (C.28), we obtain the following expression for the state vector

|φ⟩:
|φ⟩ =

∫
dx1 · · · dxN φ(x1, · · · ,xN )

1√
N !
ψ̂†(x1) · · · ψ̂†(xN )|0⟩, (C.35)

where φ(x1, · · · ,xN ) = 1√
N !
⟨0|ψ̂(xN ) · · · ψ̂(x1)|φ⟩ is the tractable many-body wavefunc-

tion corresponding to the state vector |φ⟩.

C.6 Density Operators

Density operators are fundamental objects in statistical mechanics in that they represent

the ensemble itself and are the only things we need to know to calculate macroscopic ob-

servable quantities. Bose-Einstein condensation(BEC) is one of the most interesting many
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particle phenomenon and so it must be characterized (defined) in terms of density operator

representing the system. In subsequent sections, we will discuss the definition of BEC and

one of its sufficient condition, the celebrated concept of ‘Off-Diagonal Long-Range Order

(ODLRO)’. To this end, we develop here the theory of density operators.

Mathematically, density operator is a positive Hermitian operator with unit trace.

Most easy but practical construction of a density operator for given system is to use all

the possible states of the system. Suppose that an ensemble of systems can occupy states

|Φi⟩, i = 1, · · · ,M . |Φi⟩ can be a state vector in a single particle Hilbert space H or

a many particle state belonging to a Fock space. Suppose we also know the probability

pi (0 ≤ pi ≤ 1,
∑

i pi = 1) that a system in the ensemble is in the state |Φi⟩. pi is

just the number of systems occupying state |Φi⟩ divided by the total number of systems in

the ensemble. Now we represent the ensemble by a single mathematical object, the density

operator:

ρ̂ =

M∑
i=1

pi|Φi⟩⟨Φi|. (C.36)

The density operator ρ̂ given by above equation is positive because

⟨Ψ|ρ̂|Ψ⟩ =
M∑
i=1

pi|⟨Ψ |Φi⟩|2 ≥ 0 for any |Ψ⟩.

ρ̂ is Hermitian because

ρ̂† =
M∑
i=1

pi
(
|Φi⟩⟨Φi|

)†
=

M∑
i=1

pi|Φi⟩⟨Φi| = ρ̂.

Here we used (|a⟩⟨b|)† = |b⟩⟨a|. This can be proved easily:

⟨φ|(|a⟩⟨b|)†|ψ⟩ =
(
⟨ψ|(|a⟩⟨b|)|φ⟩

)∗
= ⟨φ | b⟩⟨a |ψ⟩

= ⟨φ|(|b⟩⟨a|)|ψ⟩ for all |ψ⟩, |φ⟩ ⇒ (|a⟩⟨b|)† = |b⟩⟨a|.

ρ̂ has unit trace. To see this, let’s introduce a complete orthonormal basis {|ν⟩ : ν ∈ I}.
Then we see that

Tr(ρ̂) =
∑
ν

⟨ν|ρ̂|ν⟩ =
M∑
i=1

pi
∑
ν

⟨ν |Φi⟩⟨Φi | ν⟩ =
M∑
i=1

pi⟨Φi |Φi⟩ =
M∑
i=1

pi = 1.
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Therefore the operator ρ̂ defined in (C.36) is indeed a positive Hermitian operator with unit

trace.

An ensemble is called in pure state if its density operator can be expressed by a single

term, ρ̂ = |Φ⟩⟨Φ|. If this is impossible, the ensemble is called in mixed state. This kind

of terminology is well-defined because of a property of tensor product space : If a tensor

T ∈ V ⊗W can be expressed by

T = v1 ⊗ w1 + · · ·+ vM ⊗ wM (C.37)

with linearly independent v1, · · · , vM ∈ V and linearly independent w1, · · · , wM ∈ W ,

then T cannot be manipulated to yield an expression having fewer terms, i.e., (C.37) is the

shortest expression.

The expression (C.36) for a density operator ρ̂ is the shortest expression if and only

if |Φi⟩’s are linearly independent. Thus, if a density operator is expressed as 1
2 |Φ1⟩⟨Φ1| +

1
2 |Φ2⟩⟨Φ2| and |Φ1⟩, |Φ2⟩ are linearly independent, then this represents a mixed state.

Now, let’s consider a system of N particles. It is very rare to consider a mixture of

Bosons and Fermions. It is difficult to describe such system, because the constituent parti-

cles are neither completely identical nor completely distinguishable. Let’s restrict our con-

sideration to a system of N Bosons or a system of N Fermions. This kind of systems can

assume a state in FN
ζ .

Obviously we cannot know the state of the system comletely. We usually have some

partial information about the system, e.g., the temperature T , volume V , and the number

of particles N of the system. To analyze this system, we have to introduce an ensemble

of systems which assume a number of different states but all have the same macroscopic

quantities T, V,N .

Let ρ̂ be the density operator for the N particle system. To calcuate the expectation

value of an observable Â, we have to take the ensemble average of this observable, which

is defined by

⟨Â⟩ ≡ Tr(ρ̂Â).

Here, the meaning of trace is the obvious one:

Tr(Â) =
∑
{nλ}∑
λ nλ=N

〈
{nλ}

∣∣Â∣∣{nλ}〉,
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where {nλ} represents the number distribution of particles over the eigenstates and

∣∣{nλ}〉 =∏
λ

(a†λ)
nλ

√
nλ!
|0⟩ = 1√∏

λ nλ!
a†λ1
· · · a†λN

|0⟩.

Here we assume λ1, · · · , λN are arranged according to a certain ordering. Now, in fa-

vor of position variables, we replace a†λi
with the field operator ψ̂†(x) by using a†λi

=∫
dxuλi

(x)ψ̂†(x), where uλi
(x) is the eigenfunction ⟨x |λi⟩. Then we obtain

TrÂ =
∑
{nλ}∑
λ nλ=N

1∏
λ nλ!

⟨0|aλN
· · · aλ1Âa

†
λ1
· · · a†λN

|0⟩

=
∑
{nλ}∑
λ nλ=N

1∏
λ nλ!

∫
dy1 · · · dyNdx1 · · · dxNu

∗
λN

(yN ) · · ·u∗λ1
(y1)uλ1(x1) · · ·uλN

(xN )

· ⟨0|ψ̂(yN ) · · · ψ̂(y1)Âψ̂
†(x1) · · · ψ̂†(xN )|0⟩

The summation over the number distribution {nλ},
∑

λ nλ = N is the same as the sum-

mation over N -tuple of eigenbalues λ1 ≤ · · · ≤ λN . Thus

=
∑

λ1≤···≤λN

1∏
λ nλ!

∫
dy1 · · · dyNdx1 · · · dxNu

∗
λN

(yN ) · · ·u∗λ1
(y1)uλ1(x1) · · ·uλN

(xN ).

Since y1, · · · ,xN are just the integration variables,

=
∑

λ1≤···≤λN

1∏
λ nλ!

1

N !

∑
σ∈SN

∫
dy1 · · · dyNdx1 · · · dxNu

∗
λN

(yσ(N)) · · ·u∗λ1
(yσ(1))

× uλ1(xσ(1)) · · ·uλN
(xσ(N)) · ⟨0|ψ̂(yσ(N)) · · · ψ̂(yσ(1))Âψ̂

†(xσ(1)) · · · ψ̂†(xσ(N))|0⟩

=
∑

λ1≤···≤λN

1∏
λ nλ!

1

N !

∑
σ∈SN

∫
dy1 · · · dyNdx1 · · · dxNu

∗
λσ(N)

(yN ) · · ·u∗λσ(1)
(y1)

× uλσ(1)
(x1) · · ·uλσ(N)

(xN ) · ⟨0|ψ̂(yN ) · · · ψ̂(y1)Âψ̂
†(x1) · · · ψ̂†(xN )|0⟩.

Now, we apply the following replacement

∑
λ1≤···≤λN

1∏
λ nλ!

∑
σ∈SN

=
∑

λ1,··· ,λN∈I
.

This is true since the set {(λ1, · · · , λN ) : λi ∈ I} is the same as {(λσ(1), · · · , λσ(N)) :
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λ1 ≤ · · · ≤ λN , σ ∈ SN} except the redundance
∏

λ nλ! in the later. Therefore we obtain

TrÂ =
1

N !

∫
dy1 · · · dyNdx1 · · · dxNδ(x1 − y1) · · · δ(xN − yN )

· ⟨0|ψ̂(yN ) · · · ψ̂(y1)Âψ̂
†(x1) · · · ψ̂†(xN )|0⟩

=
1

N !

∫
dx1 · · · dxN ⟨0|ψ̂(xN ) · · · ψ̂(x1)Âψ̂

†(x1) · · · ψ̂†(xN )|0⟩

⇒ TrÂ =

∫
dx1 · · · dxN

1√
N !
⟨0|ψ̂(xN ) · · · ψ̂(x1)Âψ̂

†(x1) · · · ψ̂†(xN )|0⟩ 1√
N !
. (C.38)

The notions used to analyze a given system usually involves single particle : It is easier

to understand a function of single position (e.g. density of particles) then a function of N

positions. Thus we need to extract information from ρ̂ so that we can describe the behavior

of a single constituent particle among N identical particles in the system. For this usage,

we introduce the reduced single-particle density operator:

ρ̂1 ≡ Tr2,3,··· ,N ρ̂

=
1

N !

∫
dzdy|z⟩

∫
dx2 · · · dxN ⟨0|ψ̂(xN ) · · · ψ̂(x2)ψ̂(z)ρ̂ψ̂

†(y)ψ̂†(x2) · · · ψ̂†(xN )|0⟩⟨y|.

We need reduced single-particle density operator when we calculate the expectation value

of an observable related to a single particle ⟨Â⟩1 ≡ Tr1(ρ̂1Â), where the subscript 1 at the

trace means that we should use single particle states to evaluate the trace. ρ̂1 is conceptually

closer to our analytic notions. However, it is cumbersome to derive ρ̂1 everytime we calcu-

late the expectation values of 1-body observables. We claim here a convenient formula:

Tr1(ρ̂1Â) =
1

N
Tr(ρ̂Â). (C.39)

The proof is as follows.

Tr(ρ̂Â) =

∫
dx1 · · ·xN

1√
N !
⟨0|ψ̂(xN ) · · · ψ̂(x1)ρ̂Âψ̂

†(x1) · · · ψ̂†(xN )|0⟩ 1√
N !

=

∫
dydz⟨y|A|z⟩

∫
dx1 · · · dxN

1√
N !
⟨0|ψ̂(xN ) · · · ψ̂(x1)ρ̂ψ̂

†(y)ψ̂(z)

· ψ̂†(x1) · · · ψ̂†(xN )|0⟩ 1√
N !
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Tr(ρ̂Â) =

∫
dydz⟨y|A|z⟩

∫
dx1 · · · dxN

N∑
i=1

δ(xi − z)

· 1

N !
⟨0|ψ̂(xN ) · · ·̂̂ψ(xi) · · · ψ̂(x1)ψ̂(xi)ρ̂ψ̂

†(y)ψ̂†(x1) · · · ̂̂ψ†(xi) · · · ψ̂†(xN )|0⟩

By renaming the integration variables,

=

∫
dydz⟨y|A|z⟩ N

N !

∫
dx1 · · · dxN−1⟨0|ψ̂(xN−1) · · · ψ̂(x1)ψ̂(z)ρ̂ψ̂

†(y)

· ψ̂†(x1) · · · ψ̂†(xN−1)|0⟩

= N

∫
dz⟨z|ρ̂1Â|z⟩ = N · Tr1(ρ̂Â).

The criterion for ‘Off-Diagonal Long-Range Order’ will be stated in terms of the ma-

trix elements of ρ̂1 in position basis, the single particle reduced density matrix ρ1(r, r′) ≡
⟨r′|ρ̂1|r⟩. It is easy to see that ρ1(r, r) = ρ(r) is the particle density:

ρ̂1 =
∑
i

pi|i⟩⟨i| ⇒ ρ̂1(r, r) = ⟨r|ρ̂1|r⟩ =
∑
i

pi|⟨r | i⟩|2 = ρ(r).

In the literature, people define the reduced single-particle density matrix ρ1(r, r′) by the

identity

ρ1(r, r
′) = ⟨ψ̂†(r)ψ̂(r′)⟩1 =

1

N
⟨ψ̂†(r)ψ̂(r′)⟩, (C.40)

where the second identity came from eq.(C.39). We show the first identity here. Let’s

prove more general assertions: Let A be some Hermitian operator on the Hilbert space H,

{|µ⟩ : µ ∈ I} be complete eigenbasis of A, and aν , a
†
ν be creation/annihilation operators

corresponding to A. We claim that the matrix element ρ1(µ, µ′) ≡ ⟨µ′|ρ̂1|µ⟩ is given by

ρ1(µ, µ
′) = ⟨a†µaµ′⟩1 =

1

N
⟨a†µaµ′⟩,

where the second identity again came from (C.39). The first identity can be shown as fol-

lows.

⟨a†µaµ′⟩1 = Tr1(ρ̂1a
†
µaµ′) =

∑
ν

⟨ν|ρ̂1a†µaµ′ |ν⟩ =
∑
ν

⟨ν|ρ̂1a†µaµ′a†ν |0⟩

=
∑
ν

⟨ν|ρ̂1a†µ(a†νaµ′ + δµ′ν)|0⟩ = 0 + ⟨µ′|ρ̂1a†µ|0⟩ = ⟨µ′|ρ̂1|µ⟩ = ρ1(µ, µ
′).
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By choosing position basis, we get (C.40). In short, we don’t need to derive ρ1 when we

calculate reduced single-particle density matrix ρ1(µ, µ′).

If the many body state of the whole system were ρ̂ =
∑

{n} ρ{n}
∣∣{n}〉〈{n}∣∣, then

ρ1(µ, µ
′) = ⟨a†µaµ′⟩1 =

1

N
⟨a†µaµ′⟩ = 1

N

∑
{n}

ρ{n}
〈
{n}

∣∣a†µaµ′
∣∣{n}〉.

Especially, if the many-body state were pure, ρ = |Φ⟩⟨Φ|, then

ρ1(µ, µ
′) =

1

N
⟨Φ|a†µaµ′ |Φ⟩.

We can introduce reduced density operators ρ̂n involving n (≤ N) particles in the

system. C. N. Yang [79] provided clear criterion for the existence of OLDRO in terms of

these operators. In the following, we observe the definition and properties of ρ̂2 from which

we can infer how the other reduced density operators will look like. The 2-particle reduced

density operator is defined by

ρ̂2 ≡ Tr3,··· ,N ρ̂

=

∫
dz1dz2dy1dy2ψ̂

†(z1)ψ̂
†(z2)|0⟩

[∫
dx3 · · ·xN ⟨0|ψ̂(xN ) · · · ψ̂(x3)ψ̂(z2)ψ̂(z1)ρ̂

· ψ̂†(y1)ψ̂
†(y2)ψ̂

†(x3) · · · ψ̂†(xN )|0⟩
]
⟨0|ψ̂(y2)ψ̂(y1)

1

2!N !
,

from which we can show that

1√
2!
⟨0|ψ̂(z1)ψ̂(z2)ρ̂2ψ̂†(y1)ψ̂

†(y2)|0⟩
1√
2!

=
1

N !

∫
dx3 · · · dxN ⟨0|ψ̂(xN ) · · · ψ̂(x3)ψ̂(z2)ψ̂(z1)ρ̂ψ̂

†(y1)ψ̂
†(y2)ψ̂

†(x3) · · · ψ̂†(xN )|0⟩.
(C.41)

Let Â be a 2-body operator (C.14):

Â =
1

2

∫
dy1dy2dz1dz2ψ̂

†(y1)ψ̂
†(y2)⟨y1|⟨y2|A|z2⟩|z1⟩ψ̂(z2)ψ̂(z1). (C.42)

We are going to prove the trace formula analogous to (C.39),

Tr2(ρ̂2Â) =
2!(N − 2)!

N !
Tr(ρ̂Â),
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which allows us to calculate the expectation value of a 2-body operator Â not knowing ρ̂2.

The proof goes as follows.

For convenience, let us denote 1√
N !
ψ̂†(x1) · · · ψ̂†(xN )|0⟩ ≡ |x1 · · ·xN ⟩F , where F is

from Fock space.

Tr(ρ̂Â) =

∫
dx1 · · · dxN F ⟨x1 · · ·xN |ρ̂Â|x1 · · ·xN ⟩F

=
1

2

∫
dy1dy2dz1dz2⟨y1|⟨y2|A|z2⟩|z1⟩

·
∫
dx1 · · · dxN F ⟨x1 · · ·xN |ρ̂ψ̂†(y1)ψ̂

†(y2) ψ̂(z2)ψ̂(z1)ψ̂
†(x1) · · · ψ̂†(xN )|0⟩︸ ︷︷ ︸

(∗)

1√
N !
.

The factor (∗) can be calculated easily. We proceed ψ̂(z2)ψ̂(z1) to the vacuum state. Then

the result will be

∑
1≤i<j≤N

σ∈S2

Cijσδ(xi − zσ(1))δ(xj − zσ(2))ψ̂
†(x1) · · · ̂̂ψ†(xi) · · · ̂̂ψ†(xj) · · · ψ̂†(xN )|0⟩,

where the coefficients Cijσ need to be determined. To do this, observe that, for fixed 1 ≤
i < j ≤ N ,

ψ̂(z2)ψ̂(z1)ψ̂
†(x1) · · · ψ̂†(xi) · · · ψ̂†(xj) · · · ψ̂†(xN )|0⟩

= ζ(1−sgnσ)/2ψ̂(zσ(2))ψ̂(zσ(1))ψ̂
†(x1) · · · ψ̂†(xi) · · · ψ̂†(xj) · · · ψ̂†(xN )|0⟩

= ζ(1−sgnσ)/2ζ1+iζ1+jδ(xi − zσ(1))δ(xj − zσ(2))ψ̂
†(x1) · · · ̂̂ψ†(xi) · · · ̂̂ψ†(xj) · · · ψ̂†(xN )|0⟩

+ · · · .

Thus Cijσ = ζi+jζ(1−sgnσ)/2. Now we have

Tr(ρ̂Â)

=
1

2

∫
dy1dy2dz2dz1⟨y1|⟨y2|A|z2⟩|z1⟩

[∫
dx1 · · · dxNF ⟨x1 · · ·xN |ρ̂ψ̂†(y1)ψ̂

†(y2)

·
∑

1≤i<j≤N
σ∈S2

ζi+jζ(1−sgnσ)/2δ(xi − zσ(1))δ(xj − zσ(2))

· ψ̂†(x1) · · · ̂̂ψ†(xi) · · · ̂̂ψ†(xj) · · · ψ̂†(xN )|0⟩ 1√
N !

]
.
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The terms in the bracket become∫
dx1 · · · dxNF ⟨x1 · · ·xN |ρ̂

∑
1≤i<j≤N

σ∈S2

ζi+jζj−1ζi−1ζ(1−sgnσ)/2δ(xi − zσ(1))δ(xj − zσ(2))

· ψ̂†(x1) · · · ψ̂†(y2) · · · ψ̂†(y1) · · · ψ̂†(xN )|0⟩ 1√
N !

=
∑

1≤i<j≤N
σ∈S2

ζ(1−sgnσ)/2

∫
dx3 · · · dxNF ⟨zσ(1)zσ(2)x3 · · ·xN |ρ̂|y1y2x3 · · ·xN ⟩F

=
N !

(N − 2)!
F ⟨z1z2|ρ̂2|y1y2⟩F ,

where the last equality came from eq.(C.41). Now we get

Tr(ρ̂Â) =
1

2

∫
dy1dy2dz1dz2⟨y1|⟨y2|A|z2⟩|z1⟩

N !

(N − 2)!
F ⟨z1z2|ρ̂2|y1y2⟩F

Since y1,y2, z1, z2 are just integration variables, we have

=

∫
dy1dy2dz1dz2

∑
σ,τ∈S2

N !⟨yτ(1)|⟨yτ(2)|A|zσ(2)⟩|zσ(2)⟩
8(N − 2)!

F ⟨zσ(1)zσ(2)|ρ̂2|yσ(1)yσ(2)⟩F

=
1

2

∫
dy1dy2dz1dz2

1
4

∑
σ,τ∈S2

ζ(1−sgnσ)/2ζ(1−sgnτ)/2⟨yτ(1)|⟨yτ(2)|A|zσ(1)⟩|zσ(2)⟩


· N !

(N − 2)!
F ⟨z1z2|ρ̂|y1y2⟩F .

The factor in the square bracket is equal to

1

4

∑
σ,τ∈S2

ζ(1−sgnσ)/2ζ(1−sgnτ)/2⟨yτ(1)|⟨yτ(2)|A|zσ(2)⟩|zσ(1)⟩

=
1

2

∫
dy′

1dy
′
2dz

′
1dz

′
2

1√
2
⟨0|

∑
τ∈S2

ζ(1−sgnτ)/2δ(y′
1 − yτ(1))δ(y

′
2 − yτ(2))


· ⟨y′

1|⟨y′
2|A|z′1⟩|z′2⟩

∑
σ∈S2

ζ(1−sgnσ)/2δ(z′1 − zσ(1))δ(z
′
2 − zσ(2))

 |0⟩ 1√
2

= F ⟨y1y2|Â|z1z2⟩F .
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Now we conclude that

Tr(ρ̂Â) =
1

2

∫
dy1dy2dz1dz2 F ⟨y1y2|Â|z1z2⟩F

N !

(N − 2)!
F ⟨z1z2|ρ̂2|y1y2⟩F

=
N !

2!(N − 2)!
Tr2(ρ̂2Â).

Therefore, the proof is done.
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국문초록

본 연구는 의사 2차원 쌍극자 보스-아인슈타인 응축체 (quasi-two-dimensional dipolar

Bose-Einstein condensates) 내에 형성되는 유효 굽은 시공간(effective curved spacetime)

을다루고있다.굽은시공간의시간에따른변화는우주론적입자생성(cosmological par-

ticle production)을일으키며,이는실험실에서관측할수있보골류보프의사입자들(Bo-

goliubov quasiparticle excitations)로나타나게된다.쌍극자상호작용의비등방적성질은

생성된 보골류보프 의사 입자들의 분산관계(dispersion relation)에 깊은 로톤 극소점(ro-

ton minimum)을만들어내게되는데,본연구는이로톤극소점의세기에따라서어떠한

측정가능한효과가나타나는지를다루고있다.

본 연구는 크게 두 부분으로 나뉘어질 수 있다. 첫째로, 본 연구는 팽창하는 쌍극

자보스-아인슈타인응축체속에형성된유추드지터공간(analogue de Sitter spacetime)

을 다루었다. 여기서는 인플레이션 우주론의 주요 결과인 규모 불변적 물질 분포(scale

invariant power spectrum)가인플레이션발생초기에로톤극소점이존재하는경우큰변

형을겪게됨을보였다.이결과는쌍극자보스-아인슈타인응축체가조작이용이한실험

도구로서 초 플랑크 영역의 물리학(trans-Planckian physics)이 로렌츠 불변적인 저에너

지물리학에주는영향을연구하는데사용될수있음을예시한것으로,특히인플레이션

우주론의주요결과가위반될수있음을보인것이다.

둘째로,본연구는쌍극자보스-아인슈타인응축체내에서음속(speed of sound)을급

격히변화시킬때발생하는유추동적카시미르효과(analogue dynamical Casimir effect)

를 다루었다. 여기서는 서로 반대 방향의 운동량을 갖는 의사 입자의 쌍들 사이에 존재

하는얽힘(entanglement)이쌍극자상호작용의세기에따라크게강화될수있음을절대

영도와 유한한 온도의 환경에서 각기 보였다. 그 결과 서로 얽힌 의사 입자들의 쌍들이

가지는 양자역학적 상관 관계(quantum correlation)가 입자들 사이에 접촉 상호작용만

존재할 때보다 쌍극자 상호작용까지 존재할때 더욱 강화되며, 특히 로톤 극소점 근처

의 운동량을 가지는 입자 쌍들의 얽힘이 밀도-밀도 상관함수(density-density correlation

function)에의하여실험적으로측정가능함을보였다.

주요어 : 보스-아인슈타인 응축, 쌍극자 상호작용, 인플레이션, 동적 카시미르 효과, 초

플랑크영역물리,중력유추,로톤극소점

학번 : 2011-23282
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셨던 정현석 교수님, 신용일 교수님, 한정훈 교수님께도 이 자리를 빌려 감사의 말씀을

전합니다.

다른연구실소속이지만같은오피스인 56동 520호에서오랜기간함께지내온최동

진에게도 감사의 말을 남깁니다. 동진이는 훌륭한 능력에도 불구하고 언제나 겸손하며

저의모자란질문에도기대이상의답을들려주었습니다.나이는저보다한살어리지만

물리뿐만아니라삶의여러부분에서도배울점이많은친구였습니다.그동안같은오피



스에 머물렀던 이강수, 강명균 선배님, 연구실 후배인 박상신, 박재균 에게도 이 자리를

빌려 감사의 말을 전합니다. 특히 우리 연구실의 후배들에게는 앞의 두 선배들이 저에

게 해준 만큼의 든든한 버팀목 역할을 못해준것 같아 미안한 마음이 듭니다. 연구실을

위해서 나름대로 많은 노력을 기울였지만 사람들을 이끄는 능력의 부족을 끝내 채우지

못하고 먼저 졸업을 합니다. 하지만 연구가 막힐때나 인생의 앞날이 보이지 않을 때 저

에게 언제든 연락해도 좋으니, 시작한 연구를 포기하지 말고 멋지게 마무리하여 훌륭한

박사졸업생이되기를기원합니다.

저희연구실의로고를만들어준서울대학교미술대학의조현지와저의연구를과학

동아에 실어주신 우아영 기자님께도 감사 인사를 전합니다. 교수님의 복지와 연말정산

등을 관리해주신 김현정 선생님, 교수님의 물건 구입과 까다로운 요구사항을 들어주신

오선근선생님,연구비를관리해주신홍지선선생님,컴퓨터관련기술적인도움을주신

박용호 선생님, 그리고 주말도 없이 수업과 학사일정 관련 행정업무를 돌봐주신 김영희

선생님 감사합니다. 지금은 안계시지만 제가 아르바이트로 일하기도 했었던 BK행정실

의장혜인,김다솜선생님,그리고물리학과독서실의길효정선생님께도감사의말씀을

남깁니다.

학위 과정 동안 주말에는 학원에서 수업을 해왔습니다. 저에게 가르치는 즐거움을

알게해주신조한수,용남식,배승리,황소영,변상규선생님감사합니다.이승혜,이은영,

윤혜은, 김홍진, 임순범 선생님께도 이 자리를 빌려 감사의 말씀을 전합니다. 비록 가르

치는 내용은 중고등학교 수준의 내용이지만, 수업을 준비하는 과정에서 예전에는 미처

몰랐던 용어의 정확한 의미를 알게되었고, 그것을 잘 전달하기 위해 고민했던 시간들이

연구에도 직접적으로 도움이 되었습니다. 저의 이야기를 들어준 학생들에게도 감사 인

사를남깁니다.

항상 저에게 관심을 가져주시고 경제적 지원과 좋은 말씀을 아끼지 않으셨던 작은

아빠와 작은엄마, 이모와 이모부께도 감사의 말씀을 전합니다. 이러한 도움이 없었다면

저는박사과정을끝마치지못했을것입니다.마지막으로어머니,아버지감사합니다.
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