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ABSTRACT: A critical part of Life-Cycle Analysis of engineering systems is the modeling of their 

deterioration over time. A system might be subject to different deterioration processes that might impair 

its ability to sustain the future levels of demand. The attainment of a given level of deterioration might 

also prompt maintenance operations that may disrupt its ability to provide a regular service. Recently 

proposed formulations model the time-varying reliability of a system by looking at the evolution of state-

variables that define the characteristics of the system. These state-dependent formulations rely heavily 

on the chosen models for the evolution of the state-variables over time. However, most models available 

in literature rely on simplifying assumptions that disregard the true nature of the processes, either by 

discretizing the time domain or by assuming independence among different processes acting on the 

system at the same time. This paper proposes to use a system of Stochastic Differential Equations to 

model the evolution of the state variables over time. The proposed formulation captures the continuous 

nature of the processes and takes into account the possible interactions among them. In addition, results 

from stochastic calculus could be used to facilitate the simulation of the processes and to obtain closed-

form solutions for the distribution of the state variables over time. Moreover, the proposed models can 

be calibrated based on periodical monitoring of the state variables, should that be performed via Non-

Destructive Evaluation or Structural Health Monitoring. A procedure for calibration is introduced and a 

brief explanatory example is provided. 

 

1. INTRODUCTION 

Engineering systems are continuously subject to 

aging and deterioration phenomena that may 

impair their ability to sustain the levels of demand 

for which they were originally designed. To 

perform a proper Life-Cycle Analysis of these 

systems, there is a need for a comprehensive 

formulation that includes the effects of these 

phenomena and translates them into time-varying 

estimates of the reliability for the systems 

(Gardoni 2019). 

Deterioration processes can in general be 

separated into two main classes (Kumar et al. 

2009); gradual deterioration processes (such as 

fatigue and corrosion) affect the performance of the 

system in a continuous fashion, while shock 

deterioration processes (such as earthquake and 

floods) affect the performance of the system at 

specific, instantaneous moments over its life-cycle. 

Recent works have started to incorporate 

both gradual and shock deterioration processes 

into the life-cycle analysis of the systems. 

However, multiple deterioration processes are 

often considered independently. For example 

Ciampoli and Ellingwood (2002) looked at the 

effects of both gradual and shock deteriorations 

for the performance of concrete structures in 

nuclear power plants, but they only considered the 

randomness coming from the shock deterioration 
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process, superimposing the effects of shocks to 

effects of a deterministic, independent gradual 

deterioration process. Kumar et al. (2009) 

developed a proper reliability analysis framework 

for reinforced concrete bridges in which both 

capacity and demand vary over time, but they also 

assumed independence between gradual and 

shock deterioration. 

However, there might be interactions among 

the different deterioration processes affecting the 

system: For example, the occurrence of an 

earthquake might increase the length of the cracks 

of the system, which might in turn increase their 

exposure to hostile environmental conditions, 

leading to faster gradual deterioration. The 

interaction between different deterioration 

processes has only recently been acknowledged in 

the literature. For example, Jia and Gardoni 

(2018a, b, c) modeled the interaction among 

different deterioration processes by formulating 

the time-varying reliability of the system in terms 

of the evolution of the state variables, i.e. the 

physical quantities that define the state of a system. 

Having physically sound models for the 

evolution of the state variables is critical to obtain 

accurate predictions of the reliability of the 

system at future moments in time. However, the 

understanding of most deterioration processes is 

limited. 

The quality of the models can be assessed 

based on data collected in the field. Structural 

Health Monitoring (SHM) or Non-Destructive 

Evaluation (NDE) procedures can be used for this 

purpose. Some recent formulations for Bayesian 

updating of deterioration models choose to 

disregard the continuous nature of the process in 

favor of approximate, more tractable discrete 

formulations (Straub 2009). Others, relying on the 

probability density evolution method (Li and 

Chen 2008, Fan et al. 2017), require assumptions 

on the form of the models which might limit their 

applications to cases in which such form is known 

a priori. 

This paper builds upon the framework 

proposed in Jia and Gardoni (2018a) by proposing 

a specific formulation for the time-varying 

reliability of the systems that is based on 

modeling the evolution of the state variables using 

Stochastic Differential Equations (SDEs). The 

proposed procedure (i) captures the continuous 

nature of the deterioration processes by not 

requiring to discretize the time domain for the 

analysis, (ii) is able to incorporate both gradual 

and shock deterioration processes into a unified 

formulation, (iii) captures the interactions among 

different deterioration processes, and (iv) allows 

to obtain closed-form solutions for the 

distributions of the state variables over time 

making use of formulations from stochastic 

calculus. The formulation uses semimartingale 

driving noises, which form the largest class of 

processes for which Itô and Stratonovich integrals 

can be defined (Grigoriu 2003), making it suitable 

for the vast majority of behaviors that could be 

observed in practice. In addition, we propose a 

method for calibrating the newly developed 

models based on information coming from 

inspections and Structural Health Monitoring. 

2. GENERAL FRAMEWORK  

Aging and deterioration processes affecting 

engineering systems are, in general, a function of 

a set of external conditions, which could be 

separated into environmental conditions (such as 

atmospheric pressure, relative humidity and 

temperatures) and consequences of shock 

occurrences (such as earthquakes and floods) (Jia 

and Gardoni 2018). Following Jia & Gardoni 

(2018a), we can define the vector of external 

conditions 𝐙(𝑡) as  

 ( ) [ ( ), ( )]t t tZ E S  (1) 

where 𝐄(𝑡)  is the vector of environmental 

conditions, and 𝐒(𝑡) is the vector of measures of 

shocks. Both vectors are time-dependent as the 

external conditions might be changing over time 

as a consequence of different phenomena (e.g. 

seasonality and climate change). Let the vector 

𝐗(𝑡) = [𝑋1(𝑡), … , 𝑋𝑗, … , 𝑋𝑑(𝑡)] 𝑇 denote the state 

variables of the system at time 𝑡, i.e. a collection 

of variables on which the capacity and the demand 

of the system depend (e.g. material properties and 
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geometry). The state variables evolve over time as 

a consequence of the deterioration processes. 

In general, if we define {𝐙(𝑡)}  as the 

sequence of all of the external conditions from 

time 0 to 𝑡, and 𝐗0 as the initial state variables at 

time 𝑡 = 0 , we can write 𝐗(𝑡)  in the compact 

form  

  0( ) [ , , ( ) ; ]t t t
X

X X X Z Θ  (2) 

where 𝚯𝐗  is a vector of model parameters. 

Following Gardoni et al. (2002, 2003), we can 

model the capacity of the system 𝐶(𝑡)  and the 

demand imposed by external conditions 𝐷(𝑡) as 

functions of 𝐗(𝑡), as 

    , ( ) , ( ); CC t t C t tX X Θ  (3) 

    , ( ) , ( ), ( ); DD t t D t t tX X S Θ  (4) 

where 𝚯𝐶  and 𝚯𝐷  are vectors of parameters for 

the models of 𝐶(𝑡)  and 𝐷(𝑡)  respectively. It is 

possible to obtain the time-variant reliability of 

the system by defining the limit state function 

(Ditlevsen & Madsen 1996, Gardoni 2017) as 

      , ( ) , ( ) , ( ) g t t C t t D t tX X X  (5) 

and compute the probability of failure of the 

system as 

     , ( ) , ( ) 0 . fP t t P g t tX X  (6) 

At time 𝑡, the rate of state change due to the 

𝑗-th deterioration process 𝐗̇𝑗(𝑡) can be modeled 

as a function of 𝐗(𝑡) (state-dependency) as 

  ( ) [ , ( ), ( ) ; ].j jt t t t
X

X X X Z Θ  (7) 

Then, the total rate of change 𝐗̇(𝑡) due to 𝑝 

deterioration processes can be written as the sum 

of the rates associated to the individual processes 

  
1

( ) [ , ( ), ( ) ; ].



p

j

j

t t t t XX X X Z Θ  (8) 

The framework described has been summarized 

in the flow chart in  Figure 1. The rest of the 

paper will focus on a detailed formulation for the 

evolution of the state variables over time (Eq. 7). 

 

 
Figure 1: Flow chart of the proposed framework 

(adapted from Jia and Gardoni 2018a) 

3. MODELING OF THE STATE VARIABLES 

OVER TIME 

This section proposes a state-dependent 

formulation for the evolution of state variables 

using Stochastic Differential Equations (SDEs). 

The formulation follows the general form in Eq. 7 

and can be plugged into the general framework 

presented in Section 2 to obtain the time-varying 

reliability of engineering systems. A typical SDE 

for the evolution of the 𝑑 × 1 vector of the state 

variables 𝐗(𝑡|𝚯𝐗) can be written as (adapted from 

Itô 1973) 

 
 

d ( ; ) , ( ),{ ( )}; d

, ( ), ( ) ; d ( ; )

   

  

t t t t t

t t t t

X μ

σ S

X Θ μ X Z Θ

σ X Z Θ S Θ
 (9) 

where 𝛍[𝑡, 𝐗(𝑡), {𝐙(𝑡)}; 𝚯𝛍]  is a 𝑑 × 1  vector of 

drift coefficients, quantifying the deterministic 

change of  the quant i ty 𝐗(𝑡; 𝚯𝐗)  in  the 
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time interval d𝑡, 𝛔[𝑡, 𝐗(𝑡), {𝐙(𝑡)}; 𝚯𝛔] is a 𝑑 × 𝑑′ 
matrix of diffusion coefficients, quantifying the 

randomness in the change of  𝐗(𝑡; 𝚯𝐗) in the same 

time interval, 𝚯𝐗 = [𝚯𝛍, 𝚯𝛔, 𝚯𝐒]  is the vector of 

model parameters and 𝐒(𝑡)  is a 𝑑′ × 1  driving 

noise vector of the stochastic process. 

Different choices for the driving noise 

produce different results. In the most general case, 

the driving noise can be assumed to be of the 

semimartingale type. Defining the natural 

filtration (ℱ𝑡)𝑡≥0  of a stochastic process as the 

sigma-algebra generated by the collection of 

random variables up to time 𝑡, ℱ𝑡 = 𝜎{𝐗(𝑠), 𝑠 ≤
𝑡} (Hajek 2015), a semimartingale noise 𝐒(𝑡) can 

be decomposed as (Grigoriu 2013) 

        ; 0 ; ;  t t t
S A M

S Θ S A Θ M Θ  (10) 

where 𝐒(0) ∈ ℱ0 , 𝐀  is an ℱ𝑡 -adapted process 

with samples of finite variation on each compact 

of [0, ∞), 𝐀(0) = 𝟎, 𝐌 is an ℱ𝑡-local martingale, 

𝐌(0) = 𝟎  and 𝚯𝐒 = [𝚯𝐀, 𝚯𝐌]  is a vector of 

model parameters. The martingale component is 

in turn assumed to admit the representation 

( ; ) ( ; )d ( ) ( ; ) ( ; ) t t t t d t
M H K C

M Θ H Θ B K Θ C Θ  (11) 

where the entries of the 𝑑′ × 𝑑𝑏 matrix 𝐇 and of 

the 𝑑′ × 𝑑𝑐  matrix 𝐊  are ℱ𝑡 -adapted processes, 

the coordinates of 𝐁  and 𝐂  are independent 

Brownian motion and compensated Poisson 

processes, respectively, and 𝚯𝐌 = [𝚯𝐇, 𝚯𝐊, 𝚯𝐂] 
is a vector of model parameters. Roughly 

speaking, 𝐁  and 𝐂  constitute the main 

components of the stochastic process solution of 

the SDE in Eq. 9, where 𝐁 is responsible for the 

deterioration processes that are continuous in 

nature (gradual processes), and 𝐂 is responsible 

for the deterioration processes that are described 

by jumps over time. The evolution of the single 

component of 𝐗(𝑡; 𝚯𝐗), 𝑋𝑗(𝑡; 𝚯𝐗), is a function of 

𝐗(𝑡; 𝚯𝐗)  itself, making the entire formulation 

state-dependent. Semimartingales form the largest 

class of processes for which Itô and Stratonovich 

integrals can be defined (Métivier 1982). In other 

words, the formulation in Eq. 9 is able to capture 

the largest class of behaviors for the evolution of 

the state variables over time.  

3.1. Closed-form solutions for SDEs 

In most practical applications, it can be assumed 

with minimal loss of generality that the driving 

noise component of Eq. 9 can be expressed as 

d𝐒(𝑡) = 𝐇(𝑡)𝑑𝐁(𝑡) + 𝐊(𝑡)d𝐂(𝑡) , that is, 𝐒  is 

given by Eq. 10 with 𝐒(0) = 0  and 𝐀 = 0  

(model parameters were dropped to avoid heavy 

notation). Define 𝐇̃ = 𝛔[𝑡, 𝐗(𝑡), {𝐙(𝑡)}; 𝚯𝛔]𝐇(𝑡) 

and 𝐊̃ = 𝛔[𝑡, 𝐗(𝑡), {𝐙(𝑡)}; 𝚯𝛔]𝐊(𝑡). We can obtain 

a closed-form solution for the characteristic 

function of 𝐗(𝑡)  over time. Recall that the 

characteristic function of a random variable 𝐗(𝑡) 

is defined as 𝜑(𝐮; 𝑡) = 𝐸[exp(𝑖𝐮𝑇𝐗(𝑡))], where 

𝐮 ∈ ℝ𝑑  and 𝑖 = √−1 . With the above 

assumptions, the characteristic function of 𝐗(𝑡) 

can be obtained as the solution of the following 

differential equation 

 

1

( )

1

( )

,

( ) ( )
( )

1

( ; )

( ( ), )

1
( ) ( )

2

( ; )
 








 












 
 

 
  

  
   

  







T

T

dc
T jj

d
i t

j i

j

d
i t T

j k
jk

j k

d
i K t C t

i t

t

t

i u E e t t

u u E e t t

E e e t

u X

u X

u X

u

X

H H

u

 (12) 

where the compound Poisson process component 

has been separated into its 𝑑𝑐 terms with rate 𝜆𝛼. 

As it will be shown in the example in Section 5, 

Eq. 12 becomes an ordinary partial differential 

equation if the drift and diffusion terms 𝛍 and 𝛔 

can be written as polynomials of 𝐗(𝑡). Under the 

restrictive assumption that the driving noise for 

the system is a Browian motion process, it is 

possible to obtain closed-form solutions for the 

probability density function (PDF) 𝑓(𝒙; 𝑡)  of 

𝐗(𝑡|𝚯𝐗). The results is known in literature as the 

Fokker-Planck equation and can be expressed as  

 

1

2

, 1

( ; )
( , ) ( ; )

1
( , ) ( , ) ( ; )

2






 
     

  
   





d

j

j j

d
T

jk
j k j k

f t
t f t

t x

t t f t
x x

x
x x

σ x σ x x

 (13) 

with initial conditions 𝐗(0) = 𝟎. 
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Eqs. 12 and 13 can be used to obtain the 

distribution of the state variables over time to be 

inserted into the general framework in Section 2 

and obtain the time-varying probability of failure 

for the system of interest. 

4. CALIBRATION OF DETERIORATION 

MODELS BASED ON DATA FROM 

SHM/NDE 

In general, the model parameters 𝚯𝐗  for the 

evolution of the state variables over time are not 

known a priori and need to be calibrated based on 

experimental results. Structural Health 

Monitoring and Non-Destructive Evaluation 

procedures can provide us with more or less 

sparse measurements for the values of 𝐗(𝑡).  

Assume that information is collected at 𝑁 

different moments in time 𝑡𝑖
∗, 𝑖 = 1, … , 𝑁 , 

providing 𝑁 sets of 𝑀 observations for the state 

variables at time 𝑡𝑖
∗  {𝐱𝑚 ∈ ℝ𝑑: 𝑚 = 1,2, … , 𝑀} . 

The unknown probability distribution at time 𝑡𝑖
∗ 

can be modeled as a mixture of 𝐾  different 

probability distributions from a parametric family 

(e.g. Gaussian)  

 * *

1:

1

( ; | , ) ( ; | )



K

i K k i k

k

f t w f tx w θ x  (14) 

where 𝑓(∙ |𝐰, 𝛉1:𝐾)  is the predicted probability 

density function, 𝐰 = (𝑤1, … , 𝑤𝐾)  is the vector 

of mixture weight such that ∑ 𝑤𝑘
𝐾
𝑘=1 = 1  and 

𝛉1:𝐾 = (𝛉1, … , 𝛉𝐾)  is the vector of mixture 

component parameters. Both 𝐰 and 𝛉1:𝐾 need to 

be calibrated based on the collected data. This 

calibration can be achieved using Bayesian 

inference once the number 𝐾  of probability 

distributions has been fixed a priori (Box and Tiao 

2011). Tabandeh and Gardoni (2018) have 

recently proposed an alternative Dirichlet Process 

Mixture Model (DPMM) procedure that operates 

over an infinite dimensional parameter space and 

allows the number of 𝐾 mixture distributions to 

grow indefinitely. Once a probability distribution 

has been estimated at each of the times 𝑡𝑖
∗ , the 

corresponding characteristic functions can be 

obtained as 

 

*

*

( )* *

( ) *

1:

( ; )

( ; | , )d .







 
 

 

T
i

T
i

i t

i

i t

i K

t E e

e f t

u X

u x

u

x w θ x

 (15) 

Once we have obtained a characteristic 

function based on the observational data, the best 

estimate for the unknown parameters 𝚯̂𝐗  in the 

models for the evolution of the state variables can 

be obtained by solving the following 

minimization problem 

 
* *

1

ˆ

arg min ( ; ) ( ; , ) (d )  




 
d

N

i

i

t t
X

X

X
Θ

Θ

u u Θ u
 (16) 

where ‖∙‖is the complex norm and λ(d𝒖) is an 

appropriate measure (Grigoriu 2000). By using 

the formulation in Eq. 16, we are minimizing the 

distance between the characteristic function 

obtained using the collected data and the 

characteristic function obtained as the solution of 

Eq. 12. 

Section 5 will present a brief example of an 

application of the proposed procedure. 

5. EXAMPLE 

A stochastic deterioration process is assumed to 

be the solution of the following Stochastic 

Differential Equation 

 1 1d ( ) ( )d ( )d ( )  X t X t t X t B t  (17) 

with 𝜇1 = 2.5  and 𝜎1 = 0.4  (quantities are 

assumed to be dimensionless; in practice, units for 

the different quantities will be dependent on the 

problem being analyzed). The driving noise for 

the SDE, 𝐵(𝑡) , is assumed to be a standard 

Brownian motion.  

Figure 2 shows 50 realizations of the process 

in the time interval [0,1]. The process is known in 

literature as Geometric Brownian motion.  
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Figure 2: 50 realization of the geometric Brownian 

motion solution of Eq. 17 

 

The Fokker-Planck equation (Eq. 13) for the 

SDE can be solved to obtain a closed-form 

solution of the time-varying probability density 

function of 𝑋(𝑡) 

2
2

0 1

2
1

1
ln ln

2

2

1

1
( ; , , )

2

 

 
 

  
    

  




x x t

t

Xf x t e
x t

 (18) 

which corresponds to the PDF of a lognormal 

distribution with parameters 𝜆 = ln(𝑥0) + (𝜇1 −
(1 2⁄ )𝜎2)𝑡 and 𝜉 = 𝜎1√𝑡, where 𝑥0 = 𝑋(0). The 

closed-form distribution of the random variable 

𝑋(𝑡) can then be plugged into the capacity and 

demand models for the system being analyzed to 

obtain the time-varying reliability of the system 

following the framework described in Section 2. 

Assume now that the form and the values for 

the parameters in the model are unknown and 

need to be calibrated based on experimental 

observations. Assuming that 10 inspections are 

performed at regular intervals throughout the life-

cycle of the system. The observations obtained 

from these inspections that are used to calibrate 

the unknown parameters in the model are shown 

in Figure 2 as filled dots. The SDE is assumed to 

have the general form in Eq. 9 where the 

semimartingale driving noise is assumed to be a 

standard Brownian motion (d𝑆(𝑡; 𝚯𝑆) = d𝐵(𝑡)). 

Dropping the compound Poisson process 

component of the driving noise is a reasonable 

assumption since there appear to be no jumps in 

the process by looking at the observations. With 

minimal loss of generality, we can assume the 

drift and diffusion terms to be expressed in 

polynomial form. In particular 

2

0

, ( ),{ ( )}; ( ) 


     k

k

k

t X t t X tZ Θ  (19) 

 
1

0

, ( ),{ ( )}; ( ) 


 k

k

k

t X t t X tZ Θ  (20) 

where the unknown parameters are 𝚯𝑋 =
[𝚯𝜇, 𝚯𝜎] = [𝜇1, 𝜇2, 𝜇3, 𝜎1, 𝜎2]. 

In order to perform the minimization 

problem in Eq. 16, we need to solve the 

differential equation in Eq. 12 for the 

characteristic function of 𝑋(𝑡). Using Eq. 19 and 

Eq. 20 in Eq. 12 we obtain 

2
( )

0

2
1

2 ( )

0

( ; , )
( , )

1
( , ) .

2










  
    

   
   

   





iuX t kX
k X

k

iuX t k

k X

k

u t
iuE e X t

t

u E e X t

Θ
Θ

Θ

 (21) 

Eq. 21 can be simplified using the following 

property of the characteristic function (Grigoriu 

2013) 

   ( ).


     

k
kk iuX

k
E X e i u

u
 (22) 

Finally, the characteristic function of the 

state variable 𝑋(𝑡) can be obtained as the solution 

of the following partial differential equation 
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2 2

1 2 2
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2 2
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
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 
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
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 
  
 

X

X

X

X

u t

t

u t
u iu

u

u t
u iu

u

u iu u t

Θ

Θ

Θ

Θ

 (23) 

with boundary conditions coming from the 

properties of the characteristic function: 
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 ( ; , ) 1 Xu t Θ  (24) 

 ( ; , ) 1 Xu t Θ  (25) 

 ( ; , ) 0



u

Xu t Θ  (26) 

 ( ; , ) 0





u

Xu t
u

Θ  (27) 

After computing the empirical characteristic 

function at the times of inspections following the 

procedure described in Section 4, we perform the 

minimization problem in Eq. 16. The 

minimization reaches convergence and the 

minimizing values for the unknown parameters 

are shown in Table 1.  

 
Table 1: Parameter values. 

𝜇0 𝜇1 𝜇2 𝜎0 𝜎1 

0.073 2.313 1.000 -0.031 0.444 

 

The calibrated values for 𝚯𝑋 are then used to 

simulate new realizations for the deterioration 

process. Figure 3 shows 20 realization of the 

newly calibrated process superimposed on the 

experimental observations used for calibration. 

The calibrated model is able to capture the 

original behavior of the process, as the 

realizations approximately follow the original 

path of the stochastic process. 

 

 
Figure 3: 20 realization of the stochastic process 

generated using the calibrated values for the unknown 

parameters, superimposed on the experimental 

observations 

 

The results can be used to extrapolate the 

expected value for the state variable 𝑋(𝑡) at times 

following the latest inspection time. These values 

can then be used in conjunction with the 

framework for Life-Cycle Analysis presented in 

Section 2 to obtain the time-varying probability of 

failure for the system in the future. 

6. CONCLUSIONS 

A new formulation for the Life-Cycle Analysis of 

engineering systems was proposed. The 

formulation looks at the evolution of a set of 

variables that define the properties of the system 

(state variables) and models them using 

Stochastic Differential Equations. Efficient tools 

are available for the analysis of such stochastic 

processes, so that closed-form solutions can be 

obtained for the distribution of the state variables 

over time. Once capacity and demand are 

formulated in terms of the state variables, it is 

possible to obtain the time-varying probability of 

failure for the system. 

Using Stochastic Differential Equations for 

deterioration processes is faithful to the true 

nature of the processes (which is continuous) with 

respect to more commonly used discrete 

formulations. In addition, the proposed 

framework is able to account for the interactions 

among multiple deterioration processes affecting 

the system and for the possible presence of shock 

deterioration processes that would cause jumps in 

the evolution of the state variables. 

Finally, a procedure for the calibration of the 

processes based on a limited amount of 

experimental data was proposed. The procedure 

allows to incorporate into the framework the 

information coming from Structural Health 

Monitoring (SHM) and Non-Destructive 

Evaluation (NDE), in order to properly assess the 

reliability of the system at future times. A simple 

example was provided as an application of the 

proposed procedure for calibration. 

Future work on this topic includes the 

investigation of the correlation between different 

processes acting on the system, as well as the 

development of new calibration tools that are able 
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to provide confidence intervals for the estimated 

values for the unknown variables. One goal of this 

work is to develop a procedure that could be 

incorporated into a Bayesian framework, so that 

continuous updating of the models is possible as 

additional SHM or NDE data become available.   
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