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Abstract

Bioinformatic Study of Microbes in Aquatic

Environment using DNA metabarcoding

Heesoo Kim
School of Biological Sciences
The Graduate School

Seoul National University

The development of next-generation sequencing technology has led to the advent of DNA
metabarcoding that identify many organisms in the mixture or environmental samples at
once. This approach enables the efficient acquisition of large amounts of biological data,
and has the ability to evaluate the biodiversity and community structure of ecosystems.
With the importance of DNA metabarcoding recognized, many research projects are
already actively underway in other countries.

However, compared with the research trends of DNA metabarcoding around the world,

researches of DNA metabarcoding in Korea are more basic and limited in scope. This



dissertation reports three case studies of the aquatic environments that were conducted
using DNA metabarcoding to compensate for the drawbacks of domestic research trends in
DNA metabarcoding. The final objective of this study is to apply DNA metabarcoding
approach to various case studies in aquatic environments. Based on this, it is to understand
and explain the biological phenomena of aquatic environments with metadata produced
DNA metabarcoding. Each chapter of the dissertation was organized according to the case
study.

In Chapter 1, DNA metabarcoding was newly applied along with the traditional
morphological identification to establish a method for zooplankton community survey in
the Marine and Coastal National Park areas of Korea. By comparing the results of these
two identification methods, the strengths and limitations of DNA metabarcoding were
verified with the zooplankton communities appearing in these areas. The sensitive
detection capability of DNA metabarcoding enabled the identification of potential
bioindicator taxa associated with external factors in these national parks. | propose the use
of metabarcoding for efficient surveys of mesozooplankton communities in the Marine and
Coastal National Parks to establish monitoring of bioindicator taxa. It is also necessary to
continuously search for taxa with high research value in these national parks using
metabarcoding. Establishing an ongoing monitoring system that employs this approach can
provide an effective tool for managing marine ecosystems in the Marine and Coastal
National Parks.

In Chapter 2, the association between family of crabs and feeding behavior on their
intestinal microbiomes of Korean crabs was confirmed using DNA metabarcoding. With

the metadata of the intestinal microbiome in the crabs, the controversial phylogenetic
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relationship between the superfamilies Ocypodoidea and Grapsoidea was newly interpreted.
It was confirmed that the intestinal microbiome differed according to the family of crabs
and specific microbial operational taxonomic units (OTUs) related to the evolution of
Malacostraca were indentified. Intestinal microbial biodiversity and community were
found to differ according to the feeding behavior. The function and role of intestinal
microbiomes associated with the feeding behavior were predicted. These results were

inferred to be related to the type of food available to hosts and its nutritional characteristics.

In Chapter 3, as a case study, microeukaryotic biodiversity and community
structures of car bonnet and pig carcass were investigated to determine the applicability of
DNA metabarcoding in drowning case. Pig carcass was used to simulate the decomposing
process of drowning bodies. As a control, car bonnet was used to confirm the general
process of succession occurring in aquatic environments. Using DNA metabarcoding, |
confirmed that the microeukaryotic biodiversity in pig carcass was relevantly lower than
that in car bonnet. Also, some taxa were related to the decomposition. The relative
abundances of these taxa varied with the decomposition period. It is expected that the
change pattern of these taxa may be used as a good indicator for estimating the postmortem

submersion interval (PMSI) of drowning cases.

This dissertation includes manuscripts that were submitted to peer-reviewed

journals during my Ph.D. course.

Key words: DNA metabarcoding, biodiversity, community structure, mesozooplankton,

bioindicator, crab, intestinal microbiome, postmortem submersion interval, drowning
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General introduction

DNA barcoding, which was proposed and standardized by Hebert et al. (2003), is being
used as an essential tool for identifying species (Cristescu, 2014). The principle of DNA
barcoding is to identify species of organisms precisely through short DNA sequences in a
manner similar to barcodes at convenience stores. Because the target gene regions for each
kingdom are well established, DNA barcodes as a short sequence allow for relatively fast
and accurate species identification (e.g., cytochrome oxidase ¢ subunit I (COI) — animals;
nuclear internal transcribed spacer (ITS) — fungi; rbcL and matK chloroplast genes — plants)
(Hebert et al., 2003; Group et al., 2009; Schoch et al., 2012; Kress et al., 2015; Shokralla
et al., 2015). With these standardized markers, voucher sequences were extracted from
morphologically identified specimens, which were then collected to establish public DNA
barcode databases (e.g., BoLD) (Ratnasingham and Hebert, 2007; Comtet et al., 2015). The
deployment of these databases laid the foundation on which DNA barcoding could be
applied to various fields of biology (Wallace et al., 2012; Decaéns et al., 2013; Dormontt
et al., 2018). However, DNA barcoding faces several constraints. Sanger sequencing for
obtaining DNA barcodes demands a relatively high concentration and high-quality DNA
template (Polz and Cavanaugh, 1998). This characteristic makes it difficult to acquire
sequence data for old specimens (Van Houdt ez al., 2010). In a similar vein, it is not possible
to use DNA barcoding from bulk samples that are contaminated or mixed. Using DNA
barcoding, a single sequence can be obtained from a single sample. Given the fact that most
species around the world have not been found (86% of existing species on Earth), the

establishment of a complete DNA barcode database also seems to require sequence data of



organisms in highly diversified environmental samples (Janzen et al., 2009; Mora et al.,
2011; Shokralla et al., 2015). In the field of ecology, in particular, DNA barcoding can only
provide taxonomic aspects of making a list of species that exist in the ecosystem. These
limitations have been addressed to some extent by the development of next-generation

sequencing (NGS) technology (Coissac et al., 2012).

With the development of NGS technology since the 2000s, large quantities of
sequence data can be produced simultaneously. Sanger sequencing produces up to 96 reads
in a single run. However, in case of lllumina MiSeq sequencing, which is mainly used for
DNA metabarcoding, up to 25 million sequences can be obtained at a time (Unno, 2015).
These high-throughput DNA sequencing technology has further upgraded DNA-based
research methods. DNA metabarcoding was devised to identify various taxa in a mixed or
environmental sample. It allows large amounts of biological data to be obtained quickly at
a relatively low cost and has the potential to enable the assessment of biodiversity and
community structure in ecosystems (Taberlet et al., 2012a; Taberlet et al., 2012b; Thomsen
et al., 2012; Yoccoz et al., 2012; Cristescu, 2014; Valentini et al., 2016).

As the importance of DNA metabarcoding has been recognized, many research
projects are already actively underway in other countries. In 2007, the National Institutes
of Health (NIH) established the Human Microbiome Project (HMP) to form the largest
pan-national-level research group. The research team established standardized pipelines to
analyze and explain the correlations between human health and disease by identifying all
the microbes present in humans and their specific functions using metagenomics (Gevers
et al., 2012). The Earth Microbiome Project (EMP) is also an international project for

identifying microbial communities in environmental samples throughout the globe,



including seawater, soil, and sewage. This research group also presented standardized
protocols and bioinformatics analysis methods (Gilbert et al., 2014). Using standardized
protocols and analysis methods based on these projects, large-scale studies using DNA
metabarcoding are being conducted across the entire field of biology. Especially in the
ecology and forensic fields related to this dissertation, DNA metabarcoding is applied to
wide range of studies such as environmental monitoring, diet analysis, detection of illegal
trade, and food fraud (Yang et al., 2014; Ruppert et al., 2019). However, compared with
the research trends of DNA metabarcoding worldwide, researches in Korea are more basic
and limited in scope.

This dissertation reports three case studies of the aquatic environments that were
conducted using DNA metabarcoding to compensate for the drawbacks of domestic
research trends in DNA metabarcoding. The final objective of this study is to apply DNA
metabarcoding approach to various case studies in aquatic environments. Based on this, it
is to understand and explain the biological phenomena of aquatic environments with
metadata produced DNA metabarcoding. Each chapter of the dissertation was organized
according to the case study. In Chapter 1, DNA metabarcoding was newly applied along
with the traditional morphological identification to establish a method for zooplankton
community survey in the Marine and Coastal National Park areas of Korea. By comparing
the results of these two identification methods, the strengths and limitations of
metabarcoding were verified with the zooplankton communities appearing in these areas.
Based on this results, | discussed the potential of metabarcoding analysis as an efficient
method to monitor the zooplankton community in the Marine and Coastal National Park

areas. In Chapter 2, the association between family of crabs and feeding behavior on their



intestinal microbiomes of Korean crabs was confirmed using DNA metabarcoding. With
the metadata of intestinal microbiome in the Korean crabs, biodiversity and community
structure were compared according to the family of crabs and the feeding groups. Based on
the intestinal microbiome data, the families, as well as the controversial phylogenetic
relationship between the superfamilies Ocypodoidea and Grapsoidea, were observed from
a new perspective. In addition, the functional profile was predicted in the intestinal
microbiome and the roles of the intestinal microbes that significantly affect their family of
crabs and their feeding behavior was inferred. In Chapter 3, biodiversity and
microeukaryotic community structures of car bonnet and pig carcass were investigated to
determine the applicability of DNA metabarcoding in drowning cases. To assume the
drowning case, a drowning experiment was carried out in a reservoir with pig and car
bonnet. Pig carcass was used to simulate the decomposing process of drowning bodies. As
a control, car bonnet was used to confirm the general process of succession occurring in
aquatic environments. Through these results, | determined whether biodiversity and
community structure of microeukaryotes could be used to infer PMSI for drowning cases.

The general contents of each chapter were tabulated (Table 1).
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Chapter 1

Biodiversity and community structure of
mesozooplankton in the Marine and Coastal

National Park areas of Korea
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1.1 Introduction

Marine ecosystems are changing as a result of global climate change and industrialization
in coastal areas. Unlike terrestrial ecosystems, marine ecosystems can be difficult to access
and are influenced by a unique set of external factors, including the degree of light
transmission, oxygen concentration, water masses, currents, and salinity, which complicate
assessments and predictions. As marine ecosystems change, bioindicators respond by
changing their morphological or cellular structure, metabolic processes, behaviors, and
communities (Bortone et al., 1989; Bongers and Ferris, 1999; Sanchez et al., 2000). Due
to these characteristics, studying bioindicators that can confirm and monitor the changes in
the marine ecosystem is becoming important worldwide (Kuklina et al., 2013; Parmar et
al., 2016).

Zooplankton represent the primary and secondary consumers in the aquatic food
chain and are some of the most abundant and ubiquitous taxa in aquatic ecosystems
(Richardson, 2008; Ward et al., 2012; Pochon et al., 2013). The spatial and temporal
distribution of zooplankton communities fluctuate in response to environmental changes in
marine ecosystems, such as variations in temperature and salinity (Sabatés et al., 1989;
Purushothama et al., 2011). Therefore, zooplankton are useful bioindicators for detecting
environmental changes in the marine ecosystem (Zheng and Li, 1989; Hsieh et al., 2004;
Thierstein et al., 2004; Casé et al., 2008; Chen et al., 2011; Chen and Liu, 2015). However,
the investigation of zooplankton communities using traditional morphological
identification requires high taxonomic knowledge as well as considerable time and labor

(Sawaya et al., 2019). Additionally, it can be difficult to identify the lowest taxonomic
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ranks (i.e., genus and species) as some zooplankton have ambiguous morphological
characteristics, particularly in the larval stages (Heimeier et al., 2010). The development
of next-generation sequencing (NGS) technology led to the advent of DNA metabarcoding,
a method that can quickly and simultaneously detect any taxa within the database (Rusch
etal., 2007; Caporaso et al., 2012). Thus, large-scale marine ecological surveys were made
possible with bulk-sample DNA metabarcoding (Taberlet et al., 2012b; Bucklin et al.,
2016; Dormontt et al., 2018; Adamowicz et al., 2019). As these advantages were revealed,
many researchers conducted comparative studies to confirm that DNA metabarcoding was
effective for ecological surveys when compared to traditional morphological identification.
Most previous studies report that DNA metabarcoding detects more taxa than
morphological identification methods. Additionally, differences in communities can be
distinguished and identified more efficiently. However, it is still difficult to achieve
accurate biodiversity and species composition surveys with DNA metabarcoding because
of the potential for distortion of species abundance as a result of technical biases and false
negatives (Cowart et al., 2015; Zimmermann et al., 2015; Clare et al., 2016; Kim et al.,
2019; Serrana et al., 2019).

The national parks of South Korea are designated as regions that represent the
natural ecosystems or the natural and cultural landscapes of Korea. According to the Korea
National Park Service website (http://www.knps.or.kr), a total of 22 national parks have
been designated in South Korea. Among these, only four are marine and coastal national
parks. Taeanhaean National Park and the Byeonsan-bando National Park, are situated along
the Yellow Sea coast. Dadohaehaesang National Park includes areas of both the Yellow

Sea coast and Southern Sea coast of Korea and Hallyeohaesang National Park is located on
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the Southern Sea coast of Korea. The Marine and Coastal National Parks aim to preserve
the valuable and highly diverse ecosystems within them. As such, ecological study and
efficient management of the Marine and Coastal National Parks are essential.

In this chapter, DNA metabarcoding was newly applied along with traditional
morphological identification to establish a method for zooplankton community surveys in
the Marine and Coastal National Park areas of Korea. Mesozooplankton (>200 pm) were
selected as the target organisms because there were many previous studies conducted using
regular zooplankton surveys at the Marine and Coastal National Park areas, thus allowing
for comparison of the identification results of DNA metabarcoding with those of
morphological identification. The mesozooplankton communities in the Marine and
Coastal National Park areas were compared and analyzed according to sea area and location
because the two areas (Yellow Sea and Southern Sea of Korea) and four locations (Taean,
Byeonsan, Dadohae, and Hallyeo areas) included representative diverse marine
environments with variations in depth, topography, effects of currents, and inflow of
freshwater (Pang and Hyun, 1998; Cheng et al., 2004; Go et al., 2009). The main objective
of this study was to perform a DNA metabarcoding analysis of the biodiversity and
community structure of mesozooplankton communities in the Marine and Coastal National
Park areas. First, | verified the strengths and limitations of DNA metabarcoding by
comparing the results with those obtained by morphological identification. Second,
bioindicator taxa associated with spatial and environmental characteristics were identified
based on the DNA metabarcoding analysis. Finally, I discussed the potential of DNA

metabarcoding analysis as an efficient method to monitor the zooplankton community.
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1.2 Materials and Methods

Mesozooplankton samples and spatial and environmental data collection

Mesozooplankton samples were obtained from a spring season survey during “A Survey
on Marine Ecosystems of the Marine and Coastal National Park Areas of Korea” conducted
by the Marine Research Center of the Korea National Park Service from May to June 2019.

Sampling was conducted at 58 sampling stations, including the sampling stations
in the four Marine and Coastal National Parks and adjacent sea areas (Figure 1). The
sampling points consisted of one to four points depending on the location of each district,
and the distance between the points was at least 10 km in consideration of the velocity of
tidal current (https://www.knps.or.kr/). All sampling stations were designated categories
according to the sea area and location. The study area was divided into two sea areas and
four locations (Taean, Byeonsan, Dadohae, and Hallyeo areas) based on the standard line
drawn at 225° from Haenamgak (34°17°33.09” N, 126°31°26.02” E) of the Korea
Hydrographic and Oceanographic Agency and areas under the jurisdictions in the Marine
and Coastal National Parks, respectively. A 200 wum mesh conical net with a 60 cm diameter
mouth was lowered vertically to the bottom of each sampling station and then raised at a
rate of 1 m/s. A flowmeter (Hydrobios, 438115) was attached to the entrance of the net to
measure the amount of seawater filtered. Sampling was performed in duplicate at each
sampling point; one of the obtained samples was stored in 4% formalin solution for
morphological identification and the other in 99% ethanol for DNA extraction and

molecular identification.

14


https://www.knps.or.kr/

Spatial and environmental data were also obtained to verify the relationships with
the zooplankton community structure and distribution (Appendix 2). At each sampling
station, spatial data were obtained using longitude and latitude data from a global
positioning system (GPS). Environmental parameters, such as water temperature and
salinity, and depth were measured at each sampling station using a SBE 9plus conductivity-
temperature-depth (CTD) instrument (Sea-Bird Electronics Inc., Bellevue, Washington,
USA). Chlorophyll samples were collected at each sampling station by filtering both the
surface and benthic seawater through glass fiber filters (GF/F; @ 25 mm, pore size 0.7 pm,
Whatman, Maidstone, England) for chlorophyll a analysis. The filter papers were then
placed in light-resistant containers with 90% acetone and frozen until the chlorophyll a was
extracted. The extracted chlorophyll samples were transferred to test tubes, and chlorophyll
a concentration measured using a fluorophotometer (10AU, Turner Designs, Sunnyvale,
CA, USA). The environmental variables at each sampling station were measured from the

surface to the benthic layer and then averaged.
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Figure 1. Sampling stations in Marine and Coastal National Park areas of Korea.
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Morphological identification and DNA metabarcoding process

Formalin-fixed mesozooplankton samples were transported to the laboratory for species
identification and counting. In the laboratory, mesozooplankton samples were divided into
subsamples of 500 - 1,000 individuals using a Folsom zooplankton splitter. Each subsample
was counted and identified in a Bogorov counting chamber under a Leica M165C
stereomicroscope (Leica Microsystems, Wetzlar, Germany). Taxonomy experts identified
most of the copepods to the species level but some individuals that were difficult to identify

at the species level were classified to the lowest possible taxonomic level (Appendix 3).

The samples for DNA extraction were vortexed at maximum speed and then
centrifuged for 5 min at 13,000 rpm. Subsequently, the supernatant was removed and
incubated at room temperature until ethanol had completely evaporated. DNA was
extracted from the pellets using a Qiagen DNeasy Blood & Tissue Kit (Qiagen, Valencia,
CA, USA) following the manufacturer's instructions. In the last step, each eluted DNA
sample was recombined according to the sampling station. Three PCR replicates were
performed for DNA amplification and each DNA sample was diluted by 1:10. I chose a
primer set to target the V9 region of the 18S ribosomal DNA, because it has the ability to
detect the whole of zooplankton communities. Also, it is one of the most commonly used
to investigate zooplankton using DNA metabarcoding (Amaral-Zettler et al., 2009;
Pearman et al., 2014; De Vargas et al., 2015; Albaina et al., 2016; Bucklin et al., 2016;
Abad et al., 2017; Djurhuus et al., 2018; Stefanni et al., 2018). The 18S ribosomal DNA
(rDNA) V9 variable region was amplified using the 1391F (5'-GTACACACCGCCCGTC-

3") and EukBr (5'-TGATCCTTCTGCAGGTTCACCTAC-3') primers (Amaral-Zettler et
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al., 2009). The PCR amplification was performed as follows: 3 min at 94°C, 35 cycles of
45 s at 94°C, 45 s at 65°C, 30 s at 57°C, and a final extension step of 10 min at 72°C. The
amplified PCR products were confirmed via electrophoresis and pooled together for each
sample. The amplified PCR products were then purified using the QIAquick PCR
Purification Kit (Qiagen, Valencia, CA, USA) and paired-end sequencing was performed

at Macrogen Inc. (Seoul, Korea) on the [llumina MiSeq platform.

The 18S rDNA sequencing data produced by Illumina MiSeq was analyzed using
the custom python script "DNA_metabarcoding analysis.py" based on the Querial Insights
Into Microbial Ecology (QIIME) v 1.9.1. (Caporaso et al., 2010) (Appendix 1). Forward
and reverse sequences were concatenated into one read using PEAR with the default
parameters (Zhang et al., 2013). Short (< 200 bp) or low-quality assembled reads (Q < 30)
were discarded and only the assembled reads were included in the bioinformatics analysis.
Detection of chimeric sequences and operational taxonomic unit (OTU) clustering were
performed using VSEARCH (Rognes et al., 2016). Chimeric sequences and singleton
sequences were excluded from the analysis. All OTUs were clustered with 97% similarity
and the most abundant sequence was selected in each OTU. These representative sequences
were assigned taxonomic information by comparing the 18S rDNA eukaryotic database
from the NCBI GenBank parsed using Biopython (http://www.biopython.org). In cases
where the assigned taxonomic information of OTUs was unclear (e.g.,
uncultured/environmental sample sequences), it was inferred with the taxonomic
information of the closest assigned species, considering lowest similarity thresholds for

copepod taxonomic resolution (more than 96% for identification to family level; 85% or
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more to phlyum level) (Wu et al., 2015). To revise the number of reads distorted by the
technical bias problem, rarefaction for biodiversity analysis was conducted considering a

minimum number of reads.

All bioinformatics and statistical analyses were conducted and visualized with
plots using ggplot2, Phyloseq, ggplot2, vegan, pairwise Adonis, dunn.test, rcompanion, and
ade4 packages in R v 3.5.1 (Dray et al., 2007; Oksanen et al., 2007; McMurdie and Holmes,
2013; Team, 2014; Wickham, 2016; Dinno and Dinno, 2017; Mangiafico and Mangiafico,
2017; Martinez Arbizu, 2017). All p-value adjustments were applied as the false discovery
rate (FDR) (Benjamini and Hochberg, 1995). Taxonomic information and species counts
(read counts) obtained using the morphological identification and DNA metabarcoding
were converted to Biological Observation Matrix (BIOM) format for the analysis of
biodiversity and community structure, respectively. The indices of richness (observed
species (OTUs) and Chaol), diversity (Shannon’s diversity), and evenness (equitability)
for each BIOM file were calculated using QIIME script (alpha_diversity.py). Statistical
significances in the biodiversity indices for the sea area variables were determined by the
Wilcoxon rank sum test. The Kruskal-Wallis test and pairwise comparisons were conducted
to identify significant differences among the location variables, with the Dunn’s test as a

post hoc test.

To examine the differences between mesozooplankton community structures, the
unweighted pair group method with arithmetic averages (UPGMA) was analyzed based on
Bray-Curtis dissimilarities. To test the similarity in the zooplankton community structure

identified by the two methods, two UPGMA cluster trees were compared with formed
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zooplankton communities. Procrustes analysis was conducted with 1,000 permutations
using the protest function. Constrained analysis of principal coordinates (CAP) was also
performed to identify the relationships between zooplankton community structures and the
following categories: sea area (Yellow Sea and Southern Sea of Korea), location (Taean,
Byeonsan, Dadohae, and Hallyeo areas), and spatial, environmental variables (latitude,
longitude, water temperature, salinity, and chlorophyll a concentration). Statistical
differences from the CAP analysis and among community structures were evaluated using
ANOVA and the pairwise Adonis with the test of 999 random permutations, respectively.
The taxonomic compositions of the mesozooplankton communities identified with the two
methods were compared based on the phylum level and the most frequently detected family

level.
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1.3 Results

Environmental characteristics in the Marine and Coastal National Park areas in

Korea

During the survey period, the environmental data collected from of the Marine and Coastal
National Park areas were compared according to the sea area and location (Table 2). Among
the sampling stations, the average water temperature was higher in the Southern Sea of
Korea than the Yellow Sea. The salinity of the Tacan and Byeonsan areas was lower than
that of Dadohae and Hallyeo areas. The average chlorophyll @ concentration in the Yellow
Sea was higher compared with that in the Southern Sea of Korea. The average depth was
the greatest in the Hallyeo area and the lowest in the Byeonsan area. The deepest individual
sampling point was N2 (76.05 m) in the Dadohae area and the shallowest was H2 (3.29 m)

in the Dadohae area.

Mesozooplankton biodiversity analysis

I performed a comparison between the number of species identified by the morphological
identification and the number of OTUs based on the similarities of sequences in DNA
metabarcoding (Table 3). This is an indirect comparison because the 97% similarity
distance measures used for the OTU clustering have insufficient resolution to distinguish
between zooplankton species. With morphological identification, a total of 79 taxa were
identified in mesozooplankton samples from the Marine and Coastal National Park areas.
Fifty-five taxa were found in the Yellow Sea, 73 taxa were found in the Southern Sea of

Korea, and 52 taxa were shared by both sea areas. The number of taxa identified in each
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location was as follows: 37 in the Taean area, 30 in the Byeonsan area, 57 in the Dadohae
area, and 61 in the Hallyeo area. Using [llumina MiSeq sequencing, 18S rDNA sequencing
data were produced from 51 of the 58 mesozooplankton samples. A total of 15,108,829
zooplankton sequences were obtained and after filtration and elimination of low quality
and chimeric sequences, 6,201,616 sequences remained. There were 629 OTUs detected in
the Yellow Sea and 728 OTUs in the Southern Sea of Korea. Of these, 476 OTUs were
present in both sea areas. For the location variables, the number of OTUs detected was 336
in the Taean area, 244 in the Byeonsan area, 730 in the Dadohae area, and 522 in the
Hallyeo area. All Good’s coverage values for all 18S rDNA sequencing data were greater
than 0.99, which means that there is a sufficient number of sequences for all zooplankton
samples. In taxonomic categorical ranks, morphological identification identified of 10
phyla, 18 classes, 27 orders, 36 families, and 43 genera of zooplankton individuals; DNA
metabarcoding detected 20 phyla, 38 classes, 86 orders, 187 families, and 230 genera of

zooplankton individuals.

The biodiversity indices were compared by sea area and location (Figures 2 and 3,
Tables 4 and 5). The results of morphological identification and DNA metabarcoding
showed similar pattern in biodiversity indices according to the sea area. Although the
diversity indices calculated from the two methods were slightly different, the richness and
evenness of the zooplankton communities were the same (Figure 2, and Table 4). In contrast,
the pattern of all biodiversity indices calculated among locations was completely different
when using the morphological identification and DNA metabarcoding (Figure 3, and Table

5). The zooplankton richness of the Hallyeo area using the morphological identification
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was high compared to other areas but when the DNA metabarcoding approach was used,
there were no statistical differences among locations. Comparing the diversity indices and
evenness of zooplankton between the two methods, these biodiversity indices were
distinctly lower in the Byeonsan area than the Dadohae area when calculated using the
morphological identification results. However, these biodiversity indices calculated using

DNA metabarcoding were significantly higher in the Hallyeo area than the Dadohae area.
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Figure 2. Boxplots for the mesozooplankton biodiversity indices were calculated using

morphological identification and DNA metabarcoding results according to the sea

area. Statistical differences in the biodiversity indices according to the sea area were

calculated using the Wilcoxon rank sum test. As a post hoc analysis, all p-values were

corrected using the Benjamini-Hochberg procedure (** P < 0.01, * P < 0.05, N.S. no

significance).
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Figure 3. Boxplots for the mesozooplankton biodiversity indices were calculated using

morphological identification and DNA metabarcoding results according to the

location. The significances of biodiversity indices were calculated using the Kruskal-

Wallis test. As a post hoc analysis, pairwise comparisons were conducted using Dunn’s test.

The results for Dunn’s test were marked using the same letter for values that were not

significantly different from each other (N.S. no significance).
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Mesozooplankton community analysis

In both methods, mesozooplankton communities in the Marine and Coastal National Park
areas were grouped into three clusters (Figure 4). Although there were some differences in
the mesozooplankton samples that belonged to the cluster, there were similar pattern:
Cluster 1 mainly contained the zooplankton samples from the Dadohae area; Cluster 2
tended to consist of zooplankton samples from the Hallyeo area, in addition to samples
from the eastern parts of the Dadohae area; and the zooplankton samples of the Yellow Sea
(included in the Taean and Byeonsan areas) formed Cluster 3. Through the Procrustes
analysis, I confirmed that there was a significant correlation between the mesozooplankton
communities formed by the morphological identification and DNA metabarcoding (m12

squared = 0.80; correlation value = 0.44; p-value = 0.001) (Figure 5).

Using CAP analysis, the mesozooplankton communities in the Marine and Coastal
National Park areas detected using the two methods were significantly different according
to the sea area (morphological identification: p-value = 0.001, explanatory power = 16.6%;
DNA metabarcoding: p-value = 0.001, explanatory power = 29.0%) and location
(morphological identification: p-value = 0.001, explanatory power = 25.0%; DNA
metabarcoding: p-value = 0.001, explanatory power = 40.1%) (Figure 6). According to the
pairwise Adonis test, all mesozooplankton communities formed by the CAP analysis were
significantly different (Table 6). In the contrast, taxonomic compositions between
mesozooplankton communities differed depending on the identification method. At the
phylum level, the identification results of the morphological identification and DNA

metabarcoding confirmed that Arthropoda was the largest taxon in the Marine and Coastal
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National Park areas (Figures 7A and 7B). However, while more Myzozoa were identified
using morphological identification than DNA metabarcoding, Cnidaria were conspicuously
detected using DNA metabarcoding. Interestingly, Rotifera were detected only by the DNA
metabarcoding method. Myzozoa and Cnidaria were found more prominently in the
Hallyeo area compared with other locations, while Rotifers were detected more in the Taean
and Byeonsan areas. Differences in the taxonomic composition of taxa identified using the
two methods were more apparent when compared at the major family level (Figures 7C
and 7D). The proportions of Acartiidae, Corycaeidae, Noctilucaceae, Oikopleuridae, and
Podonidae identified applying the morphological identification were higher than when
applying DNA metabarcoding. In contrast, more Calanidae, Centropagidae, Diphyidae,
Euphausiidae, Mysidae, Paracalanidae, and Sagittidae were detected with DNA
metabarcoding. Based on the results of the two identification methods, the taxonomic
compositions of mesozooplankton communities in the Marine and Coastal National Park
areas were compared according to the sea area and location. In the Taean area, both
Centropagidae and Podonidae were more dominant compared to the other areas, and in the
Byeonsan area, Acartiidae was more abundant compared to other areas. Paracalanidae was
often observed in samples from the Southern Sea of Korea (Dadohae and Hallyeo areas).
Oithonidae was also more common in two areas of the Southern Sea of Korea compared to
the other areas. Calanidae, Euphausiidae, and Mysidae were identified more in the Dadohae
area than in other areas. In the Hallyeo area, Notilucaceae accounted for nearly half of the
mesozooplankton community when identified using the morphological identification,

while Diphyidae and Sagittidae were also detected using DNA metabarcoding.
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Figure 4. Comparison of UPGMA cluster trees for zooplankton communities between
morphological identification and DNA metabarcoding using Bray-Curtis

dissimilarities.
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Figure 5. Procrustes analysis based on Bray-Curtis dissimilarities for zooplankton
communities between morphological identification and DNA metabarcoding. All
samples are represented by morphological identification (circle) and DNA metabacoding

(triangle), and are wired between the corresponding Sample ID.
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Figure 6. CAP plots for mesozooplankton communities identified using the
morphological identification and DNA metabarcoding methods. CAP analysis for
mesozooplankton communities based on Bray—Curtis dissimilarities according to each
category and identification method: (A) sea area and morphological identification, (B) sea
area and DNA metabarcoding, (C) location and morphological identification, and (D)

location and DNA metabarcoding.
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Figure 7. Taxonomic composition of mesozooplankton communities. Bar plots show
phylum level proportions according to (A) the identification method and (B) the sea area
and location using morphological identification and DNA metabarcoding; Bar plots show
major family level proportions according to (C) the identification method and (D) the sea

area and location using morphological identification and DNA metabarcoding.
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Potential indicator taxa detection using DNA metabarcoding

Morphological identification and DNA metabarcoding were compared to identify potential
bioindicator taxa reflecting spatial and environmental characteristics in the Marine and
Coastal National Park areas. A CAP analysis revealed that the associations between
mesozooplankton communities and all variables produced similar results using both
methods. The mesozooplankton communities identified by both methods were significantly
affected by all spatial and environmental variables (morphological identification: p-value
= 0.001, explanatory power = 36.7%; DNA metabarcoding: p-value = 0.001, explanatory
power = 49.8%) (Figures 8A and 8B). Each mesozooplankton community cluster exhibited
significant differences when using both methods (p-values = 0.001 for all clusters). Of the
three community clusters formed, Cluster 1 exhibited no correlation between the external
variables I obtained and the mesozooplankton community. In contrast, Cluster 2 and Cluster
3 were related to spatial and environmental variables. Cluster 2 was correlated with
longitude, water temperature, and salinity; latitude and chlorophyll a concentration were
correlated with Cluster 3. The taxonomic compositions between mesozooplankton
community clusters formed by constraining spatial and environmental variables was shown
in CAP analysis (Figures 8C and 8D). Paracalanidae, which was dominant in the Southern
Sea of Korea, was more abundant in Cluster 1 and Cluster 2 compared to Cluster 3. A larger
number of Calanidac were identified in Cluster 1 by both methods. Oikopleuridae and
Oithonidae were frequently observed through morphological identification in Cluster 1,
while Euphausiidae and Mysidae were detected more in Cluster 1 with DNA metabarcoding.
Notilucaceae, Diphyidae, and Sagittidae, which were associated with the Hallyeo area,

were more common in Cluster 2 than other mesozooplankton clusters using both methods.
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The phylum Rotifera included in Other with Acartiidae, Podonidae, and Centropagidae,
which were more dominant in the Yellow Sea, were identified more in Cluster 3 by DNA

metabarcoding.

Depending on the DNA metabarcoding results, the dominant or uniquely identified
taxa were considered as potential bioindicator taxa that characterize the mesozooplankton
cluster (Figure 7B). Paracalanidae, Diphyidae, and Sagittidae, and Noctilucaceae, which
were common in Cluster 2, could be associated with high water temperature, salinity, and
topography. Acartiidae, Podonidae, Rotifera, and Centropagidae, which were more
dominant in Cluster 3, could be bioindicators for inflow of freshwater and chlorophyll a

concentration.
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Figure 8. The association between spatial, environmental characteristics and
mesozooplankton communities. CAP analysis for zooplankton communities based on
Bray—Curtis dissimilarities according to each category and identification method: (A)
spatial and environmental variables, and morphological identification; (B) spatial and
environmental variables, and DNA metabarcoding. The arrows on the CAP plots in (A) and
(B) indicate the patterns in response to the spatial and environmental variables for the
zooplankton community clusters. Bar plots between zooplankton community clusters
formed using (C) morphological identification and (D) DNA metabarcoding according to

spatial and environmental variables in CAP analysis.
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1.4 Discussion

Comparison between the morphological identification and DNA metabarcoding

results

In this study, the efficiency of DNA metabarcoding was verified by comparing it with the
results of morphological identification. Therefore, I could validate the use of DNA
metabarcoding for investigation of the mesozooplankton community of the Marine and

Coastal National Park areas.

Consistent with the results of previous studies comparing the efficiency of
morphological identification and DNA metabarcoding, my results demonstrated that DNA
metabarcoding was able to detect much more zooplankton taxa than morphological
identification (Table 3). Additionally, mesozooplankton community structures clustered in
similar pattern when the results of both methods were compared. The morphological
identification method may overlook small-sized zooplankton species and premature or
cryptic species that are difficult to distinguish morphologically. In contrast, the sensitive
detection capability of DNA metabarcoding is likely to detect small, immature, and cryptic
individuals, which cannot be detected by the naked eye. In my results, many individuals of
the phylum Rotifera, that were not morphologically identified, were detected by DNA
metabarcoding (Figures 7A and 7B). There is less interest in Rotifera compared to other

taxa and domestic taxonomic experts of Rotifera are rare.

In addition, through species identification using DNA barcoding, it was confirmed
that there are many cryptic species in this phylum. As such, ecological studies of Rotifera

have limitations (Gabaldon et al., 2017). However, they are important for understanding
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the aquatic ecosystem as this taxon represents an important food source for large aquatic
organisms such as crustaceans and fishes (Oh et al., 2020). These results reveal that DNA
metabarcoding may be more useful than morphological identification for the detection of
Rotifera. Additionally, DNA metabarcoding brought the presence of the taxon to our
attention, so I will be more aware of Rotifera when morphologically examining

zooplankton communities in the Marine and Coastal National Parks.

My results also revealed some limitations of the DNA metabarcoding method that
were previously reported. Consistent with the results of previous studies, I found that the
biodiversity and taxonomic composition of mesozooplankton communities were different
between the morphological identification and DNA metabarcoding methods. In particular,
the abundance of Calanidae, which was relatively large compared to other taxa, tended to
be overestimated by DNA metabarcoding (Figures 7C and 7D). Among the copepods
collected from my results, Calanidae individuals generally have a larger body size (up to 3
mm) than Acartiidae, Centropagidae, and Paracalanidae. The large body size of these
organisms may contribute to the amount of DNA extracted from a sample, resulting in an
overestimate (Aylagas et al., 2016; Schiebelhut et al., 2017; Lamb et al., 2019). The
underestimated abundance of the dinoflagellate Noctiluca scintillans in DNA
metabarcoding appears to be due to the low efficiency of DNA extraction compared to other
zooplankton taxa. The DNA extraction efficiency for dinoflagellates varies according to
the protocol (Yuan et al., 2015). It is inferred that a relatively small amount of DNA was
extracted from Noctiluca scintillans due to the use of a zooplankton-focused method of
DNA extraction. These technical biases, including DNA extraction and PCR biases, distort

the actual number of sequences (Pochon ef al., 2013; Andruszkiewicz et al., 2017; Borrell
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et al., 2017; Wurzbacher et al., 2017; Lacoursiére-Roussel et al., 2018; Doi et al., 2019).
Additionally, Oikopleuridae, which was among the most frequently detected family levels,
was not detected with DNA metabarcoding. Considering the results of previous studies,
which detected Oikopleuridae in the stomach of fish using the same primer (Albaina et al.,
2016; Kodama et al., 2017), it is expected that the lack of detection of Oikopleuridae may
have been caused by the technical biases generated during the sampling or experimental

processes.

Potential bioindicator taxa in the Marine and Coastal National Park areas of

Korea in spring

Zooplankton taxa can provide early detections of global climate change due to their
sensitivity to environmental changes. DNA metabarcoding has a sensitive detection
capability, which can identify potential indicator taxa in bulk samples or communities
(Xiong et al., 2020). Using DNA metabarcoding, I identified the characteristics of three
clusters divided according to spatial and environmental variables (Figure 8B). In addition,
using the results from both identification methods, I determined found potential

bioindicator taxa that were related to the characteristics of Cluster 2 and Cluster 3.

Cluster 1 was unable to identify any correlations between the cluster of
mesozooplankton communities and the spatial and environmental variables (Figure 8B).
This indistinctness may be attributed to the diverse geographical characteristics and
extensive range of the Dadohae area. The sampling stations in the Dadohae area are

distributed in both the Yellow Sea and the Southern Sea of Korea; therefore, these sampling
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stations are affected by the environmental characteristics of both sea areas. In addition, due
to the seasonal changes of the Kuroshio currents and the southward movement of
freshwater in the Yellow Sea by wind, the zooplankton habitat here changes more
frequently than in other areas (Oscar, 1982; Lee et al., 2011). Using DNA metabarcoding,
Calanidae, Euphausiidae, and Mysidae, were found more in this cluster compared with
others (Figure 8D). However, I was not able to identify the common characteristics of these

taxa that reflect the characteristics of Cluster 1 in this study.

Cluster 2 was associated with longitude, water temperature, and salinity (Figure
8B). This distinct clustering could be a result of the environmental characteristics of the
Kuroshio Current and topographical characteristics of the Southern Sea of Korea.
Paracalanidae, Diphyidae, and Sagittidae, detected in high abundance by DNA
metabarcoding, appear to be associated with high temperature and salinity, which are
characteristics of the Kuroshio Current (Figure 8D). The Kuroshio Current has relatively
high temperature and salinity compared with other currents affecting the Korean Peninsula
(Lie and Cho, 2016). The Genus Paracalanus belonging to Paracalanidae is one of the
common copepods on the coast of Korea., which are reportedly correlated with high water
temperature or salinity (Kang, 1996; Araujo, 2006; Kang and Kim, 2008; Jang et al., 2012).
Diphyidae can be easily moved through ocean surface currents and thrive explosively upon
encountering a preferred environment (Mackie et al., 1988; Blackett et al., 2014). Most
jellyfish are known to prefer high water temperature and salinity in marine environments
(Buecher, 1999). In addition, Chaetognatha, a phylum that includes Sagittidae, is moved
by the Kuroshio Current and its distribution is closely related to the physical and

environmental characteristics (e.g., high water temperature and salinity) of these currents
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(Johnson and Terazaki, 2003; Noblezada and Campos, 2008; Grossmann and Lindsay,
2013). Noctilucaceae was also detected more in Cluster 2 than others when DNA
metabarcoding was used, although not as much as the result of morphological confirmation.
The hydrographical characteristics of the Hallyeo area and high salinity of the Kuroshio
Current may also contribute to this result, as the most widely known of Noctilucaceae
species, Noctiluca scintillans, is widely distributed globally and is one of the red tide
forming species (Dela-Cruz et al., 2003; Miyaguchi et al., 2006). The distribution of
Noctiluca scintillans in Cluster 2 appears to be affected by unique hydrographical
characteristics (e.g., topography) in the Hallyeo area. The Hallyeo and part of the Dadohae
areas in Cluster 2 are well developed partially enclosed bays. This topography has the
characteristic of accumulating buoyant cells of Noctiluca scintillans, causing large bloom
(Miyaguchi et al., 2006). In addtion, previous studies reported that salinity is positively
correlated with the number of Noctiluca scintillans individuals in Gwangyang Bay, a
nearby sea area of Hallyeohaesang National Park. Thus, Noctiluca scintillans are likely

well-adapted to high salinity conditions (Kang, 2010; Baek et al., 2013).

The DNA metabarcoding identification results revealed that the proportions of
Acatiidae, Podonidae, Rotifera, and Centropagidaec were found to be higher in Cluster 3
than in other clusters (Figure 8D). This cluster consisted mostly of samples from the Tacan
and Byeonsans area in the Yellow Sea, which is associated with the inflow of freshwater
and high concentrations of chlorophyll a. The Taean area and Byeonsan area, in the Yellow
Sea, have freshwater inflows from the Geum River, Mankyung River, and Dongjin River.
In addition, these areas have constructed artificial seawalls to prevent the inflow of

seawater to the land due to large tidal differences. To improve the water quality of the lake
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created by the artificial seawall, a large quantity of freshwater is released into the sea
through floodgates. This inflow of freshwater appears to have created a habitat for coastal
species of zooplankton that are adapted to the low level of salinity. This release of
freshwater can causes a change in the zooplankton assemblage (Williams, 1998; Yoo et al.,
2006; Gao et al., 2008; Lee et al., 2009; Paturej and Gutkowska, 2015). For example, as
salinity decreases in the surrounding marine environment, high-salinity tolerant species are
replaced by low-salinity tolerant species with similar functions in the marine ecosystems
(Lee et al., 2003). In my results, a high proportion of Acartiidae was found in Cluster 3
with the DNA metabarcoding method. Using morphological identification, Acartiidae were
identified to the species level as Acartia hongi, Acartia hudsonica, Acartia ohtsukai, and
Acartia omorii. Podonidae, which were abundant in the Tacan area, were identified
morphologically as Pleopis polyphemoides. This species has the characteristic of preferring
brackish water and river estuary areas and is known as being highly resistant to low salinity
(Ueda, 1982; Shim and Choi, 1996; Soh and Suh, 2000; P&llupiiii ef al., 2010; Moon et al.,
2012). The phylum Rotifera also consist of freshwater invertebrates that play a pivotal role
in freshwater and marine ecosystems, as mentioned above (Segers, 2007). With the inflow
of freshwater, it can be inferred that the proportions of Acartiidae, Podonidae, and Rotifera,
which prefer low salinity were higher in Cluster 3 than in other mesozooplankton
community clusters. The occurrence of a highly detected Centropagidae species appears to
be closely related to the chlorophyll a concentration. As mentioned above, the average
chlorophyll a concentration was higher in the Yellow Sea compared with that of the
Southern Sea of Korea. A Centropagidae species detected using DNA metabarcoding was

identified as Centropages abdominalis and verified by morphological identification.
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Similar to my results, Kang and Kim (2008) also found that the occurrence of Centropages
abdominalis is positively related to the concentration of chlorophyll a, and the amount of

phytoplankton greatly affects its growth and development.
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2.1 Introduction

Many previous studies using experimental and molecular methods have reported that
various factors of hosts relate to the diversity and community structure of their intestinal
microbiomes (Youngblut ef al., 2019). Among them, host traits such as host taxon and
feeding behavior account for a large proportion of the diversity of the intestinal microbiome
(Faith et al., 2011; Groussin et al., 2017). With the development of next-generation
sequencing (NGS) technology, metagenomic analysis using the 16S ribosomal DNA (16S
rDNA) regions of symbiotic microbes has been made possible (Ju and Zhang, 2015;
Youngblut et al., 2019). Based on this, it has also been revealed to some extent how host
traits affect the symbiotic microbiome in model organisms such as humans, primates, and
mice (Moeller et al., 2013; Wang et al., 2015; Clayton et al., 2018).

In the case of marine organisms, the association between host traits and gut
microbiome has been studied, with a focus on fish speices. The divergence in fish species
is associated with the formation of evolutionary forces that have intestinal microbiomes
(Sullam et al., 2015; Tarnecki et al., 2017). In addition, diet and feeding bahavior are
formed differently to the intestinal microbiome (Miyake et al., 2015; Talwar et al., 2018).
However, in the case of other aquatic organismss, there have few studies into the
relationships between these factors. The associations are difficult to clearly identify
because the host and its prey constantly make contact with the aquatic environment (Li et
al., 2012; Tzeng et al., 2015). In addition, intestinal microbiomes differ significantly in
biodiversity and community structure depending on the organisms and its characteristics

(O’Brien et al., 2019). For example, the Hawaiian bobtail squid has a simple microbial
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community with only a single microbe that emits light from its body. Corals and sponges,
conversely, have high microbial diversity and complex microbial communities. However,
coral is sensitive to seasonal and regional factors, while sponges are comparably more
resistant to these factors (McFall-Ngai, 2008; Littman et al., 2009; Rader and Nyholm,
2012; Thomas et al., 2016; Webster and Thomas, 2016; O’Brien et al., 2019). For these
reasons, the relationship between host evolutionary history, diet and intestinal microbiome
in marine organisms remains unclear.

Brachyuran crabs are one of the most dominant species of crustaceans and have
high morphological diversity (Warner and Warner, 1977; Bertini et al., 2004; Tsang et al.,
2014). The evolutionary history of brachyuran crabs is as complex as its morphological
diversity. The phylogenetic relationship between the two superfamilies, Ocypodoidea and
Grapsoidea, which are most commonly seen in the intertidal zone, remains controversial
(Jietal.,2014; Chen et al., 2018). From a traditional morphological perspective, these two
superfamilies have been interpreted as one monophyletic clade due to their common
characteristic of gonopores; however, molecular phylogenetic studies have revealed that
they are paraphyletic. (Kitaura et al., 2002; Tsang et al., 2014; Wang et al., 2020). In
addition, Brachyuran crabs have high ecological diversity: they are opportunistic
omnivores that use a variety of foods as energy sources (Lee, 2015). However, they have
various feeding behaviors (e.g., deposit-feeding, herbivory, and carnivory), according to
morphological characteristics such as the claw shape, body size, and structure of the
digestive system (Heeren and Mitchell, 1997; Schenk and Wainwright, 2001; Buck et al.,
2003). They also change their feeding behaviors according to their habitat and the size of

their prey. Currently, studies into the microbiome of crabs have focused on edible resource
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species, such as Eriocheir sinensis, and the correlation between host and microbiome. The
association between crab microbiome and habitat, health status, and diet type has been
elucidated.

In this chapter, the association between the intestinal microbiome of crabs
according to the family of crabs and feeding behavior was investigated using 16S rDNA
amplicons on the [llumina MiSeq. The intestinal microbial biodiversity and community
structures of crab samples were compared according to the family of crabs and feeding
groups. The family variables were divided to five groups: Leucosiidae, Dotillidae,
Macrophthalmidae, Sesarmidae, and Varunidae according to the taxonomic rank of the crab
samples. Based on the previous studies related to the ecology of crabs (Kobayashi, 2013;
Lee, 2015), the feeding behavior variables were divided into three groups: carnivore,
deposit-feeder, and detritivore. Based on the intestinal microbiome data, the families, as
well as the controversial phylogenetic relationship between the superfamilies Ocypodoidea
and Grapsoidea, were observed from a new perspective. In addition, the functional profile
was predicted in the intestinal microbiome and the roles of the intestinal microbes that

significantly affect their family of crabs and their feeding behavior was inferred.
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2.2 Materials and Methods

Sample collection

A total of 80 brachyuran crabs were collected from the intertidal zones of five sites
(Boryeong, Ganghwado Island, Shinan, Yeosu, and Yeongjongdo Island) located on the
western and southern coasts of South Korea in September, 2018 and April, 2019 (Table 7).
To gain high-quality DNA from the intestinal microbiomes of the collected crabs, all
samples were brought into the laboratory alive. Only male crabs were selected, due to the
microbiome differences between the sexes. The crabs were washed thoroughly with
distilled water and sterilized with 70% ethanol for 5 minutes. For DNA extraction of the
intestinal microbiome, each crab was dissected immediately after washing. Genomic DNA
was extracted from the dissected intestine and muscle tissue of the crab using DNeasy DNA
Micro Kit and DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA, USA), respectively,
according to the manufacturer's instructions. The total DNA extracts were frozen and stored
at -80°C until further analysis. The species of the crab was initially identified based on their
morphological characteristics. The species was then cross-checked with the DNA
sequences of the cytochrome oxidase ¢ subunit I (COI) region obtained from the each
muscle tissues. These sequences were identified based on the closest BLAST result in the

NCBI nucleotide database.

Host phylogenetic analysis

To construct a phylogenetic tree of the crab samples, the DNA sequences of mitochondrial

125, 16S rDNA, and COI gene of each species was obtained using several primer sets
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(Simon et al., 1994; Ivanova et al., 2007; Radulovici et al., 2009; Tsang et al., 2009) (Table
8). All sequences were aligned using MUSCLE with the L-INS-i algorithm and maximum
likelihood (ML) analysis was performed with RAXML 8.0.2 (Katoh and Standley, 2013;
Stamatakis, 2014). The GTRGAMMA model of nucleotide substitution was used with 1000
bootstrap replication. In the multigene analysis, alignments of three genes were

concatenated and partitioned by gene region.

Intestinal microbiome analysis

For detection of the intestinal microbiome of the crab samples, the 16S rDNA V4 variable
region was amplified using 515F-Y and 806RB universal primer sets (Apprill et al., 2015;
Parada et al., 2016). PCR conditions were as follow: 3 min at 94 °C; 35 cycles of 45 s at
94 °C, 1 min at 50 °C, and 1 min 30s at 72 °C, and a final extension step of 10 min at 72 °C.
PCR products were purified using a QIAquick PCR Purification Kit (QIAGEN, Germany)
and sequenced using the Illumina MiSeq sequencing platform at Macrogen Inc. (Seoul,
Korea).

Raw data of the intestinal microbiome in each crab sample were processed with
the custom python script “DNA_metabarcoding_analysis.py” based on the Querial Insights
Into Microbial Ecology (QIIME) v 1.9.1. (Caporaso et al., 2010) (Appendix 1). Forward
and reverse reads from each raw data were merged into single contig using PEAR with the
default settings (Zhang et al., 2013). Short (< 200 bp) or low-quality assembled contigs (Q
< 30) were excluded from the bioinformatics analysis. De novo chimera detection and
operational taxonomic unit (OTU) clustering were conducted using VSEARCH and the
detected chimeric sequences and singleton sequences were discarded from the analysis

(Rognes et al., 2016). All OTUs were clustered with 97% similarity and the taxonomic
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categorical rank was assigned to the most abundant sequence in each clustered OTU based
on 16S rDNA database in SILVA. Non-bacteria (e.g., archaea and arthropods), chloroplasts,
and mitochondrial sequences were also excluded from the analysis. Normalization was
performed considering sequence depths among the crab samples. The normalized data of
the intestinal microbiomes of the crab samples were analyzed according to the family of
crabs and feeding behavior variables. Intestinal microbial biodiversity indices
(Phylogenetic distance, Chaol, Shannon’s diversity, and equitability) were calculated
using the QIIME command “alpha diversity.py”. Constrained analysis of principal
coordinates (CAP) based on weighted UniFrac distance and unweighted UniFrac distance
was conducted to confirm the differecnes in intestinal microbial communities according to
the family of crabs and feeding behavior variables. Additionally, the taxonomic
compositions of the intestinal microbiomes were analyzed at the most frequently detected
bacteria family level.

All statistical values were calculated using several R packages, including vegan,
pairwise Adonis, dunn.test, rcompanion, and ade4 (Dray et al., 2007; Oksanen et al., 2010;
Dinno and Dinno, 2017; Mangiafico and Mangiafico, 2017; Martinez Arbizu, 2017).
Bioinformatics and statistical analysis were visualized by plots containing ggplot2 and
Phyloseq in R (McMurdie and Holmes, 2013; Team, 2014; Wickham, 2016). All P-values
were calibrated using the false discovery rate (FDR) presented by Benjamini and Hochberg
(Benjamini and Hochberg, 1995). To identify significant differences between intestinal
microbial biodiversity indices for family of crabs and feeding behavior, Kruskal-Wallis test

was conducted and the Dunn’s test was performed for pairwise comparisons as a post hoc
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test. The statistical differences between the intestinal microbial communities from the CAP

analysis were determined by ANOVA with 999 permutations.

Investigation into the relationship between intestinal microbiome and host phylogeny

To investigate the phylogenetic relationship between the two superfamilies of Ocypodoidea
and Grapsoidea and their intestinal microbiomes, CAP analysis was constrained to the
superfamily variables of crabs (e.g., Leucosioidea, Ocypodoidea, and Grapsoidea) by two
hypotheses: 1) two superfamilies in one monophyletic clade or 2) two superfamilies in a
non-monophyletic clade (different groups). To confirm the association between the family
of crabs and their intestinal microbiomes, the intestinal microbes associated with the family
of crabs were selected using Clade-based taxonomic units (ClaaTU) algorithm (Gaulke et
al., 2018). Based on the phylogenetic tree of the intestinal microbiome constructed from
the OTU representative sequences, the OTU matrix was converted into clade taxonomic
unit (CTU) matrix. Each clade of this phylogenetic tree was assigned taxonomic
information, and statistical differences were confirmed according to the family of crabs.
Using this algorithm, the conserved microbes were identified in all crab samples and the
significant microbes according to the family of crabs. To track the shift of the potential
intestinal microbes related to evolution, a presence-absence mapping matrix of these
microbes was created. The OTUs of potential intestinal microbes involved in the
divergence of crabs were considered rare if their abundance was less than 1% and their
appearance frequency was less than 25% in each crab species. Using Count V. 10.04, OTUs
gains and losses according to the family of crabs were determined by asymmetrical Wagner

parsimony with gain and loss penalties of 3 and 1, respectively.
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Functional profile prediction of intestinal microbes

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUS) v. 2 was used to predict the functional profiles of intestinal microbes according
to the feeding behavior of crabs (Douglas et al., 2020). PICRUSt analysis was performed
according to the tutorial instructions on the PICRUSt website. To evaluate the accuracy of
the prediction results, the nearest-sequenced taxon index (NSTI) values were calculated
and OTUs with a NSTI value above 2.0 were excluded from the analysis. For the analysis
of OTUs of each intestinal microbe (e.g, microbes associated with family of crabs or
feeding hebavior), the metagenome prediction was analyzed with the option “--
per_sequence contrib”. Through this analysis step, the CountContributedByOTU value
calculated for each OTU was added according to the bacterial taxonomy and compared for
each taxonomic rank. In the case of family of crabs, the top five predicted functional
profiles for each intestinal microbe were identified. In the case of the feeding behavior, the
statistical values for the predicated functional profiles and the relative frequency for each
feeding group were calculated using STAMP (Parks et al., 2014). The functional profiles
satisfied the statistical analysis and post hoc test (using Kruskal-Wallis test and the Tukey

test). The predicted functional profiles resulting from the PICRUSt analysis were assigned

functions based on the MetaCyc pathway database (Caspi ef al., 2007)
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Table 8. Sequences of primer sets used for host phylogenetic analysis.

Primer Sequence (5' to 3") Source
Ccol
FF2d TTC TCC ACC AAC CAC AAR GAY ATY GG

Ivanova et al. (2007)
(

CrustDF1 GGT CWA CAAAYC ATAAAG AYATTGG Radulovici et al. (2009)
FR1d CAC CTC AGG GTG TCC GAA RAA YCA RAA Ivanova et al. (2007)
CrustDR1 TAA ACY TCA GGR TGA CCR AAR AAY CA Radulovici et al. (2009)
12S
12SFB GTG CCAGCAGCT GCGGTTA Tsang et al. (2009)
Crab12S-F1  TATTTG TGC CAG CAG C This study
Crab12S-F2  GCT GCG GTTATACTT TRAG This study
12SR2 CCTACTTTGTTACGACTT ATCTC Tsang et al. (2009)
Crab12S-R1  GCG ATATGT ACAYRATTT AG This study
Crab12S-R2  RAT GAA AGC GAC GGG CG This study
16S
16Sar CGCCTG TTT ATC AAA AAC AT Simon et al. (1994)
Crab16S-F1  TATTTG TGC CAG CAG C This study
Crab16S-F2  GCT GCG GTT ATACTT TRAG This study
16Sbr CCGGTCTGAACT CAGATCACGT Simon et al. (1994)
Crab 16S-R1 GCG ATATGT ACAYRATTT AG This study
Crab 16S-R2  RAT GAA AGC GAC GGG CG This study
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2.3 Results

A total of 15,108,829 intestinal microbial sequences were produced using Illumina MiSeq
sequencing, of which 13,531,089 sequences were retained after the filtering process. The
number of microbial OTUs from the crab samples was 7,725, consisting of 54 phyla, 163
classes, 247 orders, 404 families, and 807 genera. All coverage values in raw data exceeded

0.98, indicating that the number of sequences was sufficient to analyze biodiversity.

Association between the family of crabs and intestinal microbiome

Intestinal microbial biodiversity indices (Phylogenetic distance, Chaol, Shannon’s
diversity and equitability) of the crab samples were compared according to the family of
crabs (Figure 9 and Table 9). As a result, the specific change pattern of biodiversity indices
was not found according to the family of crabs.

Using CAP analysis, intestinal microbial communities from the crab samples based
on unweighted UniFrac and weighted UniFrac distances were compared according to the
family of crabs. As a result, all families had a significant influence on the clustering of
communities (unweighted UniFrac: P = 0.001, explanatory power = 11.2 %; weighted
UniFrac: P = 0.001, explanatory power = 20.1 %) (Figure 10). All pairwise comparisons
of intestinal microbial communities based on unweighted UniFrac distance were also
confirmed to have statistical differences (Table 10). However, pairwise comparisons of
intestinal microbial communities among families of crabs based on weighted UniFrac
distance did not show any significant differences between some families (Dotillidae and
Sesarmidae, Sesarmidae and Macrophthalmidae, and Sesarmidae and Varunidae). The
relative abundances of the intestinal microbiomes were also different depending on the
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family of crabs (Figure 11). Mycoplasmataceae, which is reported to be linked to the
evolution of the class Malacostraca, were more dominant in Macrophthalmidae, Varunidae,
and Sesarmidae than in Leucosiidae and Dotillidae.

To confirm the phylogenetic relationship between the superfamilies Ocypodoidea
and Grapsoidea using intestinal microbiomes, CAP analysis was performed by constraining
two types of superfamily. When performing CAP analysis with two superfamilies of
different groups based on unweighted UniFrac and weighted UniFrac distances, the values
of R? were slightly higher than when two superfamilies were analyzed with one group
(Table 11).

Using the ClaaTU algorithm, 92 clades of intestinal microbes were identified that
were conserved across all crab samples (all the group P values for the clades were < 0.05).
All the conserved clades belonged to the phylum Proteobacteria (Figure 12). The predicted
major functional profiles of these conserved microbes were dominant in the order of
nucleoside and nucleotide biosynthesis, amino acid biosynthesis, fatty acid and lipid
biosynthesis, carbohydrate biosynthesis, and cofactor, carrier, and vitamin biosynthesis. In
addition, 153 clades of intestinal microbes were identified that were conserved according
to the family of crabs. Among these clades, it was confirmed that the intestinal microbes
of Mycoplasmataceae were significantly conserved in Sesarmidae, Macrophthalmidae, and
Varunidae. To identify the OTUs that were conserved in the host, the OTUs that were
deemed to have been detected by chance were removed according to the relative abundance
and appearance. As a result, seven Mycoplasmataceae OTUs were identified that were
potentially associated with the phylogeny of crabs (Figure 13). Of these, four OTUs were

assigned taxonomic information as Candidatus Bacilloplasma. In addition, under the
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assumption that microbes in Mycoplasmataceae are inherited according to crab divergence,
it was inferred that the shift of these microbes progressed during divergence by mapping
their OTUs to the phylogenetic tree of the crab samples (Figure 14). Using asymmetrical
Wagner parsimony, it was inferred that OTU_10 and OTU_38 existed when Leucosiidae
and other families of crabs diverged. OTU_1590 was identified as specific
Mycoplasmaceae in Sesarmidae. OTU_3260, OTU 21293, and OTU_5 were only
significantly found in the Macrophthalmidae. OTU_8 was found uniquely in the crab
samples of the genus Hemigrapsus. These Mycoplasmataceac OTUs are predicted to
perform the major functions of nucleic acid metabolism (e.g., nucleoside and nucleotide
biosynthesis and degradation), lipid metabolism (e.g., fatty acid and lipid biosynthesis) and

pentose phosphate pathways (Figure 15 and Table 12).
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Figure 9. Biodiversity indices for the intestinal microbiomes according to the family

00 a0

of crabs. Statistical differences of the biodiversity indices according to the family of crabs
were marked in alphabet, and groups sharing the same alphabet were not significantly

different from each other. More detailed statistical values were given in Table 9.
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Table 11. The values of R?for phylogenetic relationship of two superfamilies based on
the intestinal microbiomes. The relationship between these two superfamilies was
confirmed by considering both the abundance (unweighted UniFrac distance) and their

presence or absence (weighted UniFrac distance) of their intestinal microbiome.

unweighted weighted

Hypothesis UniFrac UniFrac

distance distance
Two superfamilies in monophyletic clade 3.2 10.1
Two superfamilies in non-monophyletic clade 6.3 14.6
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Mycoplasmataceae OTUs
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Figure 13. Mycoplasmataceae profiles according to the crab species. This heat map
represents the proportion of the crab samples per species of crabs with a bacterial taxon in

>1% abundance.
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Association between feeding behavior and intestinal microbiome

Regarding feeding behaviors, all intestinal microbial biodiversity indices showed statistical
differences (P < 0.01 for the Phylogenetic distance and Chaol indices; P < 0.05 for
Shannon’s diversity and equitability indices) (Figure 16 and Table 13). The Phylogenetic
distance and Chaol indices of deposit-feeders and detritivores were higher than that of
carnivores. Shannon’s diversity and equitability indices were the highest in the following
order: detritivore, deposit-feeder, and carnivore.

Using CAP analysis, the intestinal microbial communities of the crab samples
based on unweighted UniFrac and weighted UniFrac distances were compared according
to the feeding behavior. As a result, all feeding groups had a significant influence on the
clustering of communities (unweighted UniFrac: P = 0.001, explanatory power = 6.3 %;
weighted UniFrac: P = 0.001, explanatory power = 15.3 %) (Figure 17 and Table 14). All
pairwise comparisons of intestinal microbial communities based on unweighted UniFrac
and weighted UniFrac distances were also confirmed to have statistical differences. In the
taxonomic composition of intestinal microbiomes, carnivores were also significantly
different compared to the others groups (Figure 18). In carnivores, besides Vibrionaceae
and Thiotrichales incertae sedis, Flavobacteraceae were detected more often than in the
other two feeding groups. On the other hand, Enterobacteriaceae, Entomoplasmates
incertae sedis, Flavobacteriacea, Mycoplasmaceae and Rhodobacteraceae were more
dominant in deposit-feeders and detritivores. Peptococcaceae was also found uniquely in
the microbiomes of deposit-feeders.

Functional profile analysis was also performed based on the feeding behavior. A
total of 199 functional profiles satisfying statistical significance were identified. Among
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them, a total of 57 profiles were associated with glycolysis, TCA cycle, protein metabolism,

carbohydrate metabolism, nucleic acid metabolism, and nitrogen metabolism (Figure 19

and Table 15). The relative frequency of predicted functional profiles tended to be divided

into carnivore and non-carnivore (e.g., deposit feeder and detritivore). In carnivores, the

functional profiles related to the TCA cycle and protein metabolism were predicted more

frequently compared to in the other two feeding groups. Meanwhile, glycolysis,

carbohydrate metabolism, nucleic acid metabolism, and nitrogen metabolism were more

frequently detected in deposit-feeders and detritivorers compared to carnivores.
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Figure 16. Biodiversity indices for the intestinal microbiomes according to the feeding

behavior. Statistical differences of the biodiversity indices according to the feeding

behavior were marked in alphabet, and groups sharing the same alphabet were not

significantly different from each other. More detailed statistical values were given in Table

13.
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Figure 18. The relative abundance of intestinal microbiomes according to the feeding

behavior. Bar plots of bacterial family level proportions according to the feeding behavior.
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2.4 Discussion

Relationship between Ocypodoidea and Grapsoidea observed using intestinal

microbiome

Host symbiotic microbes may potentially alter the phenotype, fitness, and function of the
host in response to changes in the marine environment. If this pattern is transmitted
vertically to the offspring and persists, it becomes a heritable characteristic of the host
(Wilkins et al., 2019). Based on the 16S ribosomal DNA metadata of the intestinal
microbiomes of the crab samples, this study confirmed the possibility of how intestinal
microbiomes contribute to divergence. The controversial phylogenetic relationship of two
superfamilies, Ocypodoidea and Grapsoidea, was interpreted from a new perspective using
the intestinal microbiome. Consistent with other molecular phylogenetic studies, the results
were able to more clearly explain the clustering of intestinal microbiomes when the two
superfamilies are in different clades. Considering cases in which the intestinal microbiome
reflects its phylogenetic relationship (Easson and Thacker, 2014; Tzeng et al., 2015), these
results indirectly support the previous hypotheses that the two superfamilies are not one

monophyletic clade (Table 11).

Proteobacteria, conserved intestinal microbes in crabs

Using the ClaaTU algorithm, it was confirmed that all conserved intestinal microbes were
included in the phylum Proteobacteria (Figure 12). Proteobacteria is the most diverse and

abundant bacteria taxa on the Earth. Although widely known as a pathogen, it is also easy
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to find in various marine environments ranging from the surface to the deep oceans (Cottrell
and Kirchman, 2000; Tanner et al., 2000; Buijs et al., 2019; Nimnoi and Pongsilp, 2020).
These extensive habitats of Proteobacteria imply that they have also been able to adapt well
in the intestines of crabs that inhabit and dominate various marine environments. Through
PICRUSt analysis, the functions of these microbes were predicted to be related to various
biosynthesis metabolisms (e.g., nucleoside and nucleotide biosynthesis, amino acid
biosynthesis, fatty acid and lipid biosynthesis, carbohydrate biosynthesis, and cofactor,
carrier, and vitamin biosynthesis). While further studies are necessary to establish the exact
interactions between these microbes and crabs, it can be assumed that the products of these
biosynthesis pathways are involved not only in the growth of these microbes but also in the

health and survival of the crabs.

Mpycoplasmataceae, intestinal microbes in crabs

Several families of crabs have specific Mycoplasmataceae OTUs, which seem to be
associated with the divergence of crabs (Figures 13 and 14). Most Mycoplasmataceae
OTUs potentially related to the phylogeny of crabs in intestinal microbiomes were
identified by BLAST as Candidatus Bacilloplasma. Candidatus Bacilloplasma is a
symbiotic microbe that was first discovered in the hindgut of the terrestrial isopod Porcelio
scaber. This symbiotic microbe, which has a structure that sticks well to the wall of the gut,
can adapt well to the intestinal environment (Strus and Avgustin, 2007). Several studies
have confirmed that Candidatus Bacilloplasma and its relatives have been found in marine

crustaceans (e.g., crabs and shrimps) as well as in terrestrial isopods, which have been
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suspected to be related to the evolution of Malacostraca (Durand et al., 2009; Zhang et al.,
2014; Chen et al., 2015; Bouchon et al., 2016; Zhang et al., 2016; Sun et al., 2020). The
unique detection of these microbial OTUs has verified the possibility that these microbes
are related to the evolution of Malacostraca. The Mycoplasmataceae OTUs were predicted
to be involved in nucleic acid metabolism, lipid metabolism, and pentose phosphate
pathways (Figure 15 and Table 12). Further studies are needed to investigate the link
between these microbial functions and the evolution of Malacostraca. However,
Candidatus Bacilloplasma OTUs were not found in the intestines of the Philyra pisum and
Scopimera longidactyla, collected at Yeongjongdo Island. The samples collected from
Yeongjongdo Island found to have higer numbers of Thiotrichales incertae sedis and
Vibrionaceae than samples from other locations. The order Thiotrichales contains sulfur-
oxidizing bacteria that inhabit aquatic sediment surfaces (Lenk et al., 2011; Lenk et al.,
2012). Sulfur-oxidizing bacteria have recently been used as bioindicators to detect pollution
in aquatic environments (Van Ginkel et al., 2011; Hassan et al., 2019). The unique detection
of Thiotrichales incertae sedis in the intestinal microbiomes of crab samples collected in
Yeongjongdo Island indicates that this sampling site is much more polluted than the other
sampling locations. Also, the predominance of Vibrionaceae in the intestines of Philyra
pisum is presumed to be due to the outbreak of disease due to contaminated environments.
It may therefore be inferred that the Candidatus Bacilloplasma OTUs have the potential to
have lower or hidden abundances depending on the host health status and the degree of

pollution in the surrounding marine environment.
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High intestinal microbial biodiversity of detritivorous crabs

Feeding behavior has been found to be factor that controls intestinal microbial diversity
and community structure (Ley et al., 2008; Yun et al., 2014). In this study, it was confirmed
that all biodiversity indices of intestinal microbiome for detritivores was higher than those
of carnivores (Figure 16 and Table 13). It can be inferred that this biodiversity pattern is
due to the fact that detritivores consume more types of food than carnivores. Plant detritus,
the main source of food for the detritivores, lacks nitrogen. Detritivorous crabs cannot
obtain enough nutrients by consuming only protein-poor plant detritus and they replenish
nitrogen by selectively eating small tissues from other organisms or from scavenging
carrion (Quensen Ill and S Woodruff, 1997; Kneib et al., 1999; Thongtham and Kristensen,
2005; Lopez-Victoria and Werding, 2008; Lee, 2015). The carnivorous Pyrhila pisum
prefers small benthic organisms or bivalves as sources of food (Kobayashi, 2013). Yun et
al. (2014), who conducted gut microbiome research in insects, also reported that
omnivorous insects have higher gut diversity than insects that consume limited food
sources, such as carnivores and herbivores. This makes it clearer that high intestinal

microbial diversity is related to the number of food types available to hosts.

Differences in the function of intestinal microbiomes in carnivores and non-

carnivores

The difference between the functional profiles of carnivores and non-carnivores (e.g.,

deposit-feeders and detritivores) was also clearly apparent (Figure 19). This may be due to
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the differences in the nutritional characteristics of the main food sources of each feeding
group. Carnivores obtain nutrients from small aquatic animals, making it relatively easier
for them to consume animal protein than the other two feeding groups. Plant detritus, the
main source of food for deposit-feeders and detritivores, is relatively rich in cellulose and
lignin, but lacks protein (Mann, 1988; Zimmer, 2008; Lee, 2015). In this study, non-
carnivores were more frequently detected in the functional profiles associated with
carbohydrate metabolism and glycolysis; whereas, in the case of carnivores, the functional
profiles associated with protein metabolism and TCA cycle were detected more frequently.
Previous studies have confirmed that the metabolic processes in fishe depend on the
nutrient content of the diet. Fish that ingested high protein / low carbohydrate diets were
found to have increased activities associated with the TCA cycle along with protein
metabolism, while fish that ingested low protein / high carbohydrate diets were found to
have increased activities in enzyme synthesis and pathways related to carbohydrate
metabolism and the glycolysis process (Shimeno, 1974; Shimeno et al., 1981; Hilton and
Atkinson, 1982; Walton, 1986). This implies that the functional profiles of the intestinal
microbiomes of aquatic organisms, including fishes and crabs, reflect the nutritional

characteristics of their main food sources.
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community analysis using
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3.1 Introduction

Drowning is one of the major causes of unnatural death in Korea. According to 2015
autopsy statistics provided by the National Forensic Service, the number of drowning cases
was 427, accounting for 12.8% of unnatural deaths in Korea (Park et al., 2016). However,
it is difficult to determine the cause of death and estimate postmortem submersion interval
(PMSI) when a drowned or abandoned corpse is found in water. To solve these drowning
cases, investigators and forensic scientists have suggested several parameters. In terms of
forensic taphonomy, accumulated degree-days (ADD) based on a morphological state of
decomposition has been used to determine PMSI (Megyesi et al., 2005; Heaton et al., 2010).
However, using ADD as evidence for PMSI has several limitations. The decomposition of
a corpse in an aquatic environment is poorly studied and the biological decomposition
process in water is easily affected by environmental factors (Piette and Els, 2006; Dickson
et al., 2011). In addition, the use of ADD can lead to a lack of objectivity because these
standards related to the decomposition process are judged subjectively by individual
researchers. To complement these flaws, aquatic organisms such as bacteria, fungi, algae,
diatoms, and aquatic insects from a corpse have been used as biological indicators to
estimate PMSI (Merritt and Wallace, 2001; Zimmerman and Wallace, 2008; Wallace, 2015).
However, unlike the frequent use of insects from a corpse in terrestrial cases (Amendt et
al., 2004; Oliveira-Costa and Mello-Patiu, 2004; Sukontason et al., 2005; Sukontason et
al., 2007; Bugelli et al., 2018), studies on appearances of aquatic organisms in drowning
cases have not been sufficiently conducted. In addition, morphological identification of

these organisms requires a high level of expertise and a lot of time.
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As mentioned in the General introduction, DNA metabarcoding, also known as
high-throughput sequencing, can produce massive amounts of sequences and the means to
identify multiple taxa from environmental samples. With these advantages, it has been
widely applied in ecological and environmental studies to monitor biodiversity and detect
several organisms from terrestrial or aquatic environmental samples (Taberlet ef al., 2012a;
Thomsen et al., 2012; Yoccoz et al., 2012; Valentini ef al., 2016). DNA metabarcoding has
also been applied to forensic fields (Weber-Lehmann et al., 2014). Biological samples
obtained from the scene of an incident often contain mixed samples. Thus, DNA
metabarcoding can be used to detect several organisms from biological samples at one time
(Yang et al., 2014). However, forensic studies using DNA metabarcoding have been
focused on terrestrial cases. Based on different bacterial biodiversity and community
structures, several researchers have estimated time since death in terrestrial cases through
DNA metabarcoding from both soil and corpses (Hyde et al., 2013; Metcalf et al., 2013;
Pechal et al., 2014; Metcalf et al., 2016; Hyde ef al., 2017). Studies on the biodiversity and

community structures of microeukaryotes related to drowning cases are very limited.

Therefore, this study investigated biodiversity and microeukaryotic community
structures of car bonnet and pig carcass to determine the applicability of DNA
metabarcoding in the drowning case. Pig carcass was used to simulate the decomposing
process of drowning bodies. As a control, car bonnet was used to confirm the general
process of succession occurring in an aquatic environment. The objectives of this chapter
are the followings: (1) to confirm the correlation between decomposition and biodiversity;

(2) to detect aquatic organisms related to decomposition; (3) to identify potential indicator
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organisms for determining PMSI through changes in the relative abundance of taxa

depending on decomposition period.
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3.2 Materials and Methods

Sample collection for sequencing

A drowning experiment was conducted in a reservoir located in Gimje-si (35°88'25.86"N
126°96'38.01"E) from June 24, 2016, to August 21, 2016. After obtaining approval from
the Institutional Animal Care and Use Committee of the Korean Police Investigation
Academy (approval number: KPIA 16-02), the drowning experiment was performed. The
pH, dissolved oxygen, biochemical oxygen demand, and chemical oxygen demand of the
reservoir was measured as 8.1, 10.2 mg/L, 2.9 mg/L, and 9.0 mg/L, respectively. During
the experiment, the average temperature of the surface of the reservoir was 28.3 °C and the
average temperature of the bottom of the reservoir was 15.3 °C. A pig was sacrificed in
water and placed on a stainless tray and fixed on the bottom of the reservoir with a depth
of 5 meters. At 20 meters from the pig, a car bonnet, as an abiotic control object was also
placed on the bottom of the reservoir.

Samples for sequencing were collected by a SCUBA diver scraping the surfaces
of the car bonnet and pig carcass with sterile swabs (Figure 20). The sampling areas were
set to be 10 cm % 10 cm, and different sections were swabbed for each sampling. Samplings
for two sample types (car bonnet samples and pig carcass samples) were performed every
day from the first week to the fourth week (from June 25, 2016, to July 16, 2016) and then
every three days from the fifth week to the ninth week (from July 19, 2016, to August 21,
2016). After collections, swab samples from car bonnet and pig carcass were immediately

frozen and stored at -80°C.
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Sampling

Samlples have been obtained by scraping the surfaces of the car bonnet
and pig carcass with sterile swabs (10cm X 10cm)

4 15t-4th week : Sampled every day

o / 5th-gth week : Sampled every thee days
(o}
O
)
Depth : 5m /-

Pig carcass Car bonnet

o

T D T L

Figure 20. Schematic diagram of the sampling procedure in the drowning experiment.

DNA extraction, PCR amplification, and lllumina MiSeq sequencing

Genomic DNA was extracted from car bonnet samples or pig carcass samples using a
PowerSoil DNA Isolation kit (MoBio, USA). The 18S ribosomal DNA (rDNA) V1-V2
variable region was amplified using a primer set SSU_F04/SSU_R22 (Blaxter et al., 1998).
PCR-amplified conditions were an initial denaturation at 95 °C for 2 min, 35 cycles of
denaturation at 95 °C for 1 min, annealing at 57 °C for 45 s, and extension at 72 °C for 3
min, and a final extension at 72 °C for 10 min. All PCR products were confirmed by gel
electrophoresis and purified using the QIAquick PCR Purification Kit (QIAGEN,
Germany). Paired-end Illumina MiSeq sequencing (2 x 300 bp) was performed at

Macrogen Inc. (Seoul, Korea).
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Data analysis

Raw data from Illumina sequencing were analyzed with the custom python script
"DNA_metabarcoding_analysis.py" based on the Querial Insights Into Microbial Ecology
(QIIME) v 1.9.1. (Caporaso et al., 2010) (Appendix 1). Forward and reverse reads were
assembled into single contigs. Low-quality assembled contigs (Q < 30) were excluded from
data analysis. After filtering reads for quality, operational taxonomic unit (OTU) clustering
was performed using Usearch (Edgar, 2010). All OTUs were determined using a cut-off
value of 97% similarity. Taxonomic categorical rank was assigned based on the most
abundant sequence in each OTU using BLAST against the eukaryotic 18S rDNA database
in NCBI. Information from the databases such as accession IDs, sequences, and taxonomic
categorical ranks were parsed using Biopython (http://www.biopython.org). Sequences of
pig, chimeric reads, and singleton OTUs were removed. To avoid biases of biodiversity
data generated by the number of sequences, rarefaction was performed at a sequencing
depth of 10,000 reads. Biodiversity indices were calculated by richness (the number of
OTUs and Chaol), Shannon’s diversity, and equitability. Constrained analysis of principal
coordinates (CAP) using Bray-Curtis dissimilarities was performed to see changes in
microeukaryotic community structures according to sample type and decomposition period
for each sample type. Decomposition periods of the two sample types were determined
according to the decomposition period suggested by Anderson and Hobischak (2004)
[Fresh period (n = 10) : 0-9 days, Bloat period (n = 19): 9-35 days, and Active period (n =
6): 35+ days] because it was difficult to discern decomposition period morphologically due
to adipocere formation of the carcass. I tested for the statistical significance of the CAP

analysis using ANOVA with 999 random permutations. Taxonomic composition of
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microeukaryotic community structures were analyzed by major kingdom (Animalia,
Chromista, Fungi, Plantae, and the others) and major genus (10 most abundant taxonomic

genera in the two sample types).

Statistical analysis

To compare biodiversity and community structures of microeukaryotes between sample
types and between decomposition periods for each sample type, statistical analysis was
performed. A pairwise Wilcoxon rank sum test was used to test significant differences in
biodiversity and community structures of microeukaryotes between sample types.
Significant differences in biodiversity and community structures according to the
decomposition period for each sample type were checked by the Kruskal-Wallis test. To
determine significant differences in biodiversity and relative abundances of the major
kingdom and genus, pairwise comparisons were conducted using the Wilcoxon rank sum
between two of three decomposition periods (Fresh-Bloat, Bloat-Active, and Fresh-Active
period). All statistical calculations were performed using R v. 3.3.0. and results were
visualized by plots with ggplot2 and Phyloseq in the R package (McMurdie and Holmes,
2013; Team, 2014; Wickham, 2016). Calculated P values were revised using the false
discovery rate (FDR) by the Benjamini-Hochberg procedure (Benjamini and Hochberg,

1995).

99 1= Y



3.3 Results

The results of lllumina MiSeq sequencing

Using Illumina sequencing, a total of 8,149,316 and 8,756,022 sequences were produced
from car bonnet and pig carcass, respectively. After trimming and filtering, 2,787,156 and
2,869,242 reads remained for car bonnet and pig carcass, respectively. The numbers of
OTUs in the car bonnet and pig carcass were 351 and 275 OTUs, respectively. A total of
212 OTUs were shared between the two sample types. All Good’s coverage values in both
samples were over 0.98, indicating that the number of reads was enough to analyze
biodiversity in both samples. In terms of taxonomic categorical ranks, car bonnet samples
consisted of 32 phyla, 81 classes, 151 orders, 191 families, and 241 genera while pig
carcass samples consisted of 32 phyla, 68 classes, 121 orders, 154 families, and 195 genera.
Thirty phyla, 54 classes, 94 orders, 115 families, and 145 genera were shared by both

samples.

Comparison of biodiversity and community structures between sample types

When comparing biodiversity indices between the two sample types, all biodiversity
indices [richness (the number of OTUs and Chaol), Shannon’s diversity, and equitability]
were significantly higher in car bonnet than those in the pig carcass (P < 0.001 for all
indices) (Figure 21A).

CAP analysis based on Bray-Curtis dissimilarities indicated that sample types had
a significant effect on the formation of microeukaryotic community structures (P = 0.001,

41.2% explanatory power) (Figure 21B). In addition, the taxonomic composition of the
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microeukaryotic community differed significantly between sample types. At the kingdom
level, Animalia was dominant in car bonnet. However, relative abundances of Plantae,
Fungi, and Chromista were higher in pig carcass (Figure 22A). At the genus level, relative
abundances of Acartia (P < 0.001), Laxus (P < 0.001), Membranipora (P < 0.001), and
Metacyclopina (P < 0.001) were higher in car bonnet, while those of Achlya (P < 0.001),
Hydrodictyon (P < 0.001), and Saprolegnia (P < 0.001) were significantly higher in pig
carcass (Figure 22B). However, relative abundances of Filobasidium, Lobosphaera, or
Scenedesmus were not different between the two sample types (P =0.131, P =0.274, and

P=0.161, respectively).
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Comparison of biodiversity and community structures between decomposition

periods in each sample type

Richness indices (the number of OTUs and Chaol) in car bonnet were not significantly
different between the Fresh and Bloat periods and were decreased in the Active period
(Figure 23). This change pattern was similar to that of pig carcass. However, the change
pattern of Shannon’s diversity index and the equitability index in the two sample types
were different from each other according to decomposition periods.

To determine changes in microeukaryotic community structures according to the
decomposition period, CAP analysis was conducted based on Bray-Curtis dissimilarities.
Microeukaryotic community structures were significantly separated according to the
decomposition period in both car bonnet (P = 0.001, 28.4% explanatory power) and pig
carcass (P =0.001, 31.4% explanatory power) (Figure 24). The taxonomic composition of
the microeukaryotic community according to the decomposition period differed between
the two sample types (Figure 25, Tables 16 and 17). In case of car bonnet, the relative
abundances of Animalia and Plantac were significantly different between the Fresh and
Bloat periods. Laxus (included in Animalia) was detected less in the Bloat period than that
in the Fresh period while Lobosphaera and Scenedesmus (included in Plantae) were
detected more in the Bloat period than those in the Fresh period. Compared to the relative
abundance of the major kingdom in the Bloat and Active period, relative abundances of all
major kingdoms (Animalia, Chromista, Fungi, and Plantae) were not significantly different

between the two periods (P =0.199, P =1.000, P =0.376, and P = 0.820, respectively). At
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the genus level, Hydrodictyon, Membranipora, and Scenedesmus were less detected in the
Active period than those in the Bloat period.

In case of pig carcass, Fungi (Filobasidium) were outstandingly detected in the
Fresh period but hardly detected in the Bloat period (Figure 25, Tables 16 and 17). Relative
abundances of Animalia (Acartia, Laxus, Membranipora, and Metacyclopina) and
Chromista (Achlya and Saprolegnia) were significantly decreased in the Active period
compared to those in the Bloat period. Besides differences in the relative abundance of
Fungi, Animalia and Chromista, the relative abundance of Plantae (Lobosphaera,
Hydrodictyon, and Scenedesmus) increased according to the decomposition period. The
relative abundance of Lobosphaera was significantly different among decomposition
periods (between the Fresh and Bloat periods and between the Bloat and Active periods).
The increase in relative abundance of Lobosphaera was greater in the Bloat-Active period
compared to that of the Fresh-Bloat period. The relative abundance of Hydrodictyon was
significantly different in the Fresh-Bloat period. In case of Scenedesmus, the relative

abundance differed statistically at the Bloat-Active period.
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Figure 23. Biodiversity indices of (A) car bonnet and (B) pig carcass according to the
decomposition period. The significance of diversity indices between decomposition
periods in each sample type was calculated using the Kruskal-Wallis test. As a post hoc test,
pairwise comparisons were conducted using the Wilcoxon rank sum test to check for
significant differences between decomposition periods. All P values were adjusted using
the false discovery rate (FDR) presented by Benjamini and Hochberg (**: P <0.01, *: P <
0.05, N.S.: no significance).
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3.4 Discussion

As a preliminary study, I used DNA metabarcoding to investigate biodiversity and
community structures of microeukaryotes associated with decomposition of pig carcass
drowned in a reservoir using a submerged car bonnet as a control. The results of this study
showed that biodiversity and community structures of the microeukaryotes were
significantly differed depending on the two sample types. In addition, I found that Achyla,
Hydrodictyon, and Saprolegnia were detected more in pig carcass than those in car bonnet.
Unlike the taxonomic composition of car bonnet, relative abundances of fungi, water molds,

and algae in pig carcass were discriminatively different according to decomposition period.

The correlation between biodiversity and decomposition of drowned pig

All biodiversity indices (the number of OTUs, Chaol, Shannon’s diversity, and equitability)
were significantly lower in pig carcass than those in the car bonnet (Figure 21A). This may

be due to decomposition of pig carcass as a result of environmental changes. A decaying

pig carcass is a specific habitat for certain organisms (Braig and Perotti, 2009; Gennard,

2012). The richness of car bonnet was relatively higher than that of pig carcass because

organisms living in the freshwater environment can attach themselves to the car bonnet.

Conversely, the low richness found in pig carcass might reflect the changing environmental

conditions associated with decomposition that might be only favorable to specific

organisms. Unlike car bonnet, only a small number of organisms such as decomposers,

producers, and scavengers seemed to settle down successfully on decaying pig carcass
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tissue. The relatively low equitability index of pig carcass showed that only some kinds of

organisms were dominant on the surface of pig carcass.

In general, biodiversity is known to have an inverse relationship with the
decomposition process. Previous studies have found that taxon richness decreases as
decomposition progresses (Zimmerman and Wallace, 2008; Pechal et al., 2014). On the
other hand, this study showed that the number of OTUs in pig carcass slightly increased in
the Bloat period (9-35 days) than in the Fresh period (0-9 days) (Figure 23B). Similar to
this study, the number of species in soil communities in buried cadavers was increased
slightly during the period from 0-3 months to 4-6 months in a previous study (Finley et al.,
2016). These study may suggest that richness does not always decrease as decomposition
progresses. In addition, richness indices in car bonnet and pig carcass had similar change
pattern according to the decomposition period. Species richness is affected by complex
environmental factors such as temperature, salinity, and organic matter (Gough et al., 1994;
Jetz and Rahbek, 2002). This implies that the change pattern of microeukaryotic richness
indices in this study might be influenced by other factors (e.g., temperature) more than just
the decomposition process. Given these results, it seems difficult to determine PMSI solely

based on richness.

Characteristics of microeukaryotes related to the decomposition of drowned pig

Microeukaryotic community structures were clearly different between the two sample types
(Figure 21B). Relative abundances of Acartia, Laxus, Membranipora, and Metacyclopina
(included in Animalia) were higher in car bonnet than those in pig carcass (Figure 22).

Copepods, bryozoans, and nematodes included in these taxa are known to be dominant in
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a natural Freshwater environment (Heip et al., 1985; Okamura and Hatton-Ellis, 1995;
Boxshall and Defaye, 2007). These taxa might have directly attached to the surface of car
bonnet. In contrast to car bonnet, Achlya, Saprolegnia (included in Chromista), and
Hydrodictyon (included in Plantae) were significantly more abundant in pig carcass. These
dominant taxa are associated with decomposition and known to play a significant role in
the nutrient cycle in aquatic environments (Bitton and Dutka, 1983; Rabalais, 2002; Strauss
and Lamberti, 2002). For example, decomposers such as bacteria, fungi, and other
microeukaryotes can convert nitrogen compounds back to amino acids, ammonia, and other
nitrogenous forms (Newell et al., 1995; Gessner et al., 2007). Genera Achlya and
Saprolegnia are classified as water mold. The family Saprolegniaceae (containing Achlya
and Saprolegnia) is widely distributed in freshwater environments. Freshwater water molds
can grow on decaying organic matter. They play an important role as decomposers (Ward,
1883). Inorganic nutrients produced by decomposers such as water molds are linked to the
dominance of Hydrodictyon in pig carcass. Hydrodictyon is a green alga known as “water
net”. This water net requires a large amount of nitrogen to survive (Lelkova and Poulickova,
2004; Volodina and Gerb, 2013). The relative abundance of Hydrodictyon was much higher
in pig carcass than that in car bonnet. It could be inferred that Hydrodictyon was dominant
in pig carcass because Hydrodictyon needed nutrients (e.g., nitrogen) produced by the

decomposers present on decaying pig tissue.
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Characteristics of microeukaryotes according to decomposition period in

drowned pig

Microeukaryotic community structures in pig carcass were significantly different according
to the decomposition period (Figure 24B). Such differences of the taxonomic composition
in communities between decomposition periods might be linked to nutrients released from
pig carcass. Community structure is influenced by many factors, including the availability
of nutrients (e.g., nitrogen and phosphorous) and environmental parameters (e.g., sunlight
levels, temperature, season, and salinity) (Deswati, 2018). The detection of Filobasidium
in the Fresh period might be related to nitrogen released from pig carcass (Figure 25B,
Tables 16 and 17). Nitrogen is abundant in the soft tissues of a corpse. The release of
nitrogen from carcass occurs during a relatively early period of decomposition compared
to other nutrients (Parmenter and Lamarra, 1991). Freshwater fungi serve as decomposers
in a freshwater environment. They are known as early successional taxa (Gessner and Van
Ryckegem, 2003; Tsui et al., 2016). Fungi are dominant when there is a high proportion of
nitrogen (Wardle ef al., 2004; Gusewell and Gessner, 2009). In contrast to the Fresh period,
Filobasidium was hardly detected in the Bloat period. These can be explained that
Filobasidium needs a high proportion of nitrogen to live and the concentration of nitrogen
may be different between the Fresh and Bloat periods. Therefore, Filobasidium is regarded
as a good indicator for the Fresh period of decomposition. Although water molds perform
the same role as fungi, Achlya and Saprolegnia existed until the Bloat period. Considering
these results, water molds (Achlya and Saprolegnia) can act as decomposers longer than

fungi (Filobasidium), and they are less sensitive to the release of nitrogen than fungi.

115 M= U



The dominance of algae in the decomposition process might also be associated
with nutrients released from pig carcass (Figure 25A, Tables 16 and 17). In this study, the
relative abundance of algae (included in Plantae) in pig carcass was increased as
decomposition progressed, consistent with previous studies showing that the chlorophyll a
concentration of algae in drowning pigs increased according to the time period (Haefner et
al., 2004). This might be due to the activities of decomposers during decomposition.
Decomposers such as bacteria and fungi play important roles in the decomposition process
by breaking down organic compounds into large amounts of nutrients such as nitrogen,
carbon, and phosphorous. Producers such as plants and algae can acquire these inorganic
nutrients (Zak and Grigal, 1991; Kaye and Hart, 1997; Grattan and Suberkropp, 2001;
Niyogi et al., 2003). A sufficient supply of nutrients by decomposer activities will lead to
an increase in the number of algae. In this study, the average proportion of algae (included
in Plantae) reached 84% when the decomposition period was changed from the Bloat period
to Active period (Figure 26A). On the contrary, the average proportions of Animalia,
Chromista, and Fungi plummeted in the Bloat-Active period. These results seemed to be
caused by the depletion of dissolved oxygen due to the activities of decomposers. When a
corpse decomposes in the water, the decayed organic matter becomes food sources for
decomposers. Increasing the number of decomposers and their activities on decayed tissues
will lead to depletion of dissolved oxygen, resulting in the death of other aquatic organisms
except for algae.

The relative abundance of algae (included in Plantae) increased at different
decomposition periods depending on the genus (Figure 26B). This might be associated with

a change in the proportion of nutrients released from pig carcass according to the time of
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decomposition. While a corpse decomposes, nitrogen is first released from soft tissues
(Figure 27). Fatty tissues such as internal organs and the face also break down into fatty
acids. When bones of the corpse are exposed via decomposition, components of bones such
as phosphorus, calcium, and magnesium are released (Parmenter and Lamarra, 1991;
Ueland et al., 2014). Given these results, the proportion of nutrients released from the
corpse is initially rich in nitrogen. As decomposition progresses, the proportions of other
nutrients (e.g., carbon and phosphate) released from the corpse increase. Alga has its
distinct optimal nutritional ratios. It has different growth rates according to nutrient levels
(e.g., nitrogen, phosphorus, carbon, and silica) in water (Lund, 1972; Tilman ef al., 1982;
Stelzer and Lamberti, 2001). In this study, the relative abundances of Hydrodictyon,
Lobosphaera, and Scenedesmus increased at different periods (Figure 26B). It might be
related to changes in the proportion of nutrients according to the decomposition period in
water. When the decomposition period changed from the Fresh period to the Bloat period,
the relative abundance of Hydrodictyon was significantly increased. It seems that
Hydrodictyon has a higher growth rate when nitrogen content is high compared to
Lobosphaera and Scenedesmus. Thus, the growth of Hydrodictyon might be useful as a
good indicator to distinguish the Fresh period and the Bloat period. Compared to the Fresh
period, relative abundances of Lobosphaera and Scenedesmus were significantly increased
in the Bloat-Active period. These results suggest that Lobosphaera and Scenedesmus may
prefer other nutrients rather than nitrogen. Lobosphaera and Scenedesmus are also green
algae like Hydrodictyon. Although studies on the growth of Lobosphaera and optimal

nutritional ratio for Lobosphaera are insufficient, the growth of Scenedesmus is known to
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need polyphosphates (Rhee, 1972; Rhee, 1973). These results suggest that the growth of

these algae is more affected by other nutrients than nitrogen.
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Conclusions

In this dissertation, | applied the DNA metabarcoding approach to various case studies in
aquatic environments and drawn some meaningful results. In Chapter 1, DNA
metabarcoding was used to establish an efficient survey and research method for
mesozooplankton community analysis in the Marine and Coastal National Parks of Korea.
In Chapter 2, the relationship between the family of crabs and feeding behaviors on
intestinal microbiomes of Korean crabs was confirmed through DNA metabarcoding. In
Chapter 3, as a case study, | investigated microeukaryotic biodiversity and community
structures of car bonnet and pig carcass to determine the applicability of DNA
metabarcoding in drowning case.

These results have revealed the strength of DNA metabarcoding: 1) DNA
metabarcoding enables efficient identification of biotic communities in aquatic
environments. The use of DNA metabarcoding is efficient in terms of time and labor for
large scale community surveys in large areas such as the Marine and Coastal National Parks
of Korea. Given 2 % of microbes on Earth are culturable, it is also essential to use DNA
metabarcoding for the study of symbiotic microbiomes. DNA metabarcoding is also
effective in the community analysis of aquatic organisms associated with drowning cases
that are difficult to study due to physical constraints; 2) DNA metabarcoding has the ability
to detect indicator taxa that enable identify and represent change pattern in biotic
communities due to changes in external factors. These taxa are believed to be useful in
determining abnormal climates in marine ecosystems (e.g., global warming) and the

decomposition periods of drowned bodies; 3) DNA metabarcoding can also be used as a
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tool to identify taxa with high research value in future studies, such as the phylum Rotifera
(see Chapter 1) and the family Mycoplasmataceae in Chapter 2. However, the
improvements about the technical biases shown in Chapter 1 must be considered in order
for DNA metabarcoding to be more widely used in the future. Also, further studies under
various conditions (e.g., additional sampling and primer sets, extensions of target
organisms, and application in various environments and situations) are also required.

| believe that the results of this dissertation will serve as background data for
various studies of aquatic environments using DNA metabarcoding. The establishment of
a monitoring system using DNA metabarcoding according to the method proposed in
Chapter 1 will help identify the mid- to long-term patterns of changes in the zooplankton
community and changes in the bioindicator taxa due to changes in the environment, making
it an effective tool for the management of marine ecosystems in the Marine and Coastal
National Parks. The results shown in Chapter 2, provide the first evidence to detect the
host-intestinal microbiome patterns of crab hosts, in tandem with discovering the
relationship between the evolutionary history and feeding behavior found in vertebrates,
and expect to be used as a backbone data for symbiotic microbiome studies in aquatic
organisms. Although further studies are needed, the results of Chapter 3 suggest that the
DNA metabarcoding approach to microeukaryotic community structure could be applied

to estimate PMSI in the forensic investigations of drowning cases.
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Appendix 4. Publications

This dissertation includes manuscripts that prepared for publication in peer-reviewed

journals or already published in Ph.D. course. The contents of each chapter in this

dissertation were quoted as below. The title and authorship of the manuscripts can be
changed during subsequent revisions.

*Co-first authorship

Chapter 1: Heesoo Kim, Chang-Rae Lee, Sang-kyu Lee, Seung-Yoon Oh and Won

Kim. 2020. Biodiversity and community structure of mesozooplankton in the Marine and

Coastal National Park areas of Korea, MDPI diversity, Published. (Impact Factor 2.047).

Chapter 2: Heesoo Kim, Sang-kyu Lee, Jin-hyup Jung, Seung-Yoon Oh and Won
Kim. 2020. Influence of evolutionary history and feeding behavior on the intestinal

microbiome in crabs living on the intertidal zone, in preparation.

Chapter 3: Cheol-ho Hyun*, Heesoo Kim*, Seongho Ryu, and Won Kim. 2019.
Preliminary study on microeukaryotic community analysis using NGS technology to
determine postmortem submersion interval (PMSI) in the drowned pig. Journal of

Microbiology, Published. (Impact Factor 2.319).
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