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Abstract 

This article discusses the design of computational experiments to test heuristic methods and provides reporting 
guidelines for such experimentation. The goal is to promote thoughtful, well-planned, and extensive testing of 
heuristics, full disclosure of experimental conditions, and integrity in and reproducibility of the reported results. 
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While heuristic methods have always been a part of human problem solving, the mathemati­
cal versions are growing in their range of application as well as their variety of approach. 
New heuristic technologies are giving operations researchers, computer scientists, and prac­
titioners the ability to routinely solve problems that were too large or complex for previous 
generations of algorithms. 

The effectiveness of any proposed methodology for solving a given class of problems 
can be demonstrated by theoretical analysis and empirical testing. This article focuses on 
the issues involved in designing computational experiments to test heuristic methods and 
gives guidelines for reporting on the experimentation. When a new heuristic is presented 
in the computational and mathematical sciences literature, its contributions should be eval­
uated scientifically and reported in an objective manner, and yet this is not always done. 

We follow in the footsteps of those pioneers who have championed high-quality reporting 
of computational experiments with mathematical programming software. These efforts began 
in the late 1970s with Crowder, Dembo, and Mulvey (1980), Gilsinn et al. (1977), Jackson 
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and Mulvey (1978), with additional writing on the subject appearing more recently in Ahuja, 
Magnanti, and Orlin (1993), Barr and Hickman (1993), Golden et al. (1986), Greenberg 
(1990), and Jackson et al. (1990). 

Reporting on experimentation with heuristic methods involves many of the same concerns 
as with optimization algorithms but has its own distinctive issues. While some elements 
of this topic have been explored elsewhere (Lin and Rardin, 1979; Golden and Stewart, 
1985; Nance, Moose, and Foutz, 1987; Barr and Hickman, 1993; Golden et al., 1986; 
Reeves, 1993a), this article takes a comprehensive view of the issues involved and provides 
directions for researchers in this important and expanding area. 

1. Heuristic Methods 

A heuristic method (also called an approximation algorithm, an inexact procedure, or, 
simply, a heuristic) is a well-defined set of steps for quickly identifying a high-quality solu­
tion for a given problem, where a solution is a set of values for the problem unknowns 
and "quality" is defined by a stated evaluation metric or criterion. Solutions are usually 
assumed to be feasible, meeting all problem constraints. The purpose of heuristic methods 
is to identify problem solutions where time is more important than solution quality, or 
the knowledge of quality. 

Some heuristic methods are associated with problems for which an optimal, correct, or 
exact solution exists and can be computed by an optimization or exact algorithm. Heuristic 
methods are often used to identify "good" approximate solutions to such problems in less 
time than is required for an exact algorithm to uncover an exact solution. Embedded heuris­
tics are those used within exact algorithms to expedite the optimization process. 

Heuristics can be straightforward or more complex. Straightforward algorithms tend to 
have well-defined termination rules, as with greedy and local-neighborhood-search methods, 
which stop at a local optimum. More complex algorithms may not have standard termina­
tion rules and typically search for improved solutions until an arbitrary stopping point is 
reached (see Figure 1). Most metaheuristics-such as tabu search, simulated annealing, 
genetic algorithms, neural nets, and GRASP-are examples of more complex algorithms. It 
is essential that the experimenter fully specify the steps and stopping rules of new methods, 
especially complex ones. 

2. Computational Experiments with Heuristics 

Since an algorithm is an abstraction, it is evaluated indirectly by experimenting with a specific 
implementation. An experiment is a set of tests nm under controUed conditions for a specific 
purpose: to demonstrate a known truth, to check the validity of a hypothesis, or to examine 
the performance of something new. Investigators in all fields of study perform experiments 
to demonstrate theory, to uncover knowledge about a particular process, and to measure 
the effect of one or more factors on some phenomena. A/actor is any controllable variable 
in an experiment that influences the outcome or result of an experiment. 



.. 
:, 
.; 
;> .. 
i 
Jl 
0 

COMPUTATlONAL EXPERIMENTS WITH HEURISTIC METHODS 11 

Figure 1. Current and best-found solution quality versus iteration number for a tabu search metaheuristic, as it 
visits five local optima (adapted from Knox, 1994). 

In the computational testing of an algorithm, an experiment consists of solving a series 
of problem instances using a computer implementation. The experimenter has great latitude 
in selecting the problems, implementing the algorithm, choosing a computing environment, 
selecting performance measures, setting algorithm options, and reporting the results. The 
choice made for each factor can have a substantial effect on the results and significance 
of the experiment. Therefore, to ensure that the reported information is meaningful, the 
researcher should document and use an experimental design that considers as many factors 
as is possible and practicable and that effectively measures their impacts on the results. 

Experimentation is a process whose steps can be viewed as in Table 1 (adapted from 
Montgomery, 1984). In the following sections we address the heuristic-testing issues asso­
ciated with each step and recommend approaches to each. 

Table 1. Experimentation steps. 

l. Define the goals of the experiment. 

2. Choose measures of performance and factors to explore. 

3. Design and execute the experiment. 

4 . Analyze the data and draw conclusions. 

5. Report the experiment's results. 
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3. Setting Experimentation Goals 

A research experiment should have a purpose, stated clearly and defined prior to the actual 
testing. This is a statement of the questions to be answered and the re;isons that experimen­
tation is required. This purpose can guide and focus the efforts of the investigator and help 
identify the type of results to seek, the hypotheses to test, the tests to run, the factors to 
explore, the measures to use, and the data needed to support all of the above. 

The purpose of the research should be related to the ultimate goal of heuristic methods: 
fast, high-quality solutions to important problems. Although no set standards exist for pub­
lishable algorithmic research, it is generally accepted that a heuristic method makes a con­
tribution if it is 

• Fast-producing high-quality solutions quicker than other approaches; 
• Accurate-identifying higher-quality solutions than other approaches; 
• Robust-less sensitive to differences in problem characteristics, data quality, and tuning 

parameters than other approaches (Hopfield and Tank, 1985); 
• Simple-easy to implement (Dyer and Frieze, 1985; Lin and Kernighan, 1973); 
• High-impact-solving a new or important problem faster and more accurately than other 

approaches (Rothfarb et al., 1970); 
• Generalizeable-having application to a broad range of problems (Feo and Resende, 1995; 

Glover, 1989; Holland, 1975; Metropolis et al. 1953); 
• Innovative-new and creative in its own right. 

In addition, research reports about heuristics are valuable if they are: 

• Revealing-offering insight into general heuristic design or the problem structure; estab­
lishing the reasons for its performance and explaining its behavior; 

• Theoretical-providing theoretical insights, such as bounds on solution quality (Held and 
Karp, 1970, 1971; Hochbaum and Shmoys, 1985; Johnson and Papadimitriou, 1985). 

Whatever the contribution of the heuristic being reported, some computational experimen­
tation will be necessary to demonstrate that the procedure does what the author claims 
it will do. 

Computational experiments with algorithms are usually undertaken (1) to compare the 
performance of different algorithms for the same class of problems or (2) to characterize 
or describe an algorithm's performance in isolation. While these goals are somewhat inter­
related, the investigator should identify what, specifically, is to be accomplished by the 
testing (e.g., what questions are to be answered, what hypotheses are to be tested). Since 
comparative and descriptive experiments differ in their primary goals, their testing con­
cerns differ as well. 

3.1. Comparing Algorithms 

The most prevalent computational experiment concerns the relative "effectiveness" (in 
terms of stated performance measures such as computational effort or quality of solution) 
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of different heuristic methods in solving specific classes of problems. At this initial stage 
in the process, the investigator must choose or develop the algorithms and computer codes 
for study and the problem classes to address. 

In selecting a problem class, effective solution methods for general classes are more highly 
prized than those for special cases or problems with a predetermined structure. The more 
specialized the problem structure, the greater the efficiencies that should result and the 
heavier the investigator's burden to demonstrate relevance and contribution. 

Often the experimental goal is to compare a new approach to established techniques. 
In general, algorithms should be tested against their best competition. Also, well-known 
or published heuristics provide valuable points of reference (even if they are not the state 
of the art) and the new heuristic should be compared with them. Rather than making com­
parisons with published results on different problems and machines, it is preferable to ob­
tain (or create, if necessary) software for the competing methods and make comparisons 
within the same computing environment. 

If other .methods do not exist, then a more general method, such as one based on linear 
or integer programming, or a simple greedy approach should serve as a baseline. Some 
heuristics based on probabilistic elements (such as GRASP, genetic algorithms, and proba­
bilistic tabu search) may be compared with a simple random restart procedure, in the absence 
of other alternatives. The procedure should use the same neighborhood employed by the 
heuristic being tested to find local optima, starting from a randomly generated initial point. 
The proposed heuristic should perform "significant) y better" than this simple-minded ap­
proach as one demonstration of its effectiveness. 

3.2. Describing Algorithm Performance 

Descriptive experiments are created to characterize a given algorithm, rather than compare 
it with others. The objective is to gain understanding of the behavior of the methodology, 
and the factors that influence that behavior. 

One category of descriptive experimentation is the use of simulation to characterize algo­
rithm performance (Hooker, 1995; McGeoch, 1995). With this approach, a mathematical 
model of the algorithm is built and a controlled experiment is carried out to determine 
the effect of one or more factors on the performance of the algorithm. To gain insight into 
the effect of specific factors on an algorithm, one tests two codes that are identical except 
for the singled-out factor within a well-designed experiment (such as a factorial design) 
using techniques to determine the effect of the factor on specific algorithm performance 
measures such as analysis of variance. 

4. Choosing Performance Measures and Factors 

Within a computational experiment there is a set of dependent variables-the performance 
measures or results-that are affected by a set of independent variables-the problem, algo­
rithm, and test-environment factors. Since the goals of the experiment are achieved by analyz­
ing observations of these factors and measures, they must be chosen with that end in mind. 
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4.1. Measuring Performance 

Perhaps the most important decision one makes in an experimental study of heuristics is 
the definition, or characterization, of algorithm performance. The literature contains a variety 
of criteria for evaluating a heuristic method and the choice of performance measures is 
a critical one. Essentially, most researchers and practitioners wish to answer the following 
questions when testing a given heuristic on a specific problem: 

1. What is the quality of the best solution found? 
2. How long does it take to determine the best solution? 
3. How quickly does the algorithm find good solutions? 
4. How robust is the method? 
5. How "far" is the best solution from those more easily found? 
6. What is the tradeoff between feasibility and solution quality? 

As these questions might suggest, performance measures have tended to cluster in three 
areas: solution quality, computational effort, and robustness. Measures from each category 
should be used in a well-rounded study so that a key dimension is not ignored. And, as 
detailed in the following sections, there are numerous metrics that can be used. 

Note that the third and sixth questions involve tradeoffs between two of these dimensions. 
Perhaps the most popular and illuminating exhibits of heuristic performance is a graph 
of solution quality as a function of time, as illustrated in Figure 2. The shape of this graph 
clearly reflects the power of a heuristic and is useful to practitioners as well as researchers. 

4.1.1. Quality of Solutions. When testing an algorithm that finds an optimal solution to 
a given problem, the important issues are speed and rate of convergence to the optimal 
solution. For heuristics, the additional consideration of how close the heuristic solution 
comes to optimality is generally the primary concern of the researcher. When possible, 

edges 

240 

230 

220 

210 

200 -

190 

180 
0 

170 

OllASP • · • 
GREEDY · o -• 

. 
<> •• 

.. 
• ~-..... . 

•O 

10 

.• 

-• .. . 
l' .. • . I I••• • ' 

•· .. .... • 

0 
..• ' •... 0 

..•.. - . ,o •O 

100 1000 10000 
time (secs) 

Figure 2. Quality-versus-time comparison of GRASP and pure GREEDY in search of planar subgraph of input 
graph with maximum number of edges (from Resende and Ribeiro, 1995). 
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the heuristic solutions obtained should be compared to the optimal solutions. Generally 
the percent deviation from optimality is reported. 

When the optimal solution is unavailable, the percent deviation from a tight lower (upper) 
bound can be an effective measure of the quality of solution, as depicted in Figure 3. (For 
good examples of tight bounds, see Cornuejols, Sridharan, and Thizy (1991), Golden et al. 
(1986), Held and Karp (1970, 1971), Johnson (1990), Kelly, Golden, and Assad (1992), 
Martello and Toth (1990).) Of course, a gap of 20-30 percent between the bound and the 
heuristic solution is probably not tight enough to convey useful information (for example, 
minimal-spanning-tree value as a lower bound for the optimal traveling-salesman tour length). 

For most standard problems, heuristic results exist in the open literature and direct com­
parison of a heuristic algorithm's performance to earlier heuristic solutions should be made 
in much the same way as comparisons are made to optimal solutions (see Aarts et al. , 
1994; Gendreau, Hertz, and Laporte, 1994). 

4.1.2. Computational Effort. While heurisitcs that produce superior solutions are impor­
tant, the speed of computation is a key factor. There are many portions of the process that 
should be timed, including: 

• Time to best-found solution: This is the time required for the heuristic to find and report 
the solution the author is using in assessing the quality of the heuristic. This timing should 
include all processing involved (such as computation of distance matrices, and so on) 
along with all preprocessing. 
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Figure 3. Boxplots for 23 heuristics showing percent excess over Held-Karp lower bound on 100-city traveling­
salesman problems (from Johnson et al . , 1995) . 
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• Total run time: This is the algorithm's execution time prior to termination by its stopping 
rule. Since some complex heuristics have no standard termination criteria and can be 
allowed to run for an indefinite period of time, care must be given to reporting both 
the ti.me required to produce the best-found solution and the total time of the run that 
produced it. Readers are naturally skeptical of results in which good solutions are iden­
tified shortly before the reported termination point. 

• nme per phase: Where the heuristic is multi-phase, or composite (that is, initial solution, 
improved solution final solution) , the timing of each phase and the quality of solution 
at the end of each phase should also be reported . What i the «bang for buck" contribu­
tion of each phase? 

All reported times should be for either a single set of algorithm parameter values or 
a specific rule that establishes the parameter values for each instance. When the best solu­
tion is reported from a set of runs with different parameter values, this should be clearly 
identified as such. 

The rate at which heuristics converge to a solution close in value to that of the "best 
found" solution should be measured. A graph of the quality of solution versus the time 
expended, per Figure 2, illustrates this classic tradeoff. The quality-effort relationship can 
also be captured with descriptive measures, such as the ratio of time to produce a solution 
within 5 percent of the best-found solution value to the time to produce the best: 

ro.os = 
time to within 5 % of best 

time to best found 

Note that on diffurent sy terns there may be several ways to measure ti.me: including user, 
ystem, and real time. Parallel implementations introduce additional timing complications 

(see Barr and Hickman, 1993, for guidelines in this situation). 
Running times however, may not translate well from one computing system to another, 

so other measures of computational effort may be appropriate- especially in descriptive 
experiments. Combinatorial measures, such as data structure updates and nodes in the carch 
tree, sometimes correlate well with running times and are more system- and programmer­
independent (Ahuja, Magnanti , and Orlin, 1993· Hooker, 1995; McGeoch, 1992). Count­
ing operations, major subtasks, and memory requirements mimics the traditional tl1eoretical 
analysis of algorithms (Garey and Johnson, 1979). The benefits of this approach are many, 
producing experiments in which factors such as programming skills, timing, tuning, and 
test set selection are all irrelevant. In theory, however, results are asymptotic and often 
one needs very large instances to achieve the behavior experimentally. 

4.1.3. Robustness. Clearly, a heuristic that can only obtain an excellent solution for only one 
instance of a problem is not robust and arguably not very interesting. Generally, robustness 
is based on the ability of a heuristic to perform well over a wide range of test problem and 
is usually captured through measures of variability. For example, the quality-versu -time 
graph in Figure 4 also includes standard deviation bars with the average quality points. 

Furthermore, heuristic strategies and parameters should either remain constant over the 
set of test problems or should be automatically set using ind.iv idual test problem attributes. 
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Figure 4. Average quality percent deviation from optimal versus computational effort for various heuristics on 
a QAP, with sigma bars (adapted from Battiti and Tecchiolli, 1994). 

Robustness should be demonstrated prior to fine-tuning a heuristic for a single problem 
instance. Where parameter values are chosen, some measure of the sensitivity of the heuris­
tic performance to small changes in parameter settings will indicate algorithm robustness 
and should be included (see Stewart, Kelly, and Laguna, 1995). 

Authors are encouraged to report negative results. For example, if a heuristic performs 
well over a wide range of problems but fails on a specific type, then the authors should 
report, rather than hide, these results. Alternatively, if a heuristic does not guarantee feasibil­
ity (e.g., see Gendreau et al., 1994; Kelly et al., 1992, 1993), the authors should report 
on those cases where the heuristic does not generate a feasible solution. 

4.1.4. Selection of Measures. How performance is measured and ultimately computed is as 
important as the measure itself. McGeoch (1995) notes that reliable prediction of running 
times as a function of different performance measures over a wide spectrum of computing 
systems remains an open problem. She offers a list of guidelines for finding good perfor­
mance measures, including: look at data representing differences as well as ratios, since 
these often have different properties; use measures that have a small variance within a sam­
pling point as compared to the variance observed between different sampling points; and 
apply variance reduction techniques (Bradey, Fox, and Schrage, 1983; McGeoch, 1992) 
to suggest measure choices. 
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4.2. Factors to Study 

There are three main categories of factors that affect the performance of algorithms in com­
putational experiments: problem, algorithm, and test environment. Since each category 
contains a multiplicity of influences on the test results, the investigator must be judicious 
in selecting 

• Which factors to study (such as problem size, heuristic method, number of processors), 
• Which to fix at some level (such as problem class, stopping rule, computing environ­

ment), and 
• Which to ignore, and hope that they will not influence the experimental results (such 

as distribution of problem costs, system job mix). 

The choice of experimentation factors is central to both comparative and descriptive ex­
periments. We urge researchers to carefully consider this decision in designing an experi­
ment. All factors, studied or otherwise, will need to be documented and addressed at the 
reporting stage. 

4.2.1. Problem Factors. A variety of problem characteristics-such as dimensions, struc­
ture, parametric distributions-can affect the results of a given observation. Their effects, 
if any, are important for assessing a code's robustness. 

At a minimum, the effect of problem sizes (such as number of variables and equations) 
should be included, but many other paroblem characteristics can have a significant impact 
as well, such as problem parameter distributions (Glover et al., 1974) and data presenta­
tion order in neural networks. Some factors can be controlled easily, as when certain prob­
lem generators are used (see Section 5.2), and can be analyzed accurately with statistical 
experimental design techniques. 

It is important to "stress test" the codes by runnng as large instances as possible. Many 
factors do not show up on small instances, and running on smaller sizes may not yield 
accurate predictions for larger, more realistic problems. 

4.2.2. Algorithm Factors. Algorithm factors include the selection of heuristics and computer 
codes to test (in comparative experiments) and the internal control settings to use. Well­
known codes provide helpful baselines and should be included where relevant and feasible. 

The application of a heuristic method usually involves algorithm-specific choices, since 
a heuristic typically contains multiple strategies and multiple parameters that control these 
strategies (such as initial-solution-construction procedures and associated search parameters). 
Readers are not only interested in the final results but in the relative contributions of the 
various strategies. Computational testing should demonstrate the contribution and computa­
tional burden of each strategy within a complex heuristic, so as to identify innovative ideas 
that may be used in other contexts. 

Values of any parameters employed by the heuristic should be defined and, where problem­
dependent, the rules for establishing appropriate values should be specified. Whether these 
values are fixed or computed, there should be a reliable way of determining effective param­
eter settings for a new instance of the same problem class. 
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Since performance is tied to the strategy and parameter choices, much research effort 
can be spent in choosing the appropriate options and parameter settings. The process used 
to make these choices is of interest to the reader and should be documented. The process 
may involve some sampling and statistical analysis-such as design optimization methodol­
ogies (Barton and Ivey, Jr., 1996; Box and Draper, 1969; Mason et al., 1989; Nelder and 
Mead, 1965; Taguchi and Wu, 1979) or machine learning (Nygard, Juell, and Kadaba, 
1990). Robust heuristic that perform well over a range of parameter values are generally 
superior to heuristics that require unique settings for every problem instance, unless the 
heuristic is designed to self-adjust based on problem characteristics. Parameter sensitivity 
analyses are useful in evaluating robustness. 

One algorithm factor of this type that must be addressed is the stopping rule. Since many 
techniques do not have a generally accepted termination criterion, the investigator has great 
discretion in selecting one. An unethical approach is to make lengthy runs of the code 
and then devise a self-serving rule. Documenting the process used to devise the criterion 
will help justify its use. 

4.2.3. Test Environment Factors. Ideally, competing algorithms would be coded by the 
same expert programmer and run on the same test problems on the same computer config­
uration. The results of these runs in terms of time to solution and quality of the solution 
produced on each problem instance would be directly comparable for the two heuristics. 

In this manner, the wide range of environmental factors could be controlled, including: 
hardware (brand, model, size of memory, CPU speed, number of processors, processor 
communication scheme), software (operating system, language, compiler, compiler settings), 
system (job mix), and programmer (coding expertise, tuning ability) factors. Since this 
is often not the case, the experimenter must determine the effect of those factors that are 
not held uniform across the runs or, at a minimum, identify those that vary and might 
influence the results. 

5. Designing and Executing the Experiment 

Experimental design is the process of planning an experiment to ensure that the appropriate 
data will be collected. A good experimental design is unbiased, achieves the experimental 
goals, clearly demonstrates the performance of the tested process, uncovers reasons for 
performance, has a justifiable rationale, generates supportable conclusions, and is reproduci­
ble. All of these characteristics are of particular value in the testing of heuristic methods. 

5.1. Choosing an Experimental Design 

The best means of achieving such results are through the use of well-known statistical ex­
perimental design methods (Mason, Gunst, and Hess, 1989; Montgomery, 1984). Statistical 
design of experiments (DOE) is an approach to experimental design that ensures that the 
collected data can be analyzed by statistical methods to reach valid and objective conclu­
sions. DOE is a process for collecting data and analyzing it with an established statistical 
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model, such as full-factorial or Latin-squares. When an experiment's results can vary with 
the test conditions (problems solved, computer, parameter settings), statistical methodology 
is the only objective approach to analysis. Hence, the design of the experiment and the 
statistical analysis of the data are interrelated. 

DOE is a simple process for structuring and analyzing experiments and is designed to 
minimize the testing effort and maximize the information acquired. It is based on the prin­
ciples of replication (repeating tests), randomization (performing tests in random order to 
offset unincluded factors), and blocking (eliminating the influence of known, but extraneous, 
factors). DOE also has the side benefit of automatically constructing a model of the process 
or algorithm being examined, thus it is useful for descriptive studies. See Amini and Barr 
(1990) for a concise introduction to this methodology for operations researchers. 

In the physical sciences, engineering, and medicine, DOE is employed routinely. Stan­
dards for empirical testing in the computing and mathematical sciences have been much 
less rigorous, and there is a broad range of accepted practice. Despite exhortations for high 
standards in reporting, demonstration or proof-of-concept studies with minimal or ad hoc 
testing are more the norm than carefully constructed experimental designs with statistically 
validated conclusions. (As a step toward changing this, it is our opinion that all doctoral 
students of operations research should receive training in DOE and employ it in any empiri­
cal research.) However, see Amini and Barr (1990), Barton and Ivey, Jr. (1996), Lin and 
Rardin (1979), and Nance, Moose, and Foutz (1987) for examples of using DOE to test 
optimization and heuristic algorithms. 

Results on standard benchmark problems and problems of practical interest should always 
be a part of an algorithmic experiment, even though they are not part of a formal design. 
These results provide valuable points of reference, even in noncomparative settings. However, 
as observed in Hooker (1995), the definition of "standard" should be extended. We will 
comment on this more later. 

5.2. Selecting Test Problems 

The choice of test problems follows directly from the experimental design. Problem sets 
may be drawn from practical settings or created by a researcher with problem generation 
software. 

Real-world problems reflect the ultimate purpose of heuristic methods, and are import.ant 
for assessing the effectiveness of a given approach. Of particular value are instances that 
are representative, in some manner, of those encountered in a given problem domain. If 
the situation permits, problems should be collected with factors controlled per some statis­
tical experimental design. 

However, in some cases it can be import.ant to develop special test problems to test partic­
ular performance features and particular response patterns of a method. Although "artificial" 
problems are occasionally criticized for being "unrealistic" and more difficult to solve 
than "real" ones (O'Neill, 1982; Rardin and Lin, 1982), problem-generation software has 
some definite advantages. Generators typically give the user control over problem character­
istics (Arthur and Frendewey, 1994; Klingman, Napier, and Stutz, 1974), thereby allowing 
creation of instances with a specific configuration of experimental design factors (Klingman 
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and Mote, 1987). Some codes supply an optimal solution or its value (Arthur and Fren­
dewey, 1988; Lin and Rardin, 1977). If written for machine independence and portability, 
generators also provide an efficient means of distributing and reproducing problems. 

If problems are created by the developer, then the generation process should be clearly 
described and the newly generated problems should be archived (or the process for gener­
ating them should be reproducible) for use by other researchers. A variety of different types 
of problems should be generated to reflect the diversity of factors that could be encountered. 
Generated problem instances should be representative of problems likely to be found in 
the field or designed to explore key hypotheses. The investigator should also attempt to 
assess the overall difficulty of the problems created since, in some cases, problem charac­
teristics make problems easy to solve by just about any heuristic. 

For many classes of problems [such as traveling salesman, bin packing, set covering, 
global optimization (Floudas and Pardalos, 1990)] well-studied test suites are available in 
the literature and in electronic form [such as TSPLIB (Reinelt, 1991)]. A new heuristic 
should be tested on all "standard" problems, whether generated or drawn from practice, 
for which it was designed. This permits comparison with other published results, even 
with descriptive experiments. 

In general, the more test problems evaluated, the more informative the study. Of interest 
are instances that stress, or test the limits of, the software or cause it to fail. 

5. 3. Executing the Experiment 

This is the data-collection step in the process, where specific computer runs are made. 
The investigator must ensure that the experimental design is being followed, and that the 
relevant process details are documented. Of particular concern are: 

• Randomization-performing the tests in the designated random order, 
• Uniform computing environment-maintaining as uniform a state of the test environ­

ment as possible, if it can have an effect on the performance measures, such as job exe­
cution times. 

These elements help reduce variablity and the influence of unknown factors. For example, 
if solution times vary with the system's job mix, data should be collected during lightly 
loaded or dedicated periods. 

6. Analyzing the Results and Drawing Conclusions 

This phase of the experiment converts the collected data into information through analysis 
and interpretation. Data analysis refers to evaluating the recorded empirical data with statis­
tical and nonstatistical techniques with respect to the experiment's purpose and goals. At 
this point, the requisite data should be available to test the hypotheses, estimate population 
parameters, uncover pertinent relationships, verify assumptions, and measure variability. 

Analysts should address the experimental goals and the questions they posed, such as 
those in Section 4.1. In particular, consider the key tradeoffs (such as solution quality versus 
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time, speed versus robustness) and attempt to identify the factors or factor combinations 
that seem to contribute to (are correlated to) performance. For example, the rate at which 
time grows with problem size, can be quite useful in assessing how a heuristic will perform 
on large problem instances. A regression model that relates run times to problem size can 
characterize this empirical growth (Stewart, 1987). 

Data analysis tools include general statistical packages, DOE software (if a standard ex­
perimental design model was used), data visualization software, as well as manual methods 
and human pattern recognition. Graphical displays can provide especially persuasive insight 
into the data and the relationships that they contain. Graphics offer a means of visualizing 
all of the data, and greater understanding can come from examining the entire data set 
rather than just summary statistics. 

Statistical methods should be employed wherever possible to indicate the strength of rela­
tionships between different factors and performance measures (e.g., see Amini and Barr, 
1990; Golden et al., 1986; Lin and Rardin, 1979; McGeoch, 1995; Nance, Moose, and 
Foutz, 1987). While they cannot prove causality, these methods do indicate the reliability 
and validity of the results. If testing involved benchmark problems that were not part of 
a designed experiment, there is no standard statistical means of analyzing the data (see 
Barton and Ivey, Jr., 1996; Golden and Stewart, 1985, for representative approaches to 
this issue), although visual analysis can always be employed. 

Once the data has been analyzed, the results are interpreted as a series of conclusions 
and inferences, deduced from the collected evidence. The statistical and practical significance 
of these conclusions should be addressed, their implications evaluated, and recommenda­
tions made. The recommendations often include further experiments to answer questions 
suggested by the data. Experimentation tends to be an iterative process, with each round 
expanding knowledge of the algorithm, but leading to new questions and, sometimes, tl1e 
need for new performance measures. 

The analysis and interpretation steps are the culmination of all the planning and implemen­
tation activities and, in the end, determine the overall merit of the work. The final report­
ing step is needed to document the experimental details and findings and communicate 
them to the research and practice communities. 

7. Reporting on Computational Experiments with Heuristics: 
Guidelines for Investigators 

What should be reported? Enough information to convince a reader that the experiment 
has scientific merit, is reproducible, and answers the important questions posed at its outset. 
In testing a new heuristic, the researcher often wishes to demonstrate that it makes a con­
tribution as described in Section 3. 

In this section, we provide guidelines to help authors report on their computational test­
ing, and referees and editors evaluate the results. Table 2 summarizes the main points, which 
are detailed below. In a nutshell, we ask the conscientious researcher to thoroughly docu­
ment the experimentation and all relevant factors, carefully analyze the resulting data, and 
present unbiased, supportable conclusions. 
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Table 2. Guidelines for reporting computational results. 

1. Reproducibility is essential: document to allow replication of 
results. 

2 . Specify all influential factors in detail : heuristic, code, param­
eters, pseudo-random numbers, input data, nontrivial data struc­
tures, and computing environment. 

3. Be precise about timing. 

4 . Show how algorithm parameters are set. 

5. Use statistical experimental design techniques. 

6. Compare the heuristic with other methods. 

7 . Reduce variability of results. 

8. Produce a comprehensive repon of the results. 

7.1. Reproducibility 

23 

An essential ingredient of scientific research is reproducibility, and experimental results 
that cannot be independently verified are given little credence in the scientific community. 
To be reproduced, an experiment must be thoroughly documented. Hence, when reporting 
on heuristic testing, the algorithm and its implementation (the code) should be described 
in sufficient detail to allow replication, including any parameters, pseudo-random number 
streams, and nontrivial data structures employed. The sources and characteristics of prob­
lem instances should be documented-including all details of any generation scheme-and 
nonproprietary problems made available to other researchers. Making available to research­
ers any developed code will also enhance the scientific merit of the work. 

7.2. Computing Environment 

Many test-environment factors can influence the empirical performance of a heuristic 
method, and should be documented, including 

• Model and make of the computer, 
• Number, types, and speeds of processors, 
• Size and configuration of main, cache, and swap memories, 
• Interprocessor scheme and communication times, 
• Operating system name, vendor, and version, 
• Programming languages and compliers along with compiler settings and libraries linked 

to the load module, 
• System load, where applicable. 
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Also detailed should be the computing resources-notably time and primary and secondary 
memory-required by the algorithm itself, expressed as a function of problems parameters, 
such as size. If the machine is not well-known, a rough comparison of its speed against 
popular systems is useful. 

7.3. Timing 

As mentioned in earlier sections, heuristic methods are used instead of exact methods be­
cause of their ability to produce usable, albeit nonoptimal, solutions considerably faster 
than exact methods. Therefore, accurate reporting of timings for experiments is of the ut­
most importance. How times are measured should be documented. Authors should differ­
entiate between user, system, and real (wall clock) times, and report system and real times 
if system time is significant or real time is much greater than the sum of user and system 
times. The reader should understand at what points in the code the timings were recorded. 
Authors should keep in mind that system clock routines usually have a much coarser resolu­
tion than the internal processor clock. 

When reporting times, authors should be clear about which operations are included and 
which, if any, are excluded. In general, times should be reported for 

• "Overhead" operations required by the algorithm, such as problem setup and preprocess­
ing of data: Many problems involve substantial computations (for example, distance matrix 
calculation) before the heuristic is started. 

• Each stage of a heuristic when there are multiple phases such as occur when the heuristic 
calculates an initial feasible solution and then searches for local improvement. 

• Total time and time to the best solution: When there is a probabilistic component to a 
heuristic (such as random starting points), the times for all runs, those that produced 
the solutions being reported along with all others, should be included as part of the time 
required to find the best solution. The total time that a complex heuristic is allowed to 
run before termination should be included with the time for the best solution. 

• Calibration routines: If standard timing codes are available and appropriate, their results 
in the experimental computing environment should be documented. 

7. 4. Quality of Solution 

Even if the main thrust of the experiment is descriptive, the author must, when possible, 
measure the closeness of the heuristic's solution to the optimal solution. While this can 
be demonstrated by a theoretical worst-case analysis (Fisher, 1980), the usual thrust of 
computational testing is the demonstration of an algorithm's typical or average solution 
quality, relative to the optimal solution value, and the consistency of its behavior: 

• Where the optimal solution is known, the heuristic solution can be directly compared 
as a measure of the effectiveness of the heuristic. 
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• Where optimal solutions are unknown or unobtainable by current methods, some other 
benchmark of performance should be offered by the author, such as a comparison to 
a tight lower (upper) bound (see Johnson, 1990; Johnson et al., 1995), or comparison 
to published solution values on publicly available test problems. , 

• Where possible, some insight should be provided as to how the quality of solution holds 
up as problem instances grow in size or complexity. This is a complementary measure 
to the time and size characterization function discussed in Section 6. The performance 
of some heuristic procedures (such as percent above optimality) deteriorate as the prob­
lem size grows. 

7. 5. Parameter Selection 

If the code allows for different choices of algorithm contol (tuning) parameters, the report 
should specify the parameter settings and how they were chosen. In particular, the values 
for any parameters associated with a stopping rule must be documented and justified. Other 
issues to be addressed include 

• The parameter values, or computation rule, used in solving each reported problem in­
stance: Fixing the values or rules is preferable to ad hoc tuning for each problem. 

• The process by which the parameter values were selected: Generally, some experimen­
tation and statistical analysis is appropriate in this undertaking. 

• Where parameter values differ for different problem instances, the reason for these dif­
ferences: If there is a rule for deriving parameter settings from the characteristics of 
a problem instance, that rule needs to be specified and justified. Where the solutions 
reported represent the best solution observed from runs with several different parameter 
settings, the run times reported for each problem instance should be either (1) the average 
of the run times for all parameter settings applied to that problem, or (2) the times from 
both "standard" and "hand-tuned" settings, along with the number of runs made. 

• Evidence that the parameter values presented are generalizeable to other problem instances 
and are insensitive to minor changes in their values: This is used to assess the robustness 
of a parameter-driven heuristic. When more than one parameter is present, the reported 
analysis should assess the importance of each to the performance of the heuristic and 
their degree of interaction. 

• An estimate of the time required to fine-tune the algorithm: This estimate should give an 
idea of the effort required to develop the heuristic versus the time needed to find robust 
parameter values. For example, some heuristics may be conceived or implemented rela­
tively quickly (in one or two weeks) but require substantial time to fine-tune (one or 
two months). 

The selection of parameter values that drive heuristics is itself a scientific endeavor and 
deserves more attention than it has received in the operations research literature. This is 
an area where the scientific method and statistical analysis could and should be employed. 
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7. 6. Statistics 

Statistical experimental design techniques are powerful, often neglected methodologies that 
can highlight those factors that contribute to the results, a well a those that do not. To 
help readers better understand the effect of these factors on the output measure (such as 
running time or solution quality) , experiments should be well-planned and standard experi­
mental design techniques adopted. 

Where the main thrust of the research is to demonstrate that a particular heuristic outper­
forms another in one or more dimensions, a statistical comparison of results should be 
included. Where sample sizes are large enough, this may take the form oft-tests or an 
analysis of variance. When the assumptions for parametric tests fail to hold, there are a 
host of nonparametric techniques (for example, the sign test) that can and should be em­
ployed to make the author's arguments, even if the result is that there is no statistical dif­
ference between the quality of the solutions produced by the heuristics under study (e.g., 
Golden and Stewart, 1985). 

Since more information can be conveyed if results obtained are contrasted with other 
methods, authors are encouraged to identify points of reference to make such comparisons. 
Whenever possible, the "best" competing codes should be used. Published results can be 
used, but if well-known (publicly released) codes are available, it is preferable to repeat 
the experiment, even if this requires conducting runs in different computing environments. 
If no publicly released code exists or can be obtained, authors are encouraged to imple­
ment another method, whether a previously described heuristic or a imple-minded heuristic 
(such as a greedy method) to make the contrast. 

7. 7. Variability 

Experiments should be designed to reduce variability of the measured results, either by 
running longer experiments (producing more data points) or running the final experiments 
on a dedicated or lightly loaded machine. Experiments should be conducted on a variety of 
problem classes and on many instances in each class. If pseudo-random number generators 
are used, the code should be tested on each instance with different seed initializations. 

7. 8. Analysis and Interpretation 

Reporting should not only present the experimental results, but give an analysis and state 
the investigator's conclusions. For example, it is not sufficient to present tables of running 
times for the reader to interpret. The analysis should describe the effects of factors, individ­
ually and in combination, on the chosen performance measures. The conclusions should 
address the questions posed and hypotheses tested, and indicate the significance and impact 
of the experimental outcomes. 

In particular, the central tradeoffs should be explored, especially solution quality versus 
computational effort (see Figure 5). Other tradeoffs, such as time versus problem size (per 
Figure 6) and robustness versus quality, lend insight into the behavior of the algorithm(s) 



COMPUTATIONAL EXPERIMENTS WITH HEURISTIC METHODS 

p 

E 

6 _ 

R 5 _ 

C 
E 
N 
T 

E 
X 
C 

4 _ 

E 3 _ 
s 
s 

N2-10 

02-Ml 

02-20,8 
N2-20 

02-MB 
02-MC 

02-MK 

I 
50 

N3-10 

N3-20* 
N3-20 

N2-40 

03-Ml 
03-20,8 

03-M8 

N3-40* 
N3-40 

I 
100 

N2-80 

03-MC 

N3-80 

SGI Challenge Time in Seconds 

27 

03-MK 

I 
200 

Figure 5. Average quality, in percent over lower bound, versus time for 20 heuristics on 10,000-city TSPs (from 
Johnson et al., 1995). 

(see Golden and Stewart, 1985). Researchers are also interested in benefit-cost analyses, 
such as time and memory tradeoffs and the contribution of individual stages in a multi­
stage heuristic. 

In discussing their data, authors should highlight unexpected or anomalous results. Where 
possible they should attempt to explain these (ideally by more focused experimentation, 
perhaps based on other performance measures), otherwise they should be left as problems 
worthy of further investigation. 

7.9. Report 

A comprehensive report of the results of computational testing should include most of the 
aforementioned information. Results should be summarized using measures of central ten­
dency and variability. Some attention should be given to a presentation of cost effectiveness 
of the heuristic method, such as a plot of the quality of solution versus either time or 
algorithmic iterations. The ratios mentioned in Section 4 offer numerical measures of the 
rate of convergence of a heuristic method. 
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Figure 6, Running time (normalized by N log N) versus problem size, N, for five TSP heuristics (from Johnson 
et al., 1995). 

In presenting results, graphic displays can be highly effective and inviting to the reader. 
Good graphics software with a wide range of output styles is available to most researchers. 
Be creative and consider new means of communicating the resulls (see Tufte, 1983, for 
inspiration) . 

In addition to including as much information as possible in the published paper, supple­
mentary material should be made avajJable to other researchers via working papers, prefer­
ably in machine-readable format via the Internet. This includes source codes, input and 
output. files and complete solutions to the problem instances reported in the paper, particu­
larly when reporting on new problem classes or improved olutions for standard test 
problems1 (see Gendreau, Hertz, and 4porte, 1994; Stewart, Kelly, and Laguna, 1995). 

8. Conclusions and Future Directions 

This article considered the issue of reporting experimental (that is, computational) research 
with heuristics. Rigorous reporting of experimental studies in computing and the mathe-
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matical sciences is still in its infancy and much progress is needed to achieve the level of 
quality commonly observed in more established experimental sciences. We have provided 
some thoughts on how such a path to rigorous experimental research and reporting can 
be established, listing a preliminary set of guidelines that may help authors carry out and 
report their research, and editors and referees evaluate it. 

In recent years, a need for a rigorous empirical science of algorithms has been recognized 
(Bland et al., 1993; Hooker, 1994; McGeoch, 1986). The growth of the Internet has helped 
to promote the interchange of information and sharing of data and codes by researchers. 
On-line repositories oftest problems have come into existence (such as TSPLIB, QAPLIB, 
Netlib, MIPLIB, libraries of the DIMACS Algorithm Implementation Challenges, and OR­
Library). However, a need for larger, more accessible, computer-based archives of bench­
mark problems, test beds, and codes exists. 

We encourage the Journal of Heuristics to provide authors with support for experimen­
tal research on heuristics. This support could consist of a World Wide Web site on which 
researchers could have direct or linked access to 

• Libraries of standard test problems, 
• Source codes of publicly released implementations of heuristics and other algorithms, 
• Benchmark routines for system clock calibration. 

The study of heuristic methods is a flourshing and fruitful area for algorithmic research 
(see Zanakis, Evans, and Vazacopoulos, 1989; Reeves, 1993b). We feel that conscientious 
reporting is at the heart of real progress and hope that the thoughts collected here will 
encourage all researchers to advance the practice of experimentation and reporting in this 
exciting field. 
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Note 

l. This recommendation is based on the following. There nre several heuristic results reported in the literature 
that researchers have been unable to replicate. Unfortunately, the solutions that purportedly produced these 
objective function values are unnvailahlc, and there is no way of determining whetl1cr the reponed vulues are 
correct or are simply the result of typographical errors. 
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