SI Appendix to "Genomes reveal drastic and recurrent phenotypic divergence in Firetip skipper butterflies (Hesperiidae: Pyrrhopyginae)" by Jing Zhang, Qian Cong, Jinhui Shen, Ernst Brockmann and Nick V. Grishin DOI 10.1098/rspb. 2019.0609

Published in the Proceedings of the Royal Society, B: Biological Sciences (print ISSN: 0962-8452, online ISSN: 1471-2954) on April 22, 2019 as part of the article "Genomes reveal drastic and recurrent phenotypic divergence in Firetip skipper butterflies (Hesperiidae: Pyrrhopyginae)" and archived together with it. ZooBank registration for this work is 214D0E4D-3FC5-4E93-9F5F-EA1294D38A4C

Table of Contents

Taxonomic Appendix 3
T1. Taxonomic Abstract 3
T2. Treatment with intermediate genera: diverged about 10 Mya 4
T3. Treatment with broader genera: diverged about 15 Mya 6
T4. Treatment with narrower genera: diverged about 5 Mya 8
T5. Expanded morphological diagnoses for the new taxa described in Table 1 of the main text 10
T6. Dated genomic tree of Pyrrhopyginae and tribes 14
T7. Pyrrhopyginae genera and inconsistencies with the current classification 14
T8. Justification for changes to Pyrrhopyginae genera and species 16
T9. Taxonomic discussion 17
Methods 19
M1. Sample collection and genomic DNA extraction 19
M2. Sequencing library preparation protocol 19
M2.1. Paired-end library preparation protocol 19
M2.2. Preparation for sequencing on the Illumina Hiseq X ten platform 21
M3. Nuclear and mitochondrial protein-coding gene assembly and preparation of intron alignment 22
M3.1. Processing of sequencing reads 22
M3.2. Preparation for protein-coding gene assembly 22
M3.3. Protein-coding sequence assembly for phylogenetic study from sequencing reads 23
M3.4. Z-linked genes identification and alignment preparation 23
M3.5. Assembling mitochondrial protein-coding genes 24
M3.6. Intron alignment preparation 24
M4. Phylogenetic analysis 24
M4.1. Maximum-likelihood phylogenetic analysis of nuclear/mitochondrial protein-coding regions, introns and Z-linked protein-coding regions 24
M4.2. The BEAST tree and time calibration 24
M4.3. Coalescent-based estimation by Astral using nuclear protein coding regions 25
M4.4. TreeMix 26
M4.5. Detection of diagnostic nucleotide characters 26
References 26
Supplemental Tables 28
Table S1. Data for 119 sequenced Pyrrhopyginae specimens and 2 outgroups 28
Supplemental Figures 30
Figure S1. Specimen age and sequence quality 30
Figure S2. Time-calibrated tree of Pyrrhopyginae constructed from coding regions in mitochondrial genomes 31
Figure S3. Maximum likelihood phylogenetic tree constructed from intronic regions 32
Figure S4. Maximum likelihood phylogenetic tree constructed from Z-linked protein-coding regions 33
Figure S5. Coalescent-based species tree from nuclear protein-coding regions. 34
Figure S6. Maximum likelihood tree by TreeMix constructed from nuclear protein-coding regions 35
Figure S7. BEAST time-calibrated tree from nuclear protein-coding regions. 36
Diagnostic nucleotide characters mapped to the reference genome of Cecropterus lyciades 37

Taxonomic Appendix

T1. Taxonomic abstract

On the basis of genome-scale phylogenetic analysis, we revised higher classification of the subfamily Pyrrhopyginae Mabille, 1877 (Lepidoptera: Hesperiidae). The subfamily is partitioned into 5 tribes, one of which is new: Azonaxini Grishin, trib. n. and is monotypic. The largest tribe Pyrrhopygini is divided into 4 subtribes, three of which are new: Apyrrothrixina Grishin, subtr. n., Mimoniadina Grishin, subtr. n., and Microcerisina Grishin, subtr. n. Genera of Pyrrhopyginae are defined as the lineages from about 10 million years ago, which resulted in 23 genera. Agara Mabille \& Boullet, 1908 is removed from synonymy and treated as a valid genus. The following genera are treated as subjective junior synonyms: Cyanopyge O. Mielke, 2002 of Melanopyge O. Mielke, 2002; Mimardaris O. Mielke, 2002 of Ardaris E. Watson, 1893; Metardaris Mabille, 1903 of Sarbia E. Watson, 1893; Elbella Evans, 1951 of Microceris E. Watson, 1893. In addition to genera, 22 subgenera are suggested, 10 of which are proposed as new: Aesculapyge Grishin, subgen. n. (TS: Pyrrhopyge aesculapus Staudinger, 1876), Sarbiena Grishin, subgen. n. (TS: Sarbia catomelaena Mabille \& Boullet, 1908), Santea Grishin, subgen. n. (TS: Pyrrhopyga antias C. Felder \& R. Felder, 1859), Mimadia Grishin, subgen. n. (TS: Pyrrhopyga fallax Mabille, 1878), Jember Grishin, subgen. n. (TS: Jemadia scomber Druce, 1908), Jematus Grishin, subgen. n. (TS: Papilio gnetus Fabricius, 1781), Jemasonia Grishin, subgen. n. (TS: Pyrrhopyga hewitsonii Mabille, 1878), Merobella Grishin, subgen. n. (TS: Jemadia merops Bell, 1934), Blubella Grishin, subgen. n. (TS: Pyrrhopyga patroclus Plötz, 1879), and Apatiella Grishin, subgen. n. (TS: Hesperia iphinous Latreille, [1924]). The following 9 subgenera have been previously treated as genera and a new status for them is suggested: Melanopyge O. Mielke, 2002; Chalypyge O. Mielke, 2002; Sarbia E. Watson, 1893; Mysarbia 0. Mielke, 2002; Amysoria O. Mielke, 2002; Amenis E. Watson, 1893; Ochropyge O. Mielke, 2002; Pseudocroniades O. Mielke, 1995; Olafia Nemésio, 2005. Finally, Mahotis Watson, 1893; Hegesippe Evans, 1951; and Dis Mabille, 1889 have been removed from synonymy and treated as valid subgenera. Pyrrhopyge guianae E. Bell, 1932 is treated as a species and not a subspecies of Pyrrhopyge phidias (Linnaeus, 1758), with which it is not monophyletic. Changes (compared to the latest treatment) to result in the following 66 genusspecies combinations are proposed: Agara belti (Godman \& Salvin, 1879), Agara perissodora (Dyar, 1914), Agara pegasus (Mabille, 1903), Agara draudti (N. Riley, 1926), Agara epimachia (Herrich-Schäffer, 1869), Agara santhilarius (Latreille, [1824]), Agara assaricus (Cramer, 1779), Agara michaeli (Nicolay, 1975), Agara pardalina (C. Felder \& R. Felder, 1867), Apyrrothrix mulleri E. Bell, 1934, Apyrrothrix hoffmanni (H. Freeman, 1977), Apyrrothrix erythrosticta (Godman \& Salvin, 1879), Apyrrothrix maculosa (Hewitson, 1866), Apyrrothrix cossea (H. Druce, 1875), Apyrrothrix sangaris (Skinner, 1921), Apyrrothrix chalybea (Scudder, 1872), Apyrrothrix hygieia (C. Felder \& R. Felder, 1867), Apyrrothrix zereda (Hewitson, 1866), Apyrrothrix aesculapus (Staudinger, 1876), Ardaris aerata (Godman \& Salvin, 1879), Ardaris sela (Hewitson, 1866), Ardaris lomax (Evans, 1951), Ardaris montra (Evans, 1951), Ardaris pityusa (Hewitson, 1857), Ardaris porus (Plötz, 1879), Ardaris minthe (Godman \& Salvin, 1879), Mysoria cosinga (Hewitson, 1874), Mysoria xanthippe (Latreille, [1824]), Mysoria damippe (Mabille \& Boullet, 1908), Mysoria pertyi (Plötz, 1879), Mysoria curitiba (O. Mielke \& Casagrande, 2002), Mysoria soza (Evans, 1951), Mysoria oneka (Hewitson, 1866), Mysoria catomelaena (Mabille \& Boullet, 1908), Mysoria antias (C. Felder \& R. Felder, 1859), Mysoria sejanus (Hopffer, 1874), Mysoria galgala (Hewitson, 1866), Mimoniades pionia (Hewitson, 1857), Mimoniades rogeri (Orellana, [2010]), Mimoniades ponina (Herrich-Schäffer, 1869), Mimoniades fallax (Mabille, 1878), Protelbella ruficauda (Hayward, 1932), Parelbella machaon (Westwood, 1852), Microceris merops (E. Bell, 1934), Microceris patrobas (Hewitson, 1857), Microceris blanda (Evans, 1951), Microceris lustra (Evans, 1951), Microceris azeta (Hewitson, 1866), Microceris miodesmiata (Röber, 1925), Microceris madeira (O. Mielke, 1995), Microceris patroclus (Plötz, 1879), Microceris bicuspis (de Jong, 1983), Microceris rondonia (O. Mielke, 1995), Microceris etna (Evans, 1951), Microceris adonis (E. Bell, 1931), Microceris iphinous (Latreille, [1824]), Microceris mariae (E. Bell, 1931), Microceris luteizona (Mabille, 1877), Microceris hegesippe (Mabille \& Boullet, 1908), Microceris theseus (E. Bell, 1934), Microceris scylla (Ménétriés, 1855), Microceris dulcinea (Plötz, 1879), Microceris intersecta (Herrich-Schäffer, 1869), Microceris viriditas (Skinner, 1920), Microceris lamprus (Hopffer, 1874), and Oxynetra roscius (Hopffer, 1874). The above-listed changes are propagated to all names treated as subspecies and synonyms of these taxa, and two taxa: Agara michaeli (Nicolay, 1975) and Apyrrothrix hygieia (C. Felder \& R. Felder, 1867) are treated as species, not subspecies.

T2. Treatment with intermediate genera: diverged about 10 Mya.

New tribe, subtribes and subgenera are described in Table 1 in the main text. Comprehensive species list can be found at https://www.butterfliesofamerica.com/L/Hesperiidae.htm. Below, change in taxonomic status or new taxa are indicated in red font after the name. New taxa are additionally highlighted yellow. Synonyms are denoted by "=" in front of the name (not followed by daggers are subjective junior synonyms; \ddagger marks unavailable names, such as homonyms and nomina nuda) and valid names for the synonyms that are type species are shown in parenthesis.

Subfamily Pyrrhopyginae Mabille, 1877

Tribe Azonaxini Grishin, new tribe
Genus Azonax Godman \& Salvin, 1893; TS: typhaon Hewitson, 1877; new placement, was in Passovini
Tribe Zoniini Mielke, 2001
Genus Zonia Evans, 1951; TS: zonia Evans, 1951
Tribe Passovini Mielke, 2001
Genus Granila Mabille, 1903; TS: paseas Hewitson, 1857
Genus Aspitha Evans, 1951; aspitha Hewitson, [1866]
Genus Myscelus Hübner, [1819]; TS: nobilis Cramer, [1777]
Genus Agara Mabille \& Boullet, 1908; reinstated status; TS: pardalina C. Felder \& R. Felder, 1867
Genus Passova Evans, 1951; TS: passova Hewitson, [1866]
Tribe Pyrrhopygini Mabille, 1877
Subtribe Pyrrhopygina Mabille, 1877
Genus Pyrrhopyge Hübner, [1819]; TS: bixae Linnaeus, 1758
=Tamyris Swainson, 1821; TS: =zeleucus Fabricius (phidias Linnaeus, 1758)
=Pachyrhopala Wallengren, 1858; TS: phidias Linnaeus, 1758
Genus Gunayan O. Mielke, 2002; TS: rhacia Hewitson, 1875
Genus Yanguna E. Watson, 1893; TS: spatiosa Hewitson, 1870
Subtribe Apyrrothrixina Grishin, new subtribe
Genus Apyrrothrix Lindsey, 1921; TS: araxes Hewitson, 1867
Subgenus Apyrrothrix Lindsey, 1921; TS: araxes Hewitson, 1867
Subgenus Melanopyge O. Mielke, 2002; new status; TS: maculosa Hewitson, 1866
=Cyanopyge O. Mielke, 2002; new synonym; TS: sangaris Skinner, 1921
Subgenus Chalypyge O. Mielke, 2002; new status; TS: chalybea Scudder, 1872
Subgenus Aesculapyge Grishin, new subgenus; TS: aesculapus Staudinger, 1876
Genus Creonpyge O. Mielke, 2002; TS: creon Druce, 1874
Genus Jonaspyge O. Mielke, 2002; TS: jonas C. \& R. Felder, 1859
Subtribe Mimoniadina Grishin, new subtribe
Genus Ardaris E. Watson, 1893; TS: eximia Hewitson, 1871
=Mimardaris O. Mielke, 2002; new synonym; TS: sela Hewitson, 1866
Genus Mysoria E. Watson, 1893; TS: =¥acastus Cramer, [1775] (barcastus Sepp, [1851])
Subgenus Sarbia E. Watson, 1893; new status; TS: xanthippe Latreille, [1824]
=Metardaris Mabille, 1903; new synonym; TS: cosinga Hewitson, 1874
Subgenus Sarbiena Grishin, new subgenus; TS: catomelaena Mabille \& Boullet, 1908
Subgenus Santea Grishin, new subgenus; TS: antias C. Felder \& R. Felder, 1859
Subgenus Mysarbia O. Mielke, 2002; new status; TS: sejanus Hopffer, 1874
Subgenus Mysoria E. Watson, 1893; new status; TS: =¥acastus Cramer, [1775] (barcastus Sepp, [1851])
Subgenus Amysoria O. Mielke, 2002; new status; TS: galgala Hewitson, [1866]
Genus Mimoniades Hübner, 1823; TS: ocyalus Hübner, 1823
Subgenus Amenis E. Watson, 1893; new status; TS: pionia Hewitson, 1857

Subgenus Mahotis Watson, 1893; new status; TS: nurscia Swainson, 1821
Subgenus Mimoniades Hübner, 1823; TS: ocyalus Hübner, 1823
Subgenus Mimadia Grishin, new subgenus; TS: fallax Mabille, 1878
Genus Jemadia E. Watson, 1893; TS: hospita Butler, 1877
Subgenus Jember Grishin, new subgenus; TS: scomber H. Druce, 1908
Subgenus Jemadia E. Watson, 1893; TS: hospita Butler, 1877
Subgenus Jematus Grishin, new subgenus; TS: gnetus Fabricius, 1781
Subgenus Jemasonia Grishin, new subgenus; TS: hewitsonii Mabille, 1878
Genus Nosphistia Mabille \& Boullet, 1908; TS: =perplexus Mabille, 1878 (zonara Hewitson, [1866])
Subtribe Microcerisina Grishin, new subtribe
Genus Croniades Mabille, 1903; TS: pieria Hewitson, 1857
Genus Protelbella O. Mielke, 1995; TS: alburna Mabille, 1891
Subgenus Ochropyge O. Mielke, 2002; new status; TS: ruficauda Hayward, 1932
Subgenus Protelbella O. Mielke, 1995; TS: alburna Mabille, 1891
Genus Parelbella O. Mielke, 1995; TS: polyzona Latreille, 1824
Subgenus Pseudocroniades O. Mielke, 1995; new status; TS: machaon Westwood, 1852
Subgenus Parelbella O. Mielke, 1995; TS: polyzona Latreille, 1824
Genus Microceris E. Watson, 1893; TS: variicolor Ménétriés, 1855
Subgenus Merobella Grishin, new subgenus; TS: merops E. Bell, 1934
Subgenus Blubella Grishin, new subgenus; TS: patroclus Plötz, 1879
Subgenus Apatiella Grishin, new subgenus; TS: iphinous Latreille, [1824]
Subgenus Hegesippe Evans, 1951; new status; TS: hegesippe Mabille \& Boullet, 1908
Subgenus Microceris E. Watson, 1893; TS: variicolor Ménétriés, 1855
=Elbella Evans, 1951; new synonym; TS: scylla Ménétriés, 1855
Tribe Oxynetrini Mielke, 2001
Genus Oxynetra C. Felder \& R. Felder, 1862; TS: semihyalina C. Felder \& R. Felder, 1862
Subgenus Olafia Nemésio, 2005; new status; TS: roscius Hopffer, 1874
Subgenus Dis Mabille, 1889; new status; TS: =annulatus Mabille 1889 (hopfferi Staudinger, 1888)
Subgenus Oxynetra C. Felder \& R. Felder, 1862; TS: semihyalina C. Felder \& R. Felder, 1862

T3. Treatment with broader genera: diverged about 15 Mya.

Subfamily Pyrrhopyginae Mabille, 1877
Tribe Azonaxini Grishin, new tribe
Genus Azonax Godman \& Salvin, 1893; TS: typhaon Hewitson, 1877
Tribe Zoniini Mielke, 2001
Genus Zonia Evans, 1951; TS: zonia Evans, 1951
Tribe Passovini Mielke, 2001
Genus Myscelus Hübner, [1819]; TS: nobilis Cramer, [1777]
Subgenus Granila Mabille, 1903; TS: paseas Hewitson, 1857
Subgenus Aspitha Evans, 1951; aspitha Hewitson, [1866]
Subgenus Myscelus Hübner, [1819]; TS: nobilis Cramer, [1777] (related to Granila and Aspitha)
Subgenus Agara Mabille \& Boullet, 1908; TS: pardalina C. Felder \& R. Felder, 1867 (related to Passova)
Subgenus Passova Evans, 1951; TS: passova Hewitson, [1866]
Tribe Pyrrhopygini Mabille, 1877
Genus Pyrrhopyge Hübner, [1819]; TS: bixae Linnaeus, 1758
Subgenus Pyrrhopyge Hübner, [1819]; TS: bixae Linnaeus, 1758
=Tamyris Swainson, 1821; TS: =zeleucus Fabricius (phidias Linnaeus, 1758)
=Pachyrhopala Wallengren, 1858; TS: phidias Linnaeus, 1758
Subgenus Gunayan O. Mielke, 2002; TS: rhacia Hewitson, 1875
Subgenus Yanguna E. Watson, 1893; TS: spatiosa Hewitson, 1870
Genus Apyrrothrix Lindsey, 1921; TS: araxes Hewitson, 1867
Subgenus Apyrrothrix Lindsey, 1921; TS: araxes Hewitson, 1867
Subgenus Melanopyge O. Mielke, 2002; TS: maculosa Hewitson, 1866
=Cyanopyge O. Mielke, 2002; TS: sangaris Skinner, 1921
Subgenus Chalypyge O. Mielke, 2002; TS: chalybea Scudder, 1872
Subgenus Aesculapyge Grishin, new subgenus; TS: aesculapus Staudinger, 1876
Subgenus Creonpyge O. Mielke, 2002; TS: creon Druce, 1874
Subgenus Jonaspyge O. Mielke, 2002; TS: jonas C. \& R. Felder, 1859
Genus Mimoniades Hübner, 1823; TS: ocyalus Hübner, 1823
Subgenus Ardaris E. Watson, 1893; TS: eximia Hewitson, 1871
=Mimardaris O. Mielke, 2002; TS: sela Hewitson, 1866
Subgenus Sarbia E. Watson, 1893; TS: xanthippe Latreille, [1824]
=Metardaris Mabille, 1903; TS: cosinga Hewitson, 1874
Subgenus Sarbiena Grishin, new subgenus; TS: catomelaena Mabille \& Boullet, 1908
Subgenus Santea Grishin, new subgenus; TS: antias C. Felder \& R. Felder, 1859
Subgenus Mysarbia O. Mielke, 2002; TS: sejanus Hopffer, 1874
Subgenus Mysoria E. Watson, 1893; TS: =¥acastus Cramer, [1775] (barcastus Sepp, [1851])
Subgenus Amysoria O. Mielke, 2002; TS: galgala Hewitson, [1866]
Subgenus Amenis E. Watson, 1893; TS: pionia Hewitson, 1857
Subgenus Mahotis Watson, 1893; TS: nurscia Swainson, 1821
Subgenus Mimoniades Hübner, 1823; TS: ocyalus Hübner, 1823
Subgenus Mimadia Grishin, new subgenus; TS: fallax Mabille, 1878
Subgenus Jember Grishin, new subgenus; TS: scomber H. Druce, 1908
Subgenus Jemadia E. Watson, 1893; TS: hospita Butler, 1877
Subgenus Jematus Grishin, new subgenus; TS: gnetus Fabricius, 1781
Subgenus Jemasonia Grishin, new subgenus; TS: hewitsonii Mabille, 1878
Subgenus Nosphistia Mabille \& Boullet, 1908; TS: =perplexus Mabille, 1878 (zonara Hewitson, [1866])
Genus Microceris E. Watson, 1893; TS: variicolor Ménétriés, 1855
Subgenus Croniades Mabille, 1903; TS: pieria Hewitson, 1857

Subgenus Ochropyge O. Mielke, 2002; TS: ruficauda Hayward, 1932
Subgenus Protelbella O. Mielke, 1995; TS: alburna Mabille, 1891
Subgenus Pseudocroniades O. Mielke, 1995; TS: machaon Westwood, 1852
Subgenus Parelbella O. Mielke, 1995; TS: polyzona Latreille, 1824
Subgenus Merobella Grishin, new subgenus; TS: merops E. Bell, 1934
Subgenus Blubella Grishin, new subgenus; TS: patroclus Plötz, 1879
Subgenus Apatiella Grishin, new subgenus; TS: iphinous Latreille, [1824]
Subgenus Hegesippe Evans, 1951; TS: hegesippe Mabille \& Boullet, 1908
Subgenus Microceris E. Watson, 1893; TS: variicolor Ménétriés, 1855
=Elbella Evans, 1951; TS: scylla Ménétriés, 1855
Tribe Oxynetrini Mielke, 2001
Genus Oxynetra C. Felder \& R. Felder, 1862; TS: semihyalina C. Felder \& R. Felder, 1862
Subgenus Olafia Nemésio, 2005; TS: roscius Hopffer, 1874
Subgenus Dis Mabille, 1889; TS: =annulatus Mabille 1889 (hopfferi Staudinger, 1888)
Subgenus Oxynetra C. Felder \& R. Felder, 1862; TS: semihyalina C. Felder \& R. Felder, 1862

T4. Treatment with narrower genera: diverged about 5 Mya.

Subfamily Pyrrhopyginae Mabille, 1877
Tribe Azonaxini Grishin, new tribe
Genus Azonax Godman \& Salvin, 1893; TS: typhaon Hewitson, 1877
Tribe Zoniini Mielke, 2001
Genus Zonia Evans, 1951; TS: zonia Evans, 1951
Tribe Passovini Mielke, 2001
Genus Granila Mabille, 1903; TS: paseas Hewitson, 1857
Genus Aspitha Evans, 1951; aspitha Hewitson, [1866]
Genus Myscelus Hübner, [1819]; TS: nobilis Cramer, [1777]
Genus Agara Mabille \& Boullet, 1908; TS: pardalina C. Felder \& R. Felder, 1867
Genus Passova Evans, 1951; TS: passova Hewitson, [1866]
Tribe Pyrrhopygini Mabille, 1877
Subtribe Pyrrhopygina Mabille, 1877
Genus Pyrrhopyge Hübner, [1819]; TS: bixae Linnaeus, 1758
=Tamyris Swainson, 1821; TS: =zeleucus Fabricius (phidias Linnaeus, 1758)
=Pachyrhopala Wallengren, 1858; TS: phidias Linnaeus, 1758
Genus Gunayan O. Mielke, 2002; TS: rhacia Hewitson, 1875
Genus Yanguna E. Watson, 1893; TS: spatiosa Hewitson, 1870

Subtribe Apyrrothrixina Grishin, new subtribe
Genus Apyrrothrix Lindsey, 1921; TS: araxes Hewitson, 1867
Genus Melanopyge O. Mielke, 2002; TS: maculosa Hewitson, 1866
=Cyanopyge O. Mielke, 2002; TS: sangaris Skinner, 1921
Genus Chalypyge O. Mielke, 2002; TS: chalybea Scudder, 1872
Genus Aesculapyge Grishin; TS: aesculapus Staudinger, 1876
Genus Creonpyge O. Mielke, 2002; TS: creon Druce, 1874
Genus Jonaspyge O. Mielke, 2002; TS: jonas C. \& R. Felder, 1859

Subtribe Mimoniadina Grishin, new subtribe
Genus Ardaris E. Watson, 1893; TS: eximia Hewitson, 1871
=Mimardaris O. Mielke, 2002; TS: sela Hewitson, 1866
Genus Sarbia E. Watson, 1893; TS: xanthippe Latreille, [1824] =Metardaris Mabille, 1903; TS: cosinga Hewitson, 1874
Genus Sarbiena Grishin; TS: catomelaena Mabille \& Boullet, 1908
Genus Santea Grishin; TS: antias C. Felder \& R. Felder, 1859
Genus Mysarbia O. Mielke, 2002; TS: sejanus Hopffer, 1874
Genus Mysoria E. Watson, 1893; TS: =¥acastus Cramer, [1775] (barcastus Sepp, [1851])
Genus Amysoria O. Mielke, 2002; TS: galgala Hewitson, [1866]
Genus Amenis E. Watson, 1893; TS: pionia Hewitson, 1857
Genus Mahotis Watson, 1893; TS: nurscia Swainson, 1821
Genus Mimoniades Hübner, 1823; TS: ocyalus Hübner, 1823
Genus Jember Grishin; TS: scomber H. Druce, 1908
Genus Mimadia Grishin; TS: fallax Mabille, 1878
Genus Jemadia E. Watson, 1893; TS: hospita Butler, 1877
Genus Jematus Grishin; TS: gnetus Fabricius, 1781
Genus Jemasonia Grishin; TS: hewitsonii Mabille, 1878
Genus Nosphistia Mabille \& Boullet, 1908; TS: =perplexus Mabille, 1878 (zonara Hewitson, [1866])

Subtribe Microcerisina Grishin, new subtribe
Genus Croniades Mabille, 1903; TS: pieria Hewitson, 1857
Genus Ochropyge O. Mielke, 2002; TS: ruficauda Hayward, 1932
Genus Protelbella O. Mielke, 1995; TS: alburna Mabille, 1891
Genus Pseudocroniades O. Mielke, 1995; TS: machaon Westwood, 1852
Genus Parelbella O. Mielke, 1995; TS: polyzona Latreille, 1824
Genus Merobella Grishin; TS: merops E. Bell, 1934
Genus Blubella Grishin; TS: patroclus Plötz, 1879
Genus Apatiella Grishin; TS: iphinous Latreille, [1824]
Genus Hegesippe Evans, 1951; TS: hegesippe Mabille \& Boullet, 1908
Genus Microceris E. Watson, 1893; TS: variicolor Ménétriés, 1855
=Elbella Evans, 1951; TS: scylla Ménétriés, 1855
Tribe Oxynetrini Mielke, 2001
Genus Olafia Nemésio, 2005; TS: roscius Hopffer, 1874
Genus Dis Mabille, 1889; TS: =annulatus Mabille 1889 (hopfferi Staudinger, 1888)
Genus Oxynetra C. Felder \& R. Felder, 1862; TS: semihyalina C. Felder \& R. Felder, 1862

T5. Expanded morphological diagnoses for the new taxa described in Table 1 of the main text

Page limits on the main text forced us to keep diagnoses minimal. In Table 1 of the main text, the words for diagnostic DNA characters were given as abbreviations. While such descriptions were sufficient to define these taxa, morphological characters are desirable in addition to DNA. To provide morphological definition of each taxon within minimal space, the Evans (1951) key was referenced. When space allowed, the most prominent synapomorphic character of genitalia was specified. Here, morphological characters are spelled out in more detail, as well as some other additional information.

Tribe Azonaxini Grishin, trib. n.

Type genus: Azonax Godman \& Salvin, 1893. ZooBank registration: 6E3B9F8E-91C0-45BD-AF1F-78C5F2769392
Diagnosis: Differs from other Pyrrhopyginae by a combination of divided, U-shaped uncus with I-shaped gnathos (a possible synapomorphy), and with antennal club bent to form apiculus at its thickest part, not before it. Valva longer than wide, harpe shorter than half of valva length, with dorsal tooth. In contrast, while uncus divided in its sister tribe Zoniini, gnathos U-shaped, and Passovini possess undivided uncus and lack gnathos. Forewings with apex more pointed than in all other Pyrrhopyginae but Zoniini, from which it differs by truncate and excavate forewing apex (=falcate) and spotted, not striped, wing pattern.

Genera included: Azonax Godman \& Salvin, 1893.
Parent Taxon: Subfamily Pyrrhopyginae Mabille, 1877.

Subtribe Apyrrothrixina Grishin, subtr. n.

Type genus: Apyrrothrix Lindsey, 1921. ZooBank registration: 8EEE17EE-CCD5-4A4A-9105-0F81E498C6FD
Diagnosis: Differs from its relatives by the following combination of characters. Antennal club bent to form apiculus before its thickest part, apiculus gradually tapering to a sharp point, discocellular vein on hindwing concave towards outer margin, veins $\mathrm{CuA}_{1} \& \mathrm{M}_{3}$ and $\mathrm{M}_{1} \& R S$ wide apart at their origins, end of abdomen brown (if red-orange, then wings unspotted and hindwing crenulate at the margin and fringes frequently white), sides of abdomen without red stripes at segments (if orange-striped, then stripes extend on abdomen below and bases of both wings orange below), if head with white or yellow lines and dots, then hindwing crenulate, if head unspotted, then fringes not white.

Genera included: Apyrrothrix Lindsey, 1921 (with subgenera: Melanopyge O. Mielke, 2002 [with junior subjective synonym Cyanopyge O. Mielke, 2002], Chalypyge O. Mielke, 2002, and Aesculapyge Grishin, subgen. n.), Creonpyge O. Mielke, 2002, and Jonaspyge O. Mielke, 2002.

Parent Taxon: Tribe Pyrrhopygini Mabille, 1877.

Subtribe Mimoniadina Grishin, subtr. n.
Type genus: Mimoniades Hübner, 1823. ZooBank registration: D71E4FF9-F89D-4BE1-ABB1-F86F08B98817
Diagnosis: Differs from its relatives by the following combination of characters. Antennal club bent to form apiculus before its thickest part, in most species apiculus tapering only near its blunt or rounded tip, hindwing margin not crenulate. If apiculus gradually tapering to a point, then hindwing veins $\mathrm{CuA}_{1} \& \mathrm{M}_{3}$ close to each other at their origins and forewing vein M_{3} in the middle between veins M_{2} and CuA_{1} at their origins (not between veins M_{1} and CuA_{1}).

Genera included: Ardaris E. Watson, 1893 (with junior subjective synonym Mimardaris O. Mielke, 2002), Mysoria E. Watson, 1893 (with subgenera: Sarbia E. Watson, 1893 [with junior subjective synonym Metardaris Mabille, 1903], Sarbiena Grishin, subgen. n., Santea Grishin, subgen. n., Mysarbia O. Mielke, 2002, and Amysoria O. Mielke, 2002), Mimoniades Hübner, 1823 (with subgenera: Amenis E. Watson, 1893, Mahotis

Watson, 1893, and Mimadia Grishin, subgen. n.), Jemadia E. Watson, 1893 (with subgenera: Jember Grishin, subgen. n., Jematus Grishin, subgen. n., and Jemasonia Grishin, subgen. n.), and Nosphistia Mabille \& Boullet, 1908.

Parent Taxon: Tribe Pyrrhopygini Mabille, 1877.

Subtribe Microcerisina Grishin, subtr. n.

Type genus: Microceris E. Watson, 1893. ZooBank registration: 2D1DB769-9A47-4BD1-A66D-9CD937825113
Diagnosis: Defined as "Elbella complex" of Mielke (1995) after addition of Ochropyge (and placing it as a subgenus of Protelbella) and distinguished from its relatives by a likely synapomorphy: lateral lobe at distal end of aedeagus, apparently to support vesica.

Genera included: Croniades Mabille, 1903, Protelbella O. Mielke, 1995 (with subgenus Ochropyge O. Mielke, 2002), Parelbella O. Mielke, 1995 (with subgenus Pseudocroniades O. Mielke, 1995), and Microceris E. Watson, 1893 (with junior subjective synonym Elbella Evans, 1951 and subgenera: Merobella Grishin, subgen. n., Blubella Grishin, subgen. n., Apatiella Grishin, subgen. n., and Hegesippe Evans, 1951).
Parent Taxon: Tribe Pyrrhopygini Mabille, 1877.

Subgenus Aesculapyge Grishin, subgen. n.

Type species: Pyrrhopyge aesculapus Staudinger, 1876. ZooBank regist.: D6952953-3744-402D-9A01-9D88246DAB47
Diagnosis: Distinguished from its relatives by shiny metallic-blue wings with somewhat crenulate hindwing margins, no orange on body, and orange hindwing fringes, black on forewing. Harpe elongated, narrower than in relatives, smoothly curved dorsad, C-shaped, rounded at the tip, with a tooth at it base.

Species included: Pyrrhopyge aesculapus Staudinger, 1876.
Parent Taxon: Genus Apyrrothrix Lindsey, 1921.

Subgenus Sarbiena Grishin, subgen. n.

Type species: Sarbia catomelaena Mabille \& Boullet, 1908. ZooBank reg.: D76F2A12-DB82-46E3-A06E-3EA038A0B0E0
Diagnosis: Distinguished from its relatives by hind tibiae lacking upper pair of spurs, black tegulae, narrow yellow bands with irregular margins particularly on hindwing, hindwing below with a basal yellow spot in cell C$\mathrm{Sc}+\mathrm{R}_{1}$, palpi terminally orange-red. Uncus broad, lacks dorsally directed spike, arms long, distant from each other.

Species included: Sarbia catomelaena Mabille \& Boullet, 1908.
Parent Taxon: Genus Mysoria E. Watson, 1893.

Subgenus Santea Grishin, subgen. n.

Type species: Pyrrhopyga [sic] antias C. \& R. Felder, 1859. ZooBank regist.: 86F43126-2F5D-491C-A6A5-C0CCC584E278
Diagnosis: Distinguished from its relatives by hind tibiae lacking upper pair of spurs, black tegulae, narrow yellow bands with very regular margins particularly on hindwing, hindwing below without basal yellow spot, palpi terminally black. Uncus narrow, with a spike directed dorsad, arms short, near each other.

Species included: Pyrrhopyga [sic] antias C. \& R. Felder, 1859.
Parent Taxon: Genus Mysoria E. Watson, 1893.

Type species: Pyrrhopyga[sic] fallax Mabille, 1878. ZooBank registration: D9680514-89C4-42B8-BA11-F36A628652C8
Diagnosis: Distinguished from its relatives by long central blue band on hindwing from vein Rs to 1A+2A, welldeveloped submarginal blue band, lacking basal white streaks (just white area), submarginal forewing blue band touching hyaline spots in cells $M_{3}-\mathrm{CuA}_{1}$ and $\mathrm{M}_{1}-\mathrm{M}_{2}$, and white-lined patagia. Genitalic valvae asymmetrical, both harpes rounded, right harpe with more concave dorsal margin than left harpe. Formerly and incorrectly placed in Jemadia due to similarities in wing patterns: Jemadia species possess symmetrical genitalia.

Species included: Pyrrhopyga [sic] fallax Mabille, 1878.
Parent Taxon: Genus Mimoniades Hübner, 1823.

Subgenus Jematus Grishin, subgen. n.

Type species: Papilio gnetus Fabricius, 1781. ZooBank registration: 8CE439F0-2FC8-4D67-BA9A-CB90CB47B447
Diagnosis: Distinguished from its relatives by long central blue band on hindwing from vein Rs to 1A+2A, welldeveloped submarginal blue band, lacking basal white streaks (just white area), submarginal forewing blue band passing distad of hyaline spots in cells $M_{3}-C u A_{1}$ and $M_{1}-M_{2}$, not touching them, and white-lined patagia. Genitalic harpe triangular, with basal process and small tooth separated from it by narrow indentation, ampulla straight, no tooth.

Species included: Papilio gnetus Fabricius, 1781 and Jemadia brevipennis Schaus, 1902.
Parent Taxon: Genus Jemadia E. Watson, 1893.

Subgenus Jember Grishin, subgen. n.

Type species: Jemadia scomber Druce, 1908. ZooBank registration: BD5E8AE8-1F65-4580-8288-2507928612D4
Diagnosis: Distinguished from its relatives by the absence of central blue band on hindwing above, hindwing only with submarginal blue band (sometimes close to wing center) and basal streaks and white areas, submarginal forewing blue band passing distad of hyaline spots in cells $M_{3}-\operatorname{CuA}_{1}$ and $M_{1}-M_{2}$, not touching them. Genitalic harpe bent dorsad, not tapering, no tooth at its base, ampulla with a tooth.

Species included: Jemadia scomber Druce, 1908 and Pyrrhopyga [sic] menechmus Mabille, 1878.
Parent Taxon: Genus Jemadia E. Watson, 1893.

Subgenus Jemasonia Grishin, subgen. n.

Type species: Pyrrhopyga [sic] hewitsonii Mabille, 1878. ZooBank regist.: 06E23C76-CCCF-4DBF-9129-6207C8315FCD
Diagnosis: Distinguished from its relatives by a short discal blue band on hindwing above, from vein Rs to vein CuA_{1}, caudad of two whitish basal streaks (giving appearance of 3 rays on hindwing), submarginal forewing blue band touching hyaline spots in cells $M_{3}-C u A_{1}$ and $M_{1}-M_{2}$, and white-spotted patagia. Genitalic harpe terminally upturned, nearly trapezoidal, with serrated dorsal margin, ampulla rounded, no tooth.

Species included: Pyrrhopyga [sic] hewitsonii Mabille, 1878, Jemadia hewitsonii ovid Evans, 1951, Jemadia suekentonmiller Grishin, 2014, Jemadia hewitsonii pater Evans, 1951, Jemadia ortizi Orellana, [2010], and Jemadia albescens Röber, 1925.

Parent Taxon: Genus Jemadia E. Watson, 1893.

Type species: Jemadia merops E. Bell, 1934. ZooBank registration: 227201CF-9B7E-4413-9624-A976A5045620
Diagnosis: Characterized by a terminally bulbous, spoon-shaped harpe and elongated processes of tegumen, blue-striped and white-spotted wings.

Species included: Jemadia merops E. Bell, 1934.
Parent Taxon: Genus Microceris E. Watson, 1893.

Subgenus Blubella Grishin, subgen. n.
Type species: Pyrrhopyga [sic] patroclus Plötz, 1879. ZooBank registration: 373B8338-3A00-418E-A196-FF6312C88C2C
Diagnosis: Distinguished from its relatives by elongated and tapered genitalic harpe (in some species ventrally indented, C-shaped, but not thin and curved ventrad) with small projections at its base near ampulla, most species with blue-striped and white-spotted wings.

Species included: Pyrrhopyga [sic] patroclus Plötz, 1879, Pyrrhopyga [sic] patrobas Hewitson, 1857, Elbella patrobas blanda Evans, 1951, Elbella azeta lustra Evans, 1951, Pyrrhopyga [sic] azeta Hewitson, 1866, Jemadia miodesmiata Röber, 1925, Elbella madeira Mielke, 1995, Elbella bicuspis de Jong, 1983, Elbella rondonia Mielke, 1995, Elbella etna Evans, 1951, and Pyrrhopyge adonis Bell, 1931.

Parent Taxon: Genus Microceris E. Watson, 1893.

Subgenus Apatiella Grishin, subgen. n.

Type species: Hesperia iphinous Latreille, [1924]. ZooBank registration: 62010BD5-793C-429F-90DB-AA702B3C91EB
Diagnosis: Distinguished from its relatives by a terminally forked genitalic harpe, nearly T-shaped, and short and rounded processes of tegumen. Harpe somewhat similar in Parelbella, but more robust, and tegumen processes elongated or absent. Wings black or yellow-spotted.

Species included: Hesperia iphinous Latreille, [1924] and Pyrrhopyge mariae Bell, 1931.
Parent Taxon: Genus Microceris E. Watson, 1893.

References:

Evans WH. 1951. A catalogue of the American Hesperiidae indicating the classification and nomenclature adopted in the British Museum (Natural History). Part I. Introduction and Group A Pyrrhopyginae. London, British Museum (Natural History). x+92 pp., pls. 1-9.

Mielke OHH. 1995. Revisão de Elbella Evans e gêneros afins (Lepidoptera, Hesperiidae, Pyrrhopyginae). Revista brasileira de Zoologia 11(3), 395-586.

T6. Dated genomic tree of Pyrrhopyginae and tribes

A genomic tree constructed on the concatenated alignment of protein-coding genes was dated and is shown in Fig. 1 (main text). Most internal nodes received 100% bootstrap support and represent highly reliable groups. In a few instances the order of branching is not confident due to short internal nodes. E.g., while Pyrrhopyge, Gunayan and Yanguna form a strongly supported monophyletic group, it is unclear whether Yanguna, Gunayan or Pyrrhopyge is the sister to the remaining two taxa of this group ('bootstrap' 0.48).

Major branches near the base of the tree (main text Fig. 1) correspond to Passovini, Pyrrhopygini and Oxynetrini. Interestingly, Azonax is not placed in Passovini, but instead is confidently grouped with Zonia. Both of these genera diverged soon after their divergence from Passovini. Therefore, we agree that Zonia is best classified in a monotypic tribe Zoniini. Azonax is equidistant from other taxa, and a new monotypic tribe Azonaxini is proposed for it here (main text Tab. 1). While there is some superficial wing pattern and color resemblance between Azonax and Myscelus as suggested previously (Evans 1951), a more careful inspection of morphology agrees with the genomic analysis. E.g., uncus in male genitalia is undivided in Passovini (including Myscelus), but is divided in both Azonax and Zonia. Forewing is similarly pointed at the apex in both Azonax and Zonia but is more rounded in Passovini. Gnatos is U-shaped in Zonia, but is I-shaped in Azonax and is absent in Passovini.

Oxynetrini is sister to Pyrrhopygini as suggested by Mielke's morphological analysis (Mielke 2001), but Zoniini + Azonaxini clade is sister to Passovini rather than to Oxynetrini + Pyrrhopygini. This first bifurcation of Pyrrhopyginae into the clades Zoniini + Azonaxini + Passovini and Oxynetrini + Pyrrhopygini makes morphological sense. The former clade is characterized by typically narrower genitalic valva with smaller and unmodified, simpler harpe. The harpe is expanded and frequently armed with projections in the latter clade.

T7. Pyrrhopyginae genera and inconsistencies with the current classification

Overall, we observe excellent agreement between our phylogenetic tree (main text Fig. 1) and the current classification of Pyrrhopyginae (Mielke 2005), thus largely confirming it. However, we found several polyphyletic and paraphyletic genera that we refine to ensure monophyly of all Pyrrhopyginae genera. These results were consistent in all different trees we have obtained (Figs. S2-S7).

Myscelus is polyphyletic. Strongly supported by 100% bootstrap, some species currently placed in Myscelus are grouped with Aspitha + Granila, while others are closely grouped with Passova. To restore monophyly, we resurrect Agara from synonymy, and transfer relatives of Passova into that genus, accordingly with its type species.

Jonaspyge is polyphyletic. Although only three species were placed in Jonaspyge, two of which are very closely related sisters, the third species, Jonaspyge aesculapus, does not group with them and is a sister to four other genera that form a monophyletic group (Apyrrothrix, Melanopyge, Cyanopyge and Chalypyge). These genera and "Jonaspyge" aesculapus diverged about 10 Mya and are close relatives. Therefore, we consider them as subgenera of Apyrrothrix, and a new subgenus Aesculapyge is named here for aesculapus (main text Table 1). Interestingly, despite the marked differences in color patterns, Cyanopyge closely clusters with Melanopyge and they diverged about the same time as Chalypyge chalybea has split from Chalypyge hygieia.

Sarbia is polyphyletic. We find that an unusually patterned Metardaris cosinga is a close relative of Sarbia xanthippe, which, in turn, does not group with Sarbia catomelaena. Another monotypic genus Mysarbia is clustered closely with the species of the former two genera. To resolve the polyphyly it is best to consider species assigned to these three genera congeneric rather than to split Sarbia.

Jemadia is polyphyletic. Jemadia species are unified by a prominent sinimustvalge blue-black-white wing pattern shared by the large mimicry complex that includes Phocides, a genus from a different subfamily of skippers. This superficial similarity masks genetic divergence. Genitalia of these species differ and define 5 species groups. Four of them do not have names and are described here as subgenera (main text Table 1). One
of the groups, Jemadia fallax, the only Jemadia with asymmetric valvae, is not monophyletic with others. It confidently groups with Mimoniades and Amenis, also characterized by asymmetric valvae. Therefore, J. fallax does not belong to Jemadia and is transferred to Mimoniades.

Mimoniades is paraphyletic. Interestingly, Mimoniades_ocyalus, which is the type species of Mimoniades, is a confident (100% bootstrap) sister to a group that in addition to other Mimoniades species includes Amenis. Thus, either Amenis should be considered a part of Mimoniades, or Mimoniades becomes monotypic, with other species in this genus falling in the genus Mahotis (type species Mahotis nurscia). Notably, M. ocyalus (main text Fig. 1, image 28) is quite similar in wing patterns to Elbella iphinous (main text Fig. 2k), a species to which it is not closely related.

Elbella is paraphyletic. Unexpectedly, Microceris variicolor, a uniquely patterned skipper currently placed in its own monotypic genus, branches deeply inside Elbella species and is closely related to the type species of Elbella, E. scylla. This result is very confident and even COI barcodes group M. variicolor with E. scylla and its closest allies: a 3.8% barcode difference, while different genera usually show more than 6% barcode difference. As a result, Elbella becomes a synonym of Microceris. However, we see meaningful subdivisions within the new Microceris (former Elbella + Microceris) that are consistent with morphological similarities, and three new subgenera are named (main text Table 1).

Ardaris and Mimardaris are closely related. In our trees, Mimardaris is paraphyletic with respect to Mimardaris aerata, a uniquely patterned, shiny metallic skipper without typical Mimardaris stripes but with genitalia similar to Mimardaris. However, statistical support for the paraphyly is not strong (65\% bootstrap in mitogenomic tree). Nevertheless, Mimardaris and Ardaris are close relatives and inclusion of Mimardaris species in Ardaris renders the genus monophyletic.

Monotypic genera and their uniqueness. Out of 35 currently recognized Pyrrhopyginae genera, 16 (45%) are monotypic. To understand the relationships of monotypic genera with others, each one was individually analyzed. We find that 2 genera (Zonia and Azonax) do not have any close relatives and diverged more than 25 Mya. These two genera are truly unique and are placed in two monotypic tribes. Thus, they cannot be combined with any other genera. However, COI barcode analysis suggests that subspecies of Zonia are welldifferentiated and are more likely to be full species. Thus, Zonia may no longer be monotypic.

Conversely, monotypic Cyanopyge, Ochropyge and Pseudocroniades are close sisters of Melanopyge, Protelbella (monotypic) and Parelbella respectively, and are better placed in synonymy. Sarbia is polyphyletic and combining it with closely related monotypic Metardaris and Mysarbia corrects the problem. Elbella is paraphyletic with respect to its close relative monotypic Microceris, and the two should be combined. The fate of the remaining 7 monotypic genera depends on criteria to define a genus. Taking Elbella, Jemadia (excluding J. fallax) and Pyrrhopyge (sensu stricto) as a standard for divergence within a genus, we cut the genomic tree around 10 Mya to define the genera. As a result, Granila, Crenopyge, and Nosphistia are kept as monotypic, but Mysarbia, Amysoria, Olafia and Apyrrothrix are combined with other genera (see SI Appendix). The cut through the tree suggests that Amysoria, Mysarbia, Metardaris and Sarbia should be placed in Mysoria, and Amenis in Mimoniades.

References:

Evans WH. 1951. A catalogue of the American Hesperiidae indicating the classification and nomenclature adopted in the British Museum (Natural History). Part I. Introduction and Group A Pyrrhopyginae. London, British Museum (Natural History). x + 92 pp., pls. 1-9.

Mielke OHH. 2001 Estudo cladístico e descrições de tribos em Pyrrhopyginae (Lepidoptera, Hesperiidae). Revista brasileira de Zoologia 18(3), 897-905.

Mielke OHH. 2005 Catalogue of the American Hesperioidea: Hesperiidae (Lepidoptera). Curitiba, Paraná, Brazil, Sociedade Brasileira de Zoologia; xiii + 1536 pp.

T8. Justification for changes to Pyrrhopyginae genera and species

At least one representative of every Pyrrhopyginae genus was sampled for DNA and whole genomic shotgun reads were obtained. The representative was either the type species of the genus, or its close relative as suggested by COI DNA barcodes and morphology. Genera were delineated by the cut through the timed genome-scale phylogenetic tree at about 10 Mya (Fig. 1 in the main text). Every branch crossed by the cut was defined as a genus, and the oldest name available for its species was applied to it. Composition of each genus was determined by monophyly in the nuclear and mitochondrial genome trees (Figs. 1, S2). As a result, a number of species were placed in a genus different from where they were classified prior to this study (see Figs. 1, S2, Table 1 and Taxonomic Appendix). The most notable are the changes of status from genus to subgenus for a number of previously used genera, due to their more recent origin. Subgenera were defined in some genera as lineages from approximately 5 million years ago, but some younger lineages that were given genus status prior to this study due their distinct appearance (e.g. Sarbia and Amenis) are treated as subgenera rather than synonyms. Those 5 Mya lineages that did not have a name where named as new subgenera.

The following taxa are treated as species instead of subspecies.
Agara michaeli (Nicolay, 1975); new status, new combination
Proposed as a subspecies of Agara [then Myscelus] assaricus (Cramer, 1779) by Nicolay (1975: 185), who described wing pattern differences from assaricus. COI barcodes of assaricus and michaeli differ by 1.5% (10 differences). Type series in AMNH and USNM inspected and holotype photographed by NVG. Genome of michaeli holotype is sequenced in this work. Placed in the genus Agara Mabille \& Boullet, 1908, with which Myscelus Hübner, [1819] is not monophyletic (Figs. 1, S2).

Pyrrhopyge guianae E. Bell, 1932; reinstated status
Treated as a subspecies of Pyrrhopyge phidias (Linnaeus, 1758) by Evans (1953: 233, 1951: 10) who noted genitalic differences in A.1.2(i, corrected per 1953: 233). COI barcodes of phidias and guianae holotype differ by 4.4% (29 differences) and guianae is not monophyletic with phidias in the genomic tree (Fig. 1). Holotype in AMNH photographed by NVG. Genome of guianae holotype is sequenced in this work.

Apyrrothrix hygieia (C. Felder \& R. Felder, 1867); reinstated status, new combination
Treated as a subspecies of Apyrrothrix [then Pyrrhopyge] hygieia (C. Felder \& R. Felder, 1867) by Evans (1951: 32,33), who made a mistake in the date of publication listed as 1866 instead of 1867 (should be a subspecies of Apyrrothrix zereda (Hewitson, 1866)). In A.1.47, Evans stated consistent body color, wing pattern and genitalia differences between these taxa, including the color of coxae, palpi and collar that typically correspond to differences between species. COI barcodes of zereda and hygieia differ by 5.8% (38 differences). Types of these taxa in BMNH inspected and photographed by NVG. Placed in the genus Apyrrothrix Lindsey, 1921, of which Chalypyge O. Mielke, 2002 is a subgenus (Figs. 1, S2).

Abbreviations:

AMNH: American Museum of Natural History, New York, New York, United States
BMNH: The Natural History Museum [formerly British Museum (Natural History)], London, United Kingdom

References:

Evans WH. 1951. A catalogue of the American Hesperiidae indicating the classification and nomenclature adopted in the British Museum (Natural History). Part I. Introduction and Group A Pyrrhopyginae. London, British Museum (Natural History). x + 92 pp., pls. 1-9.

Evans WH. 1953. A catalogue of the American Hesperiidae indicating the classification and nomenclature adopted in the British Museum (Natural History). Part III (Groups E, F, G) Pyrginae. Section 2. London, British Museum (Natural History). v + 246 pp., pls. 26-53.

Nicolay SS. [1975]. Illustrations and descriptions of some Pyrrhopyginae from Panama (Hesperiidae). Journal of Research on the Lepidoptera 13(3): 181-190, 9 figs.

T9. Taxonomic discussion

What is a genus?

As with tribes and subfamilies, what constitutes a genus remains undefined. Talavera et al. (2012) suggested that a cut of phylogenetic tree at a certain level that maximizes agreement with the currently accepted genera in a group of organisms may offer some objectivity. Such a cut will make genera consistent across the higher taxon in question and such genera will correspond to species that lived at a certain time in the past and have not gone extinct. We adopted this logic and attempted to find such a cut. However, we were surprised to find that the time-points to define currently used genera are rather inconsistent. For instance, Jemadia diverged about 10 Mya and the two species placed in different genera: Mysoria [formerly Metardaris] cosinga diverged from Mysoria [formerly Sarbia] xanthippe about 2 Mya. While we may doubt absolute dates for these divergences, the $5 x$ ratio between them is more confident.

Researchers agree that genera should correspond to major evolutionary groupings above species and below a subtribe. "Major" would mean groups separated by relatively longer branches and higher statistical support. Conversely, within the group, close to the time the group split into subgroups, statistical support could be lower, indicating rapid radiation. In the tribe Pyrrhopygini, there are 4 major groups (Fig. 1). Divergence within these 4 groups is quite consistent and dates to about 15 Mya . The groups are supported by some of the longest branches in the tree. Here, we call them subtribes. Three of these subtribes are new, described here in Table 1.

However, these groups could be taken as genera. These would be rather broadly defined genera compared to current classification and would "sink" many currently used genera. Such a "lumper" treatment is listed in the SI Appendix. It groups species into genera that are broader than any genus currently used. Current treatment would be "splitters" treatment, and even though some genera, like Metardaris, diverged from others so recently that they clearly do not merit the status of a genus. On the other hand, some more diverse genera would need to be split and new genera need to be proposed. This "splitter" treatment corresponding to the divergence about 5 Mya is also given in SI Appendix. Attempting to find a middle ground between the two treatments, we can take those today's genera that are more diverse, and cut the tree about that level to see if the cut defines groups that may be considered major. Jemadia (excluding fallax) and Pyrrhopyge (sensu stricto) are such diverse genera, and cutting about that level indeed results in a meaningful classification (lime-colored cut in Fig. 1) that is adopted here (SI Appendix).

Which one of the three (broad, middle, or narrow) treatments is the best? It seems to be a matter of personal preference. Narrow approach results in many monotypic genera, which are not different from having a single name for a species, because they do not suggest any relatives. Therefore, such genera are of limited utility. Our phylogenetic tree strongly indicates that the broad genera (equal to the subtribes) are most meaningful in terms of standing out as truly prominent groups. However, we see the recent trend in the literature to split genera further rather than lump them. Therefore, although we like the broad treatment, it may not be readily accepted by researchers today. In addition to genera, we also offer subgeneric classification. Subgenera indicate evolutionary clusters below genus but above species. To emphasize these clusters, 10 new subgenera are described in Table 1.

Morphological divergence and genomic similarity.

Pyrrhopyginae are masters of disguise. Analysis of phenotypes defines a limited number of patterns that recur in different evolutionary groups: (1) black with fiery abdomen tip and frequently head, (2) sinimustvalge Jemadia present in many genera, (3) dark metallic green or blue with some red on wings, (4) brown with dark lines and white spots and black with yellow stripes. While we see these recurring patterns, we do not observe features combined. For instance, there is no red abdomen tip in sinimustvalge-patterned skippers. Sticking to limited number of patterns is likely mimetic, although the mechanisms of such mimicry are not yet well understood.

We also see that there could be pronounced intra-species variation of wing patterns. A common feature of such variation is the presence or absence of a white band across the wings. Several species such as Aspitha agenoria, Gunayan rubricollis, Microceris [formerly Elbella] iphinous, Microceris [formerly Elbella] luteizona,

Oxynetra [formerly Olafia] roscius display polymorphism with banded and non-banded forms. The well-known transition between sergius (black wings, broad white hindwing margin crossed by black veins), hyperici (bluishwhite spots on hindwing above, wide white at the base below), bixae (hindwing black above, narrower white below at the base) and phidias (wings solid black) forms of Pyrrhopyge recurring in many species suggests extreme plasticity of wing pattern in these skippers.

Finally, we note recurring divergence leading to unique wing patterns. Most prominent are Microceris variicolor and Protelbella [formerly Ochropyge] ruficauda which are so different from their closest relatives that these species were placed in monotypic genera before. In addition to wing patterns, these two species display rapid and profound divergence in genitalia that hindered their evolutionary closeness to their kin as revealed by genomic analysis.

References:

Talavera G, Lukhtanov VA, Pierce NE, Vila R. 2012 Establishing criteria for higher-level classification using molecular data: the systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae). Cladistics 29, 166192.

Methods

M1. Sample collection and genomic DNA extraction

We preserved different parts of the butterfly specimen for DNA extraction depending on the source and the condition of the sample. For freshly collected specimens, we removed the head of the specimen and preserve in alcohol for DNA extraction. If the head provided insufficient materials, we dissected the chest muscle. For old and dry samples from insect collections, we used either legs or a whole abdomen (dropped into lysis buffer for overnight incubation at $56^{\circ} \mathrm{C}$, and then transferred into $10 \% \mathrm{KOH}$ for genitalia dissection) to extract genomic DNA with Macherey-Nagel (MN) NucleoSpin ${ }^{\circledR}$ tissue kit following the manufacturer's protocol. Genomic DNA was eluted in a total volume of 30-50 μ l QIAGEN AE buffer, and the concentration of DNA was measured by Promega QuantiFluor ${ }^{\circledR}$ dsDNA System.

M2. Sequencing library preparation protocol

M2.1. Paired-end library preparation protocol

NEBNext ${ }^{\circledR}$ Ultra ${ }^{\text {TM }}$ II DNA Library Prep Kit for Illumina ${ }^{\circledR}$ was used for paired-end library preparation. Starting Material is 5-250 ng of fragmented DNA.

A. DNA Fragmentation

Depending on the genomic DNA quality (as determined by gel electrophoresis), some of the genomic DNAs were fragmented using a Covaris focused ultrasonicator S2 or S220 to 400 bp according to manufacturer's instructions, and then purified with 1.8 X AMPure XP beads. DNA samples from some old dry samples are already degraded with smears ranging from <50 bp to 500 bp did not go through fragmentation.

B. End Preparation

1. Mix the following components in a sterile nuclease-free tube.

End Prep Enzyme Mix	$1.5 \mu \mathrm{l}$
End Repair Reaction Buffer (10X)	$3.5 \mu \mathrm{l}$
Fragmented DNA	$25 \mu \mathrm{l}$

2. Place in a thermocycler, with the heated lid on, and run the following program:
$20^{\circ} \mathrm{C}$ for 30 min
$65^{\circ} \mathrm{C}$ for 30 min
Hold at $4^{\circ} \mathrm{C}$

C. Adaptor Ligation

If DNA input is < 10 ng , dilute the NEBNext Adaptor for Illumina (provided at $15 \mu \mathrm{M}$) 10 -fold in 10 mM Tris- HCl or 10 mM Tris- HCl with 10 mM NaCl to a final concentration of $1.5 \mu \mathrm{M}$, use immediately.

1. Add the following components directly to the End Prep reaction mixture and mix well.

NEBNext Adaptor for Illumina	$2.5 \mu \mathrm{l}$
Blunt/TA Ligase Master Mix	$15 \mu \mathrm{l}$
Ligation enhancer	$0.5 \mu \mathrm{l}$

2. Incubate at $20^{\circ} \mathrm{C}$ for 15 minutes in a thermal cycler.

D. USER excision

1. Add 2.5μ U USER ${ }^{\text {TM }}$ enzyme to the ligation mixture from previous step.
2. Mix well and incubate at $37^{\circ} \mathrm{C}$ for 20 minutes.

E. Cleanup of Adaptor-ligated DNA

1. Move AMPure XP Beads to room temperature for 20 min . Vortex beads to resuspend.
2. Add 1.2X resuspended AMPure XP Beads to the ligation reaction. Mix well.

For samples less than 10 ng or smaller than 100 bp , we used 1.6X Ampure XP beads we prepared in-house with higher (30\%) concentration of PEG.
3. Incubate for 10 minutes at room temperature.
4. Quickly spin the tube and place it on an appropriate magnetic stand to separate beads from supernatant. After the solution is clear (about 5 minutes), carefully remove and discard the supernatant.
5. Add $200 \mu \mathrm{l}$ of 80% freshly prepared ethanol to the tube, resuspend well. Incubate at room temperature for 30 seconds, and move plate to magnetic rack wait till clear, then carefully remove and discard the supernatant.
6. Repeat Step 5 once.
7. Air dry the beads.
8. Remove the tube/plate from the magnet. Elute the beads twice with $17 \mu \mathrm{IE}$ buffer.
9. Mix well by pipetting up and down. Incubate for 5 minutes at $37^{\circ} \mathrm{C}$.
10. Quickly spin the tube and place it on the magnetic stand.
11. After the solution is clear (about 5 minutes), transfer 15μ of the elution to a new PCR well plate.
12. Elute a 2 nd time with $10 \mu \mathrm{l}$, to a final volume of $25 \mu \mathrm{l}$.
13. Measure concentration using Promega QuantiFluor ${ }^{\circledR}$ dsDNA System with $1 \mu \mathrm{l}$.

F. PCR Enrichment of Adaptor Ligated DNA

1. Mix the following components in a sterile nuclease-free tube:

Adaptor Ligated DNA Fragments \& H2O (with up to 24 ng DNA)	$23 \mu \mathrm{l}$
Index Primer	$1 \mu \mathrm{l}$
NEBNext Q5 Hot Start HiFi PCR Master Mix	$25 \mu \mathrm{l}$
Universal PCR Primer	$1 \mu \mathrm{l}$

2. PCR with the following conditions. We use 6 cycles if 24 ng template DNA is used, and we increase it with less amount of DNA.

CYCLE STEP	TEMP	TIME	CYCLES
Initial Denaturation	$98^{\circ} \mathrm{C}$	30 seconds	1
Denaturation	$98^{\circ} \mathrm{C}$	10 seconds	$6-15^{*}$
Annealing/Extension	$65^{\circ} \mathrm{C}$	90 seconds	1
Final Extension	$65^{\circ} \mathrm{C}$	5 minutes	1
Hold	$4^{\circ} \mathrm{C}$	∞	

G. Cleanup and size selection of PCR Amplification

1. Add water to adjust the final volume of each reaction product to $100 \mu \mathrm{l}$.
2. Vortex AMPure XP Beads to resuspend.
3. Add 0.625 X of resuspended AMPure XP Beads to the PCR reactions. Mix well by pipetting up and down at least 10 times.
4. Incubate for 10 minutes at room temperature.
5. Quickly spin the tube and place on an appropriate magnetic stand to separate the beads from the supernatant. After the solution is clear (about 5 minutes), carefully transfer the supernatant containing your DNA to a new well plate. Discard the beads that contain the unwanted large fragments.
6. Add 0.375 X resuspended AMPure XP Beads for the 2 nd time to the supernatant, mix well and incubate for 10 minutes at room temperature.
7. Quickly spin the tube and place it on an appropriate magnetic stand to separate the beads from the supernatant. After the solution is clear (about 5 minutes), carefully remove and discard the supernatant that contains unwanted DNA (to the plate with first time beads). Be careful not to disturb the beads that contain the desired DNA targets (Caution: do not discard beads).
8. Add $200 \mu \mathrm{l}$ of 80% freshly prepared ethanol to the tube while in the magnetic stand. Incubate at room temperature for 30 seconds, and then carefully remove and discard the supernatant.
9. Repeat Step 8 once.
10. Air dry the beads for 5 minutes. Caution: Do not overdry the beads. This may result in lower recovery of DNA target.
11. Elute the the beads with $20 \mu \mathrm{l}$ of 10 mM Tris- HCl or 0.1 XTE . Mix well on a vortex mixer or by pipetting up and down. Incubate for 5 minutes at $37^{\circ} \mathrm{C}$.
12. Quickly spin the tube and place it on a magnetic stand. After the solution is clear (about 5 minutes), transfer 18μ l to a new well plate.
13. Elute a 2 nd time with 19μ l, to a final volume of $37 \mu \mathrm{l}$.
14. Measure libraries concentration with 2μ l.
F. Check library size on 2\% E-gel with a 100bp ladder

M2.2. Preparation for sequencing on the Illumina Hiseq X ten platform

The concentration of each library was quantified using Promega Quantus ${ }^{\text {TM }}$ fluorometer with Promega Quantifluor ${ }^{\oplus}$ dsDNA system, and the library size was estimated using gel electrophoresis. These two measurements were used to estimate the molar concentration of each library. The relative volume of each library was determined by the needed fraction and the molar concentration of the library. We typically target 10X coverage for each Pyrrhopyginae skipper sample, which is 6 Gbp data. Libraries of samples are pre-pooled, and we used Hiseq X ten sequencing service from GENEWIZ, which typically produces 130 Gbp data per lane.

M3. Nuclear and mitochondrial protein-coding gene assembly and preparation of intron alignment

M3.1. Processing of sequencing reads

NGS reads were processed sequentially by AdapterRemoval software (version 1.5.4) [1] to remove reads contaminated by adapters and oligos used in the sequencing reactions, and to trim lowquality (quality score < 20) portions at both ends. Below is the command and parameters used for paired-end libraries:
> AdapterRemoval --file1 [R1.fq] --file2 [R2.fq] --basename [sampleID] --trimns --trimqualities -minquality 20 --pcr1 [Adaptor1] --pcr2 [Adaptor2] \# [R1.fq] and [R2.fq] are the paired-end FASTQ format sequencing reads, [sampleID] is the sample identification number, [Adaptor1] and [Adaptor2] are the adapter sequences used for the sample.

M3.2. Preparation for protein-coding gene assembly

We had attempted to perform a BWA [2]-GATK [3]-based mapping assembling strategy as described in Cong et al. [4]. However, due to the long evolutionary distance between our target species and available reference genomes, such BWA-GATK-based approach results in poor-quality genome assemblies, most of which cover only 10% ~ 20% of the reference genome (data not shown). Since the protein-coding regions still tend to be more conserved and can be aligned better with the help of protein sequences, we limited ourselves to exons and assembled coding sequences in the genomes.

The increased sensitivity of the protein-based approach permitted a high-quality alignment among our samples from diverse groups. However, this approach might have problems when reads from different paralogs are mapped to a single protein. To avoid mapping of paralogous reads, we applied cutoffs of sequence identity of the mapped reads for each exon. The two available genomes, Cecropterus lyciades [5] and Lerema accius [6] were used to estimate these cutoffs. Cecropterus exons were used as reference and we prepared reference exon set and identity cutoffs as follows:

1. Exons of Cecropterus with length less than 11 aa and ones with shorter length but highly identical (sequence identity $>=95 \%$) to other long exons were removed from reference exon set. In total, 89863 exons were included in the reference exon set.
2. Run TBLASTN [7] to perform a search using the amino acid) sequences of exons in one species against the nucleotide sequences of exons in another species. We disabled the low complexity sequence filter in TBLASTN by '-seg no'.
3. In the TBLASTN result, we calculated the sequence identity and E-value to the query exon for each hit and identified the lowest E-value hits for every query. If the statistics of other hits are comparable (difference in sequence identity < 5% and difference in $\log (e$-value) < 5), we would also include them into the best hit set of the query.
4. To remove False Positives among the best hits for each query exon, we applied several filters: (a) the hits have to show e-value <0.001 or sequence identity to the query $>90 \%$; (b) discard hits with identity to query less than 50%; (c) discard ambiguous hits, which are detected as the best hit to multiple query exons, or multiple locations of the same query exon.

M3.3. Protein-coding sequence assembly for phylogenetic study from sequencing reads

Briefly, we performed TBLASTN search using Cecropterus exons obtained in M3.2 as queries to search against reads of each sample. Reads were discarded if they are mapped to several exons with similar quality or their sequence identity to exons is less than cutoff obtained in M3.2. Next, pair-wise comparisons of reads were performed to remove reads that are divergent to majority of reads and then consensus polymorphism was taken for each position in exons. The following is the detailed procedure:

1. Transfer the FASTQ format into FASTA format and format it as BLAST database.
2. Perform TBLASTN search using Cecropterus exons as queries. In the search, we turned off the low complexity filter by '-seg no' and allowed more hits by '-max_target_seqs 50000000'.
3. Apply filters based on BLAST output statistics by requiring: (a) hit coverage $>=75 \%$, (b) identity to the query $>=50 \%$, and $>=$ highest identity among reads from all samples -10%.
4. Utilize the alignment between two reference genomes in the section M3.2 to filter out reads with sequence identity less than that between Cecropterus and Lerema by more than 5% in the same region. If the corresponding region is not present in the Cecropterus-Lerema alignment, the full Cecropterus-Lerema alignment will be used to estimate the identity cutoff.
5. Filter out the ambiguous hits that are mapped to multiple query exons, or multiple locations of the same query exon.
6. Exons with coverage 2.5 times of median exon coverage were considered as repeats and were removed from final alignment.
7. Assemble the aligned reads for each specimen with the following procedure:
a. Compute the dominant nucleotide at each position. If the frequency of the dominant nucleotide is less than 80%, we are not confident about whether the observed polymorphism is due to population diversity or data quality issues, and we mark them as potential bad positions.
b. Check the enrichment of such potential bad positions using a 24bp sliding window. If there are more than 2 potential bad positions in a window, filter out this window.
c. Compute the average read coverage of the exon and filter out exons whose sequencing depth is less than 1.5 , to ensure that most of the exons should be supported by at least two sequencing reads.
8. Finally, we used the exon set defined in section M3.2 and concatenate the assembled exons into a single FASTA sequence for phylogenetic studies.

M3.4. Z-linked genes identification and alignment preparation

Because high conservation of gene content has been reported in Lepidoptera Z chromosome [8], we aligned Cecropterus exons using TBLASTN (-evalue 0.001 -seg no) to Heliconius genome [9] where Z chromosome sequence was known. We identified Cecropterus exons as Z-linked if their best TBLASTN hit was on Heliconius Z chromosome. Genes with more than 80% exons mapped to Z chromosome were considered Z-linked. The sequences of the Z-linked genes were concatenated for each specimen. Positions with more than 60% of gaps in the alignment were removed before phylogenetic analysis.

M3.5. Assembling mitochondrial protein-coding genes

We took the 13 mitochondrial proteins from Cecropterus mitogenome and assembled these sequences for all samples. The assembly strategy for mitochondrial genes is almost identical to that for nuclear genes, with a few exceptions:

1. In TBLASTN search, we specified '-db_gencode 5' to switch to the invertebrate mitochondrial codon table.
2. We increased the read coverage cutoff from 1.5 to 3 , as mitochondrial genomes generally have much higher coverage than the nucleus genome.

Finally, we obtained the concatenated mitogenome consisting of 11,178 aligned positions for our samples.

M3.6. Intron alignment preparation

BWA-GATK-based mapping assembling strategy was performed as described in [4]. Briefly, we mapped sequencing reads of 121 samples to genome of Cecropterus by BWA and detected singlenucleotide polymorphisms (SNPs) using GATK [3]. Intron regions suggested by Cecropterus annotation were concatenated for each specimen. The positions with more than 40% of gaps were removed from the alignment.

M4. Phylogenetic analysis

M4.1. Maximum-likelihood phylogenetic analysis of nuclear/mitochondrial protein-coding regions, introns and Z-linked protein-coding regions

For a thorough phylogenetic analysis, we prepared several datasets: nuclear protein-coding regions, Z-linked protein-coding regions, intronic regions and mitochondrial protein-coding regions. RAxML [10] (model: GTRGAMMA) was used to build maximum-likelihood trees using these datasets. To evaluate the confidence of the nuclear tree, we split the concatenated alignment of nuclear proteincoding sequences into 100 partitions with about 0.1 million positions in each partition. We applied RAxML (-m GTRGAMMA) on these 100 partitions and produced a consensus tree using SumTrees (https://pythonhosted.org/DendroPy/programs/sumtrees.html) with -f0.0. The confidence of trees built from Z-linked protein-coding regions, introns and mitochondrial protein-coding regions were estimated by 100 bootstrap replicates of alignments.

M4.2. The BEAST tree and time calibration

We carried out time-calibration using BEAST v2.5.1 [12]. To minimize the effects of gaps on time calibration and meanwhile to increase the speed of running the tree, we ranked the positions in nuclear protein-coding region alignment by gap ratio from low to high and used first 15 K positions with lowest gap ratio. Yule model [13] was selected as tree prior option. In the absence of Pyrrhopyginae fossils, time constraints were set based on dating estimates given in previous publications that also included taxa outside Pyrrhopyginae [14], and even outside of Hesperiidae [11]. We found species present in all these trees, measured the times estimated for their divergence in these publications, and set BEAST constraints based on these estimates. The BEAST input file was submitted to Dryad (https://doi.org/10.5061/dryad.q0sr5p5). In brief, we constrained the time estimates for the common
ancestors of the following pairs of taxa: Myscelus-Pyrrhopyge (31.6 Mya), Apyrrothrix-Creonpyge (10.6 Mya), Apyrrothrix-Pyrrhopyge (15.4 Mya), Creonpyge-Mysoria ambigua (18.5 Mya), MicrocerisParelbella (10.6 Mya), Microceris-Pyrrhopyge (21.7 Mya), and Agara belti-Passova (11.1 Mya). We selected these pairs to represent a widest time scale range (10 to 30 My) and to constrain various segments of the tree. The ages given were set to $3 / 4$ of the ages in Sahoo et al. [14], the study that contains a time-calibrated tree with the largest number of Pyrrhopyginae taxa. We think that this adjustment makes time estimates more realistic, because it approximately matches the time estimates from Espeland et al. [11], a study based on broad sampling of all butterflies and thus expected to be more accurate. The scale $3 / 4$ was computed based on Heteropterus-Piruna divergence estimated at 42 Mya in Sahoo et al. [14] and 33 Mya in Espeland et al. [11]. It is important to note, that while the precise time estimates may be prone to error ($+/-10 \mathrm{My}$) and are expected to be refined in future with more taxa included and more fossils discovered, relative time estimates (i.e. ratios of branch lengths throughout the tree) are expected to be more accurate. Only these relative estimates and tree topology were important in suggesting the higher classification of Pyrrhopyginae. When setting the time constrains, monophyletic option was selected to ensure all child nodes of constrained nodes were always together during the sampling. MCMC chain length was set to $6,000,000$. A maximum clade credibility (MCC) tree was constructed using the program TreeAnnotator with 10\% burn-in.

Additionally, we performed time-calibration by re-scaling the RAxML trees by assuming a constant evolutionary rate for every branch and rescaled the branches to obtain constant length from the leaf to the root. The procedure was as follows:

1. We took the largest branch length from the root to the leaves as the target branch length. Every branch was rescaled to the target branch length (TBL).
2. From the root, we iteratively repeated the following steps to rescale each internal branch to the expected length:
a. at an internal node, subtract the branch length from this node to the root from the TBL to obtain the targeted remaining branch length (TRBL)
b. identify the best path to a leaf from current node as the path with the largest number of internal nodes and computed the branch length of this best path, namely, current remaining branch length (CRBL)
c. compute the scaling factor as the ratio of TRBL vs. CRBL
d. multiply the scaling factor with the branch length for each branch in the best path, and update the branch length
e. go to the children nodes and repeat step (a) until reaching the tips of the tree.

Time axis was added to the tree based on fossil calibration carried out in recent studies [11], [14] as described in the first paragraph of this section.

M4.3. Coalescent-based estimation by Astral using nuclear protein coding regions

In addition to the maximal likelihood approach, we also performed coalescent-based species tree estimation using ASTRAL [15] (version 5.5.9). For each gene alignment, positions with gap ratio more than 60% was discarded. Next, gene alignments with less than 5 specimens were excluded from the following analysis. In total, 13579 gene trees were constructed by RAxML (-m GTRGAMMA) with bootstrap replicates 100 (-\# 100) on individual gene alignments. The nodes with less than 10% support in each gene tree was contracted as suggested by Zhang et al. [15] and gene trees where two outgroup samples were not grouped together were excluded from ASTRAL analysis. The default settings of ASTRAL was used to summarize individual nuclear gene trees.

M4.4. TreeMix

To exclude the possibility that the introgression affected phylogenetic analysis, we used TreeMix v1.12 [16]. Given that large number of gaps may affect performance of the program, we selected specimen that has less than 50% of gaps in the concatenated alignment of nuclear protein-coding regions. The bi-allelic positions present in more than 60% of selected specimens were kept. The frequency of each allele at each position was counted in each specimen as input for the program. We ran TreeMix with the settings -k 5 -noss.

M4.5. Detection of diagnostic nucleotide characters

To support the phylogenetic groups, we detected the distinguishing nucleotide characters that were mutated and maintained in the groups. We would like to find the characters that are (a) conserved within the group, (b) conserved in the rest species outside the group, and (c) different between the group and the rest sequences. Some of our samples are of poor quality and contained lots of gaps in the final alignment. To avoid possible mis-identification due to the missing characters, we constrained our positions to filter out positions dominated by gaps. In addition, we also had more stringent gap thresholds for the sister groups to the group of interests, to ensure that the characters we found indeed can differentiate the group of interest and its sister group. Below is the detailed procedure.

1. Define the group of interest (group I), its sister group (group S), and remaining group (group R , excluding the outgroups used for rooting the tree).
2. Define good positions as those that are not gaps in 80% of the samples (excluding poor samples).
3. Among good positions, extract the positions that are 100% conserved and have no gaps within group I, and definite these positions as P1 set.
4. Among the P1 set, remove those positions where the conserved characters for group of interest also appeared in the rest samples (group S and group R), resulting in P2 set.
5. Among the P2 set, only take the positions where the character in the rest (group S and group R) was conserved in more than 80% of the samples, and different from the character in the group I, resulting in P3 set.
6. Among the P3 set, filter out the positions where any species in the sister groups has a gap.

References

[1] Lindgreen, S. 2012 AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res Notes 5, 337. (doi:10.1186/1756-0500-5-337).
[2] Li, H. \& Durbin, R. 2010 Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589-595. (doi:10.1093/bioinformatics/btp698).
[3] McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. 2010 The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297-1303. (doi:10.1101/gr.107524.110).
[4] Cong, Q., Shen, J., Warren, A.D., Borek, D., Otwinowski, Z. \& Grishin, N.V. 2016 Speciation in
Cloudless Sulphurs Gleaned from Complete Genomes. Genome Biol Evol 8, 915-931.
(doi:10.1093/gbe/evw045).
[5] Shen, J., Cong, Q., Borek, D., Otwinowski, Z. \& Grishin, N.V. 2017 Complete Genome of Achalarus lyciades, The First Representative of the Eudaminae Subfamily of Skippers. Curr Genomics 18, 366-374. (doi:10.2174/1389202918666170426113315).
[6] Cong, Q., Borek, D., Otwinowski, Z. \& Grishin, N.V. 2015 Skipper genome sheds light on unique phenotypic traits and phylogeny. BMC Genomics 16, 639. (doi:10.1186/s12864-015-1846-0).
[7] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. \& Lipman, D.J. 1990 Basic local alignment search tool. J Mol Biol 215, 403-410. (doi:10.1016/S0022-2836(05)80360-2).
[8] Fraisse, C., Picard, M.A.L. \& Vicoso, B. 2017 The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat Commun 8, 1486. (doi:10.1038/s41467-017-01663-5).
[9] Heliconius Genome, C. 2012 Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94-98. (doi:10.1038/nature11041).
[10] Stamatakis, A. 2014 RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. (doi:10.1093/bioinformatics/btu033).
[11] Espeland, M., Breinholt, J., Willmott, K.R., Warren, A.D., Vila, R., Toussaint, E.F.A., Maunsell, S.C., Aduse-Poku, K., Talavera, G., Eastwood, R., et al. 2018 A Comprehensive and Dated Phylogenomic Analysis of Butterflies. Curr Biol 28, 770-778 e775. (doi:10.1016/j.cub.2018.01.061).
[12] Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A. \& Drummond, A.J. 2014 BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10, e1003537. (doi:10.1371/journal.pcbi.1003537).
[13] Yule, G.U. 1925 II.-A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FR S. Phil. Trans. R. Soc. Lond. B 213, 21-87.
[14] Sahoo, R.K., Warren, A.D., Collins, S.C. \& Kodandaramaiah, U. 2017 Hostplant change and paleoclimatic events explain diversification shifts in skipper butterflies (Family: Hesperiidae). BMC Evol Biol 17, 174. (doi:10.1186/s12862-017-1016-x).
[15] Zhang, C., Rabiee, M., Sayyari, E. \& Mirarab, S. 2018 ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19, 153. (doi:10.1186/s12859-018-2129-y).
[16] Pickrell, J.K. \& Pritchard, J.K. 2012 Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8, e1002967. (doi:10.1371/journal.pgen.1002967).

Pyrrhopyginae specimens and 2 outgroups						
Elevation	GPS	Collectors	Date	Collection	Genitalia No.	Collection No.
	4.7250, -52.4083	Jean-Yves Gallard	7-Apr-1991	USNM		
		Stan S. Nicolay	6-Feb-1968	AMNH	H379	
		Collection W. Schaus	N/A (old)	UsNM		
165 m	10.53,-62.80	Ron Leuschner	29-Sep-10-Oct-1992	USNM		USNMENT 00894724
150-300 m	3.3450, -59.5700	s. Fratell, R, Hamee	21-Feb-10-Mar-1999	USNM		USNMENT 00233032
			11-Sep-1927	AMNH	61408	
550 m			24-Jun-1982	LACM		
	-10.50, -62.87	D. H. Ahrenholz	5-Nov-1989	USNM		USNMENT OO894
290 m	11.02364,-85.49139	Lucia Rios	eclosed on 13-Mar-2005	USNM		05-SRNP-20512
	10.84886,-85.32810	Carolina Cano	eclosed on 19-Sep-2009	USNM		O9-SRNP-4464
670 m	10.87621,-85.38632	Carolina Cano	eclosed on 14-Jun-2008	USNM		08-SRNP-1740
			prior to 1934	AMNH	6419	
			1925	CMNH	Slide No. 1957	
670 m	10.87621,-85.38632	Carolina Cano	eclosed on 16-Nov-2013	USNM		13-SRNP-6248
600 m	-1.03, -77.83	Stan S. Nicolay	28-Sep-1990	USNM		USNMENT 00894708
460 m		Jose Steinbach	1926-1927	CMNH	Slide No. 1978	
	10.9163, -850.37869		eclosed on 23-Apr-2015	USNM		15-SRNP-296
	7.50, -81.70	G. B. Small	25-feb-1981	USNM		USNMENT 00894891
			Nov-1962	USNM	V38 S.S.N. Nicolay	USNMENT 00894883
			prior to 1931	AMNH		
		A. M. Moss	prior to 1947	AMNH	61812	
-950 m	4303, 587985 S		prior to 1931	AMNH		
	4.3303, -58.7985	S. Fratello	28-Mar-1-Apr-2001	USNM		USNMENT 00179063
		A. M. Moss	prior to 1947	AMNH	${ }_{61813}^{6451}$	
			prior to 1931	AMNH	6433	
400 m			prior to 1931	AMNH	6453	
			prior to 1947	AMNH		
			16-Feb-1932	AMNH	6687	
			prior to 1931	AMNH	61179	
		c.L. Poliard	Priorto 124	AMNH	${ }^{61262}$	
580 m			12-Apr-1926	AMNH		
			priorto 1931	AMNH	${ }_{6383}$	
1450 m		Steve Kinyon	6-Dec-2012	USNM		USNMENT 00894898
			before 1932	CMNH		
		M. G. Pogue	11-Sep-1987	USNM		USNMENT 00894879
1700 m		Steve Kinyon	5 5-Nov-2012	USNM		
1800 m	-5.667, -77.750	Robert K. Robbins \& Gerardo Lamas	11-Nov-1998	USNM		USNMENT 00894901
			prior to 1931	AMNH	6424	
1375 m		Steve Kinyon	1-OCt-2014	USNM		USNMENT 00899877
$\begin{array}{r}2200 \mathrm{~m} \\ \hline 1550\end{array}$	-5.70, -77.80	Robert K. Roobbins \& Gerardo Lamas	11-Jun-2000	USNM		USNMENT OO8998766
1450 m		Steve Kinyon	11--eb-2011	USNM		USNMENT 00894765
			prior to 1931	AMNH		
525 m	1101373,-85.42531	Roster Moraga	eclosed on 04-A Ar-2002	USNM		${ }^{\text {O2-SSNP-35242 }}$
	11.013 $3,-8.4231$	Roster Moraga	12-Dec-1928	AMNH	61177	
		O. H. H. Mielke	15-Feb-1981	M-DZUP		
		D. H. Ahrenholz	5-Oct-1986	USNM		USNMENT 00894904
		${ }^{\text {Preming }}$	29-Jul-1942	AMNH	61931	
	-12.83, -69.28	D. H. Ahrenholz W.I. Coxey	${ }_{\text {May-1930 }}{ }^{\text {6-Oct-1966 }}$	USNM		USNMENT 00894884
1200 m900 m	10.98332,-85.43623	Manuel Rios	eclosed on 01-Oct-2008	USNM		
	-3.9693,-79.0625	David H. Ahrenholz	15--an-2002	usNm		USNMENT 00894887
1700 m		Peter Hubbell	26-Aug-1969	AMNH		
00 m		William H. Howe	2-Sep-1978	AMNH		
			prior to 1941	AMNH		
730 m	10.86739-85 38744	E.c. Welling	3-Sep-1962	AMNH		
	10.86739,-85..3744	Caroina Cano	eclosed on 0 3-Sep-2014	USNM		14-SRNP-2944
1400 m	$9.12711,-99.71483$	Jehn and Hebeard	${ }_{\text {23--ul-1220 }}$	CMNH		
			12-Aug-1957	USNM		USNMENT 00894713
800-900	0.8835, -78.5150	1. Aldas	1-May-2002	USNM		USNMENT 008947
1460 m	10.93328,-85.45729	Manuel Pereira	eclosed on 18-Apr-2011	USNM		10-SRNP-35667
	10.75772, -85.30598	xto Moraga	eclosed on 13-Jun-2015	USNM		15-SRNP-30170
$1800-2100 \mathrm{~m}$		John Kemner	2-Aug-1991	USNM		USNMENT 00894867
		T. Escalante	Jul-1942	AMNH		
		A. Schultze	19-Mar-1928	OM-DZUP		
$3200-3400 \mathrm{~m}$		c. Bordon	6-Aug-1984	USNM		
137	-13.0583,-71.5344	Brian Harris	(10-Mar-1983	USNM		USNMENT 00894768
			N/A	LACM		
950 m	-5.683,-77.650	Robert K. Robbins \& Gerardo Lamas	10-Nov-1998	USNM		USNMENT 00894770
3150 m		S. Kinyon	${ }^{3-\text {-ov-2016 }}$	USNM		USNMENT 00894773
800 m		O. H. H. Mielke	21-Jan-1973	USNM		USNMENT 00894776
680 m	10.98758,-85.41967	Petrona Rios	${ }^{11}$ 1-ebe-2010	USNM		10-SRNP-30468
330 m	-19.267, -43.583	Robert K. Roobbins \& Becker	17-Apr-1991	USNM		USNMENT 00894777
	10.76261,-85.42979	Jose Cortez	eclosed on 22 -Oct-2013	USNM		13-SRNP-56544
		Olle Pellimyr	${ }_{\text {coleb }}^{6}$ 6-Feb-1982	USNM		USNMENT 00894755
300 m		D. H. Ahrenholz	${ }_{8}{ }^{2 \text { Sepep-2003 }}$	USNM		USNMENT 00894750
		Stephen C. Bromley	Sep-1957	USNM		USNMENT 00894752
.1375 m		Steve Kinyon	20-Oct-2013	USNM		USNMENT OO894881
1600 m	-2.2617, -78.2033	1. Aldas	16-Oct-2002	USNM		USNMENT 00894855

	USNMENT 00894896
	08-SRNP-65423
	USNMENT 00894862
	05-SRNP-31969
	USNMENT 00894759
	USNMENT 00894758
	USNMENT 00894698
	USNMENT 00894760
	13-SRNP-3787
	USNMENT 00894723
	USNMENT 00894733
	11-SRNP-44852
	13-SRNP-71619
NVG131102-93	12-SRNP-71305
	USNMENT 00894871
G531	
	08-SRNP-23853
Slide No. 1958	
	USNMENT 00894757
	USNMENT 00894737
	02-SRNP-23285
NVG170207-78	USNMENT 01321833
NVG161105-08	USNMENT 01321280

Supplemental Figures

Figure S1. Specimen age and sequence quality. Each point represents a specimen. Collection year was not routinely recorded for specimens collected about a century ago. Because they were type specimens, they should have been collected prior to the publication of their description. Thus, the year used represents the latest year a specimen could have been collected. a. Correlation between median length of a sequence read (in base pairs) and a year no later than which it was collected. b. Correlation between genomic completeness (fraction) and a year no later than which it was collected. A trend line and the square of the correlation coefficient $\left(\mathrm{R}^{2}\right)$ are shown on the plots.

Figure S2. Time-calibrated tree of Pyrrhopyginae constructed from coding regions in mitochondrial genomes. Names in red show phenotypically diverged close relatives of species they were not associated with before. The clade joining them is shown in red. Names in green are new subgenera. Bootstrap values are shown by nodes. Branches in polyphyletic genus Myscelus (here split into 2 genera) are colored cyan.

Figure S3. Maximum likelihood phylogenetic tree constructed from intronic regions. Bootstrap values are shown by nodes.

Figure S4. Maximum likelihood phylogenetic tree constructed from Z-linked protein-coding regions.

Figure S5. Coalescent-based species tree from nuclear protein-coding regions. Bootstrap values are shown by nodes.

Figure S6. Maximum likelihood tree by TreeMix constructed from nuclear protein-coding regions.

Figure S7. BEAST time-calibrated tree from nuclear protein-coding regions. The posterior probabilities are shown by nodes.

Diagnostic nucleotide characters mapped to the reference genome of Cecropterus lyciades

Sequences of nuclear exons with diagnostic characters for the new subtribes listed in Table 1 (main text) are given. The position used as a character state is highlighted in yellow. Base pair in this position is the one present in the C. lyciades reference genome, and may not correspond to the ancestral base pair in Pyrrhopyginae. A reference sequence for the COI barcode region is given at the end. Many positions of the barcode are used as characters in Table 1, positions are numbered according to this sequence.
>aly300.8.1:G95T | Amyloid protein-binding protein 2
ATGGCTGACGCGTCGTCGTCGGTGCGCGCAAAGAAAATACCCGATAATCTTTATGAACTGTGTTTGACAAATTTAGT GAACTATCTGCAGAAATGTAAGTGCGAGCGAAATGATTTGCATTACCTGCCGGACACCGTCCTTATGGATGTGTACT ACAAG
>aly1838.7.1:T90C | Protein SDA1 homolog
ATGGTGCGGCATAATAATCAGTTACCAAATAACTTGACACAGTTACAAAATCTAATAAAGAGAGATCCAGATTCATA TAAAGATGAATTTCGACAGCAACTCGCTCACTTTGAAACAACACTTGAGATTTTCAATCTCAACCCTACGCAGTATA ATAAAAAATTAGACGAGCAAGCCATGTTCCTGGCACAAGTCACGCAGTGTTATCAAAATGAAATGAAGACATTCCCA CAAAAAATTGTAGAGGTCTTAAAAACACATAATTCGACACTACACAACGAAATGAGACTTTCATTGTGCAAATGTTT GATTTTATTAAGAAATAAGAATTTCATAACGGCATTTGACTTGATGGAATTATTTTTCTCACTCATAAAATGCCAGG ACAAGAATCTAAGGGAATATCTAAAGACACATATTATAACAGATATCAAAAACATGAATATGAAACACAAGGATATG AAACTTAATTCAACACTGCAAAACTTTATTTACTCTATGTTGCGCGATTCTAATACAAAAATATCAAAATTGGCCAT TGACATATTGATTGAATTGTATCATAAAAACATTTGGAATGACAATAAAACCGTGAACATAATAGCTGATGTAGGCT GCTTCAGCAAAGTTACTAAAGTAATGGTAGCATCTCTCAAGTTTTTCCTAAGTAGAGATGAAGAAGAAAAAGCGGAG AATTCTGATAGTGATGATGATGTTGACCCGAGAGATACTATGATATCTAACAAGTTCAATAAGAAAACTAGAAAGAG AGAAAAGATGGTTGAAAAAGTTAAGAAGATTGCAAAGAAAAACAAAAAGAAGAAAGAAAAGGCACCACTATTTAATT TTTCAGCATTACATTTGATTAACAATCCACAAGGATTTTCAGAAAAACTATTCAAACAATTGGAATCGTCAAATGAA AGATTTGAAGTGAAATTAATGTTACTAGATGTTATATCTAGATTAATAGGTTTACATAACCTTTTCTTGTTCAACTA CTATCCATTTATTGCAAGATTATTAATGCCACATCAGAGAGAGGTCACTAGGATTTTACAATTTGCTGCTCAAGCTT CACATGAGTTGGTGCCACCGGAAATTATTGAACCAGTTATGAAAGCAATTGCAAATAACTTTATTACAGAAAGAAAT TCAACTGATGTAATGGCAGTAGGACTTAATGCTGTTCGGGAAATCTGCGCCAGGTGTCCTCTAGCTATAGGAGAAGA CCTTTTACGAGATCTGGTGCAATATAAGACATATAAAGAAAAATCAGTAATGATGGCCGCCAGATCATTAATACAAT TGTATAGACAATCTATGCCTAATCTGTTGCACAAGAAAGATAGAGGTAGACCAACTGAGGCATCCTCTGAAATAAAA CCCAAGAAGTATGGTGAAATGGATATCAAAGATTACATTCCAGGCTCAGAAGTGCTATTGGATAAAGATGATAAAAC ATTGGACAATGAAAAGAAAAAGGGAAATAAAAAGAAAAACAAGAATGATGATTCTGAAGATGAATGGATTGATGTGG CATCCTCTGATTCAGAAATTAACATATCTGATAGTGAAGACAGTGAAGATGAAAGTGTTAATGAAGAAAGTGAAGCT GGTAGCGATGTTGAGAATGAAGAAGATGATGATAGTCAAGATAATTCTAATGATGATAAAGATGATGGTGAGAAACA AGAGGAATCGATTCCTAATACAAAACCTGAAAAAAGAAAGATACTTAAAGCAAAGTCTACTAAACTCACCAAAGAAG AAAAAGAGGAAAAAATTAAAGTAGCCAGAGAAGTTGCAATGGATAAAATATTTACAGATGAAGACTTCAAGCGCATA GAGGCAGCTCAAATTAAAAAGGCCATAAGTGGTGTCAAACAGAAGAAAAATGTTGTTGAAGAAGAGGAAGAATCATC AGAGCTTGTTAAATTGTCAGATATTGAAAATATCCATAAAAAGAGAAAACACGACAAGAATGCCAGATTAGAAACAG TCCTTAAGGGTAGGGAAGAAAGGGACAAATTTGGATATAAGGATAGACGAAAGAATCCTAATTGTTCTAAAACGAAT AGAGAAAAAAGGAAAACTAAAACGTACCAGATGGTGAAACATAAGGCAAGGGGCAAAGTAAAGCGATCATTCAAAGA GAAACAGATTGCGTTCAGAAACTATTTGATCAAACAAAAGAAAATGCGT
>aly60.16.9:C66T | Glucose dehydrogenase [FAD, qui]
ATCTCCGAAGTGACAGCCTTCATCAACACTAAGTACTCCAACCCAGCTGAGGATAATCCCGACGTACAGCTGTTCTT CGGTGGTTTCCTCGCGGACTGCGCCAAGACCGGCATGGTGGGGGAGAGGCTAGACAACGGCTCCAGGAGCATCCAGA TCATACCCACAGTGCTGCACCCCAAGAGCAGGGGCAGACTGGAGATAGCTAGTGCTGATCCTTTCGCTTACCCCAAG ATTTATGCA
>aly2612.6.2:T640C | Serine/threonine-protein kinase SMG1
CGAGACGAAAATACCTACAAATACCACGAATCGCTAGCACAGACCAACAGCGACGTCTGGTCGCATGGAGGTACCAA TAAATTTTATGAGCGATCCGACTTGGTGGTCAATCTCCCCGAAGATCCGCGCATATCCAAGCTGCTACGTCGGCTGT GCGCAGAGGTTGACGTCGAAAAATCTCTAGTGATATGCACCAAGCTGCAGGAAGCAGTTATGTTGCCAGAAAATGCA

CGGTACATACGAAGATCGTACGACATTTTGGTTGAATCCTTATTGGACGTTTTGTATGATGCTCCTGGCCCTGAAAC GAAGGAAGGAGCCGCAGTAGTGTTAGGCAGGATTGGATATGTTATGGGACATGAGTTTCGTAAACATTTGGATTGGA TTGCTGCTACATACAGTGTTCAAAACTCATCTATAAAGCATCTGCTTACTCTCTCATTTTCAGAGACATTTCAACTA GACCTTCAAACGTCAAACTTGTCAGAATTTGCTGAGGTCACATTGGAAAAGCTACAATCTATAATAGAAGGCACAGA CTCAGCGGATGTGTTTATTGCGGCAATTAATGCTATGATAGTATTGTCTAATTCTTACCCAGAGCATTTTGCGAATC ATTTTGTGGACACTGTTGATATACTGGTGGGCTGGCATGTGGATAATGCTCAACCAAGGAGGATAAAAGAATTTGCT CTTCAATCCCTATTTAAATTAAGTCGTCACTGGCAAGCTGATGTTGGATTTTCAGTAAATTTATTAAATCAATTTGT AGAAGATATGGTGTGTTATGCTACTGATTTAGATCCTAATAAAAGGGACAAAGATGCAGAAACCAATTCACATGAAG ACTGCCTACAGAAGATTTCGTCATTTCTCAATGTTTTTAACATTGTTGTGAAAAGTTTGGGGAACTTACTGAGCCCA AATGTTTCCCAGACTGTCTCATGGTCTTTCCTGACGGATGCTTTGTCGAAAATACTACAGGTTTTGATAGAAACGCT GAAGCAAGAAGCTGACTCAGACCTGTTGTTGGCAGGTAATGAATGTGTAATATTACTTTTAAAATATCTGCATGGAA AATCTTTCTCTTGCTCAGTTTCATTGTTTACATTGATATCCATGGAAATGACAAATTACTTGCAAATAGATGAAAGT CTTTGTTTAAGTATAATAAATTTAATTTCGAGCACAGTAAAAGAAATCGCATCCAACCTTCCAATTGATTTTATTAG TCAGACTATCGGACCAGACTCGTTATTGCGTCCATTGAGATATTCAGAGAGCCAACAAATTATATGCAGTGTCATGA CTATCTACAGTAACCTGCTAAACCTAAAAAACATTCCTCTCTTGCAAGAGACATACAAGTATGTTTTAACTGATATG CAAAATGCATGCGCTGTCATAATACCAGACATTCAAATAATACAATCTGAATATACAGAAAAACTTGATCCTGAAAA TGCAGAAAAGAATATTTTATTTTACCTTCAGTGTTTATCAGAACTGGCTAATGCGAGTAACTCCATAATTGGGATGT GGGCATTGAAGCCTAGTATATTAGAACTCCTAGCTATCAAAATGTGTCCACATAATGAAACCATGATGAAGGAAAGA CCAGCTTTACAGTATGCTATTCTCTTTCTGTTGTATTCCCATTGTAAGAAGAATAACCACTTCATTGCGTCAAGCGA TTTGGTGACAAATTCACAACAGAGAACTAATGATTTGTTTGGACTGTCAAAACTTAGTTTAGGAGAAGTCTCTGGGG CTAGTCCTACTTCTGGACATCTAGCAGTAATTCTAGAAACATTGAGCGTTGTATTAGGCGAGCATGCATCCAGAGAA ACATTATTGCTGGTTTTAAATTGGATATCAGACATATTTTTCCAATTGGACAAATATTTGCCGATGGTCAGCATGTC AAAAATTTTCCTAGTTTTAGTAACTAATATGCTATCAGTTGCCTACTGCTTTGACAGTCAAGTAATTATCCTTGTGA TAAAGAACTGTCAACATTTATTGAAAAACAAATCCCTCACATGGAATGTGGTTGTTTTGAAAACTATAACAGTTTTG TGCATATTAAACATGGACAATCAAAATTGGTTATTGGCAAAGCTCTGTAAGAAAGTTTTATTTGAACTGCCATGGGA CATCGTTCAGCAAGAATTAGACAAACAAACAATAATGGCAGTTACGCGCCGAAAAGGTAGTCTCACATCTCTCAGCA CAGATACTAAACTCAATGCATTAAAGGAGTATTTCACAAGAGGGTCACTAGCAACGTTGTCAGATTATCATTTTAAA ATGATTGCAAATAATTTGCTTCAGCTGACACCTAATGACAGAAGTTTTGCGCTCGATGCATTTTTGTCATCTTGGCC TTTACAAAATCAAGAAATTGTTGACAATCACTTATCTTTCTTTCGCCAGTGTGCTACCAATTTTTCATCGCACTGTA TTAGTTGGGCGCTATCAGAACTTGCCCATGCTTGCATAGTTCAAAAATTAAAAACACCCCTAGGGAAACCTCAAGAC ACATTCATGAAGATCGAGGGTGCTTTGAAAGAGATAGCAAGAGAAACTACATCTTTAGAAACCAAGTATACTGGTAC AGAAAAGCTAAAATTATTAGATGTCATTATTGGGGAACAAAGAAGATCACGTTGGCTTATTGAATTCATGATGTTAT TAGAAAAGTATACATATAATGCAAGAGAAGGAACCGCCACTGCACTGCCTTTAGGTCCAACTAAGCTGATTAAAGGA TTCTATCGCACAAACCGCTCAACATGTGAAGAATGGCTGATGAGAGTGCGTCCAGCAGCATTGGCTGACAGTTTATA CTCTGGACATTTAGGTGCTGTAGTCTATCATGCATCATTAATATTGCAAAATGCTGCCAACTCTAAAACTAACATTG ACATTGAGGCCATTACAATAAGCGTTGCGAGAGCATTGATAAAACTCCAAGAACCTGAAGTATTGCATGGACTGTAT GTATGGATCAAACAAACGTTCAACCTTAAATTTCATTGGCTCAAGGGAGCTGCAGAACAGGCTAATTCACGTCACGA AGTAGCTATTAGTTATTACAAAAAATTAAACAATTCAACCAACAACAATGAGAGCGAGAAGGCTACTATTTCAAGAG ATATGTTGAGAGTTCGCAAATTTGTCCATGAGCAAATAATGGAAAGCTATAAACATATTCAAAACTGGGAAGAAATG CAGGAGTGGAAAGAAAATGATTTGGAATGGAAACAAGCATCTCAATGGGATTCTTTTTCTGCTCTTAAACTCTACGA GGAAAATACAGATTTCTCAGAACTATTAGGCAACTGGGACATTTTGGACATCGAAGCAGGTGAAATATCTAAGAACA CATGTTCATGTCAAGGCTTACTAAATAAAGTTGAATCAACAATGGTATCTGCTGCATTGAACTTATATTACAATGAC TATGATGAAAAATATAATTCCATACTAAATGATTGTGAGATTTTGCTAAATGCAAGTGCAGAGGAGCTTGCTAGGAC GAACACAATTCATTACTTAAAAGATATCGCTGTACTGCAGTTAGCTAACCATGGATTAAATAACATTGTAAAAAATG GGAAGCTCATATTAAATCCATTCAAATCGACAGCTGTAAAAGAAAATAAATATGGCACTGATATAAAAAATTTGAGC CGTTTGTTATGGTGGAATCAATATTTTACGAAATTGAATATGACTGAAGAAAATATATTTTTTACAGAGTGTTTGCG TTTAGATGTTATCAAGAGTGCAAGAAAGAGTGCCAATGTTGTCATGGCTAAACAAGAGTTACTTAAGCACTTCAAAC AAAACTCTGCCTTCCAAATGTGCTTGGCAAATGTCAACAATCTGGATGATCTGAGCAATGTTCTTCTAATGTCGTCC AACAGTTATGATTTGGACATTTGGACGTTAAACAATGCGACTGCTTTAGCAGAACTATGTAAAGTGACATATGCAAA AGAAGAGTCAAAAGTACGTGCTATAAACTTATGTGCGAGTATATCCCTCGGATTTTCACAAAGGTTGGCTATGGGCG AACAAAGTTATGAGTTACGCGAAAGAGGTACAAGAATGTTGCTAACTTTATCTAAATGGGTTCAAAACGAAAATGAG ATTGTGTTAGAAAATGAGTCGCCATTGATGAAGCTTATTTCTGCATTGCCCGAGATTGGTTTAGTTGATAATAATAT CTCTGAAAACGTTATCCCTTTGTCGGATTCGGCAGTAGGAAAATTACTGCAGTTTGGAGTAAATCAATGCCCTGGAC TCGCTAAAGCGTGGGCTAATTTCGGAGCGTGGTGTTTTAGGTGGGGCCGTAAAATGGTCGAATTCAGCTCCAAAACA AAAGAACAATTAACTGACAATGATAAATTGCAAATAGAGAGCGTGATGATAGGATGTTCACCACAAGATTTTGAAGC AGTATGTGAAATACTTTCCAAAACGAAAGCAACATGCGATGATGAGGATATAGATTGGAATGAAATTAATACATCTG AAATGATTGAGAATCAGCTACGTACAGTTCCATCATTAAATAATGCTTATCCAGAGGATCTTGCTTTATTAGTGGAC

ATTTGGCGACAAGCGCAGAAACGAGTATTTTCGTATTTCGAACTTTCGGCCGACGCCTATTTCAAGTTTCTACAGCT TATTTGCGCTTCAGATTATATAAATCACAGTGGCGAGAACGCAGTTGTTAACGCCACTCTGAGACTTCTTCGTCTCA TAGTTAAACATGCCATGGAACTTCAAACGGTTCTTGAATCAGGGCTAGCTAATACGCCTACTCAGCCCTGGAAAGTC ATAATTCCGCAACTGTTTTCTAGGCTCAATCATCCTGAAACATACGTTAGAAAGTGTGTGTCTGATTTATTGTGCAG ATTGGCGGAGGACACACCTCATCTTATAACGTTTCCTGCGGTTGTTGGTGCGGTAGAAAATGAAGAGAACAGCTTAA CGGAGCTTGGCGTGGCCAGATCTTTTCTCTCTAATGACGAAGCAGATATCGATGAAAACAATTTTGACATAGAAGAT GCTGCAAGTGATAAAATGGTCAATAACGAATTAAATTCTTGTTTTCTCGATATGGTGGAAACGCTTTCAAAACAAGC CCCAAAGACTATCTTACAAGTGAAGTTATTGGTAAAGGAATTACAAAGAATCAATCTATTATGGGATGAATTATGTC TTGGGACATTAGTTCAACATCATTCAGAATTTAGTAAACGACTAATGCAACTAGAAGCTGAAATTGTAAAGGTTAAA AATAATGCGAATTTGTCTACAGAAGATAAAGAGAAACTTATAAAGGAAAAGCATAGAATAATATTTGACCCGGTAGT ATTTGTACTAGAACAACTTTATCAGATAACATCGGCTAAACCAGAAACACCACACGAGACAGCTTTTCAACATAAGT TTCAATACTTAATTAAGGATGTTATAGACAAACTGAAAAATCCCGCAAATCCCGAAAAACCTCAAGAATCGTGGGCT CCTCTAAAACAGCTACAAATAAAACTACAACAAAAAGTAAACAAGCGAACATCGTATATTTTGAAAATGTCAGATAT CAGTCCCATATTGGCGGAAATGAAGGACACTGTTATAACAATGCCAGGTTTACATACAAATCAAAGAACCGTAAGAA TTACTATCCGATCTGTGGAAAACAATGTTGCAATTTTACCAACGAAGACAAGACCGAAGAAGTTAATATTTTATGGA TCAGACGGTAAAGCTTATACCTACTTATTCAAAGGGTTGGAGGATTTGCATTTAGATGAAAGAATAATGCAATTACT CTCCATAACAAATACGATGTTGGCGCGAGATTCAGAACATAATGATAATCAAACGTACAGGGCACGTCATTACTCTG TAATACCATTAGGCCCACGCTCCGGTTTGATCAGCTGGGTGGACAACGTGACCCCCTTGTTTGCGTTGTACAAGCGA TGGCAAAATCGAGAAGCCGCCTTTATATCGTCGAAGCTTAATAAACCGGTGAACATACCGCGGCCCTCGGAGCTGTT CTACAACAAGCTGACTCCGTTGCTGAAAGAAGCGGGCATATCCACGGAGAATCGGAAAGAGTGGCCAGTGTCGATAC TGAAACAAGTGTTGGAGGAGTTAACCGCGGAGACCCCACGCGAC
>aly2548.11.2:A71G | Function unknown
GAAACACTTCAAGGCATTTTACCCCCACCGTCAGTGACAACACTGAAAACAGATGTGACACAAATGCTCAAGAAATA CTACTGTTTCCTGCCAGCGTTCAACGAACCAAAGATAGACCCAGAGGAGAACTCCATGACACCCACAAAAAAAGTAT CTTTTGTGCACATTCCTACAGAATTGGTCTCGTCCCACTCCCACGAAGAGGTCGCCCATATGGCCTCTAAAAGTTGT ACAAGTGGGGAGACAAAGTACAATTACATGAATACCAGTTCAAAGAGAGACAGTGATCAGAATACCAGCACTGGGGA CCGGAGTATTGAACCTAGGATGTGTACTGAGTTGGAAGCAACTGATATGGTGTGGCCAGATGTACTCAAATGCAAAT ATTATGATGTT
>aly822.26.1:A174G | Protein-lysine methyltransferase METTL21D
ATGAAACTATTTCTTGAAATAAACCCTTTCGGTAAACTAAGTAACGATACTTTAAGCAATATCGCACAAATGTCTCA TCGAAGATCAAGTTTACAACCCAATGATTTATATCCGAGGGAAATAGATATCGAAGTATGTTTAAAAACTTTGAAAA TATATCAAAAGTTAGAGGGAGATGTAAATTGTGTTGTTTGGGACGCATCATTAGTTTTAGCTAAATATCTTGAAACT ATGAGCCATCAAAAGCCTGATTTTTTGAGTGGAATGAAAGTTTTAGAATTAGGTGCTGGTTTAGGAGTTGTGGGACT CACAGCGGCCACCTTG
>aly7758.8.1:C31A | Protein LLP homolog
ATGGCAAAATCCATTCGAAGCAAGTGGAAGCGGAAATGCAGAGCCATCAAACGGGAGCGTTACGCTGTGAAAGAACT GGCCAGATTGAAGAAGATGCTCGGTGTTAAAGAGGAAGAAAAAATCACAGAGAATGAGGTTATGGAGTCCGACCAAG TTATATTATTTGACGCGGCAGATTTGAAAAAGAAGAAGAAGAAGGAGGTGAAACCGACTCCGGAGGATCCTGACGAC GTAGAAATGAGTTCTGAGGATGAAAGAATCGAAGTTGAGGGTGAAAGCGGGCAGAAAAGAACATTTAGTTCCAAAAC GTTAAAAGACGAGGATGGACAGTACCCCGTGTGGCTGCACAAGCGGAAGATCGCGAAGATGAACAAAAAGACGACAA AAAAGATAAAGAAACGTTCAAAAAAGAGAAGGAGA
>aly318.14.16:T4044C | Cadherin-related tumor suppressor
TTTAGAGAAAATAATAAATCATCATTTAACTTATTGGTTTTGGCTTCAGACTGTGGTGTAAACTCAAGACAAACAAC CGCTGAGCTAAATCTAATACCTAAATCTGGGAAGAATTTTCCAAAGTTTAGTGTAACTAATAAATTGACATTCACGT TTTCGGAAGATACACCTGAAGGTGTTTTAGTTACTAGACTGTCAGCGTCATCACCTAAAAAAGGGCCCAGTGGTTTA TTACAATATTCTGTTGCTGGAGGTAACGTCGGCGATGCTTTGCGTGTAGAACCAATGAGTGGTGAAGTGTTTATCAC TGGTAAAGGTTTAGATTATGAAACAATGCCACTTTACGAAGTTTGGTTTGAAGTTAAAGACTCTGATAATCCACCCT TGAAGTCTTTTATTGAGATAGAAATAAAAGTAACAGACGCAAATGATAATGCCCCTATGATTGAAAATGTATTATAT AATGCAACTGTTCCCGAAGAAGAATCACCACCTCAATTGGTCATCAAAATAGACGCCCATGATGATGACTCAAATGA AAATGGAAGAATATCTTTCCGACTTGTCAATGATTTTGAAGAAACTTTTAAAATTGATTCGGAAAACGGAGAAATTT CTACAAATATTGCATTAGACCGAGAGTCAATACCTTTCTATGAAATATTAGTAGAAGCTGTAGACCATGGTGTACCT CAGCTTGTGGGAACATCAACTGTATTAGTAACAGTTTTAGACAAGAATGATAATCCACCAAGATTTACACGTCTTTT CAGTGTAAATGTCACTGAAAATGCAGATATCGGATCATTTGTAATTAAAGTGACAAGTTCAGATTTAGACTCTGGTC

CGAATGCTAATGCAACTTATAGTTTTGTTGAAAACCCTGGTGAAAAATTTATAATTGATCCAATAAGTGGAAATGTA ACAGTTGCACGACCGTTGGATCGAGAAATTCAAGATGAATATATTCTGAAAGTTGCAGCAATAGATGGGGCTTGGAG ATCTGAAACTCCTTTGACAATTACAATTCAAGACCAAAATGATAATGCACCAGAATTTGAATACTCCTATTACAGTT TTAATTTCCCAGAACTACAAAAGAAAAATAGTTTCGTGGGTCAAGTGATAGCTACTGACAAGGATAAGCAAGGCCCT AATTCTATTATATCCTATTCTTTACAACAAACTTCAGATTTGTTTTCTATAGATCCTGCCACTGGTGAAATATCAAG TAAATTTATGATGAACTATAAGAGAACATTAGTAAATTCATCACCTGAAAATACTTACTCCGTTACTGTCGTTGCAA CCGATAACGGTAAACCACCAATGTCATCTGAATGTCTTGTAACCATAAACGTCGTTGATGCAAATAATAATAAACCT AAATTTAATCATCATGAAAAATTTGTACCGGTACCTCAAGATGCGGCACCTGGAGAAAAAATAGTAAGGCTTAAAGC TGAAGATAATTTAGACTTTGGAATAAACGCTGAAATAGAATATTTTGTTTCGGGCGGAAATGGTACAACATACTTTA CAATACACAGGACAAGTGGGTGGATCATATTGAACAAACAATTCTATTTTATTGGAAAATACTATGAGCTTAATGTT AAAGCAGTGGATCGAGGTGTTCCTCCTCAGTGGGATGAAACGACAATTACTTTTGTCGTAACTGGCGATAACATACA TAGTCCTAAATTCACTGCATTAAGTTATCAAGTGATTGTACCAGAGAATGAACCTGTTGGCGCGTCAATATTGACTT TAAAAGCCAATGACGAAGATCAGGGGCCTAACGGTATAGTAAGATATGAAATATCTTCTGGAAACGCCGGAAAAGAA TTCCAAGTGCATCCTATAATAGGTACTATAAGTATATTACGCCCACTTGACTATGATGAAGTTCAAGAATACCGTCT TAATATTACCGCAAAAGACCTTGGTTTTAAATCAAAGGAAACCACTGCAACAGTGACTATCATATTAACCGACATTA ATGACAATGCTCCTCAATTTAATCAAAGCATGTATGTTGCTTCCTTGCCCGAAAATTCACCCGTAAATAGCTTCATA TTTAAAGTGCAAGCCATTGATATCGATTCTCCAAAGAATTCCATTATTAAGTATAGGATAAATAATGAAATGACATC ACTCTTTCACGTAGATGTTAACACCGGTAAAATATTCTCTAAGGAGGTTTTTTGATTATGAAGAAAAAACAGAATATA GATTGAAAATAGTAGCGGAAAATCCAGACTCGATAATGCGTAGTACGACAGAAGTTATTGTTCATATAACAGGTGTC AATGAGTTCTACCCAAAGTTTATACAACCAGTATTTCACTTTGATGTATCAGAATCTGCTGAAGTTGGAACGAATGT GGGAGTAATTCAAGCAACTGACCAAGATAGTGGCGATGATGGCATTATATACTACTTATTTGTAGGTTCAAGTAACG ATAAAGGTTTTAGTATCAATGCACAAACTGGCGTGATCAGAGTAGCAAGATATTTAGATCGAGAAACACAAAATAGA GTTGTATTAACCGTTCTAGCAAAAAATTCAGGAGGTATTCATGGCAATGATACAGATGAAGCTCAAGTCATTATATC CATTCAAGATGGTAATGATCCTCCGGAATTTTTGCGACATTACTATGAGGTTACAATTTCAGAAGGTGCAAATCTTG GACAAAAGGTGATTCAAGTAAAGGCTGTAGATAAAGATGTCCGGCCTCAAAATAATCAATTTAGTTATTCAATAATT GAAGGAAATGTAAACCAAGATTTTAAAATTGACCCTCAAAGTGGAGATATTGAAGTTGCTCGACAGCTTGATAGAGA ATCATTATCAATGTACACTCTTACTGTAGGTGCTATAGATACAGGAATACCTCCACAAACGGGCACTACAACAGTCA AAATATTATTAACAGACATAAACGACAACGGTCCAGTCTTTGATGTGAATAATTTTGATGGTGCAGTTTATGAAAAT GAGCCACCTAATACAAGTATTTCAACGCTTACAGCTAAAGATCCAGACTTACCGCCAAACGGAGCTCCTTTCTCATA TGCTGTTGTCGGTGGCAAACACCAGGCTTATGTAAAAGTACATAGACATACAGGAGTACTCTTAACGACCAGAAAAA TTGATAGAGAGCAAACTCCCAACTTGGAAATTATAATTCAGATTGAAGATAGTGGTTCACCTGTAATGACTTCTAAT TACACTATTCTAATAAAGGTATTGGATAAAAATGACAATCCTCCCACGCCAAGATCTGCCCACGTGCTTGTATATGC ATTTAATAATAGAATACCAAGTGGGAAAATCGCTGATGTAAAACCAAATGATCCTGATATTGTTGGGGATTATAAGT GTAAAATTATCAAGGAATCCACATCAGAAAATACACTTGCATTATTGAGTATCAGAAGAGGCTGTGATTTATATACA AATGCCGTTAAACCAGGACAAGGTTATTCTTTTTCTGTATCAGGAAACGATGGAATTCATCGAGATGTTTTGTCGTC CATTAGTGTTGAATATTTCACTTTTGATAATACAACTGTAGAACAGTCCATCACTTTGCGGGTTATTAACATGACAG CAACCGATTTTCTTAAACATTATTATCGTATCTTACTTGAAATATTAAAAGTTGGATTAAAAAGTAAGGAATACATC TACTTGTATAGCATAAACGAGTCAAAGGAAAATTTGGACCTAACAATTGCAATCAAAGGCAATAATTCTGTATGGAA AAAAGGAAATACGGAAAATCATATCAAATCAAAGGAATTTGAAATTACAAAAGTCTTGAAAAGTCACATTATTGTAT CATACTATCCGTGTGCTGTTCATAAATGTCAAAATGATGGAGTATGTACTGATGCAATTAAAGTATTGGATGATACT AAAATTACGGAAAGTTCTACACTTATAATTACATCCCCCCTGGTAAAACATGAATATACATGTCATTGCACTGATCG TTTTATGGGAAATAATTGTGAGATGCGTCAAGATCCATGTTCGCCAAACCCGTGCCACTTTGGAGGACAATGCCGAA AACAAGGCTACGATTTTGTTTGTTCATGCCCAGCAAGGCGCGAAGGGAAAACATGCGACTTAGAGAGAGATGATGTC TGCAGTAGTAATCCATGTAAAAATGGAGGCTCATGTAAAGAGAGTTCTGACAGAAACTCATTCTTTTGCTTGTGTCG CCCAGGATATCGTGGTAATCAGTGTGAAGCATTGGTTGACTCTTGCCGACCTAATCCCTGCATGCATGGAGGTATAT GCATCAGTCTGAAACCGGGCTATAAATGTAGTTGCACCAACGGTCGTTACGGTACACATTGTGAAAGTTCAACATTT GGCTTCAATGAATTATCCTACATGCAGTTTCCGGCATTAGATGCATCTACTAATGATATAACAATAATATTCGCAAC AACTAAACCTGATGCACTTCTACTTTATAATTATGGTGCTCAAACTGGAGGCAGATCTGATTTCATTGCAATTGAAC TTCTTGGTGGAAAACCAGTATTTTCTTTTGGGGGAGCAAGAACATCGATAACATCTGTCAGCATTACAGAAAATGAC AAAAATCTTGCAGACGGAAGATGGTACAAACTTACAGCTACTAGAAATGGACGCGTGATTTCGTTGAGCGTCACTTC GTGTACAGATCATGGTGACGTTTGCATGGATTGTGAACCTGGCGACGATTCGTGCTATGATGACGATACTGGACAAG CA
>aly990.1.14:A84G | Down syndrome cell adhesion molecule-like protein Dscam2 TTAGATGAAATACGTCATGGCATCGAGATAGAAGACTTACAGCCAGCGACTAGTTATTCTGCGAGGGTGGCTGGGGG CAATCAAGCGGATTTAAGCCCTTATTGCACGCCCGTGCGATTTTCCACTACTGAGGAA
>aly851.9.1:A186G | DNA polymerase epsilon subunit 3
ATGGCCGAAAAACTCGAAGACTTGAACCTGCCTATGACCGTAGTCACCAGGATAGTAAAAGAAGCTCTTCCGGAAGG CGTTTCTATATCTAAAGAGGCGCGAACAGGGCTGGCAAAGGCGGCATCAGTATTCGTCTTGTACGTGACTTCAGCGG CCACTAATATTGTTAAAAACAATAAGAGAAAGGCGTTAACTGGTCAGGATGTGGTAGAAGCCATGAAGGATATAGAA TTCGACAGATTTGTTGAACCACTAACCGAAGCATTAGAGAACTATAAACAAGCAGTTTCGGCGAAAAAAATGTCAAA TAAAAAGAAAGACGACGGCGACGAGGTTGAAATAATTGAAGAGGAC

>aly276558.16.1:T219C | Cyclin-related protein FAM58A

ATGAAGGACGTAATAGATGTTATGGCTTTGCAAACCACGCGACGTGAAAAGCGATTACCTGATTACCGAAGCGCTCC CGGACACAGTCTAGCCACAAATTTTATTTTTGAGTGTGGCATAAAACTCGGTCTACAACCGGCGACAGTGGCCACAG CTGCGATATTTTACCACAAGTTCTTCAAGGAAGCTGACAGGAATGACTACGACTGTTACGTTATTTGTACGGCATGC CTCTGTGCTGCAGGGAAGTCGCGGGATGAACCGGTACGCTTGCGAGATGCTGTCAACGTCGCATACAATTCGATCAA CCGAGGCGCCGGTCCTTTGGAATTCGGGGATGAATACTGGTCATGGAGGGGCGTGGTCGCTCAGGCGGAATTGCTCG TCCTGAGACTTTTGGGTTTTAACTTGGAAACCCCTTCACCCCACAAATACTTGTTACATTATCTTCGTTCTTTGCAA GAATGGTTCCCTGCATCTCATTGGCGCACGGCACCCATTGCCCGCACCGCCATGGCCTTTCTACAAGATTTCCATCA CTCTCCATCAATATTAGATTACAGAGCACCACACATAGCTGTAGCGGCCTTAACACTGGCATTGAATGTTTTGGGAG TGTCCGTGCCTTTGGCTACTACCTTGGAAGATGAGGCGTGGTACTCG

Abstract

>aly276558.16.1:T222C | Cyclin-related protein FAM58A ATGAAGGACGTAATAGATGTTATGGCTTTGCAAACCACGCGACGTGAAAAGCGATTACCTGATTACCGAAGCGCTCC CGGACACAGTCTAGCCACAAATTTTATTTTTGAGTGTGGCATAAAACTCGGTCTACAACCGGCGACAGTGGCCACAG CTGCGATATTTTACCACAAGTTCTTCAAGGAAGCTGACAGGAATGACTACGACTGTTACGTTATTTGTACGGCATGC CTCTGTGCTGCAGGGAAGTCGCGGGATGAACCGGTACGCTTGCGAGATGCTGTCAACGTCGCATACAATTCGATCAA CCGAGGCGCCGGTCCTTTGGAATTCGGGGATGAATACTGGTCATGGAGGGGCGTGGTCGCTCAGGCGGAATTGCTCG TCCTGAGACTTTTGGGTTTTAACTTGGAAACCCCTTCACCCCACAAATACTTGTTACATTATCTTCGTTCTTTGCAA GAATGGTTCCCTGCATCTCATTGGCGCACGGCACCCATTGCCCGCACCGCCATGGCCTTTCTACAAGATTTCCATCA CTCTCCATCAATATTAGATTACAGAGCACCACACATAGCTGTAGCGGCCTTAACACTGGCATTGAATGTTTTGGGAG TGTCCGTGCCTTTGGCTACTACCTTGGAAGATGAGGCGTGGTACTCG

[^0]>aly536.115.1:A576G | YTH domain-containing protein 1 ATGGAGGTCTCCGGTAATACTGATGCCGTCAACCTTGGCGTTGGTGAAGCAGAGGCCGAGATAGGGGAAGAACTCAA GCAGTTGGAGGAGATAAAGGATTTTGATACTAGAAGTGAAGTATCGAGTTCATCTTCTAGTGATTCAAGCACGCCTA GTATTAGTTCCGTTAGTACCAAGTCTAAGGATAAACGAACGAGTCGTAAACGCAACAAGTCTGGCAGTCATTCTCCC GTACAAAATAAACGACGTTGCCTTACTACATCCACTAACAAAATAAAGACTTACGATTACATGACAAAACTTAATTA TCTGTTCAGAGATACACGATTTTTCTTGATTAAATCTAATAATGCTGAAAATATAACACTGTCGAAAGCCAAAGGAG TATGGAGCACTCTTCCACAAAACGAAGCTAACTTGAATCAAGCTTATCGTGAGTCCCGAAATGTTCTTTTGATATTC TCAGTAAAGGAGAGTGGAAAGTTTGCTGGGTTTGCTAGACTGGGAAGTGAGTCCCGACGCGATGTACCGCCCATATC GTGGGTACTGCCGCCCGGTCTCTCGGCCAAAGTATTAGATGGTGTGTTTAAAGTCGACTGGATATGCAGAAAGGAAT TACCATTCAGCAACACCCTTCACCTGTATAATCCATGGAATGAAGGAAAGCCGGTAAAAATAGGTAGAGATGGACAA GAAATTGAACCAAAGGTTGCAGAAGAACTGTGTAGATTATTCCCAGAAGATGATGGTATTGAAATGACTCCAATATT AAGAAAATCTAAGGAAGCTTCTAAGAAAAGCTACATGAAGAGTGGTGGTAGCTATAGAACGTACAGAGCACCTCTGT CTTCTCGGGGTTCCAGTTTTAGAAATCGGATGAGTGGGTCTTCTAGAAGCAGACGGAAACCTTTTATGCCCCCACGG AACCGTTCATACAAGAGACGGTCACCATCTCCATATATGAGAGATCGTTTGTCAAATTGGTTTGGTCGTGCCCGAGA AAGTTATGTGAATAGTGGATCTGCTGCAGCTGAAGCGTATGTGGCAGAGTATATGCGCACAATGCATCATCAGCTGC CACCAATGCCATATGTAGCACCACCTGGCTTTACCAACCCACTTCCCGCCTATGATGGGTTGCCACCACCACCACCC CCTCCTCGGTACTACGATTTATCAGACTACTCTCGATCCATGCTTGTGTATGACAAGAGATCATATGAACGTTCTGT TGATGAGTTTTTGTGGCGCACTACCGATCGCACCCGTGGCCGTAGTCGTGACCGTGAAGCACACAGATCATACCGTG ACCGTCGT
>aly207.4.1:T58C | Anaphase-promoting complex subunit 4
ATGTTTAGCTGCAGGATGAGGCAAATGGAAGAAAGGCATGTTGCAAATCAAGTGGACTTAATGGTTTGGAGTAACCG GCTTGATTTGTTAGCACTAAGTAATTTTTAAA
>aly2954.5.2:C185G | Integrator complex subunit 3 homolog
AGATATGAAAGAGCGTACAATTTTTTTCAATCTCTGGTGGCGGATTGCAGTGAAAAAGAGGCACACGATGCTCTCAA CAATGCAGTTTGTAAAAATCATGAAGATGTATCGCTGGGCATGTTAATGTCTATTCTCACAGAGCCTCACAATGCCA CCAAATGCTACAGAGACTTAACTCTCATTAGCAGAGATGGATTAACATGTGTGCTTAATAATTTGTCTAATTTGATT TTGGAGAGATACTTGAAATTTCATGACACTACTCGGAATCAGTTATTGTGGTTGCTTAAGGAAATGATAAGGAATGC TGTCACAGGAGTGGACAGCGTGTGCTGGAATCTAATGCGTTATGCTTCTGGCGGAGATATAACACCCAAAAACATAT TCCTAGTTGAATCTCTATTGGACATATATATAGATAACAGAATGTGGCTAGACAAATATCCCGTACTTATCTGTATG GTGGTGTACACATACTTACGTTTAATAGAAGATCACAATATCCCGCAACTAATGGCTCTGCGGCAAAAGGAAGTAAA CTTTGTTATAGCATTGATAAGAGAGCATTTTACAGAAGTTCTAACTTTGGGAAGGGACTTGGTACGACTGCTGCAAA ATGTTGCTCGTATACCAGAATTTAATCAATTATGGCAAGACATCTTAATGAATCCAAAATCTTTGTCTCCCACATTT ACTAATGTCCTGCAACTCCTACAGACTAGAACTTCACGCAGATACCTTCAATCAAGGCTCACACCAGATATGGAAAG GAAATTAGTTTTCTTAACATCCCAAGTAAGGTTTGGCCACCACAAAAAGTATCAAGAATGGTTCCAAAGGCAGTATC TCGCTACTCCAGAATCTCAGAGTCTTCGAAGTGATATGATTCGATTTATTGTTGGTGTAATACACCCCACAAATGAA TTGTTATGTTCTGATATTATTCCAAGGTGGGCTGTCATTGGATGGCTTTTGACAACTTGTACATCAAATGTAGCAGC TTCAAATGCGAAACTAGCTTTATTCTATGATTGGTTGTTTTATGAACCAGATAAAGATAACATCATGAATATTGAAC CAGCCATTTTAGTGATGCACCATTCAATGAGGTCACACCCTGCTGTAACAGCAACCCTACTCGACTTCTTATGTCGC ATAATTCCTAACTTTTATCCACCCTTTTCTGATAAAGTAAGGCAGGGAATATTTAATTCTCTCCAACAAATAATTGA GAAGAGAGTACTGCCCAATCTGCAACCGCTCTTTGATTCTCCAAAACTAGACCGAGAGTTACGTACGACAGTAAGAG AAACATTCAAAGAATTTTGTACCAATGGGAATGGAGAAGGGGCATCTGGAATTAGAGATGAAGGTAATGAAGAATTG CCACGAGTGGGATCTGATGAACCTGCATTTTCGGATGATGAGGAAGAGATTGCCCCAAATATTGCAGATGATACCGA TGACGATGATTTACCTTTATCGGAGGTACGTGCACGTGAGCGGCCAGAGATATCTGCCGCATTTCCATTAGTTTTAC GACCTTATGCTGAAACTCTTCTAGATGAGAGAACACCAGCTGCTGCCAATGCACTGATAAATGCGTGTACTAATACG ATGCCACCGTTAAATGTTTTAGCAGATATTTTTGCTGCAATACAGCAGGATTCGCCACGCATACGAGTTAGCCGTTA TCCTACAAATGCAGAAATTGAGGCTATTCTAAACACTCCGTTATTTGGCCTTTTAAATATTTTCATTAGTGCAGGAG ATGATGCAAAACGCAAAGTAGTAGTCGATTTATTCAAGGAATTTCGAACAACAGCTATAGTTGATTGTGTTGGATAC TATGTACTGTTCTACTTGAAAGTTAGTTATGAACGTGAAAGGCGAGCTGAACGAGATGGTGTTAAAAAAAGAAATGT TAAATTTAAGTCCGATATATATAAGGAGTATTGCAACGCTCTACATGTAAAAGTCTCAGATAATTTAGCTTACGATT TTGCAAGATGCCTCGATGTTAGTGCTCAGCTTGTTGGTTGGCTAATTCCTGATGTTTACAGAGAATTTAAAGACCAA GCACAAAATCACATTGATCTCCTTCACACTATTGTCTGCGGATTAGACTCATGGCAACTGCAACGTTTGGTATGCCT TACCCTTCAAGGAAACCTAATGATGTTTAAATCTGATGATATCATAACAATGCTTTCTACGAGCCTTGATTGGGAGA CGTTTGAGCAATATTGCTTGTGGCAACTTCTAACAGCACATGACATTTCTGTGGAAGATGTTTTGCCTATTATTCCA AAATTATCATTCAAATTAAACACTGAAGCTCTCACATCAGTGCTGTTGATGTTGAAACAGGAAAGACCAACTGCAGA TGTTTTAAGACAAATGTTCTGTAGGACTGTGGATGAGGCTGATAATTTTGTTGTTTCAACTATAATGTATTGGTGTC AAGACTATGAAGACAAAGTTGGCGACTTGCTCGCAGTTTTGCTAAGCACACGTTATCCAGGGACTAGTCCTAACAAA AGGAAACGCCCTGGGAAGCACACCATTCCACCCAATGCTCCACCTTCTGCCGAATCG
>COI barcode reference sequence, many positions are used as characters AACTTTATATTTTATTTTTGGAATTTGAGCAGGATTAATTGGAACTTCATTAAGTTTACTTATTCGAACTGAATTAG GAACTCCAGGATCTTTAATTGGAGATGATCAAATTTATAATACTATTGTTACAGCTCATGCTTTTATTATAATTTTT TTTATAGTTATACCTATTATAATTGGGGGATTTGGAAATTGACTAGTACCCCTTATATTAGGAGCCCCAGATATAGC TTTTCCTCGTATAAATAATATAAGATTTTGATTATTACCCCCATCTCTAACTCTTTTAATTTCAAGAAGTATTGTTG AAAATGGAGCAGGTACTGGATGAACTGTTTATCCACCTTTATCTTCTAATATTGCCCATCAAGGAGCTTCAGTAGAC TTAGCAATTTTTTCATTACATCTTGCAGGAATTTCATCTATTTTAGGAGCTATTAATTTTATTACAACTATTATTAA TATACGAATTAATAATTTATCTTTTGATCAAATACCATTATTTATTTGAGCCGTTGGAATTACAGCTTTATTATTAT TACTTTCATTACCTGTTTTAGCTGGAGCTATTACTATATTATTAACTGATCGAAATTTAAATACTTCATTTTTTGAT CCTGCAGGTGGAGGAGATCCTATCTTATATCAACATTTATTT

[^0]: >aly536.39.1:G60A | 3-phosphoinositide-dependent protein kinase 1 ATGAGCGGATTGACCATCAGAGTTAAAAGGGGATCGAGGGGTAGCGCCACACTGATCGAGGCAGCCAACAGAATTCT TAAACTTCTTGGAGTGAGCTCCACCAAGCGCGGGAAACAGCCCTCGCCAAAAGCAACTAAG

