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What is semiclassical/microlocal analysis
Observed link between (linear) PDEs and classical mechanics.

Example: light propagates the same way as billiard balls... But
WiFi doesn’t!

What’s the link between the d’Alembert wave equation and the
shortest path (geodesic) equation?

∂2
tu = ∆xu γ̈(t) = 0

XXth century revival:
▶ build quantum mechanics from classical mechanics

(quantization)
▶ recover classical mechanics from scale limit of quantum

mechanics (semiclassical limit)
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Semiclassical correspondence

Objects Classical Quantum

states (x, ξ) ∈ R2d ψ ∈ H Hilbert space

observables f ∈ C∞(R2d,R) self-adjoint F : H→ H

evolution (ẋ, ξ̇) = (∂ξf,−∂xf) i h∂tψ = Fψ

∂tg(x, ξ) = {f,g}(x, ξ) ∂t⟨ψ,Gψ⟩ = i
 h⟨ψ, [F,G]ψ⟩

Quantization: associate to f ∈ C∞(R2d,R) a family
Op h(f) ∈ L(H), such that, as  h→ 0,

[Op h(f),Op h(h)] = i hOp h({f,g}) +O( h2).

One practical recipe: pseudodifferential operators

H = L2(Rdx) Op h(ξ) = −i h∇
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Example: harmonic oscillator (mass on a spring)

classical ⇝ quantum

(ẋ, ξ̇) = (ξ,−x)

i h∂tψ = 1
2(−

 h2∆+ x2)ψ

???

x(t) =
√
x2

0 + ξ2
0 cos

[
t− arctan

(
ξ0
x0

)]

Hn; h(x)e
− x2

2 h
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Gaussian wavepackets
Introduce family of quantum states “corresponding to” a
physical state:

ψ(x,ξ)(y) =
1

(2π h)
d
4

exp
[
− 1

 h

(
|x−y|2

2 + i(x− y) · ξ
)]

.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
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Gaussian wavepackets

Introduce family of quantum states “corresponding to” a
physical state:

ψ(x,ξ)(y) =
1

(2π h)
d
4

exp
[
− 1

 h

(
|x−y|2

2 + i(x− y) · ξ
)]

.

▶ Op h(a)ψ(x,ξ) = a(x, ξ)ψ(x,ξ) +O( h) a ∈ C∞
c .

▶ ⟨ψ(x,ξ),Op h(a)ψ(x ′,ξ ′)⟩ = O( h∞) (x, ξ) ̸= (x ′, ξ ′).
▶ Exact harmonic oscillator formula:

e−
it
2 h (−

 h2∆+x2)ψ(x0,ξ0) = e
i
 h

� t
0 ξ(s)dx(s)ψ(x(t),ξ(t)).

In this example the Gaussian wavepackets behave classically!
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The Bargmann transform

Can one “reconstruct” any function from Gaussian
wavepackets? Introduce the Bargmann (FBI) transform

B hu : (x, ξ) 7→ (2π h)−d⟨u,ψ(x,ξ)⟩

Proposition
B h sends L2(Rd) into L2(R2d). It is an isometry on its image.

B h(L
2(Rd)) =

{
u ∈ L2(R2d), e

|ξ|2

2 h u is holomorphic
}

.

Bargmann space: B h(L
2(Rd)) = B h

Bergman projector: B hB
∗
 h = Π h : L2(R2d) → B h

Alix Deleporte Semiclassics and Toeplitz quantization
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Bargmann space I - a better gauge
From now on x+iξ√

2
= z.

Gauge change: the weight e
|im(z)|2

 h is not very symmetric. Tool:

|im(z)|2 =
|z|2

2 − z·z
2︸︷︷︸

holomorphic

+ ire(z) · im(z)︸ ︷︷ ︸
purely imaginary

.

Hence the L2 isometry u 7→ e−i
re(z)·im(z)

 h u changes B h into{
f ∈ L2(Cd), e

|z|2

2 h f is holomorphic
}

.

This corresponds to the (apparently weird) convention

ψ(x,ξ) : y 7→ (2π h)−
d
4 exp

[
− 1

 h

(
|x−y|2

2 + i(x2 − y) · ξ
)]
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Bargmann space II - Hilbert basis and projector

Hilbert basis of monomials (normalised, orthogonal, span B h):

Nd ∋ ν⇝ eν = πd hd+|ν|
√
ν!

zνe−
|z|2

2 h

Consequence: the projector has an integral kernel

Π h(z,w) = (π h)−d exp
[
− 1

2 h(|z−w|
2 + 2iim(z · w))

]
.

▶ For fixed z ̸= w, Π h(z,w) → 0 very fast.
▶ z 7→ Π h(z,w) = C hB h(ψ√

2w) is a Gaussian with centerw.
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Berezin–Toeplitz operators

We want to manipulate operators while staying in B h.
Natural object associated with a : Cd → R: quadratic form:

∀u ∈ B h,Qa(u) =
�
a|u|2

Bounded if a ∈ L∞, positive if a ⩾ 0, dense domain if a has
polynomial growth.

ToQa corresponds a Toeplitz operator

T h(a) = Π haΠ h

Goal: show that a⇝ T h(a) is a quantization, linked with
pseudodifferential operators.

Alix Deleporte Semiclassics and Toeplitz quantization



Bargmann-Fock representation
Towards a geometric picture

Semiclassical analysis

Wavepackets
The Bargmann space
Berezin–Toeplitz operators

Berezin–Toeplitz operators

We want to manipulate operators while staying in B h.
Natural object associated with a : Cd → R: quadratic form:

∀u ∈ B h,Qa(u) =
�
a|u|2

Bounded if a ∈ L∞, positive if a ⩾ 0, dense domain if a has
polynomial growth.

ToQa corresponds a Toeplitz operator

T h(a) = Π haΠ h

Goal: show that a⇝ T h(a) is a quantization, linked with
pseudodifferential operators.

Alix Deleporte Semiclassics and Toeplitz quantization



Bargmann-Fock representation
Towards a geometric picture

Semiclassical analysis

Wavepackets
The Bargmann space
Berezin–Toeplitz operators

Quantizing polynomials

First computations

T h(1) = I T h(z) = z T h(z) = (T h(z))
∗ =  hd

Here d = e−
|z|2

2 h ∂e
|z|2

2 h .

More generally

⟨u, T h(zαzβ)v⟩ =
�
uzβzαv = ⟨zβu, zαv⟩

so that
T h(z

αzβ) = ( hd)βzα.

z is like x and z is like ξ... With anti-Wick ordering.
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The harmonic oscillator revisited

Creation and annihilation operators (proof postponed):

B∗
 hT h(z)B h = x+ h∇√

2
B∗

 hT h(z)B h = x− h∇√
2

,

so that
B∗

 hT h(|z|
2)B h = 1

2(−
 h2∆+ x2) +

 h
2 .

Eigenfunctions on the Bargmann side: the monomials zνe−
|z|2

4 h .

Propagator eitT h(|z|
2)/ h=rotation around the origin.
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Calculus of Berezin–Toeplitz operators

From the anti-Wick property, we obtain

T h(a)T h(b) ≈ T h

 ∑
α∈Nd

 h|α|

α!
∂αa∂

α
b


Exact formula (finite sum) when a or b is a polynomial; valid
mod. OL2→L2( h∞) when all high enough derivatives of a and b
are bounded.

Remark: it is not true that the product of two Berezin–Toeplitz
operator is again a Berezin–Toeplitz operator.
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Wick/covariant/lower symbol

Since Π h has an integral kernel, then (as long as a has
polynomial growth) T h(a) = Π haΠ h has an integral kernel.

Wick symbol of T h(a)=restriction to the diagonal of the
integral kernel.

▶ Obtained by forward heat:

T h(a)(z, z) = ei
∆
 h a(z)

▶ The operator with Wick symbol zαzβ is zα( hd)β.
▶ T h(a)(z, z) determines T h(a)(z,w) by holomorphy.
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Wick symbols of pseudodifferential operators

Pairing between Gaussian states: define the Wick symbol of
A : L2(Rd) → L2(Rd) as

(x, ξ) 7→ ⟨ψ(x,ξ),Aψ(x,ξ)⟩.

▶ Consistent with last slide (via B h).

▶ ⟨ψ(x,ξ),Op h(a)ψ(x,ξ)⟩ = e
∆
2 ha(x, ξ) (forward heat at half

time).

▶ Conclusion: B hT h(a)B
∗
 h = Op h(e

∆
2 ha) (for every a ∈ L∞).
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Comments on regularity

If a ∈ C∞
c (R2d,C), one can approximately invert the heat

evolution

B∗
 hOp h(a)B h = T h

[
+∞∑
k=0

(−1)k∆ka
2kk!

]
+OL2→L2( h∞).

Remark: T h(a) is well-defined and bounded whenever a ∈ L∞
butOp h(a) is not.

Application: Gårding inequality:

C∞
c ∋ a ⩾ 0 ⇒ T h(a) ⩾ 0 ⇒ Op h(a) ⩾ −C h.
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Why you should like Berezin–Toeplitz operators

▶ Positivity, works in lower regularity.
▶ The harmonic oscillator is simpler.
▶ Microlocalisation is localisation.
▶ No caustics.

You may already be close to Berezin–Toeplitz operators if
you’re studying
▶ FBI or other wavepackets transforms.
▶ The physicists’ second quantization (anti-Wick ordering).
▶ Strong magnetic fields (Bk is the first Landau level for a

constant magnetic field)
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Caveat emptor

▶ Beware of factors
√

2 when changing quantizations.
▶ Beware of gauge changes.
▶ Sometimes the natural FBI transform yields

anti-holomorphic function spaces.
▶ Beware of symbol spaces.

Some serious references (with locally constant conventions):
▶ G. B. Folland, Harmonic analysis in phase space.
▶ M. Zworski, Semiclassical analysis.
▶ A. Martinez, Introduction to semiclassical analysis.
▶ B. Hall, Holomorphic methods in analysis and

mathematical physics.
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From Euclidian space to the torus

Goal: build a space of functions invariant by translations along
a discrete lattice, and study how Berezin–Toeplitz operators
with periodic symbol act on them.

First: what are translations? If f ∈ B h then f(v+ ·) ∈ L2 but

f(v+ ·)e
|·|2
2 h is not holomorphic.
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Magnetic translations

Idea: in the classical world, translation on the x axis means
following the Hamilton flow of ξ.
Set

Ux(t) = exp(i t hT h(im(z))) Uξ(t) = exp(−i t hT h(re(z))).

Now T h(im(z)) =
T h(z)−T h(z)

2i = z− hd
2i .

Transport equations! Solutions

Ux(t)f : z 7→ f(z− t)e
it
 h im(z)

Uξ(t)f : z 7→ f(z− it)e−
it
 h re(z)

Alix Deleporte Semiclassics and Toeplitz quantization
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Noncommutative geometry

Beware that T h(im(z)) and T h(re(z)) do not commute! Neither
do Ux(t) and Uξ(s) in general.
A computation yields

Ux(t)Uξ(s)Ux(−t)Uξ(−s) = e
2i ts h .

Requirement for commutativity: Area of fund. domain is a
multiple of π h.

From now on,  h = 1
k , with k→ +∞, and the area of the

fundamental domain is a multiple of π.

Alix Deleporte Semiclassics and Toeplitz quantization
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Floquet theory

For a lattice Λ as above, it makes sense to consider functions f
such that

▶ z 7→ f(z)e
k|z|2

2 is holomorphic
▶ f is invariant under translations by elements of Λ.

How large is this space?

Proposition
At least when k is large, the dimension of this space is
kArea(C/Λ)

π .
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Dimension of quantum space

Quick proof: the projector on this space is
∑
λ∈ΛUk(λ)Πk and

Πk decays rapidly away from the diagonal so that

dim = tr(projector)

=

�
C/Λ

∑
λ∈Λ

Πk(z− λ, z)eikim(λz)dz

=

�
C/Λ

Πk(z, z)dz+O(e−ck)

=
k

π
Area(C/Λ) +O(e−ck).
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Coherent states

Let Pk =
∑
λ∈ΛUk(λ)Πk =

∑k
j=1 e

∗
j ej be the reproducing

projector of our space. It has an integral kernel, and freezing
the second variable we obtain the coherent states

ψw : z 7→
∑
λ∈Λ

Uk(λ)Πk(z,w).

Remember that Uk(λ) acts by translation and multiplication by
the exponential of a linear term and Πk is a Gaussian.

Bottom line: ψw is a Jacobi theta function.
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Computing Toeplitz operators
Set Λ = Z+ iπZ. Given f : C/Λ→ R, we can quantize into
Tk(f) = PkfPk. But theta functions are not very practical...

Proposition

▶ The spectrum of Tk(cos(2πx)) is {cos(2πj/k), 1 ⩽ j ⩽ k}.
▶ The map between the eigenbases of Tk(cos(2πx)) and
Tk(cos(2ξ)) is the discrete Fourier transform.

▶ The composition rule for these Toeplitz operators is the
same as on C:

Tk(a)Tk(b) = T h

[ ∑
α∈Nn

1
k|α|α!

∂αa∂
α
b

]
+O( h∞)

Example: finite differences for ODEs on the circle.
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The quantum space

What exactly is the space here? It is NOT a weighted space of
holomorphic functions over the torus (there are none except
constants).

As one translates along the horizontal or vertical direction,
one has to update the gauge.

Right setting: Sections of a C-bundle L over the torus.

Topological invariant of C-bundles over oriented surfaces: first
Chern class. For L it is exactly Area(C\Λ)

π .

The projector Pk acts on L2(M,L⊗k) and projects on those
sections that are holomorphic.
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Stereographic coordinates

stereographic coordinates. Consider the weighted holomorphic
space

{f ∈ L2(C,C), s 7→ f(s)(1 + |s|2)
k+2

2 is holomorphic}.

Spanned by the orthonormal basis

ek : s 7→
√

π(k+1)!
m!(k−m)!s

m(1 + |s|2)−
k+2

2 0 ⩽ m ⩽ k,

projector kernel

(s, s ′) 7→ π(k+ 1)
(1 + |s|2)(1 + |s ′|2)

(
1 + ss ′√

(1 + |s|2)(1 + |s ′|2)

)k
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Computing Toeplitz operators
Given f : S2 → R, first apply the stereographic coordinates,
then compute its matrix elements in the monomial basis above
⟨ek, fek ′⟩.
E.g. (x,y, z) coordinate functions of S2 → R3.

x =
2re(s)
1 + |s|2

y =
2im(s)

1 + |s|2
z =

1 − |s|2

1 + |s|2
.

Result: T h(x), T h(y), T h(z) are the spin matrices Sx,Sy,Sz, at
spin S = k

2 .

Example at k = 1, Pauli matrices

T1(x) =
1
2

(
0 1
1 0

)
T1(y) =

1
2

(
0 i
−i 0

)
T1(z) =

1
2

(
−1 0
0 1

)
.
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Representation of SU(2)

In general, one finds the exact commutation relations

[Tk(x), Tk(y)] = i
kTk(z) and cyclic permutations.

That’s because the Hamiltonian dynamics associated with
(x,y, z) are the rotations of the sphere along the axes, which
preserve the structure (in general one would only have
approximative commutation relations).

Interesting for physicists: many spins (tensor product of these
spaces and operators).
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Understanding the quantum space - I

What’s the relationship between the geometry of S2 or Cn and

the weights (1 + |s|2)
k
2 +1 or ek

|z|2

2 ?

Fact 1: the volume form in stereographic coordinates is
(1 + |s|2)−2ds (explains the offset by 1).

Remember gauge changes? The only thing which matters
seems to be ∂∂ log((1 + |s|2)) or ∂∂|z|2.

Fact 2: we obtain the natural Riemannian structure in both
cases.
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Understanding the quantum space - II

The sphere is covered by the domains of the two stereographic
maps (from the North and South pole), and the map between
the charts is s 7→ 1

s .

Gauge change: an element of this space is of the form
(a0 + a1s+ ... + aksk)(1 + |s|2)−

k
2 −1, and after this

transformation we obtain

(a0 + a1
s + . . . + ak

sk
)(1 + 1

|s|2
)−

k
2 −1

= (a0s
k + a1s

k−1 + . . . + ak)(1 + |s|2)−
k
2 −1

(
s
|s|

)k
2︸ ︷︷ ︸

modulus 1

dvol
dvol
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Understanding the quantum space - III

Again, the clearest geometric setting is that of a C-bundle over
S2 (natural bundle O(k) in complex geometry). The quantum
states are holomorphic sections of this bundle.

Notations
▶ L2(S2,L⊗k) space of all square-integrable sections.
▶ H0(S2,L⊗k) subspace of holomorphic sections.
▶ Πk : L2(S2,L⊗k) → H0(S2,L⊗k) orthogonal Bergman

projector.
▶ Tk(f) = ΠkfΠk Berezin–Toeplitz quantization of f : S2 → R.
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Local weighted holomorphic spaces

Local picture: an open setΩ ⊂ Cn and a weight ϕ : Ω→ R
such that [

∂2ϕ
∂zj∂zk

]
j,k

≫ 0. (PSH)

Among L2(Ω, det(∂∂ϕ)), consider the functions f such that

z 7→ f(z)ek
ϕ(z)

2 is holomorphic⇝ subspace Hϕk (Ω).

Gauge change: change ϕ while keeping ∂∂ϕ constant (keep
track of coordinate changes!).
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Kähler geometry

The complex structure and the weight ϕ gives
▶ A Riemannian metric g
▶ A symplectic formω (eats two tangent vectors,

antisymmetric, dω = 0; think of it as a magnetic field)

In these coordinates, both g andω are deduced from ∂2ϕ
∂zj∂zk

.
Compatibility: g(u, Jv) = ω(u, v).

Globally, the data (M, J,ω,g) is called a Kähler manifold.
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Gluing the spaces

Can one always successfully glue the spaces Hϕk (Ω)? No,
there is a compatibility condition (remember what happened
on tori?).
Integrability condition: for every closed surface Σ ⊂M,

�
Σ

ω ∈ 2πZ.

If it is satisfied, one can glue the different Hϕk (Ω) into
H0(M,L⊗k) for some C-bundle L. It is finite-dimensional when
M is compact.
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Berezin–Toeplitz operators

▶ Bergman projector Πk : L2(M,L⊗k) → H0(M,L⊗k)
▶ Berezin–Toeplitz operators Tk(f) = ΠkfΠk for f :M→ R.

What happens as k→ +∞?
As soon as f ∈ L∞, (Tk(f))k∈N is a sequence of self-adjoint
matrices whose size tends to infinity.
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Some references

▶ O. Debarre, Complex tori and abelian varieties.
▶ E. Lieb, The classical limit of quantum spin systems.
▶ D. Borthwick, Introduction to Kähler quantization.

(hard to find; email me!)
▶ Y. Le Floch, A short introduction to Berezin–Toeplitz

quantization.
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Spectral gap

The first order of business is the Bergman projector Πk.

Operator ∂
∗
k∂k on L2(M,L⊗k) such that Πk projects on its

kernel.

Spectral gap for this magnetic Laplacian: [Kohn 63, Hörmander
68] As soon as ϕ ∈ C1,1,

∃c > 0,C, σ(∂
∗
k∂k) ⊂ {0} ∪ [ck− C,+∞).
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Off-diagonal kernel decay

Recall that

|Πk(z,w)|2 = Cnk
d exp(−k|z−w|2) on Cd

|Πk(s, s ′)|2 = C(k+ 1)
(

|1+ss ′|√
(1+|s|2)(1+|s ′|2)

)k
on S2.

[Christ 91, Delin 98]: in general,

|Πk(z,w)|2 ⩽ Ckdim(M) exp(−
√
kcdist(z,w)).

This decay rate is sharp among C∞ metrics [Christ 13].
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Idea of the proof

Witten deformation: given ρ ∈ C1,1(M,R), deform ∂
∗
k∂k into

eα
√
kρ∂

∗
k∂ke

−α
√
kρ = ∂

∗
k∂k + α

√
kP1 + α2kP0.

In particular, for |λ| small and fixed, by the resolvent formula,

∥(λ− k−1eα
√
kρ∂

∗
k∂ke

−α
√
kρ)−1∥L2→L2 = O(1);

hence the contour integral, which has integral kernel

(z,w) 7→ eα
√
k(ρ(z)−ρ(w))Πk(z,w)

is uniformly bounded L2 → L2.
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Application: concentration of eigenfunctions

Proposition
If the Kähler potentials are C1,1 and f :M→ R is C1,1, then
solutions of T h(f)uk = λkuk areO(e−c

√
k) at positive distance

from {f = λk}.

First remark: very different from the pseudodifferential case!

Observed first in [Kordyukov 20] where it is stated in the C∞
setting. More explicit, low-regularity version in [Deleporte 21],
also with uniformity in the dimension.

Method of proof: Agmon-type estimates.
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The Bergman kernel in smooth regularity

Proposition
For every smallΩ ⊂M and Kähler potential ϕ, there exists
smooth functions ψ,a0,a1, . . . onΩ×Ω such that∥∥∥∥∥∥Πk(z,w) − kdimekψ(z,w)

J∑
j=0

k−jaj(z,w)

∥∥∥∥∥∥
Cℓ(Ω×Ω)

⩽ OJ,ℓ(k
dim+ℓ−J).

Global version: “ekψ(z,w)” is a section Ψ⊗k of (L⊠ L∗)⊗k.

Decay:
re(ψ)(z,w) ⩽ −c|z−w|2.
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Almost holomorphic extensions

Since the kernel Πk projects onto the weighted holomorphic
space, we seem to need

(∂z,∂w)[ ψ(z,w) + ϕ(z) + ϕ(w)︸ ︷︷ ︸

Holom. extension of z 7→ 2ϕ(z,z)

] = 0 ψ(z, z) = 0.

Not doable unless ϕ is real-analytic...

Actually we do it moduloO(dist(z,w)∞), and it’s enough
because of the off-diagonal decay. Same strategy for the
amplitudes aj.

Usual difficulties of Fourier Integral Operators with
complex-valued phases; see [Melin-Sjöstrand 75].
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Proofs of the Bergman kernel asymptotics

There are many different methods... But they all rely on the
spectral gap.
▶ [Boutet de Monvel-Sjöstrand 74]: microlocal version (no

exponential weight but boundary)
▶ [Zelditch 98, Shiffman-Zelditch 02, Charles 03, ...]: Translation

of the above in our setting.
▶ [Tian 90, ...]: “Peak section” method: construct by hand the

right candidate for the element ψx0 ∈ H0 such that
⟨ψx0 ,u⟩ = u(x0) for all u ∈ H0.

▶ [results by Bismut and Demailly, Ma-Marinescu 06, ...]
Heat-type asymptotics and/or resolvent estimates.
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Big application: Kodaira almost isometry

▶ Choosing a basis (s0, . . . , sdk) of H0(M,L⊗k) gives a map
M→ Cdk/C∗.

▶ Since Πk(x, x) =
∑
j |sj(x)|

2 is non-zero for k large, they
never vanish together, and we obtainM→ CPdk−1.

▶ From the C2 convergence of Πk on the diagonal, we know
more: The pulled-back metric on CPdk−1 is close to the
original metric.

Conclusion: all compact Kähler manifolds such that
∀Σ,

�
Σω ∈ 2πZ can be realised as projective submanifolds, in

an almost isometric way as the dimension of the ambiant
space increases.

True in the C1,1 case: [Coman-Ma-Marinescu 14].
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Calculus of Toeplitz operators

Proposition
[Bordemann-Meinrenken-Schlichenmaier 94, Charles 03]There
exists a sequence (Cj)j∈N of degree 2j differential operators
such that, for every a,b ∈ C∞(M,R),

Tk(a)Tk(b) = Tk

(∑J
j=0 k

−jCj(a,b)
)
+OJ( h

−J−1).

[Charles 03]: generalisation of the Wick symbol into “covariant
Toeplitz operators”, with integral kernels of the form

(z,w) 7→ kdimΨ⊗k(x,y)
∑+∞
j=0 k

−jaj(z,w)

for general sequences (aj)j∈N; they also form an algebra and
one can pass from one to the other.
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Geometric quantization

Bottom line of the previous results: whenever a,b ∈ C∞,

[Tk(a), Tk(b)] = ik−1Tk({a,b}) +O(k−2)

so we are really implementing the “classical mechanics to
quantum mechanics” program.

Largely unknown: behaviour in low-regularity.

a,b ∈ C1 ⇒ [Tk(a), Tk(b)] = ik−1Tk({a,b}) + o(k−1)?

Partial results: [Charles-Polterovich 15] a,b ∈ C4.
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Prequantum dynamics I - coherent states

Evolution of (micro)localised wavepackets? Useful for
constructing quasimodes, etc.
First we must say what is a wavepacket.

Coherent state: to (x, v) ∈ L (where x is the base point onM),
apply Riesz representation theorem and obtain

∀u ∈ H0(M,L⊗k), ⟨u(x), v⟩Lx =: ⟨u,ψx,v⟩H0 .

The dependence on v ∈ L is only via a multiplicative constant.

Alix Deleporte Semiclassics and Toeplitz quantization



Bargmann-Fock representation
Towards a geometric picture

Semiclassical analysis

Low-regularity techniques
Smooth regularity
Real-analytic regularity

Prequantum dynamics II - parallel transport

Given f :M→ R, can one solve approximately

ik−1∂tu = Tk(f)u u(0) = ψx,v?

Answer: yes. More or less

e−itkTk(f)ψx,v ≈ ψx(t),v(t)

where t 7→ x(t) follows the Hamiltonian dynamics of f and v(t)
is the parallel transport of v(0).
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Application: trace formula

Does a closed orbit lead to a quasimode? Yes, if and only if the
parallel transport preserves the phase.

Trace formula: already in [Boutet-Guillemin 81].
Bohr-Sommerfeld rules for integrable systems: work by Y. Le
Floch.

This is also true for pseudodifferential operators on cotangent
spaces... But here the line bundle L is topologically trivial!
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Structure of the propagator

[Charles-Le Floch 21]: Kernel of the propagator.
There exists a section Ψ(t) of L⊠ L and a sequence of
functions (aj(t))j∈N onM×M such that

eitkTk(f)(z,w) = kdimΨ(t)(z,w)⊗k
∑
j⩾0

k−jaj(t, z,w) +O(k−∞);

moreover |Ψ(t)| ⩽ exp(−cdist(z,ϕt(w))).

Also in this article: a geometric interpretation for Ψ (via parallel
transport along L) and a0 (via the linearised dynamics).
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More advantages of Toeplitz quantization

▶ Bohr-Sommerfeld rules are hard-coded into the formalism.
▶ The quantum propagator is a Fourier Integral Operator,

without phase variables, for all times.
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Motivations for real-analytic regularity

Why are we interested in this?
▶ Many objects are more natural in analytic regularity (e.g.

the holomorphic extension of the weights).
▶ O(e−ck) estimates in spectral theory, tunneling.
▶ Non-self-adjoint evolution.
▶ Applications to Kähler geometry.
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Analytic stationary phase - I

What’s the link between real-analytic regularity andO(e−ck)
estimates in the calculus of oscillatory integrals?

The first step is to understand asymptotic properties of
integrals of the form

�
ekφ(x)a(x)dx

when φ and a are real-analytic.

Alix Deleporte Semiclassics and Toeplitz quantization



Bargmann-Fock representation
Towards a geometric picture

Semiclassical analysis

Low-regularity techniques
Smooth regularity
Real-analytic regularity

Analytic stationary phase - II

Standard 1D example: φ(x) = −x
2

4 . Usual stationary
phase/saddle-point theorem tells us that

�
e−

kx2
4 a(x)dx = exp(k−1∆)a(0)

=
1√
πk

N∑
j=0

∆ja(0)
kjj!

+O(k−N− 3
2 ).

Size of the j-th term if a is real-analytic, with convergence
radius ρ: ∣∣∣∣∆ja(0)kjj!

∣∣∣∣ ⩽ 1
kjj!

∥a∥C2j ⩽
(2j)!
ρ2jkjj!

⩽
j!

(2kρ2)j
.
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Analytic stationary phase - III

Size of the j-th term if a is real-analytic, with convergence
radius ρ: ∣∣∣∣∆ja(0)kjj!

∣∣∣∣ ⩽ 1
kjj!

∥a∥C2j ⩽
(2j)!
ρ2jkjj!

⩽
j!

(2kρ2)j
.

The rhs series does not converge!! The smallest term is at

j ≈ 2kρ2,

and the size of this term, by Stirling formula, is:

(2kρ2)!
(2kρ2)2kρ2 ∼

√
4πkρ2e−2kρ2

.
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Analytic stationary phase - IIII

We obtain analytic stationary phase by optimisation of the
term of the expansion: for some α > 0,β > 0, one has

�
e−

kx2
4 a(x)dx =

1√
πk

αk∑
j=0

∆ja(0)
kjj!

+O(e−βk).

This result can be generalised: the output of the stationary
phase involves an analytic symbol, up to an exponentially
small error.
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Analytic symbols

Definition
A function a ∈ Rnx × [0, 1]h → C is an analytic symbol when a
is smooth and its Borel transform

Ba : (x;h) 7→
+∞∑
j=0

∂
j
ha(x; 0)hj

j!2

sums into a real-analytic function near {h = 0}.

In practice, a =
∑
hjaj(x) is a formal series satisfying

∥aj∥Cn ⩽ C
j!n!
ρjRn

∀j,n.

Banach spaces of analytic functions⇝ Banach spaces of
symbols.
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Practical example: pseudodifferential operators
Theorem ([Boutet-Krée 67, Sjöstrand 82])
There are Banach norms of analytic symbols ∥ · ∥ in which the
Moyal product is continuous: if a, b, c satisfy

Oph(a)Oph(b) = Oph(c),

then
∥c∥ ⩽ C∥a∥∥b∥.

Proof: by hand, counting derivatives in the formula

c(x, ξ;h) =
∑
j

(ih)j

j!
(∇jxa · ∇jξb−∇jξa · ∇jxb).

Remark: almost the same formula for Berezin–Toeplitz
operators on Cn.

Alix Deleporte Semiclassics and Toeplitz quantization



Bargmann-Fock representation
Towards a geometric picture

Semiclassical analysis

Low-regularity techniques
Smooth regularity
Real-analytic regularity

My first proof in analytic microlocal analysis

Problem: prove that, if a is bounded away from 0, thenOp(a)
has an inverse modO(e−ch

−1
).

Usual proof forO(hN): prove that

Oph(a)Oph(a
−1) = Oph(1 − hr),

then correct a−1 by induction. Are the coefficients in this
induction bounded as analytic symbols? Very hard to prove.

New idea: Since 1 + hr is close to 1, use the Banach algebra
norm to invert it with the convergent series

Oph(1 − hr)−1 = 1 +Oph(hr) + (Oph(hr))
2 + (Oph(hr))

3 + ...
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The Bergman kernel

Theorem ([Rouby-Sjöstrand-Vũ Ngo. c 18, Deleporte 18])
Suppose the Kähler potentials ϕ are real-analytic. Let
ψ : Cn × Cn → C be the holomorphic extension (polarisation)
of ϕ.
Then there exists an analytic symbol s such that

Πk(x,y) = kdek(2ψ(x,y)−ϕ(x)−ϕ(y))s(x,y;k−1) +O(e−βk).
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Covariant Toeplitz operators

Strategy of proof: look at operators of the form

Tk(a)(x,y) = kdΨ⊗k(x,y)a(x,y;k−1),

where Ψ is the candidate for the phase (in charts, holomorphic
extension of the weight) and a is any analytic symbol.

Theorem
These “analytic covariant Toeplitz operators” form a unit
algebra modulo exponentially small remainders.

The unit will exactly be the Bergman projector.

Remark: not clear that it is true for operators of the form
ΠkfΠk.
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Unit algebra?

Path in [Rouby-Sjöstrand-Vũ Ngo. c,Deleporte-Hitrik-Sjöstrand 21]:
conjugate to pseudo-differential operators.

Path used in [Deleporte 18, Charles 20, ...]: we know from the
smooth case that

Tk(a)Tk(b) = Tk

∑
j⩾0

k−jCj(a,b)

 .

So we can imitate the proof of the Banach algebra property
(with a similar count of derivatives).
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Non-self-adjoint complex evolution and spectral
theory

▶ [Deleporte-Zelditch 22]: FIO formula for purely imaginary
propagation etkTk(f), link with change of Kähler structure.

▶ [Alphonse, Bernier, White...]: Precise study of quantum
evolution in the quadratic case.

▶ [Rouby 19, Duraffour...]: Bohr-Sommerfeld rules for
non-self-adjoint integrable systems.
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Thanks for your attention!
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