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Summary 

Non-Saccharomyces yeasts have been studied extensively in the past two decades to use as 

catalysts for adjusting the aroma and chemical properties of wine. Many non-Saccharomyces yeasts 

dominate in grape must, but Wickerhamomyces anomalus and Kazachstania aerobia have recently 

been found to be more dominant in several musts in South Africa than what has been reported from 

other wine growing areas. It has been hypothesised that regional microflora can lead to a terroir 

specific wine. To further establish these claims, the impact of these non-Saccharomyces yeasts on 

the chemical profile and sensory perception of wine, in particular when present in high numbers, has 

yet to be fully elucidated. This study was designed to better characterise isolated strains of non-

Saccharomyces species, determining its phenotypic space, as well as to assess their fermentation 

potential and volatile aroma compound production in synthetic and real grape must.  

Eight K. aerobia and thirteen W. anomalus isolates were used for characterisation. DNA based 

taxonomic differences between isolates were investigated using the Random Amplification of 

Polymorphic DNA (RAPD) method and phenotypic heterogeneity was established using stress 

assays to determine heat, saline, osmotic and oxidative stress tolerance. Phenotypically diverse 

K. aerobia and W. anomalus strains were then selected for co- and sequential fermentations with 

two S. cerevisiae strains, VIN13 and EC1118, in synthetic grape must. In addition, sequential culture 

fermentations were conducted in Sauvignon blanc grape must by individually pairing two strains of 

K. aerobia and two strains of W. anomalus with S. cerevisiae EC1118. Wine aroma compounds were 

quantified using GC-FID. 

RAPD analysis classified W. anomalus isolates into five distinct groups according to place of origin. 

Phenotypic variations were evident within and between the proposed strains as was exhibited by 

heterogeneous resistance to oxidative, saline and osmotic stresses compared to S. cerevisiae, 

VIN13. The K. aerobia isolates showed no marked genetic differences, although exhibiting slight 

variations in stress responses. During fermentation the non-Saccharomyces yeasts persisted for 

longer when S. cerevisiae was only inoculated after 48 hours, or at a lower density. The longer the 

non-Saccharomyces yeasts proliferated in the must the more pronounced was the effect on aroma 

production. Kazachstania aerobia yeasts did not achieve a high biomass compared to W. anomalus, 

but survived for longer in fermentation, especially in Sauvignon blanc grape must. Although W. 

anomalus displayed strong growth, it was inhibited by the growth of S. cerevisiae.  

Kazachstania aerobia and W. anomalus gave a unique aroma profile to the wines. The latter yeast 

produced high concentrations of ethyl acetate, while K. aerobia was characterised by increased 

acetic acid concentration. Most aroma compounds were increased in mixed culture fermentations, 

especially higher alcohols, with a significant increase in the esters 2-phenylethyl acetate by K. 

aerobia, and ethyl caproate and caprylate by W. anomalus. Although, as single cultures these yeasts 

did not ferment wines to dryness in synthetic grape must and only completed fermentation after 28 

days in Sauvignon blanc grape must, they are capable of conferring favourable wine aroma when in 
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association with S. cerevisiae strains with no risk of sluggish fermentation. This study provides a 

basis for future work on wine quality improvement through exploitation of non-Saccharomyces yeasts 

and gives insight to the possible impact of K. aerobia and W. anomalus present in grape must in a 

South African context. 
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Opsomming 

Nie-Saccharomyces giste is in die afgelope twee dekades omvattend bestudeer om gebruik te word 

as katalisators vir die aanpassing van aroma en chemiese eienskappe van wyn. Baie nie-

Saccharomyces giste domineer in druiwemos, maar onlangs is gevind dat Wickerhamomyces 

anomalus en Kazachstania aerobia meer dominant in verskeie druiwemos in Suid-Afrika is teenoor 

wat in ander wynbougebiede aangemeld is. Dit is voorgestel dat plaaslike mikroflora kan lei tot 'n 

terroir spesifieke wyn. Om hierdie stellings te evalueer, moet die impak van hierdie nie-

Saccharomyces giste, veral wanneer hul in groot hoeveelhede teenwoordig is, op die chemiese 

profiel en sensoriese persepsie van wyn bepaal word. Hierdie studie is ontwerp om geïsoleerde 

gisrasse van nie-Saccharomyces spesies beter te karakteriseer, die fenotipiese ruimte te bepaal 

asook hul fermentasie potensiaal en aroma produksie in sintetiese en regte druiwemos vas te stel. 

Vir karakterisering, is agt K. aerobia en dertien W. anomalus isolate gebruik. DNA-gebaseerde 

taksonomiese verskille is ondersoek met die gebruik van die “Random Amplified Polymorphic DNA” 

(RAPD) metode, waarna fenotipiese heterogeniteit bepaal is met behulp van stres toetse deur hitte, 

sout, osmotiese en oksidatiewe stres toleransie te bepaal. Fenotipies diverse K. aerobia en W. 

anomalus gisrasse is daarna gekies vir ko- en sekwensiële fermentasies met twee S. cerevisiae 

gisrasse, VIN13 en EC1118, in sintetiese druiwe mos. Daarna is sekwensiële fermentasies in 

Sauvignon blanc sap uitgevoer deur individuele paring van twee gisrasse van K. aerobia en twee 

gisrasse van W. anomalus met S. cerevisiae EC1118. Aroma komponente is gekwantifiseer met die 

gebruik van GC-FID. 

RAPD-analise het W. anomalus isolate geklassifiseer in vyf afsonderlike groepe volgens plek van 

oorsprong. Fenotipiese variasies was duidelik waargeneem binne en tussen die voorgestelde 

gisrasse, soos voorgestel deur die heterogene weerstand teen oksidatiewe, sout en osmotiese 

spanning in vergelyking met S. cerevisiae, VIN13. Die K. aerobia isolate het geen merkbare 

genetiese verskille getoon nie, alhoewel effense variasies in stresreaksie waargeneem was. 

Gedurende fermentasie het die nie-Saccharomyces giste langer oorleef wanneer S. cerevisiae eers 

na 48 uur geïnokuleer was, of teen 'n laer digtheid. Hoe langer die nie-Saccharomyces giste oorleef 

het, hoe groter was die impak op aroma produksie. Alhoewel K. aerobia nie so ‘n hoë biomassa soos 

W. anomalus bereik het nie, het dit vir langer in fermentasie oorleef, veral in die Sauvignon blanc 

druiwe mos. Verder, alhoewel W. anomalus sterk gegroei het, was dit deur S. cerevisiae geïnhibeer. 

Kazachstania aerobia en W. anomalus het 'n unieke aroma profiel aan die wyne verleen. 

Laasgenoemde gis het hoë konsentrasies etielasetaat vervaardig, terwyl K. aerobia gekenmerk was 

deur 'n toename in asynsuur produksie. Die meeste aroma komponente het in die gemengde 

fermentasies toegeneem, veral die produksie van hoër alkohole, met 'n beduidende toename in die 

esters 2-fenieletiel asetaat deur K. aerobia, en etielkaprylaat en etielkaproaat deur W. anomalus. 

Alhoewel die wyne nie droog gegis was deur die giste as enkel kulture in sintetiese druiwe mos nie 

en eers ná 28 dae in Sauvignon blanc druiwe mos fermentasie voltooi het, was dit in staat om 
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gunstige aromas aan die wyn te verleen en hou dit geen risiko vir slepende fermentasies in 

kombinasie met S. cerevisiae in nie. Hierdie studie bied 'n basis vir toekomstige werk oor die 

verbetering van wyngehalte deur die gebruik van nie-Saccharomyces giste en gee insig oor die 

moontlike impak van K. aerobia en W. anomalus wanneer teenwoordig in druiwe mos in 'n Suid-

Afrikaanse konteks. 
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Chapter 1 – Introduction 

1.1 Introduction 

The earliest intentionally fermented beverage is thought to have been produced in the Neolithic 

period (10 000 – 5 000 BC), but it is only in the second half of the 19th century that yeasts were 

identified as the organisms responsible for alcoholic fermentation (Barnett, 2000). It is now known 

that alcoholic fermentation in grape juice is a biological process comprising of the conversion of 

sugars to ethanol and carbon dioxide by yeast; and also resulting in the production and biosynthesis 

of other primary as well as secondary metabolites. Primary metabolites (e.g. ethanol, glycerol, acetic 

acid, acetaldehyde) and secondary metabolites (e.g. esters, higher alcohols, fatty acids) determine 

the quality of wine and their production is influenced by viticultural and winemaking practices. 

Consequently, yeast species and the genetic background of individual strains are a key determinant 

of wine flavour and aroma (Ciani et al., 2010).  

Different yeast species and strains are present at the onset of fermentation and these can be divided 

into two groups, non-Saccharomyces and Saccharomyces species (Boulton et al., 1996; Constantí 

et al., 1997). Saccharomyces cerevisiae is most frequently the dominant yeast conducting alcoholic 

fermentation and is capable of suppressing most non-Saccharomyces yeasts, at least in the latter 

stages of fermentation (Jackson, 2008). Until recently, it was thought that non-Saccharomyces only 

contribute negatively towards wine aroma by either being primarily spoilage organisms or 

insignificant during winemaking (Du Toit and Pretorius, 2000; Padilla et al., 2016). However, it is now 

well established that some non-Saccharomyces contribute positively towards wine quality (Lema et 

al., 1996; Soden et al., 2000). Nonetheless, due to various factors, such as low alcohol tolerance 

(Heard and Fleet, 1985), limited oxygen and increasing temperature (Fleet, 2003), most non-

Saccharomyces yeasts struggle to complete alcoholic fermentation (Jolly, 2004). Combining 

S. cerevisiae and non-Saccharomyces species during fermentation, also known as a mixed culture 

fermentation, can bypass the challenges generally associated with single inoculation of non-

Saccharomyces yeasts. 

Globally, many studies have been undertaken that assess the impact of non-Saccharomyces yeasts 

in mixed culture fermentations with S. cerevisiae (Anfang et al., 2009; Azzolini et al., 2012; Benito et 

al., 2013; Canonico et al., 2016; Ciani et al., 2006; Comitini et al., 2011; Domizio et al., 2011; Gobbi 

et al., 2013; Jolly et al., 2014; Loira et al., 2014; Moreira et al., 2008, 2005; Soden et al., 2000; Viana 

et al., 2009). Mixed culture fermentations stimulate metabolic interactions between the yeasts that 

can alter the aromatic profile of wines (Ciani et al., 2010, 2006; Fleet, 2003; Luyt, 2015). These 

fermentations could potentially amplify the uniqueness of wines giving them more distinctive 

characteristics. Indeed, certain mixed culture fermentations have been found to be preferred by 

tasters (Izquierdo Cañas et al., 2014; Jolly et al., 2003a; Viana et al., 2009). Nonetheless, more 
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knowledge is needed of the interactions between specific non-Saccharomyces strains and 

S. cerevisiae yeast (Ciani and Comitini, 2015; Ciani et al., 2010).  

Recently different strains have been isolated from vineyards in Stellenbosch, South Africa (Bagheri, 

2014; Setati et al., 2012) and of these strains Kazachstania aerobia and Wickerhamomyces 

anomalus showed promising fermentative characteristics. Kazachstania aerobia was found to be 

dominant in grape must from a biodynamic as well as from a conventional farm. Wickerhamomyces 

anomalus was isolated in 2013 from grape must and fermenting wine sourced from an integrated 

farming system. This yeast was one of the few non-Saccharomyces yeasts still present after 50% 

sugar consumption (Bagheri, 2014). These species were chosen for further characterisation in the 

current study, as little research had been done on them previously. According to our understanding, 

K. aerobia was only recently used in mixed culture fermentations (Beckner Whitener et al., 2016), 

although W. anomalus (formerly Hansenula anomala and Pichia anomala) has been used 

successfully in sequential inoculation with S. cerevisiae in a recent study (Izquierdo Cañas et al., 

2014, 2011). 

1.2 Rationale 

Non-Saccharomyces yeasts, even when only present initially in fermentation, can contribute to the 

distinctiveness of the wine. Each yeast species indeed has distinct properties such as characteristic 

aroma profiles that may be beneficial to wine in general or specific wine styles in particular (Pretorius, 

2000). It has been suggested that these local yeasts impart a specific terroir character to wine. Some 

yeast strains and isolates exhibit more favourable characteristics than others and prominent 

variations between strains can occur (Fleet, 2008). It is thus required to characterise and identify 

these isolates genotypically and phenotypically. Furthermore, to fully understand the impact of these 

yeasts, it is essential to determine their fermentation potential in single and mixed culture 

fermentations with S. cerevisiae and the subsequent aroma production. 

1.3 Aims and objectives 

The initial aim of this project is to characterise the K. aerobia and W. anomalus yeasts that have 

been isolated mainly from South African vineyards and secondly to determine the potential of these 

yeasts to ferment synthetic grape must and their impact on the aroma profile of wine, using both 

synthetic and Sauvignon blanc grape must.  

To achieve the above mentioned aims, the following objectives were pursued. 

1. Characterise the phenotypic variation of different Kazachstania aerobia and 

Wickerhamomyces anomalus strains and isolates by using salt, osmotic, oxidative and heat 

stress tests.  
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2. Assess the genotypic variation between the isolates using Random Amplified Polymorphic 

DNA (RAPD) analysis. 

3. Investigate the fermentation dynamics and aroma production potential of selected K. aerobia 

and W. anomalus as mono- and mixed culture fermentations with S. cerevisiae in synthetic 

grape must. 

4. Determine the fermentation dynamics and aroma production of K. aerobia and W. anomalus 

in mono- and sequential culture fermentations in Sauvignon blanc grape must. 
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 Chapter 2 – Non-Saccharomyces yeast in alcoholic 
fermentation  

2.1 Introduction 

Grape must is a complex ecosystem consisting of a variety of yeasts, filamentous fungi and bacterial 

species, constantly interacting with one another (Setati et al., 2012). However, yeast species are 

predominantly responsible for conducting the alcoholic fermentation (Fleet and Heard, 1993). Yeasts 

originate from the grape berries, as well as from cellar equipment and may also include commercial 

strains added by the winemaker to conduct alcoholic fermentation (Boulton et al., 1996; Fleet and 

Heard, 1993). The yeast most commonly used in wine production is Saccharomyces cerevisiae. 

Other wine yeasts that are part of the Saccharomyces genera include S. paradoxus and S. bayanus. 

However, the majority of yeasts that are naturally present in the wine environment are not part of 

this genera and are commonly referred to as non-Saccharomyces yeasts (Jolly et al., 2014). 

Saccharomyces cerevisiae is usually the dominant species conducting alcoholic fermentation due to 

its strong fermentative abilities (Jackson, 2008). In addition, this yeast produces a desirable aroma 

profile. Consequently S. cerevisiae strains were commercialised and are now used as inoculation 

starter culture for wine fermentations. Most non-Saccharomyces yeasts were previously seen as 

spoilage organisms (Fleet and Heard, 1993; Jolly et al., 2014; Moreno-Arribas and Polo, 2005).  

However, there is growing evidence that certain metabolites produced by non-Saccharomyces 

yeasts contribute positively to wine complexity (Andorrà et al., 2012; Ciani et al., 2010; Fleet, 2008, 

2003; Jolly et al., 2006; Lambrechts and Pretorius, 2000; Lema et al., 1996; Rooyen and Tracey, 

1987; Soden et al., 2000). These yeasts yield maximal benefits when used in conjunction with 

S. cerevisiae in order to ensure a complete fermentation and some have already been 

commercialised as inoculum cultures (Azzolini et al., 2015; Ciani et al., 2010). The interactions 

between some non-Saccharomyces yeast species and S. cerevisiae have been investigated with 

regards to population dynamics, fermentation kinetics, and the resulting aroma profiles (Albergaria 

et al., 2010; Bely et al., 2008; Ciani et al., 2006; Fleet, 2003; Pérez-Nevado et al., 2006; Sadoudi et 

al., 2012). A specific focus has been directed on the use of such yeast to reduce ethanol 

concentrations (Ciani and Comitini, 2011; Fleet, 2008). 

Data suggest that non-Saccharomyces yeast populations, species or strains may be specific to a 

region or terroir, and may promote a particular style of wine (Fleet, 2003). Numerous yeast strains 

are present on grapes and musts, and strain diversity has been well documented for S. cerevisiae. 

However, similar information on specific non-Saccharomyces yeasts is lacking (Jolly et al., 2014). 

Studies have looked in depth at the variation that occurs between strains of S. cerevisiae and have 

found the genotypic and phenotypic differences to be prominent and noteworthy (Camarasa et al., 

2011; Knight and Goddard, 2015; Kvitek et al., 2008; Liti et al., 2009; Mendes et al., 2013; Vilanova 

et al., 2007).  However, studies on the phenotypic space of non-Saccharomyces species remain 
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limited. Strain differences have been described for some species (Albertin et al., 2016; Rossouw and 

Bauer, 2016; Tofalo et al., 2012), but the full phenotypic space of many non-Saccharomyces species 

has yet to be determined. This review focusses on non-Saccharomyces yeasts occurring in grape 

must and its role and impact on alcoholic fermentation.  

2.2 Yeasts in alcoholic fermentation 

During alcoholic fermentation primary (e.g. ethanol, glycerol, acetic acid, acetaldehyde) and 

secondary metabolites (e.g. esters, higher alcohols, fatty acids) determine the ultimate chemical and 

sensory quality of wine  (Fleet and Heard, 1993). Production of these metabolites is influenced by 

environmental factors, grape cultivar, viticultural practices, fruit condition and pH as well as 

winemaking practices (e.g. sulphur dioxide addition, malolactic fermentation) (Ciani et al., 2010; Lilly 

et al., 2000). Consequently, the yeast strains contributing to fermentation determine the amount of 

metabolites generated and utilised, and the chemical and sensory bouquet of the final product 

(Bisson and Joseph, 2009; Fleet and Heard, 1993).   

At the start of fermentation apiculate yeasts are primarily responsible for conducting the fermentation 

and dominate the grape must for the first 3-4 days (Fleet and Heard, 1993). In most cases, S. 

cerevisiae is present in low quantities during the initial stages, but tends to take over once ethanol 

percentage rises and oxygen levels decrease (Fleet and Heard, 1993; Lema et al., 1996). This 

spontaneous or natural fermentation is thus a sequential process of different yeasts dominant at 

various intervals (Beltran et al., 2002; Mendoza et al., 2007). Saccharomyces cerevisiae is not the 

only yeast present during the middle and end stages of fermentation, and species from other non-

Saccharomyces genera such as Candida, Pichia, Zygosaccharomyces, Schizosaccharomyces, 

Torulaspora, Lachancea (previously Kluyveromyces), Metschnikowia, Hanseniaspora, Rhodotorula, 

Starmarella and Issatchenkia can be identified (Combina et al., 2005; Ghosh et al., 2015; Heard and 

Fleet, 1985; Setati et al., 2012) and survive during fermentation (Fleet et al., 1984; Heard and Fleet, 

1985). From grape must, more than 40 yeast species have been isolated (Ciani et al., 2010; Jolly et 

al., 2006; Kurtzman et al., 2011). DNA based techniques have improved the accuracy and efficiency 

of classification, and older literature has to be carefully evaluated to establish which specific species 

is referred to (Jackson, 2008; Jolly et al., 2014). 

2.3 Yeast identification 

Identification and correct classification of different species and strains within a species enables 

researchers to characterise yeasts. Non-molecular techniques involve the use of physiological and 

biochemical tests investigating colony morphology and fermentative ability (in terms of growth and 

sugar assimilation) (Lodder and Kreger-van Rij, 1952).  
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Modern taxonomic methods rely on DNA-based technologies (Bokulich et al., 2012) and can be 

either culture dependent or independent. These approaches comprise polymerase chain reaction 

(PCR) based techniques; pulsed-field gel eIectrophoresis (PFGE) and restriction fragment length 

polymorphism analysis (RFLP), amongst others (Deák, 1993; Pretorius, 2000). The most popular 

culture dependent method for the identification of isolates is analysis of the 5.8S ITS rDNA region 

by using PCR amplified fragments in restriction fragment length polymorphism analysis (PCR-RFLP) 

(Combina et al., 2005; Guillamón et al., 1998; Wang and Liu, 2013). RFLP uses restriction enzymes 

to cleave DNA at specific nucleotide sequences. These fragments can then be separated 

electrophoretically on agarose gels. However, direct methods to analyse the microbial population 

(e.g. denaturing gradient gel electrophoresis (DGGE)) are faster and able to identify non-culturable 

microorganisms (Ivey and Phister, 2011; Mills et al., 2002; Renouf et al., 2007). Random Amplified 

Polymorphic DNA (RAPD) PCR has been employed as an effective and fast way to differentiate 

between strains and have been applied in taxonomic identification of different yeasts, including 

Saccharomyces, Torulaspora, Hansenula, Candida, Pichia, and Rhodotorula (Capece et al., 2003; 

Quesada and Cenis, 1995).  

In light of this, the best results are obtained when using a wider range of strains and incorporating 

more than one method of identification (Khan et al., 2000; Van der Westhuizen et al., 2000). Time, 

cost and instrument availability plays an important role in choice of method for characterisation 

(Bokulich et al., 2012). Techniques are usually based on S. cerevisiae as model due to its role as 

the primary “wine yeast”, but, with adaptions, it can also be utilised for non-Saccharomyces yeasts. 

2.4 The wine yeast S. cerevisiae 

Saccharomyces cerevisiae (as the primary representative for the Saccharomyces genus) dominates 

spontaneous fermentations due to its strong fermentative abilities, being able to complete 

fermentations rapidly (Fleet and Heard, 1993). This yeast is also characterised by relatively high 

sulphur dioxide tolerance and can withstand high ethanol concentrations (Arroyo-López et al., 2010; 

Fleet, 2003; Ludovico et al., 2001), in addition to being tolerant to temperature fluctuations (Goddard, 

2008; Salvadó et al., 2011). Furthermore, S. cerevisiae produces many aromatic secondary 

metabolites which mostly positively impact the sensory profile of wine (Swiegers and Pretorius, 

2005). Strains of S. cerevisiae differ regarding the formation of these metabolites (Fleet et al., 1984; 

Herjavec et al., 2003; Lema et al., 1996). Aromas range from oxidized, paper and sweaty (strain K-

1M) (Henick-Kling et al., 1998) to vegetative and astringent characters (strain EC1118) (Egli et al., 

1998), while others were identified as fruity, floral, pear or spicy (strain Assmannshausen) (Egli et 

al., 1998), or lime and tropical fruit (strain AWRI 838) (Soden et al., 2000). 

In 1890 the concept of inoculating grape must with a selected pure yeast culture to achieve 

successful alcoholic fermentation was introduced by Hermann Müller-Thurgau (Pretorius, 2000). 

Active dried wine yeast (ADWY) was first commercialised in 1965 (Chambers and Pretorius, 2010) 
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and it is now standard practice that most winemakers inoculate grape must with S. cerevisiae not 

only to complete fermentation but also sometimes to compete with and suppress indigenous yeasts 

(Fleet and Heard, 1993; García-Ríos et al., 2014; Pretorius et al., 1999).  

2.5 Non-Saccharomyces yeast and fermentation properties 

Approximately twenty non-Saccharomyces yeast genera have been described in fermenting grape 

must, including Candida, Metschnikowia, Kluyveromyces, Hanseniaspora  (anamorph Kloeckera) 

and Pichia, and less frequently those from the genera’s Torulaspora, Dekkera, Zygosaccharomyces, 

Saccharomycodes, and Schizosaccharomyces (Fleet and Heard, 1993; Fleet, 2003; Johnson and 

Echavarri-Erasun, 2011). 

Experiments regarding non-Saccharomyces yeasts are frequently conducted in mixed culture 

fermentations with S. cerevisiae. Subsequently it is not always clear if the impact on fermentation or 

metabolites produced is due to the inherent property of the non-Saccharomyces yeast or the result 

of an interaction between the yeasts. Many have reviewed the resulting wine produced by mixed 

culture fermentations, but few document the specific contribution of the non-Saccharomyces yeast 

(Ciani and Comitini, 2011). Table 2.1 is a summary of some of the major non-Saccharomyces yeasts 

and their oenologically relevant properties.  

Table 2.1 Fermentation behaviour of non-Saccharomyces yeast in pure culture (adapted from Ciani & Comitini, 
2011) 

Non-Saccharomyces 
yeast species 

Characteristic behaviour of pure 
culture 

References 

Debaryomyces variji High level of β-glucosidase activity  Garcia et al. (2002) 

Hanseniaspora 
guilliermondii 

High ethyl acetate producer  Moreira et al. (2008); Rojas et 
al. (2003); Viana et al. (2008) 

Hanseniaspora osmophila High 2-phenyl ethyl acetate producer  Viana et al. (2009) 

Hanseniaspora uvarum 
(anamorph Kloeckera 
apiculata) 

High ethyl acetate producer  Ciani and Maccarelli (1998); 
Ciani et al. (2006); Moreira et 
al. (2008); Plata et al. (2003) 

 High acetic acid producer  Ciani and Comitini (2011); 
Romano et al. (1992) 

 High acetoin producer  Ciani and Maccarelli (1998) 

 High glycerol production  Clemente-Jimenez et al. 
(2004) 

Issatchenkia orientalis Utilise malic acid  Seo et al. (2007) 

 Low ethyl acetate producer  Clemente-Jimenez et al. 
(2004) 

Issatchenkia terricola High ethyl acetate  Clemente-Jimenez et al. 
(2004) 
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Non-Saccharomyces 
yeast species 

Characteristic behaviour of pure 
culture 

References 

Lachancea thermotolerans 
(Kluyveromyces 
thermotolerans) 

Low acetaldehyde producer  Ciani et al. (2006) 

 High acid producer  Gobbi et al. (2013) 

 Lactic acid producer (some strains)  Kapsopoulou et al. (2005) 

Metschnikowia pulcherrima High producer of 2-Methoxy-4-
vinylphenol  

Beckner Whitener et al. (2015) 

 High glycerol production  Clemente-Jimenez et al. 
(2004) 

Pichia anomala High producer of isoamyl acetate 
(EAHase) or low producer  

Rojas et al. (2003) 

 High producer of acetic acid  Rojas et al. (2003) 

 High producer of ethyl acetate  Rojas et al. (2003) 

Pichia fermentans High glycerol production   Clemente-Jimenez et al. 
(2004) 

 High acetoin production or no 
production– fermentation condition 
dependent 

Clemente-Jimenez et al. 
(2005, 2004) 

Pichia kluyveri High producer of 3-mercaptohexyl 
acetate (3MHA)  

Anfang et al. (2009) 

Pichia membranifaciens High ethyl acetate   Viana et al. (2008) 

Saccharomycodes ludwigii High acetoin  Ciani and Maccarelli (1998) 

 High ethyl acetate   Ciani and Maccarelli (1998) 

Schizosaccharomyces spp. High rate of malic acid degradation  Benito et al. (2014); Yokotsuka 
et al. (1993) 

Starmarella bacillaris 
(Candida zemplinina) 

High producer of 3-mercaptohexan-
1-ol (3MH)  

Anfang et al. (2009) 

 Low acetic acid producer  Rantsiou et al. (2012); Tofalo 
et al. (2012) 

 Fructophilic yeast  Tofalo et al. (2012) 

Starmerella bombicola 
(Candida stellata) 

High glycerol producer  Ciani & Ferraro (1996, 1998); 
Ciani & Maccarelli (1998) 

 High succinic acid producer  Ciani & Maccarelli (1998) 

 High acetaldehyde producer  Ciani & Ferraro (1998) 

 High acetoin producer  Ciani & Ferraro (1998) 

 Low ethanol yield Contreras et al. (2014) 

Torulaspora delbrueckii Low acetic acid producer Bely et al. (2008); Comitini et 
al. (2011); Renault et al. 
(2009) 
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2.5.1 Non-Saccharomyces and its benefit to wine aroma 

Over 680 volatile aroma compounds have been identified in wine, mainly categorised into higher 

alcohols, fatty acids, esters, carbonyl and sulphur compounds. Non-Saccharomyces yeasts produce 

as wide a range of compounds as S. cerevisiae (Jolly et al., 2014; Manzanares et al., 2011), although 

relatively little data regarding the metabolism of these yeasts are available (Lambrechts and 

Pretorius, 2000; Moreira et al., 2005; Nykänen, 1986). Nevertheless, many studies have shown the 

significant impact of non-Saccharomyces yeasts such as L. thermotolerans, M. pulcherrima, 

T. delbrueckii, P. kluyveri, W. anomalus, H. uvarum  (anamorph K. apiculata) and Candida spp., on 

aroma in wine fermentations (Andorrà et al., 2012; Anfang et al., 2009; Gobbi et al., 2013; Izquierdo 

Cañas et al., 2011; Jolly et al., 2014; Sadoudi et al., 2012).   

2.5.1.1 Esters 

Some of the most desirable aromatic features of wine are due to compounds known as esters, of 

which more than 160 have been identified in wine (Jackson, 2008). Generally non-Saccharomyces 

yeasts produce lower amounts of ethyl esters than S. cerevisiae, although production of ethyl acetate 

is frequently increased (Rojas et al., 2003, 2001). Data showed that the Pichia genus generally had 

a high production of ethyl acetate, whereas Candida, Saccharomyces, Torulaspora and 

Zygosaccharomyces produced significantly lower levels (Viana et al., 2008). This is the main ester 

in wine and is undesirable at levels of above 150–200 mg/L (Lambrechts and Pretorius, 2000). The 

Hanseniaspora genus is a good producer of esters, especially 2-phenylethyl acetate and isoamyl 

acetate (Moreira et al., 2008, 2005; Plata et al., 2003; Rojas et al., 2003), although strain differences 

was notable (Viana et al., 2008)  A relatively unknown yeast, Kazachstania gamospora, has been 

found to produce high amounts of esters, especially phenylethyl propionate, compared to 

S. cerevisiae and other non-Saccharomyces yeasts (Beckner Whitener et al., 2015).  

2.5.1.2 Higher alcohols 

Production of higher alcohols have a significant influence on the quality and aroma composition of 

wines (Beckner Whitener et al., 2015; Gil et al., 1996; Herraiz et al., 1990) and can enhance 

complexity in wine aroma at concentrations below 300 mg/L (Lambrechts and Pretorius, 2000; 

Moreira et al., 2005).  Similar to S. cerevisiae, non-Saccharomyces yeasts produce higher alcohols 

such as active amyl alcohol, isobutanol and n-propanol (Lambrechts & Pretorius, 2000). Although 

compared to S. cerevisiae, production by non-Saccharomyces yeasts in monoculture is typically 

lower, in particular Hanseniaspora spp., Pichia membranifaciens, P. fermentans  and W. anomalus 

(Clemente-Jimenez et al., 2004; Gil et al., 1996; Moreira et al., 2008; Rojas et al., 2003; Viana et al., 

2008). However, higher alcohols are usually increased in mixed culture fermentations (Manzanares 

et al., 2011). Contrary, Starmerella bacillaris exhibited an increased production of higher alcohols 

compared to S. cerevisiae as monoculture, although with a lower concentration in mixed culture 
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fermentations (Andorrà et al., 2012). With regards to specific higher alcohols, L. thermotolerans and 

P. fermentans produced high concentrations of butanol (Clemente-Jimenez et al., 2005; Mains, 

2014), while M. pulcherrima produced high concentrations of 2-phenyl ethanol (Clemente-Jimenez 

et al., 2004). 

2.5.1.3 Acetic acid 

Acetic acid comprises 90% of volatile acidity, making this compound a large determinant of wine 

quality (Padilla et al., 2016). Apiculate yeast, such as C. cantarellii, C. zemplinina, P. guillermondii, 

H, uvarum and W. anomalus have been found to produce high levels of acetic acid (Benito et al., 

2011; Fleet and Heard, 1993; Rojas et al., 2003; Sadoudi et al., 2012; Toro and Vazquez, 2002). 

Many strain differences occur, for instance between strains of C. zemplinina (Rantsiou et al., 2012), 

H. uvarum (Mendoza et al., 2007; Romano et al., 2003, 1992) and T. delbrueckii (Renault et al., 

2009). Schizosaccharomyces pombe (Benito et al., 2013) and M. pulcherrima (Sadoudi et al., 2012) 

have been documented to produce low levels of acetic acid.  

2.5.1.4 Volatile phenols and sulphur compounds 

Disagreeable aromas produced by non-Saccharomyces yeasts remain a major cause for concern, 

specifically production of volatile phenols and sulphur compounds. Due to its low perception 

threshold, vinyl- and ethylphenols contribute negatively to wine aroma, even at low concentrations 

(Manzanares et al., 2011; Padilla et al., 2016). Brettanomyces spp. is known for its high production 

of ethylphenols, although other non-Saccharomyces yeast, such as Candida spp., T. delbrueckii, 

M. pulcherrima and P. guilliermondii can also produce volatile phenols (Beckner Whitener et al., 

2015; Dias et al., 2003; Loureiro and Malfeito-Ferreira, 2003; Padilla et al., 2016). Hydrogen sulphide 

is produced in medium to high amounts by Candida spp., T. delbrueckii, H. uvarum, H. guilliermondii 

and H. osmophila (Renault et al., 2009; Strauss et al., 2001; Viana et al., 2008), although 

P. guillermondii produce no hydrogen sulphide (Viana et al., 2008). Furthermore, H. guilliermondii 

and H. osmophila have been found to excrete high amounts of heavy sulphur compounds (Moreira 

et al., 2008).  

2.5.2 Enzymatic activity 

In addition to non-Saccharomyces yeast’s contribution to secondary aroma metabolites, some of 

these yeasts have been reported to be able to produce oenologically relevant amounts of certain 

extracellular enzymes (Manzanares et al., 2011). In general, several enzymes with primarily 

hydrolytic catalytic activities are secreted by yeast during fermentation; and may support aroma 

release (through glycosidases), wine processing and clarification (proteases, xylanases, pectinases, 

glucanases) and ethyl carbamate reduction (urease) (Van Rensburg and Pretorius, 2000). 

Frequently, these  enzymatic activities are not active under wine conditions, although it has been 
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found that it is more often exhibited by certain non-Saccharomyces yeasts compared to S. cerevisiae 

(Jolly et al., 2014; Manzanares et al., 2011; Maturano et al., 2015; Mendes Ferreira et al., 2001; 

Pérez et al., 2011). Glycosidase activity consists of β-glucosidase, β-D-xylosidase, α-

arabinofuranosidase and α-rhamnosidase and its activity in non-Saccharomyces yeasts have 

recently been reviewed in Manzanares et al. (2011). Yeasts such as H. vineae, H. uvarum, 

W. anomalus, M. pulcherrima, T. delbrueckii, Kluyveromyces fragilis, Pachysolen tannophilus, Pichia 

stipites, Candida railenensis, and Cryptococcus flavescens can enable hydrolysis of terpenyl-

glycosides (Ciani et al., 2010). This process is conducted through β-glucosidase activity in order to 

release aroma precursors, increasing the aromatic profile of wines (Fernández et al., 2000; Maturano 

et al., 2012; Mendes Ferreira et al., 2001; Pérez et al., 2011). Extracellular esterases, responsible 

for cleavage of esters (degrading esters) and sometimes formation of ester bonds, occur in some 

strains of M. pulcherrima, L. thermotolerans, T. delbrueckii and many Candida spp. (Comitini et al., 

2011; Swiegers and Pretorius, 2005; Swiegers et al., 2005). In addition, β-D-xylosidase excreted by 

H. uvarum, H. osmophila, W. anomalus (Manzanares et al., 1999) and Candida utilis (Yanai and 

Sato, 2001), is also involved in releasing aroma compounds.  

Moreover, protease enzymes responsible for the breakdown of proteins are produced by 

Starmarella bombicola, H. uvarum, H. vinae, P. membranifaciens, M. pulcherrima, T. delbrueckii and 

Zygoascus meyerae (Divol and Setati, 2015; Fernández et al., 2000; Jolly, 2004; Maturano et al., 

2012). These yeasts and the non-Saccharomyces yeasts - K. thermotolerans, W. anomalus, 

Brettanomyces clausenii and Candida stellata - exhibit polygalacturonase activity (Fernández et al., 

2000; Jolly, 2004). Indeed, pectinase activity, more rare in wine yeasts, has been detected in species 

of Candida, Kluyveromyces, Rhodotorula and Cryptococcus (Benítez and Codón, 2002; 

Charoenchai et al., 1997). Additionally, urease activity has been detected in Shizosaccharomyces 

pombe (Benito et al., 2013; Lubbers et al., 1996). 

2.5.3 Lowering of ethanol concentration 

A prime advantage of many non-Saccharomyces yeasts is their potential to lower ethanol yields, 

which is sometimes favoured by consumers and have been reported to consequently enhance fruit, 

flower, and acidic aromas (Styger et al., 2011). The non-Saccharomyces yeasts 

Zygosaccharomyces bisporus, Z. bailii, Z. sapae, H. uvarum, K. marxianus, W. subpelliculosus, 

Dekkera bruxellensis, Pichia ciferrii, P. fermentans, I. orientalis, T. delbrueckii,  Shizosaccharomyces 

pombe and many other lesser known non-Saccharomyces yeasts has a lower ethanol yield (ethanol 

per sugar consumed) compared to S. cerevisiae (Contreras et al., 2014; Gobbi et al., 2014). 

However, these yeasts need to be used in a mixed culture fermentation with S. cerevisiae to ensure 

complete consumption of sugars. Lower ethanol wines have been produced in mixed culture 

fermentations of S. cerevisiae yeasts with Starmarella bacillaris (Sadoudi et al., 2012), M. 

pulcherrima (Canonico et al., 2016; Sadoudi et al., 2012), L. thermotolerans (Gobbi et al., 2013), H. 

osmophila, H. uvarum (Canonico et al., 2016) and Starmerella bombicola (Canonico et al., 2016; 
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Milanovic et al., 2012; Ferraro et al., 2000; Soden et al., 2000) amongst others. However, some non-

Saccharomyces yeasts can ferment wines to dryness as monocultures and simultaneously produce 

lower ethanol wines e.g. Shizosaccharomyces pombe (Benito et al., 2013), C. zemplinina, M. 

pulcherrima and T. delbrueckii (Sadoudi et al., 2012). Cautiously, mixed culture fermentations or 

spontaneous fermentations can have ethanol levels slightly higher than S. cerevisiae monoculture 

fermentations (Erten et al., 2006; Toro and Vazquez, 2002; Yokotsuka et al., 1993).     

2.6 Terroir specific yeasts 

It has been proposed that indigenous yeast, naturally occurring in grape must, may be specific to an 

area or terroir, with characteristic differences in population profiles (Amerine, 1966; Knight et al., 

2015). Studies have mainly focused on the distribution of S. cerevisiae (Barata et al., 2011; Khan et 

al., 2000; Knight et al., 2015), found to be due to climatic and viticultural factors (Barata et al., 2011). 

More recent studies have focussed on the distribution of other microorganisms, including non-

Saccharomyces yeasts (Bokulich et al., 2013; Setati et al., 2012). However, the scientific question 

remains whether microbial terroirs exist, that could subsequently lead to a typical aromatic or 

chemical feature of the wine end product. 

In South Africa studies have been performed on terroir specific yeasts, although also more focussed 

on S. cerevisiae (Khan et al., 2000; Pretorius et al., 1999; Setati et al., 2012; Van der Westhuizen et 

al., 2000). Following these studies Jolly et al. (2004), found four different non-Saccharomyces yeast 

species to be dominant before the start of fermentation – H. uvarum, Starmarella bombicola, T. 

delbrueckii and C. pulcherrima. However, these yeasts are found globally in other wine regions as 

well (Combina et al., 2005; Cordero-Bueso et al., 2011; Díaz et al., 2013; Heard and Fleet, 1985; 

Zohre and Erten, 2002). More recently yeasts were isolated from spontaneous fermentations in 

Stellenbosch originating from different farming practises – conventional, integrated and biodynamic 

farming – exhibiting a large diversity in yeast species (Bagheri, 2014). Shared yeasts were found in 

all three farming practises (e.g. M. pulcherrima and H. uvarum) and yeasts not so commonly found 

in grape must present in high numbers – e.g. Kazachstania aerobia and Wickerhamomyces 

anomalus (Bagheri, 2014). In this study the latter yeasts are investigated more in depth with regards 

to its impact on fermentation and flavour biosynthesis. Although scarce, W. anomalus has been 

detected in other areas - Spain (Cordero-Bueso et al., 2011; Mora and Mulet, 1991; Regueiro et al., 

1993), Slovenia (Zagorc et al., 2001) and Switzerland (Díaz et al., 2013). According to our 

knowledge, K. aerobia has never before been isolated from a wine environment. 
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2.7 Non-Saccharomyces yeasts investigated in this study 

2.7.1 Kazachstania aerobia 

Kazachstania spp. is part of the family Saccharomycetaceae and the first species to be described 

was K. viticola (Vaughan-Martini et al., 2011). Multigene sequence analysis led to the reclassifying 

of some species of Saccharomyces, Kluyveromyces, Arxiozyma and Pachytichospora to the 

Kazachstania family (Kurtzman, 2003; Kurtzman & Robnett, 2003). As a whole this genus is 

evolutionarily the most related to S. cerevisiae (Hagman et al., 2013). Kazachstania aerobia was first 

isolated in Tochigi, Japan, from corn silage deteriorating under aerobic conditions (Lu et al., 2004). 

Through molecular techniques, it was found that this novel species is phylogenetically closely related 

to K. servazzii and K. unispora. In recent years K. aerobia was dominantly found in sugary kefir 

(Magalhães et al., 2010), cereal barley grain (Olstorpe et al., 2010) and detected in tibico grains 

(Miguel et al., 2011).  

After isolation of K. aerobia from healthy grapes in Stellenbosch (Bagheri, 2014); this yeast was used 

for the first time in wine fermentations conducted sequentially with S. cerevisiae (Beckner Whitener, 

2016). Sensory analysis showed that the wine had a more dried or stewed fruit aromatic profile with 

bitter, solvent characteristics. Chemical analysis revealed that the later characteristics were most 

probably due to high ethyl acetate and volatile acidity concentrations. Furthermore, these 

fermentations had significantly higher terpene concentrations. Interestingly, the K. aerobia aromatic 

profile had many peaks that could not be identified by untargeted GC×GC-TOF-MS analysis. In light 

of these findings it is still not yet known how this yeast performs as single culture and its dominance 

and impact on aroma in other fermentation setups.  

2.7.2 Wickerhamomyces anomalus 

Wickerhamomyces anomalus, previously known as Hansenula anomala, Candida pelliculosa, and 

Pichia anomala (Kurtzman, 2011) naturally occurs in grape must (Cordero-Bueso et al., 2013, 2011; 

Díaz et al., 2013; Mora and Mulet, 1991; Regueiro et al., 1993; Ribéreau-Gayon et al., 2006; Zagorc 

et al., 2001; Zott et al., 2008). This yeast is active early in fermentation (Renouf et al., 2007) and can 

lead to wine spoilage when high levels of acetic acid and ethyl acetate are produced (Plata et al., 

2003; Rojas et al., 2003); although strain differences occur (Romano et al., 1997). 

In monoculture fermentations of W. anomalus it has been found that yeast populations exceeded 

107 cfu/mL for the duration of fermentation, whereas S. cerevisiae populations started declining after 

three days (Kurita, 2008). In contrast, others found that W. anomalus died off immediately after 

addition of S. cerevisiae (Zott et al., 2008). High acetate esters formed by W. anomalus lends a fruity 

character to wine (Rojas et al., 2003) and was seen as the main benefit in red wine aroma (Izquierdo 

Cañas et al., 2014). These wines were preferred by tasters compared to wines fermented with only 

S. cerevisiae (Izquierdo Cañas et al., 2014). More recently, a W. anomalus strain (DBVPG 3003) 
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was found secreting a killer toxin, named Pikt, active against Dekkera/Brettanomyces spp. (Comitini 

et al., 2004). Cautiously, it has been reported that W. anomalus has a low resistance to SO2 

(Izquierdo Cañas et al., 2011). 

High ethyl acetate production is a probable cause for concern as well as the decline in population 

after addition of S. cerevisiae. However it still has potential to be used in mixed culture fermentations 

with S. cerevisiae, if the correct strains can be identified. This yeast, as well as K. aerobia, is not 

able to complete alcoholic fermentation as a single culture in wine fermentations and needs to be 

inoculated with S. cerevisiae in order to ensure an efficient fermentation. In grape must, S. cerevisiae 

is naturally present and will gradually take over the fermentation (Fleet and Heard, 1993; Lema et 

al., 1996). It is thus necessary to understand the interaction and effect of these yeasts in a mixed 

culture fermentation setup. 

2.8 Mixed culture fermentations 

2.8.1 Introduction 

The inability of most non-Saccharomyces yeasts to complete alcoholic fermentation in the absence 

of S. cerevisiae can lead to spoilage or re-fermentation of wines during aging (Jolly et al., 2003a). 

Inoculating both S. cerevisiae and non-Saccharomyces to conduct a mixed culture fermentations 

alleviates the shortcomings of single inoculated non-Saccharomyces yeasts. Single culture 

fermentations, also known as pure or monoculture, are conducted with a high concentration of a 

single inoculated yeast strain, although indigenous microflora is still present in the must. A mixed 

culture or multistarter fermentation is where more than one microorganism is involved (Hesseltine, 

1992). In this review the focus is only on mixed cultures performed with yeasts and not any other 

microorganisms. Generally, two different inoculation strategies can be followed when using a mixed 

culture setup and are referred to as co- and sequential inoculation. Co-inoculation (also known as 

simultaneous inoculation) is when yeasts are added at the same time to the grape must (Comitini et 

al., 2011; Jolly et al., 2006; Soden et al., 2000). Sequential inoculation is conducted by inoculating 

the one yeast after the other at different time points (Clemente-Jimenez et al., 2005; Contreras et 

al., 2015; Gobbi et al., 2013; Herraiz et al., 1990; Toro and Vazquez, 2002). Saccharomyces 

cerevisiae can be inoculated sequentially from 1 hour up to a week or longer after the non-

Saccharomyces yeast have been inoculated, allowing the non-Saccharomyces to proliferate, 

increasing its contribution to the wine making process. 

Mixed culture fermentations can have several advantages, depending on the yeast strain and its 

presence in the fermentation. Specific pairings of S. cerevisiae and non-Saccharomyces yeasts can 

lead to wines with an improved complexity, in addition to enhancing particular and specific 

characteristics of the wine (Ciani et al., 2010). Undesirable aromas produced by non-Saccharomyces 

yeasts can be minimised with the correct inoculation timing of S. cerevisiae, to suppress or modify 
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the metabolic activity of the yeast (Ciani and Comitini, 2011). Nonetheless, mixed culture 

fermentations can yield varying amounts of fermentation products at unpredictable rates. It is thus 

necessary to further investigate the impact of the non-Saccharomyces yeasts on fermentation and 

the interactions between yeasts to improve the practical application of mixed culture fermentations 

(Ciani et al., 2010). 

2.8.2 Impact on fermentation kinetics 

The inherent characteristics of specific non-Saccharomyces yeasts, as mentioned in Table 2.1, are 

in most cases also observed in mixed culture fermentation setups with S. cerevisiae. However, in 

some cases, mixed culture fermentations can lead to the reduction of acetic acid, ethyl acetate, 

acetoin and acetaldehyde levels, compared to high levels in monoculture fermentations (Ciani and 

Comitini, 2011; Ciani and Ferraro, 1998; Ciani et al., 2006; Clemente-Jimenez et al., 2005; Moreira 

et al., 2008; Rojas et al., 2003). Such results interestingly suggest that interactions between yeast 

species impact directly on metabolic activities. 

Many studies documenting production of fermentation metabolites in mixed culture fermentations 

often do not report on the non-Saccharomyces yeasts performance as single culture. This creates 

uncertainty on whether the effect was due to an increase in biomass, an interaction between yeasts 

or if it is a characteristic of the non-Saccharomyces yeast. For example, mixed cultures of either 

W. anomalus or T. delbrueckii with S. cerevisiae showed an increase in total acetates and ethyl 

acetate, but the cause was uncertain as no single culture fermentations were performed (Izquierdo 

Cañas et al., 2011). Kapsopoulou et al. (2007) reported a significant increase in lactic acid 

concentration observed in mixed cultures of K. thermotolerans and S. cerevisiae. Although no single 

cultures of the non-Saccharomyces yeasts were used as a control, previous reports suggested that 

this increase was due to the non-Saccharomyces yeast present in the fermentations (Kapsopoulou 

et al., 2005). Many similar studies have been conducted as outlined in Table 2.2 below. To thoroughly 

understand the impact of non-Saccharomyces yeast in mixed culture fermentations it is necessary 

to determine the physiological and metabolic interactions between yeasts when present in the same 

media (Ciani and Comitini, 2015; Ciani et al., 2010). 
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Table 2.2 Mixed fermentation processes that have been proposed in winemaking, using Saccharomyces cerevisiae and non-Saccharomyces (NS) yeasts (adapted 
from Ciani et al., 2010) 

Species used with          
S. cerevisiae  

Aim Process Cause References 

C. cantarellii Enhancement of glycerol content Co- and sequential 
cultures 

NS yeast Toro & Vazquez (2002) 

C. pulcherrima Improve wine aroma profile Co- and sequential 
cultures  

NS yeast Jolly et al. (2003a); Zohre & Erten (2002) 

D. vanriji Increase in geraniol concentration Sequential cultures NS yeast Garcia et al. (2002)  

H. guilliermondii Improvement of aroma complexity  Co-cultures NS yeast and/ or 
interaction 

Moreira et al. (2005, 2008) 

H. osmophila Increased 2-phenyl ethyl acetate Co-cultures NS yeast and/ or 
interaction 

Viana et al. (2009) 

H. uvarum  Improvement of 

aroma complexity 

Co- or sequential 
cultures  

NS yeast Andorrà et al. (2012); Herraiz et al. (1990); 
Jolly et al. (2003a); Moreira et al. (2005, 
2008); Zohre & Erten (2002) 

 Unacceptable increase in ethyl 
acetate 

Sequential cultures NS yeast Ciani et al. (2006) 

 Lowering of ethanol Immobilised cells, 
sequential-cultures 

NS yeast and/ or 
interaction 

Canonico et al. (2016) 

H. guilliermondii Improvement of aroma complexity  Co-cultures NS yeast and/ or 
interaction 

Moreira et al. (2008, 2005) 

I. orientalis Reduction of malic acid content Co-cultures NS yeast Kim et al. (2008) 

L. thermotolerans Reduction of acetic acid production Co- and sequential 
cultures 

NS yeast Ciani et al. (2006) 

 

 Increased acidity Co- and sequential 
cultures 

NS yeast Gobbi et al. (2013) 

 Enhancement of titratable acidity Co- and sequential 
cultures 

NS yeast Gobbi et al. (2013); Mora et al. (1990) 

M. pulcherrima Lowering of ethanol Sequential cultures NS yeast Contreras et al. (2014) 

P. fermentans Increased and more complex 
aroma, increased glycerol 

Sequential cultures NS yeast Clemente-Jimenez et al. (2005) 

 Increased polysaccharides Co-cultures NS yeast and/ or 
interaction 

Domizio et al. (2011) 
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Species used with          
S. cerevisiae  

Aim Process Cause References 

P. kluyveri Increased varietal thiol (3MHA) Co-cultures NS and/or 
interaction 

Anfang et al. (2009)  

Saccharomycodes ludwigii Increased polysaccharides Co-cultures NS yeast and/ or 
interaction 

Domizio et al. (2011) 

Schizosaccharomyces spp. 

Saccharomycodes spp. 

Pichia spp. 

Influence on sensorial and physico-
chemical properties of wines 

Ageing over the lees 
during wine 

maturation 

NS yeast Palomero et al. (2009) 

Starmarella bacillaris 

 

Increased varietal thiol (3MH) Co-cultures NS yeast and/ or 
interaction 

Anfang et al. (2009) 

 Reduced acetic acid Co- and sequential 
cultures 

NS yeast Rantsiou et al. (2012) 

Starmarella bombicola 

 

Improve wine aroma profile Co- or sequential 
cultures 

NS yeast and/ or 
interaction 

Soden et al. (2000) 

Shizosaccharomyces 
pombe 

Malic acid degradation Immobilised cells 
(continuous process) 

NS yeast Yokotsuka et al. (1993) 

T. delbrueckii Reduction of acetic acid production Sequential cultures NS yeast Bely et al. (2008); Ciani et al. (2006)  

 Reduction of acetaldehyde and VA Sequential cultures NS yeast and/ or 
interaction 

Izquierdo Cañas et al. (2011) 

 Increased aromatic complexity Co- and sequential 
cultures 

NS yeast Azzolini et al. (2012); Loira et al. (2014) 

 Increased polysaccharides Co- cultures NS yeast and/ or 
interaction 

Comitini et al. (2011) 

W. anomalus Increased aromatic qualities Sequential cultures NS yeast and/ or 
interaction 

Izquierdo Cañas et al. (2014, 2011) 
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2.8.3 Yeast interactions 

Interactions between microorganisms are categorised as competitive, neutralistic and mutualistic 

(Rayner and Webber, 1984). It has been described that in yeasts, these interactions mainly impact 

growth and metabolite production (Ciani and Comitini, 2015; Ciani et al., 2010); observed by 

numerous studies focussing on mixed culture fermentations (Ciani and Comitini, 2015; Ciani et al., 

2006; Comitini et al., 2011; Domizio et al., 2007; Gobbi et al., 2013). Additional evidence is seen in 

a study that found a blend of wines fermented with single cultures of different S. cerevisiae strains 

to not have the same effect as co-culture fermentations with the same strains (Howell et al., 2006). 

Furthermore, metabolic, chemical and sensory profiles of yeasts in mixed cultures differ from when 

it is only fermented as monocultures (King et al., 2008; Ciani et al., 2010).  

2.8.3.1 Growth interactions 

The main growth interactions between yeasts are due to competing for nutrients (oxygen, vitamins, 

nitrogen) and the toxic effect of certain metabolites (ethanol, killer proteins, short peptides, fatty 

acids) (Ciani and Comitini, 2015). Studies have reported positive and negative interactions between 

yeasts regarding nitrogen use and limitation (Ciani and Comitini, 2015; Oro et al., 2014). Non-

Saccharomyces yeasts utilise nutrients (i.e. vitamins, amino acids, and ammonium) in the initial 

stages of fermentation before S. cerevisiae takes over (Medina et al., 2012). Furthermore, the 

proteolytic activity of these yeasts can add to the nutrients in grape must (Ciani and Comitini, 2015). 

Indeed, complimentary consumption of amino acids in mixed cultures by different yeasts can cause 

synergistic relationships between species (Ciani and Comitini, 2015). Furthermore, oxygen 

limitation, during fermentation, drastically impacted the viable cell counts of, amongst others, 

T. delbrueckii and K. thermotolerans (Hansen et al., 2001). Reductive environments can cause 

competition between sensitive strains such as K. thermotolerans and T. delbrueckii in the presence 

of S. cerevisiae (Hansen et al., 2001).  

As for toxicity, many data sets point to ethanol as a significant factor (Ciani and Comitini, 2015). Most 

non-Saccharomyces yeasts cannot withstand the high ethanol concentrations produced by 

S. cerevisiae (Pretorius, 2000). In addition, medium chain fatty acids produced by yeast inhibit 

growth, and are especially prevalent in mixed culture fermentations (Bisson, 1999). At higher ethanol 

concentrations these compounds are more toxic (Viegas et al., 1989). Moreover, the production of 

antimicrobial cationic peptides by S. cerevisiae are additional toxic compounds, affecting certain 

non-Saccharomyces such as T. delbrueckii, K. thermotolerans, K. marxianus, D. bruxellensis and 

H. guillermondii (Albergaria et al., 2010; Branco et al., 2014). Killer toxins are furthermore secreted 

by different species (Meinhardt and Klassen, 2009; Van Vuuren and Jacobs, 1992; Zagorc et al., 

2001) and killer activity of S. cerevisiae can reduce the sensitive indigenous species present in 

musts. In this regard non-Saccharomyces yeasts have the competitive advantage as more strains 
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(belonging to the Candida, Hansenula, Pichia and Hanseniaspora genus) secrete proteinaceous 

compounds that are toxic to other species, whereas S. cerevisiae only has killer activity against 

yeasts of the same species (El-Banna et al., 2011; Fleet and Heard, 1993).  

Recently a cell-to-cell contact mechanism has been investigated with regards to T. delbrueckii and 

L. thermotolerans in a mixed culture setup with S. cerevisiae. It was found that these non-

Saccharomyces yeasts interact with each other on a physical level – in such a way that mainly the 

non-Saccharomyces yeasts viability decreased (Luyt, 2015; Nissen and Arneborg, 2003; Nissen et 

al., 2004, 2003). Not all interactions lead to decreased cell growth and synergistic interactions have 

been observed between yeast species. In a mixed culture fermentation with H. uvarum and 

S. cerevisiae the non-Saccharomyces yeast had a lower production of biomass, but persisted for 

longer during fermentation (Mendoza et al., 2007). The co-flocculation of one flocculent (usually non-

Saccharomyces) and one non-flocculent strain (S. cerevisiae) has also been reported (Ciani et al., 

2010; Sosa et al., 2008).  

2.8.3.2 Metabolite interactions 

Metabolic interactions either result in an additive, synergistic or negative effect (Ciani and Comitini, 

2015). Additive interactions are defined as a production or reduction in metabolites where the 

persistence of both strains determine the quantity of the metabolite. When metabolites are 

exchanged or enhanced it is known as a synergistic effect, compared to a negative effect where 

metabolites are reduced (Ciani and Comitini, 2015). 

In mixed culture fermentations, the redox status of cells can possibly be impacted by the yeasts, 

enabling the exchange of metabolites (Cheraiti et al., 2005). Metabolic interactions have found to 

possibly increase higher alcohols and esters while simultaneously decreasing volatile acidity (Ciani 

et al., 2006; Moreira et al., 2005; Viana et al., 2008). This impact on wine aroma in mixed culture 

fermentations has frequently been studied (Andorrà et al., 2012; Comitini et al., 2011; Gobbi et al., 

2013; Loira et al., 2014; Sadoudi et al., 2012).  

Negative interactions, leading to a decrease in undesirable compounds can favourably impact wine 

quality. For instance, excessive concentrations of acetaldehyde produced by Starmarella bacillaris 

can be metabolised by S. cerevisiae (Ciani and Ferraro, 1998). Similarly, volatile acidity was reduced 

in fermentations with S. cerevisiae and K. thermotolerans (Ciani et al., 2006), Starmarella bacillaris 

(Rantsiou et al., 2012) and T. delbrueckii (Azzolini et al., 2015). Some non-Saccharomyces yeast 

can improve ester production and, at the same time, specifically reduce the production of ethyl 

acetate (Kurita, 2008; Moreira et al., 2008).  

An additive interaction was observed in mixed culture fermentations with S. cerevisiae and either 

Starmarella bacillaris or L. thermotolerans, where glycerol levels (and for the latter yeast also total 

acidity) depended on the duration of the viability of the non-Saccharomyces yeasts (Comitini et al., 
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2011). In this way ethanol concentration can be reduced when fermenting with a low producing non-

Saccharomyces strain (Contreras et al., 2014; Gobbi et al., 2014; Quirós et al., 2014).  

Other interactions include glucose, fructose, ethyl acetate, esters, isoamyl acetate, volatile 

compounds (Ciani et al., 2010) and 3-mercaptohexyl acetate (Anfang et al., 2009). Sadoudi et al. 

(2012) showed a positive aromatic effect with mixed cultures of M. pulcherrima and S. cerevisiae, in 

contrast to Starmarella bacillaris and S. cerevisiae which exhibited a negative interaction. Table 2.3 

describes some known interactions and the results thereof. Although mixed culture fermentations 

can exhibit unique characteristics, the interactions between yeasts are not all yet well understood 

(Ciani et al., 2010). To optimise favourable interactions resulting in increased aromatic complexity, 

controlled inoculations are essential and protocols are needed for specific species (Ciani et al., 

2006). 

Table 2.3 Interactions described in mixed fermentation of wines (adapted from Ciani et al., 2010, 2015) 

Species used Interactions References 

S. cerevisiae 

H. uvarum/guillermondii 

Reduced ethyl acetate 

Increased esters* 

Moreira et al. (2008)  

S. cerevisiae 

H. uvarum 

Persistence of non-Saccharomyces Ciani et al. (2006); 
Mendoza et al. (2007) 

S. cerevisiae 

H. uvarum 

Decreased ethanol Mendoza et al. (2007) 

S. cerevisiae 

L. thermotolerans 

Increased glycerol content* Gobbi et al. (2013) 

S. cerevisiae 

M. pulcherrima 

Increased medium chain fatty acids Mains (2014) 

S. cerevisiae 

M. pulcherrima 

Increased aroma profile in mixed culture 
fermentations 

Comitini et al. (2011); 
Sadoudi et al. (2012) 

S. cerevisiae 

P. anomala 

Increased isoamyl acetate (EAHase) by S. 
cerevisiae 

Kurita (2008) 

 

S. cerevisiae 

P. kluyveri 

Increased 3-Mercaptohexyl acetate*  Anfang et al. (2009) 

S. cerevisiae 

Starmarella bacillaris  

Decreased terpene and lactone 
concentration 

Sadoudi et al. (2012) 

S. cerevisiae 

Starmarella bacillaris 

Increased glycerol* Zara et al. (2014) 

S. cerevisiae 

Starmarella bacillaris 

Reduced acetic acid Rantsiou et al. (2012) 

S. cerevisiae 

Starmarella bombicola  

Complementary consumption of 
acetaldehyde, acetoin, glucose and fructose 

Ciani and Ferraro (1998) 

S. cerevisiae 

Starmarella bombicola  

Modification of ADH1 and PDC1 gene 
expression in S. cerevisiae 

Milanovic et al. (2012) 
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Species used Interactions References 

S. cerevisiae 

T. delbrueckii 

Increased death rate of non- 

Saccharomyces due to cell-to-cell contact 

Nissen and Arneborg 
(2003); Nissen et al. 
(2003) 

S. cerevisiae 

T. delbrueckii 

Reduced acetic acid  Taillandier et al. (2014) 

Mixed indigenous 
yeasts 

Increased and more complex aroma (volatile 
compounds) 

Garde-Cerdán and Ancín-
Azpilicueta (2006); Varela 
et al. (2009) 

EAHase, ethyl acetate-hydrolysing esterase.  
*Possibly due to an additive effect 

2.8.4 Inoculation protocol  

Inoculation of S. cerevisiae in fermentations can be controlled to either suppress non-

Saccharomyces yeast growth partially or completely by variation in inoculum levels, timing of 

inoculation, winemaking practices and the specific S. cerevisiae strain used (Ciani et al., 2010). Co-

inoculation strategies have been thoroughly studied for specific species; however, commercially, 

yeast strains are inoculated sequentially. In mixed culture fermentations a waiting period of one hour 

to fifteen days between the inoculation of the non-Saccharomyces yeast and S. cerevisiae is usually 

followed, depending on the species and the type of interactions between the yeast (Ferraro et al., 

2000; Herraiz et al., 1990; Jolly et al., 2014, 2003b). By delaying the inoculation of S. cerevisiae or 

increasing the ratio of non-Saccharomyces to S. cerevisiae, the growth of non-Saccharomyces 

yeasts can be promoted (Anfang et al., 2009; Ciani et al., 2010). This allows the non-Saccharomyces 

yeasts to grow and proliferate in the grape must, while some can even survive until the end of 

fermentation, e.g. L. thermotolerans, I. orientalis and Candida spp. (Mains, 2014; Mills et al., 2002). 

Consequently, the establishment of the correct inoculation level for each yeast species is of great 

importance (Andorrà et al., 2012; Ciani et al., 2006). The inoculation of Starmarella bombicola at 10 

times the concentration of S. cerevisiae still suppressed the growth and metabolism of Starmarella 

bombicola, and no change in the aroma profile was observed compared to the S. cerevisiae 

monoculture (Soden et al., 2000). However, when S. cerevisiae was inoculated sequentially (after 

15 days), the aroma profile was an intermediate between that of the monocultures of Starmarella 

bombicola and S. cerevisiae with a reduction in ethanol concentration (Soden et al., 2000). Other 

studies have investigated the impact of different waiting periods (inoculation of S. cerevisiae after 2, 

3, 4, 6 or 8 days) and found that the longer the delay in inoculation of S. cerevisiae, the more intense 

the impact of P. fermentans on the aroma profile was (Clemente-Jimenez et al., 2005). The same 

increasing effect was observed when the non-Saccharomyces inoculum was increased. These 

findings are comparable to a study on co-inoculation of T. delbrueckii and S. cerevisiae at different 

inoculation ratios varying from 5:1 to 100:1 (Bely et al., 2008). A decrease in volatile acidity and 

acetaldehyde was seen with a delay in S. cerevisiae inoculation or when increasing the inoculum 
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level of non-Saccharomyces yeasts (Bely et al., 2008). Commercial protocols advise inoculation of 

S. cerevisiae after 24-72 hours (for M. pulcherrima and T. delbrueckii) or according to fermentation 

progress, after 1.5-3°B or 6-8°B have been used by the non-Saccharomyces yeasts (Chr. Hansen, 

Denmark; Laffort, France; Lallemand, Canada). Similar approaches have been followed  to inoculate 

S. cerevisiae after the non-Saccharomyces yeast has consumed 50% of the sugar (Contreras et al., 

2014) or 15 units (Izquierdo Cañas et al., 2011).  

Several different inoculation strategies have been used with varying results, highlighting the 

importance of finding the correct inoculation timing and density for each non-Saccharomyces yeast 

species during mixed culture fermentations (Fleet and Heard, 1993). The impact of yeast growth will 

also affect nutrient consumption. This differ between yeast species, although little research has been 

done on nutrient consumption in mixed culture fermentations (Medina et al., 2012).  

2.9 The role of nitrogen  

During fermentation nitrogen is secondary only to carbon in its importance as nutrient assimilated by 

yeast (Henschke and Jiranek, 1993) as it is needed for cell metabolism and protein biosynthesis 

(Bell and Henschke, 2005). Yeast assimilable nitrogen (YAN), consisting of ammonia, free alpha 

amino acids and small peptides, is used by yeast during fermentation and the concentrations in 

grape must varies depending on various viticultural factors. Levels lower than 150 mg/L can result 

in poor yeast growth and stuck fermentations (Pretorius, 2000).  

Nitrogen compounds are not equally preferred by wine yeast and subsequently ammonia will be 

utilised first, followed by the amino acids according to the yeast’s requirements for biosynthesis and 

the total nitrogen available in the grape must (Salmon and Barre, 1998). Recent studies have begun 

investigating nitrogen use by non-Saccharomyces yeasts, as most earlier research has been 

conducted on S. cerevisiae (Llungdahl and Daignan-Fornier, 2012). Mendoza et al., (2007) found 

that in mixed culture fermentations with S. cerevisiae and H. uvarum less assimilable nitrogen 

compounds were consumed compared to fermentations with only S. cerevisiae. In single culture 

fermentations with H. uvarum even less nitrogen was consumed. Furthermore it has been found that 

indigenous Saccharomyces yeast is slow to take up amino acids compared to commercial 

S. cerevisiae strains (Barrajón-Simancas et al., 2011). Additional knowledge on utilisation of 

ammonia and amino acids by non-Saccharomyces yeasts and yeast in mixed culture fermentations 

is still needed (Medina et al., 2012). 

Furthermore, the relationship between addition of nitrogen to grape juice or must and formation of 

volatile compounds has been studied in recent years (Mckinnon, 2013; Smit, 2013; Ugliano et al., 

2007). Branched chain and aromatic amino acids (BCAA’s), consisting of valine, leucine, isoleucine 

and tryptophan, tyrosine, phenylalanine, are precursors for aromatic compounds and have been 

shown to increase higher alcohols (Dickinson et al., 2000, 1998, 1997; Smit, 2013). In addition, strain 
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differences between S. cerevisiae yeasts have been found regarding nitrogen utilisation (Carrau et 

al., 2008; Vilanova et al., 2007). In general, high nitrogen demanding strains synthesised less higher 

alcohols and more esters (Barrajón-Simancas et al., 2011). However, the use of BCAA’s and its 

influence on aroma compounds is unknown for non-Saccharomyces yeasts. 

2.10 Commercialisation of non-Saccharomyces yeasts 

In view of these findings, several non-Saccharomyces yeasts have been commercialised in the past 

decade. Torulaspora delbrueckii was the first non-Saccharomyces yeast to be produced industrially 

and today different strains of this species are available to inoculate grape must (Azzolini et al., 2015). 

In commercialisation of yeast, parameters are measured to establish guidelines for optimal 

fermentation and yeast viability (Ciani et al., 2010; Mendoza et al., 2007). These parameters include 

sensitivity to SO2, temperature fluctuations and nutrient requirements amongst others. Currently all 

commercial non-Saccharomyces yeasts are used in conjunction with S. cerevisiae to ensure 

complete fermentations.  

Non-Saccharomyces yeasts are all commercialised for their improvement of aroma complexity and 

many promise a smooth and rounder mouthfeel. Starmerella bombicola is produced for the 

enhanced production of glycerol (Ciani and Ferraro, 1998; Comitini et al., 2011) and 

Shizosaccharomyces pombe to reduce malic acid (ProMalic®, Lallemand, USA) (Ciani et al., 2010). 

Torulaspora delbrueckii (PreludeTM, Chr. Hansen, Denmark; Zymaflore® AlphaTD, Laffort, France; 

BiodivaTM TD291, Lallemand, Canada) and Lachancea thermotolerans (Viniflora® ConcertoTM, Chr. 

Hansen, Denmark) is commercialised and promoted for lowering acetate levels, increasing higher 

alcohols, with a general improvement of aroma. Metschnikowia pulcherrima (FlaviaTM Mp346, 

Lallemand, Canada) is shown to increase medium chain fatty acids and lower alcohol, acetate and 

glycerol levels. Pichia kluyveri (FrootzenTM, Chr. Hansen, Denmark) reduces medium chain fatty 

acids and increases esters and acetates when used in combination with S. cerevisiae. In addition, a 

multi-yeast starter culture has been developed consisting of L. thermotolerans, T. delbrueckii and S. 

cerevisiae (Melody™, Chr. Hansen, Denmark) for optimal fermentation to produce high end 

Chardonnay. In South Africa yeasts other than S. cerevisiae have been commercialised for instance 

the hybrid between S. cerevisiae and S. paradoxus (Exotics, Anchor Yeast, South Africa) and a co-

inoculant of T. delbrueckii and S. cerevisiae (Level2TDTM, Lallemand, South Africa). 

Starter cultures ensure reliable and fast fermentations with a more consistent end product, enabling 

the use of the same yeast in consecutive vintages (Fleet and Heard, 1993; Sadoudi et al., 2012). 

Although fermentation is more active, dry wine yeast (ADWY) generalises the use of these yeasts 

globally and simplifies the microbial communities that produces a more predicted, standardised 

aromatic profile (Ciani et al., 2010). Using different strains of S. cerevisiae and non-Saccharomyces 
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yeasts solves this problem to a degree and further research is currently conducted on a consortium 

approach, using multiple non-Saccharomyces species.  

2.11 Conclusion 

Past studies have explored the microflora of vineyards and grape musts globally and in South Africa, 

and shown that yeast population structures and dynamics are diverse and frequently changing (Jolly 

et al., 2003b; Setati et al., 2012; Van Zyl and Du Plessis, 1961). The data also suggest that much of 

the yeast biodiversity in the wine ecosystem has not yet been properly investigated or exploited, 

offering seemingly endless possibilities for further investigation. The wine industry has recently 

started to realise this hidden potential, and a shift towards usage of non-Saccharomyces yeasts to 

produce aromatically unique and complex wines has been one of the major oenological 

developments in the past decade. Considering the limit of currently available data, it remains 

paramount to further investigate yeast ecosystems and the interaction of non-Saccharomyces 

species with S. cerevisiae and each other to better understand and control their contribution to 

alcoholic fermentation (Fleet, 2008).  

Furthermore, mixed culture fermentations with the deliberate inoculation of non-Saccharomyces 

yeasts and S. cerevisiae can possibly improve the uniqueness of wines by altering the chemical and 

sensory matrix of the wine, moving away from seemingly monotone wines fermented with traditional 

S. cerevisiae starter cultures (Pretorius, 2000). Such strategies will ensure the presence of non-

Saccharomyces yeasts and improve their impact on wine (Bagheri, 2014), resembling a 

spontaneous fermentation without the associated risks (Ciani et al., 2006; Jolly et al., 2006; Rojas et 

al., 2001; Romano et al., 2003). However there is still a need to further characterise individual non-

Saccharomyces – S. cerevisiae combinations and many more steps need to be taken to enable 

winemakers to make informed decisions.  
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Chapter 3 – Genetic and phenotypic characterisation of 
Wickerhamomyces anomalus and Kazachstania aerobia: 

investigating amino acid impact on growth and aroma 
production 

3.1 Introduction 

The wine yeast, Saccharomyces cerevisiae, and some closely related Saccharomyces species, are 

the main drivers of alcoholic fermentation and extensive research has characterised this species at 

both genetic and phenotypic levels (Camarasa et al., 2011; Dunn et al., 2012; Kvitek et al., 2008; Liti 

et al., 2009). Contrary, similar comprehensive studies have yet to be conducted on most other yeast 

genera and species that are present in a wine environment and are broadly classified as non-

Saccharomyces yeasts. Identification of the species and strains present in wine is an obvious 

prerequisite for understanding their impact. In yeast taxonomy, numerous methods have been used 

for characterisation at species and strain levels (Jolly, 2004). Traditionally, phenotypic approaches 

were primarily used, investigating bio-chemical characteristics, morphology and physiology (Agustini 

et al., 2014). Traits such as osmotolerance, temperature and ethanol tolerance, growth and 

fermentation kinetics and consumption rate of specific compounds can enable researchers to 

categorise species into different strains (Ali and Khan, 2014; Camarasa et al., 2011). Furthermore, 

researchers have used the presence of toxins, nutrient limitations and nutrient sources when 

characterising and differentiating S. cerevisiae strains (Camarasa et al., 2011; Kvitek et al., 2008; 

Nikolaou et al., 2006; Zuzuarregui and del Olmo, 2004). However, modern technology has now made 

genetic characterisation the method of choice, exploiting culture dependent or independent methods. 

Indeed, Random Amplified Polymorphic DNA (RAPD) PCR has been employed as an effective and 

fast way to differentiate between strains (Zahavi et al., 2002).  

Non-Saccharomyces yeasts has a prominent impact on the wine aroma profile, even when only 

present at the onset of fermentation (Jolly et al., 2014). It is thus necessary to evaluate various 

metabolic pathways to better characterise their contribution, as have extensively been done for 

S. cerevisiae (Carrau et al., 2008; Llungdahl and Daignan-Fornier, 2012; Vilanova et al., 2007). In 

addition, the nitrogen content of grape must - consisting of mainly ammonium and amino acids – has 

a significant effect on aroma production (Bell and Henschke, 2005; Ugliano et al., 2007; Vilanova et 

al., 2007). Branched chain and aromatic amino acids are of especial importance as these are the 

precursors for various aroma compounds, synthesised via the Ehrlich pathway (Dickinson et al., 

2000, 1998, 1997; Hazelwood et al., 2008; Lambrechts and Pretorius, 2000; Smit, 2013). We can 

therefore assume that non-Saccharomyces yeast will affect wine aroma either by their own metabolic 

conversion of amino acids to aromatic compounds or by competing with S. cerevisiae for these 

Stellenbosch University  https://scholar.sun.ac.za



 
 

45 
 

nutrients (thereby changing S. cerevisiae’s ability to produce these compounds). It is therefore 

important to better understand the amino acid utilisation of specific non-Saccharomyces yeasts. 

Recently, two yeast species - Kazachstania aerobia and Wickerhamomyces anomalus - have been 

isolated in Stellenbosch, South Africa, that had not yet been extensively investigated (Bagheri, 

2014). Kazachstania aerobia had only been used in wine fermentations in a study on sequential 

culture fermentations in real grape must and was found to release higher amounts of ethyl acetate, 

esters and terpenes compared to S. cerevisiae (Beckner Whitener, 2016). Wickerhamomyces 

anomalus has been identified as a high producer of ethyl acetate (Rojas et al., 2003) but has been 

used successfully to improve aroma of both white and red wines (Izquierdo Cañas et al., 2014, 2011). 

This study was thus designed to genetically and phenotypically characterise K. aerobia and 

W. anomalus isolates, in addition to determining their impact on the chemical and aromatic 

properties of wines after fermenting synthetic grape must. The study was our first attempt to identify 

strains from the two non-Saccharomyces yeast species with wine making potential and favourable 

amino acid and ammonia utilisation. 

3.2 Materials and methods 

3.2.1 Yeast and culture conditions 

Eight Kazachstania aerobia and thirteen Wickerhamomyces anomalus isolates from South Africa 

and France were used in this study. The W. anomalus isolates ARC (ARC 40/20, ARC 40/8, ARC 

40/10, ARC 40/10, ARC 40/10, ARC 19/17, ARC 19/22 and ARC 25/12) were obtained from the 

Agricultural Research Council (ARC) Nietvoorbij collection, situated in Stellenbosch, South Africa. 

The remaining isolates, including those of the K. aerobia species, were obtained from the collection 

at the Institute for Wine Biotechnology (IWBT), Stellenbosch University. Saccharomyces cerevisiae 

VIN13 (Anchor Yeast, South Africa) were used as the control yeast. Table 3.1 below is a list of the 

K. aerobia and W. anomalus isolates used for this study and also indicates their place of origin. 

Growths of all yeasts were maintained on Yeast Peptone Dextrose (YPD) agar (20 g/L glucose, 20 

g/L peptone, 10 g/L yeast extract, 20 g/L agar), purchased from Biolab, SA.  
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Table 3.1 Local and international K. aerobia and W. anomalus yeast isolates compared in this study 

Yeast species Isolate Origin 

Kazachstania aerobia Y837-A Stellenbosch, South Africa 

Kazachstania aerobia Y837-B Stellenbosch, South Africa 

Kazachstania aerobia Y845-A Stellenbosch, South Africa 

Kazachstania aerobia Y845-B Stellenbosch, South Africa 

Kazachstania aerobia Y965 Stellenbosch, South Africa 

Kazachstania aerobia Y895-A Stellenbosch, South Africa 

Kazachstania aerobia Y895-B Stellenbosch, South Africa 

Kazachstania aerobia CBS 9918 CBS culture collection* 

Wickerhamomyces anomalus Y934-1 Elgin, South Africa 

Wickerhamomyces anomalus Y934-2 Elgin, South Africa 

Wickerhamomyces anomalus Y934-A Elgin, South Africa 

Wickerhamomyces anomalus Y934-B Elgin, South Africa 

Wickerhamomyces anomalus Y934-C Elgin, South Africa 

Wickerhamomyces anomalus LO632 France 

Wickerhamomyces anomalus LO633 France 

Wickerhamomyces anomalus ARC 40/8 Paarl, South Africa 

Wickerhamomyces anomalus ARC 40/10 Paarl, South Africa 

Wickerhamomyces anomalus ARC 40/20 Paarl, South Africa 

Wickerhamomyces anomalus ARC 25/12 Constantia, South Africa 

Wickerhamomyces anomalus ARC 19/17 Stellenbosch, South Africa 

Wickerhamomyces anomalus ARC 19/22 Stellenbosch, South Africa 

* The Centraalbureau voor Schimmelcultures (CBS), Utrecht (The Netherlands) 

3.2.2 Phenotypic characterisation 

3.2.2.1 Plate assays 

Isolates of K. aerobia and W. anomalus were exposed to different stresses and their responses were 

qualitatively evaluated following methods described by Rossouw et al. (2009). Oxidative, osmotic, 

hypersaline and heat stresses were investigated. Cells were grown overnight to the exponential 

growth phase in YPD broth incubated at 30°C with shaking. Cells were washed with sterile distilled 
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water and suspended in 0.9% NaCl solution to make a saline cell suspension with an OD600nm of 1. 

Cultures were then treated as specified below and 5 μl of each dilution was spotted on agar plates. 

Impact of stress was determined by visually evaluating growth on plates, after sufficient incubation 

(24-48 hours) at 30°C 

Oxidative stress 

Yeast cells were serially diluted by a factor of 10-1 and spotted on YPD plates supplemented with 

hydrogen peroxide (H2O2) at the following concentrations: 3 mM and 4 mM for K. aerobia isolates 

and 5 mM, 6 mM, 7 mM, 7.5 mM, and 8 mM for W. anomalus isolates.  

Osmotic and hypersaline stress 

Yeast cells were serially diluted by a factor of 10-1 and spotted on YPD agar plates containing 1 M, 

1.5 M, 2 M, 2.5 M, 3.5 M, and 4 M sorbitol and 1 M, 1.2 M, 1.5 M, and 2 M NaCl each. Additional 

YPD plates with a concentration of 0.5 M sorbitol and 0.1 and 0.5 M NaCl were included for the 

K. aerobia isolates.  

Heat shock 

Heat shock was tested by resuspending cells in distilled water heated to a temperature of 55°C. 

Samples were then incubated at 55°C for respectively 15, 30 and 45 min before being serially diluted 

by a factor of 10-1 and spotted on normal YPD plates.  

3.2.3 Genotypic characterisation 

3.2.3.1 DNA extraction 

A single colony of each isolate was inoculated respectively in YPD broth and cultured for 24 hours 

with agitation at 30˚C after which 2 mL of the samples were centrifuged at 6000 rpm for 5 minutes 

and the supernatant discarded. The cells were resuspended in 500 μl distilled water followed by 

another centrifugation step at 6000 rpm for 5 minutes and the supernatant discarded. Thereafter, 

300 μl  breaking buffer, containing 2% (w/v) Triton X-100, 1% (w/v) SDS, 100 mM NaCl, 10 mM Tris-

HCl (pH 8), 1 mM EDTA (pH 8), was added, followed by addition of 300 μl glass beads and 300 μl 

PCI (phenol: chloroform: isoamylalcohol; in the ratio of 25:24:1). This mixture was vortexed for 3 min 

after which 300 μl TE buffer (pH 7.6) was added. Following centrifugation at 12000 rpm for 5 min, 

the top phase was aspirated into a microcentrifuge tube and 1 ml 100% (v/v) ethanol was added and 

mixed briefly by vortexing the tube for 5 seconds. The sample was incubated at -80°C for 10 minutes 

and then centrifuged at 12000 rpm for another 10 minutes. After discarding the supernatant, 500 μl 

70% (v/v) ethanol was added and again centrifuged at 12000 rpm for 2 minutes. The supernatant 

was discarded and the samples dried in a Savant SpeedVac® DNA110 (Thermo Scientific). The 

Stellenbosch University  https://scholar.sun.ac.za



 
 

48 
 

pellet was resuspended in 90 μl distilled water and 10 μl RNase A (10 mg/ml; Macherey-Nagel, 

Düren, Germany) and stored at -20°C until used. 

3.2.3.2 Strain identification 

Random amplified polymorphic DNA (RAPD) PCR was used to determine differences between 

isolates and the clusters are then considered as different strains. The PCR reactions were performed 

in 25 μL reaction mixtures containing 1  μL of DNA template, 10.9 μL of milli-Q water, 0.1 μL of 2.5 

U/µl GoTaq®DNA Polymerase (Promega), 0.4 μL of 100 mM primer, 5 μL of ColorlessGoTaq®Flexi 

Buffer (Promega, Madison, U.S.A.), 2 μL of 2.5 mM deoxynucleoside triphosphate (dNTP) mixture 

and 2 μL of 25 mM MgCl2 (Promega). Three reactions were performed with three different primers: 

OPA-01 (5´-CAGGCCCTTC-3´), OPA-05 (5´-AGGGGTCTTG-3´) and OPA-09 (5´-GGGTAACGCC-

3´). DNA amplification was executed by using the Applied Biosystems® 2720 Thermal Cycler.  PCR 

conditions were as follows: initial denaturation at 94°C for 1 min; 45 cycles of denaturing at 94°C for 

1 min, annealing at 36°C for 1 min, extension at 72°C for 2 min; and a final extension at 72°C for 8 

min (Bujdoso et al., 2011). The PCR products were separated on 1.5% agarose gels prepared in 1X 

Tris-Acetic acid-EDTA (TAE) buffer, stained with GelRed™. Electrophoresis was conducted for 2 

hours at 70 V and afterwards gels were visualised under UV light and photographed. Sizes were 

estimated by comparison against a GeneRulerTM 100bp plus DNA Ladder (Fermentas, South Africa). 

Random segments of the isolates were amplified, allowing differentiation and grouping into strains 

according to different banding patterns. 

3.2.4 Single culture fermentations 

3.2.4.1 Inoculation strategy 

Fermentations were conducted with selected isolates; K. aerobia Y837-B, Y965, CBS 9918 and W. 

anomalus Y934-C, LO632, LO633, ARC 40/20, ARC 19/22; in 100 mL spice bottles containing 80 

mL synthetic grape must (SGM) fitted with fermentation locks. Fermentations were done in triplicate 

with S. cerevisiae VIN13 as the control. The SGM was prepared as described by Henschke and 

Jiranek (1993) with minor adjustments (Smit, 2013). The pH of the must was adjusted to 3.5 using 

KOH with an initial sugar content of 200 g/L (100 g/L glucose and 100 g/L fructose) and yeast 

assimilable nitrogen (YAN) content of 300 mg N/L (the only exception from the SGM described in 

Smith (2013)).  

The YAN component of the must was adjusted to form three different nitrogen treatments as defined 

in Table 3.2 and identified as Treatment A, Treatment B and Treatment C as follows: 

 Treatment A served as the control with only ammonium (provided as ammonium chloride) 

as nitrogen source (300 mg N/L).  
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 Treatment B consisted of all 20 amino acids that contributed in equal amounts to a total of 

150 mg N/L as well as ammonium chloride providing the remaining 150 mg N/L. 

 Treatment C only had the branched-chained and aromatic amino acids (BCAA) - isoleucine, 

leucine, valine, phenylalanine and tyrosine – providing equal amounts of nitrogen 

contributing 150 mg N/L as well as ammonium chloride providing the remaining 150 mg N/L.  

All isolates were cultured as described previously in section 3.2.1 and grown overnight in YPD broth, 

incubated at 30°C. Thereafter, the yeast isolates were inoculated at an OD600 of 0.1 into the SGM. 

Fermentations were incubated at 30°C and conducted in static conditions with the exception of being 

shaken once a day just before weighing. Fermentations were conducted for three weeks.  

3.2.4.2 Fermentation kinetics 

Carbon dioxide release, change in optical density (OD) and sugar consumption were used to 

determine the growth kinetics and fermentation potential of the isolates under study. Samples were 

obtained for the first three days and thereafter every second day to measure the OD at 600 nm 

wavelength in order to determine biomass formation. At these time points sugar (glucose and 

fructose), ammonia and alpha amino nitrogen concentrations were determined using the Arena 20XT 

Photometric Analyzer (Thermo Electron Oy, Finland). Doubling times of yeast isolates were 

calculated with the formula Td = log(2)/log(1+r), where “Td” indicates doubling time and “r” the linear 

correlation coefficient calculated from three OD measurements during exponential growth phase. 

3.2.4.3 Major volatile aroma production 

Aroma compounds were extracted using a liquid-liquid extraction (Louw et al., 2009). A 5 mL sample 

of each treatment was used with 100 µL 4-methyl-2-pentanol as internal standard. After addition of 

1 mL diethyl ether and sonicating the mixture for 5 min it was then centrifuged at 4000 rpm for 3 

minutes. If separation of ether layer was not clear, sodium sulphate (Na2SO4) was added and the 

mixture was centrifuged again. The supernatant (ether layer) was then aspirated and dried on 

Na2SO4 after which it was injected into the gas chromatography– flame ionisation detector (GC-FID). 

Metabolites were identified and quantified by the GC-FID and a Hewlett Packard 6890 Plus gas 

chromatograph (Agilent, Little Falls, Wilmington, USA) fitted with a split injector. Method for 

quantification was conducted as stated in Smith (2013).  

3.2.4.4 Statistical analysis 

All univariate statistical analyses were done using the Statistica 13 analytics software package (Dell 

Inc., USA) to infer the effects of different treatments on yeast growth, metabolite accumulation and 

fermentation kinetics. Multivariate data analysis was conducted using SIMCA 13 data presentation 
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and analytics software (Umetrics, Sweden) to simultaneously investigate the treatment effect on all 

metabolites produced. Data in tables and graphs are presented as means ± standard error of mean. 

Table 3.2 Composition of the nitrogen treatments (adapted from Smit, 2013) 

Compound 

Treatment A  

Ammonium only 

Treatment B     

Complete amino acids 

Treatment C         

BCAAs 

%N mg 
N/L 

mg/L %N mg 
N/L 

mg/L %N mg 
N/L 

mg/L 

NH4Cl 21.2 300.0 1146.0 21.2 150.0 573.0 21.2 150.0 573.0 

ALA - - - 15.7 7.5 47.8 - - - 

ARG - - - 32.2 7.5 23.3 - - - 

ASN - - - 21.2 7.5 35.4 - - - 

ASP - - - 10.5 7.5 71.4 - - - 

CYS - - - 11.6 7.5 64.9 - - - 

GLN - - - 19.2 7.5 39.1 - - - 

GLU - - - 9.5 7.5 78.9 - - - 

GLY - - - 18.6 7.5 40.3 - - - 

HIS - - - 27.1 7.5 27.7 - - - 

ILE - - - 10.7 7.5 70.1 10.7 30.0 280.4 

LEU - - - 10.7 7.5 70.1 10.7 30.0 280.4 

LYS - - - 19.2 7.5 39.1 - - - 

MET - - - 9.4 7.5 79.8 - - - 

PHE - - - 8.5 7.5 88.2 8.5 30.0 352.9 

PRO - - - 12.2 7.5 61.5 - - - 

SER - - - 13.3 7.5 56.4 - - - 

THR - - - 11.8 7.5 63.6 - - - 

TRP - - - 13.7 7.5 54.7 - - - 

TYR - - - 7.7 7.5 97.4 7.7 30.0 389.6 

VAL - - - 12.0 7.5 62.5 12.0 30.0 250.0 

3.3 Results 

3.3.1 Phenotypic characterisation – plate assays 

The non-Saccharomyces yeasts, K. aerobia and W. anomalus, were exposed to different stress 

assays to characterise yeast and differentiate between isolates of the same species. All the 

K. aerobia isolates showed low tolerance to oxidation in comparison to S. cerevisiae (VIN13). The 
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isolates Y837-A and Y895-A showed better growth on plates supplemented with 3 mM H2O2 

compared to the other K. aerobia isolates (Figure 3.1 – A). Concentration of 4mM H202 resulted in 

no growth for the K. aerobia isolates. With regards to osmotic and salt tolerance, K. aerobia isolates 

did not show distinctive phenotypes (Figure 3.1 – B,C). Although isolate Y895-A and the CBS strain 

exhibited the least growth on 1 M NaCl media compared to the rest of the isolates and VIN13. Heat 

stress induced by exposing the yeast for 15 and 30 minutes at 55°C did not have an effect on growth, 

whereas heat stress for 45 minutes showed that the K. aerobia isolate Y895-B and CBS strain had 

a slightly higher resistance to heat (Figure 3.3).  

Wickerhamomyces anomalus isolates proved to have higher tolerance to oxygen, osmotic and 

hypersaline stress than S. cerevisiae (Figure 3.2). Between isolates, LO633, Y934-1 and Y934-2 

had the lowest tolerance to oxygen (Figure 3.2 - A). No differences were observed between the ARC 

isolates or Y934-A, Y934-B, Y934-C. Furthermore, the W. anomalus isolates Y934-A, Y934-B, Y934-

C were the most resistant to osmotic stress (Figure 3.2 - B). In comparison, the isolates Y934-1 and 

Y934-2 and ARC isolates 25/12, 19/17 and 19/22 were the most sensitive to osmotic stress. No 

differences were observed amongst the isolates LO632 and LO633 as well as ARC 40/8, 40/10, 

40/20. The hypersaline stress assays showed no differences between the Y934 isolates and they 

were all more resistant to high salt conditions when compared to the other isolates, followed by 

LO633 and ARC 40/20 (Figure 3.2 - C). ARC 25/12, 19/17 and 19/22 were the least resistant to 

hypersaline stress, followed by ARC 40/8 and 40/10. When assessing the resistance of W. anomalus 

to heat stress, the isolates Y934-A and ARC 25/12 had the least resistance (Figure 3.3 – B). There 

were no differences between the remaining ARC isolates.  
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Figure 3.1 Effect of oxygen (A), osmotic (B), and hypersaline (C) stresses on K. aerobia isolates (Y837-A, 
Y837-B; Y845-A, Y845-B; Y965, Y895-A, Y895-B; CBS) at 106 cfu/mL to 102 cfu/mL. S. cerevisiae (VIN13) 
was used as control. 
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Figure 3.2 Effect of oxygen (A), osmotic (B) and hypersaline (C) stresses on W. anomalus isolates 
(Y934-A, Y934-B, Y934-C, Y934-1, Y934-2; LO632, LO633, ARC 40/8, ARC 40/10, ARC 40/20, ARC 
25/12, ARC 19/17, ARC 19/22) at 106 cfu/mL to 102 cfu/mL. S. cerevisiae (VIN13) was used as control.  
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Figure 3.3 Effect of heat shock on A - K. aerobia isolates (Y837-A, Y837-B; Y845-A, Y845-B; Y965, Y895-A, 
Y895-B; CBS) and B - W. anomalus isolates (Y934-A, Y934-B, Y934-C, Y934-1, Y934-2; LO632, LO633, ARC 
40/8, ARC 40/10, ARC 40/20, ARC 25/12, ARC 19/17, ARC 19/22) at 106 cfu/mL to 102 cfu/mL. S. cerevisiae 
(VIN13) was used as control. 

3.3.2 Genotypic characterisation – RAPD 

The DNA based taxonomic differentiation between isolates of K. aerobia and W. anomalus were 

conducted using RAPD analysis. Isolates of K. aerobia showed no clear genetic difference, with the 

exception of the CBS strain when amplified with primer OPA-01 (Figure 3.4 - A). The K. aerobia 

isolates were distinctly different from the S. cerevisiae VIN13 control yeast.  

The primers OPA-01, OPA-05, OPA-09 showed that the W. anomalus isolates ARC 25/12, ARC 

19/17 and ARC 19/22 were similar. Primer OPA-01 showed that the remaining isolates had the same 

banding pattern (Figure 3.4 - B). Using primer OPA-05 distinguished LO632 and LO633 from Y934 

isolates by an extra band. ARC 40/20 had the same extra band as LO632 and LO633 whereas Y934 

isolates, ARC 40/8 and 40/10 all had the same region amplified. These groupings were confirmed 

by amplification with primer OPA-09. Amplification with primer OPA-09 suggested that the ARC 

isolates 40/8, 40/10 and 40/20 were different from each other.  
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Figure 3.4 Strain characterisation of (A) K. aerobia and (B) W. anomalus isolates using RAPD. Three primers 
OPA-1, OPA-5 and OPA-9 were used for the PCR amplification. In A, lanes 1-8 represent S. cerevisiae VIN13,  
K. aerobia Y845-A, Y837-B, Y965, Y895-A, Y895-B, Y845-B and the CBS strain in that order; in B, lanes 1-14 
represent S. cerevisiae VIN13, W. anomalus Y934-1, Y934-2, Y934-A, Y934-B, Y934-C, LO632, LO633, ARC 
40/8, ARC 40/10, ARC 40/20, ARC 25/12, ARC 19/17, and ARC 19/22 after PCR amplification of genomic 
DNA. Lane L contain 0.25μg GeneRuler 100 bp Plus DNA ladder as reference. 

3.3.3 K. aerobia and W. anomalus in single culture fermentations 

3.3.3.1 Fermentation kinetics 

Single culture fermentations were conducted with three and five phenotypically diverse K. aerobia 

and W. anomalus isolates. Fermentation with S. cerevisiae VIN13 served for comparative purposes. 

All fermentations were conducted in synthetic grape must supplemented with the same amount of 

total yeast available nitrogen, but with different nitrogen source combinations (referred to as 

Treatments A. B and C): no amino acids (only ammonium), all of the amino acids (with ammonium) 

and BCAA’s (with ammonium). All fermentations were conducted for 21 days. Fermentation rate and 

biomass production of yeast cultures were determined by monitoring CO2 production and sugar 

consumption and change in optical density (OD) over time.  
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As expected, S. cerevisiae VIN13 showed the fastest fermentation rate as measured CO2 release 

and sugar consumption, independently of the nitrogen treatments (Figure 3.5; Figure 3.6). 

Fermentation rate of K. aerobia isolates (with the exception of K. aerobia CBS) were slightly 

increased in the treatment with BCAA’s (Figure 3.5 – A; Figure 3.6). At the start of fermentation, 

K. aerobia Y837-B displayed a higher CO2 production independent of nitrogen treatment, although 

as fermentation progressed Y837-B and Y965 had similar sugar utilisation and CO2 production. 

Overall, the CBS strain showed the lowest fermentation rate (specific end point values are 

documented in the appendix, Table 1). For the W. anomalus yeasts, Treatment B with all of the 

amino acids had the fastest fermentation rate (CO2 production and sugar consumption) and 

Treatment C with BCAA’s as nitrogen source, resulted in the slowest fermentation rate (Figure 3.5 - 

B; Figure 3.7). Between isolates of W. anomalus, LO632 had the fastest fermentation rate throughout 

the different treatments (Figure 3.5 – B Figure 3.7, specific end point values are documented in the 

appendix, Table 2). In contrast, the isolates ARC 40/20, 19/22 and Y934-C had the slowest 

fermentation rate. All of the yeast showed a preference for glucose, which was consumed at a faster 

rate than fructose. Wickerhamomyces anomalus yeasts consumed minimal amounts of fructose. 

In terms of growth rate, S. cerevisiae exhibited the fastest biomass production, entering exponential 

phase after 24 hours, compared to the K. aerobia and W. anomalus isolates that had a three and 

two day long lag phase (Figure 3.8). After 9 days S. cerevisiae was in stationary phase, compared 

to the non-Saccharomyces yeast that had not yet reached stationary phase at the time that the 

fermentations were terminated. Nitrogen composition displayed a significant impact on biomass 

formation. For all K. aerobia yeasts, Treatment B resulted in higher biomass production and 

Treatment A resulted in the lowest biomass production (Figure 3.8 - A). Amongst K. aerobia isolates, 

Y965 had the highest biomass production and the CBS strain the lowest production (Figure 3.8 - A; 

Table 1 in appendix). In W. anomalus fermentations, similar to K. aerobia fermentations, Treatment 

A resulted in the lowest growth, although, in contrast, Treatment C, had the highest biomass 

production (specific end point values are documented in the appendix, Table 1 and Table 2). 

Amongst W. anomalus isolates, ARC 19/22 had the lowest growth and LO632 the highest, although 

not significant at end point. 

The doubling time of yeast growth was shortest for S. cerevisiae, followed by W. anomalus and then 

K. aerobia (Table 3.3). Between treatments the doubling time differed depending on species. 

Doubling time for S. cerevisiae was the longest for Treatment C with the BCAA’s. For the K. aerobia 

fermentations, doubling time was the fastest for Treatment A with no amino acids, with the exception 

of K. aerobia Y837-B that had a shorter doubling time in Treatment B with all of the amino acids. 

Interestingly, for W. anomalus fermentations, Treatment C with the BCAA’s had the fastest doubling 

time, with the exception of W. anomalus ARC 40/20. The fastest doubling time was observed for 

either Treatment A with no amino acids or Treatment B with all of the amino acids. Amongst isolates 
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of K. aerobia, differences between Y837-B and Y965 were treatment dependant, with strain CBS 

exhibiting the longest doubling time. Amongst W. anomalus, LO632 had the shortest and ARC 19/22 

the longest doubling time. 

Table 3.3 Doubling time (Td) indicated in hours for yeast species, S. cerevisiae (SC), K. aerobia (KA), 
W. anomalus (WA), in single culture fermentation. Values calculated from three OD600 measurements during 
the exponential growth phase  

Yeast species Treatment Td (h) Treatment Td (h) Treatment Td (h) 

SC VIN13 A 1.23 B 1.22 C 1.40 

KA Y837-B A 8.76 B 4.56 C 5.85 

KA Y965 A 4.95 B 7.06 C 5.68 

KA CBS A 5.35 B 16.58 C 7.49 

WA Y934-C A 3.12 B 4.67 C 2.89 

WA LO632 A 3.02 B 3.60 C 2.44 

WA LO633 A 4.05 B 3.88 C 2.85 

WA ARC 40/20 A 3.20 B 2.46 C 3.29 

WA ARC 19/22 A 5.43 B 4.38 C 4.35 
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Figure 3.5 Mean CO2 production for the duration of K. aerobia and W. anomalus fermentations displayed in 
graph A and B. Nitrogen treatments are indicated as A (square) - only ammonium, B (circle) - all of the amino 
acids and ammonia, and C (triangle) - BCAA’s and ammonia. VIN13 is S. cerevisiae the control and the non-
Saccharomyces yeast is indicated as their respective isolate number. All means values are indicated with 
standard error bars. 
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Figure 3.6 Consumption of glucose (A) and fructose (B), indicated as mean ± standard error, in single culture 
fermentations of S. cerevisiae VIN 13 (red) and K. aerobia Y837-B (green), Y965 (blue), CBS (orange). 
Nitrogen treatments are indicated as A (square) - only ammonium, B (circle) - all of the amino acids and 
ammonia, and C (triangle) - BCAA’s and ammonia. 
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Figure 3.7 Consumption of glucose (A) and fructose (B), indicated as mean ± standard error, for single culture 
fermentations of S. cerevisiae VIN 13 (red) and W. anomalus Y934-C (green), LO632 (blue), LO633 (orange), 
ARC 40/20 (purple), ARC 19/22 (black). Nitrogen treatments are indicated as A (square) - only ammonium, B 
(circle) - all of the amino acids and ammonia, and C (triangle) - BCAA’s and ammonia. 
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Figure 3.8 Mean OD600 for the duration of K. aerobia and W. anomalus fermentations displayed in graphs A 
and B. Nitrogen treatments are indicated as A (square) - only ammonium, B (circle) - all of the amino acids 
and ammonia, and C (triangle) - BCAA’s and ammonia. VIN13 is S. cerevisiae the control and the non-
Saccharomyces yeast is indicated as their respective isolate number. All mean values are indicated with 
standard error bars. 
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Figure 3.9 Ammonia (A) and alpha amino nitrogen (B) concentrations, indicated as mean ± standard, error in 
single culture fermentations for S. cerevisiae VIN 13 (red) and K. aerobia Y837-B (green), Y965 (blue), CBS 
(orange). Nitrogen treatments are indicated as A (square) - only ammonium, B (circle) - all of the amino acids 
and ammonia, and C (triangle) - BCAA’s and ammonia. 
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Figure 3.10 Ammonia (A) and alpha amino nitrogen (B), indicated as mean ± standard error, in single culture 
fermentations of S. cerevisiae VIN 13 (red) and W. anomalus Y934-C (green), LO632 (blue), LO633 (orange), 
ARC 40/20 (purple), ARC 19/22 (black). Nitrogen treatments are indicated as A (square) - only ammonium, B 
(circle) - all of the amino acids and ammonia, and C (triangle) - BCAA’s and ammonia. 
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Chemical analysis of the single culture fermentations revealed that S. cerevisiae (VIN 13) had the 

fastest consumption rate of ammonia, although consumption of amino acids did not differ between 

the yeast species (Figure 3.9; Figure 3.10). In addition, amino acids increased in Treatment A where 

no amino acids were present initially, as yeasts synthesise amino acids. Amongst K. aerobia isolates, 

Y965 had the fastest consumption of ammonia and amino acids and the CBS isolate the slowest 

consumption (Figure 3.9). In terms of nitrogen treatment effect, K. aerobia isolates in Treatment C 

with the BCAA’s consumed more ammonia and amino acids compared to the other treatments.  

Amongst the isolates of W. anomalus, LO632 utilised the most ammonia and amino acids, whilst 

isolates Y934-C and LO633 utilised the least ammonia (Figure 3.10). Between treatments, 

W. anomalus consumed the most ammonia in Treatment A, and no differences was seen in 

consumption for Treatment B and C that had added amino acids. An increase in amino acid utilisation 

was observed when all of the amino acids were present in the must.  

3.3.3.2 Major volatile aroma production 

The overall data set of measured aroma compounds was analysed with PLS-DA, and suggests that 

the nitrogen treatment used had the largest impact on the aroma profile, as yeast separated and 

grouped according to treatment (Figure 3.11 - A). Overall, volatile compounds (isoamyl acetate, 

isobutanol, 2-phenyl ethanol, isoamyl alcohol, isobutyric acid, iso-valeric acid) increased when the 

relative amino acid precursors were added, as indicated in the biplot (Figure 3.11 - B).   

For all of the yeast species, production of 2-phenyl ethanol, isoamyl alcohol and isovaleric acid was 

doubled when all of the amino acids were added to the must and tripled when the BCAA’s were 

added (Figure 3.12). In addition, isobutanol similarly increased in Treatment C, but no difference was 

seen between Treatments A and B. Isobutyric acid production was the same for all yeasts 

irrespective of nitrogen treatment, with the exception of the production by W. anomalus that tripled 

production of this compound in the treatment with added BCAA’s. In general, the addition of BCAA’s 

had a more significant effect on compound production, e.g. isoamyl acetate, isoamyl alcohol, 

isobutanol, isobutyric acid, isovaleric acid, in W. anomalus yeasts compared to S. cerevisiae and 

K. aerobia.  

Ethyl acetate and acetoin production by all yeast species were not affected by nitrogen treatment. 

The non-Saccharomyces yeasts all produced more ethyl acetate than S. cerevisiae, with important 

isolate differences. Interestingly, acetic acid production was lower in Treatment C for S. cerevisiae 

and K. aerobia, although no differences were observed for the other treatments or fermentations with 

W. anomalus. Acetic acid and acetoin production was highest for K. aerobia isolates compared to 

the other species. Propanol and butanol production by all yeast species were highest in Treatment 

A with no added amino acids and lowest in Treatment C.  
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Amongst W. anomalus isolates, the trend for compound production as consistent. The W. anomalus 

isolate, LO632 produced the most volatile compounds, followed by LO633, while ARC 19/22 

produced the least of these compounds.  Amongst K. aerobia isolates, isolate Y965 produced higher 

amounts of propanol, butanol, acetic acid and acetoin.   

 

Figure 3.11 PLS-DA scores plot (A) showing the effect of treatments (A, B & C) on the global volatile aroma 
of wines fermented with different yeasts (the plots). Compounds driving differentiation is indicated in the biplot 
(B). 
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Figure 3.12 Major volatile compounds produced by single culture fermentations of S. cerevisiae (SC), 
K. aerobia (KA) and W. anomalus (WA) on day 14 in synthetic grape must fermentations with different nitrogen 
additions indicated as A (only ammonium), B (all of the amino acids) and C (BCAA’s) on the horizontal axis. 
Compounds measured are A – ethyl acetate; B - isoamyl acetate; C – isobutanol; D – 2-phenyl ethanol; E – 
propanol; F – isoamyl alcohol; G – butanol; H – isovaleric acid; I –isobutyric acid; J – acetic acid; K – acetoin 
indicated in mg/L as the average of three biological repeats (each with one or two technical repeats) with 
standard error bars.  

3.4 Discussion 

3.4.1 Phenotypic characterisation with stress assays 

Wickerhamomyces anomalus showed to be very resilient to the different stresses compared to S. 

cerevisiae and can easily survive in the wine environment. This yeast had higher tolerance to 

oxygen, saline and sugar, which is characteristic of this species as it is known to survive in stressful 

environments (Kurtzman, 2011). Saccharomyces cerevisiae is not resistant to high levels of sodium 

chloride (Mendes et al., 2013). The high resistance of W. anomalus to oxygen is advantageous as 

yeast cells are known to synthesize reactive oxygen species  (ROS) when limited oxygen is available 

(Mendes-Ferreira et al., 2010). In addition, prominent isolate differences could be seen and the 

stresses categorised the isolates into 7 possible groups. This species is known to show large 

physiological variation (Kurtzman, 2011), similar to S. cerevisiae, for which large variations in 

phenotypes have been reported (Barbosa et al., 2014; Cubillos et al., 2011; Kvitek et al., 2008; Liti 

et al., 2009; Warringer et al., 2011). However, the impact of the stresses was not so marked for the 

K. aerobia isolates. This yeast was less resistant to the stresses than S. cerevisiae. These yeasts 

were all sourced from the same environment and it is likely that they are all the same strain. 

This is the first attempt to phenotypically characterise K. aerobia and W. anomalus by means of 

stress assays. These results not only show the stress level of the isolates but enabled differentiation 

between isolates. Other studies also found the stress assays to be effective in discriminating 

between strains (Barbosa et al., 2014; Kvitek et al., 2008; Mendes et al., 2013).  
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3.4.2 Genotypic characterisation with RAPD analysis 

The RAPD analysis confirmed that there were no differences between the K. aerobia yeasts isolated 

from Stellenbosch. Elsewhere, Lin et al. (1996) also struggled to detect strain differences in isolates 

from the same source suggesting that geographical separation could be the major driver of strain 

development. The K. aerobia strain CBS 9918, was isolated from aerobically decomposing maize 

silage in Japan (Lu et al., 2004). As expected, it appeared genetically different, although it was 

phenotypically similar to the Stellenbosch isolates further asserting the hypothesis that for K. aerobia, 

location is the determinant of yeast genetic variability.  

Genetic characterisation of the W. anomalus isolates confirmed the findings from the phenotypic 

stress assay, although no genetic differences were evident between the Y934 isolates. The use of 

different primers could improve the accuracy of the RAPD analysis since it is documented that not 

all primers are capable of identifying DNA polymorphisms (Lin et al., 1996; Zahavi et al., 2002). 

However, some studies have reported that the use of only two primers are sufficient for strain 

characterisation and no further knowledge is gained by increasing the number of primers (Hopkins, 

2001). In this study, using the OPA-01 primer only could not differentiate between the W. anomalus 

isolates Y934, LO632, LO633 and the ARC isolates 40/8, 40/10, 40/20, but adding primers OPA-05 

and OPA-09 showed the differences in strains.  

3.4.3 Impact of different nitrogen compositions on single culture fermentations of K. aerobia 

and W. anomalus  

3.4.3.1 Fermentation kinetics 

In order to reduce variability and create a constant environment to investigate the physiological 

reaction and metabolite production of yeast it is the best to use synthetic grape must to optimise the 

results (Barrajón-Simancas et al., 2011; Carrau et al., 2008). Single culture fermentations with 

different isolates of the K. aerobia and W. anomalus yeast showed that these yeasts do not ferment 

wines to dryness, echoing findings by Jolly et al. (2003) after fermenting SGM with Hanseniaspora 

uvarum, Starmarella bombicola, Candida pulcherrima and C. colliculosa. The slower fermentation 

rate is also consistent with previous data and is a general trait of non-Saccharomyces yeasts (Ciani 

et al., 2010; Jolly et al., 2003a). These yeasts are glucophilic like S. cerevisiae (Mains, 2014) and 

most other non-Saccharomyces yeasts (De Koker, 2015). Fructose utilisation had a significant 

impact on the duration of fermentation. The bigger the ratio between glucose and fructose, the 

weaker the fermentative performance of the isolates were (Barbosa et al., 2014; Berthels et al., 

2004). Low consumption of sugars of the non-Saccharomyces yeasts could be attributed to the low 

ammonia consumption by these yeasts. Studies have found that when nitrogen is utilised in higher 

amounts, fermentation is conducted at a faster rate (Barbosa et al., 2014). Although, data suggests 
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that W. anomalus yeasts used nitrogen more for biomass formation and less for fermentation 

performance (Berthels et al., 2004).  

Amino acid concentration in musts possibly do not affect the rate of fermentation (Arias-Gil et al., 

2007). Indeed, a previous study, conducted under the same nitrogen conditions as the current study, 

showed no significant differences in terms of sugar consumption (Smit, 2013); similar to the current 

findings. However, others found more rapid CO2 production in wine with added ammonia compared 

to the addition of only amino acids (Miller et al., 2007). Moreover, similar amino acid utilisation was 

observed for S. cerevisiae and the non-Saccharomyces yeasts, although indigenous yeasts have 

been found to consume less amino acids compared to commercial S. cerevisiae strains (Barrajón-

Simancas et al., 2011). However, these values do not account for possible differences in 

consumption of specific amino acids (Jiranek et al., 1995; Mckinnon, 2013).  

Most amino acids can be synthesised by S. cerevisiae, although it is strain dependant as to which 

specific amino acids are synthesised (Barrajón-Simancas et al., 2011). In addition, secretion of 

amino acids, clearly observed in the fermentation with no added amino acids, is possibly a function 

of autolysis (Hernawan and Fleet, 1995; Martinez-Rodriquez and Polo, 2000). Others observed 

nitrogen secretion by yeast during the later stages of fermentation  due to an increase in ethanol 

concentration which increased membrane permeability while solute active transport is decreased 

(Monteiro and Bisson, 1992; Ough et al., 1991). Furthermore, amino acids (proline, methionine, 

leucine, tryptophan and cysteine) can be secreted in fermentation  possibly for the reoxidation of 

NAD(P)H to restore the redox balance in wine (Valero et al., 2003).  

Moreover, it has been noted that ammonium is not fully consumed without shaking of the 

fermentation vessels (De Koker, 2015; Vilanova et al., 2007), possibly causing the high residual 

ammonia concentration in this study. Although, to the contrary, others found ammonium to be 

completely consumed in a spontaneous fermentation, regardless of the amino acid concentration of 

the must (Arias-Gil et al., 2007). Uptake of ammonium is preferred by yeast compared to other 

nitrogen sources, impacting the nitrogen catabolite repression influencing metabolism of amino acids 

(Cooper and Sumrada, 1983; Valero et al., 2003). This preference can lead to reduced utilisation of 

amino acids when ammonia is added to must (Miller et al., 2007; Smit, 2013). Although, when amino 

acids were present in the grape must, less ammonia was utilised by W. anomalus, suggesting that 

W. anomalus prefer amino acids to ammonia.  

Slight differences between isolates, although genetically the same strain, is expected as individual 

phenotypic variation, not only due to the genotype, but also to environmental pressures, impact how 

individuals respond to stress and developmental deviations (Vogt et al., 2008). 
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3.4.3.2 Major volatile aroma production 

Major volatile aroma compounds were affected by the addition of amino acids, confirming the work 

of previous authors (Arias-Gil et al., 2007; Mckinnon, 2013; Smit, 2013). Many have studied the 

effect of BCAA’s on higher alcohols and acids (García et al., 1994; Hazelwood et al., 2008; Mendes-

Ferreira et al., 2011) and the corresponding esters (Hernández-Orte et al., 2002; Herraiz and Ough, 

1993; Saerens et al., 2010). Indeed, the increase in isobutyric acid and isobutanol can be attributed 

to the increased presence of valine (Barrajón-Simancas et al., 2011; Mendes-Ferreira et al., 2011). 

The BCAA’s, phenylalanine and leucine, lead to an increase in 2-phenyl ethanol, and isovaleric acid 

and isoamyl alcohol (including its esterified acetate – isoamyl acetate) respectively (Boulton et al., 

1996; Mendes-Ferreira et al., 2011). The W. anomalus yeasts were able to convert amino acids 

more effectively into aroma compounds, possibly due to an increase in branched-chain amino acid 

transaminases (BCAAT) (Lilly et al., 2006). Additionally, W. anomalus produced significantly more 

biomass than K. aerobia which added to the increase in aroma compounds (Bell and Henschke, 

2005). In addition, high production of isoamyl acetate by W. anomalus was previously reported 

(Rojas et al., 2003). The increased amino acid contribution in the treatment with BCAA’s, possibly 

lead to a greater consumption of these compounds, further increasing the aroma profile (Arias-Gil et 

al., 2007). Although nitrogen in the must was sufficient, amino acids were utilised for secondary 

metabolite production (Miller et al., 2007). These findings possibly indicate the similarities in the 

metabolisms of S. cerevisiae, K. aerobia and W. anomalus.  

The reason for the decreased production of propanol and butanol is uncertain, although a decrease 

in propanol production have been found in a setup with all amino acids compared to only ammonium 

(Smit, 2013). However, it was not similarly decreased when the BCAA’s were present. Increase of 

amino acids in the treatment with only ammonium as nitrogen, attributed to the aromatic profile of 

yeast. Tyrosine, phenylalanine, isoleucine and leucine are secreted by yeast during fermentations 

and these amino acids possibly led to the increase in aromatic compounds (e.g. 2-phenyl ethanol, 

and isovaleric acid and isoamyl alcohol) in the fermentation treatments with no added amino acids 

(Arias-Gil et al., 2007). Furthermore, tyrosine and phenylalanine are only secreted when small 

quantities of amino acids are present in the grape musts, leading to an increase in amino acid 

secretion in the absence of amino acids (Arias-Gil et al., 2007).  

Many non-Saccharomyces yeasts are known to produce high amounts of acetic acid, similarly found 

for K. aerobia (Ciani et al., 2010). Interestingly, the presence of BCAA’s resulted in lower acetic acid 

production, as observed previously for S. cerevisiae (Mckinnon, 2013). It has been reported that 

W. anomalus produce high amounts of acetic acid (Rojas et al., 2003), although it was not observed 

in this study, showing the importance of strain variation. The high amount of ammonia left in the 

wines fermented with K. aerobia could possibly add to the increased concentrations of acetoin and 

acetic acid present in these wines (Bell and Henschke, 2005; Carrau, 2006; Vilanova et al., 2007). 
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Bell & Henschke (2005) showed that branched-chain fatty acid and ester concentrations are higher 

at lower nitrogen levels, and acetic acid and medium-chain fatty esters increased at higher nitrogen 

levels in the must.  

Non-Saccharomyces yeasts from the genera Candida, Hansenula and Pichia, have been found to 

produce high amounts of ethyl acetate (Plata et al., 2003; Rojas et al., 2003; Romano et al., 1997). 

The levels of ethyl acetate produced in this study (especially by W. anomalus) is undesirable in wine 

fermentations and contributes to a nail polish remover, glue, varnish aroma (Ribéreau-Gayon, 1978). 

High nitrogen concentrations can lead to an increase in ethyl acetate, as seen in the fermentations 

with K. aerobia (Bell and Henschke, 2005). 

In general, the non-Saccharomyces yeasts used were not as aromatic as S. cerevisiae, although 

this could be attributed to relative biomass production. Although, this specific S. cerevisiae strain, 

VIN13, is commercialised to produce aromatic wines (Anchor Yeast, South Africa). The compounds 

ethyl acetate, isoamyl acetate, 2-phenyl ethanol and isoamyl alcohol increased with increased 

biomass production of isolates. Differences in aroma production by different strains in studies 

focussing on nitrogen additions have been observed previously (Hernández-Orte et al., 2005; 

Vilanova et al., 2007). 

3.5 Conclusion 

Kazachstania aerobia isolates could not be phenotypically classified into different strains, but were 

genetically different from the CBS reference strain. Wickerhamomyces anomalus isolates were 

categorised into seven phenotypic groupings based on environmental stress factors and five strains 

using RAPD analysis.  

In single culture fermentations, both non-Saccharomyces yeasts were found to be weak fermenters, 

although W. anomalus produced a biomass similar to S. cerevisiae. The chemical profile of wine was 

indeed altered by these yeasts, although they are not as aromatic as S. cerevisiae. This study 

showed the impact of amino acids on the aroma profile of wines and is the first to report on the use 

of nitrogen by these two non-Saccharomyces yeasts. The yeasts response to amino acids is similar 

to that of S. cerevisiae, although W. anomalus showed a significantly higher production of certain 

compounds.  High production of acetic acid and ethyl acetate for respectively K. aerobia and 

W. anomalus is a cause of concern when these yeasts are present in must.  

This study gives insight into the phenotypic space in terms of fermentative performance and aroma 

production of K. aerobia and W. anomalus yeasts. It was found that isolates differed between 

geographical locations, and identified as possible different strains. Additional stress assays could 

show supplementary differences between isolates, in addition to using a greater database of strains, 

especially when characterising K. aerobia. 
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3.7 Appendix 

Table 1. Mean end point CO2 and OD600 with one way ANOVA post hoc analysis for single culture 
fermentations of S. cerevisiae VIN13 and K. aerobia isolates conducted in three different nitrogen treatments 
– A) with only ammonia, B) with amino acids and ammonia, C) with BCAA’s and ammonia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values with the same letter in the same column are statistically similar when compared with Tukey’s HSD post-
hoc test at 95 % confidence level. 

  

Treatment Yeast species CO2 production OD600 

A VIN13 7.81 ± 0.57a 4.89 ± 0.33a 

A Y837-B 3.04 ± 0.83b 1.78 ± 0.08d 

A Y965 3.80 ± 0.03b 3.12 ± 0.10bc 

A CBS 2.25 ± 0.55b 1.51 ± 0.16d 

B VIN13 7.57 ± 0.32a 5.11 ± 0.51a 

B Y837-B 3.59 ± 0.35b 3.52 ± 0.45bc 

B Y965 3.38 ± 0.18b 3.12 ± 0.05bc 

B CBS 2.73 ± 0.34b 2.46 ± 0.03cd 

C VIN13 7.15 ± 0.39a 3.92 ± 0.27ab 

C Y837-B 4.20 ± 0.23a 2.82 ± 0.29bcd 

C Y965 4.19 ± 0.54a 2.67 ± 0.16bcd 

C CBS 2.30 ± 0.13b 2.26 ± 0.09cd 
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Table 2. Mean end point CO2 and OD600  with one way ANOVA post hoc analysis for single culture 
fermentations of S. cerevisiae VIN13 and  W. anomalus conducted in three different nitrogen treatments – A) 
with only ammonia, B) with amino acids and ammonia, C) with BCAA’s and ammonia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment Yeast species 
CO2 production 

(g) 
OD600 

A VIN13 7.81 ± 0.57a 4.89 ± 0.33abc 

A  Y934-C 2.18 ± 0.50c 3.69 ± 0.06defg 

A  LO632 2.91 ± 0.70bc 4.07 ± 0.08bcdef 

A  LO633 2.03 ± 0.07c 3.46 ± 0.08efg 

A  ARC 40/20 1.91 ± 0.12c 3.67 ± 0.07defg 

A  ARC 19/22 2.62 ± 0.28c 2.76 ± 0.11g 

B VIN13 7.57 ± 0.32a 5.11 ± 0.51ab 

B Y934-C 3.22 ± 0.11bc 4.18 ± 0.07bcdef 

B LO632 4.58 ± 0.27b 4.20 ± 0.27bcdef 

B LO633 3.21 ± 0.13bc 4.09 ± 0.07bcdef 

B ARC 40/20 2.49 ± 0.37c 4.20 ± 0.37bcdef 

B ARC 19/22 1.93 ± 0.10c 3.36 ± 0.26efg 

C VIN13 7.15 ± 0.39a 3.92 ± 0.27cdefg 

C Y934-C 1.82 ± 0.11c 4.82 ± 0.08abcd 

C LO632 2.88 ± 0.46bc 5.50 ± 0.25a 

C LO633 2.47 ± 0.18c 4.83 ± 0.10abcd 

C ARC 40/20 2.01 ± 0.40c 4.53 ± 0.22abcde 

C ARC 19/22 1.86 ± 0.14c 3.13 ± 0.04fg 

Values with the same letter in the same column are statistically similar when compared with Tukey’s HSD post-
hoc test at 95 % confidence level. 
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Chapter 4 – Determining the fermentation potential and aroma 
production of non-Saccharomyces yeast in mixed culture 

fermentations with Saccharomyces cerevisiae  

4.1 Introduction    

The impact of non-Saccharomyces yeasts on the aroma bouquet and the development of unique 

and complex wines have been investigated by several research groups (Anfang et al., 2009; Ciani 

et al., 2010; Gobbi et al., 2013; Izquierdo Cañas et al., 2011; Jolly et al., 2014; Lambrechts and 

Pretorius, 2000; Lema et al., 1996; Rossouw and Bauer, 2016; Sadoudi et al., 2012; Soden et al., 

2000; Swiegers et al., 2005). With the use of inoculated Saccharomyces starter cultures, a rapid and 

reliable fermentation is usually ensured, although indigenous yeast tend to be suppressed (Fleet and 

Heard, 1993b; Mas et al., 2016). However, it is the general observation that the indigenous microflora 

contributes to the aromatic complexity of wine, and it has been hypothesised that typical terroir 

specific characters of wine may in part be the result of the impact of the regional microflora (Bokulich 

et al., 2013). Spontaneous fermentations are thus also perceived to counteract the perceived 

uniformity of S. cerevisiae fermentations (Mas et al., 2016).  

More than 40 yeast species have been isolated from grape must and these can be further divided 

into numerous different strains (Jolly et al., 2014). The impact on fermentation for many of these 

species and strains is still relatively unknown. In spontaneous fermentations, sequential dominance 

of yeast populations have been reported (Jackson, 2008). In order to more accurately evaluate the 

impact of yeast in a natural fermentation, the contribution of each yeast species needs to be fully 

characterised and compared to the traditional wine yeast S. cerevisiae. Furthermore, in most 

spontaneous fermentations, it is known that S. cerevisiae eventually dominates the microbial 

biomass and completes the fermentation (Fleet and Heard, 1993b). Thus, the relationship of any 

non-Saccharomyces yeast of oenological importance with S. cerevisiae is worthy of investigation. 

Two inoculation strategies are usually followed with these mixed culture fermentations: S. cerevisiae 

is either inoculated simultaneously to the non-Saccharomyces yeasts (known as a co-inoculation) or 

sequentially 1 hour to 15 days later (known as a sequential inoculation) (Herraiz et al., 1990; Jolly et 

al., 2003a; Soden et al., 2000).  

Studies in South Africa have indicated that the non-Saccharomyces yeasts Kazachstania aerobia 

and Wickerhamomyces anomalus may be present in uncommonly high numbers in South African 

grape must when compared to similar data from other wine growing regions (Bagheri et al., 2015; 

Setati et al., 2012). Dataset on these non-Saccharomyces yeasts indigenous to South African grape 

musts and their effect on aroma and fermentation is limited. Previous studies have been conducted 

using either metagenomics or culture based methods  and showed that the presence of indigenous 

yeast species during wine-making significantly impacted the character of South African wine (Jolly 
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et al., 2003b; Setati et al., 2012). Consequently, it is paramount that the impact of individual non-

Saccharomyces yeasts and their contributions to fermentation be further evaluated. Kazachstania 

aerobia has only recently been used in alcoholic fermentation with S. cerevisiae, and data suggest 

an increase in esters, ethyl acetate and terpenes, although, sensorially, wines were characterised 

as bitter and as presenting a solvent-like character (Beckner Whitener et al., 2016). 

Wickerhamomyces anomalus (formerly Hansenula anomala and Pichia anomala) on the other hand 

has been used successfully in sequential inoculation with S. cerevisiae and products have been 

reportedly favoured by tasters (Izquierdo Cañas et al., 2014). These wines showed an increase in 

lineal alcohols and ethyl and acetate esters. 

The aim of this study is to investigate the impact of mainly South African isolates of K. aerobia and 

W. anomalus on fermentations when fermented as single and mixed cultures with S. cerevisiae in 

synthetic grape must and Sauvignon blanc grape must. Sauvignon blanc is one of the most 

commonly cultivated varieties in South Africa and was thus chosen for this study to give a more 

realistic view on the possible effects of these yeasts on fermentation. This study is a further stepping 

stone to understanding the yeast microbiome and its impact on fermentations in a South African and 

possibly global context, shedding light on possible strain differences within species.  

4.2 Materials and Methods 

4.2.1 Mixed culture fermentations: K. aerobia and W. anomalus with S. cerevisiae in synthetic 

grape must  

4.2.1.1 Inoculation strategy 

Fermentations were conducted in synthetic grape must (SGM) composed as described earlier in 

section 3.2.4.1 for the treatment with a yeast assimilable nitrogen (YAN) component consisting of all 

amino acids contributing in equal amounts. All fermentations were performed in triplicate in 100 mL 

spice bottles fitted with fermentation locks containing 80mL SGM, with the exception of the W. 

anomalus sequential culture fermentations that contained 60mL SGM.  

All strains were cultured as described previously in section 3.2.1 and grown overnight in at 30°C in 

Yeast Peptone Dextrose (YPD) broth (20 g/L glucose, 20 g/L peptone, 10 g/L yeast extract, 20 g/L 

agar), purchased from Biolab, SA.  

Mixed culture fermentations with K. aerobia were conducted with the K. aerobia Y837-B and Y965 

isolates and K. aerobia CBS 9918 strain, while S. cerevisiae VIN13 (Anchor, SA) served as the 

control wine yeast. Inoculation rates are shown in Table 4.1. An OD600 of 0.01 equates to a cell 

number of 105 colony forming units per mL (cfu/mL), OD600 of 0.1 equates to a cell number of 106 

cfu/mL and OD600 of 1 equates to a cell number of 107 cfu/mL 
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Table 4.1 Treatment outline for fermentations in SGM with K. aerobia 

Treatment Yeast species 
Inoculation 

density (OD600) 
Time (h) 

* 

Ratio                      
(K. aerobia: 

VIN13) 

A. Monoculture 

K. aerobia 1 0 - 

VIN13 0.1 0 - 

VIN13 0.01 0 - 

B. Co-inoculation 
K. aerobia 1 0 

10:1 
VIN13 0.1 48 

C. Co-inoculation 
K. aerobia 1 0 

100:1 
VIN13 0.01 48 

D. Sequential inoculation 
K. aerobia 1 0 

10:1 
VIN13 0.1 48 

*hours after start of fermentation  

Co-culture fermentations with W. anomalus were conducted with the W. anomalus strains Y934-C, 

LO632, LO633, ARC 40/20, ARC 19/22, including S. cerevisiae VIN13 and EC1118 (Lallemand, SA). 

Each W. anomalus strain was inoculated with VIN13 and EC1118 respectively. For the sequential 

culture fermentations only W. anomalus Y934-C and LO632 were used. Here also monocultures of 

W. anomalus Y934-C and LO632 and S. cerevisiae VIN13 and EC1118 was fermented. Inoculation 

of the yeasts occurred simultaneously, except for the sequential culture fermentations where 

S. cerevisiae strains were inoculated after 48 hours. For the fermentation setup with W. anomalus, 

all strains were inoculated at an OD600 of 0.1 (106 cfu/mL). 

All fermentations were incubated at 30°C and conducted under static conditions with the exception 

of being shaken once a day during weighing. 

4.2.1.2 Fermentation kinetics 

Carbon dioxide production and sugar consumption were used to establish the fermentation potential 

of the isolates. This was determined by daily weighing of fermentation flasks before and after 

sampling and measuring sugar (glucose and fructose) using the Arena 20XT Photometric Analyzer 

(Thermo Electron Oy, Finland). Fermentations were conducted for three and two weeks for 

K. aerobia and W. anomalus treatments respectively.  

For the K. aerobia fermentations, samples were taken every day for the first 3 days and thereafter 

every second or third day. Sugar concentrations were determined for days 3, 7, 14 and 21. For the 

W. anomalus fermentations, samples were taken at day 0-3, 5, 7 and 14 as well as day 4 for the 

sequential culture fermentations. Sugar concentrations were determined for days 4, 7 and 14.  
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4.2.1.3 Yeast enumeration 

Change in optical density (OD) at 600nm wavelength in order to determine growth and biomass 

formation was monitored with every sampling point as stipulated above in section 4.2.1.2. Cell 

viability was determined by plating out 0.1 mL aliquots at every sampling point on Wallerstein 

Laboratory Nutrient (WLN) agar (BioLab, Merck, South Africa). Each sample was plated out in 

duplicate after dilution to concentrations of 102 and 103 cfu/mL. Plates were incubated for 2 to 3 days 

at 30°C after which colony forming units (cfu’s) were counted. The yeast was identified based on 

colony morphology and colour and only plates with less than 300 colonies were counted.  

4.2.2 Mixed culture fermentations in Sauvignon blanc grape must 

4.2.2.1 Microvinification procedure 

Sauvignon blanc grapes were sourced from Welgevallen farm, Stellenbosch, South Africa in 

February 2016. Grapes were destemmed, crushed and pressed at the Department of Viticulture and 

Oenology (DVO) experimental cellar according to the standard winemaking procedures. To prevent 

spoilage and to aid must clarification, respectively 30 ppm SO2 and 4mL/hL pectinase (Rapidase® 

Clear, Anchor Yeast, SA) were added to the juice and the juice was then allowed to settle overnight 

at 15°C. Thereafter, the juice was racked from the sediment and the sugar content, acidity and yeast 

assimilable nitrogen (YAN) were determined. Acidity and YAN were adjusted to 6.46 g/L and 352 mg 

N/L with tartaric acid and 50 g/hLThiazote® (Laffort, France) respectively. Initial residual sugar was 

229.5 g/L and after the acidity adjustment, the must had a pH of 3.34. The chemical parameters were 

measured using a Winescan FT120 instrument (FOSS Analytical A/S, Hillerød, Denmark). The juice 

was then aliquoted into 100 mL fermentation vessels prior to inoculation. 

4.2.2.2 Yeast species, isolates and strains 

Grape must was fermented with two W. anomalus (Y934-C and LO632) and two K. aerobia strains 

(Y965 and CBS). Saccharomyces cerevisiae EC1118 was used as a control fermentation in 

monoculture and to conduct the sequential culture fermentations.  

4.2.2.3 Inoculation strategy and culture conditions 

All strains were cultured as described previously in section 3.2.1 and grown overnight at 30°C in 

Yeast Peptone Dextrose (YPD) broth (20 g/L glucose, 20 g/L peptone, 10 g/L yeast extract, 20 g/L 

agar) purchased from Biolab, SA. The non-Saccharomyces yeasts were inoculated at an OD600 of 

0.3 and S. cerevisiae EC1118 at an OD600 of 0.1. Sequential culture fermentations was conducted 

by inoculating EC1118 48 hours after the inoculation of the non-Saccharomyces yeast. All yeast 

species (non-Saccharomyces and S. cerevisiae) were also fermented as monocultures. 
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Spontaneous fermentations were conducted to determine population dynamics and fermentation 

potential of native yeast species. All fermentations were conducted in triplicate in 100mL spice 

bottles containing 60 mL juice fitted with fermentation locks. After inoculation, fermentations were 

incubated at 15°C under static conditions with the exception of being shaken once a day when 

weighing the flasks. Grape must was fermented until dryness was achieved (sugar level less than 

2g/L).  

4.2.2.4 Fermentation kinetics 

Carbon dioxide production and sugar consumption were used to determine the fermentation potential 

of the strains. The fermentations were weighed daily, before and after sampling, and samples were 

taken during the lag phase (day 0, 2, 4), exponential phase (day 7, 10 and 14) and stationary phase 

(day 17, 21, 25 and 28). 

Glucose and fructose was analysed for days 0, 10, 21, 28 using the Arena 20XT Photometric 

Analyzer (Thermo Electron Oy, Finland).  Organic acids (malic, lactic, citric acid, tartaric acid and 

total acidity), saccharose, ethanol, pH and glycerol was analysed on day 21 using FT-IR ATR mid 

infrared spectrometry (Bruker). One mL sample was injected directly onto the diamond surface. 

4.2.2.5 Yeast enumeration 

Biomass was determined using optical density (OD) measurements at 600nm wavelength. These 

measurements were taken with every sampling point, as stipulated above in section 4.2.2.4. Cell 

viability was determined by plating out 0.1 mL aliquots at every sampling point on Wallerstein 

Laboratory Nutrient (WLN) agar (BioLab, Merck, South Africa) in the same manner as in section 

4.2.1.3. The agar was supplemented with 34 mg/L chloramphenicol and 150 mg/L biphenyl for total 

yeast enumeration. Chloramphenicol inhibits the growth of bacteria whereas biphenyl inhibits the 

growth of filamentous fungi. Differentiation between yeasts were based on colour and morphology. 

4.2.3 Major volatile aroma production 

The major volatile aroma production was measured at end point for all fermentations using GC-FID 

as stated in Chapter 3. Thirty three compounds were measured, but only those within the calibration 

range are reported on.  

4.2.4 Statistical analysis 

All univariate statistical analysis were done using Statistica 13 (Dell Inc.) to infer the effects of 

different treatments on yeast growth, metabolite accumulation and fermentation kinetics. Multivariate 

data analysis was conducted using SIMCA 13 (Umetrics) to simultaneously investigate the treatment 
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effect on all metabolites produced. Unless stated otherwise data in tables and graphs are presented 

as means ± standard error of mean. 

4.3 Results 

4.3.1 Mixed culture fermentations: K. aerobia and S. cerevisiae  

4.3.1.1 Fermentation kinetics 

Kazachstania aerobia was inoculated in co-culture fermentations with S. cerevisiae VIN13 at 

inoculation ratios of 10:1 and 100:1 (non-Saccharomyces: S. cerevisiae) in synthetic grape must 

(SGM). In addition, S. cerevisiae was inoculated 48 hours after introducing K. aerobia, at an 

inoculation ratio of 10:1, in a sequential fermentation setup. Control fermentations were conducted 

with S. cerevisiae VIN13 as monocultures inoculated at OD600=0.1 and OD600=0.01 respectively, with 

additional monocultures of the K. aerobia isolates inoculated at OD600=1. Fermentations were 

terminated after 21 days, at which point the total residual sugar was less than 2 g/L with the exception 

of the monoculture fermentations that were suspended on day 12.  

The control S. cerevisiae fermentations had the fastest fermentation rate in terms of CO2 production, 

with the exception of the co-inoculation with K. aerobia Y965 (ratio 10:1) (Figure 4.1). Overall the co-

inoculation treatments (inoculation rate 10:1), showed the fastest sugar consumption followed by 

S. cerevisiae monocultures (Figure 4.2). Co-inoculation with S. cerevisiae at a higher OD 

(OD600=0.1) resulted in a slightly faster fermentation rate compared to the co-inoculation treatments 

where S. cerevisiae was inoculated at a lower OD (OD600=0.01) (Figure 4.1; Figure 4.2). 

Fermentation rate, in terms of CO2 production, increased in sequential culture fermentations after 

addition of S. cerevisiae on day 2; slowing down on day 8. Irrespective of treatment, K. aerobia 

isolate Y965 in mixed culture fermentations had the fastest fermentation rate (CO2 production and 

sugar consumption) whereas no significant differences were found between isolates Y837-B and 

CBS (Figure 4.1; Figure 4.2 – A, C). The non-Saccharomyces monocultures demonstrated a 

significantly slower fermentation rate than the mixed culture fermentations with K. aerobia Y965 as 

monoculture having the slowest fermentation rate (Figure 4.1; Figure 4.2 – B, D).  

Fermentation rate slowed down after 7 days and fermentations were dry (total sugar <2 g/L) on day 

21 for the mixed culture treatments and controls, with no statistical difference between treatments 

(Table 1, appendix). Glucose was consumed at a faster rate compared to fructose. 
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Figure 4.1 CO2 production of monoculture fermentations (indicated with ); co-inoculation, 10:1 (indicated 
with O), co-inoculation, 100:1 (indicated with ●) and sequential culture fermentations (indicated with ∆) of 
K. aerobia (Y937B, Y965, CBS) and S. cerevisiae (VIN13). Values are the average of 3 biological repeats ± 
standard error of the mean. 
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Figure 4.2 Sugar utilisation, glucose (A, B) and fructose (C,D), of K. aerobia (Y837B, Y965, CBS) and S. cerevisiae VIN13 in co- and sequential culture 
fermentations (graph A and C) and monocultures (graph B and D). Values are indicated as the mean ± standard error of the mean.  
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4.3.1.2 Yeast enumeration 

All of the yeasts entered exponential phase within one day of fermentation. The S. cerevisiae 

monocultures reached a similar or lower biomass production (expressed as OD600) compared to the 

co-inoculation treatments (Figure 4.3). Between K. aerobia isolates, no difference was observed 

amongst the monoculture fermentations, although isolate Y965 had a higher OD in the co- and 

sequential inoculation treatments compared to the other K. aerobia isolates. 

When comparing yeast growth for the individual species, it is clear that the non-Saccharomyces 

yeasts impacted the growth of S. cerevisiae, with the slowest growth rate of this yeast observed in 

the sequential culture fermentations (Figure 4.4 - A). The S. cerevisiae population was highest for 

all the treatments when fermented in conjunction with K. aerobia Y965.  

In contrast to S. cerevisiae, the K. aerobia population declined rapidly after a few days (Figure 4.4 - 

B). The K. aerobia monoculture fermentations reached the highest population of K. aerobia between 

treatments. At higher inoculations of S. cerevisiae, the K. aerobia yeasts demonstrated the fastest 

decline in population. By day 7 all of the non-Saccharomyces yeast had died off in the co-inoculation 

treatments, although it survived until day 9 in the sequential treatments. In all of the treatments 

K. aerobia Y965 obtained the lowest population density throughout fermentation. 

 

Figure 4.3 Growth rate (expressed as OD600) of K. aerobia (Y837B, Y965, CBS) and S. cerevisiae (VIN13) in 
monoculture fermentations (indicated with ) and co-inoculations at ratios 10:1 (indicated with O) and 100:1 
(indicated with ●) and sequential inoculations (indicated with ∆). Values are indicated as the mean ± standard 
error of the mean. 
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Figure 4.4 Cell growth rate indicated as cfu/mL for S. cerevisiae (VIN13) (graph A) and K. aerobia (Y837B, 
Y965, CBS) (graph B) monoculture fermentations (indicated with ), co-inoculation fermentations at ratios 
10:1 (indicated with O) and 100:1 (indicated with ●) and sequential inoculations (indicated with ∆). Values are 
indicated as the mean ± standard error of the mean. 
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4.3.1.3 Major volatile aroma production  

Mixed culture fermentations (co- and sequential inoculation) resulted in wines with higher 

concentrations of most of the analysed aromatic compounds compared to the control S. cerevisiae 

fermentations with the exception of isobutyric acid and ethyl caprylate (Table 4.2). The overall data 

set was analysed with PCA, and suggests that all treatments produced somewhat distinct aroma 

profiles (Figure 4.5). The S. cerevisiae monoculture clearly separated from all other treatments, and 

sequential culture fermentations produced different PCA scores when compared to the co-

inoculations (Figure 4.5 - A). Sequential culture fermentations showed a distinct aroma profile due 

to higher concentrations of propanol, isobutanol, butanol, isoamyl alcohol and acetic acid (Figure 4.5 

– C; Table 4.2). In addition, the differences in aroma compounds between the co-inoculation 

treatments were not pronounced.  

Amongst the K. aerobia isolates, Y965 consistently produced higher concentrations of ethyl acetate, 

propanol, butanol, isoamyl alcohol, ethyl caprylate and 2-phenyl ethanol, but lower concentrations 

of acetic acid, acetoin and isobutyric acid than the other isolates. The PCA scores plot confirms that 

K. aerobia Y965 produced a distinct aromatic profile irrespective of the treatment (Figure 4.5 - B). 

The isolates Y837-B and CBS produced more similar concentrations of these compounds and 

grouped closer to each other in the PCA scores plot. Nevertheless, the CBS strain produced higher 

acetic acid concentrations in all of the treatments. There were no noteworthy differences between 

the two inoculation strategies for the monocultures of S. cerevisiae.  
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Table 4.2 Aroma compounds detected and within limit of quantification (LOQ) in SGM produced by S. cerevisiae (VIN13) and K. aerobia (Y837B, Y965, CBS) in mixed 
culture fermentations, compared using a one-way ANOVA between different yeast combinations. Differences between means were inferred using Unequal N HSD test 
and values in the table represents mean ± standard error of mean.  

Compound 
(mg/L) 

OD=0.01 OD=0.1 Co inoculation (10:1) Co inoculation (100:1) Sequential inoculation 

VIN13 Y837B Y965 CBS Y837B Y965 CBS Y837B Y965 CBS 

Ethyl acetate 
40.03  ± 
1.55ab 

32.53 ± 
5.81b 

36.65 ± 
0.78ab 

35.25 ± 
0.44ab 

36.70 ± 
3.00ab 

37.96 ± 
1.02ab 

47.21 ± 
1.45a 

38.99 ± 
0.68ab 

35.94 ± 
1.78ab 

40.78 ± 
0.43ab 

35.88 ± 
2.23ab 

Ethyl caprylate 
0.21 ± 
0.01b 

0.36 ± 
0.05a 

0.16 ± 
0.00bc 

0.17 ± 
0.00bc 

0.14 ± 
0.01bc 

0.17 ± 
0.01bc 

0.21 ± 
0.01b 

0.18 ± 
0.01bc 

0.11 ± 
0.00c 

0.10 ± 
0.01c 

0.11 ± 
0.00c 

Ethyl caproate(*) 
0.11 ± 
0.00ab 

0.24 ± 
0.04ab 

0.11 ± 
0.00ab 

0.12 ± 
0.01ab 

0.05 ± 
0.02b 

0.15 ± 
0.01ab 

0.13 ± 
0.01ab 

0.13 ± 
0.01ab 

0.11 
±0.01ab 

0.04 ± 
0.04ab 

0.30 ± 
0.10a 

2-Phenylethyl 
acetate 

0.47 ± 
0.01e 

0.50 ± 
0.01e 

0.93 ± 
0.01cd 

0.69 ± 
0.03de 

0.91 ± 
0.02d 

1.33 ± 
0.05b 

0.67 ± 
0.02de 

1.25 ± 
0.08bc 

1.54 ± 
0.09ab 

0.62 ± 
0.02de 

1.62 ± 
0.10a 

Propanol 
30.76 ± 
1.73d 

28.13 ± 
1.66d 

38.08 ± 
2.11cd 

43.00 ± 
0.94abcd 

46.72 ± 
4.00abc 

40.06 ± 
2.24abcd 

52.96 ± 
3.39ab 

37.16 ± 
2.02bcd 

48.82 ± 
3.23abc 

57.87 ± 
0.71a 

48.82 ± 
4.00abc 

Isobutanol 
18.54 ± 
0.16bc 

16.05 ± 
0.63c 

22.86 ± 
0.38a 

21.54 ± 
0.45ab 

24.12 ± 
1.01a 

22.07 ± 
0.52a 

22.01 ± 
0.56a 

22.32 ± 
0.27ab 

24.79 ± 
0.70a 

23.42 ± 
0.24a 

24.87 ± 
1.10a 

Butanol(*) 
0.54 ± 
0.01de 

0.44 ± 
0.01e 

0.67 ± 
0.01cd 

0.66 ± 
0.02cd 

0.76 ± 
0.01c 

0.73 ± 
0.01c 

0.94 ± 
0.09ab 

0.75 ± 
0.03bc 

1.00 ± 
0.03a 

0.99 ± 
0.02a 

1.02 ± 
0.03a 

Isoamyl alcohol 
85.50 ± 
2.86c 

80.25 ± 
1.99c 

110.47 ± 
2.17ab 

119.14 ± 
3.32ab 

118.81 ± 
4.03ab 

110.40 ± 
2.51ab 

124.19 ± 
2.73ab 

108.39 ± 
1.10b 

124.25 ± 
2.94ab 

131.43 ± 
1.96a 

121.35 ± 
4.44ab 

2-Phenyl ethanol 
34.43 ± 
0.47de 

33.71 ± 
0.90e 

35.76 ± 
0.42cde 

38.23 ± 
0.71abc 

35.88 ± 
0.29cde 

36.61 ± 
0.44bcd 

40.92 ± 
0.11a 

37.18 ± 
0.54bcd 

36.34 ± 
0.60bcde 

39.78 ± 
0.10ab 

34.84 ± 
0.71de 

Acetic acid 
620.38 ± 

7.08e 
565.20 ± 
13.73e 

880.62 ± 
15.69d 

862.34 ± 
15.54d 

972.00 ± 
19.72c 

1017.19 ± 
11.39c 

869.62 ± 
4.83d 

1142.97 ± 
17.46b 

1228.04 ± 
19.56b 

1155.00 ± 
25.93b 

1313.26 ± 
24.69a 

Isobutyric acid(*) 
1.09 ± 
0.04a 

0.94 ± 
0.03b 

0.82 ± 
0.04bcd 

0.87 ± 
0.01bc 

0.87 ± 
0.05bc 

0.71 ± 
0.02de 

0.64 ± 
0.01e 

0.68 ± 
0.01de 

0.71 ± 
0.02de 

0.63 ± 
0.02de 

0.73 ± 
0.02cde 

Acetoin** 
7.91 ± 
1.14 

7.32 ± 
0.66 

7.59 ± 
0.63 

6.43 ± 
0.44 

8.34 ± 
0.49 

6.25 ± 
0.45 

7.02 ± 
0.90 

6.87 ± 
0.48 

6.62 ± 
0.34 

6.90 ± 
0.35 

7.70 ± 
0.25 

** indicates no significant difference between treatments. (*) indicates when only one treatment is within the LOQ 

Values with the same letter in the same column are statistically similar when compared with Unequal N HSD post-hoc test at 95 % confidence level. 
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Figure 4.5 The PCA scores plot (A) indicates the influence of inoculation timing on aroma profiles of K. aerobia 
and S. cerevisiae mixed culture and S. cerevisiae (VIN13) control fermentations. Scores labels denote the 
isolates used. Green and blue scores represents inoculation of S. cerevisiae at 0 or 48 hours after inoculation 
of K. aerobia. PCA scores plot (B) indicates the effect of the yeast isolate used with the inoculation strategy 
indicated next to the scores. Groupings of treatments suggest similar aroma profiles. The loadings plot (C) 
indicate the compounds driving the variations in the aroma profile of the different treatments. 
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4.3.2 Mixed culture fermentations: W. anomalus and S. cerevisiae  

4.3.2.1 Fermentation kinetics 

Sequential culture fermentations were conducted by inoculating the S. cerevisiae strains VIN13 and 

EC1118 48 hours after introducing W. anomalus to SGM at equal concentrations (OD600=0.1). 

Monocultures of W. anomalus and S. cerevisiae served as control fermentations. Similar to findings 

in K. aerobia fermentations, S. cerevisiae demonstrated a faster fermentation rate in terms of CO2 

production and sugar consumption compared to the W. anomalus mono- and sequential cultures 

(Figure 4.6; Figure 4.7). Fermentation rate increased after addition of S. cerevisiae in sequential 

culture fermentations on day 2. The S. cerevisiae strain EC1118 had a slightly faster fermentation 

rate than VIN13 as monocultures. Amongst strains of W. anomalus, LO632 fermented at a faster 

rate than Y934-C in the mono- and sequential culture fermentations.  

All of the yeasts had a preference for glucose and this was consumed at a faster rate compared to 

fructose (Figure 4.7). After two weeks the S. cerevisiae control and sequential culture fermentations 

were completed (sugar < 2 g/L), but the W. anomalus monocultures had not yet fermented to dryness 

and had stopped fermenting.  

 

Figure 4.6 CO2 production of S. cerevisiae (VIN13, EC1118) and W. anomalus (Y934-C, LO632) in 
monoculture fermentations (indicated with ) and sequential culture fermentations with either VIN13 (indicated 

with O ) or EC1118 (indicated with ∆). Values are indicated as the mean ± standard error of the mean. 
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Figure 4.7 Glucose (A) and fructose (B) consumption by W. anomalus (Y934-C, LO632) and S. cerevisiae 
(VIN13, EC1118) monoculture fermentations (indicated with ) and sequential culture fermentations with 

either VIN13 (indicated with O) or EC1118 (indicated with ∆). Values are indicated as the mean ± standard 

error of the mean. 
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4.3.2.2 Yeast enumeration 

In addition to sequential inoculations with W. anomalus, co-inoculation fermentations were 

conducted with five W. anomalus strains and S. cerevisiae strains EC1118 and VIN13, to determine 

the effect of different S. cerevisiae strains on the performance of W. anomalus. All yeasts were 

inoculated at an equal OD600 of 0.1 in SGM. After one day of fermentation, the S. cerevisiae 

population was 10 times the initial inoculated density, compared to the declining population of 

W. anomalus yeasts (Figure 4.8). By day 5 all W. anomalus yeast had died off. Amongst strains of 

W. anomalus, Y934-C reached the highest cell density. There were no clear differences in the 

population of W. anomalus strains when fermenting with different S. cerevisiae strains, although cell 

population of S. cerevisiae VIN13 was almost twice as high as compared to EC1118. In co-

inoculations, when the W. anomalus population was lower (e.g. for ARC 19/22 and LO632), the 

S. cerevisiae population (EC1118 and VIN13) was slightly higher.  

 

Figure 4.8 Yeast cell populations of S. cerevisiae (graph A) and W. anomalus (graph B). Co-inoculation 
fermentations were conducted with S. cerevisiae VIN 13 (indicated with ) and EC1118 (indicated with O) 
Values are indicated as the mean ± standard error of the mean.  
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In addition, control fermentations of S. cerevisiae showed the highest growth rate in terms of biomass 

production (OD600), rapidly entering exponential phase and reaching stationary phase after 3 days 

(Figure 4.9). After inoculation of S. cerevisiae on day 2 in the sequential culture fermentations, 

biomass increased. Between strains, for either S. cerevisiae or W. anomalus, differences were not 

significant at endpoint (data not shown). With regards to individual yeast population dynamics, the 

S. cerevisiae yeasts were present in higher densities compared to W. anomalus (Figure 4.10). As 

seen with the co-inoculations, strain VIN13 reached a higher yeast population compared to EC1118 

(Figure 4.10 - A). Amongst W. anomalus strains, Y934-C obtained the highest cell growth 

irrespective of treatment (Figure 4.10 - B). Furthermore, the W. anomalus yeast populations did not 

change with the use of different S. cerevisiae strains. 

 

Figure 4.9 Growth rate expressed as optical density (OD600) for control and monoculture fermentations 
(indicated with ) of S. cerevisiae and W. anomalus (Y934-C, LO632) and sequential culture fermentations 

with either VIN13 (indicated with O) or EC1118 (indicated with ∆). Values are indicated as the mean ± standard 

error of the mean. 
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Figure 4.10 S. cerevisiae (VIN13, EC1118) (graph A) and W. anomalus (Y934-C, LO632) (graph B) population 
growth expressed as colony forming units per mL (cfu/mL) for monocultures (C) (indicated with ) and 
sequential culture fermentations with either VIN13 (indicated with O) or EC1118 (indicated with ∆). Values are 
indicated as the mean ± standard error of the mean. 
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4.3.2.3 Major volatile aroma production  

Aroma compounds produced by W. anomalus and S. cerevisiae in mono- and sequential culture 

fermentations were measured at termination of fermentations (day 14). As with K. aerobia, analysis 

showed that sequential culture fermentations with W. anomalus resulted in a higher concentration of 

aroma compounds measured, in terms of esters, higher alcohols and fatty acids, compared to the 

monoculture fermentations of either W. anomalus or S. cerevisiae (Table 4.3).  

The overall data set was analysed with PCA, and suggests that the W. anomalus monocultures had 

a distinct metabolite profile compared to the sequential cultures and S. cerevisiae controls (Figure 

4.11 - A). However, differences in the sequential setup between strains were less prominent and 

more similar to the S. cerevisiae monocultures. 

The W. anomalus strains, LO632 and Y934-C in mono- and sequential culture fermentation, 

produced six and three times the amount of ethyl acetate, in comparison with the S. cerevisiae 

monocultures (Table 4.3). However, ethyl caproate, ethyl caprylate, 3- ethoxy-1-propanol was not 

produced by W. anomalus in monocultures. In sequential cultures, production of higher alcohols 

(propanol, isobutanol and isoamyl alcohol) was greater, compared to when the yeast species were 

fermented as monocultures. In addition, W. anomalus produced significantly lower concentrations of 

acetic acid compared to S. cerevisiae, especially W. anomalus Y934-C. Acetoin production was 

reduced when W. anomalus was fermented in combination with S. cerevisiae VIN13.  

Amongst the W. anomalus strains, isobutyric acid and isovaleric acid were drivers for the 

differentiation between the monoculture fermentations (Figure 4.11 - B). Furthermore, the specific 

S. cerevisiae strain used impacted certain compounds (Table 4.3). Strain VIN13 showed the biggest 

impact on production of valeric acid and the higher alcohols isoamyl alcohol and propanol, whereas 

EC1118 contributed to the production of isobutanol and the acids hexanoic and octanoic acid in 

sequential culture fermentations.  
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Figure 4.11 PCA scores plot (A) indicating influence of W. anomalus and S. cerevisiae co-culturing on aroma 
profiles. Scores labels denote the strains used. Blue and green scores represents EC1118 and VIN13 scores 
respectively as monoculture and sequentially cultured with W. anomalus strains shown on the label. Scores 
for the monocultures of W. anomalus Y934-C and LO632 is indicated in red. Loadings plot (B) suggesting the 
metabolite responsible for the volatile aroma profile variations. 
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Table 4.3 Aroma compounds detected and within limit of quantification (LOQ) in W. anomalus (Y934-C, LO632) and S. cerevisiae (VIN13, EC1118) mono- and 
sequential inoculation fermentations compared using a one-way ANOVA between different yeast combinations. Differences between means were inferred using 
Unequal N HSD test and value in the table represents mean ± standard error of mean. 

Compound 
(mg/L) 

VIN13 EC1118 Monoculture Control 

Y934-C LO632 Y934-C LO632 Y934-C LO632 VIN13 EC1118 

Ethyl acetate 100.05 ± 1.53c 287.91 ± 12.10a 78.94 ± 2.88d 223.61 ± 15.88b 88.21 ± 9.59cd 331.39 ± 24.11a 25.26 ± 0.91e 30.05 ± 1.55e 

Ethyl caprylate 0.30 ± 0.02a 0.27 ± 0.01ab 0.21 ± 0.03bc 0.28 ± 0.02ab nd ns 0.13 ± 0.00c 0.18 ± 0.02c 

Ethyl caproate 0.30 ± 0.04a 0.21 ± 0.01ab 0.21 ± 0.03ab 0.33 ± 0.05a nd ns 0.09 ± 0.00b 0.16 ± 0.02b 

Propanol 33.85 ± 0.71a 37.92 ± 1.29a 25.59 ± 0.90bc 24.19 ± 1.43c 9.03 ± 0.65d 11.31 ± 0.37d 31.58 ± 1.72ab 22.13 ± 2.13c 

Isobutanol 22.70 ± 0.83ab 26.04 ± 0.95a 24.51 ± 0.38ab 26.95 ± 1.15a 16.22 ± 1.67c 28.27 ± 2.19a 19.00 ± 1.38bc 23.83 ± 1.94ab 

Isoamyl alcohol 106.06 ± 1.93a 89.64 ± 1.61abc 101.96 ± 3.11ab 81.25 ± 2.10c 35.21 ± 8.14d 55.21 ± 2.15d 84.06 ± 8.64bc 78.41 ± 3.14c 

3-ethoxy-1-
propanol 

2.08 ± 0.15b 3.24 ± 0.06ab 3.49 ± 0.23ab 4.95 ± 0.57a nd nd 3.02 ± 0.72ab 5.18 ± 0.83a 

2-Phenyl ethanol 32.12 ± 0.75bc 31.39 ± 0.30bcd 33.15 ± 0.39b 34.43 ± 0.76b 27.41 ± 1.97d 40.25 ± 1.52a 27.91 ± 1.88cd 27.08 ± 0.25d 

Acetic acid 556.48 ± 16.48b 654.41 ±16.18ab 570.35 ±12.72ab 784.15 ± 21.03a 311.26 ± 34.35c 541.45±143.00bc 593.36 ±29.32ab 751.95 ±56.69ab 

Isobutyric acid 1.19 ± 0.07cd 0.86 ± 0.03e 1.42 ± 0.05bc 1.18 ± 0.09cd 2.35 ± 0.06a 1.64 ± 0.11b 1.11 ± 0.01dce 1.03 ± 0.03de 

Valeric acid 1.81 ± 0.05a 1.97 ± 0.00a 1.11 ± 0.23bc 1.83 ± 0.04a 0.34 ± 0.03d 0.68 ± 0.02cd 1.39 ± 0.24ab 1.15 ± 0.15bc 

Hexanoic acid 1.36 ± 0.03b 1.26 ± 0.00bc 1.54 ± 0.04a 1.57 ± 0.04a 0.33 ± 0.02d 0.33 ± 0.00d 1.18 ± 0.03c 1.55 ± 0.05a 

Octanoic acid 1.95 ± 0.08b 1.95 ± 0.03b 2.13 ± 0.08ab 2.45 ± 0.14a 0.46 ± 0.02d 0.44 ± 0.02d 1.48 ± 0.03c 2.16 ± 0.08ab 

Acetoin 2.00 ± 0.10b 1.86 ± 0.39b 4.88 ± 0.62ab 3.40 ± 0.47ab 2.50 ± 1.56ab 4.41 ± 1.08ab 3.26 ± 0.06ab 5.78 ± 0.52a 

Values with the same letter in the same column are statistically similar when compared with Unequal N HSD post-hoc test at 95 % confidence level. 

“nd” = not detected; “ns” = not significant
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4.3.3 Mixed culture fermentations in Sauvignon blanc grape must 

4.3.3.1 Fermentation kinetics 

Sequential culture fermentations were conducted in Sauvignon blanc grape must by inoculating with 

W. anomalus and K. aerobia strains respectively and introducing S. cerevisiae EC1118 after 48 

hours. In addition, all yeasts were also inoculated separately as single strains and referred to as 

monoculture fermentations. In addition, a spontaneous fermentation was also conducted.  

All fermentations proceeded in the normal sigmoidal pattern (Figure 4.12). After 21 days of 

fermentation, the total amount of residual sugar was reduced to 2 g/L or less, with the exception of 

the monoculture fermentations and the spontaneous fermentation that took 28 days to reach the 

same sugar concentrations (Figure 4.13). For all treatments, glucose was the preferred carbon 

source and was completely consumed after 21 days in all fermentations except for the monoculture 

fermentation of K. aerobia CBS and the spontaneous fermentation (Figure 4.13). 

Saccharomyces cerevisiae exhibited the fastest fermentation rate, in terms of CO2 production and 

sugar consumption, followed by the sequential culture fermentations (Figure 4.12; Figure 4.13). 

However, the total CO2 production between treatments showed no significant differences (Figure 

4.12, Table 2 in appendix). Sequential culture fermentations proceeded in a similar manner between 

yeast strains and after 10 days there were no statistical differences in the metabolic activities in 

terms of glucose and fructose consumption (Figure 4.13; Table 3 in appendix). Amongst strains, 

W. anomalus LO632 showed the highest production of CO2 compared to the other single strain 

fermentations, although initially the W. anomalus strains had the lowest fermentation rate (in terms 

of sugar consumption and CO2 release). Overall, the spontaneous fermentations had the lowest 

consumption of sugars and CO2 release, followed by the K. aerobia CBS strain (Figure 4.12; Figure 

4.13). Factorial ANOVA analysis for accumulative CO2 production between day 21 and 28 for the 

monoculture fermentations and spontaneous fermentations showed no significant interaction 

between day and treatment (Table 4.4). 

Furthermore, in terms of ethanol production, the spontaneous fermentation and the monoculture of 

K. aerobia CBS displayed the lowest production after 21 days (Table 4.5). However, there was no 

difference in ethanol yield between treatments. In addition, the S. cerevisiae control fermentation 

produced the lowest amount of glycerol. The glycerol yield in the spontaneous fermentation and 

K. aerobia monoculture fermentations were significantly higher than the other fermentations. Other 

chemical analysis did not show noteworthy results – no significant difference were found in 

saccharose, tartaric acid and lactic acid (Table 4 in appendix). The pH of the monoculture 

fermentations and the spontaneous fermentation was slightly lower than the sequential culture 

fermentations and control. In addition, lower malic and total acidity was observed in the spontaneous 
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fermentations compared to the other treatments (that did not show a significant difference between 

one another).  

 

Figure 4.12 Total CO2 production of W. anomalus (WA) and K. aerobia (KA) monoculture fermentations 
(indicated with ), sequential culture fermentations (indicated with O) and S. cerevisiae EC1118 monoculture 

fermentations (indicated with ∆) and spontaneous fermentation (indicated with ∆). Values plotted as mean ± 

standard error of mean. 

Table 4.4 Univariate analysis for total CO2 production of the spontaneous and monoculture fermentations on 
day 21 and 28. Significant differences indicated in boldface.  

Effect 
Degr. of 
freedom 

CO2 
production 

CO2 
production 

CO2 

production 
CO2 

production 

SS MS F p 

Intercept 1 742.14 742.14 3216.10 0.00 

Day 1 1.17 1.17 5.07 0.04 

Treatment 4 3.25 0.81 3.52 0.03 

Day*Treatment 4 0.69 0.17 0.75 0.57 

Error 18 4.15 0.23 
  

Total 27 9.38 
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Figure 4.13 Glucose (A) and fructose (B) consumption of W. anomalus (WA) and K. aerobia (KA) as 
monoculture fermentations (indicated with ), and sequential culture fermentations with EC1118 (indicated 
with O) as well as S. cerevisiae EC1118 monoculture fermentation and spontaneous fermentation (indicated 
with ∆). The data points represents mean ± standard error of mean (n = 3). Fermentations proceeded until the 
media was considered dry (total sugar less than 2 g/L).  
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Table 4.5 Chemical analysis of ethanol (%v/v), glycerol (g/L) further expressed as ethanol and glycerol yield 
(g/g sugars utilised) of fermentations conducted with S. cerevisiae (EC1118) and W. anomalus (WA) and K. 
aerobia (KA) in mono- and sequential cultures  as well as the spontaneous fermentation at day 21. Values 
indicated as mean ± standard error of the mean.  

Treatment Yeast strain Ethanol (%v/v) Ethanol yield Glycerol (g/L) Glycerol yield 

Control EC1118 13.13 ± 0.03a 0.48 ± 0.00 7.00 ± 0.06d 0.03 ± 0.00c 

Monocultures 

WA: Y934-C 12.20 ± 0.15ab 0.47 ± 0.01 8.30 ± 0.26bcd 0.04 ± 0.00bc 

WA: LO632 12.33 ± 0.23ab 0.48 ± 0.00 8.37 ± 0.03bcd 0.04 ± 0.00bc 

KA: Y965 11.97 ± 0.03ab 0.46 ± 0.00 10.27 ± 0.18a 0.05 ± 0.00ab 

KA: CBS 11.17 ± 0.49bc 0.48 ± 0.00 9.63 ± 0.18ab 0.05 ± 0.00a 

Sequential cultures 

WA: Y934-C 12.80 ± 0.15a 0.47 ± 0.01 7.37 ± 0.15d 0.03 ± 0.00c 

WA: LO632 12.67 ± 0.19ab 0.47 ± 0.01 7.37 ± 0.09d 0.03 ± 0.00c 

KA: Y965 12.27 ± 0.03ab 0.45 ± 0.00 9.00 ± 0.25abc 0.04 ± 0.00bc 

KA: CBS 12.60 ± 0.06ab 0.47 ± 0.00 8.23 ± 0.23bcd 0.04 ± 0.00c 

 Spontaneous 9.90 ± 0.75c 0.51 ± 0.04 7.70 ± 0.76cd 0.05 ± 0.01ab 

Values with the same letter in the same column are statistically similar when compared with Tukey’s HSD post-
hoc test at 95 % confidence level. 

4.3.3.2 Yeast enumeration 

Yeast growth during fermentation was determined by measuring total biomass formation (OD600) and 

individual yeast growth on differentiation plates. Similar to fermentations in SGM, the S. cerevisiae 

EC1118 fermentation had the shortest lag phase and entered exponential phase after two days of 

fermenting (Figure 4.14). It reached stationary phase after 10 days, at which point it exhibited the 

highest biomass production (OD600=11). The sequential culture fermentations entered exponential 

phase after 5 days, with those inoculated with W. anomalus reaching stationary phase at day 16, 

compared to the K. aerobia fermentations that only reached stationary phase on day 18. The 

W. anomalus yeasts in mono- and sequential culture fermentations reached a higher biomass than 

K. aerobia in the corresponding fermentations. The monoculture fermentations and spontaneous 

fermentation had a long lag phase and slow exponential growth phase. 

Individual population growth was in accordance with total biomass production, as S. cerevisiae 

yeasts displayed the highest cell counts as monoculture, followed by fermentation in sequential 

culture with W. anomalus yeasts (Figure 15 – A). The spontaneous fermentation had the lowest 

S. cerevisiae counts, followed by that in the K. aerobia fermentations. Overall, S. cerevisiae 

displayed the most dominant presence in must, contributing the most to total biomass. Furthermore, 

cell counts showed that the inoculated yeasts were dominant at the start of fermentation, although 

exhibiting different survival rates (Figure 4.15 - D). The W. anomalus yeasts initially had the highest 
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cell density, but died off fairly quickly after S. cerevisiae was inoculated, for the sequential culture 

fermentations, or when it started to take over the fermentations in the monoculture fermentations, 

surviving until day 10 and 17 respectively (Figure 4.15 – B). No prominent differences were observed 

between the W. anomalus strains. The K aerobia yeast were not affected by the presence of 

S. cerevisiae and continued to grow even in the presence of S. cerevisiae, although it had a lower 

yeast growth. Kazachstania aerobia yeasts were viable until just after day 17 and until day 21, for 

the sequential and monoculture fermentations respectively. Amongst strains, K. aerobia CBS was 

still detected after 28 days in the monoculture fermentations, although Y965 reached a higher 

population during fermentation.  

As expected, the spontaneous fermentation had the highest density of indigenous non-

Saccharomyces yeasts in the grape must (Figure 4.15 - C). The indigenous population was 

furthermore relatively higher in the fermentations with K. aerobia compared to the W. anomalus 

fermentations. In addition, growth of the indigenous microflora persisted for longer in the monoculture 

fermentations compared to the sequential culture fermentations. After 7 days the indigenous 

S. cerevisiae started to take over the monoculture fermentations, reaching a peak after 21 days and 

then dying off. 

 

Figure 4.14 Growth kinetics, expressed as OD600, indicated as mean ± standard error of mean, of W. anomalus 

(WA) and K. aerobia (KA) monoculture fermentations (indicated with ), sequential culture fermentations 
(indicated with O) and S. cerevisiae EC1118 monoculture fermentation and spontaneous fermentation 
(indicated with ∆).
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Figure 4.15 Population dynamics during fermentation in Sauvignon blanc grape must with S. cerevisiae (EC1118), K. aerobia (KA) and W. anomalus (WA) indicated 
as S. cerevisiae yeast (A), inoculated non-Saccharomyces yeast (B) and indigenous non-Saccharomyces population (C)in the respective monoculture fermentations 

(); sequential fermentations (O) and control and spontaneous (∆) fermentations. Population indicated as mean cfu/mL ± standard error of mean. Directly after 

inoculation the inoculated yeast was dominant (D).  
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4.3.3.3 Major volatile aroma production 

Aroma production in terms of some of the major volatile compounds was determined for all 

treatments at completion of the control and sequential culture fermentations (day 21). After 

completion of fermentations for the spontaneous and monoculture fermentations these treatments’ 

aroma porduction was measured again, but differences were not noteworthy and were in line with 

trends observed on day 21 (Figure 3 in appendix).  

The overall data set was analysed with PCA, and similar to findings in SGM, suggests that sequential 

culture treatments and monocultures produced divergent aroma profiles (Figure 4.16-A). The S. 

cerevisiae monoculture clearly separated from all other treatments, and was least similar to the non-

Saccharomyces monoculture fermentations (mainly due to the latter’s high production of ethyl 

acetate, acetoin, and acetic acid) (Figure 4.16 - B). Furthermore, although W. anomalus and K. 

aerobia fermentations separated from each other, within strains the differences were not as 

pronounced. The exception was for the K. aerobia sequential culture fermentations that grouped 

separately due to differences in acetic acid production (Figure 4.16-A; Table 4.6). The spontaneous 

fermentation resulted in a volatile profile similar to K. aerobia monoculture fermentations. 

Similar to what was observed in SGM, ethyl acetate production by W. anomalus was high compared 

to the other treatments, producing five to seven times more ethyl acetate than the S. cerevisiae 

control (Table 4.6). In the sequential cultures this concentration was less, although still three to four 

times more than the control. Amongst the W. anomalus strains, LO632 produced the highest amount 

of ethyl acetate. Furthermore, production of ethyl acetate by K. aerobia monocultures was also four 

times more than the control, although reduced by half in the sequential cultures. In addition, the non-

Saccharomyces yeasts, especially K. aerobia, had an increased 2-phenylethyl acetate production. 

The W. anomalus yeasts displayed the highest production of higher alcohols (i.e. propanol, 

isobutanol, butanol, 2-phenyl ethanol and isoamyl alcohol). In addition, isobutanol was produced in 

high concentrations by K. aerobia yeasts and the spontaneous fermentation.  

Furthermore, sequential culture fermentations with W. anomalus showed increased fatty acid 

concentrations of butyric, hexanoic and octanoic acid. In contrast, hexanoic and octanoic acid was 

decreased in sequential culture fermentations with K. aerobia. However, production of acetic acid 

was doubled in the K. aerobia monocultures, similar to what was observed in SGM, compared to all 

the other treatments, especially W. anomalus fermentations. The non-Saccharomyces yeasts as 

monocultures produced excessive amounts of acetoin along with the indigenous yeast in the 

spontaneous fermentation. These concentrations were reduced in the sequential culture 

fermentations to levels similar to that produced by S. cerevisiae. Overall, the indigenous yeast in the 

spontaneous fermentation produced lower amounts of the compounds measured compared to the 
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inoculated treatments. In addition, the S. cerevisiae control fermentation produced higher amounts 

of ethyl caprylate, 3-ethoxy-1-propanol and propionic acid compared to the non-Saccharomyces 

inoculated fermentations.  

 

Figure 4.16 PCA scores plot (A) indicating differences between the S. cerevisiae and non-Saccharomyces 
mono- and sequential culture fermentations (encircled on the plot) at day 21. Yeast species are coloured 
according to the legend. PCA loadings plot (B) indicates drivers of differentiation between treatments. Circles 
indicate sequential fermentations 
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Compound (mg/L) 

Monocultures Sequential cultures Control 
Spontane

ous WA: 
Y934-C 

WA: 
LO632 

KA: Y965 KA: CBS 
WA: 

Y934-C 
WA: 

LO632 
KA: Y965 KA: CBS EC1118 

Ethyl acetate 
394.10 ± 
25.53b 

562.02 ± 
13.48a 

319.81 
±13.75c 

312.46 ± 
9.14c 

210.78 ± 
8.50d 

305.17 

± 8.34c 

184.20 ± 
1.97d 

176.76 ± 
8.87d 

74.56 ± 
0.83e 

359.57 ± 
7.82bc 

Isoamyl acetate 
1.95 ± 
0.05bc 

2.31 ± 
0.18ab 

1.37 ± 
0.07de 

1.31 ± 
0.07de 

2.33 ± 
0.09a 

1.94 ± 
0.07bc 

1.69 ± 
0.03cd 

1.83 ± 
0.02c 

2.04 ± 
0.08abc 

1.21 ± 
0.08e 

Ethyl caprylate 
0.13 ± 
0.01c 

0.12 ± 
0.00c 

0.07 ± 
0.01d 

0.12 ± 
0.00c 

0.20 ± 
0.00b 

0.21 ± 
0.01b 

0.18 ± 
0.00b 

0.19 ± 
0.01b 

0.33 ± 
0.01a 

0.21 ± 
0.01b 

2-Phenylethyl acetate 
0.68 ± 
0.01ef 

0.72 ± 
0.03de 

1.25 ± 
0.03b 

1.40 ± 
0.04a 

0.61 ± 
0.00fg 

0.65 ± 
0.02ef 

1.08 ± 
0.01c 

1.17 ± 
0.04bc 

0.53 ± 
0.01g 

0.79 ± 
0.00d 

Methanol** 
44.49 ± 

0.94 
43.90 ± 

1.17 
43.56 ± 

1.57 
42.37 ± 

0.48 
43.76 ± 

1.26 
44.25 ± 

2.43 
44.45 ± 

0.37 
45.01 ± 

0.52 
47.13 ± 

1.65 
40.63 ± 

1.05 

Propanol 
88.96 ± 
2.06a 

87.73 ± 
0.99a 

70.96 ± 
2.12bcde 

65.01 ± 
3.86e 

80.78 ± 
1.88abcd 

81.35 ± 
4.97abc 

68.86 ± 
1.90de 

82.01 ± 
1.90ab 

78.45 ± 
3.00abcde 

68.14 ± 
2.83cde 

Isobutanol 
20.07 ± 
0.16ef 

20.42 ± 
0.44def 

27.88 ± 
0.46a 

22.55 ± 
0.98cd 

20.32 ± 
0.22def 

20.85 ± 
0.92de 

26.19 ± 
0.22ab 

23.92 ± 
0.25bc 

17.96 ± 
0.51f 

22.99 ± 
0.88cd 

Hexanol 
2.11 ± 
0.01de 

2.06 ± 
0.02de 

2.59 ± 
0.03bc 

2.75 ± 
0.06ab 

2.16 ± 
0.02 de 

2.02 ± 
0.02 e 

2.47 ± 
0.08 bc 

2.32 ± 
0.09cd 

2.31 ± 
0.09cde 

2.98 ± 
0.11a 

Butanol 
1.21 ± 
0.02b 

1.55 ± 
0.02a 

0.87 ± 
0.01e 

1.02 ± 
0.02cd 

1.01 ± 
0.02d 

1.11 ± 
0.03c 

0.80 ± 
0.02ef 

1.04 ± 
0.02cd 

0.72 ± 
0.01f 

0.74 ± 
0.02f 

Isoamyl alcohol 
168.32 ± 

2.40a 
163.53 ± 

3.27ab 
136.17 ± 

2.49d 
119.66 ± 

6.49e 
172.25 ± 

1.12a 
162.48 ± 

1.62a 
142.37 ± 

0.61cd 
149.44 ± 

0.74bc 
145.14 
± 4.87cd 

113.05 ± 
2.08e 

2-Phenyl ethanol 
18.05 ± 
0.35cd 

20.34 ± 
0.30ab 

16.46 ± 
0.31ef 

15.46 ± 
0.40f 

19.14 ± 
0.25bc 

21.29 ± 
0.10a 

15.44 ± 
0.04f 

16.51 ± 
0.13ef 

15.22 ± 
0.66f 

17.35 ± 
0.15de 

Table 4.6 Mean aroma compounds detected and within limit of quantification (LOQ), produced by S. cerevisiae (EC1118), K. aerobia (KA) and 
W. anomalus (WA) in mono- and sequential culture fermentations on day 21 of fermentation, compared using a one-way ANOVA between different 
yeast combinations. Differences between means were inferred using Unequal N HSD test and value in the table represents mean ± standard error of 
mean.  
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Values with the same letter in the same column are statistically similar when compared with Unequal N HSD post-hoc test at 95 % confidence level. 

** indicates that there were no significant differences between the treatments. 
.

3-Ethoxy-1-propanol 
8.29 ± 
0.13ef 

9.84 ± 
0.80de 

10.84 ± 
0.15d 

9.66 ± 
0.22 def 

15.90 ± 
0.40bc 

17.67 ± 
0.93b 

14.43 ± 
0.25c 

15.81 ± 
0.12bc 

20.75 ± 
0.60a 

7.53 ± 
0.16f 

Acetic acid 
478.73 ± 

6.96fg 
584.32 

±28.10de 
1009.18 ± 

10.97a 
1065.87 ± 

18.35a 
358.72 ± 

7.08h 
451.47 ± 
34.85g 

763.68 ± 
12.73b 

665.67 
±20.07cd 

545.05 
± 8.96ef 

731.54 
±11.20bc 

Propionic acid 
1.28 ± 
0.03e 

1.47 ± 
0.02cd 

1.48 ± 
0.01d 

1.49 ± 
0.04cd 

1.47 ± 
0.02d 

1.65 ± 
0.08bc 

1.68 ± 
0.02b 

1.75 ± 
0.01b 

1.93 ± 
0.05a 

1.20 ± 
0.01e 

Butyric acid 
1.20 ± 
0.02d 

1.23 ± 
0.01d 

0.67 ± 
0.00f 

0.71 ± 
0.02f 

1.65 ± 
0.02a 

1.58 ± 
0.01b 

1.10 ± 
0.01e 

1.23 ± 
0.02d 

1.42 ± 
0.01c 

0.58 ± 
0.01g 

Hexanoic acid 
2.74 ± 
0.03c 

2.82 ± 
0.05c 

1.25 ± 
0.02e 

1.51 ± 
0.03e 

3.69 ± 
0.05a 

3.34 ± 
0.09b 

2.29 ± 
0.04d 

2.42 ± 
0.10d 

3.25 
±0.14b 

1.39 ± 
0.05e 

Octanoic acid 
2.77 ± 
0.02c 

2.83 ± 
0.04c 

1.55 ± 
0.02d 

1.93 ± 
0.06d 

3.74 ± 
0.02a 

3.37 ± 
0.17ab 

2.47 ± 
0.04c 

2.57 ± 
0.11c 

3.29 ± 
0.15b 

1.77 ± 
0.08d 

Acetoin 
11.91 ± 
0.69c 

12.05 ± 
3.07c 

10.87 ± 
1.29c 

27.72 ± 
5.38b 

2.64 ± 
0.19c 

3.30 ± 
0.41c 

4.15 ± 
0.30c 

4.32 ± 
0.43c 

5.42 ± 
0.62c 

42.56 ± 
4.01a 
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4.4 Discussion 

4.4.1. Fermentation potential of K. aerobia and W. anomalus in single and mixed culture 

fermentations 

The overall faster fermentation rate of the control fermentation with S. cerevisiae (in synthetic and 

Sauvignon blanc grape must) compared to mixed cultures was expected, as this yeast is well known 

for its rapid fermentation speed (Fleet and Heard, 1993b; Moreno-Arribas and Polo, 2005). Lower 

fermentative performance of the non-Saccharomyces yeasts are typically reported (Jolly et al., 

2003a), although between the species and strains differences occur. Moreover, all of the yeasts 

preferentially metabolised glucose compared to fructose, similar to other species (De Koker, 2015; 

Mains, 2014). Interestingly, in SGM, K. aerobia strains performed similarly in terms of sugar 

consumption and biomass production, although in Sauvignon blanc grape must, the CBS strain had 

lower fermentative performance, possibly due to it not being isolated from a wine environment (Lu 

et al., 2004). This study furthermore confirms the preference of W. anomalus yeast to produce 

biomass rather than metabolising sugars (Rojas et al., 2003). However, the strain differences in 

terms of sugar consumption have not been found before (Charoenchai et al., 1998), and most studies 

focused on one strain without investigating fermentative abilities (Sabel et al., 2014; Swangkeaw et 

al., 2009). For both K. aerobia and W. anomalus, strain differences were observed in terms of 

fermentation rate and growth. Studies show that non-Saccharomyces yeasts can display a large 

phenotypic space with regard to sugar utilisation (Contreras et al., 2014; Rossouw and Bauer, 2016).  

Differences in yeast population due to the inoculation strategies is expected. The data demonstrated 

an increased K. aerobia population when S. cerevisiae was inoculated at a lower density, as seen 

in other studies investigating inoculation density (Bely et al., 2008; Comitini et al., 2011; Pérez-

Nevado et al., 2006). In comparison, with a delay in S. cerevisiae inoculation (48h hours after the 

non-Saccharomyces yeast), both K. aerobia and W. anomalus yeast showed increased growth 

compared to simultaneous inoculation of S. cerevisiae, possibly due to the improved competition, 

i.e. available nitrogen, of the non-Saccharomyces yeasts (Ciani et al., 2006; Fleet, 2003; 

Kapsopoulou et al., 2007; Mendoza et al., 2007). In addition, a similar lag in sugar consumption has 

also been reported when delaying inoculation of S. cerevisiae in fermentations with Torulaspora 

delbrueckii (Bely et al., 2008; Taillandier et al., 2014) and Metschnikowia pulcherrima (Contreras et 

al., 2015).  

Autolysis of K. aerobia yeast in SGM, releasing valuable nutrients for S. cerevisiae, could have led 

to the increase in biomass production in the mixed culture fermentations compared to the 

S. cerevisiae control fermentations, or possibly that dead non-Saccharomyces yeast cells increased 

turbidity in optical density readings. Indeed, the effect of non-Saccharomyces yeast on the 
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performance of S. cerevisiae in mixed culture fermentations has been reported by others (Comitini 

et al., 2011; Mendoza et al., 2007; Sadoudi et al., 2012).  

The data showed that W. anomalus does not perform well in the presence of S. cerevisiae, similar 

to findings in previous studies although exhibiting a strong growth rate (Heard and Fleet, 1985; Rojas 

et al., 2003). Competition for nutrients is possibly one of the main reasons for lower population growth 

(Bagheri, 2014). However, K. aerobia and W. anomalus has a low level of ammonium and amino 

acids utilisation in general (Chapter 3). Numerous reasons exist for cell death of the non-

Saccharomyces yeasts, including sensitivity to rising ethanol levels (Jackson, 2008), decreasing 

oxygen (Hansen et al., 2001), high temperatures (Egli et al., 1998; Gobbi et al., 2013; Zott et al., 

2008), excretion of toxic molecules (killer toxins and medium chain fatty acids) by S. cerevisiae 

(Fleet, 2003; Pérez-Nevado et al., 2006) and physical interactions between yeasts, recently known 

as a cell-cell contact mechanism (Nissen and Arneborg, 2003). Indeed, studies have noted that 

W. anomalus is not tolerant to high ethanol concentrations (Kalathenos et al., 1995; Fredlund et al., 

2002), although findings in the current study suggests otherwise (Chapter 3). Recently 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH)-derived antimicrobial peptides was detected 

as one of the reason why many non-Saccharomyces yeast dies off in the presence of S. cerevisiae 

(Branco et al., 2014). The exact cause of cell death for specifically W. anomalus and K. aerobia falls 

outside of the scope of this study. Testing the growth reaction of W. anomalus to different 

S. cerevisiae strains possibly indicate that the reaction is not specific to a specific strain of 

S. cerevisiae. However, some studies have found that W. anomalus persist to the end of 

fermentation, which indicates that interaction can be strain specific (Díaz et al., 2013). 

However, in Sauvignon blanc must, killer toxins produced by W. anomalus could be the reason for 

the early death of the indigenous yeast population (Comitini et al., 2004; El-Banna et al., 2011; Sun 

et al., 2012). Interestingly, with the increased presence of indigenous yeast in the fermentations with 

K. aerobia, S. cerevisiae played a lesser role compared to the fermentations with W. anomalus where 

it completely took over the fermentations. Herraiz et al. (1990) found that Hanseniaspora uvarum 

had an inhibitory effect on S. cerevisiae growth, although this was not due to killer activity or any 

other known inhibition at that time. Antimicrobial peptides produced by non-Saccharomyces yeast 

(depleting iron in must due to production of pulcherriminic acid) could have different effects on 

indigenous yeasts (Oro et al., 2014) and S. cerevisiae (Panon, 1997), as seen with M. pulcherrima.  

In synthetic and Sauvignon blanc grape must K. aerobia performed similarly in mono- and sequential 

culture fermentations, suggesting that S. cerevisiae had little interaction with this yeast. In addition, 

S. cerevisiae growth was also less affected in co-inoculations treatments, with specifically K. aerobia 

Y965. This same lack of impact was seen in mixed fermentations with M. pulcherrima and 

S. cerevisiae (Comitini et al., 2011).  
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Although fermentations proceeded relatively similarly in synthetic and Sauvignon blanc grape must, 

monocultures fermented to dryness in the latter must, due to S. cerevisiae growth. Wine yeast is 

usually present in vineyards and cellars and has also been found on grape berry surfaces (Bagheri, 

2014) thus explaining how S. cerevisiae was introduced to non-Saccharomyces monoculture 

fermentations. Saccharomyces cerevisiae is generally very low in grape must (Martini et al., 1996; 

Mortimer et al., 1999; Combina et al., 2005; Mercado et al., 2007; Di Maro et al., 2007; Guzzon et 

al., 2011), although it is known to dominate from the middle of fermentation up to the end due to its 

high fermentative abilities (Fleet and Heard, 1993b; Fleet, 2003). 

In addition to the effect of indigenous yeasts in Sauvignon blanc must, differences in population 

growth between synthetic and Sauvignon blanc grape must could possibly be due to differences in 

fermentation temperatures. It has been found that non-Saccharomyces yeasts compete better 

against S. cerevisiae at lower temperatures (20°C) compared to temperatures of 30°C (Gobbi et al., 

2013), and persists for longer (Mills et al., 2002), as similarly found in terms of K. aerobia growth at 

15°C compared to 30°C in SGM. Gao and Fleet (1988) found that at lower temperatures, H. uvarum 

and Starmerella bombicola had increased tolerance to ethanol. Certain non-Saccharomyces yeasts 

has indeed been found to survive throughout fermentation (Combina et al., 2005; Jolly et al., 2006; 

Mills et al., 2002; Zott et al., 2008).  

This data gave insight into the metabolic activity and growth of the non-Saccharomyces yeasts 

K. aerobia and W. anomalus in synthetic and Sauvignon blanc grape must. It further demonstrated 

that the presence of these yeasts had no influence on the final ethanol concentration. Earlier studies 

have found mixed cultures to have similar or higher ethanol concentrations to single S. cerevisiae 

fermentations (Comitini et al., 2011; Toro and Vazquez, 2002; Zironi et al., 1993). In comparison, 

the yeasts did increase glycerol content, a common trait of non-Saccharomyces yeasts (Ciani and 

Maccarelli, 1998; Tofalo et al., 2012; Toro and Vazquez, 2002), although possibly enhanced by the 

production of glycerol by the indigenous yeasts.  

4.4.2 Aroma production of K. aerobia and W. anomalus in single and mixed culture 

fermentations 

The impact of the non-Saccharomyces yeasts on aroma biosynthesis is evident, as observed for 

previous fermentations with these species (Beckner Whitener, 2016; Izquierdo Cañas et al., 2014, 

2011; Rojas et al., 2003). Even when the non-Saccharomyces yeast did not proliferate considerably 

in the must, it confirmed the impact of non-Saccharomyces yeasts present in lower numbers on 

aroma production (Lema et al., 1996; Romano et al., 1997; Sadoudi et al., 2012; Toro and Vazquez, 

2002), as metabolic activity is not necessarily affected (Fleet and Heard, 1993b). Non-

Saccharomyces yeasts have aromatic capabilities inherent to their metabolism, although interactions 

with other yeasts or an increased biomass also play a role in aroma production (Ciani et al., 2010; 
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Sadoudi et al., 2012). The phenotypic space of K. aerobia and W. anomalus was more readily 

observed in the monoculture fermentations compared to the mixed culture fermentations. The overall 

difference between compounds produced in monoculture fermentations compared to mixed culture 

fermentations is expected (Gobbi et al., 2013; Moreira et al., 2008; Toro and Vazquez, 2002). 

The data demonstrated that K. aerobia is not a high producer of fatty acids, as similarly observed 

with the non-Saccharomyces yeast T. delbrueckii, suggesting that some non-Saccharomyces yeasts 

metabolism does not result in excessive fatty acid biosynthesis (Azzolini et al., 2015). This decrease 

in fatty acids is favourable for wine quality, as it mostly contributes fatty, rancid, unpleasant odours 

to wine (Azzolini et al., 2015; Lambrechts and Pretorius, 2000). In addition, increased esters could 

be due to the conversion of medium chain fatty acids in treatments with K. aerobia in SGM to ethyl 

esters (Saerens et al., 2010). In contrast, most of the measured fatty acids (e.g. butyric, hexanoic 

and octanoic acid) were increased in mixed fermentations with W. anomalus and S. cerevisiae, 

possibly due to its excretion during autolysis of W. anomalus yeasts (Alexandre and Guilloux-

Benatier, 2006; Chen et al., 1980). Octanoic acid production by S. cerevisiae, which is toxic to yeast, 

could be one of the reasons for the decrease in W. anomalus population in sequential cultures with 

S. cerevisiae (Alexandre et al., 1996; Fleet and Heard, 1993b; Moreno-Arribas and Polo, 2005).  

Numerous non-Saccharomyces yeasts are known for their high production of acetic acid (Carrau, 

2006; Romano et al., 2003; Sadoudi et al., 2012; Toro and Vazquez, 2002) as characteristic for 

K. aerobia yeasts in this study. Reduction in sequential culture fermentations in Sauvignon blanc 

fermentations have been observed for numerous mixed culture fermentations (Ciani and Comitini, 

2011; Rantsiou et al., 2012; Rojas et al., 2003; Sadoudi et al., 2012) as a result of interactions 

between yeasts or acetic acid co-metabolism (Dos Santos et al., 2003; Sadoudi et al., 2012). 

Production of acetic acid is the response of the yeast to repair the redox reaction due to an imbalance 

caused by increased glycerol production (Scanes et al., 1998; Vilanova et al., 2007), as observed in 

the K. aerobia fermentations.  In contrast, lower levels of acetic acid, as shown in fermentations with 

W. anomalus, have been observed for strains of T. delbrueckii yeast as single or mixed culture 

(Azzolini et al., 2015) and M. pulcherrima (Sadoudi et al., 2012). These findings contradicts a 

previous study that showed W. anomalus to produce very high levels of acetic acid in single culture 

(Rojas et al., 2003).  

Furthermore, increased acetoin production in monoculture fermentations with K. aerobia and 

W. anomalus, could be due to production by indigenous yeast present in Sauvignon blanc grape 

must, as these concentrations were not observed in synthetic grape must. Non-Saccharomyces 

yeasts have been shown to increase acetoin production (Toro and Vazquez, 2002). However, in 

sequential culture fermentations in Sauvignon blanc grape must, possible interactions between 

yeasts lead to a decrease in acetoin to levels lower than the S. cerevisiae control. Acetoin can be 

utilised by S. cerevisiae to form 2,3-butanediol or other secondary by-products or possibly increase 
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ethanol content (Herraiz et al., 1990; Romano and Suzzi, 1996; Zironi et al., 1993). This same 

decrease in concentration was seen in mixed culture fermentations of S. cerevisiae with Candida 

canterellii (Toro and Vazquez, 2002) and Pichia fermentans (Clemente-Jimenez et al., 2005). 

Apiculate yeast are known to increase ethyl acetate (Carrau, 2006; Gobbi et al., 2013), specifically 

W. anomalus (Passoth et al., 2006; Rojas et al., 2003, 2001), as similarly observed in this study. 

High ethyl acetate levels are caused by an increase in alcohol acetyl transferase activity (Lilly et al., 

2000). Strain differences for W. anomalus in terms of ethyl acetate production, confirms previous 

findings (Domizio et al., 2011), Although Beckner Whitener (2016) observed high ethyl acetate 

production in real grape must fermented with K. aerobia, this was not documented in the current 

study and increased ethyl acetate in fermentations with K. aerobia could be due to production by 

indigenous yeast. Furthermore, ethyl acetate production is favoured at lower temperatures, as seen 

in this study for fermentation at 15°C (Gobbi et al., 2013). However in general, K. aerobia has been 

found to produce high amounts of esters, specifically 2-phenylethyl acetate (Beckner Whitener, 

2016).  

The increase in production of higher alcohols (especially 2-phenyl ethanol) in sequential culture 

fermentations with W. anomalus confirms previous observations (Rojas et al., 2003)  and is common 

in mixed culture fermentations with non-Saccharomyces yeasts such as T. delbrueckii, 

M. pulcherrima, Lachancea thermotolerans and Starmarella bacillaris (Gobbi et al., 2013; Sadoudi 

et al., 2012). Likewise, propanol and isoamyl alcohol production was increased in sequential culture 

fermentations compared to monocultures, as observed in a similar study (Rojas et al., 2003). 

Furthermore, lower temperatures in the Sauvignon blanc grape must fermentations, could have led 

to increased production of higher alcohols, as previously found in fermentations conducted at 20°C 

compared to 30°C (Gobbi et al., 2013). In fermentations with K. aerobia, an increase in higher 

alcohols was noted with a delay in inoculation of S. cerevisiae in SGM, possibly due to the additional 

time that K. aerobia had to grow and metabolise in the grape must. Increased production of higher 

alcohols such as isobutanol and isoamyl alcohol, and 2-phenylethyl acetate, in mixed culture 

fermentations could be due to an increase of amino acids caused by autolysis of dying K. aerobia 

and W. anomalus yeast cells (Jackson, 2008; Toro and Vazquez, 2002).  

Neutral interactions have been observed between T. delbrueckii and S. cerevisiae, where aromatic 

profiles were similar and differences in volatile compounds was only due to a biomass effect (Gobbi 

et al., 2013; Sadoudi et al., 2012), as perceived for K. aerobia and S. cerevisiae yeasts in mixed 

culture fermentations in SGM. Furthermore, Gobbi et al. (2013) found that differences in monoculture 

fermentations and mixed culture fermentations were less at a higher fermentation temperature 

(30°C), possibly due to the increase in S. cerevisiae growth at the higher fermentation temperature. 

In contrast, interactions between W. anomalus and S. cerevisiae was more notable. Negative 

interactions between W. anomalus and S. cerevisiae caused a decrease in production of isobutyric 
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acid. These interactions, not dependant on biomass, have been observed between Starmarella 

bacillaris and S. cerevisiae leading to a decrease in lactone and terpene concentrations (Gobbi et 

al., 2013). Other negative interactions between yeasts have been reported by Sadoudi et al. (2012). 

Moreover, positive interactions caused an increase in production of ethyl caprylate and ethyl 

caproate, as both W. anomalus and S. cerevisiae produced low concentrations of these esters as 

monocultures in both musts, but doubled the concentration in mixed culture fermentations. 

Synergistic effects, not dependant on biomass, have been reported between M. pulcherrima and 

S. cerevisiae (Gobbi et al., 2013; Sadoudi et al., 2012).  

In Sauvignon blanc grape must, changes in aroma production from days 21 until day 28 were 

minimal, suggesting that aromas measured in this experiment were produced during the exponential 

phase and not in the stationary phase; confirming data found by other researchers (Miller et al., 

2007; Plata et al., 2003). This study furthermore contrasts the perception of certain markets and 

winemakers that favours spontaneous fermentations, as this fermentation yielded lower aromatic 

compounds (Pretorius, 2000).  

Even though W. anomalus was present for a shorter time in the fermentations compared to 

K. aerobia it had a more significant impact on aroma production (higher alcohols and fatty acids), 

probably due to its increased biomass during the start of fermentation. In addition, W. anomalus is 

known to be more aromatic than other non-Saccharomyces yeasts (Rojas et al., 2001). The 

prominent differences between K. aerobia and W. anomalus have been noted for ethyl acetate and 

acetic acid, but numerous differences in terms of fatty acid and higher alcohol production have been 

noted. Many more metabolites can be analysed to determine the differences between these species.  

This study shows the phenotypic space of the production of certain compounds by W. anomalus and 

K. aerobia strains. Significant differences was observed for ethyl acetate and acetic acid production 

as well as many higher alcohols such as isobutanol, butanol, and isoamyl alcohol. Differences are 

more pronounced in monoculture fermentations. Other yeasts from Candida, Hanseniaspora and 

Pichia species have also shown large intra-strain variability (Viana et al., 2008). 

4.5 Conclusion 

This study showed the potential of K. aerobia and W. anomalus to alter wine character and quality 

in synthetic and Sauvignon blanc grape must fermentations. In addition, these findings show the 

potential growth and fermentative abilities of these yeasts in combination with S. cerevisiae. 

However, it is paramount to monitor accumulation of undesirable compounds as it became evident 

that W. anomalus produced high ethyl acetate, with K. aerobia identified as a higher acetic acid 

producer. Furthermore, W. anomalus had an increased impact on aroma production compared to K. 

aerobia. These yeast also contributed to desirable aromatic compounds, for instance 2-phenylethyl 
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acetate known to give a rose aroma to wine. It is essential to take into consideration the observed 

phenotypic variation between the strains in terms of fermentative performance, growth and aroma 

production. 

The probable cause for cell death of especially W. anomalus still needs to be investigated. If these 

yeasts were to be considered for possible use in mixed culture fermentations, many more 

metabolites will need to be measured, including sensory analysis, to make an informed decision. In 

addition, increasing the number of strains could further enhance our understanding of the phenotypic 

space of these yeasts. Although methods for detection of yeasts are not yet readily available in 

wineries, this study gives insight into the possible effect of these yeasts in fermentations. These 

finding contribute to understanding the impact of the possible typical terroir of South African musts, 

although further work still need to be conducted to determine the effect of different non-

Saccharomyces and S. cerevisiae strains to fully characterise their impact on winemaking.  
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4.7 Appendix 

Table 1. Test of SS Whole Model vs. SS Residual (Test of significance) for end point (dependent variable day 
21) CO2 production and OD600 production of K. aerobia mixed culture fermentations and S. cerevisiae control 
(significant differences indicated in boldface, p<0.05) 

Variable 
Multi-
ple 
R 

 

Multi-
ple 
R² 

 

Adjust
ed 
R² 

 

SS 
Model 

 

df 
Model 

 

MS 
Mode

l 
 

SS 
Resi- 

dual 
 

df 
Resi-
dual 

 

MS 
Resi-
dual 

 

F 
 

p 
 

CO2  
 

0.50 0.25 -0.04 21.48 10 2.15 63.18 25 2.53 0.85 0.59 

OD600 0.90 0.81 0.74 56.28 10 5.63 13.05 25 0.52 10.78 0.00 

Table 2. CO2 production after 21 days of fermentations with K. aerobia and W. anomalus in Sauvignon blanc 
grape must as monocultures and sequential cultures inoculated with S. cerevisiae. S. cerevisiae EC1118 
served as control. Values indicated as mean ± standard error. 

Treatment Yeast isolate 
CO2 production 

(day 21) 
CO2 production 

(day 28)* 

Control EC1118 5.52 ± 0.03 a - 

Monocultures 

WA: Y934-C 5.21 ± 0.09 ab 5.41 ± 0.11 

WA: LO632 5.67 ± 0.36 ab 5.93 ± 0.35 

KA: Y965 5.05 ± 0.05 ab 5.27 ± 0.01 

KA: CBS 4.69 ± 0.28 ab 5.08 ± 0.15 

Sequential cultures 

WA: Y934-C 5.62 ± 0.04 ab - 

WA: LO632 5.57 ± 0.08 a - 

KA: Y965 5.53 ± 0.15 a - 

KA: CBS 5.55 ± 0.03 ab - 

Spontaneous 4.42 ± 0.34 b 5.44 ± 0.45 

Values with the same letter in the same column are statistically similar when compared with Tukey’s HSD post-
hoc test at 95 % confidence level. 

*No statistical difference 

- Fermentations terminated 
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Table 3. Residual sugar (glucose and fructose) of fermentations conducted by W. anomalus (WA), K. Aerobia 
(KA) compared to S. cerevisiae (EC1118). The data points represents mean ± standard error of mean (n = 3).  

Treatment Yeast isolate Glucose (g/L) Fructose (g/L) 

Control EC1118 6.19 + 1.07 a 26.87 + 2.11 a 

Monocultures 

WA: Y934-C 77.37 + 3.61 d 85.06 + 1.13 de 

WA: LO632 81.97 + 2.38 de 88.85 + 1.72 e 

KA: Y965 64.88 + 1.15 c 73.26 + 0.82 c 

KA: CBS 76.42 + 1.93 d 77.85 + 1.06 cd 

Sequential cultures 

WA: Y934-C 32.20 + 2.31 b 55.55 + 0.87 b 

WA: LO632 33.07 + 1.17 b 60.77 + 1.34 b 

KA: Y965 37.53 + 1.16 b 58.16 + 1.8 b 

KA: CBS 39.31 + 2.38 b  59.70 + 2.87 b 

 Spontaneous 88.84 + 1.00 e 76.94 + 2.14 cd 

Values with the same letter in the same column are statistically similar when compared with Tukey’s HSD post-
hoc test at 95 % confidence level. 

 

 
Figure 1. PCA scores plot compares aroma compounds produced in Sauvignon blanc grape must by W. 
anomalus (Y934-C, LO632) and K. aerobia (Y965, CBS) in mono- and sequential culture fermentations 
(indicated with circles on plot) on day 21 and day 28. Scores denotes yeast strains used and labels indicate 
day of fermentation. 
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Table 4. Chemical analysis conducted after 21 days of fermentation with K. aerobia (KA) and W. anomalus 
(WA) as monoculture fermentations and in sequential inoculations with S. cerevisiae EC1118. Measurements 
were done using FT-IR ATR mid-infrared spectrometry. All values indicated as mean ± standard error.  

Treatment 
Saccharos

e (g/L)* 
pH 

Tartaric 
acid (g/L)* 

Malic acid 
(g/L) 

Lactic 
acid (g/L)* 

Citric acid 
(g/L) 

Total acid 
(g/L) 

EC1118 
1.20 ± 0.15 

3.12 ± 
0.01a 

2.07 ± 0.12 
1.93 ± 
0.03ab 

0.07 ± 0.03 
0.00 ± 
0.00b 

4.67 ± 
0.12ab 

WA: Y934-
C 

0.50 ± 0.25 
3.03 ± 
0.02cde 

2.00 ± 0.29 
1.87 ± 
0.15ab 

0.13 ± 0.07 
0.10 ± 
0.10ab 

5.23 ± 
0.24ab 

WA: 
LO632 

0.30 ± 0.25 
3.01 ± 
0.01de 

1.93 ± 0.19 
2.07 ± 
0.18a 

0.13 ± 0.13 
0.07 ± 
0.03b 

5.37 ± 
0.22ab 

KA: Y965 
0.83 ± 0.19 

3.02 ± 
0.01de 

1.93 ± 0.15 
1.70 ± 
0.12ab 

0.03 ± 0.03 
0.03 ± 
0.03b 

5.37 ± 
0.03ab 

KA: CBS 
0.43 ± 0.13 

3.00 ± 
0.02de 

1.93 ± 0.12 
1.97 ± 
0.19ab 

0.00 ± 0.00 
0.07 ± 
0.03b 

5.67 ± 
0.19a 

WA: Y934-
C + 
EC1118 

0.70 ± 0.40 
3.11 ± 
0.03abc 

2.17 ± 0.09 
1.83 ± 
0.03ab 

0.30 ± 0.17 
0.23 ± 
0.12ab 

5.13 ± 
0.12ab 

WA: 
LO632 + 
EC1118 

1.13 ± 0.18 
3.10 ± 
0.01ab 

2.13 ± 0.03 
1.90 ± 
0.15ab 

0.13 ± 0.07 
0.03 ± 
0.03b 

4.93 ± 
0.07ab 

KA: Y965 + 
EC1118 

0.97 ± 0.15 
3.04 ± 

0.01bcde 
1.97 ± 0.09 

1.50 ± 
0.06ab 

0.03 ± 0.03 
0.27 ± 
0.03ab 

5.27 ± 
0.09ab 

KA: CBS + 
EC1118 

0.77 ± 0.15 
3.07 ± 

0.00abcd 
2.17 ± 0.07 

1.63 ± 
0.07ab 

0.20 ± 0.06 
0.07 ± 
0.03b 

5.47 ± 
0.09a 

Spontaneo
us 

0.73 ± 0.09 
2.99 ± 
0.02e 

1.77 ± 0.03 
1.47 ± 
0.03b 

0.10 ± 0.10 
0.37 ± 
0.03a 

5.03 ± 
0.20b 

Values with the same letter in the same column are statistically similar when compared with Unequal N HSD 
post-hoc test at 95% confidence level 

*No statistical difference 
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General discussion and conclusions 

5.1 Concluding remarks and future prospects 

Much evidence exists for the impact of the natural microflora on the aroma of wine. However, it is 

perceived that the use of inoculated S. cerevisiae reduces wine complexity, producing a more 

uniform wine. This statement is more anecdotal than scientific, but can be taken seriously as many 

such claims exist. However, this claim is not yet supported by many scientific data sets. It has been 

documented that regional differences in microflora exist (Bokulich et al., 2013; Knight et al., 2015) 

and it is suggested these local microbiomes contributes to a terroir specific character of wine. 

However, there is no convincing evidence that these differences actually and consistently impact the 

character of wine, and in such ways as to be recognisably different from wines in other regions.  

Research conducted to elucidate the local microflora of South African grape must environment is an 

attempt to understand these claims. The dataset of non-Saccharomyces yeasts indigenous to South 

African grape musts and its effect on aroma and fermentation is limited, with only a few studies 

conducted using either metabolomics or culture based methods to determine the local yeast 

microflora (Bagheri et al., 2015; Jolly et al., 2003b; Setati et al., 2012; Van Zyl and Du Plessis, 1961). 

Consequently, it is paramount that the impact of non-Saccharomyces yeasts on fermentation and 

the character of South African wine be further evaluated.  

In attempt to further understand the impact of local microflora on wine, this study looked at the 

recently isolated yeast K. aerobia and W. anomalus, found to be dominant in certain grape musts 

(Bagheri et al., 2015; Setati et al., 2012). Isolates of these yeasts were characterised employing 

stress assays, RAPD analysis, and monitoring nitrogen usage. In addition, the fermentative and 

aroma production abilities of these yeasts were determined in single and mixed culture fermentations 

in varying conditions in synthetic as well as real (Sauvignon blanc) grape must.  

After conducting monoculture fermentations with phenotypic diverse strains, it was concluded that 

the non-Saccharomyces yeasts showed a low ammonia consumption rate with a subsequently low 

fermentation rate compared to S. cerevisiae, typical of non-Saccharomyces yeasts (Jolly et al., 

2003a). According to our knowledge, this is the first time that nitrogen consumption in these yeasts 

was investigated. Similar to findings of the metabolism of S. cerevisiae, the addition of amino acids 

significantly impacted aroma production (Arias-Gil et al., 2007; Mckinnon, 2013; Smit, 2013), 

confirming the effect of BCAA’s on the production of higher alcohols, acids (García et al., 1994; 

Hazelwood et al., 2008; Mendes-Ferreira et al., 2011), and esters (Hernández-Orte et al., 2002; 

Herraiz and Ough, 1993; Saerens et al., 2010). Wickerhamomyces anomalus converted amino acids 

more effectively into aroma compounds, possibly due to increased branched-chain amino acid 
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transaminases (BCAAT) (Lilly et al., 2006) or its increased biomass production (Bell and Henschke, 

2005).  

In mixed culture fermentations with S. cerevisiae, these yeasts did not survive until completion of 

fermentation. With a delay in inoculation of S. cerevisiae, or inoculation at a lower density, the non-

Saccharomyces yeasts proliferated for longer in the must, with an increased impact on the aroma 

profile of the wines, as observed in similar studies (Bely et al., 2008; Gobbi et al., 2013; Kapsopoulou 

et al., 2007; Pérez-Nevado et al., 2006). Interestingly, K. aerobia yeasts survived for longer in 

Sauvignon blanc grape must, although not as dominant as W. anomalus or S. cerevisiae. Mendoza 

et al. (2007) also found that even though the production of biomass is lower, certain non-

Saccharomyces strains can have an increased persistence during fermentation when in a mixed 

culture fermentation. In contrast, a strong antagonistic effect was observed between W. anomalus 

and S. cerevisiae as the former yeast died off as soon as S. cerevisiae was inoculated, confirming 

previous results (Heard and Fleet, 1985; Rojas et al., 2003). 

Typical for mixed culture fermentations, higher alcohols were increased, irrespective of the non-

Saccharomyces yeast (Rojas et al., 2003). Production of favourable aroma compounds, such as 2-

phenylethyl acetate, indicates the possible positive impact of indigenous microflora in wines. 

Kazachstania aerobia and W. anomalus, although only reported on in a limited amount of studies, 

have been shown to favourably increase certain flavour compounds (Beckner Whitener, 2016; 

Izquierdo Cañas et al., 2014, 2011). However, high acetic acid and ethyl acetate concentrations 

(common for non-Saccharomyces yeasts), produced by K. aerobia and W. anomalus respectively, 

is a cause of concern when present in must (Carrau, 2006; Gobbi et al., 2013; Passoth et al., 2006; 

Rojas et al., 2003, 2001; Romano et al., 1997; Sadoudi et al., 2012; Toro and Vazquez, 2002). With 

regards to these compounds, phenotypic differences are evident, and could lead to classification as 

either spoilage or favourable yeast (Azzolini et al., 2015; Romano et al., 1992).  

Negative characteristics in monoculture fermentations of these yeasts can be deluding, as interaction 

with S. cerevisiae can lower the concentrations of ethyl acetate and acetic acid (Ciani and Comitini, 

2011; Rantsiou et al., 2012; Rojas et al., 2003; Sadoudi et al., 2012). Although high levels of acetic 

acid could possibly inhibit growth of S. cerevisiae during mixed culture fermentations (Mortimer, 

2000). Positive interaction between these yeasts and S. cerevisiae, documented for many other 

yeasts, resulted in increased esters and decreased ethyl acetate and acetic acid (Ciani and Comitini, 

2015; Sadoudi et al., 2012). Increased esters have an important impact as volatile esters have an 

additive effect and can thus be observed at low concentrations (Meilgaard, 1975). Similar studies 

show the larger phenotypic space of W. anomalus, as previously this yeast had been found to 

produce high acetic acid (Rojas et al., 2003).  

Overall fermentations proceeded similarly in both synthetic and Sauvignon blanc grape musts, 

although, indigenous yeasts does impact the aroma profile of especially monoculture inoculated 
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wines (Lema et al., 1996; Sadoudi et al., 2012; Toro and Vazquez, 2002). However, the aroma profile 

of sequential culture fermentations were similar in both musts. 

It has yet to be determined if these yeasts are dominant in most grape must or other areas globally. 

Although W. anomalus have been detected in other areas  (Cordero-Bueso et al., 2011; Díaz et al., 

2013; Mora and Mulet, 1991; Regueiro et al., 1993; Rojas et al., 2003; Zagorc et al., 2001), K. aerobia 

has yet to be isolated in other wine environments. This will enable further characterisation of these 

yeasts and enable determination of the full phenotypic space, even between regions. Indeed, this 

study showed strain differences between regions, shedding light on the hypothesis of terroir specific 

microflora. 

Future prospects are to elucidate the impact of other indigenous yeasts on K. aerobia and 

W. anomalus, as microflora between grape musts differ. There is a need to understand microbial 

dynamics in grape musts to either exploit or suppress natural microflora (Egli et al., 1998). Specific 

interactions between these yeasts in mixed culture fermentations have not yet been determined and 

all omics approaches (transcriptomic, proteomic and metabolomic) are necessary to elucidate the 

metabolic mechanisms involved (Ciani et al., 2010). In addition, mechanisms causing cell death were 

not investigated and could be noteworthy to clarify. 

To summarise; this study was an initial attempt to determine the phenotypic space of the non-

Saccharomyces yeasts, K. aerobia and W. anomalus. The isolates were grouped into different 

strains and the yeasts showed a pronounced impact on fermentation metabolites in mixed culture 

fermentations with S. cerevisiae. These findings show the possible impact of these yeasts when 

present in musts, and if winemakers were able to identify specific yeasts in grape must, this could 

affect decisions regarding winemaking practises such as extended maceration times or conducting 

of spontaneous fermentations. Both a positive and negative impact on wine aroma was observed. In 

addition, the impact of amino acids on the aroma profile of single culture non-Saccharomyces yeasts 

were shown. Many more relatively unknown non-Saccharomyces yeasts are present in grape must 

and the impact of these yeasts on spontaneous fermentations or those inoculated with a commercial 

starter culture is yet unknown. Ultimately the question still arise whether these yeasts can impart a 

typical characteristic to wine. To further prove such a claim, we would need multiyear studies of 

vineyard and winery microbiomes, and we would have to be able to consistently link the aromatic 

feature to the resulting wines to these microbiomes.   
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