

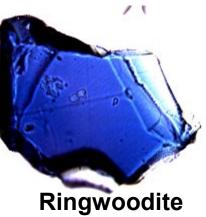
Mineral Evolution

Dan Britt University of Central Florida Center for Lunar and Asteroid Surface Science (CLASS) dbritt@ucf.edu

"You are not in Kansas anymore"

- Robert Hazen and colleagues (2008) had a fundamental insight on mineralogical evolution.
- The mineralogy of terrestrial planets and moons evolves as a consequence of varied physical, chemical, and biological processes that lead to the formation of new mineral species.
- Mineral evolution is a change over time in....
 - The diversity of mineral species
 - The relative abundances of minerals
 - The compositional ranges of minerals
 - The grain sizes and morphologies of minerals

Autunite Ca(UO₂)₂(PO₄)₂ x 8-12 H₂O


A Few Definitions

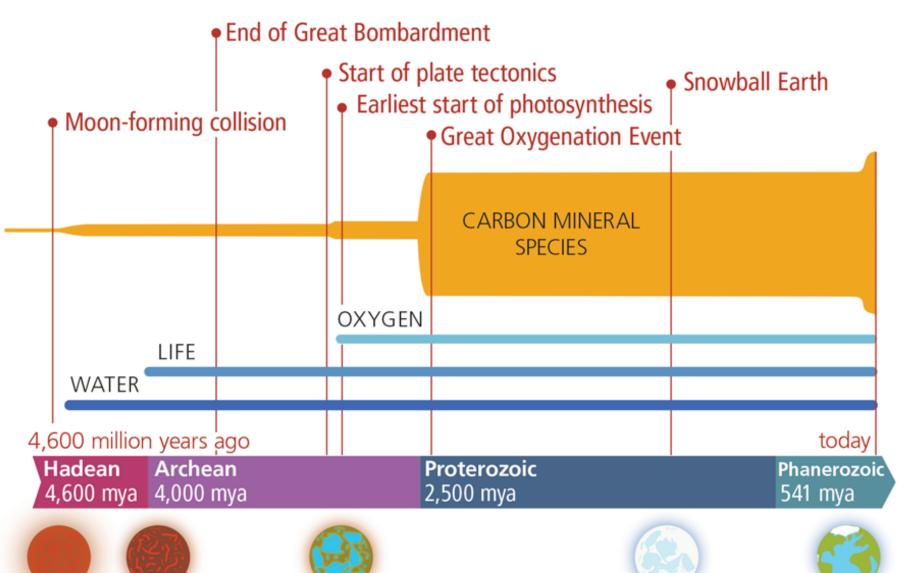
- <u>Mineral:</u>
 - A crystalline compound with a fairly well-defined chemical composition and a specific crystal structure.
 - For example, water ice is a mineral.
- Evolution:
 - In biology the process by which different kinds of living organisms are thought to have developed and diversified from earlier forms during the history of the earth.
 - More broadly it is the gradual development of something from simple to more complex forms.
- What we will be talking about is a form of radiation where minerals react in changing chemical and physical environments.
 - The result are changes to their crystal structure along with their physical and chemical properties.

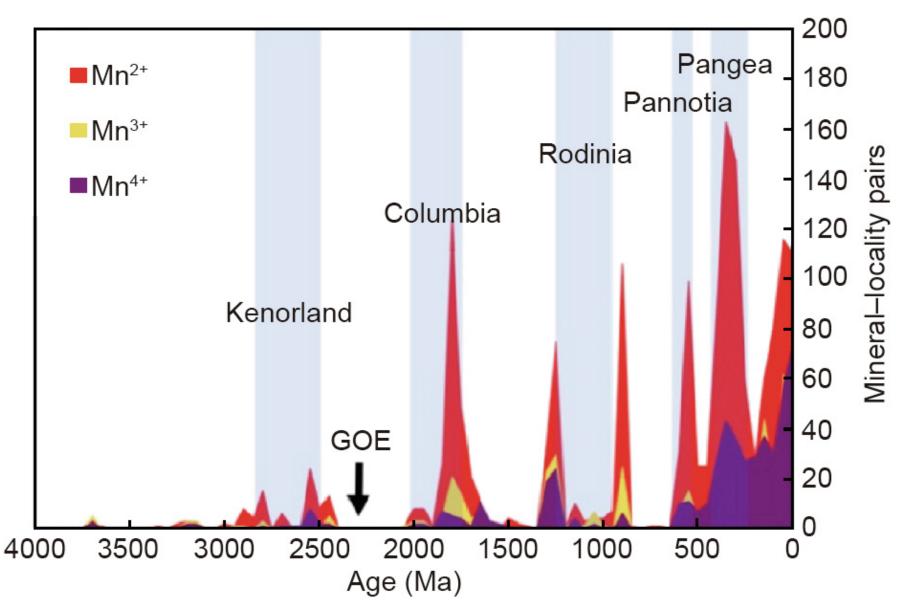
Take Olivine

- Olivine is one of the most abundant minerals in the solar system and the universe.
- Forsterite is the Mg-rich endmember: Mg₂SiO₄
 - Add water and time, it weathers to serpentine $Mg_3Si_2O_5(OH)_4$
 - Add high pressure the chemistry stays the same, but the crystal structure transforms to Ringwoodite.
 - Add more pressure and it decomposes to silicate perovskite MgSiO₃ and ferropericlase MgO
 - In silica-rich igneous systems it reacts to form orthopyroxene Mg₂Si₂O₆
 - Heat olivine under reducing conditions and you get enstatite MgSiO₃ plus free oxygen and pure Mg.
- So by changing the local chemistry, energy, or pressure, this mineral can "evolve" into 6 more minerals (actually a lot more).

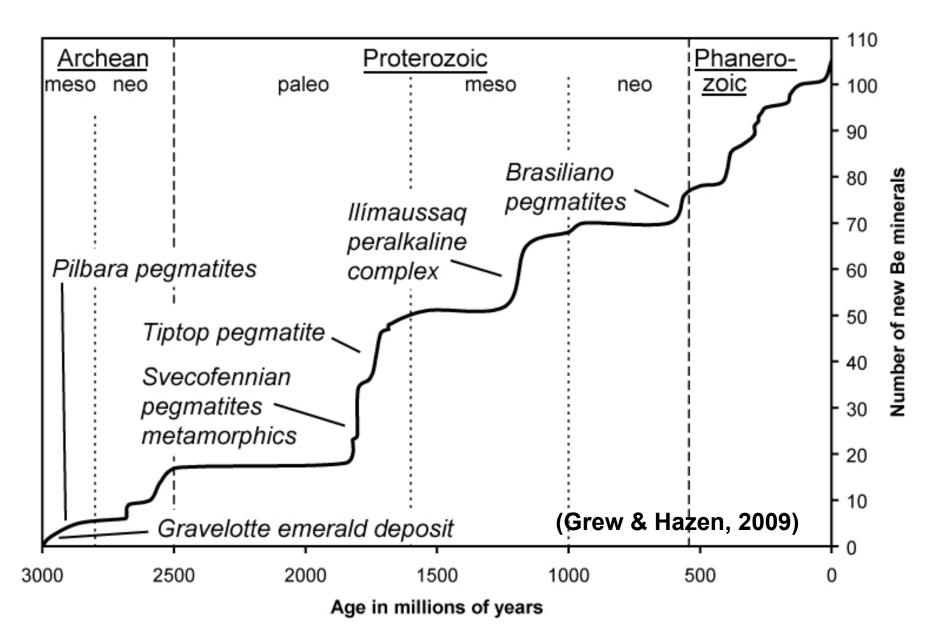
Serpentine

Mineral Evolution


- Mineral inventory of the solar system has gone from about a dozen minerals in the forming solar nebula to over 5400 currently identified on Earth (as of November).
- Three processes drive mineral evolution
 - The progressive separation and concentration of chemical elements from their original uniform distribution.
 - Greater ranges of temperature and pressure coupled with the action of volatiles.
 - The generation of far-from-equilibrium conditions by living systems.
- A few examples of mineral radiation over Earth history.....



Diversity of Carbon Minerals

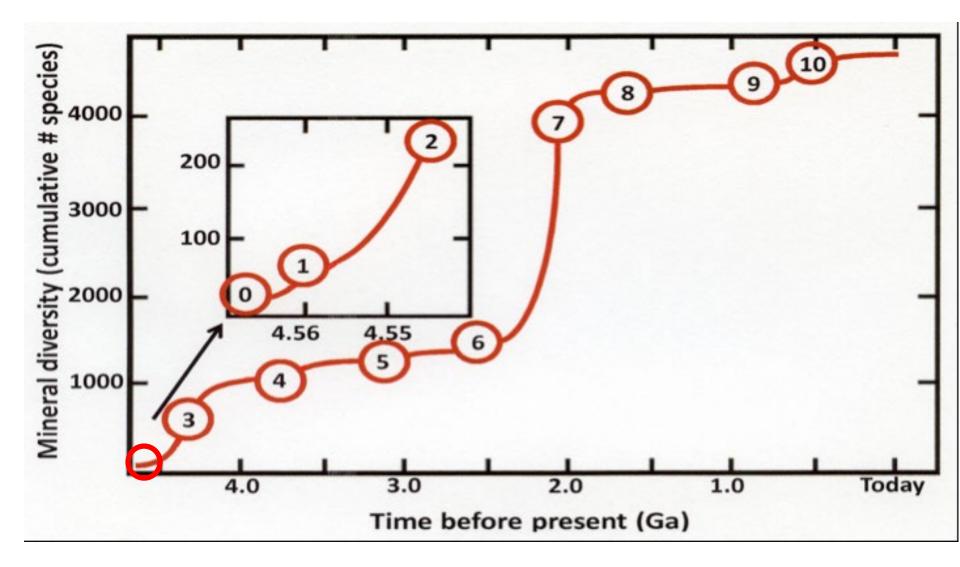


Credit: Deep Carbon Observatory/Josh Wood

The evolution of manganese minerals over time. Closely associated with the supercontinent cycle and the Earth's near-surface oxidation state. (Hazen et al., 2019)

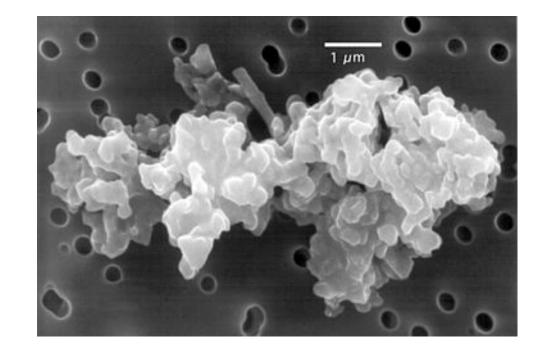
No Beryllium Minerals Known Before ~3.0 Gys.

Stages of Mineral Evolution


Era/Stage	Age (Ga)	Cumulative no. of species									
Prenebular "Ur-Minerals"	>4.6	12									
Era of Planetary Accretion (>4.55 Ga)											
1. Primary chondrite minerals	>4.56 Ga	60									
2. Achondrite and planetes- imal alteration	>4.56 to 4.55 Ga	250									
Era of Crust and Mantle Reworking (4.55 to 2.5 Ga)											
3. Igneous rock evolution	4.55 to 4.0 Ga	350 to 500*									
4. Granite and pegmatite formation	4.0 to 3.5 Ga	1000									
5. Plate tectonics	>3.0 Ga	1500									
Era of Biologically Mediated	l Mineralogy (>2.5 Ga	to Present)									
6. Anoxic biological world	3.9 to 2.5 Ga	1500									
7. Great Oxidation Event	2.5 to 1.9 Ga	>4000									
8. Intermediate ocean	1.9 to 1.0 Ga	>4000									
9. Snowball Earth events	1.0 to 0.542 Ga	>4000									
10. Phanerozoic era of biomineralization	0.542 Ga to present	4400+									

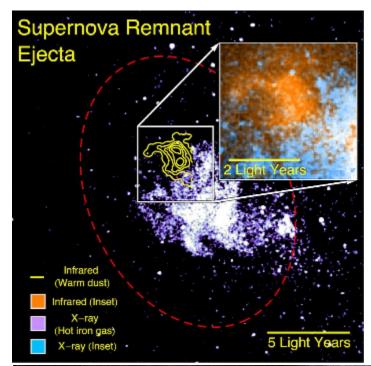
Stages of Mineral Evolution

Era	a/Stage	Age (Ga)	Cumulative no. of species	
Pro	enebular "Ur-Minerals"	>4.6	12	
Era	a of Planetary Accretion (>4.55 Ga)		
1.	Primary chondrite minerals	>4.56 Ga	60	
2.	Achondrite and planetes- imal alteration	>4.56 to 4.55 Ga	²⁵⁰ Ast	eroid Lir
Era	a of Crust and Mantle Rev	working (4.55 to 2.5 G	a)	
3.	Igneous rock evolution	4.55 to 4.0 Ga	350 to 500*	unar Lir
4.	Granite and pegmatite formation	4.0 to 3.5 Ga	1000	
5.	Plate tectonics	>3.0 Ga	1500	
Era	a of Biologically Mediated	l Mineralogy (>2.5 Ga	to Present)	
6.	Anoxic biological world	3.9 to 2.5 Ga	1500	
7.	Great Oxidation Event	2.5 to 1.9 Ga	>4000	
8.	Intermediate ocean	1.9 to 1.0 Ga	>4000	
9.	Snowball Earth events	1.0 to 0.542 Ga	>4000	
10.	Phanerozoic era of biomineralization	0.542 Ga to present	4400+	


Planetary

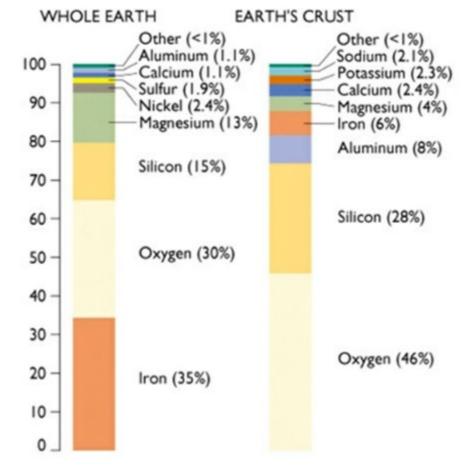
Terrestrial

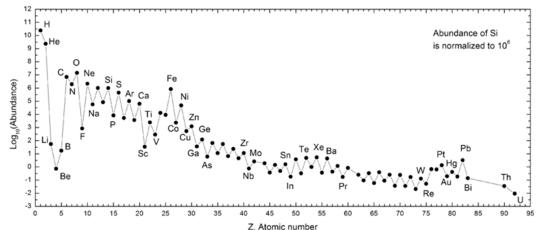
Stage 0: Presolar Grains


- Presolar stardust grains comprise about 0.1 percent of the total mass of meteorites.
- nitrides
 - Osbornite (TiN)
 - Nierite (α -Si₃N₄);
- carbides
 - Cohenite [(Fe,Ni,Co)3C]
 - Moissanite (SiC)
 - Titanium carbide (TiC)
 - Diamond, graphite (C)
- Iron alloys
 - Kamacite (Fe,Ni)
- oxides
 - Rutile (TiO₂)
 - Corundum (Al₂O₃)
 - Cpinel (MgAl₂O₄)
 - Hibonite (CaAl₁₂O₁₉)
- Silicates
 - Forsterite (Mg₂SiO₄)
 - Perovskite-structured MgSiO₃

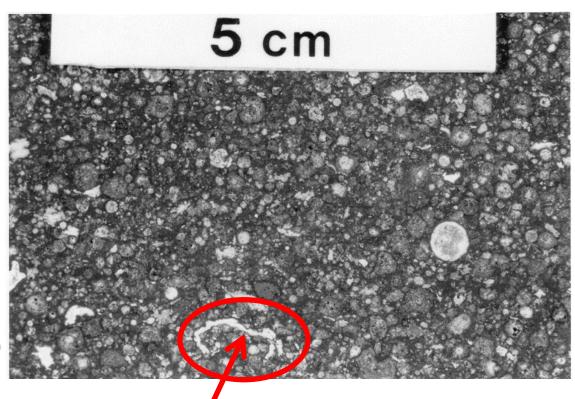
- There are probably more minerals to be found.
- Much of the presolar material observed in IDPs and primitive chondrites is amorphous, nonstoichiometric, or partially crystalline.
- Suggests that a much more robust selection of minerals was accreted to form the early solar system.

Solar System Formation

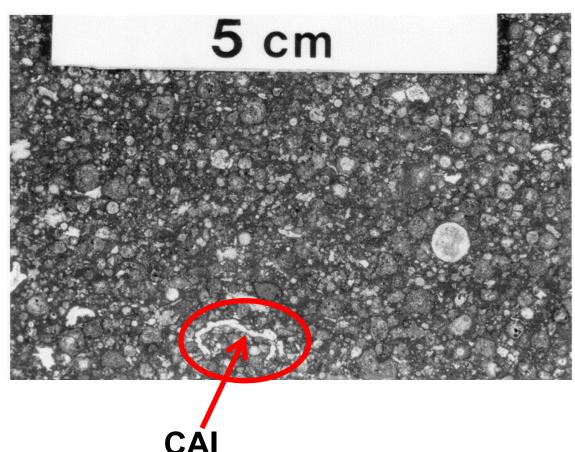

- Solar nebula collapses under self-gravity.
- The collapse heats the nebular material....amount depends on location.
- The protoplanetary nebula is seeded by nearly supernova with materials rich in short-lived radioisotopes.
 - AI_{26}
 - Fe_{60}



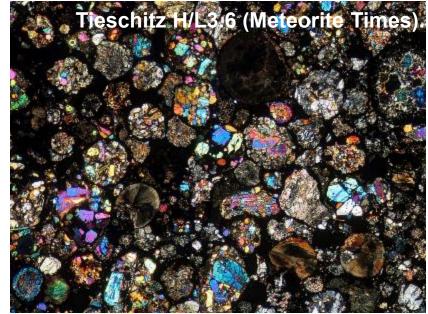
Elemental Abundances


- What you can build from the nebula depends on what is available.
- What drives initial abundances is the sawtooth pattern of Nucleosynthesis

Stage 1: Accretion and the Formation of Chondritic Minerals


- Minerals condense out of the cooling solar nebula, with high-temperature minerals condensing first.
- These were the calcium– aluminum inclusions (CAIs) and include ~24 mineral phases:
 - Spinel (MgAl₂O₄-FeAl₂O₄),
 - Melilite (Ca₂Al₂SiO₇) to (Ca₂MgSi₂O₇)
 - Perovskite (CaTiO₃)
 - Hibonite ((Ca,Ce)(Al,Ti,Mg)₁₂O₁₉)
 - Calcic pyroxene (CaMgSi₂O₆)
 - Anorthite (CaAl₂Si₂O₈₎
 - Forsterite (Mg₂SiO₄)
- How do we know? ~70,000 recovered meteorites.

CAI


Stage 1: Cooling and Condensation Continue

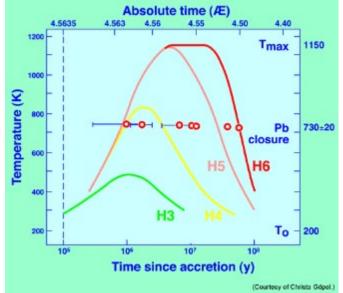
- The cooling nebula condenses progressively lower-temperature minerals.
- Chondrules dominate this stage.
- Chondrules are the sedimentary "sand" of the solar system....which make up the chondrite meteorites.
 - Millimeter sized spheres formed during flash melting in the solar nebula.
- Chondrites contain a diversity of metals, sulfides, oxides, and phosphates.

Stage 1: Primary Chondritic Minerals

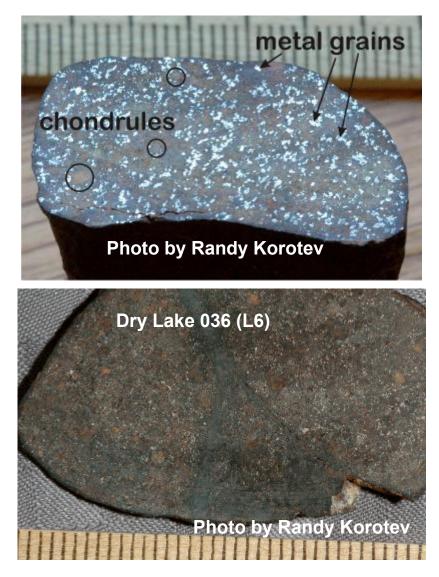
- The mineral assemblage at this stage is ~60 minerals
- Formed under chemically diverse environments, particularly oxygen fugacity which ranges from highly reduced enstatite chondrites to the oxidized carbonaceous chondrites.
- Dominant minerals include:
 - Olivine
 - Pyroxene
 - Plagioclase
 - FeNi
 - Troilite
- Metamorphism, aqueous alteration, and shock will alter, modify, and diversify the chondrites.

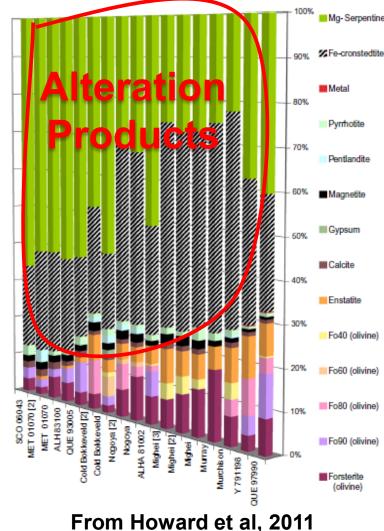


Stage 2 Achondrite and Planetesimal Alteration

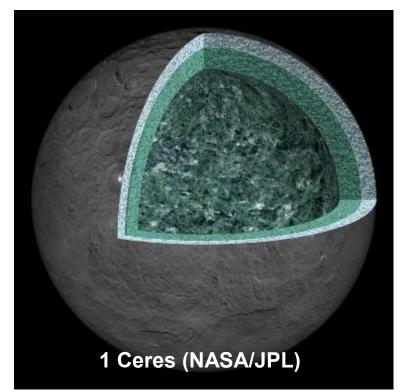

- Chondrules accrete into planetesimals, planetesimals accrete into planets over about 10 million years.
- The timing planetesimal growth depends on location and the local density of materials.
- Heating becomes a critical factor.
- Heat sources:
 - Gravitational potential energy from accretion
 - Radioactive isotopes
 - Core formation
- Remember that the nebula was seeded with material from a nearby supernova.
 - Included in the seeding was very short-lived nuclides including ²⁶AI (717,000 years) and ⁶⁰Fe (2.6 million years)
 - Because of the abundance and short half-life of ²⁶Al, its heat generation potential is about 1,000,000 times that of Uranium.

Stage 2 Timing and Size are Key to Outcomes


- Planetesimals that accrete early (with lots of ²⁶Al) heat to melting and differentiate, producing igneous melts.
- With the short half-life of ²⁶Al it does not take much time before the isotope is depleted and the heating will only metamorphize the planetesimal.
- Dr. Steve Desch will talk about planetesimal accretion and timing in detail.
- Planetesimals that accrete outside the "frost line" will include frozen volatiles as well as minerals. Heating of this assemblage will produce aqueous alteration.
- Planetesimals that accrete outside the frost line and later do not heat much, producing comets that retain unaltered refractory minerals and ices.


Stage 2: Metamorphism

- Heating of anhydrous ordinary and enstatite chondrites produced new minerals from thermal metamorphism at temperatures up to ~950°C
- Phosphates
 - Apatite Ca₅(PO₄)₃(F,CI,OH)
 - Merrillite Ca₉NaMg(PO₄)₇
- Silicates
 - Nepheline (Na,K)AlSiO₄
- Oxides
 - Rutile TiO₂
 - Quartz SiO₂ and its high-temperature polymorphs Cristobalite and Tridymite


Stage 2: Aqueous Alteration

- The melting of ice and the subsequent alteration of chondrule silicates at low temperatures (<100°C) produced a range of new minerals
- Phyllosilicates
 - Montmorillonite (Na,Ca_{0.5})_{0.33}(Al,Mg)₂Si₄O₁₀(OH)₂·nH₂O
 - Chrysotile Mg₃Si₂O₅(OH)₄
 - Cronstedtite (Fe₂²⁺,Fe³⁺)₃(Si,Fe³⁺)₂O₅(OH)₄
- Oxides
 - Magnetite Fe²⁺Fe³⁺₂O₄
 - Ferrihydrite 5Fe₂O₃·9H₂O
- Sulfides
 - Pyrrhotite $Fe_{1-x}S$ (x = 0 to 0.2)
 - Pentlandite (Fe,Ni)₉S₈
- Carbonates
 - Dolomite CaMg(CO₃)₂
 - Calcite CaCO₃
- Sulfates
 - Gypsum CaSO₄·2H₂O
 - Epsomite MgSO4·7H2O

Stage 2: Aqueous Alteration

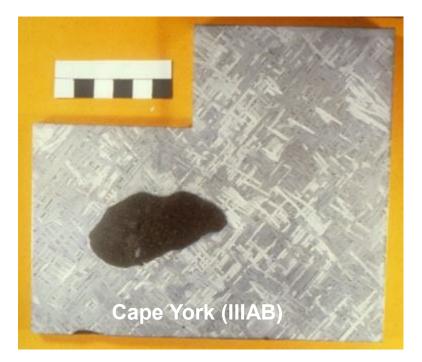
- On small near-Earth asteroids the only surviving volatiles are in the mineral alteration products (hydrated phyllosilicates, sulfates, carbonates, oxides).
- Aqueous processes on most asteroids are short-lived and open system. Water not incorporated into minerals either migrated to the surface and sublimated or was retained as ice in the subsurface.
- The largest main-belt volatile-rich asteroids may have a mantle of hydrated rocks with a crust of ice, salts, and hydrated minerals. Salt-rich brines may be occasionally active. Ceres for example, the mantle is estimated to be 23-28 wt.% water.

Stage 2: Igneous Alteration

- In some planetesimals heating continued above ~950°C crossing the liquidus for early partial melts from FeNi metal and troilite.
- The early melts migrated through the unmelted silicates and form meteorites like acapulcoites, winonaites, and IAB irons.
- As the temperatures increased, silicate melting formed pyroxene–plagioclaserich melts.
 - Residual rocks remaining after silicate melting are represented by meteorite groups like the ureilites and lodranites.
- The partial melts sequestered a range of incompatible elements, including phosphorus, sulfur, and carbon which reacted with unmelted silicates to form new minerals.
 - Phosphates: Na–Ca–Mg phosphates chladniite, panethite, brianite, and johnsomervilleite
 - Carbides: cohenite and haxonite (Fe,Ni)₂₃C₆.

V-T-E Goldschmidt classification in the periodic table																		
Group →	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
↓ Period																		
1														2				
														He				
2	Li	4 Be		concentrated in												10 Ne		
2	11 12 actoroid corec 1										13	14	15	16	17	18		
3	Na	Mg		asteroid cores										Si	Р	S	CI	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Min	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	55	Br	Kr
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
6	55	56	*	72 Hf	73 Ta	74	75	76	77	78	79	80	81 TI	82 Pb	83 Bi	84 F0	85 At	86
	Cs 87	88				W (100)	Re (407)	Os (108)		Pt	Au	Hg			(115)			Rn
7	Fr	Ra	**	(104) Rf	(105) Db	(106) Sg	(107) Bh	Hs	(109) Mt	(110) Ds	(111) Da	(112)	(113) Uut	(114) Fl	Uup	(116) Lv	(117) Uus	(118) Uuo
				T G	00	09	Bii	110	- Mit		1.9	011	out		oup	2,	040	
57 58 59 60 61 62 63 64 65 66 67 68 69 70 7								71										
* Lanthanides		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
** Actinides		ctinidos	89	90	91	92	93	94	(95)	(96)	(97)	(98)	(99)	(100)	(101)	(102)	(103)	
	Actinities Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr																	
Legend																		

Lithophile Siderophile Chalcophile Atmophile very rare

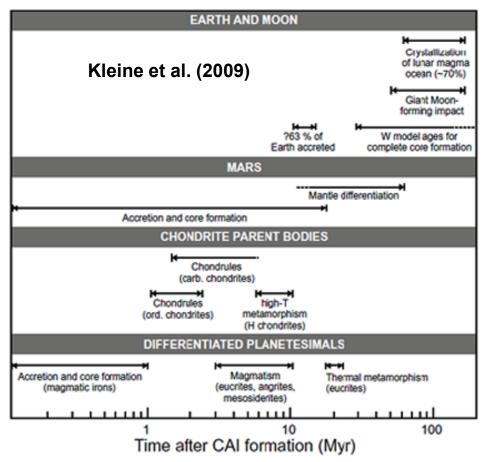

- Lithophile (rock loving) elements remain on or close to the surface because they combine ٠ readily with oxygen, forming compounds that do not sink into the core.
- Siderophile (iron loving) elements are the high-density transition metals which tend to sink ٠ into the core because they dissolve readily in iron.
- Chalcophile (ore loving) elements that combine readily with sulfur and/or some other ٠ chalcogen other than oxygen.
- Atmophile (atmosphere loving) elements are either gases or form volatile hydrides. ٠

Stage 2: Igneous Alteration

- At high degrees of melting differentiation sequestered siderophile from lithophile elements that crystallized separately to form the crust, mantle, and core of the planetesimal.
- Within the crust more incompatible elements were concentrated.
 - Feldspar (KAlSi₃O₈), titanite (CaTiSiO₅), zircon (ZrSiO₄), and baddeleyite (ZrO₂) formed.
- In the core, mineralogical diversity was controlled both by fractional crystallization and solid-state transformations during cooling.

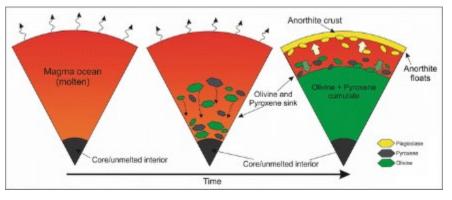


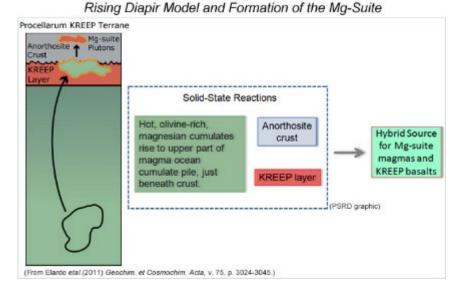
Impacts and Mineral Evolution


- Formation of shock minerals.
 - High-pressure minerals in meteorites are often polymorphs of lower pressure common minerals
 - Olivine → ringwoodite
 - − Chondrite melt → majorite garnet
 - Magnesiowüstite
 - Enstatite → akimotoite
 - Plagioclase feldspar → maskelynite
- For asteroids impact fracture and rubblize the bodies. Asteroids in near-Earth space are collisional fragments and probably rubble piles.
- On larger bodies, excavation of deep igneous and metamorphic terrains can initiate hydrothermal activity.
- Creation of deep subsurface hydrothermal zones (if there is water....i.e. Mars).

The End of Asteroid Mineral Evolution

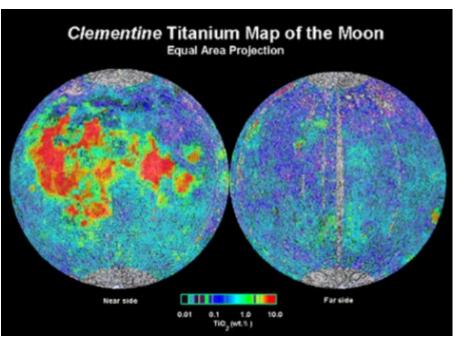
- In asteroids heat drives mineral evolution.
- But heat from accretion, core formation, and strong radioactive sources was exhausted early in solar system history.
- Metamorphism lasted longest on large asteroids, but ended within 20-30 Myr.
- After this period, the only mineralization action was impact-related.
- Between original mineralogy, aqueous, metamorphic, impact, and igneous evolution meteorites have about 250 minerals.


Stage 3: The Moon

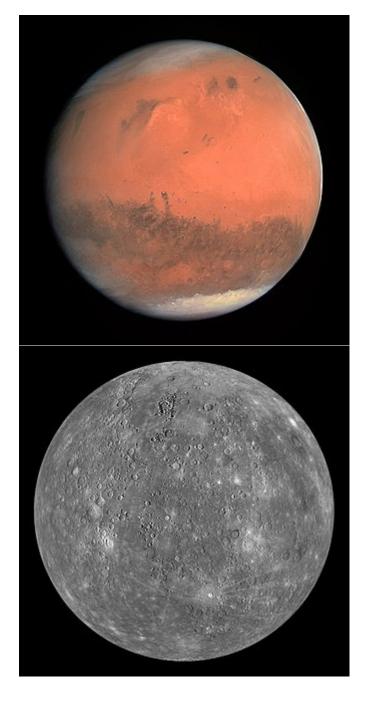

- The moon was the product of a giant impact that ripped off the crust and some of mantle of the early Earth.
- The giant impact was between two already differentiated planets.
- It was crust and mantle material that largely formed the Moon.
- That means the starting material was already depleted in siderophile elements.
- Volatiles would have been vaporized by the high impact temperatures.
- Accretional energy liberated during reaccretion would generate a magma ocean.

Stage 3: The Moon


- Hot accretion meant that most of the Moon was initially molten.
- The magma ocean slowly cooled and differentiated. Tidal dissipation provided the energy to slow cooling.
- The ocean differentiated with denser olivine and pyroxene dropping to the bottom and less dense anorthite floating.
- Like igneous asteroids, high degrees of crystallization concentrated incompatible elements in the crust.
 - The KREEP (K for potassium, REE for rareearth elements and P for phosphorus) source region in Procellarum was formed.
- Also like igneous asteroids mineralogical diversity comes from both by fractional crystallization and solid-state transformations during cooling.



Stage 3: The Moon


- The KREEP terrain is concentrated in Procellarum and Imbrium.
- A large proportion of the Moon's inventory of heat producing elements was incorporated into the KREEP.
- Mare volcanism between 4.2-3.16 Ga produced the Mare terrains seen on the Lunar near side.
- These basalts tapped the KREEP as part of their source region and material.
- A major difference between terrestrial and Lunar basalts is the near-total absence of water in the lunar basalts. As a result they erupt much hotter and more fluid than terrestrial basalts.

Stage 3: Planets

- All rocky planets and moons experience Stage 3 mineral forming igneous processes
- Even on a volatile-poor body like Mercury or the Moon, such processes yield as many as 350 different mineral species.
- If water and other volatiles are abundant, then the mineralogical diversity is enhanced by the development of hydroxides, hydrates, carbonates, and evaporite minerals—a total of approximately 500 mineral species.
- A once-wet Mars appears to have progressed this far in its mineral evolution.

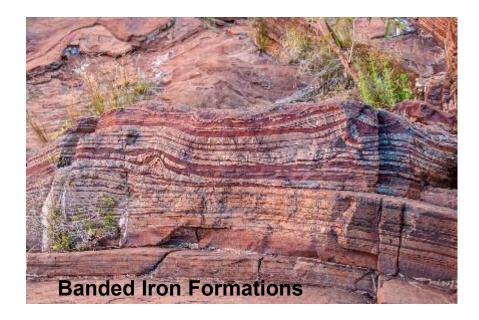

Stages of Mineral Evolution

Era	a/Stage	Age (Ga)	Cumulative no. of species	
Pro	enebular "Ur-Minerals"	>4.6	12	
Era	a of Planetary Accretion (>4.55 Ga)		
1.	Primary chondrite minerals	>4.56 Ga	60	
2.	Achondrite and planetes- imal alteration	>4.56 to 4.55 Ga	²⁵⁰ Aster	roid Line
Era	a of Crust and Mantle Rev	working (4.55 to 2.5 G	a)	
3.	Igneous rock evolution	4.55 to 4.0 Ga	350 to 500* Lu	inar Line
4.	Granite and pegmatite formation	4.0 to 3.5 Ga	1000	
5.	Plate tectonics	>3.0 Ga	1500	
Era	a of Biologically Mediated	l Mineralogy (>2.5 Ga	to Present)	
6.	Anoxic biological world	3.9 to 2.5 Ga	1500	
7.	Great Oxidation Event	2.5 to 1.9 Ga	>4000	
8.	Intermediate ocean	1.9 to 1.0 Ga	>4000	
9.	Snowball Earth events	1.0 to 0.542 Ga	>4000	
10.	Phanerozoic era of biomineralization	0.542 Ga to present	4400+	

Terrestrial

Mineral Evolution: Stage 4 and 5 (All we do not see in Lunar and asteroid geology)

- Stage 4: A planet has enough heat to remelt its initial basaltic crust
 - Forms granitoids from fractionation of the basalt.
 - <u>Repeated partial melting</u> and concentration of rare elements form pegmatites
 - Approximately 500 distinctive minerals of Li, Be,B, Nb, Ta, U, and a dozen other rare elements
- Stage 5: Onset of plate tectonics
 - Subduction of H₂O-rich crustal materials led to <u>fluid–rock interactions</u> and rare element concentration.
 - Uplift and erosion exposed new highpressure, low-temperature minerals formed in subduction zones.
 - 500 more minerals.


Mineral Evolution: Stage 6 and 7

(All we do not see in Lunar and asteroid geology)

- Stage 6: The anoxic biosphere interacts with the lithosphere
 - Primitive microbes in the anoxic Archean Earth played a relatively minor role in mineralogy.
 - The 1500 mineral species would probably occur in any volatile-rich anoxic terrestrial planet.
- Stage 7: Great Oxidation Event
 - The rise of atmospheric oxygen paved the way for more than 2,500 new minerals.
 - Many were hydrated, oxidized weathering products of other minerals.
 - The planet rusted. Black basalt that turned red as the ferrous iron (Fe²⁺) oxidized to hematite.

Turquoise CuAl₆(PO₄)₄(OH)₈·4H₂O

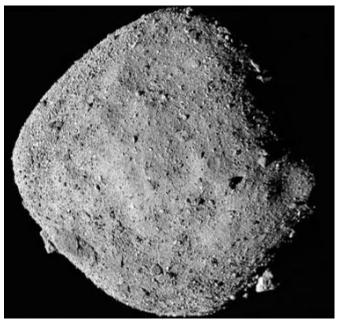
Mineral Evolution: Stage 8 and 9 (All we do not see in Lunar and asteroid geology)

- Stage 8: The intermediate ocean
 - The "boring billion".
 - BIF ceased because the ocean chemistry reached an intermediate oxidation state.
 - Minimal mineralogical innovation.
- Stage 9: Snowball Earth
 - Fluctuations in climate and atmospheric chemistry produced at least two snowball Earth events.
 - During glaciation surface weathering slowed down allowing for volcanic CO₂ buildup and then rapid greenhouse deglaciation.
 - Glaciation enhanced weathering of sulfides and the production of clays.

Mineral Evolution: Stage 10

- Creation of minerals by living organisms becomes widespread
- The buildup of atmospheric oxygen allowed the development of the stratospheric ozone layer, which shielding the surface from solar UV and allowed the start of a terrestrial biosphere.
- Allowed for rapid biochemical breakdown of rock.
- Increasing weathering rates of basalt, granite and limestone by an order of magnitude.
- The abundance of clay minerals and the rate of formation of soils increased vastly.

Cooksonia, the earliest vascular plant



To Wrap Up

- Mineral evolution are fundamentally different on the Moon and Asteroids vs. the Earth.
- Asteroids have about 250 minerals.
- The Moon has about 350 minerals.
- <u>Geological concentration mechanisms</u> that we depend on terrestrially for ores <u>do not exist</u> on the Moon and asteroids.
- On asteroids no high heat flow, no available fluids, no hydrothermal systems for the last ~4.5 billion years.
- On the Moon, no fluids or hydrothermal systems. What you get is Mare volcanism tapping KREEP source regions.
- Impacts and shock are the major drivers for most of solar system history.

