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INVARIANCE OF FRÉCHET FRAMES UNDER

PERTURBATION

ASGHAR RAHIMI∗

Abstract. Motivating the perturbations of frames in Hilbert and
Banach spaces, in this paper we introduce the invariance of Fréchet
frames under perturbation. Also we show that for any Fréchet
spaces, there is a Fréchet frame and any element in these spaces
has a series expansion.

1. Introduction

Historically, theory of frames appeared in the paper of Duffin and
Schaeffer in 1952. Around 1986, Daubechies, Grossmann, Meyer and
others reconsidered ideas of Duffin and Schaeffer [9], and started to
develop the wavelet and frame theory. Frames for Banach spaces were
introduced by K. Gröchenig [10] and subsequently many mathematicians
have contributed to this theory [1, 4, 5, 17]. There are some complete
spaces which are not Banach spaces ( like Fréchet spaces). This was the
main motivation for frames on Fréchet spaces. The concept of Fréchet
frames investigated by Pilipović and Stoeva in [15, 16]. Like Hilbert
and Banach spaces, we will show that for any Fréchet space we can
find a Fréchet frame and every element in a Fréchet space has a series
expansion [4].

In this manuscript we are interested in the problem of finding condi-
tions under which the perturbation of a Fréchet frame is also a Fréchet
frame. The following result [3], is one of the most general and also
typical results about frame perturbations for the whole space H which
generalizes the main results in [7, 8].
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Perturbation, F-bounded.
Received: 30 June 2013 Accepted: 8 December 2013
∗ Corresponding author.

41



42 A. RAHIMI

Theorem 1.1. [3] Let F := {fi}i∈I be a frame for H with bounds A
and B, and G := {gi}i∈I is a sequence in H. Suppose that there exist
non-negative λ1, λ2 and µ with λ2 < 1 such that

‖
∑
i

ci(fi − gi)‖ ≤ λ1‖
∑
i

cifi‖+ λ2‖
∑
i

cigi‖+ µ‖c‖

for each finitely supported c ∈ `2(N) and λ1 + µ√
A
< 1. Then G is a

frame for H with bounds

A(1−
λ1 + λ2 + µ√

A

1 + λ2
)2 and B(1 +

λ1 + λ2 + µ√
B

1− λ2
)2.

2. Fréchet frames

Throughout this paper, (X, ‖.‖) is a Banach space and (X∗, ‖.‖∗) is
its dual, (Θ, ‖|.‖|) is a Banach sequence space and (Θ∗, ‖|.‖|∗) is the dual
of Θ.

Definition 2.1. A sequence space Xd is called a Banach space of scalar
valued sequences or briefly a BK-space, if it is a Banach space and the
coordinate functionals are continuous on Xd , i.e., the relations xn =

{α(n)
j }, x = {αj} ∈ Xd, limxn = x imply limα

(n)
j = αj .

Definition 2.2. Let X be a Banach space and Xd be a BK-space. A
countable family {gi}i∈I in the dual X∗ is called an Xd -frame for X if

(i) {gi(f)}∞i=1 ∈ Xd, ∀f ∈ X;
(ii) the norms ‖f‖X and ‖{gi(f)}∞i=1‖Xd

are equivalent, i.e., there
exist constants A,B > 0 such that

A‖f‖X ≤ ‖{gi(f)}∞i=1‖Xd
≤ B‖f‖X , ∀f ∈ X

A and B are called Xd -frame bounds. If at least (1) and the upper
condition in (2) are satisfied, {gi}∞i=1 is called an Xd -Bessel sequence
for X.

If X is a Hilbert space and Xd = `2, (2) means that {gi}∞i=1 is a frame,
and in this case it is well known that there exists a sequence {fi}∞i=1 in
X such that f =

∑∞
i=1〈f, fi〉gi =

∑
〈f, gi〉fi.

Similar reconstruction formulas are not always available in the Banach
space setting. This is the reason behind the following definition:

Definition 2.3. Let X be a Banach space and Xd a sequence space.
Given a bounded linear operator S : Xd → X, and an Xd -frame
{gi}∞i=1 ⊆ X∗, we say that ({gi}∞i=1, S) is a Banach frame for X with
respect to Xd if

(2.1) S({gi(f)} = f, ∀f ∈ X.
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Note that (2.1) can be considered as some kind of generalized recon-
struction formula, in the sense that it tells how to come back to f ∈ X
based on the coefficients {gi(f)}∞i=1.

There is a relationship between these definitions, a Banach frame is
an atomic decomposition if and only if the unit vectors form a basis for
the space Xd. The following Proposition states this result.

Proposition 2.4. [5] Let X be a Banach space and Xd be a BK-space.
Let {yi}∞i=1 ⊆ X∗ and S : Xd → X be given. Let {ei}∞i=1 be the unit
vectors in Xd. Then the following are equivalent:

(i) ({yi}∞i=1, S) is a Banach frame for X with respect to Xd and
{ei}∞i=1 is a Schauder basis for Xd.

(ii) ({yi}∞i=1, {S(ei)}∞i=1) is an atomic decomposition for X with re-
spect to Xd.

It is known [5] that every separable Banach space has a Banach frame.

Theorem 2.5. Every separable Banach space has a Banach frame with
bounds A = B = 1.

The main motivation of Fréchet frames comes from some sequences
{gi}∞i=1 which are not Bessel sequences but they give rise to series ex-
pansions. For Banach space X, let {gi}∞i=1 ⊆ X∗ be given and let there
exist {fi}∞i=1 ⊆ X such that the following series expansion in X holds

(2.2) f =

∞∑
i=1

gi(f)fi, ∀f ∈ X.

Validity of (2.2) does not imply that {gi}∞i=1 is a Banach frame for X
with respect to the given sequence space. As one can see in the following
examples.

Example 2.6. Let {ei}∞i=1 be an orthonormal basis for the Hilbert space
H. Consider the sequence {gi}∞i=1 = {e1, e1, 2e2, 3e3, 4e4, ...}. This se-
quence is not a Banach frame for H with respect to `2. However, the se-
ries expansion inH in the form (2.2) is {fi}∞i=1 = {e1, 0,

1
2e2,

1
3e3,

1
4e4, ...}.

Validity of (2.2) implies that {gi}∞i=1 is a Banach frame for X with
respect to the sequence space

{
{ci}∞i=1 :

∑∞
i=1 cifi converges

}
.

Recall, a complete locally convex space which has a countable funda-
mental system of seminorms is called a Fréchet space.

Let {Ys, ‖.‖s}s∈N be a sequence of separable Banach spaces such that

(2.3) {0} 6= ∩s∈NYs ⊆ ... ⊆ Y2 ⊆ Y1 ⊆ Y0

(2.4) ‖ . ‖0≤‖ . ‖1≤‖ . ‖2≤ ...

(2.5) YF := ∩s∈NYs is dense in Ys ∀s ∈ N.
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Then YF is a Fréchet space with the sequence of norms ‖.‖s, s ∈ N.
We use the above sequences in two cases: Ys = Xs and Ys = Θs. Let
{Xs, ‖.‖s}s∈N and {Θs, ‖|.‖|s}s∈N be sequences of Banach and Banach
sequence spaces, which satisfy (2.3)-(2.5). For fixed s ∈ N, an operator
V : ΘF → XF is s-bounded if there exist constants Ks > 0 such that
‖V {ci}∞i=1‖s ≤ Ks‖|{ci}∞i=1|‖s for all {ci}∞i=1 ∈ ΘF . If V is s-bounded
for every s ∈ N, then V is called F -bounded. Note that an F -bounded
operator is continuous but the converse dose not hold in general. The
book of R. Meise, D. Vogt is a very useful text book about Fréchet spaces
[13].
The Banach sequence space Θ is called solid if the condition {ci}∞i=1 ∈ Θ
and |di| ≤ |ci| for all i ∈ N, imply that {di}∞i=1 ∈ Θ and ‖|{di}∞i=1‖|Θ ≤
‖|{ci}∞i=1‖|Θ. A BK-space which contains all the canonical vectors ei
and for which there exists a constant λ ≥ 1 such that

‖|{ci}ni=1‖|Θ ≤ λ‖|{ci}∞i=1‖|Θ, ∀n ∈ N,∀{ci}∞i=1 ∈ Θ

will be called λ-BK-space. A BK-space is called a CB-space if the set of
the canonical vectors forms a basis.

Definition 2.7. Let {Xs, ‖.‖s}s∈N be a family of Banach spaces, satis-
fying (2.3)-(2.5) and let {Θs, ‖|.|‖s}s∈N be a family of BK-spaces, satis-
fying (2.3)-(2.5). A sequence {gi}∞i=1 ⊆ X∗F is called a pre-Fréchet frame
( a pre-F-frame) for XF with respect to ΘF if for every s ∈ N there exist
constants 0 < As ≤ Bs <∞ such that

(2.6) {gi(f)}∞i=1 ∈ ΘF ,

(2.7) As‖f‖s ≤ ‖|{gi(f)}∞i=1|‖s ≤ Bs‖f‖s,
for all f ∈ XF . The constants As and Bs are called lower and upper
bounds for {gi}∞i=1. The pre-F-frame is called tight if As = Bs for all
s ∈ N. Moreover, if there exists a F -bounded operator S : ΘF → XF

so that S({gi(f)}∞i=1) = f for all f ∈ XF , then a pre-F-frame {gi}∞i=1
is called a Fréchet frame ( or F-frame ) for XF with respect to ΘF and
S is called an F-frame operator of {gi}∞i=1. When (2.6) and at least the
upper inequality in (2.7) hold, then {gi}∞i=1 is called a F-Bessel sequence
for XF with respect to ΘF .

Since XF is dense in Xs for all s ∈ N, gi has a unique continuous
extension on Xs, we show it by gsi . Thus gsi ∈ X∗s and gsi = gi on XF .

The following Theorem gives some conditions, under which an element
can be expanded by some elementary vectors.

Theorem 2.8. [15, 16] Let {Xs, ‖.‖s}s∈N be a family of Banach spaces,
satisfying (2.3)-(2.5) and let {Θs, ‖|.|‖s}s∈N be a family of CB-spaces,
satisfying (2.3)-(2.5) and we assume that Θ∗s is a CB-space for every
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s ∈ N. Let {gi}∞i=1 be a pre-F-frame for XF with respect to ΘF . There
exists a family {fi}∞i=1 ⊆ XF such that

(i) f =
∑∞

i=1 gi(f)fi and g =
∑∞

i=1 g(fi)gi, ∀f ∈ XF and ∀g ∈ X∗F ;
(ii) f =

∑∞
i=1 g

s
i (f)fi and g =

∑∞
i=1 g(fi)g

s
i , ∀f ∈ Xs and ∀g ∈

X∗s , ∀s ∈ N;
(iii) for every s ∈ N, {fi}∞i=1 is a Θ∗s-frame for X∗s .

if and only if there exists a continuous projection U from ΘF onto its
subspace

{
{gi(f)}∞i=1 : f ∈ XF

}
.

The following proposition shows that the pre-Fréchet Besselness is
equivalent to the F-boundedness of an operator.

Proposition 2.9. Let {Xs, ‖.‖s}s∈N be a family of Banach spaces, satis-
fying (2.3)-(2.5) and let {Θs, ‖|.|‖s}s∈N be a family of CB-spaces, satis-
fying (2.3)-(2.5) and we assume that Θ∗s is a CB-space for every s ∈ N.
The family {gi}∞i=1 ⊆ X∗F is a pre-Fréchet Bessel sequences for XF with
respect to ΘF if and only if the operator T : Θ∗F → X∗F defined by
T{di}∞i=1 =

∑∞
i=1 digi is well defined and ‖T‖s ≤ Bs, for all s ∈ N.

Proof. First, suppose that {gi}∞i=1 ⊆ X∗F is a pre-Fréchet Bessel se-
quences for XF with respect to ΘF . Define the operator

R : XF → ΘF

by
Rf = {gi(f)}∞i=1.

Since {gi(f)}∞i=1 is a pre-Fréchet Bessel sequence , so ‖R‖s ≤ Bs for
every s ∈ N. The adjoint of R is in the form R∗ : Θ∗F → X∗F and

R∗(ej)f = ej(Rf) = ej({gif}∞i=1) = gjf,

so R∗ej = gj . Put T = R∗, then ‖T‖s ≤ Bs and

T{di}∞i=1 = T (

∞∑
i=1

diei) =

∞∑
i=1

diTei =

∞∑
i=1

diR
∗ei =

∞∑
i=1

digi.

Conversely, suppose the operator T : Θ∗F → X∗F defined by T{di}∞i=1 =∑∞
i=1 digi is well defined and s-bounded for all s ∈ N . It is clear that

Tei = gi and T ∗ : X∗∗F → Θ∗∗F is (T ∗f)ei = f(Tei) = f(gi). Therefore
{gi(f)}∞i=1 = {(T ∗f)ei}∞i=1 , i.e. {gi(f)}∞i=1 ∈ ΘF . The s- boundedness
of T imply that ‖|{gi(f)}∞i=1|‖s ≤ Bs. �

Similar to Theorem 2.5, the following Theorem shows that for any
Fréchet space XF we can construct a Fréchet frame.

Theorem 2.10. Let {Xs, ‖.‖s}s∈N be a family of separable Banach spaces
satisfying (2.3)-(2.5). Let XF :=

⋂
s∈NXs. Then XF can be equipped

with a Fréchet frame with respect to an appropriately sequence space.
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Proof. Since Xs is a separable Banach space for any s ∈ N, there is a
sequence {xsi}∞i=1 ⊆ Xs, such that {xsi}∞i=1 = Xs. For any fs ∈ Xs there
is a subsequence xski → fs as i→∞. By Hahn-Banach Theorem, there

is gsi ∈ X∗s such that gsi (x
s
i ) = ‖xsi‖ and ‖gsi ‖ = 1. Now,

‖xski‖ = |gski(xki)| ≤ ‖g
s
ki

(fs)‖+ ‖fs − xski‖,

so ‖f s‖ ≤ sup ‖gi(fs)‖. Since we also have ‖fs‖ ≥ supi ‖gi(fs)‖, there-
fore

‖fs‖ = sup
i
‖gsi (fs)‖, ∀fs ∈ Xs.

Let Θs ⊆ `∞ and Θs =
{
{gi(fs)}∞i=1 : fs ∈ Xs

}
, then {Θs}s∈NΘs

satisfies (2.3)-(2.5). Let ΘF :=
⋂
s∈N and S({gi(f)}∞i=1) = f . Then

({gsi }∞i=1, S) is a Fréchet frame for XF with respect ΘF . �

3. Perturbation of Fréchet Frames

Like the results about p-frames [20], Banach frames and atomic de-
compositions [6, 11], generalized frames [14], continuous frames [19], we
study perturbations of Fréchet frames. We need the following assertion.

Lemma 3.1. [12] Let U : X → X be a linear operator and assume that
there exist constants λ1, λ2 ∈ [0, 1[ such that

‖x− Ux‖ ≤ λ1‖x‖+ λ2‖Ux‖, ∀x ∈ X.

Then U is invertible and

1− λ1

1 + λ2
‖x‖ ≤ ‖Ux‖ ≤ 1 + λ1

1− λ2
‖x‖

1− λ2

1 + λ1
‖x‖ ≤ ‖U−1x‖ ≤ 1 + λ2

1− λ1
‖x‖

for all x ∈ X.

The simplest assertion about perturbation of F-Bessel sequences is:

Proposition 3.2. Let XF be a Fréchet space satisfying (1)-(3) and let ΘF

be a Fréchet sequence space satisfying (1)-(3) so that Θs is a reflexive
CB-space for every s. Let {gi} be an Fréchet Bessel sequence for XF

with respect to ΘF with bounds Bs and let {fi} ⊂ X∗F .
Assume that {(gi − fi)(f)} ∈ ΘF , ∀f ∈ XF , and ∃ µ̃s ≥ 0 such that

(3.1) ‖|{(gi − fi)(f)}|‖s ≤ µ̃s‖f‖s, ∀f ∈ XF

(i.e. {gi − fi} is an Fréchet Bessel sequence for XF w.r.t. ΘF ). Then
{fi} is an F -Bessel sequence for XF w.r.t. ΘF with bounds Bs + µ̃s.

The converse also holds.
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Proof. It is clear that {(fi)(f)} = {(−gi + fi)(f)}+ {(gi− fi)(f)} ∈ ΘF

for all f ∈ XF , also

|‖{fi(f)}|‖s ≤ |‖{(gi − fi)(f)}|‖s + |‖{(gi − fi)(f)}|‖s ≤ (Bs + µ̃s)‖f‖

for all s ∈ N, f ∈ XF . �

The following Theorem generalizes a Theorem of [11] to Fréchet frames
and gives a necessary and sufficient condition for the stability of Fréchet
frames.

Theorem 3.3. Let
(
{gi}, S

)
be a Fréchet frame for XF with respect to

ΘF with bounds As and Bs. Let {hi} ⊆ X∗F such that {hi(f)} ∈ ΘF

for all f ∈ XF and let D : ΘF → ΘF be a continuous linear operator
such that D{hn(f)} = {gn(f)}, f ∈ XF . Then there exists an operator
V : ΘF → XF such that ({hn}, V ) is a Fréchet frame if and only if for
each s ∈ N there exists λs > 0 such that

(3.2) ‖|{(gn − hn)(f)}|‖s ≤ λsmin{‖|{gn(f)}|‖s, ‖|{(hn(f))}|‖s}

for all f ∈ XF .

Proof. Suppose there exists λs for every s ∈ N such that (3.2) holds. By
assumption, {hi(f)} ∈ ΘF for all f ∈ XF . For any f ∈ XF and s ∈ N,

As‖f‖s ≤ ‖|{gn(f)}|‖s
≤ ‖|(gn − hn)(f)}|‖s + ‖|{hn(f)}|‖s
≤ λs‖|{hn(f)}|‖s + ‖|{hn(f)}|‖s
= (1 + λs)‖|{hn(f)}|‖s
≤ (1 + λs)

(
‖|{(gn − hn)(f)}|‖s + ‖|{gn(f)}|‖s

)
≤ (1 + λs)

2‖|{gn(f)}|‖s
≤ (1 + λs)

2Bs‖f‖s.

So we have

As
1 + λs

‖f‖s ≤ ‖|{hn(f)}|‖s ≤ (1 + λs)Bs‖f‖s.

Let V = SD. Then V ({hn(f)}) = SD({hn(f)}) = f , i.e.
(
{hn}, V

)
is a

Fréchet frame for XF with respect to ΘF .
Conversely, suppose

(
{gi}, S

)
and

(
{hn}, V

)
are Fréchet frames for XF

with respect to ΘF with bounds As, Bs and A′s, B
′
s , respectively. Then,

by using the inequalities, we get

‖|{(gn − hn)(f)}|‖s ≤
(
1 +

B′s
As

)
‖|{gn(f)}|‖s, f ∈ XF
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and

‖|{(gn − hn)(f)}|‖s ≤
(
1 +

Bs
A′s

)
‖|{hn(f)}|‖s, f ∈ XF .

Choose λs := Max{1 + B′s
As
, 1 + Bs

A′s
}, therefore (3.2) holds for any f ∈

XF . �

Theorem 3.4. Let
(
{gi}, S

)
be a Fréchet frames for Xs with respect to

Θs. Let {hi} ∈ X∗F such that {hi(f)} ∈ ΘF for all f ∈ XF and let
D : ΘF → ΘF be a continuous ( or F-bounded) linear operator such
that D{gn(f)} = {hn(f)}, f ∈ XF . Let {αn} and {βn} be sequences of
positive numbers for which 0 < inf αn ≤ supαn < ∞ and 0 < inf βn ≤
supβn < ∞. If for any s ∈ N there exist non negative scalers λs, µs ∈
[0, 1[ and γs such that

(i) ‖S‖sγs < (1− λs)(inf αn)
(ii) ‖|{(αngn−βnhn)f}|‖s ≤ λs‖|{(αngn)f}|‖s+µs‖|{(βnhn)f}|‖s+

γs‖f‖s, ∀f ∈ XF ,

then there is a F-bounded operator V : ΘF → XF such that ({hi}, V )
is a Fréchet frame for XF with respect to ΘF .

Proof. Let W : XF → ΘF with Wf := {gi(f)} for all f ∈ XF . Then
SW : ΘF → ΘF is an identity operator and for all s ∈ N

‖f‖s = ‖SWf‖s ≤ ‖S‖s‖|{gi(f)}|‖s.
Now,

‖|{(βnhn)f}|‖s ≤ ‖|{(αngn)f}|‖s + ‖|{(αngn − βnhn)f}|‖s
≤ ‖|{(αngn)f}|‖s + λs‖|{(αngn)f}|‖s
+ µs‖|{(βnhn)f}|‖s + γs‖f‖s

for all s ∈ N and f ∈ XF . Therefore

(1− µs)‖|{(βnhn)f}|‖s ≤
(
(1 + λs)‖W‖s(supαn) + γs

)
‖f‖s,

also

(1− µs)
(

inf βn
)
‖|{(hn)f}|‖s ≤ (1− µs)‖|{(βnhn)f}|‖s

≤
(
(1 + λs)‖W‖s(supαn) + γs

)
‖f‖s,

By using (2), we have:

(1 + µs)‖|{(βnhn)f}|‖s ≥ (1− λs)‖|{(αngn)f}|‖s − γs‖f‖s
≥

(
(1− λs)‖S‖−1

s (inf αn)− γs
)
‖f‖s

for all f ∈ XF and s ∈ N. Therefore

(1 + µs)
(

supβn
)
‖|{(hn)f}|‖s ≥ (1 + µs)‖|{(βnhn)f}|‖s

≥
(
(1− λs)‖S‖−1

(
inf αn

)
− γs

)
‖f‖s



INVARIANCE OF FRÉCHET FRAMES UNDER PERTURBATION 49

for all f ∈ XF and s ∈ N. The above inequality shows the frame bounds.
Let V = SD. Then V is a bounded operator that V {hn(f)} = f , for all
f ∈ XF . Therefore ({hi}, V ) is a Fréchet frame for XF with respect to
ΘF . �

Theorem 3.5. Let ({gi}, V ) be a Fréchet frame for XF with respect to
ΘF . Suppose λ1s , λ2s , µs ≥ 0 such that max{λ2s , λ1s + µsBs} < 1 for
all s ∈ N and S : ΘF → XF a continuous operator such that for any
{ci} ∈ ΘF and s ∈ N
(3.3) ‖S{ci} − V {ci}‖s ≤ λ1‖V {ci}‖s + λ2s‖S{ci}‖s + µs‖|{ci}|‖s
then there exists a {hi} ⊆ X∗F such that ({hi}, S) is a Fréchet frame of
XF with respect to ΘF .

Proof. For f ∈ XF , let ci = gi(f) in (3.3), then we have

‖S{gi(f)}−V {gi(f)}‖s ≤ λ1s‖V {gi(f)}‖s+λ2s‖S{gi(f)}‖s+µs‖|{gi(f)}|‖s
since V ({gi(f)}) = f , so

‖S{gi(f)} − f‖s ≤ λ1s‖f}‖s + λ2s‖S{gi(f)}‖s + µsBS‖f |s.
Let L(f) := S{gi(f)}, so

‖f − Lf‖s ≤ λ1s‖f‖s + λ2s‖Lf‖s + µsBS‖f |s
or

‖f − Lf‖s ≤ (λ1s + µsBs)‖f‖s + λ2s‖Lf‖s.
Lemma 3.1 results that the operator L is invertible and

1− λ2s

1 + λ1s + µBs
‖f‖s ≤ ‖L−1f‖s ≤

1 + λ2s

1− (λ1s + µs)Bs
‖f‖s

and f = LL−1f = S({gi(L−1f)}). It is clear that {gi(L−1f)} ⊆ X∗F .
By choosing hi = gi ◦ L−1, we have

‖|{hi(f)}|‖s = ‖|{gi(L−1f)}|‖s ≥ As‖|L−1|‖s ≥
As(1− λ2s)

1 + λ1s + µsBs
‖f‖s

and

‖|{hi(f)}|‖s ≤ Bs‖L−1f‖s ≤
Bs(1 + λ2s)

1− (λ1s + µsBs)
‖f‖s.

�

Theorem 3.6. Let ({gi}, S) be a F-frame for XF with respect to ΘF . Let
{hi} ⊂ X∗F . If for every s ∈ N there exist λs, µs ≥ 0 such that

(i) λs‖U‖+ µs ≤ ‖S‖−1
s ,

(ii) ‖|{(gi − hi)f}|‖s ≤ λs‖|{(gi)f}|‖s + µs‖f‖s for all s ∈ N and
f ∈ XF .

Then there is a continuous operator T such that ({hi}, T ) is a F-frame
for XF with respect to ΘF .
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Proof. It is a direct result of (2) that the operator V : XF → ΘF defined
by V f := {hi(f)} is bounded and

‖|Uf − V f |‖s ≤ λs‖|Uf |‖s + µs‖f‖s
for all s ∈ N and f ∈ XF . Therefore,

(3.4) ‖|V f |‖s ≤ (‖U‖s + λs‖U‖s + µs)‖f‖s
for all s ∈ N and f ∈ XF . Also, SU = I imply that

‖I − SV ‖s ≤ ‖S‖s(λs‖U‖s + µs) < 1.

Therefore SV is invertible and ‖(SV )−1‖s ≤
(
1− (λ‖U‖s +µ)‖S‖s)

)−1
.

Finally T = (SV )−1S and TV = I. For all f ∈ XF and s ∈ N

(3.5) ‖f‖s ≤ ‖T‖s.‖|V f |‖s ≤
‖S‖

1− (λs‖U‖s + µs)‖S‖s
‖|V f |‖s.

(3.4) and (3.5) which imply that for every s ∈ N and f ∈ XF :

1− (λs‖U‖s + µs)‖S‖s
‖S‖s

‖f‖s ≤ ‖|{hi(f)}|‖s ≤ (‖U‖s+λs‖U‖s+µs)‖f‖s.

So ({hi}, T ) is a F-frame for XF with respect to ΘF . �

4. Perspective

However the concept of Fréchet frame is new and there are few papers
in this area, but in my opinion it can be generalized in more general
setting and some concepts like g-frame, controlled frames, controlled g-
frames [18], multiplier of frames [2] and etc may be extended to Fréchet
frames.
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