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A B S T R A C T   

Organic matter (OM)-hosted pores are important constituents of the pore system of black shales and play a 
crucial role in determining their methane adsorption capacity and porosity. OM-hosted pores are generally 
observed and described with scanning electron microscope (SEM) on Ar ion-milled surfaces. However, SEM 
imaging is not able to reliably distinguish OM types and relate the observed pores to specific macerals. Partly 
because of this inability to relate organic pores to macerals, the evolution of organic porosity during thermal 
maturation remains poorly understood. 

In this paper, we review the petrographic characteristics of dispersed organic matter (DOM) in black shales 
under the SEM. Organic petrographic classification of DOM developed for reflected-light microscopy is so far the 
most practical method when describing DOM in black shales under the SEM because this classification has in-
formation on the origin of DOM. Therefore, correlative microscopy (combination of reflected-light and electron 
microscopy) is the most effective method to identify both OM types and OM-hosted pores. This method, however, 
is not readily available to most researchers. Although identifying OM on the basis of SEM observations is a 
challenging task, it is achievable provided there is a good understanding of the studied shales, especially their 
thermal maturity and original OM composition. Therefore, the overall objective of this paper is to review 
petrographic characteristics of DOM in black shales under the SEM to provide some guidelines for identifying 
DOM from SEM observations. 

We also review factors that control the formation and preservation of OM-hosted pores. OM-hosted pores 
consist of primary and secondary organic pores. Primary organic pores are pores inherited from the biological 
structure of the original OM. Secondary organic pores develop during hydrocarbon generation and expulsion 
from oil-prone OM and are hosted by solid bitumen or pyrobitumen. The development of secondary organic 
pores is controlled by thermal maturity and OM type, and their preservation is subject to thermal maturity, OM 
content, and mineralogical composition. 

The presented view of the evolution of micropore and mesopore characteristics of OM with thermal maturity is 
based on data from the literature. The specific surface area and pore volume of OM in black shales follow 
parabolic patterns with increasing thermal maturity (quantified via vitrinite reflectance, Ro). The initial increase 
reflects development of OM-hosted pores, and the subsequent decrease is due to denser stacking of aromatic units 
in the macromolecular structure of OM, with maximum values (specific surface area ~ 300 m2/g and pore 
volume ~ 0.3 cm3/g) reached at Ro values in the 2.5–3.5% range. The contribution of OM-hosted pores to the 
pore characteristics of black shales depends on OM content, OM type, and thermal maturity.   

1. Introduction 

Organic matter (OM) quantity, quality, and thermal maturity are key 
parameters in evaluation of both conventional and unconventional pe-
troleum systems (Tissot and Welte, 1984; Peters and Cassa, 1994; Curtis, 

2002; Passey et al., 2010; Jarvie, 2012a, 2012b; Hackley and Cardott, 
2016). OM in black shales serves as both the source of oil and gas and the 
storage space for them in unconventional petroleum systems, which 
makes black shales self-sourced hydrocarbon reservoirs (Curtis, 2002; 
Passey et al., 2010; Jarvie, 2012a, 2012b; Cardott et al., 2015; Qiu and 
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Zou, 2020). OM-hosted pores make significant contributions to the pore 
network of tight shale reservoirs (Loucks et al., 2009, 2012; Schieber, 
2010, 2013); Curtis et al., 2011; Mastalerz et al., 2013; Schieber et al., 
2016; İnan et al., 2018; Katz and Arango, 2018; Ko et al., 2018) and 
critically control the gas content and methane adsorption capacity of 
black shales (Ross and Bustin, 2009; Hao et al., 2013; Mastalerz et al., 
2016a; Qiu et al., 2020a). 

Scanning electron microscopes (SEM) are commonly used to image 
OM-hosted pores in black shales (e.g., Loucks et al., 2009, 2012; 
Schieber, 2010; Kwiecińska et al., 2019). An important disadvantage of 
SEM imaging, however, is its inability to distinguish OM types, because 
all OM appears black under the SEM due to a low density (Camp, 2016; 
Kwiecińska et al., 2019; Valentine and Hackley, 2019). OM types 
(macerals) are best identified with reflected-light microscopy based on 
colour, reflectance, form, and fluorescence, and this technique has been 
used to identify OM in coals (Taylor et al., 1998; Suárez-Ruiz et al., 
2012) and dispersed organic matter (DOM) in shales (Potter et al., 1998; 
Hackley and Cardott, 2016; Flores and Suárez-Ruiz, 2017; Mastalerz 
et al., 2018) for decades. Correlative reflected-light and electron mi-
croscopy combines the advantages of both techniques and has been 
successfully used in some shale sequences (Hackley et al., 2017; Liu 
et al., 2017; Valentine and Hackley, 2019; Hackley et al., 2021; Wei 
et al., 2021). However, because this approach requires a combination of 
skills and instrumentation that is not always available, we propose a 
strategy that facilitates reliable identification of OM types under the 
SEM. Accurate identification of OM types under the SEM will help in the 
evaluation of the thermal evolution of DOM and improve the under-
standing of the role of OM-hosted pores in source-rock reservoirs. 

The purpose of this paper is to provide a review of DOM in black 
shales and their petrographic characteristics under the SEM. We hope 
this review will: a) help researchers (e.g., sedimentologists or SEM pe-
trographers) who have no access to organic petrographic technique to 
more reliably identify the types of DOM and relate them to OM-hosted 
pores in unconventional shale reservoirs; b) uncover the evolution of 
OM-hosted pores during thermal maturation, and c) provide some OM- 
related insights into characterization of tight shale reservoirs and 
exploitation of hydrocarbon resources in black shale successions. 

2. Organic petrographic classification of dispersed organic 
matter in black shales 

The organic petrographic classification of DOM in black shales (e.g., 
Stasiuk et al., 2002; Flores and Suárez-Ruiz, 2017; Mastalerz et al., 
2018) is an extension of the organic petrographic classification of OM in 
coals (ICCP, 1998; 2001; Taylor et al., 1998; Pickel et al., 2017). Hackley 
and Cardott (2016) and Hackley et al. (2021) provided comprehensive 
reviews of the application of organic petrography in shale petroleum 
systems. Organic petrographic classification of DOM in black shales 
includes five maceral groups, with each group consisting of multiple 
macerals (Stasiuk et al., 2002; Mastalerz et al., 2018). Of the five groups, 
vitrinite, inertinite, liptinite, and zooclasts are primary OM (deposited at 
the same time with mineral matrix), whereas secondary OM is the result 
of transformation of oil-prone macerals during thermal maturation. 

Fig. 1. Photomicrographs of vitrinite in reflected white light and oil immersion. Core samples of the New Albany Shale from Daviess County, IN (Ro 0.55%).  

Fig. 2. Photomicrographs of inertinite in reflected white light and oil immersion. Core samples of the New Albany Shale from Daviess County, IN (Ro 0.55%).  
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2.1. Vitrinite 

Vitrinite in coals and shales is derived from terrigenous higher plants 
(Taylor et al., 1998). It has low oil generation potential and high po-
tential for methane generation. Vitrinite-rich OM is typically type III 
kerogen (Peters and Cassa, 1994). The reflectance of vitrinite (Ro) is 
commonly used to indicate the thermal maturity of host rocks such as 
coals and black shales (Mukhopadhyay, 1994; Liu et al., 2020b). Ro 

increases with thermal maturity because the degree of aromatization 
and condensation of the macromolecular structure of vitrinite increases 
with temperature, which increases the reflectivity of vitrinite (McCart-
ney and Teichmüller, 1972). Ro is unsuitable as a thermal maturity in-
dicator in pre-Devonian rocks (Buchardt and Lewan, 1990; Schleicher 
et al., 1998; Petersen et al., 2013; Reyes et al., 2018) because of the lack 
of organic debris from land-derived vascular plants prior to the Devo-
nian (Kenrick and Crane, 1997). 

Fig. 3. Photomicrographs of alginite derived from Tasmanites cysts in reflected white light and oil immersion (A, C) and in fluorescence mode (B, D). (A, B) Core 
sample of the New Albany Shale from Daviess County, IN (Ro 0.55%). (C, D) Core sample of the New Albany Shale from Pike County, IN (Ro 0.73%). Note that alginite 
in panel D with a higher maturity shows more yellowish fluorescence than that in panel B. A and B = perpendicular to bedding; C and D – parallel to bedding. 

Fig. 4. Photomicrographs of amorphous organic matter (AOM) in reflected white light and oil immersion (A) and in fluorescence mode (B). AOM appears struc-
tureless and occurs as organic streaks parallel to bedding. It shows no fluorescence. In comparison, alginite has distinct algal bodies and shows strong greenish yellow 
fluorescence. Core sample of the New Albany Shale from Daviess County, IN (Ro 0.55%). LPD = liptodetrinite. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Vitrinite typically occurs as small particles dispersed in the mineral 
matrix of shales (Fig. 1). Because of its small size, vitrinite generally does 
not retain the cellular structure of vascular plants. In general, vitrinite is 
very rare in marine black shales. Mastalerz et al. (2018) suggested that 
for practical purposes, the term “vitrinite” could be used for all vitrinite 
group macerals in shales because recognizing individual macerals in the 
vitrinite group is difficult due to their scarcity and small particle size. In 
this study, “vitrinite” will be used to represent all vitrinite group mac-
erals in black shales. In the case of shales rich in vitrinite, such as those 
in coal-bearing strata, maceral identification can be conducted based on 
the ICCP system 1994 (ICCP, 1998). 

2.2. Inertinite 

Inertinite in coals and shales is also derived from terrigenous OM 
(Taylor et al., 1998). It has almost no hydrocarbon generation potential 
and is typically classified as type IV kerogen. Originating as a result of 
fire or oxidation before deposition (Taylor et al., 1998), inertinite has 
very high reflectance even at early maturity. Similar to vitrinite, iner-
tinite in shales occurs as dispersed particles in mineral matrix (Fig. 2). 
Cellular structures can be preserved in macerals fusinite and semi-
fusinite. Because inertinite is also rare in black shales, “inertinite” will 
be used to represent all inertinite group macerals in black shales in this 
study. As with vitrinite, if inertinite content is high in shales, inertinite 
can be divided into different macerals based on the ICCP system 1994 
(ICCP, 2001). 

2.3. Liptinite 

Liptinite group macerals are generally oil prone. They have high 
hydrocarbon generation potential and are typically classified as type I/II 
kerogen. Common liptinite macerals in black shales are alginite, amor-
phous organic matter (AOM; also named bituminite or amorphinite), 
and liptodetrinite (Mastalerz et al., 2018). Alginite is derived from algae 
and occurs as elongated rods when viewed perpendicular to the bedding 
(Fig. 3A, B) and flattened disks on the bedding plane (Fig. 3C, D). 
Alginite shows strong greenish-yellow to yellow fluorescence under blue 
light irradiation at early maturity (Fig. 3B, D). AOM refers to struc-
tureless OM in black shales (Fig. 4A) and is derived from microbially 
degraded phytoplankton, zooplankton, and bacterial biomass (Kus et al., 
2017; Liu et al., 2020a; Teng et al., 2021). It is the most common OM 
type in organic-rich shales. AOM can be further classified into multiple 
types based on fluorescence (Senftle et al., 1987), reflectance (Teng 
et al., 2021), and texture (Thompson and Dembicki Jr, 1986; Kus et al., 
2017). Because oil-prone AOM derived from algal material plays an 
important role in determining the hydrocarbon generation potential of 
black shales, it is the focus of this study. Liptodetrinite occurs as small 
discrete liptinite particles in the shale matrix and shows similar fluo-
rescence to alginite (Fig. 4B). Liptinite macerals in black shales disap-
pear after peak oil window (Ro 0.8–1.0%) temperatures are reached 
because of transformation to oil and gas (Hackley and Cardott, 2016; 
Mastalerz et al., 2018; Liu et al., 2019a). 

Fig. 5. Photomicrographs of chitinozoans (A, B) and graptolites (C, D) in reflected white light and oil immersion. (A) Core sample of the New Albany Shale from 
Gibson County, IN (Ro 0.79%). (B) Core sample of the New Albany Shale from Daviess County, IN (Ro 0.55%). (C, D) Outcrop sample of the Silurian Longmaxi 
Formation from Wuxi County, Chongqing, China (Ro equivalent 1.93%). 
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2.4. Zooclasts 

Zooclasts are fragments of zooplankton. Common zooplanktons in 
black shales include graptolites, chitinozoans, scolecodonts, and foram 
liners (Potter et al., 1998; Stasiuk et al., 2002; Mastalerz et al., 2018). 
They have low hydrocarbon generation potential and typically are gas 
prone. The reflectance of zooclasts can be used to assess the thermal 
maturity of host rocks in vitrinite-devoid shales, especially in pre- 
Devonian shales (e.g., Tricker et al., 1992; Petersen et al., 2013; Luo 
et al., 2017, 2020). 

Zooclasts have partially preserved biological structures that impact 

information about their origin. For example, zooclasts derived from 
chitinozoans can be identified based on their flask-shape organic-walled 
structure (Fig. 5A, B). Graptolites typically show parallel periderm 
(Fig. 5C, D). Generally, zooclasts are easy to distinguish from vitrinite 
and solid bitumen (SB) because of their distinct morphological attri-
butes. However, when they occur as small particles without diagnostic 
morphological traits, it can be difficult to identify them with confidence; 
they could be mistaken for vitrinite (Petersen et al., 2013; Liu et al., 
2020b). 

Fig. 6. Depiction of the evolution of macerals in black 
shales during thermal maturation. In the oil window and 
condensate-wet gas window, it is assumed that 50% of oil- 
prone organic matter was converted to oil and gas and 
that 50% of oil and gas migrated out of shale formations. 
The natural expulsion efficiency of shales varies signifi-
cantly, depending on the petrophysical properties of 
shales and reservoir temperature and pressure conditions. 
V = vitrinite; I = inertinite; Z = zooclasts; AOM =
amorphous organic matter.   

Fig. 7. Photomicrographs of solid bitumen (SB) and pyrobitumen in reflected white light and oil immersion. (A) Pre-oil SB transformed from alginite (Ro 0.84%). The 
shape of precursor alginite can still be identified, suggesting that significant hydrocarbon generation has not started yet. Core sample of the New Albany Shale from 
Crittenden County, KY. (B) SB in the peak oil window (Ro 0.98%). It is in the middle of hydrocarbon generation. Core sample of the New Albany Shale from 
Crittenden County, KY. (C) SB in the condensate-wet gas window (Ro 1.18%). Outcrop sample of the New Albany Shale from Hicks Dome, IL. (D) Pyrobitumen in the 
dry gas window (Ro 2.41%). Outcrop sample of the Marcellus Shale from Canastota, NY. 
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2.5. Secondary organic matter 

Secondary OM refers to OM generated during thermal maturation of 
primary oil-prone OM and consists of SB, pyrobitumen, and oil (Potter 
et al., 1998; Stasiuk et al., 2002; Mastalerz et al., 2018). SB includes pre- 
oil and post-oil SB (Mastalerz et al., 2018). SB becomes the dominant 
OM after peak oil window temperatures are reached, because oil-prone 
macerals are transformed to hydrocarbons and SB (Fig. 6; Cardott et al., 
2015; Hackley and Cardott, 2016; Mastalerz et al., 2018; Liu et al., 
2019a; Sanei, 2020). Because the transformation of oil-prone macerals 
occurs across a continuum, pre-oil SB, post-oil SB, and SB in the middle 
of oil generation can co-exist in the same sample, especially at early 
maturity and in the peak oil window. SB transforms to pyrobitumen 
through secondary cracking in the dry gas window (Fig. 6). Mastalerz 
et al. (2018) proposed that a SB reflectance of 1.5% should be used as the 
boundary value for SB and pyrobitumen and 1.3% in the case of sulfur- 
rich kerogen. The chemical and physical properties and origin of SB and 
pyrobitumen were comprehensively reviewed in Mastalerz et al. (2018) 
and Sanei (2020). Because SB reflectance and Ro are positively corre-
lated, SB reflectance can be used to estimate the thermal maturity of 
shales when vitrinite is absent (Jacob, 1989; Landis and Castaño, 1995; 
Schoenherr et al., 2007; Hackley and Cardott, 2016; Mastalerz et al., 

2018; Liu et al., 2019a; Schmidt et al., 2019). However, SB could be 
mistaken for vitrinite and result in underestimating the thermal matu-
rity of black shales at low maturity (Ro ≤ 1.0%; Hackley and Lewan, 
2018). 

Solid bitumen and pyrobitumen were once high-viscosity liquids and 
thus fill void spaces between and within mineral grains. Because of that, 
they typically show embayment texture when in contact mineral grains 
(Fig. 7). SB and pyrobitumen can be distinguished from vitrinite and 
zooclasts based on their void-filling or embayment textures, and from 
AOM on the basis of their homogeneous surface in addition to other 
identifying textures (Hackley et al., 2018). 

It is important to note that SB and bitumen are defined differently. SB 
is organic petrographically defined and refers to solid secondary OM 
identified under an optical microscope (Mastalerz et al., 2018), whereas 
bitumen is organic geochemically defined and refers to OM that can be 
extracted with organic solvents such as chloroform (Durand, 1980). SB 
in the oil window may be partially soluble in organic solvents (Hackley 
and Cardott, 2016), and its solubility decreases with increasing matu-
rity. Pyrobitumen is largely insoluble in organic solvents (Mastalerz 
et al., 2018). The term kerogen, in contrast to bitumen, refers to solid 
OM that cannot be extracted with organic solvents (Durand, 1980). 
Thus, kerogen corresponds to the insoluble fraction of SB in the oil 

Fig. 8. Photomicrographs of vitrinite and inertinite in reflected white light and oil immersion (A, C) and under SEM (B, D, secondary electron mode). Vitrinite and 
inertinite in panels B and D are the same particles in panels A and C, respectively, but under different magnification. Inertinite in panel D has cellular pores, some of 
which are filled with diagenetic quartz. Core sample of the New Albany Shale from Daviess County, IN (Ro 0.55%). V = vitrinite; I = inertinite; Qtz = quartz. 
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window and condensate-wet gas window, and to pyrobitumen in the dry 
gas window. 

3. SEM petrography of dispersed organic matter 

3.1. Vitrinite and inertinite 

Because both vitrinite and inertinite are particulate OM, they occur 
as discrete OM particles in the shale matrix (Fig. 8; Table 1) and can be 
difficult to distinguish from each other under the SEM. Some inertinite 
has angular outlines and/or cellular structures derived from cell lumens 
of vascular plants, which can be used as identifying features. The cellular 
structures are generally filled with early diagenetic minerals such as 
quartz and pyrite (Liu et al., 2017). 

3.2. Liptinite 

Alginite can be identified under the SEM on the basis of the distinct 
shape of algal bodies (Fig. 9; Table 1). AOM has a heterogeneous surface 
and shows admixed nature with clay-sized mineral grains and other 
particles (Fig. 10). It can be difficult to distinguish AOM from SB at early 
maturity (Hackley et al., 2018), but SB typically has a homogeneous 
surface and shows void-filling and embayment textures (Fig. 7). 

3.3. Zooclasts 

Similar to alginite, zooclasts can be identified under the SEM based 
on the distinct biological structure of the zooplankton precursor (Fig. 11; 
Table 1). However, if no diagnostic morphology accompanies zooclasts, 
they can be difficult to distinguish from vitrinite and inertinite under the 
SEM, as well as with an optical microscope (Petersen et al., 2013; Liu 
et al., 2020b). 

3.4. Secondary organic matter 

Solid bitumen and pyrobitumen can be identified under the SEM 
based on their void-filling or embayment textures (Fig. 12; Table 1). OM 
that fills fossil cavities such as foraminifera tests is by definition sec-
ondary in nature (Loucks and Reed, 2014; Milliken et al., 2014; Schieber 
et al., 2016; Reed et al., 2020). The morphology of SB and pyrobitumen 
is constrained by the shape of the pores they infill. Although pore sys-
tems and their SB infills are three dimensional and continuous, when 
sectioned the SB can/will appear as isolated particles and become 
difficult to distinguish from other particulate OM such as vitrinite, 
inertinite, and small zooclast particles under the SEM. 

Under an optical microscope, the presence of oil may be indicated by 
iridescent films on mineral grains when the sample is examined without 
the help of immersion oil. When immersion oil is used, the oil from the 
sample will mix with the immersion oil and will no longer be visible in 
reflected white light, but can be detected under fluorescence light 

Table 1 
Simplified petrographic classification of dispersed organic matter (DOM) in 
black shales (modified from Mastalerz et al. (2018) and references therein), 
comments on macerals, and petrographic characteristics of macerals under the 
scanning electron microscope (SEM).  

Maceral 
Group 

Maceral Comments SEM Petrography 

Vitrinite  

“vitrinite” is used to 
represent all vitrinite 
group macerals 
because of their 
scarcity and small 
size in shales. 

Dispersed OM 
particles in the 
mineral matrix. 

Inertinite  

“inertinite” is used to 
represent all 
inertinite group 
macerals because of 
their scarcity and 
small size in shales. 

Dispersed OM 
particles in the 
mineral matrix. Some 
inertinite has cellular 
structure, which can 
be used as an 
identifying feature. 
Inertinite can be 
difficult to 
distinguish from 
vitrinite if cellular 
structure is not 
present. 

Liptinite 

Alginite 

Well-preserved algal 
cysts. Botryococcus, 
Tasmanites, and 
Leiosphaeridia are 
common algae 
preserved in shales. 

Alginite can be easily 
identified based on 
their distinct shapes 
of algal bodies. Note 
that alginite occurs as 
elongated rods 
perpendicular to the 
bedding and 
flattened disks 
parallel to the 
bedding. In lacustrine 
shales, alginite and 
sporinite can look 
similar. Alginite 
generally does not 
exist above Ro 1.0%. 

Amorphous 
organic matter 
(oil-prone AOM 
derived from algal 
material) 

Also named 
amorphinite/ 
bituminite 

AOM occurs as 
structureless OM 
streaks and has clay- 
sized mineral 
inclusions. AOM 
generally does not 
exist above Ro 1.0%. 

Zooclasts  

“zooclasts” is used to 
represent all 
fragments derived 
from zooplankton. 
Graptolite and 
chitinozoa are the 
most common 
zooplankton in 
shales. 

Dispersed OM 
particles in the 
mineral matrix. 
Zooclasts can be 
identified based on 
their morphology if 
some diagnostic 
characteristics are 
preserved. 
Otherwise, they are 
difficult to 
distinguish from 
vitrinite and 
inertinite. 

Secondary 
organic 
matter 

Solid bitumen 

Dominant OM after 
peak oil window (Ro 

0.8–1.0%) in shales 
with type I/II 
kerogen. 

SB can be identified 
based on void-filling 
or embayment 
textures against 
minerals, especially 
euhedral crystals. SB 
can be difficult to 
distinguish from 
AOM at early 
maturity. 

Pyrobitumen 

Dominant OM in the 
dry gas window in 
shales with type I/II 
kerogen. SB 

Pyrobitumen has 
similar occurrence to 
SB.  

Table 1 (continued ) 

Maceral 
Group 

Maceral Comments SEM Petrography 

reflectance 1.50% 
(1.30 for S-rich 
kerogen) is used as 
the thermal maturity 
boundary between 
SB and pyrobitumen. 

Oil 
Only exists in the oil 
window 

Oil droplets of 
various shapes. The 
morphology of oil 
droplets changes 
during electron 
scanning. 

OM = organic matter; AOM = amorphous organic matter; SB = solid bitumen. 
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(Ardakani et al., 2017). Under the SEM oil may be visible as variably 
shaped droplets (O’Brien et al., 1996; Canter et al., 2016) that change 
shape and size as they get heated and vaporized by the electron beam 
(Fig. 13). 

3.5. Strategies for distinguishing dispersed organic matter under SEM 

It is a challenging task to confidently identify OM types with the SEM 
alone because all OM appears black under the SEM in backscattered 
electron mode due to their low density (Camp, 2016; Kwiecińska et al., 
2019; Valentine and Hackley, 2019). Organic petrographic dis-
tinguishing criteria under an optical microscope such as colour, reflec-
tance, and fluorescence cannot be used in SEM petrography. Camp 
(2016) proposed to classify DOM in shales into three main types under 
the SEM: 1) structured, 2) amorphous, and 3) void-filling. However, 
although this morphology-based classification is convenient to describe 
DOM under the SEM, the information on the origin of DOM is missing. 
Loucks and Reed (2014) distinguished depositional OM (kerogen) and 
migrated OM (SB and pyrobitumen) in mudrocks under the SEM. Like-
wise, Bernard et al. (2012) identified kerogen, bitumen, and pyrobitu-
men in the Lower Toarcian Posidonia Shale using scanning transmission 
X-ray microscopy. Milliken et al. (2014) classified OM in OM-rich 
mudrocks into detrital OM, secondary OM, and OM of uncertain origin 
under the SEM. However, the term “kerogen”, “depositional OM”, or 
“detrital OM” is too broad and ignores the heterogeneity of OM in black 
shales. The DOM classification used by organic petrographers still re-
mains the best method in describing DOM in black shales under the SEM 
(Table 1). Cardott and Curtis (2018) differentiated maceral groups and 
some macerals in coals by SEM based on gray scale, occurrence, shape, 
and structure in backscattered electron mode at low magnification (≤
2500×). They did suggest that maceral identification in shales is more 
difficult because of the lack of subtle contrast of adjacent macerals. 

Correlative microscopy is a powerful approach to distinguish DOM 
types under the SEM, relying on organic petrographic identification of 
DOM before proceeding to high-resolution imaging under the SEM 
(Hackley et al., 2017; Liu et al., 2017, 2020a; Valentine and Hackley, 
2019; Hackley et al., 2021; Wei et al., 2021). When conducting correl-
ative microscopy, macerals are first identified under an optical micro-
scope with reflected white light and oil immersion. The surfaces of 
petrographic pellets are subsequently cleaned to remove immersion oil, 
and then the pellets are cut for SEM sample preparation. The same 
surfaces as observed under reflected-light microscopy are Ar ion-milled 

for SEM observations, and the same fields of view need to be located 
under the SEM (Fig. 14). Microfractures, pyrite framboids, or fossils can 
be used as markers for easier identification. Alternatively, OM can be 
first examined on ion-milled surfaces under the SEM, and then samples 
can be moved to the reflected-light microscope for maceral identifica-
tion. In this case, additional sample preparation is unnecessary. How-
ever, ion-milled samples may have increased surface flatness and 
resulting higher reflectance compared to mechanically polished samples 
(Mastalerz and Schieber, 2017; Valentine et al., 2019), thus they may be 
not suitable for reflectance measurements and maturity assessment. 
Hackley et al. (2017) differentiated fluorescent AOM and nonfluorescent 
SB using integrated correlative microscopy that combines fluorescence 
microscopy and SEM. Liu et al. (2017) identified AOM, alginite, vitri-
nite, inertinite, and solid bitumen in the New Albany Shale using 
correlative microscopy and studied maceral control on organic pores 
development. Valentine and Hackley (2019) identified various macerals 
in multiple North American shale petroleum systems via correlative 
light and electron microscopy and suggested that OM type can be easily 
misidentified when viewed by SEM alone. 

Oil-prone macerals such as AOM (those derived from algal material) 
and alginite are generally not present after the peak oil window (Ro 
0.8–1.0%) because of their transformation to hydrocarbons and SB 
(Fig. 15; Hackley and Cardott, 2016; Mastalerz et al., 2018; Liu et al., 
2019a; Sanei, 2020). Therefore, OM in high-maturity shales is domi-
nated by SB or pyrobitumen if OM in those shales was dominated by oil- 
prone macerals during the immature stage. 

Because terrigenous OM (e.g., vitrinite and inertinite) and zooclasts 
do not transform to hydrocarbons and solid bitumen during thermal 
maturation due to their low hydrocarbon generation potential, they can 
exist at any stage of thermal maturation. If terrigenous OM dominates 
OM composition in immature shales such as some lacustrine shales with 
high terrigenous OM input, vitrinite and inertinite will be the dominant 
OM throughout the maturation process even after shales enter the dry 
gas window. An extreme case is coal where vitrinite and inertinite are 
still present at higher coal rank. Because both terrigenous OM and 
zooclasts occur as dispersed OM particles, it can be difficult to distin-
guish them from each other under the SEM. Some features of specific 
macerals can aid the identification such as the cellular structure of 
inertinite (Figs. 2, 8C, D) and the flask-shape structure of chitinozoans 
(Fig. 5A, B). 

Differentiating OM under the SEM is an achievable task if there is a 
good understanding of the studied shales, especially knowledge about 

Fig. 9. Photomicrographs of alginite derived from Tasmanites cysts in reflected white light and oil immersion (A) and under SEM (B, backscattered electron mode). 
Core sample of the New Albany Shale from Daviess County, IN (Ro 0.55%). 
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the OM composition of immature or early mature samples (if low- 
maturity samples are available) and the thermal maturity of the spe-
cific samples being examined. A dataset of OM composition for a specific 
shale formation across a maturation gradient greatly assists in the 
identification and differentiation of OM under the SEM. For example, 
Mastalerz et al. (2016b) published an atlas of photomicrographs of OM 
in the Upper Devonian New Albany Shale of the Illinois Basin at different 
stages of thermal maturation (Ro < 0.5 to 1.42%). OM in the immature 
and early mature New Albany Shale is dominated by oil-prone macerals 
such as AOM and alginite derived from Tasmanites cysts (Liu et al., 2017, 
2019a, 2019b; Mastalerz et al., 2012, 2013, 2016b). Terrigenous OM 
including vitrinite and inertinite is generally less than 5% (Liu et al., 
2019b, 2020a). It also contains minor amounts of zooclasts derived from 
chitinozoans (Liu et al., 2020b). If a New Albany Shale sample with a 
thermal maturity of Ro 1.42% is examined under the SEM, more than 
95% of the OM would be SB. Based on void-filling and embayment 
textures, the OM in Fig. 16 can confidently be identified as SB. 

4. Development and preservation of organic matter-hosted 
pores 

Organic matter-hosted pores in black shales have been extensively 
studied since Loucks et al. (2009) reported organic pores in the Missis-
sippian Barnett Shale of the Fort Worth Basin. OM-hosted pores 
contribute significantly to the gas content and methane adsorption ca-
pacity of black shales (Ross and Bustin, 2009; Hao et al., 2013; Qiu et al., 
2020a) due to their microporous structure and high specific surface area 
(SSA) (Bousige et al., 2016; Liu et al., 2021). 

Organic matter-hosted pores in black shales include primary and 
secondary organic pores (Löhr et al., 2015; Liu et al., 2017; Cardott and 
Curtis, 2018; Katz and Arango, 2018; Dong et al., 2019; Wu et al., 2020). 
Primary organic pores are hosted by primary macerals such as inertinite 
and are derived from the biological structure of original OM (Figs. 2, 8C, 
D). In comparison, secondary organic pores are hosted by solid bitumen 
or pyrobitumen and are related to hydrocarbon generation and expul-
sion from oil-prone OM. The development and preservation of secondary 
OM-hosted pores are controlled by thermal maturity, OM type and 

Fig. 10. Photomicrographs of amorphous organic matter (AOM) in reflected white light and oil immersion (A) and under SEM (B, backscattered electron mode; C, D, 
secondary electron mode). Panel A and B show the same field of view. Panels C and D are the close-up views of the red dashed areas in panels B and C, respectively. 
Note that AOM is mixed with clay minerals and clay-sized particles, which gives AOM a heterogeneous appearance. Clay-sized particles in panel D are most likely 
diagenetic quartz. Core sample of the New Albany Shale from Daviess County, IN (Ro 0.55%). AOM = amorphous organic matter; V = vitrinite; I = inertinite; Py =
pyrite; Qtz = quartz; CSP = clay-sized particle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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content (e.g., Liu et al., 2017; İnan et al., 2018; Katz and Arango, 2018; 
Mastalerz et al., 2018). The evolution of OM-hosted pores was 
comprehensively reviewed in Katz and Arango (2018). 

4.1. Control of organic matter type 

Oil-prone macerals transform to hydrocarbons and SB or pyrobitu-
men during thermal maturation (Fig. 15; Hackley and Cardott, 2016; 
Mastalerz et al., 2018; Liu et al., 2019a; Sanei, 2020). Secondary OM- 
hosted pores develop in SB or pyrobitumen after oil and gas expulsion 
(Liu et al., 2017; İnan et al., 2018; Katz and Arango, 2018; Mastalerz 
et al., 2018; Camp, 2019). Because SB and pyrobitumen were once 
liquid, they can form an interconnected network of porous OM (Liu 
et al., 2019a), forming an organic pore network and connecting pores 
associated with minerals. In contrast, terrigenous OM including vitrinite 
and inertinite does not show significant changes in morphology during 
thermal maturation due to its low hydrocarbon generation potential (Liu 
et al., 2019a). It is noteworthy though that vitrinite in coals does develop 
secondary pores due to generation and expulsion of gaseous hydrocar-
bons (Zhang et al., 2003). The absence of secondary pores in dispersed 
vitrinite in shales could be because of its low potential for hydrocarbon 

generation (Liu et al., 2017). Although inertinite does not develop sec-
ondary pores, it can host primary cellular pores (Figs. 2, 8C, D). The size 
of cellular pores is generally in the range of hundreds of nm to tens of 
μm. Cellular pores are typically filled with early diagenetic minerals 
such as quartz and pyrite and make very limited contribution to the pore 
system of shales (Liu et al., 2017). Zooclasts such as graptolite and 
chitinozoan have similar or lower hydrocarbon generation potential 
compared to vitrinite (Bertrand and Héroux, 1987; Bustin et al., 1989; 
Goodarzi and Norford, 1989; Bertrand, 1990; Petersen et al., 2013; 
Reyes et al., 2018; Zheng et al., 2021) and have been reported to not 
develop secondary pores during thermal maturation when examined 
under the SEM (Ardakani et al., 2018; Yang et al., 2020). However, other 
studies have found organic pores within graptolites (e.g., Luo et al., 
2016; Ma et al., 2016; Qiu et al., 2018; Gong et al., 2020; Tenger et al., 
2021). It is still not clear if these pores are secondary pores generated 
during hydrocarbon generation and expulsion or primary pores derived 
from the biological structure of graptolites, or if these pores just occur in 
solid bitumen that filled and/or coated graptolites. 

Fig. 11. Photomicrographs of zooclasts in reflected white light and oil immersion (A, C) and under SEM (B, D, backscattered electron mode). (A, B) Chitinozoan. 
Core sample of the New Albany Shale from Daviess County, IN (Ro 0.55%). (C, D) Graptolite. Outcrop sample of the Silurian Longmaxi Formation from Wuxi County, 
Chongqing, China (Ro equivalent 1.93%). 
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4.2. Control of thermal maturity 

The development of secondary OM-hosted pores has been explained 
to be the result of hydrocarbon generation and expulsion (e.g., Loucks 
et al., 2009, 2012; Schieber, 2010; Bernard et al., 2012; Curtis et al., 
2012; Liu et al., 2017; İnan et al., 2018; Katz and Arango, 2018; Mas-
talerz et al., 2018). Secondary OM-hosted pores do not exist in immature 
shales and start to form at the onset of hydrocarbon generation. The 
lowest maturity at which OM-hosted pores might form has been sug-
gested to be Ro 0.6% (Loucks et al., 2012). OM-hosted pores are more 
abundant in the gas window than in the oil window because 1) gas 
generation and expulsion in the gas window are more favorable for the 
formation of OM-hosted pores, and 2) bitumen and oil migration in the 
oil window can fill newly formed OM-hosted pores and make them less 
visible under the SEM. 

4.3. Control of organic matter content 

As with mineral matrix-associated pores, OM-hosted pores experi-
ence formation, preservation, and destruction during burial. Funda-
mentally, the formation of OM-hosted pores is controlled by the 

chemical and physical properties of the OM and reservoir temperature 
and pressure conditions. OM content, generally characterized by total 
organic carbon (TOC) content, does not affect the formation process of 
organic pores, but it can influence their preservation (Fishman et al., 
2012; Milliken et al., 2013; İnan et al., 2018; Katz and Arango, 2018). 
For example, Milliken et al. (2013) reported that Marcellus Shale sam-
ples with higher TOC contents show lower SEM-visible organic porosity 
because of greater OM connectivity and elevated compaction. However, 
compaction will mostly affect the SEM-visible macropores (> 50 nm) 
and large mesopores (2–50 nm; Rouquerol et al., 1994) and will have 
very limited influence on micropores (<2 nm; Rouquerol et al., 1994) 
and small mesopores (Ma et al., 2020), because once OM is compacted 
and squeezed into interparticle pores between mineral grains, it will be 
protected by rigid mineral grains from further compression (Knapp 
et al., 2020). In addition, bitumen transformed from oil-prone OM mi-
grates into mineral matrix-associated pores and thus becomes less prone 
to further compaction. 

Mineralogical composition also plays an important role in preserving 
OM-hosted pores. Hard quartz-rich (especially biogenic quartz) and 
carbonate-rich shales can better preserve OM-hosted pores than ductile 
clay-rich shales because rigid quartz and carbonate can protect organic 

Fig. 12. Photomicrographs of solid bitumen (SB) and pyrobitumen in reflected white light and oil immersion (A, C) and under SEM (B, secondary electron mode; D, 
backscattered electron mode). Note the embayment texture of SB and pyrobitumen against minerals. (A, B) Core sample of the New Albany Shale from Webster 
County, KY (Ro 0.80%). (C, D) Outcrop sample of the Marcellus Shale from Canastota, NY (Ro 2.41%). 
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pores from mechanical compaction (Fishman et al., 2012; İnan et al., 
2018; Dong and Harris, 2020; Knapp et al., 2020; Qiu et al., 2020b, 
2022). For example, Fishman et al. (2012) suggested that the quartz-rich 
Barnett Shale and carbonate-rich Eagle Ford Shale can better preserve 
delicate organic pores than the clay-rich Kimmeridge Shale because the 
former two have a rigid interconnected framework composed of diage-
netic quartz and carbonate, respectively. 

5. Evolution of organic matter-hosted pores during thermal 
maturation 

The size of secondary OM-hosted pores is generally <1000 nm 
(Figs. 17, 18) and can be as small as <1 nm (Loucks et al., 2009, 2012; 
Wang et al., 2009; Schieber, 2010; Strąpoć et al., 2010; Mastalerz et al., 
2013; Bousige et al., 2016). OM-hosted pores are generally observed on 

Fig. 13. SEM images (secondary electron mode) of oil droplets (white arrows). Image B was taken in the same field of view as image A after 1 min of scanning. Black 
holes marked by red arrows were artificially made by heating with the electron beam. After 1 min of scanning, an oil droplet (yellow arrow) moved along the yellow 
dashed arrow. Core sample of the New Albany Shale from Daviess County, IN (Ro 0.55%). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 14. Work flow of correlative light and electron microscopy for organic matter type identification under the SEM.  
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Fig. 15. Diagram illustrating the evolutionary pathway of oil-prone macerals during thermal maturation. Migrated oil refers to oil that has migrated into con-
ventional reservoirs. Compiled and modified after Jarvie et al. (2007); Bernard and Horsfield (2014); Camp (2016); Mastalerz et al. (2018). 

Fig. 16. SEM (secondary electron mode) images of organic matter (OM) in the New Albany Shale (Ro 1.42%). OM is identified as solid bitumen (SB) based on its 
void-filling texture and embayment against euhedral crystals as well as its level of thermal maturity. Small SB is also indicated by yellow arrows. Outcrop sample of 
the New Albany Shale from Hicks Dome, IL. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Ar ion-milled surfaces under the SEM. However, due to resolution lim-
itations, SEM imaging is not able to detect pores smaller than 5 nm 
(Mastalerz et al., 2018). Low-pressure N2 and CO2 adsorption analyses 
show that OM has abundant pores smaller than 5 nm, even at early 
maturity. These small pores are void spaces within the macromolecular 
structure of OM (Bousige et al., 2016) and contribute significantly to the 
SSA of shales. 

The Brunauer-Emmett-Teller (BET) SSA of OM isolated from black 
shales increases with increasing thermal maturity and reaches a 
maximum (~ 300 m2/g) at Ro 2.5–3.0% (Fig. 19A). When Ro exceeds 
3.0%, the BET SSA of OM starts to decrease with further increase of 
thermal maturity, which could be attributed to elevated ordered stack-
ing of aromatic units and the resulting loss of spaces within the 
macromolecular structure of OM. Craddock et al. (2020) also reported 
an increase of the BET SSA of type II kerogen until about Ro 3.0% and a 
decreasing trend beyond Ro 3.0%, although in their study, as well as in 
this study, data from samples with maturities above Ro 3.0% are not 
statistically significant to support the postulate of a decreasing trend 
beyond Ro 3.0%, mainly because a lack of economic interest in 
extremely high-maturity shales translates into a paucity of available 
data. Graphite, the ultimate fate of sedimentary OM (Weis et al., 1981), 

has a BET SSA of <20 m2/g (Trammell and Pappano, 2011; Gonciaruk 
et al., 2021), which supports the parabolic evolutionary trend of BET 
SSA of OM with increasing thermal maturity. It has been reported that 
the BET equation may underestimate the SSA of microporous materials 
(Mahajan, 1991). Therefore, the low BET SSA of OM at high maturity 
could be partially caused by the limited application of the BET equation 
(Mahajan, 1991; Rouquerol et al., 2007). However, graphite has very 
low micropore volume and SSA (Gonciaruk et al., 2021), which suggests 
that the low BET SSA of OM at high maturity is real, even if it is 
underestimated. 

Similar to the BET SSA, the Barrett-Joyner-Halenda (BJH) mesopore 
volume of OM also increases with increasing thermal maturity, reaches a 
maximum (~ 0.3 cm3/g) at Ro 2.5–3.0%, and decreases with further 
increase of Ro (Fig. 19B). Again, there is a limited number of samples 
above Ro 3.0% in this data set (Fig. 19B). Gonciaruk et al. (2021) re-
ported the BJH mesopore volume of graphite to be 0.042 cm3/g, which 
supports the decreasing trend at higher maturities. More samples with 
maturities above Ro 3.0% are needed to test this evolutionary trend. 

Micropore characteristics characterized by Dubinin− Radushkevich 
(D − R) micropore surface area and Dubinin− Astakhov (D − A) 
micropore volume show an increase with Ro and reach ~250 m2/g and 

Fig. 17. SEM (secondary electron mode) images of organic matter (OM)-hosted pores (red arrows) in the Marcellus Shale (Ro 2.41%). OM in the images is pyro-
bitumen based on thermal maturity and void-filling and embayment textures. Outcrop sample of the Marcellus Shale from Canastota, New York. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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~ 0.08 cm3/g at Ro 3.0–3.5%, respectively (Fig. 19C, D). No data are 
available beyond Ro 4.5%. However, the D − R micropore surface area 
and D − A micropore volume of graphite are 8.2 m2/g and 0.003 cm3/g, 
respectively (Gonciaruk et al., 2021), suggesting that OM loses most 
micropores at high maturity and supporting the presumed parabolic 
evolutionary trend of micropore characteristics with increasing thermal 
maturity. The maturity at which micropore properties reach maximum 
values (Ro 3.0–3.5%) is higher than that for mesopores (Ro 2.5–3.0%). 
This could potentially be explained by assuming that the polymerization 
process of OM causes an initial loss of mesopores and macropores and a 
subsequent loss of micropores. 

One of the disadvantages of low-pressure N2 and CO2 adsorption on 
isolated OM from black shales is that pyrite and other heavy minerals 
cannot be efficiently removed during OM isolation (Vandenbroucke and 
Largeau, 2007). Treatment with acidic chromous chloride (CrCl2) under 
a nitrogen (N2) flow has been proven to be an efficient method of pyrite 
removal (Acholla and Orr, 1993). Another method for pyrite removal is 
heavy liquid separation (French et al., 2020). In the case of incomplete 
removal of pyrite, the measured values will be lower than the true values 
of OM (Liu et al., 2021) because pyrite has negligible contribution to the 
adsorption in low-pressure N2 and CO2 adsorption isotherms (Rexer 

et al., 2014). A correction of pure OM content in isolated OM based TOC 
content is necessary, and then the pore structure characteristics of pure 
OM can be calculated based on pure OM content (not TOC content). 
Another disadvantage is that the dissociation of OM from the mineral 
matrix may expose external surfaces of OM, especially at immature and 
early mature stages. With the development of nanoscale pore spaces in 
the macromolecular structure of OM with increasing thermal maturity, 
the internal surface area of OM becomes significantly higher (one to 
several orders of magnitude; Craddock et al., 2020) than its external 
surface area, and the exposed external surface area could be negligible. 

Coal is a good example of sedimentary rocks rich in terrigenous OM, 
and its pore structure can be compared with that of oil-prone OM 
(Fig. 19). The D − A micropore volume of coals increases with Ro, rea-
ches a maximum (~ 0.06 cm3/g) at Ro ~ 4.0%, and decreases afterwards 
(Liu et al., 2018b), exhibiting a similar evolutionary trend compared to 
oil-prone OM in black shales (Fig. 19D). The D − R micropore surface 
area of coals should follow the same trend as the D − A micropore 
volume. However, because of maceral variations in coals, the D − A 
micropore volume of coals can range from 0.01 to 0.07 cm3/g at early 
maturity (Mastalerz et al., 2009; Zhao et al., 2016; Teng et al., 2017), 
and could potentially obscure evolutionary trends with increasing 

Fig. 18. SEM (secondary electron mode) images of organic matter (OM)-hosted pores (red arrows) in the Wufeng Formation, Sichuan Basin (Ro 3.07%). OM in the 
images is pyrobitumen based on thermal maturity and void-filling and embayment textures. Outcrop sample of the Ordovician Wufeng Formation from Changning 
County, Sichuan, China. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 19. Evolution of pore structure characteristics of isolated organic matter (OM) from black shales with increasing thermal maturity characterized by vitrinite 
reflectance (Ro). (A) BET specific surface area; (B) BJH mesopore volume; (C) D − R micropore surface area; (D) D − A micropore volume. 
For data from the literature, data of samples with similar depths from the same drill core were averaged and reported as the mean value. The scattering could result 
from inefficient removal of pyrite and other heavy minerals and heterogeneous nature of OM (sources and texture) in shales.  One data point from Zhang et al. (2020) 
and two data points from Li et al. (2020) were omitted because are significantly off the trend, which could be caused by the above mentioned reasons. 
Ro values of the shale samples in Cao et al. (2015) and Qi et al. (2019) were calculated based on the empirical equation between Ro and Rock-Eval Tmax from Jarvie 
et al. (2001): Ro = 0.018 × Tmax − 7.16. 
BET = Brunauer-Emmett-Teller; BJH = Barrett-Joyner-Halenda; D − R = Dubinin− Radushkevich; D − A = Dubinin− Astakhov; SSA = specific surface area (Cheshire 
et al., 2017;Han et al., 2019;Ji et al., 2017;Li et al., 2019;Liu et al., 2018a;Suleimenova et al., 2014). 
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maturity. 
Black shales deposited in transitional environments such as tidal and 

deltaic environments have high terrigenous OM input. The pore struc-
ture characteristics of bulk OM in these transitional shales should have 
intermediate values between oil-prone OM (Fig. 19) in shales and 
terrigenous OM in coals at a specific maturity. Therefore, the contri-
bution of OM to the pore structure of shales also depends on the original 
OM type in addition to TOC content and thermal maturity. 

Although OM has high SSA (up to 300 m2/g), its content in shales is 
much lower than mineral content. Clay minerals especially smectite and 
illite have high SSA (up to 100 m2/g; Liu et al., 2021 and references 
therein). The SSA of shales is controlled by OM type, content, maturity 
and clay minerals content and type (Liu et al., 2021). For shales that 
have significantly higher clay mineral content than TOC content, their 
SSA and methane adsorption capacity are mainly contributed by clay 
minerals, although OM has higher SSA and adsorption capacity per unit 
of mass than clays. 

6. Summary and conclusions 

In this paper, we reviewed the petrographic characteristics of major 
DOM in black shales under the SEM, the factors controlling the forma-
tion and preservation of OM-hosted pores, and the evolution of micro-
pore and mesopore characteristics of OM in black shales during thermal 
maturation. 

Organic petrographic classification of DOM is the most practical 
method in describing DOM in black shales because of the information on 
the origin of DOM. Identifying the type of DOM with confidence is a 
challenging task, even with an optical microscope. Correlative light and 
electron microscopy is so far the best approach in identifying DOM 
under the SEM. Accurately identifying DOM in shales with the SEM 
alone requires a comprehensive understanding of the studied shale 
formation, especially OM composition and thermal maturity. 

Organic matter-hosted pores in black shales can be primary and 
secondary in origin. Primary organic pores are derived from the bio-
logical structure of original OM. Secondary organic pores develop dur-
ing thermal maturation of oil-prone OM and are hosted by SB or 
pyrobitumen. Secondary organic pores are typically <1000 nm and 
make more contribution to the SSA and methane adsorption capacity of 
shales than primary organic pores. The development of secondary 
organic pores is controlled by thermal maturity and OM type and their 
preservation is controlled by thermal maturity, OM content, and 
mineralogical composition. 

The micropore and mesopore characteristics of OM in black shales 
appear to follow parabolic patterns with increasing maturity charac-
terized by Ro, with an initial increase until Ro 2.5–3.5% because of the 
development of OM-hosted pores and a subsequent decrease due to the 
rearrangement of the macromolecular structure of OM. We note, how-
ever, that more samples of high maturity are needed to further define 
this trend. 
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