Improving Reliability, Safety and
Mission Assurance using Early
Visibility Metrics

Lucas Layman, Forrest Shull, Victor Basili

Fraunhofer Center for Experimental
Software Engineering

~Z Fraunhofer
USA

Center for Experimental Software Engineering

Challenge

Where in my system is the greatest risk?
_ S = e
» Where is the greatest security risk in my supply chain? | I | | | s

Orion Ares| Ground Mission

« Which subsystems are most prone to safety concerns? | G Cepit] e
* What is the reliability of my communication system? L e T e T
odte || 7| [sue || Sum || e | | Courl || e | 7| ™

3

----------------- N ’ i I ’ ’ UbSysi e:r;:
@ GLE\! Avionics Structures |j S(LZV};I%)

How do | quantify system and software risk when the system and
software do not yet exist?

— We rely on our processes and experts to answer these questions during

development

How can we gain early insight into reliability, safety and mission
assurance risks in a more concrete manner?

!

~Z Fraunhofer

USA

Center for Experimental Software Engineering

Example: obtaining early insight into
software safety on Constellation

The Constellation program is NASA's next generation
humap spaceflight program.

o

+
T+ o+

s
>
e

l 1 S

+ 4+

CONSTELLATION

Orion crew vehicle Ares rockets

NASA objective: to quantify software safety risk in the Constellation program
from a management perspective

— Which systems and subsystems have the greatest software safety risk?

— How can we measure software safety risk?

— Are our processes appropriate for and being performed appropriately to achieve
Software safety?

— We examined three spaceflight hardware systems during Phase A development

~ Fraunhofer
USA

\

Center for Experimental Software Engineering

Managing risk during development

Reliability, Safety and Mission Assurance (RSMA) processes are the most
common defense against system risks:

— Technical risk — flaws in the design and implementation that lead to system failure, loss
of mission, or loss of life.

— Process risk — risks that emerge when:

« The RSMA processes are not performed appropriately (we are NOT talking about being
process police!)

+ The RSMA processes are not well-defined
» The RSMA processes are not appropriate for the situation

Technical risk Process risk

— The Login system is highly susceptible to — Staff are not recording necessary
external attack information in attack graphs

— The system uptime is predicted to be less — The reliability models do not apply to
than five 9's distributed systems

— The flight computer has a single point of — The process for performing FMECA
failure in the avionics control bus analysis on software is not clear

_——

~ Fraunhofer
USA

Center for Experimental Software Engineering

Risk Measurement Approach

Approach: Measure process artifacts with respect to the risks
they are meant to mitigate.

— Process artifacts contain indicators of potential technical risk.

— Processes and process artifacts are available throughout

= development.
— Quantifiable measures for trend analysis, baselines and comparison
[:!Development Process}

Actual product
and artifacts
Time I
Expected product iA : i. ® : i ot i
and artifacts | .i | A i A W

- T

~ Fraunhofer

USA

Center for Experimental Software Engineering

The Technical and Process Risk
Measurement methodology

This method was developed to address software safety risks on
the DoD’s FCS and NASA's Constellation programs I

— —— —
~ .c
One Team-Th Industry

-The Army/Defense

Six step Technical and Process Risk Measurement (TPRM) 3?{
methodology:

1. ldentify insight areas or intermediate artifacts
|dentify the measurement opportunities
Develop readiness assessment questions
Define goals and questions for each risk area

Develop and enumerate measures and models of how they will be
interpreted via threshold values.

6. Propose responses to identified risks

o & Wi

\

~ Fraunhofer
USA

Center for Experimental Software Engineering

What can we measure?

Step 1: Identify insight areas from the RSMA processes that provide insight into risks.

Step 2: Identify the measurement opportunities that provide insight into each risk area.

Step 3: Develop readiness assessment questions to provide a quick status of the risk and to
identify if it is possible to delve deeper into the area?

+
+
NaE o3
+
+
be
+ 4+

CONSTELLATION

!

Cause 1

y

Control 1 Control 2

!

v A

Cause 3

\

~ Fraunhofer

USA

Center for Experimental Software Engineering

v

Ification 2
© 2010 Fraunhofer USA, Inc.

Center for Experimental Software Engineering

\

Export (

CxHazard Record #: 374 Revision: DRAFT l
HR #:

Title: Example - Avionics failure during ascent results in LoC/LoM

System: SE+|

Element: SE+| Integrated Analysis

Affected System(s): Ares 1, Orion

Affected Element(s): Ares |: First Stage, Ares |: Upper Stage, Ares |:
Upper Stage Engine, Orion: Crew Module, Orion: Launch Abort System,
QOrion: Service Module

Subsystem: SE+l: Avionics

Hazardous Condition Description: A failure by the Avionics component
inincomect command of propoulsion subsystems.

Acceptance Rationale: Avionics hardware and software have been large
previous design strategies.

Likelihood Justification: Avionics failures are unlikely based on mission

Defining risk measures

Step 4: Define goals and questions for each risk area to expose risks
associated with RSMA process artifacts.

Step 5: Develop and enumerate measures and models of how the metrics WI||
be interpreted via threshold values.

+ +
CONSTELLATION

Goal: (Constellation highlights ..

— | o Examined 154 hazard reports, 2013 causes, 4096 controls |causes

_| o ~60% of hazards are software related

e 7% of hazards have “hidden” software risk

Hazard r¢ related
Affected| o 30% of causes and 17% of controls were transfers

Avionics 0%
Main Propulsion sys 34 12 18 35% 53%

Roll reaction control 29 9 14 31% 48%
Thrust vector control 15 5 3) 33% 33%

=

~ Fraunhofer

USA

Center for Experimental Software Engineering

Responses to identified risks

Step 6: Propose responses to identified risks.

Risks identified through measurement Responses implemented by program
» Lack of consistent scope in » Creation and dissemination of a
describing software functions “user guide” for specifying
Impairs risk assessment. software causes.
* Incorrect references to hazard » Issue “letters of interpretation” of
reports, causes and controls hazard analysis process
et iessisliy « Additional training sessions for
« Ubiquity of transferred causes and safety engineers
controls mask software risk >
« Automated verification of
. ... references in the Hazard Tracking
System

« HTS functionality to identify
software causes and controls

\

~ Fraunhofer
USA

Center for Experimental Software Engineering

Software cause “user guide”

Documenting software causes and controls in hazard reports

As part of an OSMA SARP Safety Metrics Initiative, NASA SR&QA personnel and the Fraunhofer Center
for Experimental Engineering have put together the following guide to assist safety engineers in

documenting software causes and controls of hazards in hazard reports for Phase | safety reviews.

Four attributes must be specified for each software cause and sub-cause documented in hazard reports:
’

1. Index the cause — Label each software cause and sub-cause with a unique identifier.

. § 2. Identify the origin — Indicate the CSCI that fails to perform its operation correctly.

S\Q —< 3. Specify the erratum — Provide a description of the erroneous command, command sequence or
Q(b failed operation of the CSCI.

e 4. Specify the impact — Provide a description of the erratum’s effect that, if not controlled, results in
~—— the associated hazard. If known, identify the specific CSCI(s) or hardware subsystem(s) affected.

Attribute | Example acceptable values Unacceptable values
Index If cause 8 is “Software based control error,” label sub- {Software sub-causes not indexed}
causes as 8.3, 8.b, 8.c, ...
Origin — Avionics CSCI — the software
— Propulsion CSCI — the Flight Computer
— Vehicle Management CSCI — acomputer based control error
— Timeline Management CSCI — ageneral software fault
Erratum | — failure to detect a problem — the software fails
|~
Z Fraunhofer
USA © 2010 Fraunhofer USA, Inc. 10

Center for Experimental Software Engineering
Center for Experimental Software Engineering

Main Contributions

TPRM methodology leverages process artifacts to gain early
insight into insight into reliability, safety and mission assurance

Completed two case studies applying the TPRM methodology:
Future Combat Systems and Constellation

— ldentified four risks in the hazard analysis process for FCS; six
risks in the Constellation process.

Created a baseline for comparison with future review milestones
and future NASA projects

— Metrics provided to identify subsystems and mission phases with
the greatest potential software safety risk

\

~ Fraunhofer
USA

Center for Experimental Software Engineering

Next Steps

We can apply this approach to processes meant to
achieve other “ilities™:

— Reliability

— Security

— Mission assurance
— Costs

— Any process with intermediate artifacts whose purpose is
to achieve the desired characteristics

We are looking for collaborations with organizations,
programs and projects with such processes in place.

~Z Fraunhofer
USA

Center for Experimental Software Engineering

Thanks and acknowledgement

Contact: Lucas Layman (llayman@fc-md.umd.edu)

FCS article:
http://www.cs.umd.edu/~basili/publications/journals/J112.pdf

Constellation technical report:
http://www.fc-md.umd.edu/TR/Safety-metrics TR 10-101.pdf

Acknowledgements
« This research was supported by NASA OSMA SARP grant NNX08AZ60G
« Thanks to Karen Fisher and Risha George at Goddard Space Flight Center

« Thanks to Frank Marotta at Aberdeen Proving Grounds

\

~ Fraunhofer
USA

Center for Experimental Software Engineering

Analysis method

Goal 1: to quantify the relative importance of software with respect to
system safety.

— Software-related cause or control describes software behavior
— Software-related hazard has one or more software causes or controls

L i Controls
Hazard
Cause
Cause 1 Cause 3 Report
1 12|3]4]|5 |6
|:> [Hazard 1 1
Control 1 Control 3 | 3

v v | - .

Control 4 Control 5

Software hazard, cause or control

Non-software control

Transferred cause

% Fraunhofer Transferred control

USA © 2010 Fraunhofer USA, Inc.
Center for Experimental Software Engineering

14

Center for Experimental Software Engineering

\|

Number of software causes

no software control

at least 1 software control
Transferred causes

Total

no software control

at least 1 software control
Transferred causes

Total

no software control

at least 1 software control
Transferred causes

Total

Center for Experimental Software Engineering

Ares US
Non-software cause
393 71%
76 14%
252
806
Orion
Non-software cause
402 77%
57 11%
151
672
J-2X
Non-software cause
275 81%
9 3%
194
535

Software cause
0 0

86 15%

Software cause
0 0%
62 12%

Software cause
0 0%
57 17%

Number of software controls

Ares US

N % of total % of non-transferred
Non-software 1603 64% 82%
Software 243 10% 12%
Generic software controls 105 4% 5%
Transferred controls 566 22% -
Total 2517

Orion
N % of total % of non-transferred

298
Generic software controls 37 2% 2%
. Transferred controls 262 11% -
~Z Fra

Total 2399

Goal 2: Level of Risk — Initial study

« Goal 2: Quantify the level of risk presented by
software in the Constellation program.

Hazard ratings Cause ratings
| % # %
La 5 18% L1 65 | 50%
AresUS | |y | 7 | 25% 12 | 26 20%
Lc 7 | 25% L3 38 | 29%
Ld 3 11%
Le 6 21%
% # %
La 3 8% L1 65 @ 38%
Orion Lb 1 3% L2 68 40%
Lc 14 | 38% L3 37 | 22%
Ld 13 | 35%
Le 6 | 16%

\

~ Fraunhofer

USA

Center for Experimental Software Engineering

Process risks and recommendations

* |nadequate thruster

Cause: CAUS11 — Software Based Control Errors

performance results
in loss of control”

Control 29 has 14 —
“sub-controls”

—

a. Pressure in the propellant tanks is controlled by Propul-
sion based on the inputs of redundant pressure transducers
in each tank to maintain the proper quantity of propellant be-
ing delivered to the thrusters.

b. The above-mentioned functionality will be implemented as
requirements in the Software Requirements Specs for Propul-
sion, System Management, and Displays and Controls, then

flowed into design and code and undergoes a test and valida-
tion process. See
for details

on process controls in the Orion software development pro-
cess for: Requirements Defects, Design Defects, and Code

“Human error’” is
actually Cause 15

_—

\

~ Fraunhofer

USA

© 2010 Fraunhofer USA, Inc.

Defects).

Cause 11: Human Error

In order to implement this functionality, the Controls software
performs the following processing:

a. Rejects any inputs from

The above-
mentioned functionality will be implemented as requirements
in the Software Requirements Spec for Controls, then flowed

18

Center for Experimental Software Engineering

Center for Experimental Software Engineering

