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Abstract 

The Chlamydiales order includes the Chlamydiaceae, Parachlamydiaceae, Waddliaceae, 

Simkaniaceae, Criblamydiaceae, Rhabdochlamydiaceae, Clavichlamydiaceae, and 

Piscichlamydiaceae families. Members of the Chlamydiales order are obligate intracellular 

bacteria that replicate within eukaryotic cells of different origins including humans, animals, 

and amoebae. Many of these bacteria are pathogens or emerging pathogens of both humans 

and animals, but their true diversity is largely underestimated, and their ecology remains to be 

investigated. Considering their potential threat on human health, it is important to expand our 

knowledge on the diversity of Chlamydiae, but also to define the host range colonized by 

these bacteria. Thus, using a new pan-Chlamydiales PCR, we analyzed the prevalence of 

Chlamydiales DNA in ticks and fleas, which are important vectors of several viral and 

bacterial infectious diseases. To conduct this study, 1340 Ixodes ricinus ticks prepared in 192 

pools were collected in Switzerland and 55 other ticks belonging to different tick species and 

97 fleas belonging to different flea species were harvested in Algeria. In Switzerland, the 

prevalence of Chlamydiales DNA in the 192 pools was equal to 28.1% (54/192) which 

represents an estimated prevalence in the 1340 individual ticks of between 4.0 to 28.4%. The 

pan-Chlamydiales qPCR was positive for 45.5% (25/55) of tick samples collected in Algeria. 

The sequencing of the positive qPCR amplicons revealed a high diversity of Chlamydiales 

species. Most of them belonged to the Rhabdochlamydiaceae and Parachlamydiaceae 

families. Thus, ticks may carry Chlamydiales and should thus be considered as possible 

vectors for Chlamydiales propagation to both humans and animals. 

 

Keywords: Arthropods; Ticks; Carriers; Chlamydiae; Intracellular bacteria 

 

Introduction 

The Chlamydiales order (Everett et al., 1999) currently includes the Chlamydiaceae, 

Parachlamydiaceae, Waddliaceae, Simkaniaceae, Criblamydiaceae, Rhabdochlamydiaceae, 

Clavichlamydiaceae, and Piscichlamydiaceae families (Corsaro and Greub, 2006; Greub, 

2013). Members of the Chlamydiales order are strict intracellular bacteria that replicate within 

eukaryotic cells of different origins including humans, animals, and amoebae (Corsaro and 

Greub, 2006; Horn, 2008). Chlamydiales are characterized by a biphasic development cycle 

comprising infectious metabolically inactive elementary bodies and non-infectious 

metabolically active and replicating reticulate bodies (Moulder, 1991).  
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Chlamydiales bacteria have been identified in hosts covering the whole animal kingdom. 

Several Chlamydiaceae such as Chlamydia trachomatis and C. pneumoniae colonize humans. 

Waddlia chondrophila was isolated from an aborted bovine fetus (Rurangirwa et al., 1999), 

whereas Waddlia malaysiensis was isolated from fruit bats (Chua et al., 2005). Bacteria 

belonging to the Piscichlamydiaceae and the Clavichlamydiaceae families were detected in 

gills from fish exhibiting signs of epitheliocystis (Draghi et al., 2004; Karlsen et al., 2008). 

The 2 members of the Rhabdochlamydiaceae family, Candidatus Rhabdochlamydia 

porcellionis and Candidatus Rhabdochlamydia crassificans, were identified in arthropods by 

16 sRNA gene sequence analysis and electron microscopy (Corsaro et al., 2007; Kostanjsek et 

al., 2004), but were never recovered and isolated. Similarly, 2 candidatus Chlamydiales 

species belonging to the Simkaniaceae family were detected in insects by DNA and electron 

microscopy analysis, but were not isolated from their hosts (Everett et al., 2005). One member 

of the Simkaniaceae family, Simkania negevensis was isolated as a culture contaminant of 

human and simian cells (Kahane et al., 1999). Finally, several Chlamydiales bacteria 

belonging mainly to the Parachlamydiaceae and Criblamydiaceae families are considered 

symbionts of amoebae (Amann et al., 1997; Greub and Raoult, 2002; Horn et al., 2000) or 

associated with amoebae (Lienard et al., 2011b; Thomas et al., 2006), indicating the important 

role that these latter organisms play in the ecology of these obligate intracellular bacteria 

(Fritsche et al., 1993; Horn, 2008). However, the diversity of Chlamydiales bacteria is still 

likely underestimated, and their ecological distribution remains to be further investigated. 

Such investigations are especially warranted since many Chlamydiales have been recognized 

as human and animal pathogens or are seriously considered pathogenic microorganisms 

(Corsaro and Venditti, 2004; Corsaro and Greub, 2006; Longbottom and Coulter, 2003; Senn 

et al., 2005). Chlamydia trachomatis is the causative agent of trachoma, the most frequent 

infectious cause of blindness (Burton, 2007) and is the most common cause of bacterial 

sexually transmitted diseases (Beagley and Timms, 2000). Chlamydia pneumoniae is a 

causative agent of pneumonia, and Chlamydia psittaci is the causative agent of the zoonotic 

infection called psittacosis which is often characterized by an interstitial pneumonia (Lamoth 

and Greub, 2010). There is also clear evidence supporting the role of Parachlamydia 

acanthamoebae as a human respiratory pathogen (Greub, 2009). Thus, several serological and 

molecular studies have demonstrated a pathogenic role of P. acanthamoebae mainly in 

immunocompromised and intensive-care patients suffering from pneumonia (reviewed in 

Lamoth and Greub, 2010). Finally, Waddlia chondrophila is an emerging pathogen which is 

considered a possible causative agent of abortion in both ruminants (Dilbeck-Robertson et al., 



4	  
	  

2003) and humans (Baud et al., 2007; Baud et al., 2011). Due to the intracellular lifestyle of 

chlamydiae, classic culture methods are ineffective to identify any members of the 

Chlamydiales order. Thus, the pathogenic potential of several of these bacteria still remains 

largely unexplored.  

Chlamydiales bacteria belonging to the Rhabdochlamydiaceae family have been identified in 

arthropods including the cockroach Blatta orientalis and the terrestrial isopod Porcellio 

scaber (Corsaro et al., 2007; Kostanjsek et al., 2004). Arthropods represent thus a possible 

important reservoir for Chlamydiales bacteria that need to be investigated. Among arthropods, 

fleas and ticks are important vectors of both viral and bacterial infectious diseases. Lyme 

borreliosis caused by Borrelia burgdorferi sensu lato and tick-borne encephalitis (TBE) are 

the major tick-borne diseases affecting humans. In addition, several less frequent additional 

tick-borne infectious agents can cause severe diseases in humans including Francisella 

tularensis (tularemia), Rickettsia spp. (spotted fever), and Anaplasma phagocytophilum 

(anaplasmosis) (Brouqui et al., 2004). Similarly, fleas have been identified as vectors of 

transmission of numerous important human diseases including bubonic plague caused by 

Yersinia pestis (Wimsatt and Biggins, 2009). Finally, 2 studies suggested that ticks could play 

a role in the transmission of chlamydiae to cattle (Caldwell and Belden, 1973; McKercher et 

al., 1980). Thus, using a pan-Chlamydiales PCR, the prevalence and sequence diversity of 

Chlamydiales 16S rDNA were analyzed in Ixodes ricinus ticks collected in Switzerland and in 

several tick and flea species collected in Algeria.  

 

Material and methods 

Tick collecting in Switzerland 

The field work was conducted from May to July 2010. Ixodes ricinus ticks (adults and 

nymphs, n=1340) were collected using a 1-m2 white cotton towel which was dragged over the 

vegetation. Every 10 m, the operator stopped to count and put attached ticks into tubes, which 

were stored at –80°C until further analysis. Ticks were collected on the site of Mutt-Rarogne 

(Fig. 1), which was chosen because of its small size and its clear demarcation due to the 

topology of the area.  

 

Tick pooling and DNA extraction in Switzerland 

The 3-step high-throughput method was applied with ticks from Rarogne as described by 

Gäumann et al., 2010). Frozen ticks were prepared in pools of 5 adults, 10 nymphs, and 

different amounts of mixed adults and nymphs with 600 µl of buffer solution at 4°C. The 
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buffer solution was composed of PBS solution supplemented with InhibitEX tablets (1 

tablet/20 ml of buffer; Qiagen). One 3-mm tungsten carbide bead (Qiagen) was added to each 

tube (collection microtubes; Qiagen), and tick pools were immediately homogenized using the 

TissueLyser system (Qiagen) for 4 min at 30 Hz. After a short step of centrifugation of 5 s at 

3200 × g, 200 µl of supernatant was inactivated in 800 µl of AVL viral lysis buffer (Qiagen) 

supplemented with 3 µg of carrier RNA (Qiagen). Simultaneous DNA and RNA extraction 

was performed using the QIAsymphony SP system (Qiagen) and the QIAsymphony 

Virus/Bacteria Midi kit (Qiagen) with a specially adapted protocol (CP Complex 920 FIX v1; 

Qiagen). DNA and RNA were eluted in a final volume of 60 µl and stored at –80°C for 

further use. 

 

Estimation of Chlamydiales DNA prevalence in individual Ixodes ricinus ticks collected 

in Switzerland 

The estimation of the Chlamydiales DNA prevalence in the 1340 individual I. ricinus ticks 

was calculated from the measured prevalence obtained in the 192 pools as followed: The 

minimum prevalence was calculated by considering that only one tick per positive pool is 

infected, whereas the maximum prevalence was calculated by considering that all the ticks 

present in a positive pool are infected (Table 1).  

 

Tick and fleas collecting and DNA extraction in Algeria 

In February 2006 and September 2010, ticks were captured by the flagging technique on 

vegetation close to the road and olive trees in the mountains of the Blida region (Chréa 

Mountain) and Skikda in northern Algeria (Bitam et al., 2006). Fleas were collected by the 

technique of candle trapping which consists of a candle placed in the middle of a plate filled 

with water. This device attracts fleas which are trapped in the water, but remain alive for a 

few hours (Bitam et al., 2010; Roucher et al., 2012). 

Fleas and ticks were identified at the species level and were then crushed individually in 

sterile Eppendorf tubes with the tip of a sterile pipette. DNA was extracted by using the 

QIAamp Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. 

 

Real-time PCR assay 

PCR assays were performed in 20 µl, with iTaq supermix with ROX (BioRad, Reinach, 

Switzerland), 0.1 µM of each primer (Eurogentec, Seraing, Belgium), 0.1 µM of probe 

(Eurogentec), molecular biology grade water (Sigma-Aldrich, Buchs, Switzerland), and 5 µl 
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of DNA sample. Primers forward panCh16F2 (5’-CCGCCAACACTGGGACT-3’), primer 

reverse panCh16R2 (5’-GGAGTTAGCCGGTGCTTCTTTAC-3’) and a probe panCh16S (5’-

FAM [6-carboxyfluorescein]-CTACGGGAGGCTGCAGTCGAGAATC-BHQ1 [Black Hole 

Quencher]-3’), targeting a fragment of about 207–215 bp in the 16S ribosomal RNA gene 

(length variable according to the species), were used for the pan-Chlamydiales PCR as 

described earlier (Lienard et al., 2011a). Underlined bases represent locked nucleic acids 

(LNA).	  Cycling conditions were 3 min at 95°C, followed by 50 times 3-step cycles of 15 s at 

95°C, 15 s at 67°C, and 15 s at 72°C. PCR products, tested in duplicate, were detected with a 

StepOne Plus instrument (Applied Biosystems, Zug, Switzerland). Water was used as a 

negative PCR control. 

A plasmid carrying a 16S rRNA gene fragment amplified with primers	  Pacstd16SF2 (5’-

CTGACGGCGTGGATGAGGC-3’) and Pacstd16SR2 (5’-CCTACGCGCCCTTTACGCCC-

3’) as previously reported (Lienard et al., 2011a) was used for quantification and as a positive 

control. Quantification of the recombinant plasmid was done on a Nanodrop ND-1000 

(Witech, Littau, Switzerland), and serial dilutions (105 to 100 copies/µl) were used to 

establish a standard curve for quantification. 

 

Sequencing of positive samples 

Amplicons of positive samples were purified using the MSB Spin PCRapace kit (Invitek, 

Berlin, Germany). A sequencing PCR was performed with specifically designed inner primers 

panFseq (5’-CCAACACTGGGACTGAGA-3’) and panRseq (5’-GCCGGTGCTTCTTTAC-

3’) (Lienard et al., 2011a). The sequencing PCR assay was done using the BigDye® 

Terminator v 1.1 Cycle seq kit (Applied Biosystems). The sequencing reaction was purified 

using SigmaSpin sequencing reaction clean-up (Sigma-Aldrich, USA). Sequences of 

Chlamydiales bacteria obtained from flea and tick samples have been deposited on the NCBI 

website (http://www.ncbi.nlm.nih.gov/genbank/). Accession numbers are JQ860006 to 

JQ860084. 

 

Results 

Prevalence of Chlamydiales bacteria in Ixodes ricinus ticks collected in Switzerland 

A total of 1340 I. ricinus ticks was collected in the area of Rarogne in the canton of Valais, 

Switzerland (Fig. 1). The 1340 ticks were collected and pooled in 192 samples prior to DNA 

extraction. Thus, 129 pools of 5 adult ticks/pool representing 645 single adult ticks, 45 pools 

of 10 nymph ticks/pool representing 450 single nymphal ticks, and 18 pools of various 
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amounts of mixed adults and nymphal ticks/pool representing 245 single adults and nymphs 

were prepared. The 192 pools representing 1340 ticks were screened by quantitative pan-

Chlamydiales qPCR in duplicates. The qPCR was positive for 54 samples giving a 

Chlamydiales prevalence of 28.1% (54/192) when considering all pools and a prevalence of 

25.6% (33/129) in adult ticks pools, of 31.1% (14/45) in nymph pools and 38.9% (7/18) in 

mixed adult/nymph pools (Table 1). The proportion of individual Chlamydiales DNA-positive 

ticks from the 192 pools was estimated to be between 4.0% (considering that only one tick per 

pool was positive) and 28.4% (considering that all the ticks per pool were positive). Similarly, 

the rates of pan-Chlamydiales qPCR-positive ticks were calculated in adult ticks (5.1–25.6%), 

nymphs (3.1–31.1%), and mixed adults+nymphs (2.8–31%) (Table 1).  

The 54 pan-Chlamydiales qPCR-positive samples were sequenced. The sequencing failed for 

17 samples. Among the remaining 37 samples, 4 samples provided 2 different sequences from 

single wells of each duplicate, resulting in a total of 41 sequences (Supplementary Table 1). A 

percentage of identity by best BLAST superior to 90% was obtained for the 41 sequences 

allowing identification at the family level (Table 2). Of the 41 sequences, 16/41 (39%) 

belonged to the Rhabdochlamydiaceae family, 12/41 (29%) belonged to the 

Parachlamydiaceae family, 1/41 (2%) belonged to the Criblamydiaceae (genus Criblamydia), 

the Clavichlamydiaceae (genus Clavichlamydia), the Simkaniaceae, and the Waddliaceae, 

respectively, and 9/41 (22%) provided a best BLAST hit with unclassified Chlamydiales 

bacteria. Among the 12 sequences corresponding to the Parachlamydiaceae, 6 gave a best 

Blast hit with the genus Neochlamydia, 3 with the genus Parachlamydia, and 3 with the genus 

Protochlamydia. The distribution and the prevalence of Chlamydiales families in tick samples 

collected in different geographical areas in Rarogne, Switzerland, was determined (Fig. 1). 

Except for one distinct collection area where the highest prevalence was observed for the 

Parachlamydiaceae, DNA from the Rhabdochlamydiaceae was predominantly detected among 

the positive-sequenced samples.  

Most of the pan-Chlamydiales qPCR were found to be positive with a relative low DNA copy 

number per microliter (<5 copies/µl) except for 3 samples (Supplementary Table 1). Two 

samples corresponding to the Rhabdochlamydiaceae contained 1000 and 48 copies/µl, 

respectively. One sample showing the highest similarity with the Waddliaceae exhibited 10.5 

copies/µl. 

The sequencing results showed that 5/41 samples have a best identity below 97% which 

corresponds to putatively new species according to the Everett cutoff (Everett et al., 1999). Of 

the remaining 36 samples, 22 samples showed 100% identity with Chlamydiales DNA 
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sequences previously submitted to the NCBI databases, and the remaining 14 sequences likely 

correspond to new Chlamydiales strains.  

 

Prevalence of Chlamydiales bacteria in various tick and flea species collected in Algeria 

A total of 55 ticks belonging to different species was collected in several areas in Algeria 

including 7 Dermacentor marginatus, 10 Hyalomma detritum detritum, 20 Hyalomma 

dromedarii, 9 Ixodes ricinus, and 9 Rhipicephalus sanguineus. The pan-Chlamydiales qPCR 

was applied on these samples in quadruplicate and was positive for 25/55 (45%) tick samples 

(Table 3). The positive qPCR was sequenced (Supplementary Table 2). A total of 32 

sequences was obtained since 3 samples provided 2 different sequences and 2 samples 

provided 3 different sequences from positive single wells of the qPCR performed in 

quadruplicate. Only one sequencing failed. Among the 31 sequences obtained, 23/31 (74%) 

showed a best BLAST hit with the Parachlamydiaceae family, 4/31 (13%) with the 

Rhabdochlamydiaceae, 2/31 (6%) with the Criblamydiaceae, and 1/31 (3%) corresponded to 

the Chlamydiaceae and to unclassified Chlamydiales, respectively (Table 3). Among the 

Parachlamydiaceae, 11/23 (48%) belonged to the genus Neochlamydia, 5/23 (22%) to the 

genus Parachlamydia, 3/23 (13%) to the genus Protochlamydia, 1/23 (4%) to the genus 

Metachlamydia, and for 3/23 (13%) no classification at the genus level could be determined. 

The sequence belonging to the Criblamydiaceae corresponded to the genus Estrella, and the 

sequence belonging to the Chlamydiaceae corresponded to the genus Chlamydia. 

The highest prevalence of Chlamydiales DNA was observed in H. dromedarii ticks (14/20), 

whereas the prevalence was of 4/10, 4/9, and 3/9 in the tick species H. d. detritum, I. ricinus, 

and R. sanguineus, respectively. The pan-Chlamydiales qPCR performed on D. marginatus 

samples gave always a negative result (0/7).  

In addition, DNA of 97 fleas composed of 19 Stenoponia tripectinata, 49 Nosophyllus spp., 3 

Xenopsylla cheopis, 21 Ctenocephalides felis, and 5 Archaeopsylla spp. were analyzed. The 

pan-Chlamydiales qPCR was positive for 7/97 (7%) samples. The sequences showed that 4 of 

the positive samples belonged to genus Protochlamydia (family Parachlamydiaceae), 2 to the 

genus Metachlamydia (Parachlamydiaceae), and one sequence corresponded to unclassified 

Chlamydiales. The proportion of fleas that were positive for Chlamydiales DNA (7%) was 

significantly lower than the proportion observed in ticks (45%, p<0.05). 

 

Discussion 
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There is increasing evidence demonstrating that the diversity of Chlamydiales bacteria and 

their host range is largely underestimated (Corsaro et al., 2009; Horn, 2008). Several new 

Chlamydiales families composed of multiple genera and species have been isolated and 

described in the past few years from various hosts distributed in very diverse geographical 

areas (Corsaro and Greub, 2006; Horn, 2008). However, the true dissemination of these novel 

Chlamydiales in environmental reservoirs, vectors, and hosts is still poorly investigated. Some 

of these bacteria, including W. chondrophila and P. acanthamoebae, represent new emerging 

pathogens likely causing miscarriage and respiratory tract infections (Baud et al., 2007; Baud 

et al., 2008; Baud et al., 2011; Lamoth and Greub, 2009, 2010), but the mode of human 

exposure to these Chlamydia-related bacteria is still unknown and remains only speculative. 

However, the understanding of bacterial pathogenicity and transmission capacity largely 

depends on the identification of possible bacterial vectors and of susceptible hosts. Thus, ticks 

and fleas, which represent well-recognized vectors of multiple bacterial and viral diseases, 

have been investigated for the presence of Chlamydiales DNA with a newly developed pan-

Chlamydiales qPCR (Lienard et al., 2011a). In Switzerland, the prevalence of Chlamydiales 

DNA in 1340 adult and nymphal I. ricinus ticks prepared in 192 pools was 28.1% (54/192), 

which represents an estimated prevalence of about 16% (between 4.0 and 28.4%). No 

significant difference of Chlamydiales prevalence between adults and nymphal ticks was 

observed. However, differences in the prevalence and in the distribution of Chlamydiales 

families in tick populations collected in different areas in the region of Rarogne were 

observed (Fig. 1) suggesting that the prevalence of Chlamydiales may differ significantly 

between ticks collected in closely located niches.  

On average, a 45% (25/55) prevalence of Chlamydiales DNA in various tick species collected 

in Algeria were observed. Even though differences in prevalence among different tick species 

were obtained ranging from 0% (0/7) prevalence in H. d. detritum to 70% (14/20) in H. 

dromedarii, the number of tick samples per species was too low to generate statistically 

significant data. The difference of Chlamydiales DNA prevalence between ticks collected in 

Switzerland and Algeria could originate from several ecological parameters such as tick 

species, geographical climatic differences, and the presence of susceptible hosts, but also 

from experimental parameters such as tick collecting and DNA extraction. The high 

sensitivity of the pan-Chlamydiales qPCR requires the use of a strictly standardized 

experimental procedure ensuring minimal contamination of the samples by external DNA, 

such as automated DNA extraction and processing of the experimental reactions in separate 

rooms (Lienard et al., 2011a). When DNA extraction is performed manually (as done in 
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Algeria), cross-contamination between extracted samples may occur and may result in an 

overestimation of the real Chlamydiales DNA prevalence in biological samples. However, 

despite this limitation and the need of further studies in Algeria using standardized sample 

collection and DNA preparation, the observed higher prevalence in ticks as compared to fleas 

supports the validity of the Algerian data and the role of ticks as carriers of Chlamydiales. 

A total of 58 pan-Chlamydiales qPCR-positive samples of Rarogne and 32 samples of 

Algeria, respectively, were sequenced. The sequencing failed for 17 samples from Rarogne 

and for one sample from Algeria. Sequencing failure was mainly due to (i) no sequence 

generation because of insufficient amount of template DNA or due to (ii) to the generation of 

multiple sequencing peaks likely caused by the presence of several Chlamydiales DNA 

templates in a single sample, which could explain the relatively high rate of sequencing 

failure with the pooled samples of ticks collected in Switzerland (29.3%) compared to 

samples collected in Algeria (5%). Thus, positive sequencing results obtained from 41 

samples from Switzerland and 38 samples from Algeria showed that a high diversity of 

Chlamydiales DNA was found in association with all tick and flea species tested except D. 

marginatus and Archaeopsylla spp., respectively. Among a total of 79 sequences obtained 

from tick and flea samples, 5 sequences from Rarogne (Switzerland) and 18 sequences from 

Algeria showed an identity of <97% with previously sequenced Chlamydiales 16S rDNA. 

According to Everett cutoff (Everett et al., 1999), a strain exhibiting a sequence similarity of 

the complete 16S rRNA gene of less than 97%, 95%, and 90% should be classified as a new 

species, new genus, or new family-level lineage, respectively. The pan-Chlamydiales qPCR 

targets a highly variable region of the 16S rRNA gene of Chlamydiales bacteria as described 

in Lienard et al. (2011a) and thus provides a high discriminative power for classification at 

the family-level lineage, but also with a high confidence at the genus level. Soergel et al. 

(2012) recently demonstrated that the choice of an optimal primer for short 16S rRNA 

sequences even below 200 bp can provide up to 100% of the confident genus classification 

available from longer reads. However, the 200-bp 16S rRNA gene sequences obtained with 

the pan-Chlamydiales qPCR do not ensure 100% accuracy for genus classification and thus 

do not allow definite classification at the genus level. Although only partial sequences of the 

16S rRNA gene of about 200 bp were obtained in this study, Everett’s criteria were thus used 

to provide some insights into the putative classification of the strains at the genus- and family-

level lineages (Supplementary Fig. 1). Hence, 14 sequences from Rarogne and 13 sequences 

from Algeria exhibited an identity between 97.1% and 99.4% indicating that 27 sequences 

obtained in this study correspond to putative new Chlamydiales strains. Seven sequences from 
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Algeria and 22 sequences from Rarogne had a 100% identity with previously identified 

Chlamydiales DNA. Among those, 13 sequences obtained in Rarogne exhibit 100% identity 

with the uncultured Chlamydiales bacterium clone GE11093 which is a putative new 

Candidatus Rhabdochlamydia porcellionis strain (97.8% identity) previously identified in 

Switzerland (Lienard et al., 2011a). One of the remaining 9 sequences of Rarogne had 100% 

identity with Rhabdochlamydia crassificans strain CRIB01, one with an uncultured 

Chlamydiales bacterium clone belonging to the Parachlamydiaceae family, and 7 with 

unclassified Chlamydiales. Finally, 6 of the 7 sequences from Algeria showed 100% identity 

with members of the Parachlamydiaceae family and one with an unclassified Chlamydiales. 

Rhabdochlamydiaceae and Parachlamydiaceae were predominantly identified in this study. 

The Rhabdochlamydiaceae family comprises 2 known candidate species, Candidatus R. 

porcellionis and Candidatus R. crassificans, which were identified in the isopod Porcellio 

scaber and the cockroach Blatta orientalis, respectively (Corsaro et al., 2007; Kostanjsek et 

al., 2004). This study confirms the high prevalence and biodiversity of Rhabdochlamydiaceae 

among arthropods. Interestingly, high Rhabdochlamydiaceae DNA copy numbers were 

detected in 2 pooled tick samples collected in the same area in Rarogne suggesting that I. 

ricinus ticks could be heavily colonized by Chlamydiales bacteria belonging to this family. 

Chlamydiales species belonging to the Parachlamydia, Protochlamydia, and Neochlamydia 

genera of the Parachlamydiaceae family have been mainly identified as free amoebal 

symbionts isolated from water and soil samples (reviewed in Greub and Raoult, 2002; Horn, 

2008). Free-living amoebae are ubiquitous microorganisms that likely play a major role in the 

ecology of Chlamydia-related bacteria and probably represent an important reservoir and a 

major vector of Chlamydiales bacteria with transmission to various hosts including arthropods 

such as ticks and fleas. Interestingly, other obligate intracellular bacteria such as Rickettsia 

spp. have been identified as symbionts of both amoebae and insects (arthropods) (Gottlieb et 

al., 2008; Thomas and Greub, 2010). Moreover, Rickettsia bellii is found in soft ticks and in 

hard ticks and is also able to survive in amoebae for several weeks (Ogata et al., 2006). The 

diversity of the microbiota associated with ticks is largely unexplored (Taylor et al., 2012), 

and this study suggests that the Parachlamydiaceae family could contain several species 

exhibiting a dual symbiosis or association with both amoebae and arthropods/insects. This 

might be important in terms of bacterial and eukaryotic evolution, especially considering 

possible horizontal gene transfer from symbionts to their hosts, from hosts to their symbionts, 

and between symbionts. 
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In conclusion, this study indicates that ticks and fleas are potentially associated with a high 

diversity of Chlamydiales bacteria belonging mainly to the Rhabdochlamydiaceae and 

Parachlamydiaceae families. However, a significant effort to isolate new Chlamydiales 

species and/or strains by coculture within various host cell types such as amoebae and tick 

cell lines should be initiated to better characterize the interactions between Chlamydiales 

bacteria and those putative arthropod hosts. Interestingly, more than 40 tick cell lines 

originating from 13 ixodid (hard) and one argasid (soft) tick species are available (Bell-Sakyi 

et al., 2007), and several of these cell lines have been used successfully to isolate or propagate 

pathogens and/or tick symbionts such as Anaplasma and Rickettsia species (Bell-Sakyi et al., 

2007; Goodman et al., 1996; Munderloh et al., 2003; Pornwiroon et al., 2006). Similarly, the 

previously isolated strains of Parachlamydiaceae are natural amoebal endosymbionts which 

were mainly recovered by amoebal coculture from various environmental and clinical samples 

(Amann et al., 1997; Birtles et al., 1997; Greub and Raoult, 2002). Sixt et al. (2012) 

demonstrated that while Protochlamydia amoebophila UWE25 and Parachlamydia 

acanthamoebae UV7 exhibited limited intracellular growth in insect cell lines, Simkania 

negevensis could efficiently replicate within insect cells.Together, these data clearly indicate 

that amoebae and tick cell lines represent interesting biological tools to isolate bacteria from 

arthropod samples which could represent the first step for a thorough identification and 

characterization of new Chlamydiales bacterial strains. 
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Legend of figure  

 

Fig. 1. Prevalence and distribution of Chlamydiales families DNA in Ixodes ricinus ticks 

collected in different areas of Rarogne, Switzerland. The 1340 ticks were collected in 

different geographical areas (pine forest, meadow, and broad-leaved forest) in the region of 

Rarogne. The prevalence and the distribution of sequences belonging to different 

Chlamydiales families differed between the different areas of sample collection. 
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Supplementary Table 1. Sequencing results of positive pan-Chlamydiales qPCR on Ixodes ricinus ticks collected in Switzerland. 1 
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P1A7 0.27 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 
GE11093  100 HQ721212  Candidatus Rhabdochlamydia porcellionis   97.8 AY223862 

P1A8 0.03 Rhabdochlamydiaceae Candidatus Rhabdochlamydia crassificans 
strain CRIB01  100 AY928092 -     

P1A11 0.73 Parachlamydiaceae Uncultured Chlamydiales bacterium clone 
FW1013-189  96.1 EF693090 Parachlamydia sp. OEW1 partial 16S rRNA 

gene 94.8 AM412760 

P1A12 0.48 ND (seq. failure)             

P1B1 0.5 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 
HE210050  98.2 HQ721227 Uncultured Candidatus Rhabdochlamydia 

sp. clone CN808  92.5 EU090709 

P1B6-1* 0.2 Parachlamydiaceae Uncultured Chlamydiales bacterium clone 
Upland_120_7966  96.7 JF988666  Parachlamydiaceae bacterium KV 94.1  JN112799 

P1B6-2* 0.2 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 
GE11093 100 HQ721212  Candidatus Rhabdochlamydia porcellionis 97.8  AY223862 

P1B9 0.44 ND (seq. failure)             
P1B10 0.37 ND (seq. failure)             

P1B11 0.16 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 
GE11093 100 HQ721212 Candidatus Rhabdochlamydia porcellionis 98.0  AY223862 

P1C4 0.4 Parachlamydiaceae Uncultured Chlamydiales bacterium clone 
GE10147 99.3 HQ721198 Parachlamydia sp. Hall's coccus 98.6  AF366365 

P1C5 0.2 Criblamydiaceae Uncultured Chlamydiales bacterium clone 
HE20074 97.1 HQ721240 Criblamydia sequanensis 92.5   DQ124300 

P1C7 0.37 Unclassified Chlamydiales Uncultured Chlamydiales bacterium clone 
GE10169 100 HQ721201 -     

P1C8 0.36 Unclassified Chlamydiales Uncultured Chlamydiales bacterium clone 
GE10169 100 HQ721201 -     

P1C10 0.41 ND (seq. failure)             

P1C11 0.55 Unclassified Chlamydiales Uncultured Chlamydiales bacterium clone 
HE210050 98.5 HQ721227 Chlamydia psittaci strain CPX0308 87.1 AB285329 

P1D1 0.5 Parachlamydiaceae Uncultured Chlamydiales bacterium clone 
F5K2Q4C04IBDKU 99.1 GU915305 Protochlamydia naegleriophila strain 

CRIB42 98.1 FJ532295 

P1D2 0.4 ND (seq. failure)             



P1D4 0.32 Parachlamydiaceae Uncultured Chlamydiales bacterium clone 
55A12h 100 HM599245 Neochlamydia hartmannellae strain A1Hsp  96.8 NR_025037 

P1D5 0.43 ND (seq. failure)             
P1D11 0.47 ND (seq. failure)             
P1D12 0.13 ND (seq. failure)             
P1E1 0.31 Simkaniaceae Uncultured Chlamydiales clone PRPR83  99.3 DQ903996 Simkania negevensis strain Z  98.6 NR_029194 

P1E12 0.18 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 
GE11093 100 HQ721212 Candidatus Rhabdochlamydia porcellionis 98.1  AY223862 

P1F5 0.5 Parachlamydiaceae Uncultured Chlamydiales bacterium clone 
HE210023_C12 98.4 HQ721223 Protochlamydia naegleriophila strain 

CRIB42  95.1 FJ532295 

P1F7 0.23 Unclassified Chlamydiales Uncultured Chlamydiales bacterium clone 
GE10169 100 HQ721201 -     

P1F11 1.8 Unclassified Chlamydiales Uncultured Chlamydiales bacterium clone 
HE210050 100 HQ721227 -    

P1F12 0.49 Clavichlamydiaceae Uncultured Chlamydiales bacterium clone 
HE20028 96.6 EU363464 Candidatus Clavichlamydia salmonicola  91 EF577392 

P1G2 0.3 ND (seq. failure)             

P1G8 0.11 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 
GE11093 100 HQ721212 Candidatus Rhabdochlamydia porcellionis  98.2 AY223862 

P1G11 1.58 ND (seq. failure)             
P1G12 0.22 ND (seq. failure)             

P1H2 0.48 Parachlamydiaceae Uncultured Chlamydiales bacterium clone 
GDIC2IK01A8V8N 98.9 JF660305 Neochlamydia hartmannellae strain A1Hsp  96.6 NR_025037 

P1H3 0.34 ND (seq. failure)             

P1H5 0.43 Unclassified Chlamydiales Uncultured Chlamydiales bacterium clone 
GE10193 100 HQ721203 Chlamydia pecorum strain E58  89.2 CP002608 

P1H10 0.5 Unclassified Chlamydiales Uncultured Chlamydiales bacterium clone 
GE10193 100 HQ721203 Chlamydia pecorum strain E58  89.2 CP002608 

P1H11 2.03 Unclassified Chlamydiales Uncultured Chlamydiales bacterium clone 
HE210050 100 HQ721227 Neochlamydia hartmannellae strain A1Hsp 85.8 NR_025037 

P1H12 10.5 Waddliaceae Uncultured Chlamydiales bacterium clone 
HE210050 98.7 HQ721227 Waddliaceae bacterium cvE65 91.2 JF706723 

P2A9 0.32 Parachlamydiaceae Parachlamydiaceae bacterium KV 95.8 JN112799 Neochlamydia hartmannellae strain A1Hsp 95  NR_025037 
P2B8-1* 0.43 Parachlamydiaceae Neochlamydia sp. CRIB37  97.8 EU683885 -     

P2B8-2* 0.08 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 
GE11093 100 HQ721212 Candidatus Rhabdochlamydia porcellionis 97.9  AY223862 



P2B12 0.13 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 
GE11093 100 HQ721212 Candidatus Rhabdochlamydia porcellionis 98.3  AY223862 

P2C1 0.32 ND (seq. failure)             

P2C3 1000 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 
GE11093 100 HQ721212 Candidatus Rhabdochlamydia porcellionis  97.8 AY223862 

P2C8 0.5 Unclassified Chlamydiales Uncultured Chlamydiales bacterium clone 
KK135A0008 99.3 HM063023 Chlamydiales bacterium cvE21 98.6 FJ976097 

P2D3 48 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 
GE11093 100 HQ721212 Candidatus Rhabdochlamydia porcellionis  98.3 AY223862 

P2D4 0.25 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 
GE11093 100 HQ721212 Candidatus Rhabdochlamydia porcellionis  98 AY223862 

P2D5 0.23 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 
GE11093 100 HQ721212 Candidatus Rhabdochlamydia porcellionis  97.9 AY223862 

P2D11 0.07 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 
GE11093 100 HQ721212 Candidatus Rhabdochlamydia porcellionis  98.3 AY223862 

P2D12 0.13 Parachlamydiaceae Uncultured Chlamydiales bacterium clone 
GE11064 98 HQ721209 Protochlamydia naegleriophila strain 

CRIB42 93 FJ532295 

P2E1 0.41 ND (seq. failure)             

P2E9 0.38 Parachlamydiaceae Uncultured Chlamydiales bacterium clone P-
4  98.7 AF364569 Neochlamydia hartmannellae strain A1Hsp 97.3 NR_025037 

P2F2 0.41 ND (seq. failure)             
P2F10-
1* 1.27 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium clone 

GE11093 100 HQ721212 Candidatus Rhabdochlamydia porcellionis  97.9 AY223862 

P2F10-
2* 0.14 ND (seq. failure)             

P2H10-
1* 0.34 ND (seq. failure)             

P2H10-
2* 0.41 Parachlamydiaceae Uncultured Chlamydiales bacterium clone 

DS1-22  95.9 EU883174 Neochlamydia hartmannellae strain A1Hsp 92.3 NR_025037 

P2H11 0.13 Rhabdochlamydiaceae Uncultured Candidatus Rhabdochlamydia 
sp. clone KF-9  98.7 EF445478 Candidatus Rhabdochlamydia porcellionis  96.8 AY223862 

 2 

* Different sequencing results were obtained from single wells of one pan-Chlamydiales qPCR performed in duplicate. ND (seq. Failed): Not 3 

determined due to sequencing failure.4 



Supplementary Table 2. Sequencing results of positive pan-Chlamydiales qPCR on tick and flea species collected in Algeria 5 

Ticks and fleas 
Species ID ADN Copies/ 

µ l Family-level lineage 16SrRNA gene Best Blast hit 
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en
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number 

16SrRNA gene Best Blast hit 
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candidate species Id
en

tit
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(%
) Accession 

number 
 

Ticks (R. 
sanguineus) ARS1 0.05 Parachlamydiaceae Uncultured Neochlamydia sp. 

LTUNC09656  100 AY144295 -     

Ticks (R. 
sanguineus) ARS2 0.82 Parachlamydiaceae Uncultured Chlamydiales bacterium 

clone GE10014 95.7 HQ721239 Candidatus Metachlamydia 
lacustris strain CHSL 95.1 GQ221847 

Ticks (R. 
sanguineus) ARS3 0.63 Parachlamydiaceae Uncultured Chlamydiales bacterium 

clone FW1013-189 95.7 EF693090 Parachlamydia acanthamoebae 
UV-7 95.1 FR872580 

Ticks (I. ricinus) AIR1 0.06 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium 
clone GE11093  98.8 HQ721212 Candidatus Rhabdochlamydia 

porcellionis  98.4 AY223862 

Ticks (I. ricinus) AIR2 0.11 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium 
clone GE11093  98.6 HQ721212 Candidatus Rhabdochlamydia 

porcellionis  97.9 AY223862 

Ticks (I. ricinus) AIR3 0.07 Parachlamydiaceae Uncultured Chlamydiales bacterium 
clone HE20074 96.8 HQ721240 Neochlamydia sp. CRIB37  96.7 EU683885 

Ticks (I. ricinus)* AIR4-1 0.12 Unclassified 
Chlamydiales 

Uncultured Chlamydiales clone 
PRPR85 100 DQ903997 Estrella lausannensis strain CRIB 

30 89.9 EU074225 

 AIR4-2   Criblamydiaceae Uncultured Chlamydiales bacterium 
clone EP912A0005 97.7 HM444977 Estrella lausannensis strain CRIB 

30 95.3 EU074225 

Ticks (H. d. 
detritum) AHDe1 0.02 ND (seq. failure) -     -     

Ticks (H. d. 
detritum)* AHDe2-1 0.44 Parachlamydiaceae Parachlamydia acanthamoebae 

strain Bn9 97.3 NR_026357 -     

 AHDe2-2   Parachlamydiaceae Uncultured Chlamydiales bacterium 
clone GE10014  96.1 HQ721239 Uncultured Neochlamydia sp. 

LTUNC08556  93.4 AY144293 

Ticks (H. d. 
detritum) AHDe3 0.18 Chlamydiaceae Uncultured Chlamydiales bacterium 

clone GE11061 98.1 HQ721207 Chlamydia pneumoniae CWL029 91.2 AE001363 

Ticks (H. d. 
detritum) AHDe4 3.13 Parachlamydiaceae Neochlamydia hartmannellae strain 

A1Hsp  98.2 NR_025037 -     

Ticks 
(H.dromedarii)* AHDr1-1 0.64 Rhabdochlamydiaceae Uncultured Chlamydiales bacterium 

clone GE11093 98.8 HQ721212 Candidatus Rhabdochlamydia 
porcellionis  98.1 AY223862 

 AHDr1-2   Parachlamydiaceae Uncultured Chlamydiales bacterium 
clone GE11061  95.6 HQ721207 Parachlamydiaceae bacterium KV 93.4 JN112799 

Ticks 
(H.dromedarii) AHDr2 0.93 Parachlamydiaceae Protochlamydia naegleriophila 

strain cvE27  93.9 FJ976101 -   
Ticks AHDr3 0.5 Parachlamydiaceae Parachlamydiaceae bacterium KV 96.7 JN112799 Protochlamydia naegleriophila 94.6 EU384664 



(H.dromedarii) strain CRIB 36 
Ticks 
(H.dromedarii) AHDr4 1.01 Parachlamydiaceae Chlamydiales bacterium cvE18  99.2 FJ976098 Neochlamydia hartmannellae 

strain A1Hsp 96.7 NR_02503
7 

Ticks 
(H.dromedarii)* AHDr5-1 0.76 Parachlamydiaceae Uncultured Chlamydiae bacterium 

clone MD2896-0.1m.78 94.6 DQ996922 Neochlamydia hartmannellae 
strain A1Hsp  93 NR_02503

7 

 AHDr5-2   Rhabdochlamydiaceae Candidatus Rhabdochlamydia 
crassificans clone P1s-222 94.3 GQ287585 -   

 AHDr5-3   Parachlamydiaceae Neochlamydia hartmannellae strain 
A1Hsp  96.8 NR_025037 -   

Ticks 
(H.dromedarii) AHDr6 0.41 Parachlamydiaceae Uncultured Chlamydiales bacterium 

clone GE11061 97.5 HQ721207 Neochlamydia hartmannellae 
strain A1Hsp  96.3 NR_02503

7 
Ticks 
(H.dromedarii) AHDr7 1.94 Parachlamydiaceae Uncultured Chlamydiales bacterium 

clone GE11061 96.8 HQ721207 
 

Neochlamydia hartmannellae 
strain A1Hsp  95.8 NR_02503

7 
Ticks 
(H.dromedarii) AHDr8 3.24 Parachlamydiaceae Uncultured Chlamydiales bacterium 

clone GE10014 96.7 HQ721239 Parachlamydiaceae bacterium 
CRIB38  95.2 EU683886 

Ticks 
(H.dromedarii) AHDr9 0.71 Parachlamydiaceae Protochlamydia naegleriophila 

strain CRIB 36  99.2 EU384664 -   
Ticks 
(H.dromedarii) AHDr10 1.23 Criblamydiaceae Uncultured Chlamydiales bacterium 

clone VS30055 97.8 HQ721236 Estrella lausannensis strain CRIB 
30  96.7 EU074225 

Ticks 
(H.dromedarii) AHDr11 0.09 Parachlamydiaceae Parachlamydia acanthamoebae 

strain Bn9  100 NR_026357 -   
Ticks 
(H.dromedarii) AHDr12 0.35 Parachlamydiaceae Parachlamydia acanthamoebae 

strain Seine  100 DQ309029 -   
Ticks 
(H.dromedarii) AHDr13 0.23 Parachlamydiaceae Parachlamydia acanthamoebae 

strain Seine  100 DQ309029 -   
Ticks 
(H.dromedarii)* AHDr14-1 2.12 Parachlamydiaceae Chlamydiales bacterium cvE21  95.2 FJ976097 Neochlamydia hartmannellae 

strain A1Hsp  94.4 NR_02503
7 

 AHDr14-2   Parachlamydiaceae Uncultured Chlamydiales organism 
clone SBZO_1546 96.3 JN530146 Parachlamydiaceae bacterium 

CRIB38  95.2 EU683886 

 AHDr14-3   Parachlamydiaceae Neochlamydia hartmannellae strain 
A1Hsp 98.4 NR_025037 -     

Fleas (S. 
tripectinata) AST1 0.38 Parachlamydiaceae Uncultured Chlamydiales organism 

clone SBYX_4984 96.3 JN489825 Candidatus Protochlamydia sp. 
cvE14 91.1 FJ976093 

Fleas (S. 
tripectinata) AST2 5.19 Parachlamydiaceae Uncultured Chlamydiales bacterium 

clone VS30007 95.2 HQ721231 Candidatus Protochlamydia 
amoebophila strain UWE25 94.1 JQ346728 

Fleas (Nosopsyllus 
spp) AN1 1.24 Parachlamydiaceae Parachlamydiaceae bacterium 

CRIB38 100 EU683886 Candidatus Metachlamydia 
lacustris strain CHSL 

 93.
4 GQ221847 

Fleas (Nosopsyllus 
spp)* AN2-1 1.9 Parachlamydiaceae Uncultured Chlamydiales bacterium 

clone VS30007 95.1 HQ721231 Candidatus Protochlamydia 
amoebophila strain UWE25 94 JQ346728 



 AN2-2   Unclassified 
Chlamydiales 

Uncultured Chlamydiales bacterium 
clone HE210050 99.4 HQ721227 Chlamydia psittaci 87.1 AB285329 

Fleas (Nosopsyllus 
spp) AN3 3.49 ND (seq. failure) -           

Fleas (X. cheopis) AXC1 0.4 Parachlamydiaceae Uncultured Chlamydiales bacterium 
clone VS30007  94.5 HQ721231 Candidatus Protochlamydia 

amoebophila strain UWE25 93.3 JQ346728 

Fleas (C. felis) ACF1 0.9 Parachlamydiaceae Parachlamydiaceae bacterium 
CRIB38  100 EU683886 Candidatus Metachlamydia 

lacustris strain CHSL 
 98.
4 GQ221847 

 6 

* Different sequencing results were obtained from single wells of one pan-Chlamydiales qPCR performed in quadruplicate. ND (seq. failure): 7 

Not determined due to sequencing failure.  8 



Supplementary Figure 1.  9 
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 12 

Supplementary Figure1. Pan-Chlamydiales sequences identities. A total of 79 sequences of pan-Chlamydiales positive qPCR were obtained and 13 

plotted according to the Best Blast identity with closest previously sequenced Chlamydiales species or candidate species 16S rDNA. Despite a 14 

partial read length of about 200bp, the percent identity can be used to provide some insight of the taxonomic classification of the detected 15 

Chlamydiales DNA at the species level (97%), at the genus level (95%) and at the family level (90%) according to cut-offs proposed by Everett 16 

et al. (Everett, et al., 1999). Red dots and squares correspond to sequences showing a 100% identity with Chlamydiales DNA sequences 17 

previously submitted to NCBI databases.  18 

 19 
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