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Abstract 

Glycoproteins are the underappreciated stars in the world of science. These proteins – 

specifically, membrane-bound glycoproteins – are known to have been difficult to study, for they 

present many hurdles: they are complex, hydrophobic, and are stable in only highly specific 

environments. However, investigations into their structure and function are paramount, for 

glycoproteins are essential in the biological world. Glycoproteins serve as enzymes and 

hormones, and aid in clotting and locomotion. While there have been several studies of 

membrane glycoproteins, most of these have focused on their unique attribute: their association 

with sugar groups. It has recently been shown that it is possible to use the enzyme N- 

glycosyltransferase to attach sugars to proteins providing a method for in vitro glycosylation (5). 

Using a membrane-mimetic environment, we are attempting to utilize these methods to 

glycosylate a truncated form of γ-Sarcoglycan (GSCGtm), a protein implicated in the disease 

etiology of Duchenne Muscular Dystrophy. These studies are aimed at shedding light on the 

effects of glycosylation on the structure and dynamics of GSCGtm, in order to provide 

information that can be used in future treatment modalities. For these studies, milligram amounts 

of pure protein are required. The work presented here highlights our successful efforts to 

recombinantly express and purify this membrane protein.  

 

Introduction 

 Membrane proteins are abundant within cell membranes. They serve, among many 

things, to provide a cell structure, as a channel for ions to pass through, and to trigger 

intracellular signaling pathways (3). Figure 1 depicts different representations of membrane 

proteins. However, given their importance, little is none about them, for they are hard to work 
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with. While it is possible to know which portion of a protein passes through the membrane 

thanks to the amino acid sequence, the folded three-dimensional structures of most membrane 

proteins have yet to be determined (1). These membrane proteins are often subjects of 

glycosylation, which occurs when a sugar is added to the protein (1). Figure 2 shows a 

membrane protein that has been glycosylated. Though these proteins prove difficult to work 

with, the goal of this project is to tackle the unknown and to determine the structure of the 

membrane-bound glycoprotein γ-Sarcoglycan (GSCG). To do so, we will obtain a purified 

sample of GSCG and determine its structure by nuclear magnetic resonance (NMR). 

 Sarcoglycan is a subunit of the Dystrophin glycoprotein complex. This complex is found 

in the plasma membrane of cells and plays a role in the stabilization of muscle cells (4). Figure 3 

represents the Dystrophin complex and shows the Sarcoglycan subunits. As shown, multiple 

forms of Sarcoglycan are found within the complex; when the Sarcoglycan subunits are absent, it 

can lead to a leaky plasma membrane. It has been found that muscular dystrophy can result from 

genetic mutations to genes encoding GSCG (4). Therefore, the importance of GSCG cannot be 

understated.  

 While the structure and exact role of GSCG is not known, many features of the protein 

are. The gene encoding GSCG is found on chromosome 13 and the protein is believed to play a 

role in stabilizing the plasma membrane of skeletal and cardiac muscles (4). Cardiomyopathy 

and muscular dystrophy can result from a recessive mutation of the gene encoding GSCG. The 

most common mutation is Δ521-T. This frameshift mutation leads to a stop codon, which 

produces a truncated, unstable protein (4). Determining the structure of GSCG, as well as 

observing the effects of glycosylation on the protein, will provide information on how to best 

treat those affected by this mutation.  
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The truncated version of GSCG I worked with, GSCGtm, is approximately 10kDa; this 

engineered protein contains the necessary glycosylation site, and also includes the 

transmembrane domain. Removing portions of the extracellular and intracellular domain will 

facilitate observing any change in the molecular weight once glycosylation is performed. This 

truncated version proved difficult to work with, leading to some issues within the purification 

process. The hope is to someday attach a sugar by in vitro glycosylation to the then purified 

GSCGtm. Following this glycosylation, additional NMR will be conducted, allowing one to see 

the changes in structure the added sugar entails.  

 

Methodology  

Four 1L growths of expression E. coli in either LB or 15N-labeled media are grown with 

the antibiotic carbenicillin from a starter and overnight growth. IPTG is later added for protein 

expression. To remove impurities, lysis is performed, utilizing three different buffers. The cells 

are sonicated and the cell lysis is centrifuged after administering Resuspension I and II buffers. 

The precipitate, containing the inclusion bodies, is dissolved in binding buffer made with the 

denaturant guanidine hydrochloride. The solubilized protein is dialyzed to remove the denaturant 

and associated lipids. Following this the protein is frozen and lyophilized. The target protein, 

GSCGtm, is expressed with a HIS6-TRPΔLE fusion sequence followed by a methionine residue 

that allows for the cleavage of the fusion protein from the target protein. Cleavage by cyanogen 

bromide is done by dissolving the protein in 70% formic acid and adding dry cyanogen bromide. 

After three hours, the cleavage solution is dialyzed to neutralize its pH. The dialyzed sample is 

then frozen and lyophilized. The cleaved product can further be separated by FPLC to isolate 

pure GSCGtm. These steps are depicted in Figure 4. 
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Alterations to Methodology 

As anticipated, this membrane-bound glycoprotein has been challenging to work with. 

Over the years we have approached it from a variety of different angles. To begin, we originally 

used high performance liquid chromatography (HPLC). After noticing HPLC was not providing 

great separation between peaks – which means we were not isolating GSCGtm – we decided to 

transition to fast purification liquid chromatography (FPLC). From there, we began to run our 

protein through two size exclusion columns in series, with the hope of furthering separating 

GSCGtm. These results proved promising, but were still not quite where we wanted them to be. 

Upon the addition of 100mmol NaCl to the running buffer, we noticed that our FPLC graph 

looked better, with improved peak separation. Currently, we use double FPLC columns, 

combined with 100mmol NaCl in the running buffer, to purify GSCGtm.  

While the changes to the FPLC protocol might be the most drastic, other small alterations 

have also occurred. Following lysis, we began to add the denaturant guanidine hydrochloride, in 

order to remove lipid impurities. This step has led to what we believe to be more pure GSCGtm. 

The most recent change in protocol, however, comes in the form of a nickel column. Because we 

believe our protein is aggregating early on in FPLC, we decided to try to purify our protein with 

an additional step. The six histidines found on our fusion sequence, HIS6-TRPΔLE, makes it 

possible for us to run a nickel column. This column binds only our protein, while other 

impurities within the solution are washed away. We can then collect pure GSCGtm. While we are 

hopeful with this approach, no results have yet been recorded, for it is a recently added step.  
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Results 

We were able to successfully express GSCGtm by recombinant methods using a fusion 

expression in E. coli for both unlabeled and 15N-labeled protein, as shown in Figure 5. The 

amino acid sequence, shown in Figure 6, was used to determine the transmembrane portion of 

GSCGtm. This transmembrane domain is illustrated by Figure 7. The protein was then purified 

using chemical cleavage and size exclusion FPLC. Our results indicate that GSCGtm
 
may be 

aggregating in the FPLC sample; the question remains how to best separate and purify GSCGtm. 

However, we were able to achieve better separation by FPLC when utilizing two columns in 

series and adding 100mmol NaCl to the running buffer. Figure 8 shows these results. The 

purified protein will then be used to conduct in vitro glycosylation in order to determine the 

effects of glycosylation on the structure and dynamics of GSCG
tm

. 

 

Conclusions 

The ability to breathe, sit, eat, or walk is commonly taken for granted by those who have 

fully functioning muscular systems. For those with muscular dystrophy, these thoughtless tasks 

are prevented due to muscle instability. In fact, by adolescence, many of those affected by 

muscular dystrophy will be wheelchair bound. To this date, there is no cure for muscular 

dystrophy, a disorder that affects roughly every 1 in 3500 males (6). However, it is known that 

the disorder is caused by mutations to proteins found within the dystrophin complex. By 

focusing my research on GSCGtm, I worked to establish beneficial information for those affected 

by muscular dystrophy. GSCG is a biologically important protein, one whose structures and 

dynamics will hopefully be determined through an extension of my research, as well as the 

effects of glycosylation on a truncated form of GSCG.  
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Figures  

 

Figure 1. Different forms of membrane proteins (2). GSCGtm most resembles the version labeled 

“1,” for it contains a single transmembrane domain.  
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Figure 2. Membrane protein that has been glycosylated, indicated by blue oligosaccharides (2). 

GSCGtm, however, only has one glycosylation site, which will be utilized to add a single glucose 

monomer.  

 

 
 

Figure 3. The Dystrophin complex. GSCG can be seen in orange and clearly represents a 

membrane protein. The complex is shown to be interacting with the sarcolemma of muscle cells.  
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Figure 4. Visual representation of the purification methodology of GSCGtm. 

 

 

Figure 5. Expression vector map for the GSCGtm construct. The DNA sequence of GSCGtm was 

inserted within the pHLV plasmid between the HinDIII and BamHI restriction sites. The His-

tagged TrpΔLE fusion partner is contained within the plasmid as well. For chemical cleavage, an 

N-terminal methionine and two C-terminal stop codons were added to the DNA insert. 
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Figure 6. Amino acid sequence of truncated GSCGtm. The glycosylation site, made up of the 

sequence NVT, is highlighted. Serine substitutions for cysteine and methionine residues are 

shown underlined and bolded. The transmembrane domain is shown by a solid bar below the 

sequence.  

 

 

Figure 7. Kyte-Doolite hydropathy plot of GSCGtm. This plot shows that a transmembrane 

domain exists near the N-terminus of the protein and encompasses approximately 23 amino 

acids.  
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Figure 8. Fast purification liquid chromatography (FPLC) was used to purify the cleaved target 

protein, followed by an SDS-PAGE gel. Lanes 1-4 correspond to peaks at 16mL, 20mL, 23mL, 

and 29mL. The third lane corresponds with the size of TrpΔLE while the fourth lane contains a 

faint band of the purified GSCG
tm

.  
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