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THE COMPLETE FINITELY AXIOMATIZED 
THEORIES OF ORDER ARE DENSE 

BY 

R. A M I T  A N D  S. S H E L A H  t 

ABSTRACT 

We prove a conjecture of Lauchli and Leonard that every sentence of the theory 
of linear order which has a model,  has a model with a finitely axiomatized 
theory. 

O. Introduction 

Ehrenfeuch [1] showed the decideability of the (first-order) theory of linear 

orders. Lauchli and Leonard [3], continuing an unpublished work of Galvin, 

published a proof there. They define a set of terms, and associate to each term ~- 

a model M (~') and show that every sentence which has a model, is satisfied by 

some M (~'), and the n-type of each M (z) can be computed. So what we actually 

prove is that for any 7, n there is a o-, M (o-)=-n M (7),  M (tr) has a finitely 

axiomatized theory. In fact we prove: 

THEOREM 0.1 For each sentence ~b in the theory of order which has a model, we 

can effectively find ~b,, such that ~b ^ ~, is a complete theory; and vaguely 

speaking, we have an algebraic characterization of the models of ~ A ~b,. 

We do not elaborate on the effectiveness. (We can check carefully the stages 

with trivial additions. But we can also note that in 2.9 we can effectively find all 

the possible relevant types of M(cr), check which of them is suitable, and choose 

one; then the version of 2.10 will be easy.) 

We can conclude: 

' T h e  authors  thank M. Rubin for his immense  altruistic help. He discussed with Shelah the first 
proof, checked Amit ' s  thesis, detected many errors in the manuscript  and has rewritten most  of it 
(from Def. 2.4 on) with a much better presentation. 
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CONCLUSION 0.2. The following questions are decideable : 

l) Is a sentence complete? 

2) Is a sentence No-categorical? (already proved in Shelah [7]). 

We can prove 

THEOREM 0.3. The following questions are decideable : 

1) M ('r)~- M (tr) 

2) M(~ ' )~  M (o') 

3) M (~') has a finitely axiomatizable theory. 

The theorems (including 0.3) were proved by Shelah in 1972 and announced in 

Rubin [6], but the proof was very complicated: based on choosing canonical 

terms (up to isomorphism, elementary equivalence) using also the term o'to + 

o"i to* as atomic. Amit, in his M.Sc. thesis, using a wider class of terms, gave a 

much simpler but less effective proof. This is a third proof of Shelah. Meanwhile, 

D. Myers in [4] announced that he had characterized the Boolean algebra of 

sentences of the theory of order; and, about the same time, Schmerl (private 

communications) also proved the Lauchli-Leonard conjecture. The first and 

second proofs try to reconstruct the direct component; this proof tries to 

reconstruct the smallest non-trivial components. 

1. Definition of the classes 

DEFINITION 1.1. The set of terms p~ will be defined by induction on n for 

every n, n < to as follows: 

1) p~ = {11, l z , ' " ,  lj} 

2) p~.+z is the set of all terms of the form ~" = E~=l r,, k - > 2 ,  where 

~'~ E Ul__<z,p~ and ~'~ U t~2,pi. 

REMARK. ~'' n is defined as r + . . . +  r,  n times, and we assume that the 

addition is associative. 

3) p~,+2 is the set of the following terms: 

a) r = r/(~'t, . . - , r , )  where r~ E U ,<2n+: pi and t ie  U ,_<2.pi(rt(~',,"',r.) 

= r t (o ' . ' - ' ,  o'~)if {1"1,"', I".} = {o'a,'", o'1}) 

b) z" o where ~" E p~,Up~o÷l 

c) r .o~* where ", 'Ep~Up~,,÷I 

d) r . z  where r E p ~ , t 3 p ~ , . ~ .  

REMARI<S. 

1) Here z always denotes the ordered set of integers. In fact d) is not 

necessary 
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2) for n ~  m it is easily seen that p~ n p ' m ~ Q  

3) there may be different terms which have the same interpretat ion.  Take  for 

instance (o" • n)to and o" • to or  (r~ + ... + ~-,). z and (r, + r,+, + "'" + ~'. + 1"1 + "'" + 

T i  I )  " Z 

4) if we write the term ~- = ~'1 + "" + r,  where r, = r,, + --" + r,,, z,, E p~.,  j = 

1 , . . . , l ,  for instance, we always mean  to the term r written correctly as 

TI -~- " ' "  -~ ~J-i-I -~ '~'1 -~- 'Ti2 ~- ' ' "  -~- ~'i1 "~ " r i + l  + " ' "  ~- "rn 

5) somet imes  we informally write z = 0, and mean that M ( r )  denotes  the 

empty  ordered  set. 

. def j j def U J 
DEFINITION 1.2 p ' =  U,<,~p, ,  p ,  = .<~pz., p. Uj<~,p~, p = U . < ~ p . .  

DEFINITION 1.3. The  rank of r deno ted  8 ( r )  will be the n for which r E p, .  

The  even rank of ~" deno ted  6~ ( r )  will be the 2n for which z E p2,, U p2,+1. 

Let L j be the language of linear order  with j unary predicates P , . . . ,  Pj. 

L %f U j<~L j. An  L J-model  will be a model  satisfying the axioms of the linear 

order  with j unary relations R l, " " ,  Ri, corresponding  to P , , . . . ,  Pj, which 

part i t ion the model  to j disjoint sets. By a model  we mean  an L J-model  for some 

j .  

DEFINITION 1.4. For every j and z E pJ we shall define an L j -model  M ( r )  by 

induct ion on 6 (~-) as follows: 

1) the model  M (r )  is defined up to isomorphism 

2) the sum of the models  E ~ t M ,  will be defined naturally 

a) if r = li then M ( r )  is a model  of one  e lement  

{x: R,(x)} = M ( r ) ,  {x: Rt(x)},~, = 

b) if r = ~'~+ "'" + r,  then M (~-) = Y~'-I M (~'~) 

c) if z = ~'i" to, r , .  to*, z~- z then M (r )  = Y,~t M~ where M~ ~ M ( r  0 , I  = 

to, to*, z respectively 

d) if r -- rl (~'~, "", %) then M (r )  = E,~o Mr where Q is a dense countable  

order  wi thout  first and last elements,  Q = U~'=~ Q, where for every i, 1 _-< i _-< n, 

Q, is dense in Q, and Q, = {r: r E Q, Mr ~ M(r . )}  i = 1 , - . - ,  n. 

DEFINITION 1.5. A convex set N of a model  M will be called an initial 

( terminal) segment  of M if there is a ~ M such that N includes the set 

{x: x < a } ({x : x > a }), or  if N is empty.  

THEOREM 1.6. (Cantor.)  I f M , = ( A ~ , < , R I , . . . , R ~ > ,  i = 1 , 2 ,  w h e r e A ' i s  

denumerable,  < is a dense order on A ~ without first and last elements, A ~ = 

U~'=l R ~, and R i, J = 1 , . . . ,  n, are disjoint sets dense in A ', i = 1, 2, then Mt  ~ M2. 
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LEMMA 1.7. Let r E p;, then for every convex set N in M (r)  there is tr E p; 

such that N = M (o') and 6~ (o') <= ~ (r ) .  

PROOF. By induction on 8 ( r ) .  

a) If ~5 ( r ) =  0 it is immedia te .  

b) If r = ~-, + - . .  + ~-, then e i ther  N is a convex set of M (r l ) ,  1 _-< i -< n, and 

the p roof  follows f rom the induct ion hypothesis ,  or  U ~,<~<i2M(r~)C N_C 

U ,,~-,-~,2 M(z,) ,  1 _-< il _-< i2 _-< n. In this case there  is an initial s egment  of N which 

is a te rminal  segment  of M (z,,) and a te rminal  s egmen t  of N which is an initial 

s egment  of M (~'i2)- By the induct ion hypothes is  on M (~-~,), M (%) we shall get 

'rtil, ~'1i2 , 61(Ttil) ~ ~l("$'il), 61(e/'tiz) ~ 61('~i2 ) such that  for  o- = r'~, + ~,,+l + "'" + r,~_, + r'~2, 

M(o-)  = N and 61(o-)_-< 6,(1-). (Note  that  ~-:,, r'~2 might  be 0.) 

c) If z = ~~. to, r • to*, r , -  z the p roof  is similar. For  example ,  if r - r , .  to 

then ei ther  N is a convex  set of M ( r , .  n)  for n < to and the case is clear  or  

M ( r , .  to)C_ N C_ M ( r , ) +  M ( z , .  to) by the induct ion hypothes is  on M (~-~) we 

shall get that  cr = r~ + r, • to (r~ might  be 0) .  

d) If r = 7/(~-~,'", r , )  then if N is a convex  set of M (z~), 1 - i _-< n,  the case 

is clear.  If not,  f rom Can to r ' s  t h e o r e m  (1.6) we shall get that  o" = r~ + r + r ;  

where  ~-',, r ;  are ob ta ined  by the induct ion hypothes is  on ri, ~'~ (~",, ~-) might  be 

0). 

THEOREM 1.8. (Lauchli  and Leonard . )  For every j, and a sentence ~ ~ L;,  

which has an L;-model, there is r E p; such that M (~-)1=$. 

. 

The  beginning of this sect ion is given with more  details in [3] and the proofs  of 

L e m m a s  2.2, 2.5, 2.9 can easily be ob ta ined  f rom there.  Let  ~ .  deno te  the set of 

all sentences  f rom L which are of quant i f ier  dep th  n. (Note  that  U .<~ qb -- L . )  

Let  T h .  ( M )  = {qJ E qb, : MI= ~b}. 

DEFINITION 2.1. Two  L ' - m o d e l s  M,,M2 will be called n -equ iva len t  

(M,- - - ,Mz)  iff Z h , ( M , ) =  Zh. (M2) .  

If t = Th ,  ( M )  where  M is an L ; - m o d e l ,  t will be  called an L ' - n - t y p e  and 

T(j,  n)  will deno te  the set of L ; - n - t y p e s .  

LEMMA 2.2. For every j, n < to, there are only finite number of L J-n-types. 

DEFINITION 2.3. For  every  convex  equiva lence  relat ion E on an L J-model  M 

and n < to let us define M / , E  as follows: M / , E  = ( { a / E , a  E M}, < , { R , } , ~ r )  

where  T = T(j, n ) a / E  denotes  the E - e q u i v a l e n c e  class of a ,  < is the o rder  on 

Sh:57



204 R. AMIT AND S. SHELAH Israel J. Math. 

M / , E  induced by the order on M, and R, is an unary relation on M/.E ,  
d e f  

R , = { a / E ' T h , ( M I a / E ) =  t} where t is some L ' -n- type .  Clearly M/~E is an 

L ' -model  for some j. 

LEMMA 2.4. Let M i = (E,s,~ Mi, E M,), j = 1,2, where (a, b) E E M, ifffor some 

i E I a, b E ]MiI  (we assume that the M~'s, i E I are pairwise disjoint L ~- 

models). Let N i = (P,P,N'),~rt~,,) where p N, ={i  li E I j and M~[=t}, j = 1,2; 

suppose N t =-.N 2 then M ~ =--,M 2. 

PROOF. One proves by induction on n that if d~ ~ I M~ 1, i = 1,. • . ,  m,j  = 

1, 2, (l~, . . .  , l~) and (/~, • • •, I~) have the same n-type in N ~ and N 2 respectively, 

i ~  i2 implies I~,~ li~, j =  1,2 and for every i =  1 , . . . , m ,  ti~ and ti~ have the 

same n-type in M~t, and M~. respectively, then ti~^ti~^.. .^ti~ and 
- 2 ^  - - 2 ^  ^ - 2  a~ a2 " "  am have the same n-type in M ~ and M 2 respectively. 

DEFINITION 2.5. For every L i model M and n E to we define a relation El, M. 

(If no confusion may arise we write El, instead of E~,M.) a'E~b' iff for 

a = min({a',  b'}) and b = max({a' ,  b'}) the following holds: for every [a~, bl)C_ 

[a, b), M r[a~, b~) is n-equivalent to a finite model. 

Clearly E2, is a convex equivalence relation. 

DEFINITION 2.6. For every L j model M and n @ to we define a relation E ~  

(abbreviated by E.) .  a E . b  iff one of the following conditions holds: 

1) aEa, b; 

2) there is a convex subset B C_ I M I and T_C T(j, n) such that a, b E B, for 

every t E T, t is the n-type of some finite model and for every c ,d  E B and 

t E T :  if c/E~,M<d/E1,M, then M has submodels N~,N2, N3 such that B_D 

IN, I < c / E ' o  M < IN21 < d / E L  M < IN31 C_B, N,]=t and IN,[ = a,/E',M for some 

a , i  = 1,2,3. 

LEMMA 2.7. Let M be an L J model, j E to, then for every n E to and a E I M I 

there is a finitely axiomatizable model which is n-equivalent to M r(a/E,) .  

PROOF. Let No be the submodel of M whose universe is a/E,.  

a) Suppose a /E ,  is not a dense order  of E~ equivalence classes. If N~ is 

n-equivalent to a finite model N, then certainly N, is finitely axiomatizable and 

we are through. Otherwise a lE .  has no last element or has no first element.  

Suppose a /E .  has a first element Xo and let {x, [i E to} be an unbounded strictly 

increasing sequence in a/E..  By the Ramsey theorem there is a subsequence 
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{ x ' ~ l i ~ t o  } and an LJ -n - theo ry  t of a finite model  N ~, such that if N~ is a 

submodel  of M whose universe is [x ', x'~+,), then for every  i > 0, N, I= t. Let  N O be 

a finite model  n-equivalent  to N,, and let N = N ° +  N ' . t o  then certainly 

N - - - . N o . I N ° I  is definable in N and since it is finite its theory is finitely 

axiomatizable.  So in order  to show that Th (N)  is finitely axiomatizable it suffices 

to prove that T h ( N '  • to) is finitely axiomatizable.  Suppose I N ' I  = m then the 

following set of axioms is a finite axiomatizat ion for T h ( N  ~- to): 

1) Every e lement  has a successor and there  is a first e lement .  

2) Every  e lement  is conta ined in a convex set with m elements  isomorphic  to 
N l" 

3) For every convex set A of cardinali ty m isomorphic  to N ' there  is a convex 

set B isomorphic  to N ~ such that A < B and for no x, A < x < B. If in addition 

I{x Ix < A}f _-> m there  is a convex set C isomorphic  to N ' s u c h  that C <  A and 

for no x, C < x < A.  

The  case when N has a last e lement  and when N has no first and no last 

e lements  are similar. 

b) If a / E ,  is a dense order  of E~,-equivalence classes then N~ is n-equivalent  

to M(r/(O-l, • • •, o-~ )) where  each M(o-~ ) is finite. Th ,  (M(r / (o - ,  • •., ok ))) is finitely 

axiomatizable,  so the lemma is proved.  

LEMMA 2.8. 

a) Let r = r~ • to and n C co then either M ( r ) / E ,  has a last e lement  or there are 

r~, r~, No and M~ such that 8,(r~), 81(r~)< 8j(r) ,  No-~ M(r~) ,  for every i E to, 

M, ~- M(rJ ) ,  M ( r )  = No + E ~  M~ and every element  of  M ( r ) / U ,  is included either 

in ] No l or in some I M, I, i E to. Ana logous  claims hold for f t .  to*, r~ " z and for 

El, replacing E,. 

b) For every r there is n ( r ) @  to such that for every n = > n(r ) ,  El. M~) = ~IM~').~T) 

and for every N , , N 2  such that IN,  I , ] N 2 [ E M ( r ) / E ' . ~ . ) ,  if N , = - . ~ N 2  then 

N~ =-. N2. 

c) Let no(r) = m a x ( n ( r ) , 4 ) ,  then for every n > no(r), EM. ~'~= ~ ' ~ ' )  = x~ no(.). 

PROOF. 

a) Suppose M ( r )  has not a last E~-equivalence class. W.l.o.g. we can assume 

that M ( r )  = E , ~  M', where  [M',[ = [ M( r , ) [  x {i} and a --> (a, i) is an isomorph-  

ism be tween M ( z , )  and M'i. Let  f ~ : l M ( r ) l ~  I M ( r ) [  be defined by f~((a, l)) = 

(a, l + i>. No E . - equ iva l ence  class of M contains some [M'i[ proper ly  for then it 

is easily seen that this class is a last e lement  of M ( r ) / E . .  So every equivalence 

class intersects at most  two consecut ive  [M'~f's. It follows easily that if 
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C E  IM('r) /E.I  and C A  IM;I =O then for every i, ~(C)EM(~ ' ) /E . .  Let  

C ~ M(~')/E° a , d  C n I = O. For  every  i G aJ let D, = {x {x ~ f M(~')] and 

for some y E ~ (C) ,  y =<x < ~+,(C)} and D ={x  Ix E ] M ( r ) [  and x < C}. Let  

M~ and N,, be the submodels  of M(~-) whose universes are D, and D 

respectively,  then for some r~ and r/,, M, ~ M(z',),  No ~ M(~-~;) and r~;, ~'~, No, M, 

fulfill the requi rements  of a). 

b) We prove  b) by induction on 6(~). When  6 ( z ) =  0 there  is nothing to 

prove.  Suppose b) is t rue for every  o- such that 6(or) < 6(z) .  It suffices to prove 

b) in the following cases: 

i )  ~- = 1-~ + ~2; 

ii) ~- = r / ( r , , . . . ,  ~'k); 

iii) z = ~',. w. The  case r = El=, ~'~ follows from i) by induction on k, and the 

cases z = ~',. w*, r = 7,.  z, are similar to iii). 

It is worthwhile  to notice that if N is a convex submodel  of M then for every  

. c ,o, = E' .Mrl  N I. 
i) Let  no = max(n(~-~), n(z2)). Suppose first that for  some n, E to every  

e lement  of M('r)/E',, is included ei ther  in M(z,)  or in M(I"2). W.l.o.g. n, >- no. 
Then  it is easily seen that for every  n >= n,, M('r)/E~, = M("gl)/E~+ M('r2)/E~. 

By induction hypothesis  on n(r~) there  is n2 _-> n, such that if N~ C_ M(r~), I N~ [ C 

M(7-~)/E~ and N,=-,2N2 then for every  n => n2, N, ---,N2. It is easily seen that 

n ( r ) =  n2 is as desired. 

Suppose now that for  every  n there  are a~ E M(~'~)/E'., i =  1,2, such that 

(a t ,  a 2 ) E  gr'M~)~. . It is easily seen that for  every  n>=no, E'. M~') = ~.o~'M~'). Let  

NoC_M(~') be the E',,~t'~-equivalence class which intersects both M(~-,) and 

M(z:). Let  n,>= no be such that for every  N,,N2 if IN~ I E M(~~)/E'., U{INol} ,  
i = 1,2, and N,~ , ,N2  then for every  n >- n,, N,=-,N2. It is easily seen that such n, 

exists and that n(~-)= n, is as desired. 

ii) ~-= "O(~',, '"", ~k). It is evident  that ei ther  for  every  n IIM(r)/E',[[ = 1 or 

there  is no such that for every  n >-_ no, M(z) /E ' ,  = ~(m(z,)/E~,, . . .  , M(~'k)/E',). 

Both  cases are easily dealt  with. 

iii) ~-= z , . w .  It is easily seen that if M(r)/E~, has a last e lement  then 

[[ M(~) /E~I  I = 1. So suppose there  is no such that M(~')/E~ has no last e lement .  

So by a) and i) we can assume that M(~')/E'.,,=M(~')/E',,, .w. n ( ~ ) =  

max (no, n(~-,)) is easily seen to fulfill the requ i rements  of b). 

c) Let  I NI  E M(r)/E,,o~.). We show that for every  n -> n0(r), I NI  ~ M(r) /E , .  
We assume that I NI  ~ M ( r ) / E ~ . )  since the o ther  case is trivial. Since no(z) => 4 

every  e lement  of N/E,~.)' has a first and a last e lement ,  and so since al'so 

no(z)_- > n(~'), for  every  n >= no(r), I N / E ~ , , I  = I N/E' .[  and every e lement  of 
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1 1 N/E~o(~) is n -equiva len t  to a finite model .  Since no(r) -equivalence of E,o(.)- 

equivalence classes implies n-equiva lence  for every  n it follows easily that for  

every  n -> no(T), 1N] • M(~')/E,. Q.E.D.  

THEOREM 2.9. For every m , n , j  and r E pJ there is a term o. such that 

M(O.)=-.M(r)/En,  tS,(o.) < t~,(r) or ~ ( r )  = O. (Note that cr ~ p~', j ' #  j.) 

PROOF. By induction on 8~(r), for  every  detail m, n,j. 

a) If ~ , (~-)=0 then ~- is a finite sum of terms from the set { 1 1 , " ' , 1 ~ }  so 

a(o.)=0. 
b) I f  8~(~-)= 2 i t  is easi ly seen that there is a f in i te number  of equivalence 

classes and the case is clear. 

c) Let  us first show that i f  ~" = 7~ + ~'2, n E ca and for  every m E ca there are o.1 

and o'2 such that M(~',)/En ~mM(o.~) and 8,(o.~)< 8 , ( r )  or ~ , (o . )=  0. Then  for 

every m • ca there  is a o. such that M(r)/E.=-nM(O.)  and (5,(o.)< ~5~(~'). 

This is t rue since there  are r~, l<- i , j -<2,  such that M(r~)~-M(r~+z~) ,  

M(r,)/En ~ M(r~,)/E~ + M(':~)/E,, i = 1,2, IIM(~'~)/E. [I, IIM(r~)/E~ II -<2 and 

M ( r ) / E .  -~ M(r])/E~ + M ( 1 , ) +  M(r~)/E..  (The rj  might be 0.) If m E ca is 

given, it is easy to show (by the induction hypothesis  on ~-~, ~'2, n and m + 2) that 

there  are o.', o.: such that M ( r l  )/E~ ==-m M(o- ' )  and 8~(o.') < 8~(~-~) or 8~(o.') = 0, 

i = 1,2 so o. = o.~+ 1, + 0.2 is as desired. 

Let  St(r)  > 0 and assume that the claim of the t heo rem is t rue for every  r '  such 

that 8 , ( r ' )  < 8~(~'). By the preceding claim we can assume that  r has one  of the 

following forms: 

i )  z = ~ ' ~ . c a ;  

ii) ~- = r / ( ~ - l , . . . ,  r k ) ;  

iii) ~ '=~ ' l . ca*  or r - - z , . z .  

i) By 2.8(a) there  are ~',~ and r[  such that M ( ~ ' ) ~ M ( r g + r [ - t o ) ,  ~1(~'~), 

8l(-r'~) < 8 , ( r ) ,  and M(~')/E~ ~ M(rg) /E.  + M(~'[)/E. • ca. Let  m ~ to and o.o and 

o.t be the terms the existence of which is assured by the induction hypothesis  for  

rg, r[  respect ively and m. Then  o .o+o . , ' t o  fulfills the r equ i remen t  of the 

theorem for ~" and m. 

ii) Ei ther  IIM(r)IEo II = 1 or M ( r ) I E ,  ~ r l ( M ( z , ) l E , , . . . , M ( z ~ ) I E . ) .  In 

both cases the existence of an appropr ia te  o. is easily proved.  Case (iii) is proved 

in the same way as case (i). Q .E .D.  

THEOREM 2.10. For every term r ~ pJ and every m ~ to there is a model M 

such that M ==-= M ( r )  and Th (M)  is finitely axiomatizable. 

PROOF. By induction on 8~(~'). If 8~(~')= 0 then M(~-) is finite, so there  is 
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nothing to prove. Suppose the claim of the theorem is true for every k < 61(~-). 

Let no be such that for every n => no and every a, b E M(~') a E . b  iff aE,ob. 

Suppose that the formula ~0(x, y) which says in every L j model, that xE,oy is of 

depth nj, and let n = max (m, nl + 2). Let M(tr) ---. M(r)/E, and ~(o-) < 61(r). 
By the induction hypothesis there is M ~ - , M ( t r )  such that Th(M' )  is finitely 

axiomatizable. Let {t, , ' . ' , tk}=T(l ' ,n) be the set of all n-types of E.-  

equivalence classes of M(r). (So the language of M ~ has a unary predicate P~ 

corresponding to every t, E TO, n).) For every 1 _-< i -_< k let M, be the model 

chosen in 2.7 such that Th(M,)=t~, and let M=(E,~IM,IM",E M) where 

M" ~ M ,  iff a ( ~ p y l  and (b ,c)EE ~ if[ a E IMIf for some a E IM~[ b,c E 
t M° I. By Lemma 2.4 M ~-, (M(r) ,  E . ' t " ) .  

In order to show that M rL j is finitely axiomatizable we first prove that for 

every a E f M'I ,  [M"J is an E.-equivalence class of M t L (  By the particular 

choice of the M,'s it is clear that every I M" I is included in some E,-equivalence 

class of M[L j. By the choice of n, the sentence q~, which tells that all 

E,~,-equivalent elements are E.-equivalent belongs to Th(M(r) ,  E,'"~), so it is 

true in M. So if b~ ~ IM"' I, i = 1,2, a, ~ a2 and (b~, b2) G E .  Mtt~ then (b,,b2) E 

E~/L', contradicting q~ is M. Thus every ]M a I is an E,-equivalence class of 

M[L(  Since Th (M ~) is finitely axiomatizable and E ,  M r L, is definable in M[L j, 
M rL ~ is finitely axiomatizable and the theorem is proved. 
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