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1. Polytropes – Derivation and Solutions of the Lane-Emden Equation

Polytropes are useful as they provide simple solutions (albeit in some cases via

numerical integration) for the internal structure of a star that can be tabulated and used

for estimates of various quantities. They are much simpler to manipulate than the full

rigorous solutions of all the equations of stellar structure. But the price of this simplicity is

assuming a power law relationship between pressure and density which must hold (including

a fixed constant) throughout the star.

We begin with the equations of mass continuity and of hydrostatic equilibrium. Since

there are three unknowns (pressure, density, and mass as a function of radius) and only

two equations, in order to get a solution we must either add more equations (i.e. energy

generation and transfer) or introduce an additional assumption.

For a polytrope, one assumes that gas pressure P = Kργ = Kρ(n+1)/n, where γ is

the adiabatic index (a parameter characterizing the behvaior of the specific heat of a gas)

and n is called the polytropic index. K is a constant. γ = (n + 1)/n. This adds a third

equation, and the set of three equations can then be reduced to a single differential equation

whose terms depend on n and on K, and solved.

The resulting equation is the called the Lane-Emden equation after the first people who

worked this out. A derivation is given below. It basically requires changing of variables and

manipulation of the three equations, but its derivation is otherwise straightforward. The

radius variable r is multipled by a constant which depends on n, K and other constants to

be rescaled into the variable ξ.

The constants for a specific model are Pc and ρc (the central density and pressure,

related to the constant K, as well as to the polytropic index n. From the solution we

hope to derive the total mass and radius, and the density, pressure, and temperature as a
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function of radius for the star.

We begin with the equation of continuity,

dM

dr
= 4πr2ρ(r),

and the equation of hydrostatic equilibrium,

dP

dr
= −GM(r)ρ(r)/r2.

Eliminating M(r) between these two equations, and replacing P by Kργ , we get

1

r2
d

dr
(
r2K

ρ
γργ−1dρ

dr
) = − 4πGρ.

First we rescale the radial variable, by the constant α, so r = αξ, where

α = [
n+ 1

4πG
Kρ1/(n−1)

c ]1/2.

Then we replace ρ(r) by θ(ξ), where ρ(r) = ρcθ
n(ξ).

This requires that at the center of the star where ξ = 0, θ(0) must be one. Furthermore,

since dP/dr approaches 0 as r → 0, we need dθ/dr = 0 at ξ = 0. These are the boundary

conditions for the solution. The outer boundary (the surface) is the first location where

ρ = 0, or equivalently θ(ξ) = 0. That location is called ξ1. The formal solution may have

additional zeros at larger values of ξ, but ξ > ξ1 is not relevant for stellar models.

We then get the Lane-Emden equation:
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1

ξ2
d

dξ
(ξ2

dθ

dξ
) = − θn.

The solutions of the Lane-Emden equation, which are known as polytropes, are functions

of density versus r expressed as θ(ξ). The index n determines the order of that solution. In

particular, the solution only depends on n, and can be scaled by varying Pc and ρc to give

solutions for stars over a range of total mass and radius.

For n = 0, the density of the solution as a function of radius is constant, ρ(r) = ρc.

This is the solution for a constant density incompressible sphere.

n = 1 to 1.5 approximates a fully convective star, i.e. a very cool late-type star such

as a M, L, or T dwarf.

n = 3 is the Eddington Approximation discussed below. There is no analytical

solution for this value of n, but it is useful as it corresponds to a fully radiative star, which

is, as we will see below, a useful approximation for the Sun.

1.1. Solutions of the Lane-Emden Equation

The Lane-Emden equation has analytical solutions for n = 0, 1, and 5 which are given

in Fig. 2. For n = 5, the first zero of θ(ξ), which is proportional to the radius of the

polytrope, occurs at infinity. For n > 5, the binding energy is positive, and hence such a

polytrope cannot represent a real star.

For all other polytrope indices n, a numerical solution to the Lane-Emden equation

must be calculated. A display of solutions for several values of n between 0 to 6 is given in

Fig. 2. Note that the radius of the star is defined by the first zero in the solution, and the

solution at larger values of ξ is not relevant for computing stellar models.
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Fig. 1.— Analytical solutions for the three cases of n for which such exist. The second line

is ξ1, the value of ξ at which the first zero of θ(ξ) happens, which defines the radius of the

polytrope.
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Fig. 2.— Solutions θ(ξ) to the Lane-Emden equation for various values of n. The black dot

along the horizontal line (denoting θ = 0) marks the value of ξ1 for each solution displayed.
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Fig. 3.— Constants of the polytrope solutions for several values of the polytropic index n.

From Chandrasekhar, “An Introduction to the Study of Stellar Structure”, 1939.
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2. The Eddington Solution

Let us assume a star where energy transfer is via radiation throughout. Let us also

assume that the ratio between the gas pressure and the total pressure is β, and that β is

constant throughout the star. Then Pgas = (ρkT )/(µmH) = βP . The radiation pressure is

(1− β)P = (1/3)aT 4.

Eliminating T between these two relations gives:

β4P 4(
µmH

ρk
)4 =

3(1− β)

a
P.

Simplifying this for P gives:

P = (
k

µmH

)4/3(
3(1− β)

aβ4
)1/3 ρ4/3.

Thus this is a polytropic equation of state with γ = 4/3 and hence n = 3. This case

was first worked out by Arthur Eddington, and hence is called the Eddington Solution. It

is appropriate for the fully radiative case, which is a reasonable approximation for the Sun.

The constants and solution are given in Fig. 4.

Note from the two appended figures how well the n = 3 polytrope fits the Solar relation

from the best available solar interior models even though nuclear processes and details of

energy transfer are not included.
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Fig. 4.— The solution for a n = 3 polytrope (the Eddington Standard Model). This figure

is from Astrophysics I: Stars by Bowers and Deeming, but the original source is the book by

A. Eddington, “The Internal Constitution of the Stars”, 1959.
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Fig. 5.— A comparison of the behavior of mass as a function of radius for the Sun: red

line – the standard Solar model, blue line – n = 3 polytrope, black line – linear density law.

Note how well the n = 3 polytrope fits the Solar relation even though nuclear processes and

details of energy transfer are not included.
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Fig. 6.— A comparison of the behavior of pressure as a function of radius for the Sun: red

line – the standard Solar model, blue line – n = 3 polytrope, black line – linear density law.

Note how well the n = 3 polytrope fits the Solar relation.
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3. The Isothermal Sphere

An isothermal object has T = constant, so P ∝ ρ. This is a polytrope with γ = 1

corresponding to n = ∞. The proceedure used above to derive the Lane-Emden equation is

not valid for n = ∞. So we go back to the equation of hydrostatic equilibrium combined

with that for mass continuity, which becomes:

1

r2
d

dr
(
r2

ρ

kT

µmH

dρ

dr
) = − 4πGρ.

We need a different change of variable than that used earlier; it is: ρ = ρce
−φ and

r = [
kT

4πGµmHρc
)1/2ξ = αξ.

Here α is a constant as T is constant. The boundary conditions are set as: φ = 0, ξ = 0,

and dφ/dξ = 0.

There is no analytical solution to the problem of the isothermal sphere. Numerical

integration is required. The density does not reach 0 at a finite value of r, so the solution

extends to infinity. The total mass is also infinite. So when an isothermal sphere is used

in astrophysics (for example for stars in clusters) the solution must be truncated at some

finite radius.
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4. White Dwarfs and Neutron Stars

The equation of state for a non-relativistic dengenerate gas is P ∝ ρ5/3, and for a

highly relativistic degenerate gas is P ∝ ρ4/3. (These will be derived in a separate note

dealing with the equation of state of a gas.)

White dwarfs and neutron stars can be approximated as fully degenerate stars, with the

lower mass white dwarfs being approximated as a case of non-relativistic degeneracy, and

the higher mass white dwarfs and all neutron stars are cases of fully relativistic degeneracy.

We thus can represent their internal structure by polytropes with n = 1.5 for the NR

case, and n = 3 for the relativistic case.

Polytropes have a definite relationship for their total mass and their total radii, in

terms of the constants Pc and ρc and the polytropic index n.

R = aξ1 = [
(n+ 1)K

4πG
]1/2 ρ(1−n)/2n

c ξ1.

Recall that ξ1 is the first zero of the solution to the Lane-Emden equation for θ(ξ).

For the total mass, we integrate, so that

M =
∫ R

0
4πr2ρdr = 4π[

(n + 1)K

4πG
]3/2 ρ(3−n)/2n

c ξ21 |
dθ

dξ ξ1

| .

Eliminating ρc between the solution for the mass and for the radius gives the mass-radius

relation for polytropes,

M ∝ R(3−n)/(1−n).

We thus find that for non-relativistic degenerate stars with γ = 5/3 ≡ n = 1.5,
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M ∝ R−3. The radius of a more massive white dwarf is smaller ! The final result for the

total mass and radius in this case, where µe is a constant from the equation of state related

to the chemical composition of the material, is

M = 0.70 (
R

104 km
)−3 (

µe

2
)−5 M⊙.

R = 1.12× 104 (
ρc

106 gm cm−3
)−1/6 (

µe

2
)−5/6 km.

For the highly relativistic (i.e. very high density) case, γ = 4/3 ≡ n = 3, M is

independent of ρc and hence of the stellar radius. The mass is FIXED and for white dwarfs

is called the Chandrasekhar limit. Thus as the central density increases, the electrons

become more relativistic, and the solution for the structure of such a highly degenerate star

has a total mass asymptotically approaches this value.

MChandra = 1.457 (
2

µe
)2 M⊙.

For neutron stars, the value of µ is different, but the general concept is the sam.e

In order to understand why this is happening, we need to understand degeneracy.

Please see the discussion on the equation of state for a qualitative simple arguement of why

this happens.


