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Image denoising in the wild
Noisy image Laplacian smoothing TV denoising

θ̂LS = arg min
θ
‖θ − y‖2 + λ‖Dθ‖22 = (λDTD + I)−1y︸ ︷︷ ︸

a linear smoother

θ̂TV = arg min
θ
‖θ − y‖2 + λ‖Dθ‖1 — not a linear smoother

• TV-denoising yields a cleaner and sharper denoised image.

• Quantitatively 35% less mean square error (MSE).

• But computationally more expensive.
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This talk will be about

Theoretically quantifying the denoising performance

• By connecting it to nonparametric regression.

• How fast does MSE converge to 0 as the image gets finer
resolutions?

Information-theoretic limit

• How fast does it get for any method?

Linear vs. Nonlinear estimation

• Could simpler methods perform well/optimally?
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Outline

• Locally adaptive nonparametric regression

1 Univariate trend filtering
2 Graph trend filtering

• Discrete TV-classes beyond 1D

3 Minimax rate and the limit of linear smoother

4 / 50



1 Univariate trend filtering
(Tibshirani, 2013, Annals of Statistics)

5 / 50



Classical nonparametric regression

Univariate nonparametric regression: observe independent draws
from model

yi = f0(xi) + εi, i = 1, . . . n

Conditional on X = xi, error εi assumed to have zero mean and
constant variance. Want to estimate

f0(x) = E[Y |X = x]

Rich literature, lots of interesting work. E.g., some key words:

• Splines

• Kernels

• Wavelets

Trend filtering: close relative of spline methods; relative newcomer
in an old field.
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Splines

A kth degree spline is a kth degree piecewise polynomial, with
continuous derivatives of orders 0, 1, . . . k − 1 at its knots

The added (higher-order) continuity constraints make the function
smoother; think bias-variance tradeoff, this decreases the variance.
Splines play a ubiquitous role in nonparametric modeling ...
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Two spline estimators

• Smoothing spline (Schoenberg 1946; Reinsch 1967; Wahba
1990) estimate of order k is defined by

min
f

n∑
i=1

(
yi − f(xi)

)2
+ λ

∫ 1

0

(
f (

k+1
2

)(t)
)2
dt

Solution is a natural spline of degree k with knots at each
x1, . . . xn

• Locally adaptive regression spline (Mammen & van de Geer
1997) estimate of order k is defined by

min
f

1

2

n∑
i=1

(
yi − f(xi)

)2
+ λ · TV(f (k))

Solution is a spline of degree k whose knots are in x1, . . . xn
when k = 0 or 1, and are in ??? when k ≥ 2
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Properties comparison

Smoothing splines Locally adaptive splines

• Solution f̂ =
∑n

j=1 θ̂jηj ,
for a natural kth degree
spline basis η1, . . . ηn

• Solution (approximate)
f̂ =

∑n
j=1 θ̂jgj , for kth

degree splines g1, . . . gn

• Computable in O(n)
operations

• Computable in ≈ O(n3)
operations

• Coefficients θ̂1, . . . , θ̂n are
`2-regularized

• Coefficients θ̂1, . . . , θ̂n are
`1-regularized

• Places knots at all data
points x1, . . . xn

• Selects knots as a subset of
x1, . . . xn

• Globally smooth, or
globally wiggly

• Adapts to appropriate local
level of smoothness
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Example: Heterogeneous smoothness
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Smoothing spline, df=19
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Locally adaptive regression spline, df=19

Oversmoothed on right Adapts throughout
(any linear smoother) (both)
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Example: Heterogeneous smoothness
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Smoothing spline, df=19
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Locally adaptive regression spline, df=19

Oversmoothed on right Adapts throughout
(any linear smoother) (both)
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Example: Heterogeneous smoothness
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Smoothing spline, df=30
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Locally adaptive regression spline, df=19

Undersmoothed on left Adapts throughout
(any linear smoother) (both)
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Example: Heterogeneous smoothness
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Smoothing spline, df=30
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Trend filtering, df=19

Locally adaptive splines
Trend filtering

Undersmoothed on left Adapts throughout
(any linear smoother) (both)
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Example: Heterogeneous smoothness
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●

●
●

●
●
●

●

●
●
●

●
●
●

●

●

●
●

●●
●
●●

●

●

●
●●

●

●

●

●

●
●
●

●

●●●

●
●

●
●

●
●

●●

●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●
●

●●●

●

●

●
●●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Trend filtering, df=19

Locally adaptive splines
Trend filtering

Undersmoothed on left Adapts throughout
(any linear smoother) (both)
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Trend filtering

Trend filtering (Steidl et al. 2006; Kim et al. 2009; T. 2014) can be
seen as a discrete approximation to locally adaptive spline problem

min
f

1

2

n∑
i=1

(
yi − f(xi)

)2
+ λ · TV(f (k))

≈ min
β∈Rn

1

2
‖y − β‖22 + λ‖D(k+1)β‖1

via TV(f (k)) ≈
∫ 1
0 |f

(k+1)(t)| dt ≈ ‖D(k+1)β‖1, where D(k+1) is a
discrete derivative operator of order k. Recursive definition:

D(1) =

[ −1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . .
0 0 0 . . . −1 1

]
, and for k = 1, 2, 3, . . .,

D(k+1) = D(1) diag

(
k

xk+1 − x1
,

k

xk+2 − x2
, . . .

k

xn − xn−k

)
D(k)
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Trend filtering in continuous space

Intuitively, trend filtering solution θ̂ should exhibit the structure of
kth degree piecewise polynomial (since it penalizes changes in kth
derivatives across inputs)
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This idea can be formalized using falling factorial functions
(W., Smola, Tibshirani. 2014)
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Convergence theory

Assume observations from the model

yi = f0(xi) + εi, i = 1, . . . n

for i.i.d. sub-Gaussian errors, and with f0 in the class, for constant
C > 0,

Fk =
{
f : TV(f (k)) ≤ C

}
Denote by ‖ · ‖n the empirical norm, as in ‖f‖2n = 1

n

∑n
i=1 f(xi)

2

From Donoho & Johnstone (1998): minimax rate over Fk is

min
f̂

max
f0∈Fk

E‖f̂ − f0‖2n = Θ(n−(2k+2)/(2k+3))

Meanwhile, linear smoothers achieve rate at best n−(2k+1)/(2k+2) ...
this applies to smoothing splines, kernels, local polynomials, RKHS
estimates, etc.!
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Note: locally adaptive regression splines achieve the minimax rate,
with λ = Θ(n1/(2k+3)) (Mammen & van de Geer 1997)

Theorem (Tibshirani, 2014): (informally) Trend filtering with
λ = Θ(n1/(2k+3)) is “almost” equivalent to the locally adaptive
splines, therefore, achieve the minimax rate

OP(n−(2k+2)/(2k+3))

for estimation over Fk.

Same statistical properties, but much faster in computation!
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Summary of univariate nonparametric regression
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Two interesting points from the picture

• In 1D nonparametric regression/signal denoising, statistically
speaking, we get local-adaptivity for free!

• But, we paid a computational price: it cannot be achieved by
linear methods.

Question: Does the same picture extend to higher dimension?
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2 Trend filtering on Graphs
(W., Sharpnack, Smola, Tibshirani, 2015 AIStats+JMLR)
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Nonparametric regression on graphs

Graph smoothing: given a graph G = (V,E), with vertices denoted
V = {1, . . . n}, we observe

yi = µi + εi, i = 1, . . . n

Errors εi assumed to have zero mean. Want to estimate underlying
signal µ, assumed to be smooth with respect to edges E

In comparison to univariate case, a lot less literature. E.g.,

• Eigen-based methods

• Laplacian smoothing

• Wavelets on graphs

Newcomer in this field: graph trend filtering, an extension of the
univariate technique with analogous benefits
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Graph trend filtering

Graph trend filtering (W., Sharpnack, Smola, Tibshirani, 2015)
solves

min
θ∈Rn

‖y − θ‖22 + λ‖∆(k+1)θ‖1

where ∆(k+1) is a graph difference operator of order k + 1, over G

Two key properties of univariate trend filtering:

• Computationally fast

• Locally adaptive

With suitably defined difference operators ∆(k+1), k = 1, 2, 3, . . .,
graph trend filtering will share these properties
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Discrete differences over graphs

Given graph G = (V,E) with V = {1, . . . n} and E = {e1, . . . em}

• Define the first order graph difference operator ∆(1) to be the
edge incidence matrix of G, an m× n matrix, whose `th row is

D` = (0, . . .−1
↑
i

, . . . 1
↑
j

, . . . 0)

if the `th edge is e` = {i, j}
• For higher orders, use the recursion:

∆(k+1) =

{
(∆(1))T∆(k) for k odd,

∆(1)∆(k) for k even

I.e., for D the edge incidence matrix, and L=DTD the Laplacian:

∆(1) = D, ∆(2) = L, ∆(3) = DL, ∆(4) = L2, . . .
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Constant order

The penalty for constant order graph trend filtering:

‖∆(1)θ‖1 = ‖Dθ‖1 =
∑
{i,j}∈E

|θi − θj |

Estimate θ̂ is piecewise
constant over G

(This is also known as
the graph fused lasso or
graph TV-denoising)
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Linear order

The penalty for linear order graph trend filtering:

‖∆(2)θ‖1 = ‖Lθ‖1 =

n∑
i=1

ni

∣∣∣∣θi − 1

ni

∑
{i,j}∈E

θi

∣∣∣∣

Estimate θ̂ is “piecewise
linear” over G
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Quadratic order

The penalty for quadratic order graph trend filtering:

‖∆(2)θ‖1 = ‖DLθ‖1 =
∑
{i,j}∈E

∣∣∣∣(niθi−∑
{i,`}∈E

θ`

)
−
(
njθj−

∑
{j,`}∈E

θ`

)∣∣∣∣

Estimate θ̂ is “piecewise
quadratic” over G
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A family of graph differences

What have we done? To recap:

• For odd k, the (k + 1)st order differences are given by taking
first differences of kth differences:

∆(k+1) = D∆(k)

• For even k, the (k + 1)st order differences are given by taking
second differences of (k − 1)st order differences

∆(k+1) = L∆(k−1)

In general, ∆(k+1) is structured enough that we can efficiently solve
graph trend filtering problems, even over large graphs
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Comparisons and interpretations

Laplacian smoothing (Belkin & Niyogi 2002; Smola & Kondor 2003)
estimate is given by

min
θ∈Rn

‖y − θ‖22 + λθTLθ

Generalize to higher-orders by replacing L with Lk+1, for some k

• Laplacian smoothing: `2 penalty θTLk+1θ = ‖(Lk+1)
1
2 θ‖22

• Graph trend filtering: `1 penalty ‖∆(k+1)θ‖1 = ‖(Lk+1)
1
2 θ‖1

• Just like in univariate case, the latter is better at picking up
local level of smoothness

When k = 0 and the graph being a grid:

• Graph trend filtering ≡ TV-denoising.

• Laplacian smoothing ≡ an instance of Low-Pass Filtering.
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Example: Heteregeneous smoothness

Truth Data Trend filter, 68 df
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Mean squared errors (averaged over 10 simulations):
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Event detection on New York City Taxi counts
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Graph-based Transductive Learning on UCI Datasets

We apply to plain classification problems:
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The challenges for a unified theory for GTF

Assume observations from the model

yi = θ0i + εi, i = 1, . . . n

where errors are i.i.d. Gaussian, and ‖∆(k+1)θ0‖1 is well-controlled.
This is more challenging to analyze than Euclidean settings

• Inexorable dependence on the underlying graph G; note that
‖∆(k+1)θ0‖1 being small is a statement both about G and θ0

• Not really any other rates to compare to

• No general notion of optimality (minimax rates)

Theoretical results are separated by the properties assumed about
the underlying graph. One such property: graph incoherence
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3 Total Variation classes beyond 1D
(Sadhanala, W., and Tibshirani, 2016 to appear in NIPS)
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Defining the minimax problem

An estimator θ̂ : Rn → Rn that takes in θ0 + i.i.d. Gaussian noise
and produces an estimator.

Mean square error:

MSE(θ̂, θ0) =
1

n
‖θ̂ − θ0‖22.

Minimax risk:

R(K) = min
θ̂

max
θ0∈K

E
[
MSE(θ̂, θ0)

]
.

Minimax linear risk:

RL(K) = min
θ̂ linear

max
θ0∈K

E
[
MSE(θ̂, θ0)

]
,
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d-dimensional Discrete TV-class

Define “function” classes

TV Classes: Fd(Cn) =
{
θ : ‖Dθ‖1 ≤ Cn

}
,

Sobolev Classes: Md(C
′
n) =

{
θ : ‖Dθ‖2 ≤ C ′n

}
,

Where D is the incidence matrix for the d-dimensional grid graph
with a total of n vertices.

Recall that: When d = 1, Johnston and Donoho (1998) showed that

R(F1(C)) � n−2/3.

and the minimax linear rate much slower

RL(F1(C)) � n−1/2.

What happens when d > 1 is an open problem!
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For (continuous) Sobolev classes, the minimax rates are the
standard nonparametric rates

n−2/(2+d).

Curse of dimensionality: As d increases the rate gets slower.

We would intuitively expect that the minimax rates on TV-classes
should also get slower with increasing d.
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A somewhat surprising upper bound for TV-denoising

Theorem (Hütter and Rigollet, 2016): Total variation denois-
ing estimator obeys

MSE(θ̂TV, θ0) = OP

(
Cn log n

n

)
for d = 2,

MSE(θ̂TV, θ0) = OP

(
Cn
√

log n

n

)
for d ≥ 3,

Isn’t this too good to be true?
From 1D to 2D, the rate suddenly becomes parametric rate!
Did we get away from the “curse of dimensionality”?
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An even more surprising upper bound for a trivial estimator

Lemma (Sadhanala, W. and Tibshirani, 2016): A trivial es-
timator θ̂mean that outputs ȳ1 obeys

sup
θ0∈F(Cn)

E[MSE(θ̂mean, θ0)] = O

(
σ2 + C2

n log n

n

)
Note that:

• θ̂mean is a linear smoother!

• If Cn is a constant, then the trivial estimator performs as well
as TV-denoising!

The only logical explanation: Cn = O(1) is a trivial region! In other
word, Cn should increase with n!
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Matching lower bounds for the surprising upper bounds

Theorem (Sadhanala, W. and Tibshirani, 2016): For con-
stant d, and nontrivial region of Cn:

R(Fd(Cn)) � σ2 + σCn
n

.

RL(Fd(Cn)) � σ2 + C2
n

n
.

• θ̂TV is optimal for the TV-class!

• θ̂mean is an optimal linear smoother for the TV-class!

• Spectacular failure: No linear smoother can do better than a
trivial linear smoother, in 2-dim and above!
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Minimax rate and minimax linear rate

tĞĚŶĞƐĚĂǇ͕��ƵŐƵƐƚ�Ϯϰ͕�ϮϬϭϲ

42 / 50



Minimax rate and minimax linear rate

This still does not solve our problem: where did the
“Curse-of-dimensionality” go?
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A “canonical” scaling

Interpreting the results in the context of continuous space
function-classes in [0, 1]d.

1. The Sobolev class has the canonical nonparametric rate n−
2

2+d .

2. The TV class is big enough to contain the Sobolev class.

The canonical scaling of Cn is:

TV-class: Fd(n1−1/d)

Sobolev-class: Md(n
1/2−1/d)
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The big picture for d-dim problems
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An interesting phase-transition

Function class Dimension 1 Dimension 2 Dimension d ≥ 3

TV ball n−2/3 n−1/2
√

log n n−1/d
√

log n

Sobolev ball n−2/3 n−1/2 n−
2

2+d

Table: Summary of rates for canonically-scaled TV and Sobolev spaces.

Remarks:

• When d = 2, there is a
√

log n gap between the minimax rates
of TV-class and the Sobolev class contained in it.

• When d ≥ 3, there is a polynomial gap. We no longer get
adaptivity for free.

• Open problem: Is TV-denoising minimax in Sobolev? If not, is
there an algorithm that is simultaneously minimax in TV and
Sobolev?
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A few notes about proof techniques.

For upper bounds:

• A d−dim grid’s Laplacian matrix can be diagonalized by DCT
and inverse DCT.

• Prove that D is constant incoherent.

• Careful calculations of the partial sum of the spectrum.

For lower bounds:

• Embedding a big `1 ball inside the TV-ball.

• Gaussian model selection (Birgé and Massart, 2001) .

• Linear smoother lower bound: use orthosymmetric and
quadratically convex set (Donoho, Liu MacGibbon, 1990).
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To reiterate the main points

• We derive trend filtering for smoothing heterogeneous signals
on graphs.

• Define discrete TV-classes and characterized its minimax rates.

• Show that linear smoothers can fail spectacularly.

• The extra computational cost for solving GTF is often worth it.
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The story of trend filtering, linear smoothers
and the price of local adaptivity in d-dim TV-classes
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