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Image denoising in the wild
Noisy image Laplacian smoothing TV denoising

W

915 — axgmin |0 — |2 + N|DOJ3 = ADTD + 1)1y
0
a linear smoother
N TV _ : 2 .
0 = argmin ||9 - y” + )\||D0||1 — not a linear smoother
0

e TV-denoising yields a cleaner and sharper denoised image.
e Quantitatively 35% less mean square error (MSE).

e But computationally more expensive.
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This talk will be about

Theoretically quantifying the denoising performance
e By connecting it to nonparametric regression.

e How fast does MSE converge to 0 as the image gets finer
resolutions?

Information-theoretic limit

e How fast does it get for any method?

Linear vs. Nonlinear estimation

e Could simpler methods perform well/optimally?



Outline

e Locally adaptive nonparametric regression

1 Univariate trend filtering
2 Graph trend filtering

e Discrete TV-classes beyond 1D
3 Minimax rate and the limit of linear smoother
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1 Univariate trend filtering
(Tibshirani, 2013, Annals of Statistics)
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Classical nonparametric regression

Univariate nonparametric regression: observe independent draws
from model

yi = folzs) +€, i=1,...n

Conditional on X = z;, error ¢; assumed to have zero mean and
constant variance. Want to estimate

fo(z) = E[Y|X = z]

Rich literature, lots of interesting work. E.g., some key words:

e Splines
e Kernels

e Wavelets

Trend filtering: close relative of spline methods; relative newcomer
in an old field.

6
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Splines

A kth degree spline is a kth degree piecewise polynomial, with
continuous derivatives of orders 0,1,...%k — 1 at its knots

o%;i"’ o % %;90 o %Y
Q20 \C S o o .
o 00 o 00

The added (higher-order) continuity constraints make the function

smoother; think bias-variance tradeoff, this decreases the variance.

Splines play a ubiquitous role in nonparametric modeling ...
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Two spline estimators

Smoothing spline (Schoenberg 1946; Reinsch 1967; Wahba
1990) estimate of order k is defined by

1 k+1
mln Z —i—)\/ (f(T)(t))zdt
0

Solution is a natural spline of degree k with knots at each
Tly...-Tp

Locally adaptive regression spline (Mammen & van de Geer
1997) estimate of order k is defined by
l — 2
min 53 (= f(@)* + A TV(Y)
i=1
Solution is a spline of degree k whose knots are in z1,...x,
when &£ =0 or 1, and are in 7?7 when k£ > 2
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Properties comparison

Smoothing splines

Solution f = Py éjnj,
for a natural kth degree
spline basis 71, ... 7,

Computable in O(n)
operations

~

Coefficients él, ...,0, are
{o-regularized

Places knots at all data
points x1,...xy,

Globally smooth, or
globally wiggly

Locally adaptive splines

e Solution (approximate)
f= Z?:l ngj, for kth
degree splines g1,...gn

e Computable in ~ O(n?)
operations

A~

e Coefficients 91, ...,0, are
£1-regularized

e Selects knots as a subset of
T1y...Tp

e Adapts to appropriate local
level of smoothness
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Example: Heterogeneous smoothness

Smoothing spline, df=19 Locally adaptive regression spline, df=19
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Example: Heterogeneous smoothness

Smoothing spline, df=19 Locally adaptive regression spline, df=19

T T T T T T T T T T
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

Oversmoothed on right Adapts throughout

1.0
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Example: Heterogeneous smoothness

Smoothing spline, df=30 Locally adaptive regression spline, df=19

T T T T T T T T T T
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

Undersmoothed on left Adapts throughout

1.0
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Example: Heterogeneous smoothness

Smoothing spline, df=30

Trend filtering, df=19

10

—— Locally adaptive splines

Trend filtering

T T T T
0.2 0.4 0.6 0.8

Undersmoothed on left

T T T T
0.2 0.4 0.6 0.8

Adapts throughout

1.0
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10

Example: Heterogeneous smoothness

Smoothing spline, df=30

Trend filtering, df=19

10

—— Locally adaptive splines
= = Trend filtering

T T T T
0.2 0.4 0.6 0.8

Undersmoothed on left
(any linear smoother)

T T T T
0.2 0.4 0.6 0.8

Adapts throughout
(both)

1.0
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Trend filtering

Trend filtering (Steidl et al. 2006; Kim et al. 2009; T. 2014) can be
seen as a discrete approximation to locally adaptive spline problem

n

1

. 2
min 53 (5= F@)* + A~ TV()
1= 1
~ - A D (k+1)
nin 5 IIy B3+ Al )8l
via TV(f®) = [ fE0 (1) dt ~ [ DED 5], where DETD s a
dlscrete derlvatlve operator of order k. Recursive definition:
-1 1 0 0 0
D(l):[ o St 0 0], and for k=1,2,3,...,
0 0 0 —1 1
DO — DO diag < L . ) p®
Tt — T1 Thyo — T2 Tp — Tp_k
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Trend filtering in continuous space

Intuitively, trend filtering solution 6 should exhibit the structure of
kth degree piecewise polynomial (since it penalizes changes in kth
derivatives across inputs)

10 12

8

Constant, k=0 Linear, k=1 Quadratic, k =2
(Fused lasso)

This idea can be formalized using falling factorial functions
(W., Smola, Tibshirani. 2014)
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Convergence theory
Assume observations from the model
yi:fO(mi)—i_e% Zzlan
for i.i.d. sub-Gaussian errors, and with fy in the class, for constant

C >0,
=0 Fr={f:TV(f®) <0}

Denote by || - ||;, the empirical norm, as in || f||2 = 13" | f(x;)?
From Donoho & Johnstone (1998): minimax rate over Fj is

min max E||f — fol[2 = ©(n~ F2/2h+9)
f fo€F%

Meanwhile, linear smoothers achieve rate at best n~(2k+1)/(2k+2)

this applies to smoothing splines, kernels, local polynomials, RKHS
estimates, etc.!
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Note: locally adaptive regression splines achieve the minimax rate,
with A = O(n/(¥+3)) (Mammen & van de Geer 1997)

Theorem (Tibshirani, 2014): (informally) Trend filtering with
A = O(n!/(2k+3)) is “almost” equivalent to the locally adaptive
splines, therefore, achieve the minimax rate

OP(n—(2k+2)/(2kz+3))

for estimation over Fy..

Same statistical properties, but much faster in computation!
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Summary of univariate nonparametric regression

Wa-VJC‘T/ !'JC ﬂ&os(ﬁvé
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Two interesting points from the picture

e In 1D nonparametric regression/signal denoising, statistically
speaking, we get local-adaptivity for free!

e But, we paid a computational price: it cannot be achieved by
linear methods.

Question: Does the same picture extend to higher dimension?
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2 Trend filtering on Graphs
(W., Sharpnack, Smola, Tibshirani, 2015 AlStats+JMLR)
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Nonparametric regression on graphs

Graph smoothing: given a graph G = (V, E), with vertices denoted
V ={1,...n}, we observe

yi:Mi+€i7 Zzlan

Errors ¢; assumed to have zero mean. Want to estimate underlying
signal p, assumed to be smooth with respect to edges F

In comparison to univariate case, a lot less literature. E.g.,
e Eigen-based methods
e Laplacian smoothing

e Wavelets on graphs

Newcomer in this field: graph trend filtering, an extension of the
univariate technique with analogous benefits



Graph trend filtering

Graph trend filtering (W., Sharpnack, Smola, Tibshirani, 2015)

solves
min [y — 013 + A|AFTD0],
OcR™

where A*1) is a graph difference operator of order k + 1, over G

Two key properties of univariate trend filtering:
e Computationally fast

e Locally adaptive

With suitably defined difference operators AFRTD =123 ..
graph trend filtering will share these properties
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Discrete differences over graphs
Given graph G = (V, E) with V. ={1,...n} and E = {e1,...en}
o Define the first order graph difference operator A(Y) to be the

edge incidence matrix of GG, an m X n matrix, whose £th row is

Di=(0,...—1,...1
= ( ; :
j

i

,...0)

if the /th edge is e, = {i, j}

e For higher orders, use the recursion:

Al _ (AMYTAK) for k odd,
1 AMAR for k even

l.e., for D the edge incidence matrix, and L = DT’ D the Laplacian:
AD=p A® =1 A® =pL AW =012 .
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Constant order

The penalty for constant order graph trend filtering:

1A = D]y = D 16— 05
{i,j}€E

Estimate 6 is piecewise
constant over G

(This is also known as
the graph fused lasso or
graph TV-denoising)
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Linear order
The penalty for linear order graph trend filtering:

n

1AP6]|1 = || L6l =Y ns

=1

1
Oi—— > b

' {ij}eE

Estimate 0 is “piecewise
linear” over G
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Quadratic order

The penalty for quadratic order graph trend filtering:

(nibi= > 0c)=(ns05= > )

{il}eFE {j,}eE

IAP6], = IDLOy = )
{i,j}€F

Estimate 6 is “piecewise
quadratic” over G
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A family of graph differences

What have we done? To recap:

e For odd k, the (k + 1)st order differences are given by taking
first differences of kth differences:

A(kJrl) — DA(k)

e For even k, the (k + 1)st order differences are given by taking
second differences of (k — 1)st order differences

Ak+D) — 1 A(E=1)

In general, A1 is structured enough that we can efficiently solve

graph trend filtering problems, even over large graphs
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Comparisons and interpretations

Laplacian smoothing (Belkin & Niyogi 2002; Smola & Kondor 2003)
estimate is given by

i — 0|3+ 20710
min ly — 6]l +

Generalize to higher-orders by replacing L with L¥*1, for some k
o Laplacian smoothing: ¢, penalty 67 LF+10 = ||(L*+1)z6)2
o Graph trend filtering: ¢; penalty |[A®+Dg|, = ||(LF1)20]|,

e Just like in univariate case, the latter is better at picking up
local level of smoothness

When k£ = 0 and the graph being a grid:
e Graph trend filtering = TV-denoising.
e Laplacian smoothing = an instance of Low-Pass Filtering.
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Example: Heteregeneous smoothness

Truth Data Trend filter, 68 df

Lap smooth, 68 df Lap smooth, 132 df Wavelets, 160 df
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Mean squared errors (averaged over 10 simulations):
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S — « Trend filtering
e - Laplacian smoothing
« Wavelet smoothing
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Degrees of freedom
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Event detection on New York City Taxi counts
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Sparse trend filtering
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Sparse Laplacian smoothing
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Graph-based Transductive Learning on UCI Datasets

We apply to pIaln classification problems:

|:| MAD-GTF k=0 O
X MAD-GTF k=1
1.2f 1
O O MAD-GTF k=2
—— MAD-Laplacian
@ 1.1 O 1
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o X X 1)
£ 0.9F o 1
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0.8 : : (©] 8
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O ¥ @ 5 et e O 3 > oo
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The challenges for a unified theory for GTF

Assume observations from the model

yi=0p+e, 1=1,...n
where errors are i.i.d. Gaussian, and ||A(*+1
This is more challenging to analyze than Euclidean settings

e Inexorable dependence on the underlying graph G; note that
|A*+D 0|, being small is a statement both about G and 6

e Not really any other rates to compare to

e No general notion of optimality (minimax rates)

Theoretical results are separated by the properties assumed about
the underlying graph. One such property: graph incoherence

)6o]|1 is well-controlled.
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3 Total Variation classes beyond 1D
(Sadhanala, W., and Tibshirani, 2016 to appear in NIPS)
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Defining the minimax problem

An estimator 0 : R™ — R™ that takes in Oy + i.i.d. Gaussian noise
and produces an estimator.

Mean square error:
R 1 . 5
MSE(6,60) = — 116 = boll2-
Minimax risk:

R(K) = mi E[MSE(8, 6,)].
(K) = min max E[MSE(6, 60)]

Minimax linear risk:

= mi E[MSE(9
Rp(K) = min max [MSE(6, 60)],

36
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d-dimensional Discrete TV-class

Define “function” classes
TV Classes: Fy(Cp) = {0 : ||DO|; < Cy},

Sobolev Classes: My(Cy,) = {6 : ||D8|2 < C,, },

Where D is the incidence matrix for the d-dimensional grid graph
with a total of n vertices.

Recall that: When d = 1, Johnston and Donoho (1998) showed that
R(F1(C)) < n~2/3.

and the minimax linear rate much slower
Ri(F1(C)) < n~V/2,

What happens when d > 1 is an open problem!
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For (continuous) Sobolev classes, the minimax rates are the
standard nonparametric rates

n—2/(2+d)
Curse of dimensionality: As d increases the rate gets slower.

We would intuitively expect that the minimax rates on TV-classes
should also get slower with increasing d.
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A somewhat surprising upper bound for TV-denoising

Theorem (Hiitter and Rigollet, 2016): Total variation denois-
ing estimator obeys

MSE(0™V, 6y) = op<

MSE(4T, 6p) = OP<C” V;Og"> for d > 3,

Isn't this too good to be true?
From 1D to 2D, the rate suddenly becomes parametric rate!
Did we get away from the “curse of dimensionality”?

Cn logn> for d = 2,
n
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An even more surprising upper bound for a trivial estimator

Lemma (Sadhanala, W. and Tibshirani, 2016): A trivial es-
timator ™" that outputs g1 obeys

2 2
sup E[MSE(6™" 6y)] = O ("’*Crzl‘)g”l)
906.7:(071,) n

Note that:
e O™Mean s 5 [inear smoother!

e If C, is a constant, then the trivial estimator performs as well
as TV-denoising!

The only logical explanation: C,, = O(1) is a trivial region! In other
word, C,, should increase with n!

40 /50



Matching lower bounds for the surprising upper bounds

Theorem (Sadhanala, W. and Tibshirani, 2016): For con-
stant d, and nontrivial region of C);:

o’ +0C,
- .

R(F4(Cy)) <

o?+C2

RL(Fd<Cn)) = n

o 9TV is optimal for the TV-class!
o gmean ig an optimal linear smoother for the TV-class!

e Spectacular failure: No linear smoother can do better than a
trivial linear smoother, in 2-dim and above!
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Minimax rate and minimax linear rate
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Minimax rate and minimax linear rate

— < — Miimax Liner KO"{?,
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This still does not solve our problem: where did the
“Curse-of-dimensionality” go?
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A “canonical” scaling

Interpreting the results in the context of continuous space
function-classes in [0, 1]%.

2
1. The Sobolev class has the canonical nonparametric rate n~ 2+d.

2. The TV class is big enough to contain the Sobolev class.

The canonical scaling of C,, is:

TV-class: Fa(n'=1/d

Sobolev-class: /\/ld(nl/?*l/d)
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The big picture for d-dim problems
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An interesting phase-transition

Function class ‘ Dimension 1 Dimension 2 Dimension d > 3

TV ball n=2/3 n~—2/logn n~ Y /logn
2

Sobolev ball n=2/3 n—1/2 N2+

Table: Summary of rates for canonically-scaled TV and Sobolev spaces.

Remarks:

e When d = 2, there is a y/logn gap between the minimax rates
of TV-class and the Sobolev class contained in it.

e When d > 3, there is a polynomial gap. We no longer get
adaptivity for free.

e Open problem: Is TV-denoising minimax in Sobolev? If not, is
there an algorithm that is simultaneously minimax in TV and
Sobolev?

46
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A few notes about proof techniques.

For upper bounds:

e A d—dim grid's Laplacian matrix can be diagonalized by DCT
and inverse DCT.

e Prove that D is constant incoherent.

e Careful calculations of the partial sum of the spectrum.
For lower bounds:

e Embedding a big #1 ball inside the TV-ball.

e Gaussian model selection (Birgé and Massart, 2001) .

e Linear smoother lower bound: use orthosymmetric and
quadratically convex set (Donoho, Liu MacGibbon, 1990).
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To reiterate the main points

We derive trend filtering for smoothing heterogeneous signals
on graphs.

Define discrete TV-classes and characterized its minimax rates.

Show that linear smoothers can fail spectacularly.

The extra computational cost for solving GTF is often worth it.

48 /50



The story of trend filtering, linear smoothers
and the price of local adaptivity in d-dim TV-classes

b EVERYTHING SHOULD BE MADE
. AS SIMPLE AS POSSIBLE

BUT NOT

”‘ SIMPLER
M%AM’
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