Stochastic Demography, Coalescents, and Effective Population Size Steve Krone University of Idaho Department of Mathematics & IBEST	 Demography Demographic effects (bottlenecks, expansion, fluctuating population size, population structure) affect polymorphism data Ex) Detecting selective sweeps confounded by demography and structure Effective population size: When is it meaningful? What is effect of demography? Appropriate scaling comes from what is observable in the coalescent (i.e., what has an explicit effect on data).
 Wright–Fisher model discrete time (generations) constant population size N panmictic no selection, no recombination ancestry: each individual chooses (haploid) parent at random (prob 1/N each) from previous generation 	 Effective population size Other population models (reproduction, variable pop size, structure,) sometimes behave in certain respects like a W-F model with an "effective population size" Ne. inbreeding effective size (probability of identity by descent) variance effective size (variance in reproductive success) eigenvalue effective size (leading non-unit eigenvalue for allele frequency transition matrix) "coalescent effective size" (if it exists) supersedes all of these. Exists when scaled ancestral process converges to linear time change of Kingman's coalescent; demographic fluctuations "average" out.
 The coalescent P(2 indiv choose same parent) = 1/N Takes O(N) generations to find common ancestor (per pair) Measure time in units of N generations [Nt] A_N(τ) = # ancestors τ generations in past A_N([Nt]) ⇒ A(t) Kingman coalescent All genetic information about a sample (polymorphism data) is embedded in the coalescent.	Fu and Li's F statistic $F = F(\pi, \eta_s, S) = \frac{\pi - (\frac{n-1}{n})\eta_s}{\sqrt{c_1 S + c_2 S^2}}$ where $n =$ sample size $\pi =$ ave. # pairwise differences (influenced by deep branches) $\eta_s = \#$ singletons (influenced by external branches) S = # segregating sites

Tajima's D statistic
$$D = D(\pi, \eta_n, S) = \frac{\pi - \frac{S}{2\eta_n}}{\sqrt{l_n^2}S + l_n^2S^2}$$
where $a_n = \sum_{n=1}^{n-1} \frac{1}{7}$ Both statistics have mean ≈ 0 , variance ≈ 1 .Deviations from assumptions (neutrality, constant pop size, pannista,...) produce changes in F and D.Fluctuating population sizeFluctuating population size(backward) size process $M_N(1), M_N(2), M_N(3), \dots$ Markov chain with state space $\{N_1, N_{22}, \dots\}$ $N_i = N\chi_i$ How does this affect the coalescent?Depends on time it takes for "large" size changes (i.e., $O(N)$) to occur. $D(N)$ to occur.Limiting coalescent \dots linear time change of standard coalescent: $M_N(M) \rightarrow A(\alpha)$ Where $\alpha = \sum_{n_1}^{n_1} \dots$ pairwise coalescence rate $\gamma = N_i \approx \frac{N}{N} = \frac{N}{n_1} = \frac{N}{n_2}$ Intermediate fluctuations—stochastic time changeLimiting coalescent \dots linear time change of standard coalescent: $M_N(M) \rightarrow A(\alpha)$ Where $\alpha = \sum_{n_1}^{n_1} \dots$ pairwise coalescence rate $\gamma = N_i \approx \frac{N}{N} = \frac{N}{n_1} = \frac{N}{N_1} = \frac{N}{N_1} = \frac{N}{N_2} = \frac{N}{N_1}$ $N_N = \frac{N}{n_1} = \frac{N}{N_1} = \frac{N}{N_2} = \frac{N}{N_1}$ $N_N = \frac{N}{n_1} = \frac{N}{N_1} = \frac{N}{N_2} = \frac{N}{N_2}$ $N_N = \frac{N}{n_1} = \frac{N}{N_1} = \frac{N}{N_2} = \frac{N}{N_1}$ $N_N = \frac{N}{n_1} = \frac{N}{N_1} = \frac{N}{N_2} = \frac{N}{N_1}$ $N_N = \frac{N}{n_1} = \frac{N}{N_1} = \frac{N}{N_2} = \frac{N}{N_1}$ $N_N = \frac{N}{n_1} = \frac{N}{N_1} = \frac{N}{N_2} = \frac{N}{N_1}$ $N_N = \frac{N}{n_1} = \frac{N}{N_1} = \frac{N}{N_1} = \frac{N}{N_1}$ $N_N = \frac{N}{n_1} = \frac{N}{n_1} = \frac{N}{n_1}$ <

Reproduction

Let

$$c_N(M_N(\tau-1), M_N(\tau))$$

denote prob. that two lineages coalesce when going from gen. $\tau-1$ to gen. τ (in past). Assume

$$c_N(k,m) = \frac{1}{N} H_N(\frac{k}{N}, \frac{m}{N}),$$

where $H_N(\frac{k}{N}, \frac{m}{N}) \to H(x, y)$ as $k/N \to x$ and $m/N \to y$.

Time change becomes

$$\int_0^t H(X_s, X_s) ds.$$

Ex: Wright-Fisher model

$$c_N \left(M_N(\tau - 1), M_N(\tau) \right)$$
$$= \frac{1}{M_N(\tau)} = \frac{1}{NX_N(\tau)}$$

So $c_N(k,m) = \frac{1}{m} = \frac{1}{N}H_N(\frac{k}{N},\frac{m}{N})$, where $H_N(x,y) = \frac{1}{y} = H(x,y)$

Ex: Cannings model

$$c_N(M_N(\tau-1), M_N(\tau)) = \frac{1}{(M_N(\tau-1))_2} \sum_{i=1}^{M_N(\tau)} E[(\nu_i^{(\tau)})_2]$$

 $\nu_i^{(\tau)}$. . . number of offspring produced by ith indiv in gen $\tau.$ With exchangeable reproduction, get

$$H_N\left(\frac{k}{N}, \frac{m}{N}\right)$$

= $\left(\frac{k}{N}\left(\frac{k}{N} - \frac{1}{N}\right)\right)^{-1} \frac{md}{N} \rightarrow \frac{yd}{x^2} \equiv H(x, y)$

 $P_2(\text{no coalescence in } [Nt] \text{ generations} | \{M_N(\cdot)\})$

$$= \prod_{\tau=1}^{[Nt]} \left(1 - \frac{1}{M_N(\tau)}\right) \\ = \prod_{\tau=1}^{[Nt]} \left(1 - \frac{1}{NX_N(\tau)}\right) \\ \sim \exp\left(-\frac{1}{N}\sum_{\tau=1}^{[Nt]} \frac{1}{X_N(\tau)}\right) \Rightarrow \exp\left(-\int_0^t \frac{1}{X(s)} ds\right)$$

"Large" size changes occur on same time scale as coalescence events; do not "average out." Limiting coalescent is of form

$$A_N([Nt]) \Rightarrow A(Y(t)),$$

where the time change

$$Y(t) \equiv \int_0^t H(X(s), X(s)) ds$$

is nonlinear and stochastic (coalescence intensity). [WF case: $Y(t) = \int_0^t \frac{1}{X(s)} ds$] (Kaj and Krone 2003; Donnelly and Kurtz 1999; Griffiths and Tavaré 1994.)

No (coalescent) effective size! Behavior different from any standard W-F model. Effects should show up in polymorphism data.

Full convergence theorem

$$\begin{split} (X_N([Nt]),A_N([Nt])) \Rightarrow (X(t),A(Y_t)) \\ \text{in } D_{S\times\{1,\dots,n\}}[0,\infty)\text{, whenever } X_N(0) \Rightarrow X(0) \text{ in } S. \end{split}$$

Transition semigroup $\mathcal{T}_t f(x,i) = E^{(x,i)} \big[f(X(t),A(Y_t)) \big]$ can be decomposed as

$$\mathcal{T}_t f(x,i) = \sum_{j=1}^i \sum_{\ell=j}^i C_\ell(i,j) E^{(x,i)} \left[f(X(t),j) e^{-\binom{\ell}{2} Y_t} \right]$$

$$C_{\ell}(i,j) \equiv \prod_{j+1 \le s \le i} {s \choose 2} \prod_{j \le r \le i, r \ne \ell} \frac{1}{{r \choose 2} - {\ell \choose 2}} \\ = \frac{(2\ell - 1)(-1)^{\ell - j} j_{(\ell - 1)}(i)_{\ell}}{j!(\ell - j)! i_{(\ell)}}, \quad j \le \ell \le i.$$

$$\mathcal{L}f(x,i) = \frac{d}{dt}\mathcal{T}_t f(x,i)\big|_{t=0}$$

= $Lf(x,i) + {i \choose 2}H(x,x)(f(x,i-1) - f(x,i))$

For any $t \ge 0$ fixed and $1 \le j \le i \le n$, as $N \to \infty$,

$$P^{(k,i)}\left((M_N([Nt]), A_N([Nt])) = (m, j)\right)$$
$$= \sum_{\ell=j}^{i} C_\ell(i, j) \left(P - \binom{\ell}{2} \hat{P}\right)^{[Nt]}(k, m) + \mathcal{O}\left(\frac{1}{N}\right),$$

Combinatorial term is same in discrete semigroup, so decomposition implies enough to show uniform convergence of discrete Feynman–Kac semigroups to

$$E^{(x,i)}\left[f(X(t),j)\,e^{-\binom{\ell}{2}Y_t}\right]$$

Simulations for fluctuating size

2 sizes N_1, N_2 ; equal prob of size change $q_1 = q_2 \equiv q$; mutation prob u = .001; 10,000 runs per data pt.; stationary starting size. Plot of Fu and Li's F

Idea of Proof

For $1 \leq i \leq n$, $x \in \mathbb{Z}_N$ and $r \geq 0$, transition operator for (X_N, A_N) :

$$\mathcal{T}_r^N f(x,i) = E^{(x,i)} \big[f(X_N(r), A_N(r)) \big], \qquad (1)$$

Show uniform convergence of semigroups:

 $\sup_{x,i} |\mathcal{T}_{[Nt]}^N f(x,i) - \mathcal{T}_t f(x,i)| \to 0, \quad N \to \infty$

Local time interpretation of time change

$$\int_0^t \frac{1}{X_s} ds = \int_E \frac{1}{x} \cdot L_t^x \, m(dx)$$

 L^x_t . . . diffusion local time

 $\boldsymbol{m}(d\boldsymbol{x})$. . . speed measure

Rule of thumb: $q \in (\frac{10^{-1}}{N_2}, \frac{10^1}{N_1}) \Rightarrow$ no averaging; too close to coalescent scale.

- (a) No collapse . . . structured coalescent.
- (b) Full collapse to Kingman coalescent.

Partial collapse to structured coalescent.

<section-header><text><text></text></text></section-header>	While there are r ancestors $(r = 1,, n)$, the configuration process moves among the configurations in <i>level</i> r : $S_r \equiv \{(x_1,, x_L) : x_1 + \dots + x_L = r\}.$ Starting with sample of size n , the state space for the configuration process is $S = S_1 \cup \dots \cup S_n$. For any configuration $(x_1,, x_L) \in S$, specify probabilities of jumping to other configurations due to migration and/or coalescence of ancestors.
"Proof of convergence" Stationary distribution of backward migration process: $\gamma = (\gamma_1, \dots, \gamma_L)$. Stationary distribution for level- <i>r</i> configuration process: $\pi_r(x) = \frac{r!}{x_1! \cdots x_L!} \gamma_1^{x_1} \cdots \gamma_L^{x_L}$. Transition matrix for whole configuration process on $S = S_1 \cup \cdots \cup S_n$: $\Pi_N = I + \frac{1}{N^{\alpha}}B + \frac{1}{N}C + o\left(\frac{1}{N}\right)$,	where <i>I</i> is the identity matrix, <i>B</i> is a block diagonal matrix $B = \begin{bmatrix} B_{11} & 0 & 0 & \cdots & 0 & 0 \\ 0 & B_{22} & 0 & \cdots & 0 & 0 \\ & & & & \ddots & & & \ddots \\ & & & & \ddots & & & &$
$C \text{ is a block matrix of the form} \\ C = \begin{bmatrix} -C_{11} & 0 & 0 & \cdots & 0 & 0 & 0 \\ C_{21} & -C_{22} & 0 & \cdots & 0 & 0 & 0 \\ 0 & \cdot & \cdot & \cdots & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot$	Möhle's Lemma (1998) Case $\alpha = 0$: $\Pi_N^{[Nt]} = \left(A + \frac{1}{N}C + o\left(\frac{1}{N}\right)\right)^{[Nt]} \rightarrow P - I + e^{tG},$ where $P = \lim_{k \to \infty} A^k$ and $G = PCP$.

Structured Populations

Population of total size N, subdivided into L demes, connected by migration. Pop. size in deme k is $N_k = Na_k$ $(a_1 + \cdots + a_L = 1).$

• Migration on same time scale as coalescence events (i.e., migration prob. for lineage $b_{ij} = \beta_{ij}/N$)

 \Rightarrow limiting coalescent is "structured." (no averaging, no coalescent effective size)

- Fast migration (i.e., b_{ij} = β_{ij}/N^α, 0 ≤ α < 1), and stationary distribution for locations (γ₁, γ₂,..., γ_L)
- \Rightarrow averaging occurs w/ coalescent time change

$$c = \sum_{k=1}^{L} \frac{\gamma_k^2}{a_k}.$$

 \Rightarrow coalescent effective size is

$$N_e = rac{N}{c} = ig(\sum rac{\gamma_k^2}{N_k}ig)^{-1}$$
 "harmonic mean"

In case of fast migration, structured model can be thought of as panmictic W-F model with pop. size N_e .

Simulations for population subdivision

2 demes, equal size, equal migration rate $\beta=2Nb$

- I. Kaj, Uppsala Univ. (Mathematics)
- M. Nordborg, USC (Molecular and Computational Biology)
- M. Lascoux, Uppsala Univ. (Cons. Biology & Genetics)
- P. Sjödin, Uppsala Univ. (Cons. Biology & Genetics)

NSF DMS-00-72198

NIH P20 RR16448

- P. Sjödin, I. Kaj, S. Krone, M. Lascoux, M. Nordborg (2005) On the meaning and existence of an effective population size. *Genetics* **169**: 1061-1070.
- I. Kaj and S. Krone (2003) The coalescent process in a population with stochastically varying size. *J. Appl. Probab.* **40**: 33-48.
- M. Nordborg and S. Krone (2002) Separation of time scales and convergence to the coalescent in structured populations. In *Modern Developments in Theoretical Population Genetics.* M. Slatkin and M. Veuille (eds.).