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e Demographic effects (bottlenecks, expansion,
fluctuating population size, population structure)
affect polymorphism data

e Ex) Detecting selective sweeps confounded by
demography and structure

o Effective population size: When is it meaningful?
What is effect of demography?

e Appropriate scaling comes from what is observable in
the coalescent (i.e., what has an explicit effect on
data).

e discrete time (generations)

e constant population size NV

e panmictic

e no selection, no recombination

e ancestry: each individual chooses (haploid) parent at
random (prob 1/N each) from previous generation

Other population models (reproduction, variable pop size,
structure, . . .) sometimes behave in certain respects like a W-F
model with an “effective population size” N..

e inbreeding effective size (probability of identity by
descent)

e variance effective size (variance in reproductive success)

e eigenvalue effective size (leading non-unit eigenvalue for
allele frequency transition matrix)

e ‘coalescent effective size” (if it exists) supersedes all of
these. Exists when scaled ancestral process converges to
linear time change of Kingman's coalescent; demographic
fluctuations "average” out.

e P(2 indiv choose same parent) = 1/N

e Takes O(N) generations to find common ancestor (per
pair)

e Measure time in units of N generations ... [N{]

o An(T) = # ancestors T generations in past

o An([Nt]) = A(t) . . . Kingman coalescent

All genetic information about a sample (polymorphism data) is
embedded in the coalescent.
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where n = sample size
m = ave. # pairwise differences (influenced by deep branches)
ns = 7 singletons (influenced by external branches)

S = # segregating sites




D = D(m,n,,5) =

where
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Both statistics have mean = 0, variance ~ 1.

Deviations from assumptions (neutrality, constant pop size,
panmixia,...) produce changes in F' and D.

Coalescence events have prob ~ O(1/N).

e Events that are “faster” have prob ~ O(1/N%),
where 0 < o < 1. Effects appear in coalescent only in
average sense. (All demographic processes “fast” =
coalescent effective size exists.)

e Events with prob ~ O(1/N) are incorporated in the
coalescent and affect pattern of variation in
nonhomogeneous way. (No coalescent effective size)

(backward) size process My (1), Mn(2), Mn(3),...
Markov chain with state space { Ny, Na,...}

N; = Nuz;

How does this affect the coalescent?

Depends on time it takes for “large” size changes (i.e.,
O(N)) to occur.

Large pop size changes occur quickly (e.g., every
generation);

size process stationary distribution (y1,72,...);

W-F reproduction:
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Limiting coalescent . . . linear time change of standard
coalescent:

An([Nt]) = A(ct)
where ¢ = > 1 . . . pairwise coalescence rate
= pairwise coalescence prob = % Y= Ni
=N =2 =(% X,—ii)_l ... harmonic mean of sizes

This is the “coalescent effective size": N, = N/c

What if macroscopic changes in pop. size (i.e., O(N))
occur on coalescent time scale (i.e., O(N) generations)?

Pop. size 7 generations in past (Markov chain):
My (1) = NXn(7),

where relative size proc. Xy ([Nt]) = w = X(t)

. cont-time Markov (e.g., diffusion proc. or cont-time
jump chain)




Let
CN(MN(T — 1),MN(T))

denote prob. that two lineages coalesce when going from gen.
7 —1to gen. 7 (in past). Assume

en(k,m) = *HN( )

where Hy (%, %) — H(z,y) as k/N — x and m/N — y.

Time change becomes

t
/ H(X., X.)ds
0

So CN(kam) =1= %HN(%v %),

where Hy(z,y) = * = H(z,y)

CN<MN(T — 1),MN(7’))
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yi(T) . . . number of offspring produced by ith indiv in gen 7.

With exchangeable reproduction, get
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“Large” size changes occur on same time scale as coalescence
events; do not “average out.” Limiting coalescent is of form

An([Nt]) = A(Y (1)),

where the time change

Y(t) = /0 H(X(s), X (s))ds

is nonlinear and stochastic (coalescence intensity). [WF case:
Y(t) =[] <ayds] (Kaj and Krone 2003; Donnelly and Kurtz
1999; Griffiths and Tavaré 1994.)

No (coalescent) effective size! Behavior different from any
standard W-F model. Effects should show up in polymorphism
data.
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(Xn ([N]), AN ([N1])) = (X (¢), A(Y2))
in Dgyq1,...n3[0,00), whenever X (0) = X(0) in S.

Transition semigroup 7 f(z, i) = E@D [f(X (1), A(Y:))]
can be decomposed as

Tof(x,i) =3 S Coli, )HE@D [F(X (1), §) e~ (2)¥]
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Idea of Proof

For1 <i<mn,x €Zy and r > 0, transition operator for
(XN,AN)Z

'];Nf(337i) = E(m’l) [f(XN(r)vAN(T))]J (1)

Show uniform convergence of semigroups:

Sup|7.[11\\§t]f(xvl) _Zf(mvlﬂ _)07 N — o0

Foranyt>0fixedand 1 <j<i<mn,as N — o0,

PED (M (IN1]), Ax (IN1)) = (m, )
S (e () om0 3),

Combinatorial term is same in discrete semigroup, so
decomposition implies enough to show uniform convergence
of discrete Feynman—Kac semigroups to

ECD[F(X (1), 5) e ()]

Local time interpretation of time change

/tld /1 LY m(dx)
—ds= | —-L{m(dx
0o Xs EZ i

Ly . . . diffusion local time

m(dx) . . . speed measure

Simulations for fluctuating size

2 sizes N1, Na; equal prob of size change q1 = g2 = ¢; mutation
prob u = .001; 10,000 runs per data pt.; stationary starting size.
Plot of Fu and Li's I

Ny =103, N, = 10*

bt e N1 =103, Ny = 10°
. 10~ 10! P
Rule of thumb: ¢ € (“5-, ) = no averaging;
too close to coalescent scale.




“Why do polymorphism data always seem to suggest population
expansion, and not population contraction?”

N1 =103, Ny =10%; ¢1 = g0 = 1074

Top curve: initial size 10®
Bottom curve: initial size 10°

Many deviations from basic Wright—Fisher model can be
thought of as examples of “population structure.”

e geographic structure

e age classes

e diploidy (Nordborg and Donnelly 1997)

e males and females

Population divided into “groups” that are connected by
“migration.”

e Fast migration ... effects only present in averaged sense.

e Slow migration ... effects explicitly appear in coalescent.

e Differences in scaling ... hierarchical structuring of

population
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(a) No collapse . . .
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structured coalescent.

(b) Full collapse to Kingman coalescent.

Partial collapse to structured coalescent.
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Ex. "Ancestral urn” for age structure.

While there are r ancestors (r = 1,...,n), the
configuration process moves among the configurations in
level r:

SrE{(xl,...,ai‘L):x1—|—...+xL:,r}.

Starting with sample of size n, the state space for the
configuration process is S = S; U---US,. For any
configuration (x1,...,xz1) € S, specify probabilities of
jumping to other configurations due to migration and/or
coalescence of ancestors.

Stationary distribution of backward migration process: where [ is the identity matrix, B is a block diagonal matrix

¥=1---57L)

Stationary distribution for level-r configuration process:

r!

X1 Xy,
”'xL!’YI L

mr(z) = z1!

Transition matrix for whole configuration process on
S=5U---US,:

1 1 1

[ Bi1x 0 0 0 0
0 By 0 0 0
B =
0 0 0 By in-1 O
0 0 0 0 By

... from backward migration jumps,

C'is a block matrix of the form

—-Ch1 0 o -~ 0 0 0
Cyp —Cy 0 -+ 0 0 0
= 0
0 0 0 -+ 0 Chn1 —Chpn

... due to coalescence jumps.

Case a = 0:

1
iy = <A+NC’+0(

where P = limy,_,o, A* and G = PCP.

[N1]
>> — P —1+¢€“,




Structured Populations

Population of total size NV, subdivided into I demes, connected
by migration. Pop. size in deme k is Ny = Nag
(a1 +---+arL=1).

e Migration on same time scale as coalescence events (i.e.,
migration prob. for lineage b;; = 3;;/N)

= limiting coalescent is “structured.” (no averaging, no
coalescent effective size)

e Fast migration (i.e., b;; = 8;;/N%,0 < a < 1), and
stationary distribution for locations (y1,7v2,...,7L)

= averaging occurs w/ coalescent time change

L
c:E )
a

=1 'k

= coalescent effective size is

ES

2
N, = N_ (Z ]’\Yf—’z)_l “harmonic mean”

In case of fast migration, structured model can be thought of as
panmictic W-F model with pop. size Ne.

Simulations for population subdivision

2 demes, equal size, equal migration rate 5 = 2Nb

log f

N =10
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