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Demography

• Demographic effects (bottlenecks, expansion,
fluctuating population size, population structure)
affect polymorphism data

• Ex) Detecting selective sweeps confounded by
demography and structure

• Effective population size: When is it meaningful?
What is effect of demography?

• Appropriate scaling comes from what is observable in
the coalescent (i.e., what has an explicit effect on
data).

Wright–Fisher model

• discrete time (generations)

• constant population size N

• panmictic

• no selection, no recombination

• ancestry: each individual chooses (haploid) parent at
random (prob 1/N each) from previous generation

Effective population size

Other population models (reproduction, variable pop size,
structure, . . .) sometimes behave in certain respects like a W-F
model with an “effective population size” Ne.

• inbreeding effective size (probability of identity by
descent)

• variance effective size (variance in reproductive success)

• eigenvalue effective size (leading non-unit eigenvalue for
allele frequency transition matrix)

• “coalescent effective size” (if it exists) supersedes all of
these. Exists when scaled ancestral process converges to
linear time change of Kingman’s coalescent; demographic
fluctuations ”average” out.

The coalescent

• P(2 indiv choose same parent) = 1/N

• Takes O(N) generations to find common ancestor (per
pair)

• Measure time in units of N generations . . . [Nt]

• AN (τ) = # ancestors τ generations in past

• AN ([Nt]) ⇒ A(t) . . . Kingman coalescent

All genetic information about a sample (polymorphism data) is
embedded in the coalescent.

Fu and Li’s F statistic

F = F (π, ηs, S) =
π − (n−1

n )ηs√
c1S + c2S2

where n = sample size

π = ave. # pairwise differences (influenced by deep branches)

ηs = # singletons (influenced by external branches)

S = # segregating sites



Tajima’s D statistic

D = D(π, ηs, S) =
π − S

an√
c
′
1S + c

′
2S

2

where

an =
∑n−1

i=1
1
i

Both statistics have mean ≈ 0, variance ≈ 1.

Deviations from assumptions (neutrality, constant pop size,
panmixia,...) produce changes in F and D.

Relative time scales

Coalescence events have prob ∼ O(1/N).

• Events that are “faster” have prob ∼ O(1/Nα),
where 0 ≤ α < 1. Effects appear in coalescent only in
average sense. (All demographic processes “fast” ⇒
coalescent effective size exists.)

• Events with prob ∼ O(1/N) are incorporated in the
coalescent and affect pattern of variation in
nonhomogeneous way. (No coalescent effective size)

Fluctuating population size

(backward) size process MN (1),MN (2),MN (3), . . .

Markov chain with state space {N1, N2, . . .}

Ni = Nxi

How does this affect the coalescent?

Depends on time it takes for “large” size changes (i.e.,
O(N)) to occur.

Fast size fluctuations–linear time change

Large pop size changes occur quickly (e.g., every
generation);

size process stationary distribution (γ1, γ2, . . .);

W-F reproduction:

P2(no coalescence in [Nt] generations)

= E
[ [Nt]∏

τ=1

(
1 − 1

MN (τ)
)]

∼
(
1 −

∑
i

γi ·
1

Nxi

)[Nt]

→ exp{−t
∑

γi/xi}

Limiting coalescent . . . linear time change of standard
coalescent:

AN ([Nt]) ⇒ A(ct)

where c =
∑ γi

xi
. . . pairwise coalescence rate

⇒ pairwise coalescence prob ≈ 1
N

∑ γi

xi
≡ 1

Ne

⇒ Ne = N
c =

( ∑ γi

Ni

)−1
... harmonic mean of sizes

This is the “coalescent effective size”: Ne = N/c

Intermediate fluctuations–stochastic time
change

What if macroscopic changes in pop. size (i.e., O(N))
occur on coalescent time scale (i.e., O(N) generations)?

Pop. size τ generations in past (Markov chain):

MN (τ) = NXN (τ),

where relative size proc. XN ([Nt]) = MN ([Nt])
N ⇒ X(t)

... cont-time Markov (e.g., diffusion proc. or cont-time
jump chain)



Reproduction

Let
cN

(
MN (τ − 1), MN (τ)

)
denote prob. that two lineages coalesce when going from gen.
τ − 1 to gen. τ (in past). Assume

cN (k, m) =
1

N
HN (

k

N
,
m

N
),

where HN ( k
N

, m
N

) → H(x, y) as k/N → x and m/N → y.

Time change becomes

∫ t

0

H(Xs, Xs)ds.

Ex: Wright–Fisher model

cN

(
MN (τ − 1),MN (τ)

)
=

1
MN (τ)

=
1

NXN (τ)

So cN (k,m) = 1
m = 1

N HN ( k
N , m

N ),

where HN (x, y) = 1
y = H(x, y)

Ex: Cannings model

cN

(
MN (τ − 1), MN (τ)

)

=
1

(MN (τ − 1))2

MN (τ)∑
i=1

E
[
(ν

(τ)
i )2

]

ν
(τ)
i . . . number of offspring produced by ith indiv in gen τ .

With exchangeable reproduction, get

HN

( k

N
,
m

N

)

=
( k

N

( k

N
− 1

N

))−1 md

N
→ yd

x2
≡ H(x, y)

“Large” size changes occur on same time scale as coalescence
events; do not “average out.” Limiting coalescent is of form

AN ([Nt]) ⇒ A(Y (t)),

where the time change

Y (t) ≡
∫ t

0

H(X(s), X(s))ds

is nonlinear and stochastic (coalescence intensity). [WF case:
Y (t) =

∫ t

0
1

X(s)
ds] (Kaj and Krone 2003; Donnelly and Kurtz

1999; Griffiths and Tavaré 1994.)

No (coalescent) effective size! Behavior different from any
standard W-F model. Effects should show up in polymorphism
data.

Idea for W-F model

P2(no coalescence in [Nt] generations|{MN (·)})

=
[Nt]∏
τ=1

(
1 − 1

MN (τ)
)

=
[Nt]∏
τ=1

(
1 − 1

NXN (τ)
)

∼ exp
(
− 1

N

[Nt]∑
τ=1

1
XN (τ)

)
⇒ exp

(
−

∫ t

0

1
X(s)

ds
)

Full convergence theorem

(XN ([Nt]), AN ([Nt])) ⇒ (X(t), A(Yt))

in DS×{1,...,n}[0,∞), whenever XN (0) ⇒ X(0) in S.

Transition semigroup Ttf(x, i) = E(x,i)
[
f(X(t), A(Yt))

]
can be decomposed as

Ttf(x, i) =
i∑

j=1

i∑
�=j

C�(i, j)E(x,i)
[
f(X(t), j) e−(�

2)Yt
]



C�(i, j) ≡
∏

j+1≤s≤i

(
s

2

) ∏
j≤r≤i,r �=�

1(
r
2

)
−

(
�
2

)

=
(2� − 1)(−1)�−jj(�−1)(i)�

j!(� − j)!i(�)
, j ≤ � ≤ i.

Lf(x, i) =
d

dt
Ttf(x, i)

∣∣
t=0

= Lf(x, i) +
(

i

2

)
H(x, x)

(
f(x, i − 1) − f(x, i)

)

Idea of Proof

For 1 ≤ i ≤ n, x ∈ ZN and r ≥ 0, transition operator for
(XN , AN ):

T N
r f(x, i) = E(x,i)

[
f(XN (r), AN (r))

]
, (1)

Show uniform convergence of semigroups:

sup
x,i

|T N
[Nt]f(x, i) − Ttf(x, i)| → 0, N → ∞

For any t ≥ 0 fixed and 1 ≤ j ≤ i ≤ n, as N → ∞,

P (k,i)
(
(MN ([Nt]), AN ([Nt])) = (m, j)

)

=
i∑

�=j

C�(i, j)
(

P −
(

�

2

)
P̂

)[Nt]

(k,m) + O
(

1
N

)
,

Combinatorial term is same in discrete semigroup, so
decomposition implies enough to show uniform convergence
of discrete Feynman–Kac semigroups to

E(x,i)
[
f(X(t), j) e−(�

2)Yt
]

Local time interpretation of time change

∫ t

0

1
Xs

ds =
∫

E

1
x
· Lx

t m(dx)

Lx
t . . . diffusion local time

m(dx) . . . speed measure

Simulations for fluctuating size

2 sizes N1, N2; equal prob of size change q1 = q2 ≡ q; mutation
prob u = .001; 10,000 runs per data pt.; stationary starting size.
Plot of Fu and Li’s F

N1 = 103, N2 = 104

N1 = 103, N2 = 105

Rule of thumb: q ∈ ( 10−1

N2
, 101

N1
) ⇒ no averaging;

too close to coalescent scale.



Dependence on initial size

“Why do polymorphism data always seem to suggest population
expansion, and not population contraction?”

N1 = 103, N2 = 105; q1 = q2 = 10−4.

Top curve: initial size 103

Bottom curve: initial size 105

General Population Structure

Many deviations from basic Wright–Fisher model can be
thought of as examples of “population structure.”

• geographic structure

• age classes

• diploidy (Nordborg and Donnelly 1997)

• males and females

Population divided into “groups” that are connected by
“migration.”

• Fast migration ... effects only present in averaged sense.

• Slow migration ... effects explicitly appear in coalescent.

• Differences in scaling ... hierarchical structuring of
population

(a) No collapse . . . structured coalescent.

(b) Full collapse to Kingman coalescent.

Partial collapse to structured coalescent.



Rates depend on configuration of ancestral
lineages

Ex. “Ancestral urn” for age structure.

While there are r ancestors (r = 1, . . . , n), the
configuration process moves among the configurations in
level r:

Sr ≡ {(x1, . . . , xL) : x1 + · · · + xL = r}.

Starting with sample of size n, the state space for the
configuration process is S = S1 ∪ · · · ∪ Sn. For any
configuration (x1, . . . , xL) ∈ S, specify probabilities of
jumping to other configurations due to migration and/or
coalescence of ancestors.

“Proof of convergence”

Stationary distribution of backward migration process:
γ = (γ1, . . . , γL).

Stationary distribution for level-r configuration process:

πr(x) =
r!

x1! · · ·xL!
γx1
1 · · · γxL

L .

Transition matrix for whole configuration process on
S = S1 ∪ · · · ∪ Sn:

ΠN = I +
1

Nα
B +

1
N

C + o

(
1
N

)
,

where I is the identity matrix, B is a block diagonal matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B11 0 0 · · · 0 0
0 B22 0 · · · 0 0
. . . · · · . .

. . .
. . . . .

0 0 0 · · · Bn−1,n−1 0
0 0 0 · · · 0 Bn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

... from backward migration jumps,

C is a block matrix of the form

C =

⎡
⎢⎢⎢⎢⎢⎣

−C11 0 0 · · · 0 0 0
C21 −C22 0 · · · 0 0 0
0 . . · · · . . .

. . .
. . . . . .

0 0 0 · · · 0 Cn,n−1 −Cn,n

⎤
⎥⎥⎥⎥⎥⎦

... due to coalescence jumps.

Möhle’s Lemma (1998)

Case α = 0:

Π[Nt]
N =

(
A +

1
N

C + o

(
1
N

))[Nt]

→ P − I + etG,

where P = limk→∞ Ak and G = PCP .



Structured Populations

Population of total size N , subdivided into L demes, connected
by migration. Pop. size in deme k is Nk = Nak

(a1 + · · · + aL = 1).

• Migration on same time scale as coalescence events (i.e.,
migration prob. for lineage bij = βij/N)

⇒ limiting coalescent is “structured.” (no averaging, no
coalescent effective size)

• Fast migration (i.e., bij = βij/N
α, 0 ≤ α < 1), and

stationary distribution for locations (γ1, γ2, . . . , γL)

⇒ averaging occurs w/ coalescent time change

c =

L∑
k=1

γ2
k

ak
.

⇒ coalescent effective size is

Ne =
N

c
=

( ∑ γ2
k

Nk

)−1
“harmonic mean”

In case of fast migration, structured model can be thought of as
panmictic W-F model with pop. size Ne.

Simulations for population subdivision

2 demes, equal size, equal migration rate β = 2Nb

N = 103

N = 104
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