

MAVEN Status and Early Results

Bruce Jakosky LASP / University of Colorado Presentation to CAPS and CSSP 31 March 2015

Bob Lin

Mario Acuna

MAVEN Status

- MAVEN launched, 18 Nov. 2013
- Mars Orbit Insertion, 21 Sept. 2014
- Survived encounter with Comet Siding Spring, 19 October 2014
- Completed commissioning (transition phase) and began science phase on 16 Nov. 2014
- Currently 4.5 months into our one-Earth-year primary mission
- All instruments performing nominally, collecting data as planned
- Science team deep into understanding instrument behavior and calibrations; just now beginning multi-instrument analyses that are central to MAVEN science
- Extended-mission bridge-phase proposal for FY16 due May 4; covers period until next senior review

Outline

- Summary of science goals, development, and early science results
- Status of spacecraft and instruments
- Lessons learned
- Issues and concerns

Evidence for Surface Water on Ancient Mars Where Did the Water Go? Where Did the CO₂ Go?

<image>

Volatiles can be lost to space

Volatiles can go into the crust

Carbonate deposits in a Martian meteorite

MAVEN Will Allow Us to Understand Escape of Atmospheric Gases to Space

- Measure energetic drivers from the Sun, response of upper atmosphere and ionosphere, and resulting escape to space
- Understand the key processes involved, allowing extrapolation to loss over Mars history

The MAVEN Spacecraft

MAVEN Mission Architecture

MAVEN's Primary Mission Occurs on the Declining Phase of the Solar Cycle

Close Encounter With Comet Siding Spring

Breckland Skies Observatory

- MAVEN IUVS imaged CSS in scattered solar Lyman-alpha two days before closest approach to Mars
- H detected to distance of ~150,000 km (comparable to Mars miss distance of comet)
- Suggested significant potential risk to spacecraft

 Comet Siding Spring had close approach (~140,000 km) to Mars on 19 Oct. 2014

CU/LASP • GSFC • UCB/SSL • LM • JPI

- Spacecraft and instruments took protective measures to ensure safety
- Strong desire to observe comet and its effects on Mars' atmosphere

MAVEN/IUVS Image of Comet Siding Spring in H-LyA, 10/17/14

Detection of Metal-Ion Layer Following Encounter With Comet Siding Spring

- NGIMS detected 11 different metal ions (right); detected *in situ* as low as periapsis altitude of ~185 km
- Metals not detected prior to CSS encounter
- Ions lasted hours to days, consistent with model predictions
- No previous detection of metal-ion layer at Mars; electron layers had been detected

- Cometary dust entering Mars' atmosphere is vaporized and ionized
- IUVS saw very bright UV emissions due to metal ions (left)
- Emission observed at tangent altitude of ~120-150km

Discovery of Long-Lived Metallic-Ion Layer

- lons observed during deep dip at altitudes as low as 130 km
- STATIC (left) shows detection of ions at mass expected for Fe⁺
- NGIMS (below) shows detection of two different isotopes of Fe⁺; Mg⁺ also seen

- Observed four months after Comet Siding Spring, likely no connection to it
- Previously, electron layers had been detected intermittently by *Mars Express*
- First detection of long-lived metallicion layer

Dust Cloud Surrounding Mars Observed by LPW (1 of 2)

- Similar signatures measured in lab (right)
- Events predate Comet Siding Spring, so not uniquely related to that
- Four days of observations shown at right

 Dust impact anywhere on spacecraft produces plasma cloud, affects spacecraft potential in a way that can be detected by LPW

CU/LASP • GSFC • UCB/SSL • LM • JPL

 Characteristic signatures measured on MAVEN (left) similar to those seen on other spacecraft (Voyager, Cassini, STEREO, DS1, Wind)

(Black = observations; color is dust-signature amplitude – blue = weakest, red = strongest)

- Dust appears to concentrate on day side, near dawn/dusk terminators, and between 150-500 km altitude
- Spatial coverage very incomplete so far
- Dust source not known could be lofted from atmosphere, come from Phobos and Deimos, or come from outside of Mars system
- Charge-particle effects likely redistribute
 dust

IUVS Detection of Diffuse Aurora (1 of 2)

- "Christmas lights" aurora observed for five days on 18-23 December 2014
- Nightside emission at same wavelengths as dayglow; characteristic of aurora in general and of those observed by *Mars Express*
- Diffuse distribution throughout northern hemisphere; no connection to magnetic anomalies

IUVS Detection of Diffuse Aurora (2 of 2)

- Distinct from localized aurora seen by *Mars Express* in vicinity of crustal cusps
- MAVEN has not yet observed in regions with crustal remnant magnetization

- To date, seen only on those five days
- Diffuse aurora, no apparent connection to magnetic fields as on Earth
- Occurs deep in upper atmosphere;
 requires extremely energetic electron flux
- Solar energetic-electron storm is the likely driver – arrived at Mars at the same time, has energies that penetrate to these altitudes

IUVS Observations of Atomic Components of H_2O and CO_2 on Their Way to Escaping

Nars Atmosphere and

Regions of Near-Mars Space Defined by SWIA and MAG Measurements

- Shows average behavior of interaction regions
- MSE coordinates defined so that:
 - Solar wind velocity in –X direction
 - IMF is in the X-Y plane w/ +Y component
 - Convection electric field points in +Z
 - Sun at right, solar wind moves right to left
- Colors represent ion density, vector B field superimposed
- Clearly shows average bow shock, magnetic pile-up boundary, and wake behind planet

MAVEN Observes Escaping Polar Plume (1 of 2)

- Models show that ion loss occurs down the tail and in a "polar plume" (top left)
- Plume goes in only one direction, controlled by solar-wind-driven electric field
- Models predict that the polar plume might account for as much as half of the loss
- Requires simultaneous measurements of ion motions and magnetic field
- We are looking for orbits where the B_y component is <u>negative</u> so that MAVEN can measure escaping ions at apoapsis, which was in the southern hemisphere early in the mission (bottom left)

(Analysis by S. Curry)

MAVEN Observes Escaping Polar Plume (2 of 2)

- Negative B_y field at apoapsis (green in lower panel, above)
- High-energy ions detected by STATIC (middle panel, above; left)
- Mass 16 = 0⁺, escape energy (left)
- Will allow estimates of loss via plume

CU/LASP • GSFC • UCB/SSL • LM • JPL

Pre-Escape Energization in Polar Plume (3 of 4)

CU/LASP • GSFC • UCB/SSL • LM • JPL

Pre-Escape Energization in Polar Plume (4 of 4)

Nars Atmosphere a

Evolution

CU/LASP • GSFC • UCB/SSL • LM • JPL

Detection of Oxygen Pickup Ions (1 of 2)

 Pickup ions are O⁺ swept up by v x B force from solar wind sweeping by (top left)

CU/LASP • GSFC • UCB/SSL • LM • JPL

- SEP should be able to detect them when energies are great enough and direction is in FOV
- Flux can be modeled from solar wind velocity, magnetic field orientation, O⁺ production rates
- "Hot O" production rate modeled from dissociative recombination of O₂⁺ + e⁻ (bottom left)

(Model and data analysis by Rahmati and Cravens)

Detection of Oxygen Pickup Ions (2 of 2)

and Uolatile Evolution Mission

Comparisons between data and model will allow constraints to be developed on pickup O⁺ escape rates.

Escaping Pickup Ions (1 of 2)

Pick-up ion velocity directions

• One orbit in Dec 3., 2014

Escaping Pickup Ions (2 of 2)

Mars Atmosphere and Volatile Evolution Mission

Pickup ion velocity space distributions with respect to the local magnetic

Flux Escaping Down the Tail (1 of 2)

- Count up the ions passing through a plane downstream of planet to determine overall escape rate
- Geometric coverage limited (left)
- Processes controlled by solar-wind electric field direction; including its variations gives much better coverage (right)

Flux Escaping Down the Tail (2 of 2)

- Boxes show flux of all ions (E < 25 eV; 9 amu < M < 50 amu)
- Flux is measured separately for ions moving downstream and returning upstream
- Net escape is difference between these two
- Premature to give a number due to coverage, calibration issues, etc., but this demonstrates that conclusions will be robust

Status of Spacecraft and Instruments

- Spacecraft and instruments fully operational
- Meeting Level 1 science requirements
- Fuel usage nominal so far
 - Lack of an MOI upset freed up the fuel allocated for recovery to be used instead for an extended mission
 - Fuel usage during primary mission to date is at (or modestly below) the predicted nominal levels
 - Potential for sufficient fuel for 10-year mission lifetime (includes nominal mission, extended mission in full-science mode for ~32 mo., raise periapsis, continue long-duration extended science/relay mission for six yrs.)
- No evidence of degradation in limited-lifetime items
- Have fully tested Electra relay; prepared to carry out relay contact if necessary

Science and Instrument Status

- Science primary mission
 - Spacecraft and instrument ops going smoothly in general
 - Science instruments are returning high-quality data
- Successful first deep-dip campaign, 10-18 Feb. 2015
 - Intense planning and testing effort
 - Daily cadence of NAV tracking/analysis, maneuver decisions
 - Second deep-dip walk-in scheduled to begin 14 April
- Instrument watch items (mitigable, not expected to affect ability to meet Level 1s)
 - IUVS calibration
 - NGIMS contamination and/or defocusing
 - Solar-array magnetic field
 - STATIC anomalous ion measurements
 - Spacecraft charging effects
- MAVEN publications status
 - Space Science Reviews manuscripts
 - Comet Siding Spring manuscripts submitted
 - First-results manuscripts coming up

Lessons Learned

- MAVEN launched on schedule, with full technical capability
- Budget at confirmation was \$671.2M, life-cycle cost adjusted to \$606.7M after MOI to reflect cost savings during development; allowed funding of science team at robust levels
- Key identifiable drivers allowing success
 - Flew the mission essentially as proposed; no major changes (exc. descopes necessitated by cost increases in Phase A)
 - Minimal changes to requirements; no science or engineering creep
 - Adequate cost reserves built in from the beginning
 - Contractual mechanism with spacecraft contractor that facilitated cost control
 - Real heritage in spacecraft and instruments, both institutionally and with the key individuals involved
 - No technology development required
 - Strong project management; pushed decisions to appropriate level; minimal revisiting of decisions
 - Appropriate degree of support from GSFC

Issues and Concerns

- Conference-travel approval process
- Potential use of MAVEN as a relay during extended mission
- Potential that budget cuts in extended mission will impact mission ops and science; detailed analysis in progress
- Potential that aerobraking into a more-favorable relay orbit will be required; major impact to MAVEN science, but not yet formally taken off of the table
- MAVEN is observing during a weak solar cycle; declining solar cycle during extended mission

Summary

- MAVEN launched on schedule, under budget, and with full technical capability.
- MAVEN is operating well, has already made significant discoveries about the Mars system, and is on track to achieve its science goals for the primary mission.
- There are significant additional, high-priority science goals that can be addressed during an extended mission.

