

Estudio de laboratorio de la trombofilia. ¿A quién, cuándo y cómo?

Dr. Jaime Pereira G.

Departamento de Hematología-Oncología Escuela de Medicina Pontificia Universidad Católica de Chile

Hipercoagulabilidad o Trombofilia Definición

Tendencia a desarrollar trombosis como consecuencia de factores predisponentes que pueden ser genéticos, adquiridos o ambos.

¿Cuándo sospechamos una trombofilia?

Trombosis en paciente joven

Sin factores desencadenantes

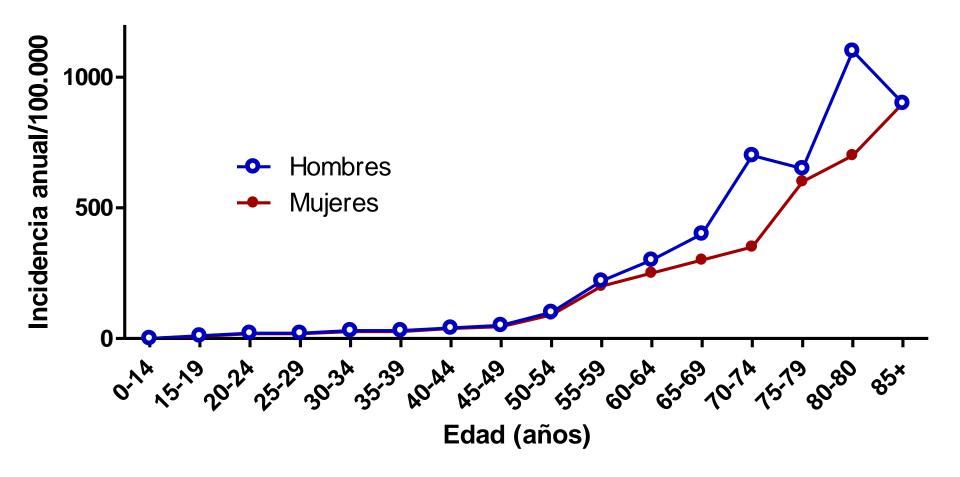
Con historia familiar de trombosis

Episodios de trombosis recurrentes

Trombosis en sitios atípicos

¿Cuándo sospechamos una trombofilia?

Trombosis en paciente joven


Sin factores desencadenantes

Con historia familiar de trombosis

Episodios de trombosis recurrentes

Trombosis en sitios atípicos

¿Cuándo sospechamos una trombofilia?

Trombosis en paciente joven

Sin factores desencadenantes

Con historia familiar de trombosis

Episodios de trombosis recurrentes

Trombosis en sitios atípicos

Factores de riesgo para trombosis venosa

Genéticos

Mixtos/desconocidos

Adquiridos

Combinaciones (interacción)

Factores de riesgo para trombosis venosa

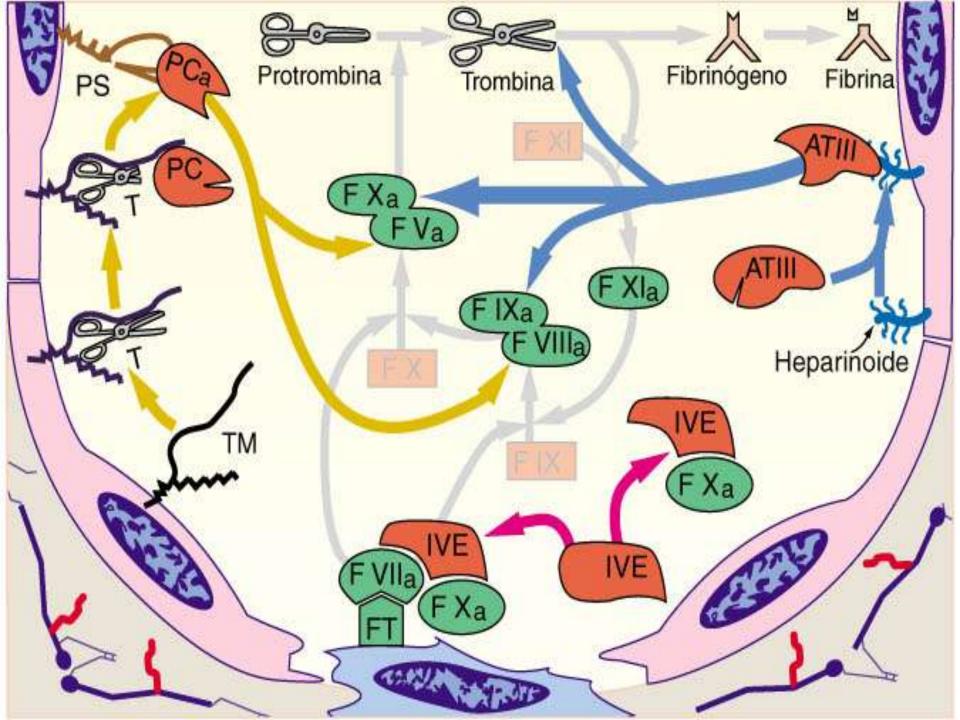
Genéticos

Mixtos/desconocidos

Adquiridos

Combinaciones (interacción)

Factores de riesgo genéticos


Frecuentes

- —Factor V Leiden (Resistencia a la proteína C Activada)
- -Mutación G20210A del gen de la protrombina

Raras

- Deficiencia de antitrombina
- —Deficiencia de proteína C
- Deficiencia de proteína S

Mutaciones con pérdida de función

	Prevalencia %	RR	PAR %
Deficiencia de PC	0.2	5 - 10	2
Deficiencia de PS	0.1	5 – 10 (?)	1
Deficiencia de ATIII	0.02	10 - 20	<1

Mutaciones con pérdida de función

	Prevalencia %	RR	PAR %
Deficiencia de PC	0.2	5 - 10	2
Deficiencia de PS	0.1	5 – 10 (?)	1
Deficiencia de ATIII	0.02	10 - 20	<1

Mutaciones con ganancia de función

	Prevalencia %	RR	PAR %
Factor V Leiden	5	8	25
Protrombina G20210A	2	3	4

Factores de riesgo para trombosis venosa

Genéticos

Mixtos/desconocidos

Adquiridos

Combinaciones (interacción)

Niveles elevados de factores de la coagulación

	Prevalencia %	RR	PAR %
Factor VIII elevado > 150 U/dl	10	3	16
Factor IX elevado > 129 U/dl	10	3	17
Factor XI elevado > 121 U/dl	10	3	10

Factores de riesgo para trombosis venosa

Genéticos

Mixtos/desconocidos

Adquiridos

Combinaciones (interacción)

TROMBOFILIA ADQUIRIDA

Causas

- Resistencia a la PCA en ausencia de FV Leiden
- Anticuerpos antifosfolípidos
- Hiperhomocisteinemia*
- Aumento de FVIII*

Condiciones predisponentes

- Cirugía, trauma,
- Inmovilización prolongada
- Edad avanzada
- Uso de anticonceptivos orales
- Embarazo, puerperio
- Terapia de reemplazo hormonal
- Cáncer, enfermedades mieloproliferativas

^{*} Puede ser en parte hereditaria

Trombofilia

Causas y frecuencia

Condición	Prevalencia(%)*
Sindrome antifosfolípido	25
Resistencia a la proteína C activada	20-30
Aumento en el nivel de factor VIII:C	20
Enfermedades malignas	15
Mutación G20210A de la protrombina	8
Hiperhomocisteinemia	5-10
Deficiencia de proteína C	3-5
Deficiencia de proteína S	3-5
Deficiencia de antitrombina	2
Disfibrinogenemia	<1
Deficiencia de tPA	<1
Aumento de PAI-1	<1

^{*} Pacientes seleccionados en primer episodio

Trombofilia

Causas y frecuencia

Condición	Prevalencia(%)*
Sindrome antifosfolípido	25
Resistencia a la proteína C activada	20-30
Aumento en el nivel de factor VIII:C	20
Enfermedades malignas	15
Mutación G20210A de la protrombina	8
Hiperhomocisteinemia	5-10
Deficiencia de proteína C	3-5
Deficiencia de proteína S	3-5
Deficiencia de antitrombina	2
Disfibrinogenemia	<1
Deficiencia de tPA	<1
Aumento de PAI-1	<1

^{*} Pacientes seleccionados en primer episodio

TROMBOFILIA Prevalencia y riesgo de trombosis

Prevalencia (%)

	Población general	Trombosis venosa	Riesgo relativo de trombosis	Incidencia anual (%)	
Deficiencia AT	0.02	0.5-1.0	25-50	0.87-1.6	
Deficiencia PC	0.2-0.3	3.0	10-15	0.43-0.72	
Deficiencia PS	?	3.0		0.5-1.65	
FV Leiden*	2-15	20-50	8	0.25-0.45	
PT G20210A*	1.0	7-8	3.0	0.55	
ACL	1 -8	25	3 -10		

^{*} Heterocigotos

DIAGNOSTICO DE LABORATORIO DE TROMBOFILIA

PREGUNTAS

- Por qué se debe estudiar?
- A quién?
- Cuando?
- Qué tipo de pruebas?

DIAGNOSTICO DE LABORATORIO DE TROMBOFILIA

PREGUNTAS

- Por qué se debe estudiar?
- A quién?
- Cuando?
- Qué tipo de pruebas?

- Para explicar un episodio de trombosis venosa
- Los resultados de las pruebas podrían cambiar el manejo de los pacientes
- La identificación de familiares portadores del defecto es útil desde el punto de vista profiláctico y diagnóstico
- La identificación de pacientes con defectos combinados ayuda en la selección de aquéllos de alto riesgo

- Para explicar un episodio de trombosis venosa
- Los resultados de las pruebas podrían cambiar el manejo de los pacientes
- La identificación de familiares portadores del defecto es útil desde el punto de vista profiláctico y diagnóstico
- La identificación de pacientes con defectos combinados ayuda en la selección de aquéllos de alto riesgo

Prevalencia de factores de riesgo para un 1^{er} episodio de TVP en portadores de trombofilia hereditaria

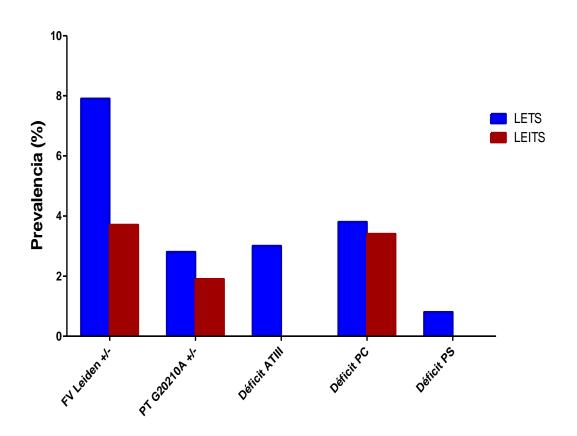


Tabla 2. Prevalencia del factor V Leiden y mutación de la protrombina G20210A en pacientes con trombosis y controles

		ientes :149)	Grupo	control	Odds ratio (n:160)	p
Polimorfismo	n	%	n	%		
Factor V Leiden	8	5,4	2	1,3	4,2 (1,0-29,3)	0,04
Protrombina G20210A	8	5,4	4	2,5	2,0 (0,6-8,9)	NS
Factor V Leiden + Protrombina G20210A	3	2,1	0			

Palomo y cols. Rev Méd Chile 2005; 133: 1425-1433

- Para explicar un episodio de trombosis venosa
- Los resultados de las pruebas podrían cambiar el manejo de los pacientes
- La identificación de familiares portadores del defecto es útil desde el punto de vista profiláctico y diagnóstico
- La identificación de pacientes con defectos combinados ayuda en la selección de aquéllos de alto riesgo

- Cambio en el manejo de los pacientes
 - —Episodio agudo

- —Manejo a largo plazo
 - El objetivo del tratamiento es la prevención de la recurrencia

- Cambio en el manejo de los pacientes
 - —Episodio agudo → NO

- —Manejo a largo plazo
 - El objetivo del tratamiento es la prevención de la recurrencia

Determinantes de recurrencia en pacientes con 1^{er} episodio de TVP

Predictor	Riesgo relativo	95% Intervalo de confianza
Espontánea vs provocada	2.3	1.82 – 2.90
Cáncer	2.72	1.39 – 5.32
Sindrome antifosfolípidos	2.3 – 8.5	
Embolía pulmonar vs TVP	2.32	1.77 – 3.03
Hombre vs mujer	2.70	1.8 – 4.2
Trombofilia hereditaria (1 defecto)		
Baglin y cols.	1.5	0.82 – 2.77
Christiansen y cols.	1.4	0.9 – 2.2

Zhu T y cols ATVB 2009: 29: 298-310

- Para explicar un episodio de trombosis venosa
- Los resultados de las pruebas podrían cambiar el manejo de los pacientes
- La identificación de familiares portadores del defecto es útil desde el punto de vista profiláctico y diagnóstico
- La identificación de pacientes con defectos combinados ayuda en la selección de aquéllos de alto riesgo

Journal of Thrombosis and Haemostasis, 1: 410-411

DEBATE

Pros and cons of thrombophilia testing: pros

I. MARTINELLI

Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, IRCCS Maggiore Hospital and Department of Internal Medicine, University of Milan, Italy

Journal of Thrombosis and Haemostasis, 1: 412-413

DEBATE

Pros and cons of thrombophilia testing: cons

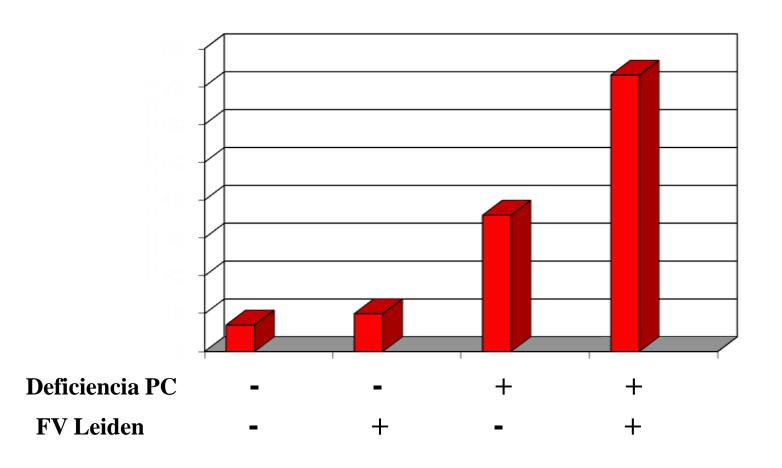
S. J. MACHIN

Department of Haematology, University College London, UK

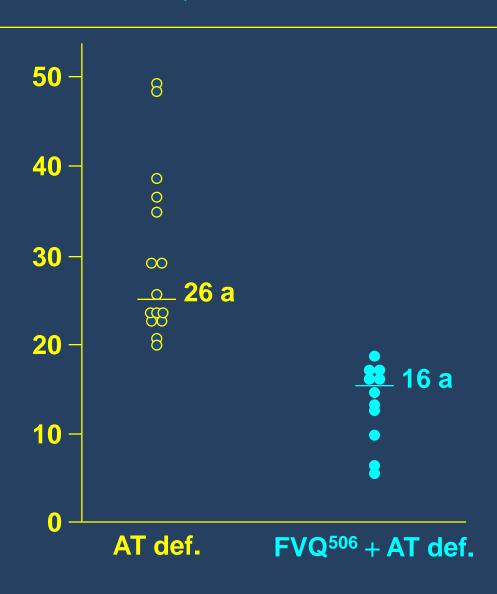
Incidencia (%/año) del 1^{er} episodio de trombosis en familiares asintomáticos

	Número	Incidencia (95% IC)
Individuos trombofílicos	575	0.8 (0.5-1.2)
Deficiencia PC	143	0.7 (0.3-1.6)
Deficiencia PS	107	0.8 (0.3-1.9)
Deficiencia AT	96	1.7 (0.8-3.3)
FV Leiden	173	0.1 (0.0-0.6)
Defectos combinados	56	1.6 (0.5-3.7)
Hombres	214	1.4 (0.8-2.2)
Mujeres	361	0.5 (0.2-0.9)
Controles	1118	0.1 (0.0-0.2)
Hombres	588	0.1 (0.0-0.2)
Mujeres	530	0.2 (0.1-0.4)

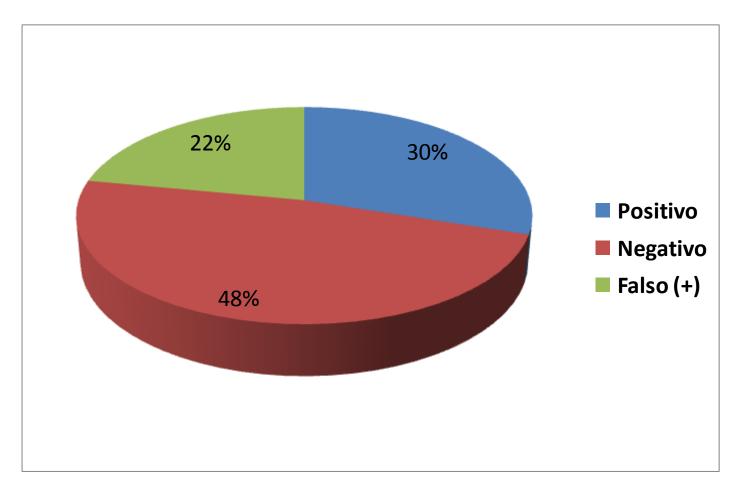
Estudio EPCOT; Vossen CY y cols. J Thromb Haemost 2005; 3: 459.



- Para explicar un episodio de trombosis venosa
- Los resultados de las pruebas podrían cambiar el manejo de los pacientes
- La identificación de familiares portadores del defecto es útil desde el punto de vista profiláctico y diagnóstico
- La identificación de pacientes con defectos combinados ayuda en la selección de aquéllos de alto riesgo


Factor V Leiden y deficiencia de PC

(Koeleman, Blood 1994)



Edad de presentación de la primera trombosis

van Boven, Thromb Haemost 1996

Estudio de laboratorio de trombofilia ¿Cuándo?

Estudio de laboratorio de trombofilia ¿Cuándo?

Prueba de laboratorio	Interpretación	Tipo de ensayo
FV Leiden	RPCA durante embarazo y en presencia de AFL	Genotipo FV Leiden (PCR) RPCA (basado en TTPA)
Mutación G20210A de FII		Genotipo (PCR)
Déficit de PC	Fase aguda, TACO, disfunción hepática	Ensayo funcional de PC Antígeno de PC
Déficit de PS	Fase aguda, TACO, disfunción hepática, embarazo, ACO, TRH	Proteína S libre
Déficit de ATIII	Fase aguda, disfunción hepática, tratamiento con heparina, sindrome nefrótico	Ensayo funcional Antígeno de ATIII

Estudio de laboratorio de trombofilia ¿Qué pruebas?

Antitrombina

Ensayo funcional (actividad cofactor heparina anti-Xa)

ESTUDIO DE LABORATORIO DE TROMBOFILIA ANTITROMBINA III FUNCIONAL

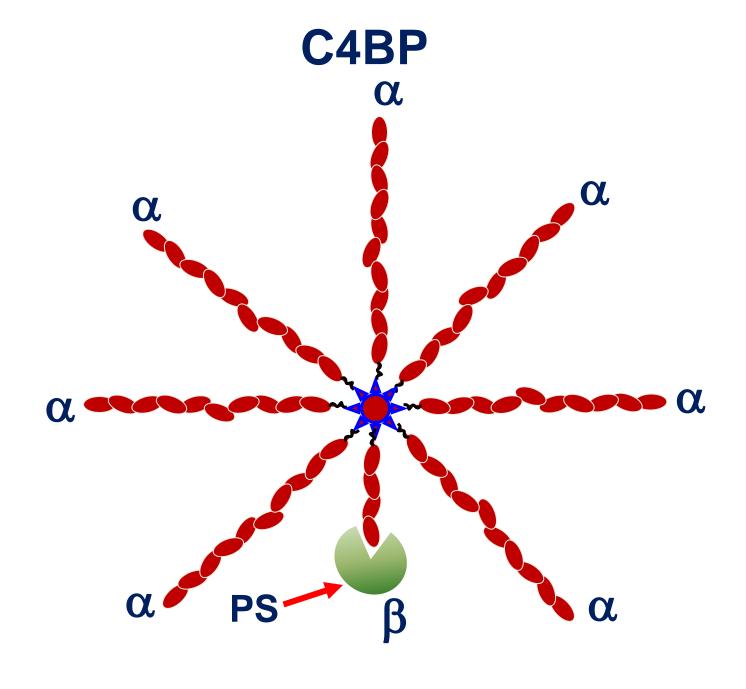
Estudio de laboratorio de trombofilia ¿ Qué pruebas?

- Antitrombina
- Proteína C

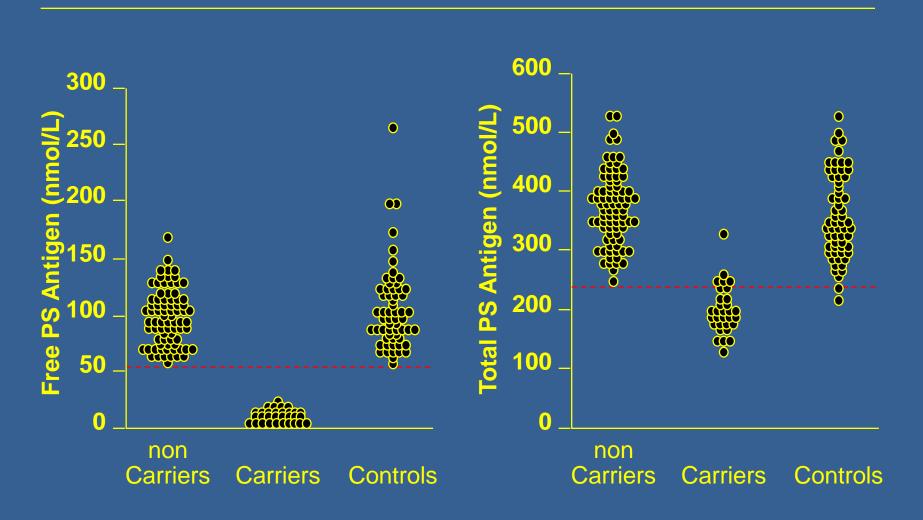
- Ensayo funcional (actividad cofactor heparina anti-Xa)
- Ensayo funcional (cromogénico con veneno de serpiente)

PROTEINA C FUNCIONAL

- 1. Plasma (o estándar) + Activador* + Cefalina
- 2. Incubación 37ºC
- 3. Calcio
- 4. Registro del tiempo de coagulación


* Extracto veneno de serpiente (Southern cooperhead)

Estudio de laboratorio de trombofilia ¿Qué pruebas?


- Antitrombina
- Proteína C
- Proteína S

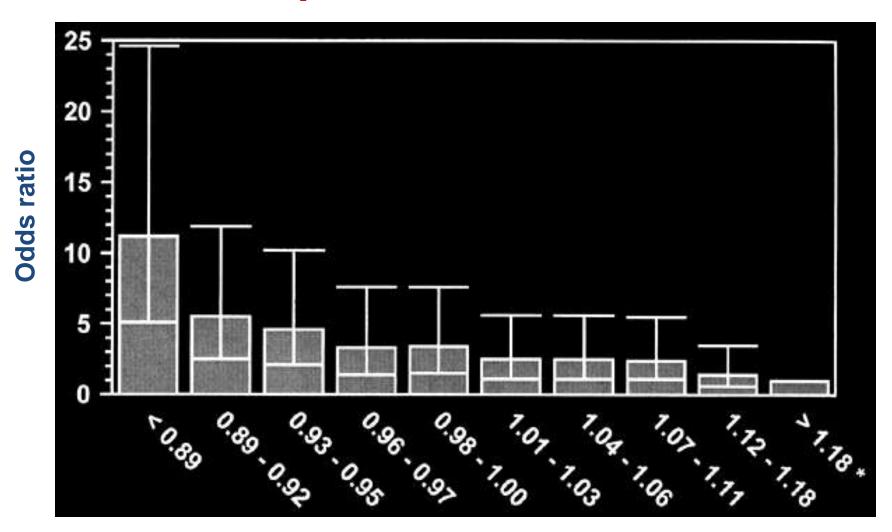
- Ensayo funcional (actividad cofactor heparina anti-Xa)
- Ensayo funcional (cromogénico con veneno de serpiente)
- Ensayo funcional (inespecífico)
- Antígeno total o libre

Deficiencia de proteína S (genotipo vs fenotipo)

Simmonds, 1998

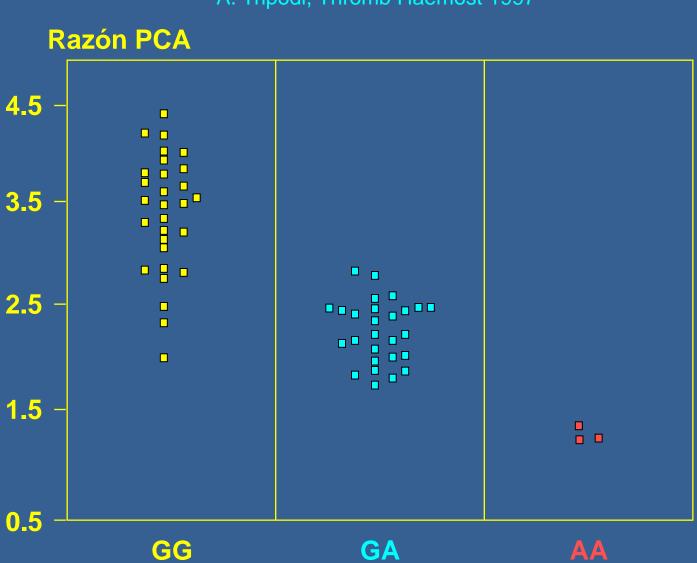


Resistencia a la proteína C activada Estudio de laboratorio


- Ensayo de coagulación (basado en TTPA)
 - Simple
 - Barato
 - Sensible al sindrome de RPCA no asociado a FV Leiden
- Ensayo de coagulación (basado en TTPA con plasma deficiente en FV)
 - 100% especifico para FV Leiden
- Análisis del ADN

Resistencia a la acción de la proteina C activada

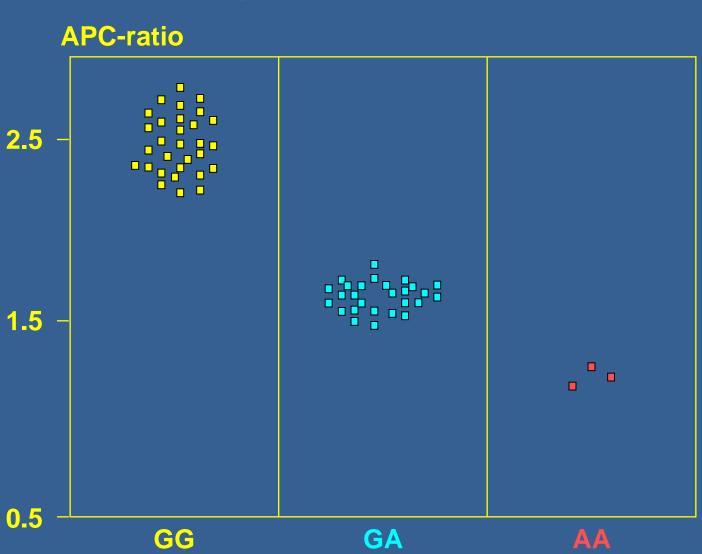
TVP en pacientes sin FV Leiden



Razón de PCA normalizada

RPCA

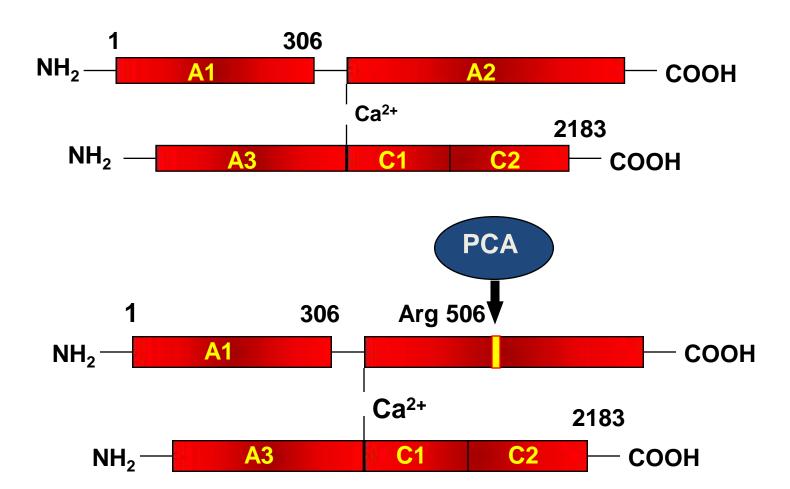
Método basado en TTPA


A. Tripodi, Thromb Haemost 1997

RPCA

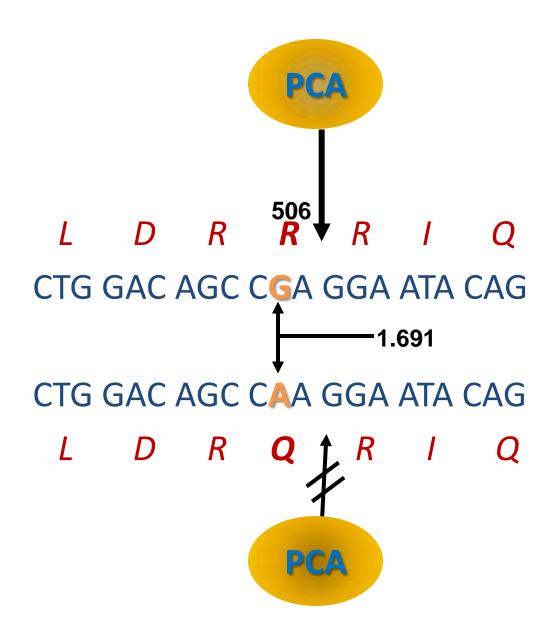
Método basado en TTPA con plasma deficiente en FV

A. Tripodi, Thromb Haemost 1997

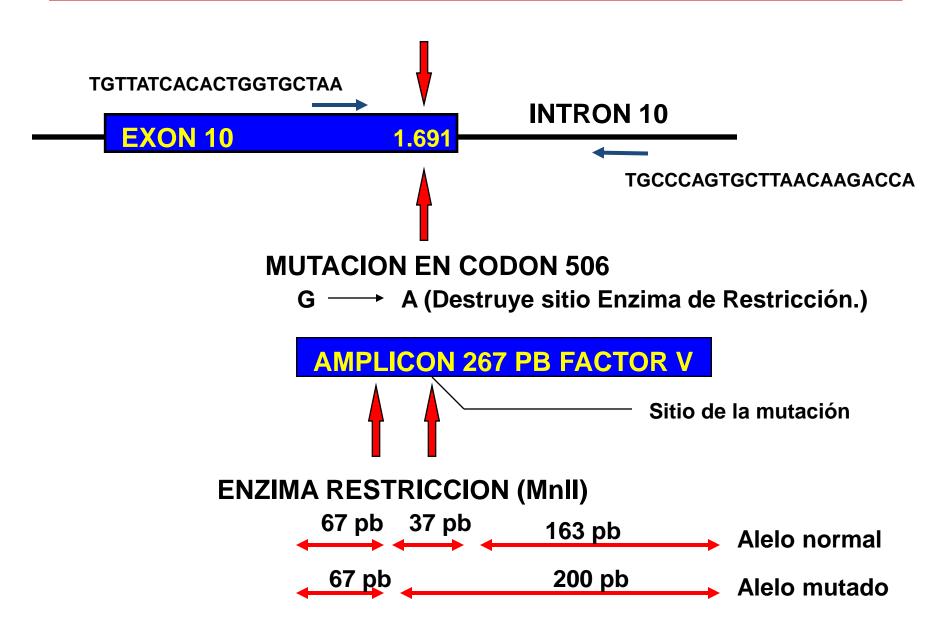


Estudio de laboratorio de trombofilia ¿ Qué pruebas?

- Antitrombina
- Proteína C
- Proteína S
- Resistencia a la PCA


- Ensayo funcional (actividad cofactor heparina anti-Xa)
- Ensayo funcional (cromogénico con veneno de serpiente)
- Ensayo funcional (inespecífico)
- Antígeno total o libre
- Método basado en TTPA con o sin plasma deficiente en FV.

INACTIVACION DEL FACTOR Va POR PCA



Factor V Leiden

PCR FACTOR V LEIDEN (RESISTENCIA A PROTEINA C ACTIVADA)

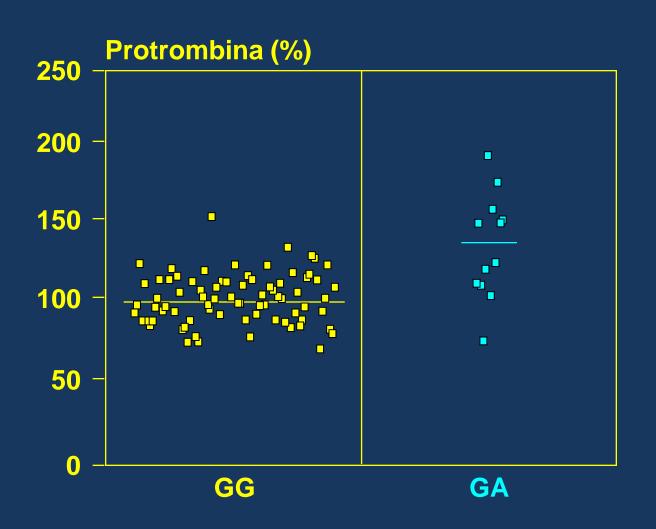
PCR FACTOR V LEIDEN

sd N +/- N +/+

Estudio de laboratorio de trombofilia ¿ Qué pruebas?

- Antitrombina
- Proteína C
- Proteína S
- Resistencia a la PCA

- Ensayo funcional (actividad cofactor heparina anti-Xa)
- Ensayo funcional (cromogénico con veneno de serpiente)
- Ensayo funcional (inespecífico)
- Antígeno total o libre
- Método basado en TTPA con o sin plasma deficiente en FV. Confirmación de resultados (+) con genotipo de FV.


Hiperprotrombinemia (Mutación G20210A)

Análisis del ADN

- Protrombinemia
 - Factor de riesgo de trombosis independiente de la presencia de mutación G20210A
 - No es una prueba adecuada para identificar a los portadores de la mutación

Niveles de protrombina de acuerdo al genotipo

Estudio de laboratorio de trombofilia ¿Qué pruebas?

- Antitrombina
- Proteína C
- Proteína S
- Resistencia a la PCA

- Mutación G20210A de PT
- Anticuerpos antifosfolípidos

- Ensayo funcional (actividad cofactor heparina anti-Xa)
- Ensayo funcional (cromogénico con veneno de serpiente)
- Ensayo funcional (inespecífico)
- Antígeno total o libre
- Método basado en TTPA con o sin plasma deficiente en FV. Confirmación de resultados (+) con genotipo de FV.
- Genotipo
- Pruebas dependientes de FL para ACL (KCT y dRVVT) y anticuerpos anticardiolipinas

Conclusiones

- Existe asociación entre defectos genéticos trombofílicos y tromboembolismo venoso; la relevancia clínica de esta asociación es incierta.
 - No aumentan el riesgo de un primer episodio de trombosis venosa en forma significativa
 - No aumentan en forma importante el riesgo de recurrencia
 - Como predictor de recurrencia son de menor valor que las características clínicas
- El estudio de laboratorio debiera limitarse al subgrupo de pacientes en los cuales el resultado cambiará el manejo
 - Sindrome antifosfolípidos

Salud UC

- Situaciones de riesgo (ej. Embarazo) en paciente con fuerte historia familiar y defecto conocido
- El estudio se debe hacer en condiciones óptimas para evitar los falsos positivos