Davis Strait Transport and Freshwater Fluxes

Craig Lee, Beth Curry, Jason Gobat Applied Physics Laboratory University of Washington Brian Petrie, Kumiko Azetsu-Scott, Bedford Institution of Oceanography

With thanks to:

Captains Colburn, Shesley & Seamans and R/V Knorr, Captain Martin and CCGS Hudson, GINR, Kunuk Lennart, Eric Boget, James Johnson, Keith Van Thiel, James Abriel, Murray Scotney, Robert Ryan and Mathieu Ouellet

Davis Strait Observing System

Freshwater and Arctic Gateways

- Salinity controls Arctic stratification.
- Fresh, cold layer insulates surface from warm, Atlantic layer- modulates sea ice formation.
- Arctic acts as FW source for subpolar oceans.
- FW discharge may impact deep water formation, subpolar gyre extent and strength, N. Atlantic carbon uptake, key fisheries.

Challenges

- Small deformation scaledynamically wide strait.
- Broad W. Greenland shelf.
- Freshwater moves in thin (~50 m) surface layer.
- Ice cover & icebergs.
- Measure at daily to weekly timescales, maintain over decade-long spans.

Ship-based Hydrographic Sections: Autumn. Biogeochemical tracers (nutrients, trace metals, TOC, TAlk, CFCs, oxygen isotopes. Spans broad region from S. Baffin Bay to N. Labrador Sea.

Oct 2006 Potential Temperature

Autumn Volume and FW Geostrophic Transports at Sill

Year	Number of Stations	
1960	9	
1963	6	
1965	8	
1967	10	
1987	19	
1988	19	
1990	18	
1997	11	
2004	17	
2005	17	
2006	17	
2007	17	
2008	17	

Increasing fall transport 1990-2007; peak FW flux 2007, reduced 2008

Under-ice Glider Surveys

Charts Provided by Canadian Ice Service

- Acoustic navigation
- Enhanced autonomy
- T, S, oxygen
- Full ice cover
- Marginal ice zone
- Scalable, flexible operations
- Arctic Missions (06, 08/09, 09/10) 6 month max duration Fully-autonomous under ice ops: 51 days, 800+ km. Profiles to within 5 m of ice-ocean interface. Utilized 8 leads (33 attempts). For 2010 • Extended endurance. More sophisticated navigation. Acoustic download to moored data depots.

September (ice-free) and December (ice-covered) 2008

Davis Strait Monthly Mean Potential Temperature (04-05)

Davis Strait Monthly Mean Salinity (04-05)

Davis Strait Monthly Mean Velocity (04-05)

Davis Strait Volume, Freshwater and Heat Flux (04-05)

South Vol Flux 70% AW 30% TW 54% <150 m 0.3 Sv WG Shelf 0.1 Sv BI Shelf

South FW Flux 87% AW 13% TW 73% <150m 13 mSv WG Shelf 7 mSv BI Shelf

North Heat Flux 42% AW 38% WGIW 10% WGSW 3 TW WG Shelf 1 TW BI Shelf

Baffin Bay Volume and FW Budgets (04-05)

Baffin Bay	Volume Transport (Sv)		Freshwater Transport (mSv	
Passages	Inflow	Outflow	Inflow	Outflow
Nares Strait ^{1,2} 2003-2006	0.72 ± 0.11		25 ± 4	
Lancaster Sound ³ $1998-2006$	0.7 ± 0.2		48 ± 15	
Jones Sound ⁴ 1998-2002	0.3 ± 0.1		12 ± 4	
CAA Ice ^{5,6} 1996-2007	< 0.1		5 ± 1	
Greenland Ice Sheet ⁷ $1995-2007$	< 0.1		7 ± 1	
$\begin{array}{c} \mathbf{P-}\mathbf{E}^{8,9,10} \\ 1961\text{-}2001 \end{array}$	< 0.1		7 ± 1	
Baffin Island Runoff ^{8,11} 1971-2000	< 0.1		3 ± 1	
Davis Strait 2004-2005		-2.4 ± 0.7		-123 ± 41
Total	1.7 ± 0.2	$\textbf{-2.4}\pm\textbf{0.7}$	107 ± 16	$\textbf{-123} \pm \textbf{41}$
Difference	-0.7		-16	

¹Munchow and Melling, 2008; ²Rabe et al.(manuscript submitted to *J. Phys. Oceanogr.*, 2009); ³Prinsenberg et al., 2009; ⁴Melling et al., 2008; ⁵Agnew et al., 2008; ⁶Kwok, 2005; ⁷Mernild et al., 2009; ⁸Canadian Climate and Data Information Archive (www.climate.weatheroffice.ec.gc.ca); ⁹Jensen and Rasch, 2008; ¹⁰National Climate Data Center (www.ncdc.noaa.gov/oa/ncdc.html); ¹¹Water Survey of Canada (geogratis.cgdi.gc.ca/geogratis/en/index.html)

Volume & FW Flux (Oct 2004-Sep 2008)

Summary

- No statistically significant change between 87-90 and 04-05 annual-average Davis Strait volume and FW fluxes (need to reanalyze 87-90 data for consistency).
- Preliminary volume and FW flux estimates 2004-2008 hint at seasonal cycle with significant inter-annual variability.
- No apparent trends in 2004-2008 volume and FW fluxes.
- Exploring proxies for large-scale forcing. No clear relationship between 2004-2008 Davis Strait fluxes and Arctic Oscillation or Arctic Dipole indices.
- Comparison of CTD-based flux 'snapshots' and annual means from moored array provides basic lesson in aliasing.
- Suggests caution when interpreting fluxes calculated from annually-occupied sections. Integrating properties OK.

Pacific	Water
Percen	tage

 Red
 80-100%
 Yellow
 60-80%

 Green
 40-60%
 Blue
 20-40%

 Black
 0-20%
 Image: Constraint of the second secon

Stronger downstream decrease of Pacific water percentage, weak offshore exchange agreeing with Jones et al.

T-S analysis supports low probability of finding Arctic Water seaward of 1000 m isobath.

Suggests Limited role of Davis outflow in Lab Sea Convection.

Fate of CAA/Davis Strait outflow? Fratantoni & MacCartney...

Ice-Sacrificial Mooring (ICECAT)

Expendable shallow element samples ice-threatened near-surface layer.

- Access
 - Sample ice-ocean interface, marginal ice zone

• Risk

- Sensor(s) exposed but data protected.
- Acoustic data upload possible.
- Low-cost (expendable)- deploy many.

• Persistence

- Multi-year endurance possible- would want acoustic upload.

Adaptability

- Originally designed for sampling shelf/slope environments.
- Seasonal or permanent ice-cover, marginal ice zone.
- Lightweight logistics (for a mooring).
- Extensive use in Davis Strait and Bering Strait.

Data logged below, protected by weak link.

Long-Range Under-Ice Gliders

- Arctic Missions (2006, 2008/09, 2009/10)
 6 month max duration
 Fully-autonomous under ice ops: 51 days, 800+ km.
 Profiles to within 5 m of ice-ocean interface.
 Utilized 8 leads (33 attempts) during under-ice ops.
- For 2010

Extended endurance.

More sophisticated navigation (robust to source loss). Acoustic download to moored data depots.

- Acoustic navigation (RAFOS, 2 km)
- Enhanced autonomy
- T, S, oxygen
- Samples ice-ocean interface
- Resolves deformation scale
- Full ice cover & marginal ice zone
- Telemetry in open water, leads
- Long endurance
- Scalable, flexible operations

