
Draft version February 22, 2018
Preprint typeset using LATEX style emulateapj v. 12/16/11

DARK MATTER UNDER THE MICROSCOPE: CONSTRAINING COMPACT DARK MATTER WITH
CAUSTIC CROSSING EVENTS

Jose M. Diego1, Nick Kaiser2, Tom Broadhurst3,4, Patrick L. Kelly5,6, Steve Rodney7, Takahiro Morishita8,
Masamune Oguri9,10,11, Timothy W. Ross5, Adi Zitrin12, Mathilde Jauzac13,14,15, Johan Richard16,

Liliya Williams17, Jesus Vega-Ferrero1,18, Brenda Frye19, and Alexei V. Filippenko5,20

Draft version February 22, 2018

ABSTRACT

A galaxy cluster acts as a cosmic telescope over background galaxies but also as a cosmic mi-
croscope magnifying the imperfections of the lens. The diverging magnification of lensing caustics
enhances the microlensing effect of substructure present within the lensing mass. Fine-scale struc-
ture can be accessed as a moving background source brightens and disappears when crossing these
caustics. The recent discovery of a distant lensed star near the Einstein radius of the galaxy clus-
ter MACSJ1149.5+2223 allows the rare opportunity to reach subsolar-mass microlensing through a
supercritical column of cluster matter. Here we compare these observations with high-resolution ray-
tracing simulations that include stellar microlensing set by the observed intracluster starlight and also
primordial black holes that may be responsible for the recently observed LIGO events. We explore dif-
ferent scenarios with microlenses from the intracluster medium and black holes, including primordial
ones, and examine strategies to exploit these unique alignments. We find that the best constraints
on the fraction of compact dark matter in the small-mass regime can be obtained in regions of the
cluster where the intracluster medium plays a negligible role. This new lensing phenomenon should be
widespread and can be detected within modest-redshift lensed galaxies so that the luminosity distance
is not prohibitive for detecting individual magnified stars. High-cadence Hubble Space Telescope mon-
itoring of several such optimal arcs will be rewarded by an unprecedented mass spectrum of compact
objects that can contribute to uncovering the nature of dark matter.
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1. INTRODUCTION

Kelly et al. (2017, hereafter K17) present the first
observations of a single high-redshift star in a back-
ground, lensed spiral galaxy at redshift z = 1.49 (Smith
et al. 2009; Zitrin & Broadhurst 2009) being magni-
fied by a factor of several thousand by a galaxy cluster
MACSJ1149.5+2223 [hereafter MACS1149] at z = 0.544
(Ebeling et al. 2007).

This event was discovered serendipitously while mon-
itoring a lensed supernova (SN) behind the cluster (SN
Refsdal; Kelly et al. 2015, 2016; Rodney et al. 2016).
The light curve of the star shows at least one prominent
peak in the spring of 2016 that lasted ∼ 2 months. A
first event, named Icarus or LS1 / Lev 2016A by K17,
produced a peak in the light curve that lasted several
weeks; after the peak, the flux returned to its original
value. This event is interpreted as a crossing of a bright
background star through a microcaustic produced by one
of the stars (or star remnant) in the intracluster medium.
At a position separated by 0.26′′ from this initial peak, a
second peak (named Iapyx, or LS1 / Lev 2016B by K17)
appeared between 1 and 2 months after the first event
faded, and lasted less than 3 months. No object was
observed at this second position in the previous 10 yr
or in the months after it vanished. This second event
is also interpreted as a microlensing event of the same
background star (and a different microlens in the intra-
cluster medium). However, in this case one possible in-
terpretation is that the low-magnification region around
a microlens was hiding the background star for > 10 yr
with occasional brief periods of high magnification (see
K17 for other possible interpretations, including binary
stars). A potential third event discussed by K17, Perdix
or Ls1/ Lev 2017A, is found 0.1′′ away from the second
event. If confirmed, this third event could be produced
by the same network of microcaustics, but possibly in-
volving a different background star.

As discussed by K17, the picture described above
is consistent with the expected behavior of a back-
ground star traveling at typical relative velocities of
∼ 1000 km s−1 and a lens plane populated with a den-
sity of stars that is compatible with the observed intr-
acluster light (ICL) at the position of the two events.
Microlensing events are expected to be produced by the
stars responsible for the ICL (and their remnants). As
shown in earlier work, the light curve of an object be-
ing lensed by a field of microlenses may contain high-
and low-magnification periods. This behavior has been
predicted in previous papers (see, for instance, Chang &
Refsdal 1984; Kayser et al. 1986; Paczyński 1986). In
particular, Chang & Refsdal (1979, 1984) were the first
(to our knowledge) to recognize that counterimages may
have very low fluxes (disappearing below the detection
limit of a given instrument) for some periods of time, in
agreement with the observed behavior of the Iapyx event
(counterimage of the Icarus event of K17).

A massive galaxy cluster acts as a cosmic telescope
that enlarges the images of background galaxies. How-
ever, near a critical curve (CC), small changes in the
deflection field result in large changes in the magnifica-
tion. These small changes in the deflection field can be
produced by small masses in the range of a stellar mass
or below. In this situation, as we will show, the galaxy

cluster may act also as a cosmic microscope since it ef-
fectively enlarges any imperfection in the deflection field
near the CC caused by microlenses. Microlensing near a
cluster CC has the interesting feature that the individ-
ual micro-CCs around the microlens (and corresponding
microcaustics) get enlarged by a factor that is larger the
closer they are to the main CC (see discussion of this
effect in Section 2). This allows, in principle, probing
small-mass microlenses as we approach the cluster CC.

Earlier work has explored the behavior of counterim-
ages during caustic-crossing events in smooth potentials
(from galaxies to clusters). Miralda-Escude (1991) con-
siders, as in this work, the case of a single star crossing a
caustic from a smooth lens model. He estimates the max-
imum magnitude of a lensed background star at the time
of caustic crossing, as well as a rate of events based on
the surface brightness of a background galaxy (this case
is also discussed by Chang & Refsdal 1979, 1984; Schnei-
der & Weiss 1986). The combined effect of overlapping
caustics from an ensemble of microlenses embedded in a
stronger gravitational field has been also studied in detail
(Young 1981; Gott 1981; Chang & Refsdal 1984; Kayser
et al. 1986; Paczyński 1986), in particular in the context
of quasar (hereafter QSO) microlensing (Chang & Refs-
dal 1979; Irwin et al. 1989; Witt et al. 1995; Metcalf &
Madau 2001). Kayser et al. (1986) and Paczyński (1986)
show how a large number of microlenses embedded in a
deep potential can redistribute the magnification, pro-
ducing complex light curves of a background source. For
certain configurations (see, e.g., Figs. 9 and 10 of Kayser
et al. 1986), the magnification splits into compact regions
of large and low magnification. As shown in these pa-
pers, a source traveling across this field may disappear
suddenly when entering one of the low-magnification re-
gions, only to reappear at some time later as a bright
source.

This type of behavior resembles the observed flux in the
Icarus and Iapyx events. However, when the microlenses
are very close to the CC (a fraction of an arcsecond), the
magnification pattern exhibits features that have not yet
been studied in detail. Paczyński (1986) investigated the
general case of high optical depth of microlenses embed-
ded in a galaxy or cluster potential, but he ignores the
effect of shear and focuses on areas in the lens plane that
are not close to the main CC. Kayser et al. (1986) in-
clude the shear term from the large deflector (cluster or
galaxy) in their calculations, but again do not study the
particular case of short distances to the main CC. As
noted by Paczyński (1986), this regime is computation-
ally very expensive (owing to the very large magnifica-
tions involved that require the mapping of a small field
in the source plane into a very large field in the image
plane), and could not be studied in detail in those early
papers.

Some authors have focused their attention on the high
magnification regime (see Wambsganss 1990; Schechter
& Wambsganss 2002, and references therein) in the con-
text of QSO microlensing, but these high magnifications
are still modest (a few tens at most) compared with the
more extreme values (several hundred to several thou-
sand) considered in this paper and do not reveal some
of the properties of the lensed images that are accentu-
ated with extreme magnification (see Section 3.2). The
smaller magnifications found in QSO microlensing are



Microlenses near caustics 3

partially due to the larger intrinsic size of the back-
ground source. As we will show later, the maximum
magnification attained by a background source scales as
the inverse of the square root of its radius. For QSOs,
the radius is related to the half-light radius of the ac-
cretion disk. These disks are typically of the order of
ten light days, when observed in the optical, and about
an order of magnitude smaller when observed in X-rays
(Chartas et al. 2009; Dai et al. 2010; Jiménez-Vicente
et al. 2012) for typical supermassive black holes. This
radius is known to scale with the mass of the black hole
(Morgan et al. 2010; Jiménez-Vicente et al. 2015). When
compared with the radius of a giant luminous star, the
accretion disks around QSOs are approximately a factor
103–104 times larger. Consequently, the maximum mag-
nification attained by a lensed giant star can be up to two
orders of magnitude larger than the corresponding one
for QSOs. This is an important advantage that comes
with the added bonus that the smaller stellar radii trans-
late into shorter-lived events which are easier to monitor
(days as opposed to years). Although QSO microlensing
is not directly comparable to the work presented in this
paper, there are also many similarities. Earlier papers
focusing on the interpretation of QSO microlensing con-
tain useful insights that are applicable to this work when
the magnifications are significantly higher. Schechter &
Wambsganss (2002) present interesting similarities with
some of the results given here, in particular when dis-
cussing the statistics of the magnification around micro-
minima and microsaddle points.

In this paper, we explore for the first time the regime
of very short distances to the main CC (or, equivalently,
very high magnification), motivated by the observation
of the two (or possibly three) intriguing events discussed
by K1720.

In the case of a galaxy cluster, its larger size trans-
lates into a greater magnification of a background ob-
ject. Also, if a significant fraction of dark matter (DM,
hereafter) is made of compact objects like primordial
black holes (PBHs), galaxy clusters are ideal to study
microlensing by these objects since it is possible to find
CCs (with high optical depth for microlensing) relatively
far away from member galaxies and reduce the impact
of stars (or remnants) in these galaxies that could pro-
duce similar microlensing events. The case of PBHs is
interesting since they are (still) a valid candidate for DM
(or at least a fraction of it) in some mass regimes (see,
for instance, Carr et al. 2010; Clesse & Garćıa-Bellido
2015; Carr et al. 2016a). The fraction of DM that can
be in the form of PBHs has been constrained for differ-
ent PBH masses. The possibility that PBHs constitute
a sizable fraction of the DM is interesting and has been
studied extensively, although PBHs are excluded as the
primary component of DM in virtually all mass ranges.
Bird et al. (2016) proposed that at around 30 M� there
is still a range of masses that have not been convinc-
ingly ruled out (see also Sasaki et al. 2016; Clesse &
Garćıa-Bellido 2017, for a related result). Interestingly,
if a significant fraction of DM is in the form of PBHs

20 The reader will find also very interesting two recent publica-
tions that appeared after this manuscript was originally submitted
and that are very closely related to this work (Oguri et al. 2017;
Venumadhav et al. 2017).

with M ≈ 30 M�, events like the collision of two black
holes with these masses would be more common, facilitat-
ing the interpretation of the first LIGO detection (Ab-
bott et al. 2016). This interpretation, however, is not
supported by the second LIGO event with significantly
smaller masses. On the other hand, more recently a new
LIGO event as well as a LIGO/Virgo event imply de-
tections of massive pairs of BHs (MBH ≈ 20–30 M�),
implying a higher than expected abundance of BHs with
MBH ≈ 30 M�) (Abbott et al. 2017; The LIGO Scientific
Collaboration et al. 2017).

Analyses of multiply imaged QSOs have found that the
observed microlensing signal is incompatible with the hy-
pothesis that ∼ 30 M� PBHs make up most of the DM
(see Mediavilla et al. 2017, and references therein). The
same work concludes that the fraction of mass in the
form of microlenses can still be as high as 20% of the
total mass, but with the most likely mass of microlenses
being below 1 M�. If confirmed, this key work leaves
little room for the hypothesis that PBH with ∼ 30 M�
can make a significant fraction of the DM (∼ 10%) unless
extended mass functions (instead of the monochromatic
or bimodal models considered by Mediavilla et al. 2017)
can have a significant impact on the results, or the size of
accretion disks around QSO are an order of magnitude
larger than what has been considered so far (the latter
point being an important source of uncertainty in this
and other work). Moreover, we should note that in Me-
diavilla et al. (2017), the limit of high optical depth (for
microlensing) does not seem to be explored, and as we
will show later, in this regime the fluctuations in flux are
smaller owing to the constant presence of multiple over-
lapping microcaustics that tend to average out the ob-
served integrated flux. It would not be surprising to have
constraints from QSO microlensing that differ from (or
even contradict) those derived from microlensing of back-
ground stars (this work). If one finds that tensions be-
tween these regimes exist, some of the assumptions made
in each regime will have to be reviewed. Constraints
from microlensing in our local environment (the Mag-
ellanic Clouds) are weaker, and recent work has shown
that uncertainties in these constraints can be as high as
one order of magnitude (Green 2017).

Carr et al. (2017) review the constraints for PBHs us-
ing more realistic extended mass functions and conclude
that one could allow for as much as 10% of the DM in
the form of PBHs in the mass range MBH ≈ 25–100 M�
(although this work does not include the results of Me-
diavilla et al. 2017). This limit of 10% will be adopted
in this paper as an upper limit for the fraction of PBHs
in this mass range. At smaller masses, constraints on
the fraction of PBHs allow for a modest fraction of DM
below M ≈ 1 M� (see, however, Kühnel & Freese 2017;
Inomata et al. 2017, for the mass range MBH ≈ 10−10–
10−8 M�). These constraints tighten at very low masses.
A lower limit for the PBHs of M ≈ 1011 kg can already
be established from theoretical grounds and observations
of γ-rays (see, e.g., Kim et al. 1999). Below this mass, no
PBHs are expected to exist as they should have evapo-
rated by now (down to the Planck mass). This limit can
be increased a little from detailed observations of the γ-
ray background, since sufficient PBHs with masses near
the above limit would be a strong source of γ-rays in our
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vicinity, which is not observed. Continuous monitoring
of background galaxies intersecting a cluster CC provides
an excellent dataset for constraining the abundances of
PBHs based on their lensing signature. Combining these
data with models of the full stellar population in the
lensing plane can address many of the systematic biases
inherent in past measurements.

In this paper, we explore a different technique to con-
strain the fraction of compact DM, paying particular at-
tention to the mass range relevant for the three most sig-
nificant LIGO events. We show how microlensing events
by relatively small masses can take place thousands of
years before (or thousands of years after) a bright star
in the background galaxy crosses the position of a clus-
ter’s main CC. Hence, the probability of observing a mi-
crocaustic crossing event is considerably increased when
compared with earlier work that only considered the
crossing of the main cluster caustic. As mentioned ear-
lier, as the background star approaches the main cluster
CC, the sensitivity to detect progressively smaller mi-
crolenses grows, offering a unique opportunity to probe
masses that could not be tested otherwise. This provides
an exciting opportunity to set limits on the fraction of
DM in the form of compact objects in low-mass regimes
that are difficult to study otherwise.

This paper is organized as follows. In Section 2 we
describe the basic properties of the magnification near a
CC. Section 3 presents results based on numerical sim-
ulations with a focus on the structure of caustics in the
source plane. In Section 4 we explore in detail the dis-
ruption of the CC in the image plane when microlenses
populate the lens plane. We predict in Section 5 the be-
havior of the observed flux (light curve) of a background
star traveling through a field of microcaustics. In Sec-
tion 6, we predict how events like Icarus will disappear
(or first appear) once the last (or first) microcaustic is
crossed. Section 7 considers the prospects for constrain-
ing compact DM with this type of observation. Some of
our results are discussed in Section 8, and we conclude
in Section 9.

This paper is very much related to K17. While this
paper presents the theoretical (lensing) and numerical
(simulations) background of K17, the reader is pointed
to K17 for a detailed discussion of the particular Icarus
and Iapyx events, including their interpretation. In this
paper we refer to the Icarus and Iapyx events when ap-
propriate or relevant for the discussion. Throughout the
paper we assume a cosmological model with ΩM = 0.3,
ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1. For this model,
1′′ = 6.45 kpc at the distance of the cluster MACS1149
(z = 0.544) and 1′′ = 8.4 kpc at the distance of the back-
ground source (z = 1.49).

Besides CC, several terms will be used often in this
paper. We refer to the critical curves and caustics
around microlenses as micro-CCs and microcaustics, re-
spectively. The cluster CC and caustic that would form
if there were no microlenses are the main CC and main
caustic, respectively. Macro-images are the counterim-
ages that would have formed if there were no microlenses
and the lensing potential were sourced only by the clus-
ter. A macro-image in a region filled with microlenses
usually breaks up into smaller portions that we refer to as
micro-images and also as bits. Then, around a CC we ex-
pect to find two macro-images, each composed of several

Fig. 1.— Magnification along a direction perpendicular to the CC
at the position of the Icarus event. The dashed line corresponds to
the model of Diego et al. (2016). The dotted line is an analytical
model following Eq. 5. The left side of the curve corresponds to the
inner part of the CC (or negative parity, a1 < 0; see text) where
the magnification falls faster than the simple analytical model. The
right side of the curve is for the region where the parity is positive,
a1 > 0.

smaller micro-images or bits. When the optical depth of
microlenses is relatively small (Σmicrolens/Σcrit < 0.01)
and the macro-images form very close to the main CC,
the resulting group of micro-images is usually stretched
along a straight line, following the direction of the clus-
ter deflection field. Because of this geometry, we re-
fer to this group of micro-images as a train of micro-
images, or simply as a train. At low optical depth of
microlenses, a background source will form typically two
trains (or macro-images), one on each side of the CC. At
higher optical depth, a single background source can form
more than two trains, and each train can contain mul-
tiple smaller micro-images. In this sense, we can think
of Icarus and Iapyx as unresolved macro-images which
consist of even smaller bits or micro-images. The surface
mass density of microlenses, Σ, is used in two contexts.
In its broader sense we simply use Σ. When Σ takes the
value of 7 M� pc−2 (the one found by K17 at the position
of Icarus/Iapyx21.), we refer to it as Σo. Sometimes we
express Σ in units of Σo and use f = Σ/Σo. Toward the
end of this work we use another variable, F , that should
not be confused with f . We use F to refer to the fraction
of the total mass that is in the form of compact objects
(whether this is made of stars from the ICL, PBHs, or
both). By construction, F is always smaller than 1 while
f can be larger than 1.

2. LENSING PROPERTIES NEAR A CRITICAL REGION

A gravitational lens is characterized by the lens equa-
tion

β = θ − α(M, θ), (1)

where β is the position of the background source, θ is
the observed position in the sky of the lensed image, and
α(M, θ) is the deflection angle produced by the lens with
mass M . The dependence of α(M, θ) on the position
θ results in Eq. 1 being nonlinear. Consequently, for a
given position β, it is sometimes possible to find multiple

21 Although this value was recently updated by K17 to ∼ 12 −
−19 M� pc−2 which we also use in parts of this work
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solutions to Eq. 1 with each solution representing a dif-
ferent counterimage. Each counterimage is magnified by
a factor µ. Since lensing preserves the surface brightness
of the background source, µ can be defined as the ratio
between the observed size (i.e., area) of the counterim-
age, dΩθ, and the intrinsic size of the background source,
dΩβ . For a given lens model the deflection field α(M, θ)
is known, and the magnification can be computed in a
given position from the derivatives of the deflection field.
The inverse of the magnification is defined as

µ−1 = a1a2 = (1−κ−γ)(1−κ+γ) = (1−κ)2−γ2, (2)

where κ and γ are the convergence and shear (respec-
tively), and are combinations of the derivatives of the
deflection field. We introduce the inverse of the magni-
fications, a1 and a2, that will be used later in this work.
At a tangential CC, a1 = 0. On each side of the CC, a1

takes positive and negative values (parity). The sign of
a1 gives the parity of the image, so images with negative
parity have a1 < 0 and images with positive parity have
a1 > 0.22

Counterimages that form near a CC can be magnified
by very large factors. At the CC, the magnification di-
verges and dβ/dθ = 0. We can take advantage of this
property to Taylor expand the lens equation around the
CC,

β = βo +
dβ

dθ
(θ − θo) +

1

2

d2β

dθ2
(θ − θo)2 + ... (3)

We choose βo and θo as the origins of the reference sys-
tems in the source and image plane, respectively, and
redefine β = β − βo and θ = θ − θo. The second term
cancels out at the position of the CC, leaving to second
order

β = θ2/Θ, (4)

where we have defined the constant Θ−1 = (1/2)d2β/dθ2.
At the position of the CC (θ = 0) we satisfy the condition
µ−1 = 0, and to first order µ−1 = dβ/dθ ∝ θ. Hence,
in the image plane we obtain for the total magnification
(i.e., the magnification of the two images on each side of
the CC)

µ =
µo
θ

(5)

near the CC, where µo is a constant that depends on the
lens mass and geometry. This condition is satisfied for
most lenses up to θ ≈ 1′′ (see Fig. 1). The asymptotic
behavior when θ � 0 is µ = 1 in the external side of the
CC (a1 > 0) and µ = 0 at the position of the lens for a
point-source lens.

The magnification in Eq. 5 is expressed in the image
plane. In terms of the position in the source plane, we
can use Eq. 4 to obtain

µ =
µo/
√

Θ√
β

. (6)

The maximum magnification is obtained when the source
touches the caustic — that is, when the distance from the

22 In the Appendix, the distinction between a1 > 0 and a1 < 0
becomes more evident.
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Fig. 2.— The left panel shows magnification for a source at z =
1.49 around a star with M = 1000 M� at z = 0.55. The Einstein
ring can be clearly seen as a circle. The middle and right panels
indicate the magnification (for a source at z = 1.49) caused by two
stars with much smaller masses (M = 10 M�) at z = 0.55, but
that are close to a CC of a galaxy cluster also at z = 0.55. The
main CC (not shown) runs perpendicular to the gray band. The
middle panel is for the side of the CC where a1 < 0 and the right
panel for the side where a1 > 0. The circular configuration of the
Einstein ring transforms into a figure-eight pattern.

center of the source to the caustic equals the radius of
the source, R. Then we obtain

µmax =
µo/
√

Θ

2
√
R

. (7)

Eqs. 4, 5, and 6 are very useful for characterizing the
properties of the counterimages near a CC. The values of
µo and Θ can be obtained for a given lens and at a given
position after fitting several positions near the CC. For a
cluster like MACS1149 at the position of the Icarus event
(and a background source at z = 1.49), µo ≈ 150′′ and
Θ ≈ 68′′ for the model of Diego et al. (2016, hereafter
D16). These values may change by as much as a factor of
∼ 2 for alternative models that still predict the CC in the
correct position depending on the slope of the potential
at the position of the CC, but we will adopt them below
as realistic examples (see Section 8.1). For these values
of µo and Θ, if the background star is a giant star with
radius R = 100 R�, the maximum magnification can be
as high as µmax ≈ 106 at the CC near the Icarus position.
If a background source is moving in the source plane with
a constant velocity vp = dβ/dt in a direction perpendic-
ular to the caustic, the apparent observed velocity of the
counterimages in the image plane is

vobs =
dθ

dt
=

Θ

2µo
vpµ, (8)

where we have used Eq. 4 to relate θ with β and re-
placed θ with µ using Eq. 5 after doing the derivative.
Hence, at total magnifications µ & 1000, the counterim-
ages would appear to move at superluminal speeds (for
this particular configuration). This has an interesting
implication, since counterimages that move with larger
apparent velocities can cover a larger region in the lens
plane, probing more substructure as the source moves
across the lens plane. Conversely, this can be seen as the
microcaustics being more cramped in the source plane as
we approach the main caustic.

If DM is clumped (like in some wave dark matter mod-
els), or if a significant fraction of DM is made of compact
objects such as PBHs, the probability that in a fixed pe-
riod of time a given counterimage passes behind a clump
of DM or a PBH will be higher near a CC, where counter-
images probe the lens plane at a faster rate. The most
interesting scenario to constrain the fraction of DM in
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Fig. 3.— Change in size of the micro-CC as a function of mass.
The black solid line is for an isolated star (not in a strong-lensing
deflection field) and gives the standard Einstein radius. The red
and blue curves correspond to the cases where the star is located
∼ 0.13′′ from the CC on either side of the CC (see Section 2 for
the definition of a1). The CC radius is defined as the perimeter
of the CC divided by 2π. The red and blue curves are roughly a
factor

√
µt ≈

√
100 = 10 times higher than the black curve.

compact objects is near tangential CCs. Radial CCs are
normally close to the center of the cluster, where the
intracluster light or the stars from the brightest cluster
galaxy (BCG) can overwhelm the possible signature from
compact DM.

In this work, we will focus on the case of tangential
CCs, where the exploitation of crossing events may be
most fruitful (see, however, Chen et al. 2017, where a
microlensing event near a radial CC in the same cluster,
MACS1149, is used to unveil a supermassive black hole
∼ 10 kpc from the center of the BCG).

Tangential CCs form when 1 − κ − γ = 0 (while
|1− κ+ γ| > 0). If the lens plane is populated by small
microlenses, they will contribute to the convergence (or
surface mass density) with a small factor κ̄∗(θ) � 1,
where κ̄∗(θ) is the mean surface density of a point-
like star with mass M within a radius θ — that is,
κ̄∗(θ)Σcrit = M/(πθ2). Near the CC, the condition for di-
verging magnification becomes 1− κ− γ = µ−1

t = κ̄∗(θ),
where µ = µtµr = (a1a2)−1. Hence, we can conclude
that

θE =

√
Mµt
πΣcrit

. (9)

The above result has profound implications. A mi-
crolens at a position near a CC, where the magnification
is µt ≈ 1000, will behave (to first order) like an iso-
lated microlens, but a thousand times more massive (see
Fig. 2). As shown in Section 8.2, in the last moments
before a star crosses the cluster caustic, the magnifica-
tion can become of order 106, allowing the detection of
substructures with masses comparable to a Jupiter mass
(see also Eq. 23 in Paczyński 1986, where an expression
similar to Eq. 9 is introduced as the dimensionless ra-
dius).

Despite being based on some approximations, like ne-
glecting higher-order terms, the expressions above seem
to match remarkably well the results derived from de-
tailed numerical calculations. Fig. 3 shows the change in
effective radius (defined as the perimeter divided by 2π)

for a microlens that is isolated (no external field; bottom
curve) and for a microlens that is embedded in a lensing
potential with µt ≈ 100 (top curves). All curves grow

with radius as
√
M , but in the case of the microlens in a

lensing potential, the amplitude is increased by a factor
∼ √µt as predicted by Eq. 9.

The magnification around a microlens in a field with
external shear and convergence has previously been stud-
ied in detail (see, e.g., Schechter & Wambsganss 2002).
In the Appendix, we present a brief and simplified de-
scription of a single microlens in an external field at high
magnification.

3. NUMERICAL RESULTS

The results presented in the previous section (see also
the Appendix) give us useful insights into the behavior of
the magnification around a microlens near a CC. How-
ever, in most realistic scenarios the CC region will be
populated by a number of microlenses having, in gen-
eral, different masses. In order to explore this more re-
alistic regime, we resort to numerical simulations where
the magnification is computed from simulated data.23

We will assume the background source is a luminous
giant star, which have radii ranging between ∼ 100 R�
and ∼ 1000 R�. We adopt the value Rstar = 1000 R�.
The results presented in this paper are virtually the same
for smaller stars, except for the maximum magnification
reached when a microcaustic is being crossed (after the
star touches a given microcaustic). In this case, the
maximum peak magnification would grow by a factor√

1000/Rstar (see Eq. 6) if the microlens is at sufficiently
large distances from nearby microlenses. The deflection
field in the simulations contains a smooth component
from the large-scale cluster potential and small-scale fluc-
tuations from the microlenses. Normally, extremely lu-
minous (background) stars can be found in star-forming
regions where the density of stars may be relatively high.
In this work we ignore the effect of neighboring stars and
consider only the effect over one of those stars. If sev-
eral background stars are moving on the web of caustics,
each star would produce a series of peaks as they cross
microcaustics. In realistic scenarios, only the brightest
stars will produce peaks that can be measured, with the
remaining stars contributing to a stochastic background
of small fluctuations in the light curve. For instance, K17
argue that in order to explain the Icarus event, the back-
ground star needs to be extremely luminous and hence
very rare.

For the smooth-scale potential we assume a realistic
lens model, in particular the lens model of D16 for the
cluster MACS1149 in the region of the Icarus and Iapyx
events; see K17, where the same model was also used
to interpret the observations. The model produces a
CC (for a background source at z = 1.55) that falls
in between the positions of Icarus and Iapyx. Follow-
ing K17, in this work we assume that the CC is exactly
between Icarus and Iapyx as predicted by various mod-
els (Richard et al. 2014; Oguri 2015; Kawamata et al.

23 The reader can find movies based on these sim-
ulations showing the formation and destruction of micro-
images as a function of time (movies 1 through 4) at this
site: https://cosmicspectator.org/2017/06/30/dark-matter-under-
the-microscope/.
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2016; Diego et al. 2016). However, the reader should
note that other interpretations are also possible where,
for instance, the CC is closer to Icarus than to Iapyx,
in which case the two events would be produced by two
different background stars (see K17 for a more detailed
discussion of this and other alternative interpretations).
The hypothesis that there are multiple bright stars in the
background moving between microcaustics would also be
supported if the third event of K17 is confirmed as an ad-
ditional microlensing event. In this case, since this new
image does not appear aligned with the direction where
counterimages of the same star are expected to form, a
second background star would be needed.

Alternatively, when a fast computation is needed over
a large area (for instance, in Fig.1), we use the analytical
model from Blandford & Kochanek (1987) for the smooth
component, where we tune the lens parameters to pro-
duce a magnification pattern similar to the model above.
In Section 3.2, some of the results computed in the source
plane come from a small region at very high resolution.
For this particular case, we use a simplified model for
the macromodel that is given by just two parameters —
the surface mass density (κsmooth) and shear (γsmooth).
These two parameters are considered constant, which is
a valid assumption given the small area being simulated.
Tuning κsmooth and γsmooth to the desired values allows
us to quickly produce simulations with a variety of mag-
nifications from the macrolens model.

The microlenses are assumed to be point masses and
are randomly distributed. Unless otherwise noted, the
masses of the microlenses are drawn from a Spera et al.
(2015) initial-final mass function where the only surviv-
ing stars in the intracluster medium are less massive than
1.5 M� (above this mass, the remnants of more massive
stars are also included in the simulation). The same
model is also discussed by K17 together with other alter-
native models (see K17 for details). The mass function
is normalized to match the inferred stellar surface mass
density at the Icarus position (as estimated by Morishita
et al. 2016).

We place stars in a region (or extended region, here-
after) which is slightly bigger than the final simulation
region (or target region, hereafter). This is done in order
to minimize edge effects. The extended region contains
the target region plus buffer zones around it, of 0.2 mil-
liarcsec (mas) width each extending in the vertical direc-
tion. (The left and right edges of the simulation are not
used for the computation of the light curves, so we do not
add an extra buffer on these two edges.) This buffer zone
is sufficiently large to account for the individual effect of
the largest microlenses that could be found beyond (but
near) the edge of the target simulated region. The tar-
get region is a band of width 1 mas and length 10 mas,
aligned in the direction where counterimages form and
it is contained in the extended region of width 1.4 mas
and length 10 mas. The total number of microlenses in-
cluded in this extended region is 18, 686, and they are
placed randomly within the extended region. The total
mass of the microlenses in the extended region is ∼ 4000
M�. When PBHs are included in the simulation, we use
the same distribution of stars and add the effect of ran-
domly placed PBHs. The number of PBHs is determined
by the fraction of total mass that is in the form of PBHs.
This number scales as NPBH ≈ 30FPBH per milliarcsec2,

where FPBH is the fraction (in percent) of mass in the
form of 30 M� PBHs. This results in 420FPBH PBHs
(with 30 M� each) in the extended region. Finally, we
subtract from this extended region the contribution to
the deflection field from a smooth mass distribution with
the same surface mass density as the microlenses (stars
plus remnants, or stars plus remnants plus PBHs), so the
total surface mass density remains constant.

The simulations are made at a resolution of
1µarcsecond in the image plane. As mentioned earlier,
the target region is a band of width 1000 pixels and
length 10,000 pixels in the direction where counterim-
ages are expected to form (i.e., at an angle αc ≈ −40◦).
The length of the simulated box (∼ 10 mas/cos(αc))
maps into a corresponding length in the source plane
of ∼ 100µarcsecond. This is enough to follow a moving
background source at z ≈ 1.5 with v ≈ 1000 km/,s−1

during ∼ 1000 yr. This resolution is sufficient to resolve
the elongated arcs that form when a background star
crosses a microcaustic, if the background star is at least
a few tens of solar radii.

We assume that the source is moving perpendicular
to the main caustic of the cluster. The simulated light
curves have a weak dependence on this angle, since the
microcaustics are stretched by a large factor in the di-
rection of the main caustic of the cluster. Only if the
background sources are moving in a direction very close
to the main axis of the microcaustics would the simu-
lated light curves be significantly different — but this
is unlikely since the probability of moving in this nar-
row range of angles is small. If the source is not moving
perpendicular to the main axis of the caustics but at a
different angle, the simulated light curves would still be
very similar to the ones presented in this work, except
that the time it takes for a source to cross a microcaustic
would be stretched by a factor cos(αsc)−1, where αsc is
the angle between the main axis of the microcaustic and
the direction of motion of the source. The reader can find
videos at https://cosmicspectator.org/2017/06/30/dark-
matter-under-the-microscope/ (movies 5 and 6) ex-
tracted from the simulations and showing the effect of
the motion of a source as it travels through a web of
caustics that is moving parallel, or at an angle with the
main axis of the microcaustics. A source moving parallel
to the caustics may be interpreted as a source moving
in a region with a small surface density of microlenses
(see also Section 3.2 below). Also, if the velocity is very
small, it may be erroneously interpreted in a similar way.

When the lensed images form farther from a micro-CC,
the dimension of the micro-images is typically smaller
than the pixel size of the simulation. In this case (but
also when the micro-image is resolved), the real dimen-
sion of the micro-image is computed at the subpixel level
(making use of approximations that allow resolving scales
much smaller than the simulation pixel). This is achieved
by interpolating the deflection field so any position in the
source plane can be mapped into the corresponding inter-
polated position in the image plane, effectively achieving
infinite resolution. Simple, fast interpolations are suf-
ficient because the deflection field is extremely smooth.
The smoothness of the deflection field is guaranteed since
it is simply the superposition of the deflection field from
the cluster and the deflection field from the microlenses.
The former is orders of magnitude larger than the latter,
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Fig. 4.— The left panel shows a close-up region (0.8 × 0.8 milliarcsec2) around the main CC for a galaxy cluster (MACS1149). The
middle panel shows the corresponding caustic region with the same scale. The right panel shows the disrupted CC when 25 microlenses
are added in the image plane. The mass of each microlens is 0.01 M�. Note how the microlenses increase their associated micro-CCs as

they approach the cluster main CC. The orientation is determined by the sign of the quantity µ−1
t = 1− κ− γ. By definition, µ−1

t = 0 at
the cluster main CC.

so the small perturbations from the microlenses do not
break the smooth condition needed for the simple inter-
polations. The only place where the simple interpolation
may break down is when one is looking for counterimages
very close to the microlens, since in this case the deflec-
tion field diverges. Luckily, these positions correspond to
the lowest magnification regions, so those counterimages
can never be observed.

The magnification is computed as the ratio of the total
area in the image plane divided by the area of the back-
ground star in the source plane (i.e., πR2

star), and we
neglect limb-darkening effects (this would add a small
correction during a caustic crossing event that is most
important in the last moments of the event). We also
neglect interference effects, since both the background
stars and the microlenses are sufficiently large.

3.1. Multiple Microlenses with the Same Mass

The large magnifying power of a galaxy cluster near its
CC can allow for detailed study of both the background
objects and the substructure in the lens plane itself. A
point-like microlens with a mass M (like a star or a BH)
in the lens plane will behave like a lens with effective
mass µM (see Eq. 9). In the simple scenario where the
microlens is isolated (i.e., no other microlenses nearby),
the magnification (µ) of a cluster at a distance less than
0.1′′ from the CC can easily reach values above µ = 1000
for a point-like background source. At this magnification,
a background compact bright object such as a giant star
will be boosted by ∼ 7.5 mag. This boost factor may
be sufficient to make luminous stars at z > 1 detectable
with deep observations. In this situation, a microlens
with mass M = 10−2 M� in or near the line of sight
to the background star and close to the cluster CC will
behave (in terms of its lensing effect) like a microlens
with mass M > 1 M�. This makes it possible to detect
the microlens in the light curve of the background source.

If no microlenses are present in the lens plane, on small
scales (less than 0.1′′) the cluster CC can be approxi-
mated by a straight line (see left panel in Fig. 4), and
the magnification grows as the inverse of the distance to
the CC (Fig. 1). The corresponding caustic is equally
well described by a straight line, but the magnification

grows as the inverse of the square root of the distance to
the caustic. Hence, a large magnification of several thou-
sand requires an incredibly small separation between the
background star and the caustic, making this type of
configuration very rare, and observing a caustic cross-
ing very unlikely (see middle panel in Fig. 4, where we
show the incredibly narrow region in the source plane
that maps on the image plane in the left panel).

A cluster caustic crossing event is expected to be
very short lived (several hours or a few days, depending
on relative velocity and star radius) and involves very
large magnifications when the lens plane contains no mi-
crolenses. The dependence on the square root of the
separation between the star and the caustic means that
the precise moment of the caustic crossing event can be
predicted, since the observed flux evolves as 1/

√
t− to,

where t is time and to is the time of crossing. When mi-
crolenses are included in the lens plane, the situation can
be very different since microlenses can significantly dis-
rupt the CC (see Fig. 5). The disruption is most promi-
nent near the CC and decreases with the distance to the
CC (see Fig. 4). In the source plane, the corresponding
caustic region gets expanded by a factor that depends
on the number of microlenses and their masses. A larger
caustic region means that observing a microlensing event
becomes more likely, since a moving background star may
intersect multiple microcaustics in a given period of time
(as opposed to intersecting just the main CC of the clus-
ter). One of these microcaustics can also be intersected
many years before the source crosses the position of the
main caustic. This translates into a dramatic increase in
the probability of seeing caustic events before (but also
after) crossing the position of the main caustic.

3.2. Source Plane Interpretation

The plots in the previous section show the magnifica-
tion pattern in the image plane. However, the magni-
fication in the image plane for individual micro-images
is normally not observed (unless the number density of
microlenses is very small). To better understand how
the magnification of the multiple images work, it is more
useful to represent the magnification in the source plane.
The mapping between the image and lens planes is done
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Fig. 5.— The diagonal band at ∼ −40◦ shows the magnification
pattern when microlenses are added in the lens plane around the
position of the main CC. The light-gray broken line close to the
middle of the band is the lensed image of a background source (or
train of micro-images). The rest of the image shows the magni-
fication of the smooth lens model. For illustration purposes, the
background source (R ≈ 0.01 pc) is much larger than a typical
giant star (R ≈ 10−5 pc).

through the lens equation.
In this subsection we present a small portion of the

source plane computed at higher resolution than the sim-
ulations used in the bulk of this work. The higher resolu-
tion is attained by interpolating the deflection field from
the main simulation to smaller scales. Figure 6 shows
the image plane, source plane, and a cross-section of the
magnification in the source plane for both sides with neg-
ative and positive parities. The image planes display the
characteristic hourglass shapes discussed in previous sec-
tions. The source plane shows the familiar overlapping
and stretched diamond shapes. The side having negative
parity clearly reveals the gap with low magnification in
the central region of the diamond-shape caustics. This is
a familiar result found in earlier work (see, for instance,
Chang & Refsdal 1984; Schechter & Wambsganss 2002).
This gap of low magnification results in periods of low
flux in the observed light curves, on the side with neg-
ative parity. The bottom plot in each panel shows the
cross section along the diagonal line in the source plane.

The circles in the source plane represent a source with
a radius of ∼ 1.5 microarcsec. That source would simul-
taneously see the caustics from the negative and positive
parity sides, but we have separated them here for clarity
purposes. The corresponding amplified image is shown
as an ellipse (with small distortions) in the image plane.
A source with this size would produce only one counter-
image on the side with negative parity, and another one
on the side with positive parity (i.e., only two macro-
images and no micro-images) since the size of the source
is significantly larger than the characteristic scale of the
microcaustics. Also, the counterimage on the side with

negative parity could not be hidden by microlenses with
masses similar to those in the simulation, since portions
of the source would always overlap with regions of high
magnification in the source plane.

Note how a source that is significantly larger than the
width of the microcaustics produces counterimages that
are notably less magnified on the side with negative par-
ity. This phenomenon would not take place if there
where no microlenses, since in that case the magnifica-
tion within the circular region would be very similar for
both parities. This can be understood if we integrate the
total magnification within the circle in the source plane.
The gap between the caustics results in a smaller total
magnification in the enclosed area. Consequently, rela-
tively small regions in the source plane, of angular size
a few times the typical size of the caustics (like the cir-
cular regions in Fig. 6 or R ≈ 1.5 microarcsec ≈ 0.01
parsecs at z ≈ 1.5), could show a ratio in the flux be-
tween the two counterimages (positive/negative parity)
of ∼ 1.3 (although the exact value depends on multi-
ple factors like source size, mass of microlenses, distance
to the macro-CC, etc.). A similar property has been
exploited in the context of QSO microlensing, as for in-
stance by Mediavilla et al. (2017). An explanation of
this phenomenon is given by Schechter & Wambsganss
(2002), where the authors demonstrate with a simple
toy model how macrominima and macrosaddle points
can have their magnifications affected significantly in the
presence of microlenses.

Finally, movies 7 and 8 at
https://cosmicspectator.org/2017/06/30/dark-matter-
under-the-microscope/ show how the observed magnifi-
cation depends on the point where the trajectory of the
background star intersects the microcaustics.

In order to get a better view of the source plane in
the different scenarios, we make an ensemble of alterna-
tive simulations at even higher resolution where we vary
both the magnification of the macromodel and the sur-
face mass density of microlenses. We adopt the same
redshift for the cluster lens and background source as
in the Icarus and Iapyx events. For this particular set
of simulations, we adopt a simplified model where the
surface mass density from the macromodel (κm) and the
shear (γm) are fixed, instead of adopting the model from
Diego et al. (2016) used in the main simulations. This
is valid approximation since the simulated region is very
small. By varying κm and γm, we can easily simulate
a given region of the lens plane with the desired mag-
nification from the macromodel. For simplicity, we also
assume that the component of the shear in the vertical
direction is zero (that is, γm =

√
γ2

1 + γ2
2 = γ1), so the

deflection field has its main component in the horizontal
direction. Since both κm and γm can be expressed in
terms of the derivatives of the deflection field (α), these
relations can be reversed, and we can also express the
derivatives of the potential as a function of κm and γm,

αxx =
1

2
(κm + γm), (10)

αyy =
1

2
(κm − γm), (11)

αyx = αxy = γ2 = 0, (12)
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Fig. 6.— Image and source plane for a small region. The left panel corresponds to an area on the side with negative parity, while the right
panel is for an area on the side with positive parity. In each panel, the top-left region shows the image plane and the top-right a zoomed
region in the image plane. A source with a geometry similar to the circle in the source plane would map into the marked elongated ellipse
in the image plane. The diagonal line in the source plane marks the track shown in the bottom part of each panel where the maximum
magnification per pixel is represented.

where αji is the derivative of the i component of α with
respect the coordinate j.

With these equations we can describe the deflec-
tion field (except for an irrelevant constant) of the
macromodel. The deflection field from a population
of microlenses is added linearly. When considering mi-
crolenses, instead of κm one needs to use κm − κ∗, with
κ∗ the convergence from the surface mass density of mi-
crolenses. This guarantees that the total convergence
(cluster plus microlenses) is equal to the target κm.

The specific values of κm and γm are determined by the
value of the magnification to be simulated, µm = µt×µr.
One can easily find that for the side with negative par-
ity γm = (µ−1

r + µ−1
t )/2 and κm = 1 − γm + µ−1

r , while
for the side with positive parity we have the condition
γm = (µ−1

t −µ−1
r )/2 and κm = 1−γm−µ−1

r . We vary µr,
µt, and κ∗, producing a set of simulations for the cases
with positive and negative parities. The simulations con-
sider a large circle of radius 0.465 milliarcsec where we
place the microlenses randomly. The pixel scale is 31
nanoarcseconds and we compute the total deflection field
in a narrow horizontal band of width 744 µarcseconds
and height 93 µarcseconds By construction, this area
maps into an area a factor µ = µr×µt times smaller
in the source plane. Without loss of generality,
we fix µt = 1.5 so in the source plane, and to first
order, the simulated region maps into an area of
dimension 93/1.5 × 744µ/1.5 arcsecond2. As dis-
cussed below, at high optical depth, the effec-
tive magnification is smaller than the one for the
macromodel so the simulated region can be larger
than the one inferred from the values above..

By inverse ray tracing, we compute the magnification
in the source plane after interpolating the original deflec-
tion field to achieve effective resolutions of ∼ 3 nanoarc-

seconds per pixel (or ∼ 1000 solar radii at z = 1.5).
A small area of the source plane is shown in Fig. 7 for
each simulation. The results in this plot are divided into
two groups. On the right side we show the source plane
at fixed κ∗ but varying magnification. On the left we
show the simulated source plane at fixed magnification
but varying κ∗. The magnification considered for this
example is moderate (µ = 30), but it serves our pur-
poses as it shows better the structure of the caustics in
the source plane. For larger magnifications the behav-
ior would be qualitatively similar to what is shown on
the left block of Fig. 7. Since we have the sides with
opposite parity projecting back into the same region in
the source plane, at a given pixel in the source plane one
would get a bundle of rays (from the inverse ray tracing
method) coming from the side with positive parity and a
different bundle coming from the side with negative par-
ity. The mapping between the image plane and
the source plane around a critical curve can be
visualized as a sheet of paper being folded along
a line through the middle (critical curve). In the
source plane, the fold represents the caustic with
the two halves of the sheet forming two overlap-
ping planes. A source will project into these two
planes and when unfolded (i.e the image plane),
the sheet of paper will show two images which are
symmetric with respect to the folding line.

To better illustrate the differences between the sides
with positive and negative parities, we show the source
plane for each of the two overlapping planes in the
source plane described at the end of the previous
paragraph and also compute the statistics of each plane
separately. This makes sense when comparing with ob-
servations, since the statistics of the observed lensed im-
age depends on the parity as we show later and has been
demonstrated in earlier work (e.g., Schechter & Wambs-
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Fig. 7.— Zoom-in of the source plane at high resolution. The left block (with 8 panels) shows a small region in the source plane at
constant magnification from the macromodel and varying surface mass density of microlenses. The upper row shows the plane with positive
parity and the bottom row shows the corresponding plane with negative parity. Both planes overlap in the source plane but are displayed
separate here for clarity purposes. The right block with 8 panels shows the source plane at constant surface mass density of microlenses
and varying magnification from the macromodel. The upper and bottom rows correspond to the planes with positive and negative parity,
respectively. Note how the source plane has been compressed in the y direction by factors ranging from 8 at µ = 30 to 32 at µ = 2400. At
very high magnification, both planes with negative and positive parity resemble each other. A source at z = 1.5 traveling at 1000 km s−1

with respect to the caustics would move ∼ 1µarcsec every ten years.

ganss 2002). The top row shows the plane with positive
parity while the bottom row shows the plane with neg-
ative parity, where the characteristic microsaddle points
with low magnification can be appreciated clearly. The
two columns with κ∗/κ = 0.05 and κ∗/κ = 0.15 in
the left block contain a stellar component consistent
with the upper limit in K17 (that is, with 19 M� pc−2

or κ∗/κ = 0.012 and a Salpeter spectrum in the low-
mass regime) plus microlenses with 30 M� mimicking
a monochromatic population of PBHs. As mentioned
above, the value 19 M� pc−2 is motivated by the
updated estimate in K17. This is almost 3 times
more mass than the value of Σo = 7M� pc−2 used
in the rest of this work but the careful reader will
notice that κ∗/κ is instead a factor 4 times larger
than the value of 3% corresponding to Σo. This is
due to the fact that for this set of high-resolution
simulations with 19 M� pc−2 the value of κ consid-
ered is 0.66 instead of the value from the model
in D16 (κ = 0.9) used in the rest of this work.
κ ∼ 0.66 is the value required by µ once µt is fixed
to 1.5 and µr >> 1 as described above. The left
panel with κ∗/κ = 0.004 has approximately four times
fewer microlenses than the model with κ∗/κ = 0.012 and
no PBHs (of 30 M�). The last column with κ∗/κ = 0.37
represents a population of PBHs but with a power-law
spectrum (for the mass function) similar to the one used
to simulate the stellar component from the ICL.

On the right side of Fig. 7 we show similar plots, but
this time the surface mass density of microlenses is fixed

(to a value consistent with the upper limit on κ∗ in Kelly
et al. 2017, κ∗/κ = 0.012 and no PBHs) and we vary the
magnification. The case with µ = 30 can be compared
directly with the cases presented in the left block.

Fig. 7 makes the degeneracy between κ∗ and µ evident.
When κ∗ is sufficiently high, the source plane saturates
with overlapping caustics. The same is also true for mod-
erate values of κ∗ but at large magnifications. In this case
the overlapping of the caustics is produced by the high
magnification. In order to quantify the differences, we
compute the probability distribution function (PDF) of
the magnification in the source plane from these simula-
tions.

The result is shown in Fig. 8. The left plot shows the
PDF for the case with fixed magnification and varying
κ∗. For small values of κ∗, the PDF of the magnifica-
tion shows a clear peak near the magnification of the
macromodel, µm. The side with positive parity peaks at
slightly smaller values than µm while the side with neg-
ative parity peaks at values very close to µm. At high
magnification, both sides behave very similarly, with the
tail of the PDF falling like µ−3, typical of isolated lenses.
At low magnifications, the differences are significant be-
tween the two parities. When κ∗ is increased, we observe
that the differences between the two parities grow as well.
The peaks of the PDF separate more, with the one from
positive parity clearly below and the one from the neg-
ative parity clearly above µm. At high magnifications,
there seems to be an excess of probability on the side
with negative parity with respect to the side with pos-
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Fig. 8.— Left panel Probability of magnification extracted from the simulations shown in Fig. 7 (left block). All models have the same
magnification from the macromodel (µ = 30) marked with a vertical dashed line. For each curve we vary the surface mass density of
microlenses and the parity. Positive parity is shown with solid lines and negative parity with dotted lines. At low optical depths, the
probability of high (and low) magnification grows as the surface mass density of microlenses. The tail at high magnification falls as the
expected µ−3. At high optical depth of microlenses this scaling breaks down and reverses at the saturation regime for the tail at high
magnification. Right panel Similar to the left panel but the surface mass density of microlenses is fixed and we vary the magnification of
the macromodel. Note how at high magnification the probability converges towards a low-normal and starts to look similar for both planes
with positive and negative parities. Also, the side with negative parity has a higher probability of having extreme magnifications.

itive parity. Also, the probabilities of having high and
low magnification increase as κ∗.

As we increase κ∗, the peaks in the PDF disappear,
and for sufficiently large values of κ∗, the PDFs of both
parity sides start to resemble each other. This is the
saturation regime at which the notion of sides with pos-
itive and negative parity loses its meaning (the sign of
a1 = 1 − κ − γ can adopt positive and negative val-
ues on both sides of the main CC). The right plot in
Fig. 8 shows the case of fixed κ∗ and varying magnifi-
cation. The model with µm = 30 (black curves) is the
same as the black curve model in the left plot. We ob-
serve a similar trend, but now the excess of probability
at high magnification in the side with negative parity
is more evident (specially at µ = 150 and µ = 600).
Also, for µm = 2400, the PDF of the sides with neg-
ative and positive parity are almost similar and deviate
from µ−3 at high magnification. Instead, the PDF resem-
bles a log-normal distributions, which typically appear
in multiplicative processes. This is attained by the com-
bined effect of multiple overlapping caustics and the high
magnification of the macromodel. Finally, we note
that similarly to what happen in the left panel,
when we increase the magnification of the am-
cromodel, the average magnification in the sim-
ulated region deviates from the one would have
obtained form the macromodel (i.e with no mi-
crolenses). In particular, we find that in the pres-
ence of microlenses with κ∗/κ = 0.012 and in the
side with positive(negative) parity the average of
the magnifications are 29.9(30.2), 150.4(144.5),
564.8(566.3) and 1455.7(1345.3) for macromodel
magnifications of 30, 150, 600 and 2400 respec-
tively.

From results like those shown in Fig. 8, one can extract
important properties of the magification, but they do not
contain all the information. The magnification is highly
non-Gaussian as shown in this figure, and hence the PDF
alone gives an incomplete picture of the problem. For in-

stance, the PDF plots shown in Fig. 8 do not account fro
the correlations that are evident in Fig. 7. Higher-order
statistics like the correlation function or power spectrum
are useful discriminators in this type of situation.

4. DISRUPTION OF THE CLUSTER CC BY MICROLENSES

In this section we study in more detail the effects of
microlenses at the position of, or very close to, the CC.
For the microlenses we adopt as a reference the Spera
(2015) model normalized to Σo ≈ 7 M� pc−2 (similar to
the surface mass density in surviving stars inferred at the
position of Icarus).

When microlenses are present in the vicinity of the
CC, the infinitesimally narrow CC widens, with overlap-
ping critical lines that form a complex network (see, e.g.,
Fig. 5). This network extends up to a maximum range
that depends on the total number and masses of the mi-
crolenses. In the case of Fig. 5, this network extends
well beyond the displayed field of view. The change in
the network when the amount of microlenses is varied is
made more evident in Fig. 9. The magnification pattern
gets shifted around, with regions of high magnification
becoming regions of low magnification, and vice versa.
When the amount of microlenses is small (i.e., small frac-
tion f = Σ/Σo), the main CC becomes sharper by trad-
ing high magnification by lower magnification with the
surrounding area in the lens plane. As more microlenses
are added, the disruption becomes more serious, and at
some point between f = 0.003 and f = 0.01 in Fig. 9 the
CC itself transforms into a network of micro-CCs. The
extension of this network around the main CC marks
the region where microlensing events are more likely to
be observed. An interesting consequence is that the typ-
ical magnification one would expect is changed by the
addition of microlenses. In Fig. 10 we show the me-
dian of the distribution of magnifications (of individual
micro-images) computed at different distances from the
position of the main CC. For each distance, the distri-
bution of magnifications and its median are computed in
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Fig. 9.— Disruption of the CC as a function of microlens surface mass density. Each panel shows the CC region when a population of
microlenses with Σ = fΣo is present. The case f = 1 corresponds to the model of Spera (2015) at the position of Icarus. The yellow lines
show the approximation in Eq. 15. The last panel at bottom does not show the yellow line since it extends beyond the boundaries of the
plot. The total surface mass density (i.e., smooth plus microlens) is the same in all panels.

an area of 1.9 × 0.5 mas2. Adding microlenses thus re-
sults in a reduction of the typical magnification of micro-
images that one would have obtained without them. This
median magnification, however, cannot be normally ob-
served, since the lensed image forms (typically) an unre-
solved train of micro-images and what we observe is the
total flux of all micro-images (an exception being at low
optical depth, where the the total flux is usually given
by one micro-image). We show later, however, that if
the lens plane is populated by massive microlenses (a
few tens of solar masses), the separation between micro-
images can reach a few milliarcseconds, opening the door
to future high-resolution observations of the individual
micro-images.

This change in the magnification is also evident in
Fig. 5, where we display a small region around the main
CC in the case of the smooth lens compared with the
magnification pattern when microlenses are added (diag-
onal band). The figure also shows a lensed background
object (with ∼ 0.01 pc radius), or train of micro-images,
at the moment of maximum magnification. The lensed
image breaks up into multiple smaller components. For
smaller background sources (such as a large star), the
lensed image would break up into even more smaller
pieces.

When f is sufficiently small, the effect of the mi-
crolenses is small and the magnification behaves like in
the smooth lens model case, except when we approach
the CC. At short distances from the CC, even small mi-
crolenses can have a significant impact on the magnifi-
cation pattern. As f grows, the range at which the CC
gets disrupted grows as well. For values of f ≈ 0.001
the disruption is still significant up to scales of a few
milliarcsec. In this situation, if macro-images are be-
ing formed on both sides of the main CC at a distance

of a few milliarcsec, a telescope like the Hubble Space
Telescope (HST) observing the unresolved macro-images
would start to see not only a change in flux over time but
also a change in the observed position of the peak, since
the observed images would appear to be jumping back
and forth between the two sides with opposite parity. For
values of f ≈ 1 it is impossible to determine the exact
location of the main CC and the magnification pattern is
completely disrupted over a scale of hundreds of milliarc-
seconds. If f � 1 the disruption can extend to scales of
an arcsec and these types of microlensing events would
be much more common. The fact that no similar mi-
crolens event has ever been reported before Icarus/Iapyx
is a simple indirect indication that the optical depth of
microlenses cannot be much higher than that from the
stellar component (with κ ≈ 10−3–10−2).

5. LIGHT CURVES

The results presented in the previous section show ex-
amples of the magnification pattern near the main CC
and in a narrow region of the source plane when mi-
crolenses are present. However, observations can only
sample the magnification in the source plane (unless
micro-images are resolved). Through observations we
can measure the total flux as a function of time — that
is, the light curve.

To simulate the light curves, we place a background
star in the source plane moving with a relative velocity
of 1000 km s−1 toward the main caustic. The results pre-
sented in this section can easily be rescaled (stretched or
compressed) to any velocity (v) by the factor v/1000. A
relative velocity of 1000 km s−1 is a reasonable assump-
tion given the redshifts of the lens and source. Fig-
ure 11 shows a small segment of the simulated light
curves for Icarus (blue) and Iapyx (red). We assume
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Fig. 10.— Median of the magnification (of micro-images in the
lens plane) as a function of distance from the main CC (nega-
tive distances mean they are measured toward the left of the CC
and positive toward the right). The black line corresponds to the
smooth model (no microlenses) and the red line is for the case when
microlenses are added (with Σ ≈ 7 M� pc−2).

the Spera model (left panel) and the Spera+PBH(10%)
model (right panel). In the case when microlenses are
only ICL stars (left panel), the light curves for Icarus
and Iapyx can be very different when microlenses pop-
ulate both sides of the main CC. Macro-images on the
Iapyx side (a1 < 0) can disappear for periods of 10 yr or
more.

This is a consequence of the low-magnification re-
gions present between the semidiamond-shape caustics
discussed in Section 3.2, on this side of the main CC.

As shown by Schechter & Wambsganss (2002),
macrosaddle points (like the ones on the side with a1 < 0)
can be fainter because they can lack microminima, while
macrominima must have at least one microminimum.

Another interesting difference is the amplitude of the
peaks, which can be higher on the Iapyx side (see
Section 3.2, where the same effect is observed in the
PDF). This tradeoff between low-magnification periods
and higher peaks conserves the total integrated flux when
integrating over long periods of time. We find that for
surface mass densities of microlenses comparable
to Σo, the average of a light curve converges (both
on the side with positive and negative parities)
towards the value of the macromodel when aver-
aging the light curve over a few hundred years.
The right panel of Fig. 11 shows the corresponding light
curve when 10% of the mass in the lens plane is sub-
stituted by PBHs with a mass of 30 M� each (this case
also includes the microlenses from the ICL). In this case,
the light curves on both sides of the main CC are more
similar, and we do not observe periods of low magnifi-
cation on the side with a1 < 0. We also note that
when the fraction of PBH is high, the cluster-
ing of PBH introduces large scale temporal and
spatial correlations in the magnification pattern
that can result in long periods of relatively low
or high magnification as shown in the right panel
of Fig. 11. As we show below in Section 7, when the
optical depth of microlenses is sufficiently high (for in-
stance, when 10% of all mass is in microlenses), we are
in the saturation regime and the properties of the light
curves must be similar. We also notice that the peaks on

both sides are also smaller as a consequence of the reduc-
tion in Einstein radius. The associated Einstein radius
of the microlenses no longer scales like (Mµt)

1/2; more
precisely, the effective µt is smaller when we reach the
saturation regime. This is an interesting result since it
implies that an event like Icarus would require, on aver-
age, a brighter star if a significant fraction of the DM in
the lens plane is made of PBHs. At the same time, hid-
ing Iapyx for at least 10 yr seems unlikely in this scenario
and would require the presence of a second (and fainter)
star in the source plane to explain Iapyx.

This argument is in agreement with the probabilities
estimated by K17, which show that a scenario where a
sizable fraction (more than a few percent) of the DM is
in the form of compact lenses is less agreeable with the
data than a scenario where the microlenses are just the
ICL stars. Also, K17 found that simulations suggest that
the existing data have sensitivity to the mass function of
stars and remnants (given the assumptions made about
the magnification and stellar mass density). However,
the observed light curve presented by K17 does not have
as many data points as one would desire to achieve good
constraining power. A clear discrimination between dif-
ferent models (other than a preference for models with a
low fraction of PBHs or microlenses forming binary sys-
tems as discussed by K17) is not yet possible. More data
are needed (more peaks, better cadence, smaller photo-
metric errors) in order to clearly distinguish between the
different possible scenarios. We hope that regular mon-
itoring of this cluster will provide such data in the near
future.

If we imagine we can monitor Icarus and Iapyx for
∼ 10, 000 yr, we would witness the moment where both
events merge and disappear as the background star
crosses the last microcaustic (see Section 6). If the deflec-
tion field were perfectly smooth (without microlenses),
the light curves of Icarus and Iapyx would be featureless
and the flux would increase as 1/

√
t− to, as the back-

ground star approaches the main caustic and would reach
a magnification of ∼ 106 in the last moments before dis-
appearing. Conversely, if the lens plane near the CC is
populated with microlenses from the ICL stars, PBHs, or
both, the light curves will be rich in features like the ones
shown in Fig. 11. In this scenario, we will observe hun-
dreds or thousands of peaks, each having a magnification
between ∼ 103 and ∼ 104. The total flux integrated over
the 10,000 yr will be the same, but the light curves will
be very different.

It is also interesting to track the fluxes of the indi-
vidual micro-images. In Fig. 12 we compare a fragment
of the simulated light curve (for Icarus) with the mag-
nification in the lens plane at the position where the
brightest micro-image is formed. During the valley pe-
riods, both magnifications coincide because there is only
one dominant micro-image (there are other counterim-
ages but with significantly smaller fluxes), so the total
flux of the macro-image is basically given by the flux of
the dominant micro-image. During a peak, new bright
micro-images form around the micro-CC. The total flux
is then typically larger by a factor 2 or 3 than the flux of
the brightest micro-image. The result shown in Fig. 12
demonstrates how, at moderate optical depth, during
most of the time the train of micro-images is very com-
pact in size (only one dominant micro-image during the
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Fig. 11.— Left panel. Fragments of the simulated light curves for Icarus (a1 > 0) and Iapyx (a1 < 0) based on the Spera model for the
ICL. Right panel. Similar to the left panel, but when 10% of DM is substituted by PBHs with 30 M� each. The right panel also includes
the ICL microlenses, and the total surface mass density is the same in both cases.

Fig. 12.— Fragment of the simulated light curve for Icarus (blue
line) compared with the underlying magnification in the pixel of
the simulation that contains the largest magnification (dotted line).
The dotted line is generally above the solid line because it does not
account for the extended nature of the micro-image (which smooths
out the observed magnification).

more frequent valley periods). However, during a peak
event, it may be possible that the separation between dif-
ferent portions of the train may be large enough so the
overall size of the train of micro-images could be distin-
guished from that of a point source. This will be explored
in more detail later in this paper.

5.1. Estimating Rates

The simulated light curves provide a detailed picture
of the number of peaks expected over a time period, but
they are computationally expensive to obtain. The rate
of peaks can be estimated after doing some simple ap-
proximations and taking advantage of the scalings pre-
sented in this work. First we assume that most of the
events are produced by microlenses in the range between
0.5 M� and 2.0 M�. This assumption is reasonable since
more-massive microlenses are rare (especially for realistic
models where the heaviest stars are short lived, leaving
remnants with low to moderate masses) and less-massive
microlenses have a smaller impact parameter (or Einstein
radius) for strong lensing (we should also add that the
abundance of low-mass stars is not as well constrained,

either).
We assume the Spera model with the properties of the

lens model of D16 and the surface mass density estimated
at the Icarus position (just for convenience, but the argu-
ments given below extend to any surface mass density).
For this configuration we expect 3.8 stars per projected
pc2 in the assumed mass range. The typical separation
between these stars is then 0.5 pc or dθ = 0.08 milliarc-
seconds. Taking advantage of Eq. 4, we can compute the
corresponding typical separation in the source plane be-
tween microcaustics corresponding to microlenses at the
position of Icarus (θ = 0.13′′), dβ ≈ 2θdθ/Θ = 3.1×10−7

arcsec, where we have ignored the term dθ2/Θ since
dθ ≤ Θ. A background star traveling with a velocity
of v = 1000 km s−1 would take ∼ 2.6 yr to cover the
angular distance dβ, so we should expect 1 microlensing
event every 2.6 yr on average. This number is in reason-
able agreement with both the rate estimated from the
light curves and the observed rate estimated for Icarus
(see K17).

This estimate does not take into account the size of
the microcaustics, which would grow as we approach the
main caustic or would be smaller as we move away from
it. A more accurate estimate of the rate should take
into account this filling factor, or optical depth. Since
the optical depth of microlenses depends on the dis-
tance to the main CC, at large distances (smaller optical
depths) the rate of events should decrease significantly
as the separation between microcaustics gets larger. For
the microlenses assumed at the beginning of this subsec-
tion, the Einstein radius ranges between 1.3 µarcsec and
2.5 µarcsec before we account for the magnification effect
of the cluster.

Once the magnifying power of the cluster is taken into
account, we have seen how these Einstein radii can be en-
larged by 1 order of magnitude when the distance to the
main CC is 0.13′′ (µT ≈ 100; see Eq. 9), bringing the Ein-
stein radii to ∼ 20µarcsec. Since the typical separation
between microlenses in the lens plane is ∼ 80µarcsec (see
above in this subsection), it means that an average of 3
out of 4 microlenses will be missed by the moving macro-
image. Thus, we should expect a ratio of 1 event every
∼ 10 yr instead of 1 event every 2.6 yr for microlenses
with masses between 0.5 × M� and 2.0 × M�. This is
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Fig. 13.— Left panel: Magnification during the last years before the disappearance of Icarus. The dashed line shows the maximum
separation between all micro-images on both sides of the CC (or the size of the combined train of micro-images). This separation can
be seen as the maximum extension of the set of micro-images that could be resolved by a telescope with microarcsecond resolution. The

dotted line shows the expected theoretical behavior for the change in size in the smooth lens model, Size ∝
√
|t− to|, where to is the

caustic crossing time. The exact crossing time is undetermined since there is not a single caustic, but a reasonable choice would be the
point where the magnification is maximum. The microlenses are consistent with the ICL constraints at the position of Icarus and assuming
a Spera model (f = 1 in Fig. 9). Right panel: Similar to the left panel, but with a smaller contribution from microlenses (30 times smaller,
or f = 0.03 in Fig. 9). Note how owing to the increase in magnification the separation between the two trains of micro-images evolves more

quickly. The red smooth line is the expected magnification for a smooth model (∝ 1/
√
|t− to|).

in excellent agreement with the observed light curve for
the Icarus event, where the observed light curve in Fig.
3 of K17 suggests one major microlensing event over
a period of ∼ 12 yr (although we should note that the
observed light curve has large gaps). The arguments
presented above are based on the simplifying as-
sumption that all microlenses have a mass in a
relatively narrow range. More realistic scenarios,
like the ones presented in the simulations will in-
troduce additional variability and even long scale
temporal correlations (not considered above) in
the presence of clustered massive microlenses.

6. THE DEATH OF ICARUS

Based on our current understanding of the
Icarus/Iapyx events, we should expect to see more
peaks in the future at the position of these events.
Assuming the source is heading toward the main caustic,
for transverse velocities on the order of 1000 km s−1,
it might take ∼ 10, 000 yr for the source to cross the
main caustic and become unobservable. Conversely, if
the background source is moving away from the main
caustic, we are witnessing the lensed source ∼ 10, 000 yr
after it first crossed the position of the main caustic.
Based on our model for the underlying microlenses and
the cluster potential, we can predict how the last mo-
ments (or first moments) of the multiply lensed images
will take (or took) place. For simplicity we assume that
the source is heading toward the main caustic from now
on. The results presented in this section can be reversed
to describe the opposite situation where the background
source is moving in the opposite direction — that is,
away from the main caustic.

Figure 13 shows the light curve moments before and
after the background source crosses the main caustic.
When approaching the last moments, the macro-images
are broken into multiple groups or trains. Each train
comprises a bright micro-image surrounded by smaller
ones, usually aligned in the direction of the cluster de-
flection field. The last moments in the light curve show

how the individual trains of micro-images disappear at
different moments. When one of the trains vanishes the
total flux drops by a large fraction. The last surviving
micro-images have small fluxes and roam close to the
largest microlenses (that is, in regions with low magni-
fication). In principle, every single microlens (assuming
they are truly point sources) would have a small micro-
image near its center since the deflection angle of a point
source diverges at the position of the microlens (there is
a nice visual demonstration of this effect by Lewis et al.
1993; Witt 1993). These small micro-images can survive
a much longer time than the trains. However, these low-
magnification images have such small fluxes that they
can be neglected in terms of their contribution to the
observed flux.

Figure 13 also shows the maximum extension, or size,
of the set formed by all micro-images. We compute this
size based on the micro-images that have magnification
larger than 50. At time ∼ 50 yr in the left plot, there is
only one surviving micro-image with magnification above
50 and the apparent size of the train drops to zero (a sec-
ond micro-image appears and vanishes quickly at times
∼ 58 and ∼ 65 yr). The size evolves as

√
|t− to|, which

is inversely proportional to the apparent velocity of the
macro-images. Although not shown in the plot, there is a
long tail past 100 yr where micro-images with small mag-
nification survive for a long period close to the largest
microlenses (with µ ≈ 1 or below). This tail and the
evolution of the size can be better appreciated when the
contribution from microlenses is smaller.

In the right panel of Fig. 13 we show a similar plot, but
this time the masses of all the microlenses are divided by
a factor 30. Even though this may not represent a real-
istic scenario, it does mimic a situation where the opti-
cal depth of the microlenses is a factor 30 times smaller
than in the left panel of Fig. 13. (The deflection field
scales as the mass; hence, rescaling the masses is a much
faster way of producing multiple realizations with differ-
ent lensing optical depths.) A more realistic simulation
corresponding to a factor 30 times smaller surface mass
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density would contain fewer (but heavier) stars and the
right panel in Fig. 13 would have fewer (but more pro-
nounced) peaks.

At low optical depth (right panel of Fig. 13), the light
curve in the last moments starts to resemble the ex-
pected behavior of the classic caustic crossing event with
a smooth model (see, for instance, Miralda-Escude 1991),

with the typical 1/
√
|t− to| change in flux (red solid

line). In this case the relative separation between the

two trains of micro-images follows closely the
√
|t− to|

law and could be extrapolated to earlier times to predict
the crossing time from real observations or constrain the
relative velocity between the background source and the
caustic. A background source close to the time of caustic
crossing will produce two macro-images separated by a
distance that is proportional to

√
|t− to|. The propor-

tionality constant involves the relative velocity between
the source and the caustic. Future high-resolution ob-
servations (for instance, with the Extremely Large Tele-
scope and a maximum expected resolution of ∼ 1 mas)
may be able to discriminate between point sources and
extended sources with sizes larger than a few mas. Mon-
itoring the change in the size of the unresolved pair of
macro-images can be used to constrain the relative ve-
locity between the source and caustic. Similarly, the rise
in observed flux in the last moments exhibits a similar
dependency with the relative velocity between the source
and the caustic. From Fig 13, the period of flux decline
after the peak is sensitive to the number and type of mi-
crolenses. Nevertheless, in the presence of microlenses,
a caustic-crossing event needs to be monitored regularly
for several decades to produce light curves that capture
the rise and decline of the flux as the caustic network is
being crossed. This will require an effort similar to the
production of light curves for QSOs and other variable
objects.

7. PROSPECTS FOR CONSTRAINTS ON THE FRACTION
OF COMPACT DM

A popular candidate for DM is PBHs (see, e.g., Carr
et al. 2016a, for a recent discussion). They are formed
in the first moments of the Universe and, other than
through gravitational interactions, they do not play any
significant role in nucleosynthesis or baryonic physics af-
ter inflation (with the exception of very small PBHs
that can evaporate quickly and inject energy into the
Universe, or the very massive ones that can trans-
form mass into energy through their associated accretion
disks). Other than in these extremely low- and high-
mass regimes, PBHs would be very elusive, interacting
only through gravity with the surrounding matter. A
wide range of masses has been excluded for PBHs as a
significant contributor to the DM. PBHs below a certain
mass (∼ 1011 kg) would have evaporated by now (Hawk-
ing 1974). PBHs with slightly higher masses would be
strong sources of γ-rays.

Current γ-ray observations have ruled out this mass
range (Barnacka et al. 2012; Carr et al. 2016b). At
the other extreme, a large number of massive PBHs
(M > 100 M�) would disrupt globular clusters or impact
the baryonic physics in the early universe. At interme-
diate masses, there are constraints of varying strengths
from pulsar timing or microlensing (Kashiyama & Seto

2012; Niikura et al. 2017). A window where the con-
straints on the fraction of PBHs still needs to be im-
proved is M ≈ 30 M�. Bird et al. (2016) made the inter-
esting suggestion that the first LIGO event (that involved
two BHs with masses in this range) could have been the
coalescence of two PBHs in this mass regime (see also
Sasaki et al. 2016; Clesse & Garćıa-Bellido 2017). If true,
this would offer a natural explanation for the extreme
BH masses measured by LIGO (Abbott et al. 2017; The
LIGO Scientific Collaboration et al. 2017).

In this section we explore the possibility of constrain-
ing the fraction of PBHs with a caustic crossing event.
If PBHs make up a significant fraction of the DM, they
would disrupt the caustic. As seen in Fig. 9, the disrup-
tion is proportional to the optical depth of microlenses.
This scaling can be easily derived from basic principles
(for simplicity, we assume all mirolenses have similar
masses). The optical depth, τ , can be estimated as the
number of microlenses, N , times the area of their asso-
ciated Einstein ring (πθ2

E) per unit area, A, as

τ =
Nπθ2

E

A
. (13)

If we introduce the surface mass density of microlenses
with mass M , Σ = NM/A, and make use of Eqs. (9)
and (5), we get

τ =
Σ

M

4πGM

c2
Dds

DdDs
µt = (4.2× 10−4) Σ(M�/pc2)

a2µo
θ

,

(14)
where we remind the reader that a2 is the inverse of the
magnification in the direction parallel to the main CC.

As expected, τ scales with Σ and is independent of the
masses of the microlenses. If enough PBHs are present
near the main CC, at some point their CCs start to over-
lap (or, similarly, the microcaustics overlap in the source
plane). This corresponds to τ = 1. From Eq. 14, we
can infer the width of the saturation region around the
main CC. Since Eq. 5 gives the total magnification and
each train of micro-images carries half the magnification,
after accounting for this factor of two the width of the
saturation region is simply

∆Θ = (4.2× 10−4) Σ(M�/pc2)a2µo. (15)

This simple approximation works remarkably well when
tested with the simulated data (see Fig. 9, where the
length of the yellow lines is derived from Eq. 15 for the
model of D16, a2µo ≈ 0.2 × 150′′ = 30′′). Despite the
assumption of similar masses made to derive Eq. 14, we
find that when the optical depth is computed exactly
for a realistic distribution of masses (by integrating the
areas within the Einstein ring for each microlens), the
disagreement is approximately only a factor of 2 or 3.
In particular, Eq. 14 predicts τ = 0.7 at the position of
Icarus (assuming the model of D16 with a2µo ≈ 30′′)
and for Σ ≈ 7 M�/pc2, while the integration of a realiza-
tion of the Spera model between M = 0.01 M� and the
maximum mass in the realization (M ≈ 70 M�) renders
τ = 0.3. For alternative models like those of Woosley
et al. (2002) and Fryer et al. (2012), we obtain similar
values of 0.26 and 0.28, respectively. From Eq. 15 and
for the model of D16, we obtain ∆Θ ≈ 0.1′′.

Interestingly, this distance is smaller than (but compa-



18 Diego et al.

rable to) the separation found between Icarus and Iapyx
(∆Θ ≈ 0.26′′). This suggests that the adopted Σ may
actually be close to its real value. Much higher values of
Σ would result in a larger disruption of the main CC and
would make it very difficult to observe a nearly constant
flux for a period of ∼ 10 yr at the position of Icarus. Con-
versely, significantly smaller values of Σ would translate
into very small probabilities of observing a peak like that
witnessed for Icarus in May 2016.

We can define the effective surface mass density of mi-
crolenses Σeff = Σa2µo/θ (see Eq. 14), which is inversely
proportional to the distance to the CC. Hence, at large
separations from the CC, both Σeff and τ tend to zero
and the observed light curve should be featureless (i.e.,
no microlensing events and just a slowly varying flux).
On the other hand, a given area in the image plane at
∆Θ/2 from the main CC maps into a larger area in the
source plane than the same area in the image plane would
if it were at a smaller distance from the main CC (i.e.,
smaller θ). Thus, one would naively expect the proba-
bility of seeing microlensing events to be maximized at
the point where we reach the saturation regime. Future
observations of similar events should be found at compa-
rable distances, or that scale with the estimated surface
mass density of microlenses as shown in Eq. 15.

This argument can be used to indirectly infer that
the fraction of DM in the form of compact objects (like
PBHs) must be low (independently of their masses). The
value of Σ ≈ 7 M� pc−2 corresponds to a fraction of the
total mass of ∼ 0.3%. The relatively smooth behavior
of the Icarus light curve (1–3 minor peaks in the last
∼ 10 yr) suggests that the fraction of DM in microlenses
cannot be significantly higher than 3% (or the mass of
the PBH is orders of magnitude smaller than 1 M�).
If the fraction of DM is much higher, the width of the
saturation region would extend to farther distances. Ac-
cording to Eq. 14, a 3% fraction would saturate a region
of ∼ 1′′ around the CC. Current observatories have the
resolution and sensitivity to witness such events but none
has been reported prior to Icarus/Iapyx. If we assume
that the spiral arm extending all the way to the CC in
MACS1149 contains a nearly constant surface density of
stars (as suggested by its nearly constant surface bright-
ness), during the last ∼ 10 yr we would have expected to
see additional peaks farther away from the CC. The fact
that both Icarus and Iapyx (but also Perdix, also called
LS1 /Lev 2017A); see K17 for more details) appear at
distances ∼ 0.1′′ from the CC points to a low fraction
of DM (< 1%) in the form of microlenses. This conclu-
sion is, in principle, independent of the microlens mass.
However, this is not entirely true at sufficiently low mi-
crolens masses since in this case the microlenses start to
behave as a smooth distribution of DM (their associated
Einstein rings would be too small compared with the di-
mension of the macro-images). Even if individual events
cannot be resolved, deep observations around the CC can
reveal fluctuations that are not observed at larger dis-
tances from the CC. The strength and extension of these
fluctuations can be used to constrain Σeff and hence the
fraction of compact objects.

In the low-mass microlens regime, the sensitivity to
the mass of the microlens depends on two variables: (i)
the surface mass density of massive microlenses, Σ, and

(ii) the underlying magnification. If massive microlenses
(like, for instance, stars and remnants from the ICL) have
a large Σ, small microlenses play a negligible role (the
magnification pattern is entirely dominated by the mas-
sive ones). Only when the contribution from massive mi-
crolenses is small, can the signature of small microlenses
(like PBHs with planet-like masses) be detected. As
shown in Section 2, the Einstein ring associated with a
small microlens can be highly amplified when it lies very
close to a cluster CC. In the source plane, larger mi-
crocaustics from massive microlenses would overlap on
top of the smaller microcaustics overwhelming them. A
clear illustration of this effect was shown in the right
panel of Fig. 4, where M = 0.01 M� microlenses can
disrupt the main CC in a way that could be quantified
during a caustic crossing event. The ideal scenario for
constraining compact DM in the low-mass regime is to
monitor a background galaxy that lies behind a caustic
that is itself far away from any member galaxy or with
minimal ICL. This will minimize the effect of more mas-
sive microlenses (like stars) offering a clean view of the
structure of DM in the small-mass regime. The same ar-
gument can be applied to PBHs with higher masses. If
a caustic crossing event is found in a region where the
contribution from the ICL is known to be negligible and
the event shows signatures of microlensing, PBHs could
be constrained more easily than in a region where the
ICL produces microlensing events.

Giant arcs are ideal candidates, since the exact location
of the CC can be estimated with great accuracy owing to
symmetry principles. Knowing the exact location of the
CC is very important to break the degeneracy between
the microlens mass and the magnification (see Eq. 9). In
particular, elongated thin blue arcs tend to form in re-
gions where κ ≈ γ ≈ 0.5, since then a1 = 1 − κ − γ ≈ 0
and a2 = 1 − κ + γ ≈ 1. The first (a1 ≈ 0) condition
produces arcs with very large tangential magnification
while the second condition (a2 ≈ 1) is needed to produce
very thin arcs (small radial magnification). Thin giant
arcs are normally found in elliptical potentials in regions
relatively far away from the central BCG and where the
intracluster light is moderate or small, reducing the neg-
ative impact of microlenses from the ICL that could be
mistaken for PBHs. Blue arcs are also more likely to
contain younger giant stars that can be very luminous
and make ideal background sources.

From the observational point of view, having data with
a high cadence (one data point every week or two weeks
and daily when the flux aproaches the maximum) is im-
portant for constraining the shape of the peaks. The
width of the peak depends most strongly on the ratio
R/v, where R is the radius of the background source
and v the relative velocity between the source and the
caustic. Deep observations of the event are also useful
for improving the photometry and ruling out (or con-
firming) smaller peaks that could be hidden between the
most prominent ones. Also, if the background source
consists of a binary system, different events would have
a similar pattern with two consecutive peaks.

7.1. PDF of the Light Curves.

The PDF of the observed magnification (extracted
from light curves spanning ∼ 400 yr) is shown in Fig. 14.
Clearly, a compensating effect is taking place when F
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Fig. 14.— Histogram of the magnification computed from the
simulated light curves (at 0.13′′ distance from the main CC). Simi-
larly to what is observed in Fig. 8, the distinction between different
models is not obvious at high magnification. Note how for the case
with 10% DM microlenses, both sides of the main CC (a1 > 0 and
a1 < 0) behave similarly, as this case has already reached the sat-
uration level (τ > 1). Finally, note also how the probability still
scales as µ−3 at high magnifications.

is higher. The PDFs look remarkably similar indepen-
dent of the value of F . The situation is very similar
to the result presented in Fig. 8. When F is higher, the
PDF shown in Fig. 14 shifts toward lower magnifications.
However, in the observed light curve, moderate magni-
fications (µ ≈ 103) have similar probabilities. This is a
consequence of the trains breaking up into smaller bits as
F grows. Perhaps the most interesting difference is the
trend observed at very low magnifications (µ ≈ 10) and
very high magnifications (µ ≈ 104). When F is high, it
is more difficult to hide an entire macro-image from the
observer (i.e., the total flux of the macro-image is very
low) on the side where a1 < 0. This is a consequence of
the overlapping caustics in the source plane, as we have
seen earlier. For high magnifications, Fig. 14 also shows
a deficit of bright peaks when F is higher. When F is
higher, the side with negative parity (a1 < 0) and the
side with positive parity (a1 > 0) behave similarly, as
shown in Fig. 14. The fact that the observed light curves
from Icarus and Iapyx look very distinctive suggests in-
directly that F must be . 1%.

7.2. Power Spectrum

The distribution of peaks and valleys depends on the
optical depth of the microlenses. A correlation function,
or power spectrum, of the light curves can highlight hid-
den features in the light curve such as correlations that
are not easily identified in the PDF. Correlations be-
tween peaks are expected, for instance, when a single
microlens produces a double peak. The separation be-
tween the peaks is, in this case, generally proportional
to the square root of the mass of the microlens. We com-
pute the power spectrum of the light curves and show
the result in Fig. 15 for the models with only ICL stars
(Spera) and for models where we add to the Spera model
a fraction of the total mass in the form of compact DM
(or PBHs).

The power spectrum seems to be more sensitive to the
optical depth of microlenses on the side where a1 < 0.
This behavior is also found in the PDF of the light curves.

Similarly to Schechter & Wambsganss (2002), we find
that fluctuations are accentuated when the fraction of
microlenses relative to the smooth component is smaller.
Interestingly, on the side with a1 < 0 and for the cases
with higher F (PBH = 3.3% and PBH = 10%), the power
spectrum behaves like pink noise (or 1/f noise) on large
scales, a behavior which is found in many situations in
nature. One of these situations is relevant for this work
and refers to self-organized criticality24 systems intro-
duced by Bak et al. (1987) (see Jensen 1998; Christensen
& Moloney 2005, for more detailed descriptions of these
systems).

The 1/f nature of the power spectrum on large
timescales (more than a few months) indicates that there
is no characteristic timescale on the side where a1 < 0.

A similar argument could have been used for the PDF
of the magnification or the light curves, which also ex-
hibit power-law behaviors typical of systems where self-
organization is involved. In this case, it is the mag-
nification itself that is redistributed across the image
plane, owing to the constraint that the total magnifica-
tion (or observed flux) remains constant when integrating
over long periods of time independent of the substruc-
ture in the lens plane. When F is large (PBH = 10%),
the properties of the power spectrum resemble those of
time series that fall in the categories of stationary frac-
tals (Rodŕıguez 2014), which can be linked to renewal
processes (a generalization of a Poissonian process) in
which the time intervals between events are not corre-
lated. This is the expected behavior for the separation
between events when the distribution of projected mi-
crolenses is random.

The energy spectral density (ESD) can be used to mea-
sure the total amount of signal contained in the power
spectrum,

E =

∫
|µ(t)|2dt, (16)

which by Parseval’s theorem is equivalent to the integral
of the square of the power spectrum. Fig. 16 shows the
ESD for the Icarus and Iapyx simulated light curves and
for the models shown in Fig. 15. A clearer trend is ob-
served on the side where a1 < 0, suggesting that ESD
of the fluctuations on this side of the main CC may be
more capable of discriminating between different optical
depths of microlenses.

To produce accurate power spectra that can discrimi-
nate among different models it will be necessary to mon-
itor these events for decades, similarly to what is being
done for QSOs and other variable objects. With smaller
samples, the two-point correlation function offers an in-
teresting alternative.

8. DISCUSSION

Earlier work suggests that from a statistical point of
view, it is very difficult to distinguish the mass distribu-
tion of the microlenses for a fixed surface mass density
and shear (Wyithe & Turner 2001). On the contrary,
Schechter et al. (2004) show how the PDF of magnifica-
tions is sensitive to the mass distribution of microlenses.

24 Note, however, that the original claim between the 1/f noise
and the self-organized criticality is not formally correct, as dis-
cussed by Jensen (1998).
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Fig. 15.— Power spectrum of simulated light curves. The prominent oscillations or peaks on small scales in the red curve for the a1 < 0
case in the right panel are due to the low-magnification periods (the reader can think of the Fourier transform of a top-hat). Similar, but
more modest, oscillations can be appreciated in other cases as well.

Fig. 16.— Energy spectral density of the light curves as a function
of the fraction of mass in the form of microlenses, F . In both cases,
the curves are normalized to 1 to better show their relative change
with F . Note how the side with a1 < 0 shows a more consistent
trend.

Our results partially support this. Some differences ex-
ist for similar optical depths, but the differences are rel-
atively small. Interestingly, these differences seem to
be more accentuated on the inner part of the main CC
(a1 < 0).

One of the most striking features in the light curves,
and that is also sensitive to the optical depth of mi-
crolenses, is the “hiding” periods when the flux of a
macro-image falls below the detection limit. These low-
magnification periods observed in our simulated light
curves are similar to those found by Kayser et al. (1986)
or Paczyński (1986) when the dimensionless surface mass
density of stars, σ = Σs/(1 − Σc), is negative (here Σs
is the surface mass density of stars and Σc is the sur-
face mass density of the smooth distribution of matter).
The counterintuitive results of Schechter & Wambsganss
(2002) can be also interpreted in light of our own results.
They find that “contrary to naive expectation, diluting
the stellar component of the lensing galaxy in a highly
magnified system with smoothly distributed dark matter
increases rather than decreases the microlensing fluctu-
ations caused by the remaining stars.” Our simulations
show that increasing the fraction of mass in compact ob-

jects results in lowering the typical magnification and
consequently the fluctuations. Also, overlapping caus-
tics smooth out large fluctuations.

Although in our simulations, σ is always positive (Σs >
0 and Σc < 1), making the masses of the microlenses neg-
ative in the simulation changes the magnification pattern
of the a1 > 0 side into a pattern similar to the a1 < 0
side and vice versa. That is, it would be equivalent to
the cases discussed by Kayser et al. (1986) and Paczyński
(1986) with σ < 0. When comparing the histograms of
intensities (or magnifications) in Paczyński (1986) with
our results, we find a similar trend. Negative values of
σ (or negative optical depth following Paczyński’s argu-
ment) reproduce our results for a1 < 0.

The work of Paczyński (1986) also presents another
interesting result relative to the extension of the train
of micro-images, or the halo in Paczyński’s terms. As σ
increases, the size of the halo of micro-images grows as
well. In our case, we observe the same phenomenon with
the trains extending over larger distances along the di-
rection where micro-images form (i.e., in the direction of
the deflection field). When Σs is sufficiently large, micro-
images start to form in a more complex pattern, break-
ing the straight line found when Σs is low and adopting
a configuration that more resembles the halo described
by Paczyński (1986).

Perhaps the most interesting practical application of
caustic crossing events is their ability to constrain the
fraction of compact DM. For a given surface mass den-
sity of microlenses, Σ, the optical depth scales linearly
with Σ. One can use this fact to set limits on Σ by ob-
serving the slow rise (or decline) in flux of a magnified
background star as it approaches (or departs from) the
cluster caustic. If Σ is sufficiently large and the position
of the caustic or CC can be determined with relative
precision, microlensing events should become ubiquitous
thousands of years before (or after) the star crosses the
cluster caustic. This can be visualized easily in the source
plane for the case of high Σ.

The rate of observed events like Icarus at the position
of background arcs known to cross caustics gives us
indirect information about the level of disruption of
cluster caustics and/or about the luminosity function
of the background object. This is easier to see in
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the ideal case where the caustic is not disrupted. If
the mass-luminosity relation follows analytical models
(L ∝ M3 in normal stars where gas pressure and
gravity are balanced, and L ∝ M in heavy stars where
radiation pressure overwhelms gas pressure), we should
expect a classic IMF that falls like dN/dM ∝ M−2.3 to
translate into luminosity functions dN/dL ∝ Lα with
−2.3 < α < −1.1 depending on the mass (or luminosity)
of the star. As discussed by K17, owing to the 1/µ2

probability of being magnified by a factor larger than µ,
if dN/dL ∝ L−2, the smaller probability of being mag-
nified by a larger factor µ gets exactly compensated by
the larger abundance of lower-luminosity stars making
all unlensed luminosities have the same probability of
being observed. A stellar luminosity function, dN/dL,
that is steeper than L−2 results in lower-luminosity stars
being more likely to be observed above a certain flux
limit in caustic crossing events than higher-luminosity
stars. On the contrary, if dN/dL is shallower than L−2,
brighter stars will be more likely to be observed than
the less luminous ones. When the cluster caustic is
disrupted by microlenses, the argument above remains
the same, since the probability of being magnified by a
factor larger than µ still retains its fundamental form
at high magnifications, µ−2 (see Fig. 14), except that
now the normalization of the probability is smaller and
very rare extremely luminous stars may be required to
produce the observed flux.

8.1. Uncertainties in the Lens Model

Despite the high quality and excellent agreement be-
tween the different lens models that have been published
for clusters like MACS1149, there are still significant un-
certainties in the lens models that limit the capability of
using CC crossing events as probes of DM (or substruc-
ture in general). For the work presented here, one of the
most relevant systematics is the uncertainty in the mag-
nification near the CC. Meneghetti et al. (2017); Priewe
et al. (2017) show how discrepancies of order 50% in the
magnification are typically found between state-of-the-
art lens models that are considered otherwise accurate.
Here we compare the predictions made by two of these
models derived under very different assumptions.

The first one is the free-form model from D16 de-
rived using the WSLAP+ free-form code (Diego et al.
2005a, 2007). The second one is from Kawamata
et al. (2016) derived using the parametric code GLAFIC
(Oguri 2010). The two models correctly predict the po-
sition of the CC between Icarus and Iapyx, and have
successfully anticipated the position and time of reap-
pearance of SN Refsdal. However, as shown in Fig. 17,
the two models disagree by a factor ∼ 2 in the predicted
magnification at Icarus and Iapyx. (A third model, by
Richard et al. 2014, predicts a magnification similar to
the D16 model with µo = 150± 10.) The reason for this
disagreement can be found in the small differences in the
deflection field near the critical region. The condition for
a CC to occur is that a certain combination of derivatives
of the deflection field cancel out. In particular, the in-
verse of the magnification is given by

µ−1 = 1− αxx − αyy + αxxα
y
y − αyxαxy , (17)

Fig. 17.— Comparison of the predicted magnification between
the models of D16 (red) and Kawamata et al. (2016) (blue) along
a line that crosses the CC in an orthogonal direction and at the
position between Icarus and Iapyx.

where αx and αy are the deflection field in the x and

y directions and αji is the partial derivative of αi with
respect to the coordinate j (i, j = x, y). From the expres-
sion above, it is clear that small changes in the deflection
field near the point where the inverse of the magnifica-
tion is zero can have a significant impact on the delicate
balance between the derivatives in Eq. 17. The magnifi-
cation is then more sensitive to the small differences in
α near the CCs, where in relative terms these differences
are larger.

Small differences in the inferred deflection field be-
tween different lens models are expected. For instance,
each method assumes different profiles for the halos
around member galaxies or for the cluster halo(s), which
results in potentials that are more or less shallow.25 Also,
the inferred positions of the background sources used to
constrain the lens models differ from model to model.
These unknown positions are treated as variables that
need to be determined together with the mass distribu-
tion (or potential) of the galaxy cluster. By comparing
the models of D16 and Kawamata et al. (2016), we find
that CC positions, κ, and γ generally agree to within per-
cent levels (except in the surroundings of small member
galaxies considered in one model but not in the other).
However, at the position of Icarus and Iapyx, the deflec-
tion angle disagrees by a factor of ∼ 40%. In absolute
terms, the difference between deflection angles is small
(only ∼ 3′′), but since both deflection angles are rela-
tively small in this part of the lens plane, it translates
into a large relative difference. The ∼ 3′′ difference in the
deflection field originates in the different predicted posi-
tions of the background source used to constrain this part
of the lens plane. The small differences in the derivatives
of the deflection field around the CC translate into a fac-
tor of ∼ 2 in the magnification.

The uncertainty in the magnification has direct im-
plications on our ability to constrain the masses of the
microlenses. As shown in Section 2, the effective lensing
mass of the microlens scales as

√
µ. A factor of 2 uncer-

tainty in the magnification then translates into a factor

25 The deflection field is related to the lensing potential through
partial derivatives.
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Fig. 18.— Light curve for the ideal situation of a smooth model
plus a small microlens near the CC. The microlens has one Jupiter
mass and the background star is moving at v = 1000 km s−1 rel-
ative to the caustic and has a radius of 20 R� (solid line). The
dashed and dotted lines show the light curve for background stars
with radii of 100 R� and 500 R�, respectively. The ordinate shows
the relative change in flux expressed in magnitudes.

of
√

2 uncertainty in the mass of the microlenses. Future
observations may need to rely on independent calibra-
tors of the magnification. One such calibrator could be
a SN Ia in a background galaxy and that happens to
be near the CC. For instance, in Rodney et al. (2015),
SN HFF14Tom is used to compare the observed magni-
fication with the one predicted by several lens models,
finding in general good consistency but also a small sys-
tematic bias in many of the lens models that tend to
overpredict the observed magnification by ∼ 10–20%.

8.2. Exploring the Small Mass Compact DM Regime

The best constraints on the compact DM when Σ is
small should be obtained in a portion of the CC where
the contribution from ICL stars (and remnants) is neg-
ligible. If ICL stars are populating the lens plane at the
position of the CC, they will limit the ability to con-
strain the amount of compact DM. The ideal situation
is to monitor a blue arc (to maximize the number of lu-
minous stars) known to cross a CC and located far from
the ICL or member galaxies. Ideally, such an arc con-
tains a very bright star that is, on average, visible when
magnified with the macromodel magnification in order
to construct its light curve to probe DM (on the con-
trary, it will be difficult to distinguish if different events
correspond to different stars). In such situations, the
possibilities of detecting small-size microlenses increase
significantly. Moreover, as discussed earlier in the pa-
per, monitoring arcs behind a galaxy cluster CC has the
added advantage of probing a wide area in the lens plane
for a fixed amount of time. This is a consequence of the
increase in density of microcaustics at high magnifica-
tions. The reader can find an interesting discussion on
this subject in Oguri et al. (2017).

If the contribution from ICL stars is very small, the
light curve should contain very few peaks and the main
caustic would be minimally disrupted, allowing the ap-
proach to the caustic to have maximal magnification. As
shown earlier in Fig. 13, at optical depths of microlensing
which are a factor of 30 smaller than the value found at
Icarus/Iapyx (i.e., Σ = Σo/30), the fluctuations in the

light curve may still be significant, and the microlenses
from the ICL may overwhelm the signature of an un-
known population of microlenses with low mass (for in-
stance, PBHs with masses smaller than 1 M�). However,
the results shown in the right panel of Fig. 13 may not be
the most realistic representation of a population of ICL
microlenses with a small optical depth from the ICL. Es-
timating the precise amount of ICL that minimally dis-
turbs the CC (needed to explore the low-mass regime of
a hidden population of microlenses) is not trivial, but we
can make some approximations.

First, and for the sake of simplicity, we assume that
all the stars in the ICL have 1 M�. (This is not a bad
approximation, since we want to estimate the number
density of objects which, for most IMF models, is dom-
inated by stars with masses close to 1 M�.) Then, we
make use of the scaling for the effective Einstein radius
of the microlens, θe

√
µt (Q = 1) (see Appendix). Since

from Eq. 5, µt = µ/µr = µo/(µrθ), we can find the
value of θ for which the effective Einstein radius of the
microlens is equal to the distance to the CC, θ. We can
require that the separation between microlenses must be
at least twice this angle in order for the CC not to be
completely disrupted.

For the values in the D16 model, we then infer that the
surface mass density of stars must be ∼ 106M�/arcsec2,
or roughly two orders of magnitude smaller than the
value found at the position of Icarus and Iapyx. Even
though this may seem like a big difference, we have to
realize that Icarus and Iapyx are found relatively close to
the cluster center (∼ 7′′ from the BCG), where the contri-
bution form the ICL is still important. A simple fit to the
total observed light around the BCG of MACS1149 (in
the F160W band) shows how the unresolved flux around
the BCG falls as 1/d2 (up to∼ 30′′ from the BCG), where
d is the distance to the BCG. This is also the expected
behavior if the ICL trace the DM, which from simulations
(but also observations) falls as ρ(r) ∝ r−3 in the outer
regions of a cluster (with ρ(r) the 3-dimensional mass
density). Hence, in order for this unresolved flux to fall
two orders of magnitude with respect to the ICL found at
7′′, one should move a factor of ∼ 10 (that is, ∼ 1′) from
the BCG (less if the ICL falls faster than the assumed
1/d2 at larger radii, since there are fewer galaxies that
can lose stars to the ICL). The CC of clusters at z ≈ 1.5
does not reach these distances, but at higher redshifts
(z > 3) the CC can extend up to ∼ 1′ along the main
axis of the cluster. However, at these redshifts, the flux of
a background star is a factor ∼ 5.5 times smaller than at
z = 1.5 (or ∼ 1.8 mag fainter for z = 3). One would need
extremely luminous stars at high redshift and a powerful
telescope capable of observing their redshifted emission.
Luckily, such combinations, will exist in the near future.
The James Webb Space Telescope (JWST) may be able
to observe the first Population III stars through caus-
tic crossing events (see Windhorst et al 2018, where this
scenario is studied in detail). Population III stars cross-
ing a caustic far from the projected center of the cluster
(to avoid the contamination from ICL microlenses) can
then be used to constrain the fraction of compact DM to
unprecedented levels.

This scenario offers the possibility of constraining
PBHs in the less explored low-mass regime (M <
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0.1 M�). If we consider the ideal situation of a smooth
deflection field with negligible contribution from the ICL
stars, a microlens with small mass, M , close enough to
the CC will behave as a larger microlens with mass µM ,
and will produce a peak before the maximum flux is
reached. If the background star is large, this peak may
merge with the primary peak, making the identification
of the microlens harder (see Fig. 18). However, if the
background star is sufficiently small (few tens of solar
radii), the peaks may be distinguished and the relative
height of the peak due to the microlens can be used to
constrain the mass of the microlens. Fig. 18 shows how
a microlens with a Jupiter mass at z = 0.55 can produce
a change in flux of almost half a magnitude for a period
of ∼ 1 day.

Finally, as discussed in the previous subsection, the
ideal target area would contain a magnification calibrator
such as a Type Ia SN near a CC, which can be used to
directly estimate the magnification in that part of the
lens plane and reduce the uncertainty in the lens model
magnification. SN Refsdal is relatively close to Icarus,
but it is also too close to a medium-size member galaxy
which overwhelms the cluster contribution.

9. CONCLUSIONS

This work studies the particular case of microlenses
very close to a cluster CC. As one approaches the CC,
the magnification changes rapidly, affecting the way mi-
crolenses disrupt the magnification pattern. The main
results of this work are summarized below.
• Superluminal substructure probe. We have shown how
the observed velocity of the macro-images is propor-
tional to the magnification. Consequently, the apparent
transverse motion of the observed macro-images be-
comes superluminal when the distance to the CC is
sufficiently small and the magnification is sufficiently
large. Under these circumstances, moving macro-images
probe more substructure in the lens plane than a classic
microlensing event.
• Distinctive light curves. As found in previous work,
the light curves on each side of the CC look quite
different (at low optical depths and magnifications
smaller than 1000), with periods of very low flux on the
side where a1 < 0 not present on the a1 > 0 side. This
deficit in flux on the side with a1 < 0 is compensated
by brighter peaks when a micro-CC is intersected by
the background star. At high optical depth (τ > 1)
or extreme magnifications (from the macromodel) of
several thousand, there is little distinction between the
positive and negative parity sides.
• Reduced maximum magnification. Macro-images of
a small background source, like a bright star, crossing
a cluster CC can be magnified by factors of ∼ 106,
provided there is no substructure that disrupts the
CC. When microlenses populate the lens plane, the
maximum magnification is reduced, but it can still reach
values of several thousands.
• Flux borrowing. Microlenses can borrow photons
from the main caustic thousands of years before the
background star crosses the position of the main caustic,
making the observation of these events much more
likely than previously thought. This produces peaks
in the light curve with magnification factors of several
thousands. If microlenses are ubiquitous, multiple peaks

are expected hundreds or thousands of years before
the background star crosses the main caustic. The
number of peaks (and their intensity) depends on the
density of microlenses and their masses. The constraint
on flux conservation implies that during the crossing
of the main caustic, the magnification is orders of
magnitude smaller than for the smooth DM model when
microlenses are disrupting the main caustic. Moderate
disruption of cluster caustics increases the probability
of detecting microlensing events of fainter background
stars, while significant disruption produces microlensing
events much farther away from the main CC that can
be observed only when the background star is extremely
luminous.
• Saturation and 1/f noise. When microlenses populate
the lens plane, there is a region around the main CC
where the optical depth exceeds the critical value of 1.
The width of this region depends on the surface mass
density of microlenses and the properties of the cluster
deflection field. Within this region, the microcaustics
overlap in the source plane and the magnification
pattern is changed substantially. The power spectrum
of the light curves shows features on larger timescales
that resemble the ubiquitous 1/f noise present in
self-organized criticality or renewal processes studied in
other fields.
• Constraints on PBHs. The conditions required for the
interior macro-image (a1 < 0) to disappear during an
extended period is that there exist low-magnification
areas in the source plane. This effect was also predicted
in earlier work, and it was shown to be important for low
contributions from microlenses (see, e.g., Schechter &
Wambsganss 2002). When enough massive microlenses
are added in the lens plane, for instance if PBHs make
up a significant fraction of the DM (larger than a few
percent), it becomes harder to satisfy this condition
since the microcaustics start to overlap on top of the
low-magnification regions. Thus, the lack of extended
periods where one of the macro-images vanishes can be
used to set a limit on the fraction of DM in the form
of microlenses (like PBHs). So far, the data provided
by Icarus seem too sparse to place strong constraints
on the fraction of DM that can be in a compact form
(although they appear to favor a low fraction of DM
as PBHs). Continuous monitoring of both Icarus and
Iapyx in the near future will allow us to derive such
strong constraints after the identification of additional
peaks and the precise modeling of these peaks together
with the extended periods between peaks. Interestingly,
K17 report a possible nearby third event (Perdix, or
LS1 / Lev 2017A) that could correspond to a different
background star being lensed by the same web of
caustics.

• Complementary to QSO microlensing. An obvious ad-
vantage of this type of observation when compared with
QSO microlensing is that owing to the smaller intrin-
sic size of the background source (a few solar radii as
opposed to ∼ 0.01 pc (∼ 0.001 pc) for optical (X-ray)
accretion disk) and the larger apparent motion of the
macro-images, the timescale of a microlensing event is
much shorter (by 3 or 4 orders of magnitude) and the
magnifications during maxima are larger (by 1.5 or 2 or-
ders of magnitude). Light curves spanning several years
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can intersect several microlenses and can be used to de-
termine a census of microlenses. The constraints derived
this way on the population of microlenses are then af-
fected mostly by local substructure and less by projec-
tion effects acting on larger scales.
• Cosmic microscopes. When the optical depth of mi-
crolenses is very small, a caustic crossing event can be
used to probe very small masses near the CC. A mi-
crolens at cosmic distance with a mass similar to that
of Jupiter can produce features in the light curve that
can be observed with current technology provided the
radius of the background star is sufficiently small. This
opens the exciting possibility of probing compact DM
in the low-mass regime, unreachable by other means,
where at extreme magnifications of order 106, a Jupiter-
like microlens would behave as a microlens with a mass
∼ 1000 M�. Monitoring (with JWST) of high-redhsift
galaxies rich in luminous Pop III stars that are inter-
secting a critical curve far away from the ICL are ideal
targets for this kind of study (Windhorst et al 2018).
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APPENDIX

This appendix presents the basic formalism for a single microlens near a CC. We consider the simple scenario
where the deflection field from the cluster is oriented in the vertical direction (y axis in the equations below). In this
configuration, the CC from the cluster will be a horizontal line, the tangential magnification will be the magnification
in the vertical direction, and the radial magnification will be given in the horizontal direction. A reader familiar with
lensing models may find this definition of tangential and radial magnifications counterintuitive, since we are assigning
the radial magnification to a direction that is tangential with respect to the source of the deflection field. This,
however, is the case for some tangential arcs that stretch in directions perpendicular to the CC, like for instance the
arc containing the Icarus event discussed by K17.

If we place a microlens (point source) with Einstein radius re at a position (xo, yo), the deflection field around the
point source is αx = xr2

e/r
2 and αy = yr2

e/r
2, where r2 = x2 + y2 and locations (x, y) have their origin at (xo, yo).

The mapping between the image plane and the source plane is no longer given by Eq. 4 (in the main text); instead, it
can be described by

β =

(
(x+ xo)/µr
(y + yo)

2/rE

)
− r2

e

(
x/r2

y/r2

)
, (1)

where the first term accounts for the deflection field from the cluster (rE = Θ and y = θ in Eq. 4) and the second term
corresponds to the deflection field from the point source. We have assumed that the deflection field of the cluster is
such that it stretches the images in the y direction by some large factor µt = 1/a1 and in the x direction by a smaller
factor µr = 1/a2 (i.e., µ = µtµr). The constant µr is the small eigenvalue (for a tangential CC) of the magnification
(i.e., a2 = µ−1

r = 1− κ+ γ). Similarly, a1 = µ−1
t = 1− κ− γ. The inverse of the magnification, µ−1, can be computed

as the determinant of the Jacobian between the source-plane positions and the image-plane positions:

dβ

dθ
=

(
a2 + (x2 − y2)

r2e
r4 2xy

r2e
r4

2xy
r2e
r4 2 (y+yo)

rE
− (x2 − y2)

r2e
r4

)
. (2)

Computing the determinant of the expression above results in

µ−1 = a1a2 − (a2 − a1)
x2 − y2

x2 + y2

r2
e

r2
− r4

e

r4
, (3)

where a1 = 2(y + yo)/rE . When there is no microlens (re = 0), µ−1 is equal to the original µ−1 = µ−1
t µ−1

r = a1a2.
The term (x2 − y2)/(x2 + y2) is equal to cos(2δ) = Q, where tan(δ) = y/x. Q changes sign in different quadrants as
shown in Fig. 19.

Approximate solutions to Eq. 3 can be found after a few simple assumptions are made. Analytical solutions, even
though approximate, are very useful for unveiling scalings with the microlens mass or distance to the CC of the
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Fig. 19.— Magnification expected for a microlens near a CC. The inverse of the magnification is given by Eq. 3. The left panel corresponds
to the case where the microlens is on the a1 > 0 side (Icarus) discussed in the text, while the right panel is for the case where the microlens
is on the side with a1 < 0 (Iapyx). In both panels, the CC from the cluster is shown as the (nearly) horizontal line.

cluster that can be exploited later in statistical analyses. To find an analytical solution of Eq. 3, we assume that
a1 = 2(y + yo)/rE ≈ 2yo/rE = constant. This approximation is valid when yo � y, which corresponds to a distance
from the cluster CC much larger than the Einstein radius of the microlens. A simple solution (CCs) can be found
after setting this equation to zero, multiplying by r4, and doing the variable change x = r2/r2

e . This results in the
following general solution,

r2 = r2
e

(a2 − a1)Q

2a1a2

[
1±

√
1 +

4a1a2

(a2 − a1)2Q2

]
. (4)

Depending on the values of a1, a2, and Q, the quantity r2 can be positive or negative. If r2 is negative there is no real
solution. On each side of the CC, a1 = 1 − κ − γ changes sign (and equals zero on the CC). The solutions of Eq. 3
can be divided into two sets, one having a1 > 0 and the second with a1 < 0. Below we discuss these solutions based
on simple approximations.

For simplicity we assume that µr is constant and positive. Near a tangential CC, µr (or similarly a2) changes very
slowly around a given point, so this is a good approximation for our purposes. Also, in our case (microlenses near a
tangential CC), µt � µr (or a2 � a1) and the term (a2 − a1) is always positive. For convenience we define

F = 1±
√

1 + 4a1a2/((a2 − a1)Q)2, (5)

and in particular,

F+ = 1 +

√
1 +

4a1a2

(a2 − a1)2Q2
(6)

and

F− = 1−

√
1 +

4a1a2

(a2 − a1)2Q2
. (7)

Since a2 � a1, we can approximate F+ ≈ 2 and F− ≈ −2a1/(a2Q
2). The term Q = cos(2δ) can be either positive or

negative depending on the quadrant: Q < 0 in π/4 < δ < 3π/4 (hereafter quadrant 1) and 5π/4 < δ < 7π/4 (hereafter
quadrant 3), and Q > 0 in −π/4 < δ < π/4 (hereafter quadrant 4) and 3π/4 < δ < 5π/4 (hereafter quadrant 2). For
clarity we mark these quadrants in Fig. 19.

Solutions for a1 > 0

If a1 > 0, then Q and F must be the same sign in order to have r2 > 0. If a1 > 0, then F+ > 0 and F− < 0. In

quadrants 1 and 3, Q < 0 and only the solution with F− is real. The corresponding solution is r ≈ re
√
µr/|Q| ≈ re

for Q ≈ −1. These solutions can be used to estimate the size of the critical curves, and the caustics, associated with
the microlenses and by extension to estimate the cross-section for microlensing (see Oguri et al. 2017). In quadrants

2 and 4, Q > 0 and only the solution with F+ is real. The corresponding solution is r ≈ re
√
µt|Q| � re for Q ≈ 1.
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When a1 > 0, the micro-CC reaches a maximum distance much larger than re when Q = 1 (horizontal direction
or δ ≈ 0, δ ≈ π) and decreases toward a distance comparable to re at Q = −1 (vertical direction or δ ≈ ±π/2). For
smaller values of |Q|, r moves between these two extreme values. The CC in this case resembles an hourglass on its
side.

Solutions for a1 < 0

If a1 < 0, both F+ and F− are positive, so if Q > 0 there is no real solution since r2 < 0. A solution exists only in
quadrants 1 and 3 where Q < 0. In this case (Q < 0) there are two solutions, one for F+ and one for F−. The solutions

have magnitudes similar to the case a1 > 0 discussed above — that is, r+ ≈ re
√
µr/|Q| ≈ re and r− ≈ re

√
µt|Q| � re

(for Q ≈ −1).
When a1 < 0, there are no CCs in quadrants 2 and 4, and the CC is oriented in the direction of the deflection field

(i.e., in the vertical direction in our configuration). In quadrants 3 and 4 there are two solutions, and for Q ≈ −1
the smallest solution is close to the position of the microlens (r ≈ re) while the larger solution extends much farther
(r � re). For smaller values of |Q| there are still two solutions, but the separation between them is smaller. The
CC in this case resembles an hourglass standing up. The hourglass configuration is also found in earlier work; see
Chang & Refsdal (1984), Mao & Schneider (1998), and also Fig. 8.8 of Schneider et al. (1999). The same early work
shows how the caustics are different for each parity. Caustics for a microlens on the side with positive party (a1 > 0)
resemble the usual diamond shape but significantly stretched in the direction of the main caustic. On the side with
negative parity, the caustics develop a gap in the central region of the diamond shape. This gap is responsible for the
low magnification periods observed in the counterimage with negative parity (Iapyx).

The approximate solutions shown above can be tested by solving Eq. 3 numerically, and without any approximations.
The magnification µ (Eq. 3) is visualized graphically in Fig. 19 for a configuration where µt = 5 and rE/re = 5000.
The two hourglass shapes are evident, as well as the lack of solution in quadrants 1 and 3 when a1 < 0.

It is interesting to highlight the scaling of the solutions above with the magnification. The maximum dimension of
the CC is r ≈ re

√
µt. This is the same result we found in Section 2 (see Eq. 9), where we show how a microlens with

mass M behaves like an microlens with mass Mµt.
As noted by Saha & Williams (2011), the minima in the arrival-time surface cannot be demagnified, while this is

possible in a saddle point (i.e., on the side where a1 < 0). Even though the magnification pattern can be very complex
when the critical curves, or caustics, of microlenses start to overlap, the properties and scalings presented above for
a single microlens are still accurate provided the optical depth for lensing is not very high. We find that at optical
depths similar to the ones found in the Icarus and Iapyx events, the single-microlens formalism presented above is still
accurate for describing individual events.
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