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Theorem Proving

“Automated deduction or theorem proving refers to the
mechanization of deduction reasoning.” [R8], p. 79

Advantages:

◮ automatic proof generation when possible

◮ bookkeeping

◮ proof checking

◮ user extensibility

◮ expressiveness of the logic

“Mechanized” means using a software tool.
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Theorem Proving

Disadvantages:

◮ automatic proof generation is only possible for a limited range
of logics (decidability)

◮ not allowed to say “and obviously . . . ” as a proof step –
computers require all the proof steps to be spelled out

CS745/ECE-725, Fall 2009, University of Waterloo, Topic 3, Page 4/145



What is a theorem prover?

In its essence,

A theorem prover is a pattern matching tool.
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1-demo.sml
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Theorem proving: Overview

Theorem proving techniques and tools range from fully automatic
to just proof checking.

In between these two extremes, tools have:

◮ derived proof rules and smart pattern matching (e.g., HOL)

◮ discovery of induction invariants (e.g., ACL2)

◮ fully automatic proof procedures with “flags” (e.g., Otter)

◮ minimalist proof assistants to model checkers (e.g., SMV)

◮ combined model checkers and theorem provers
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Src: N. Shankar’s invited talk at TPHOLs 2001

See also: Donald MacKenzie, Mechanizing Proof Computing, Risk, and Trust, MIT Press, 2001
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LCF-style mechanical theorem proving

The HOL system is an example of LCF-style mechanical theorem
proving.

LCF-style features:

◮ separation of object language (logic) and meta-language

◮ meta-language is a typed functional language (ML)

◮ theorem is an abstract datatype; only way to construct
theorems is using the axioms and inference rules

◮ “secure” theorem proving achieved by having a small core;
everything else is built on top of that core

◮ backward proof (goal directed proof): tactics, tacticals

◮ programming in the meta-language is used to create bigger
combinations of steps
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History

◮ 1972: Milner’s Stanford LCF (Logic of Computable Functions)

◮ mechanize proofs in PPLAMBDA, chosen because it was
appropriate for the study of semantics of programming
languages

◮ ways of creating subgoals, storing theorems to build a library
◮ highly repetitive work
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History

◮ 1977: Edinburgh LCF (Milner et al.)

◮ introduction of a metalanguage (ML):

◮ could encode not just primitive reasoning steps, but derived
rules

◮ use of a type system to distinguish between “terms” and

“theorems”; theorems could only be created using the axioms
and inference rules. Therefore the soundness of the tool
depends only on the primitive axioms and rules of inference,
and the type checking code.

◮ interface of the logic to the meta-language explicit using the
type structure of ML, so that other logics could be tried
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History

◮ ported from Stanford Lisp to Franz Lisp by Gérard Huet at
INRIA

◮ Cambridge LCF: further developed at Cambridge by Larry
Paulson

◮ HOL: Gordon [R5], [R4]
◮ implemented on top of Cambridge LCF
◮ for classical higher order logic (Church’s simple theory of

types [R2])
◮ originally higher order logic was chosen to be suitable for

hardware verification although it has many other applications
now
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History

◮ HOL88 (1988)

◮ HOL90: port of HOL88 to SML by Konrad Slind

◮ HOL98: incorporation of many decision procedures (some as
HOL derived rules)

◮ HOL 4: latest version (2004-)
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Using HOL

Source/Installer for HOL: http://hol.sourceforge.net/ (You have to
insall Mosml 2.01 first.)

You can use HOL on the WatForm servers (tumbo, quadra,
mudge, gooch) or you can install HOL yourself. On the WatForm
servers, it is in watform/bin.
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Using HOL

To run HOL (on Windows): hol.bat

Moscow ML version 2.01 (January 2004)

Enter ‘quit();’ to quit.

[opening file "C:\Program Files (x86)\Hol\std.prelude"]

-----------------------------------------------------------------

HOL-4 [Kananaskis 5 (built Wed Jul 08 21:08:36 2009)]

For introductory HOL help, type: help "hol";

-----------------------------------------------------------------

[loading theories and proof tools ............... ]

...

- ...

- ^D (to exit)
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Using HOL

The reference manuals for HOL are all on-line at the HOL web
site. The course web page contains links to several useful
references on HOL and ML.

HOL has a command line interface. It is convenient to interact
with HOL through emacs. There are instructions on the
“References” course web page for how to set up the emacs
interface. An alternative is to cut and paste between your proof
script window and the HOL session.
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Lambda Calculus: Background

Src: Gordon [R5]

The lambda calculus is a theory of functions developed by Alonzo
Church in the 1930s in an attempt to create a formal
representation of computation.

Church-Turing Thesis: all of the following are formally equivalent
and represent the “effectively calculable functions”,

◮ lambda calculus

◮ Turing machines

◮ and many others
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Influence of the Lambda Calculus

The lambda calculus inspired:

◮ LISP, McCarthy, 1950’s

◮ ISWIN, Landin, 1960 (introduced main notations of functional
programming)

◮ Denotational semantics, Strachey

◮ Domain theory, Scott

◮ functional programming and techniques for its implementation
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Lambda Calculus: Syntax

The lambda calculus is a notation for defining functions. The
expressions of the language denote functions.

〈λ−expr〉 ::= 〈variable〉
| λ〈variable〉. 〈λ−expr〉
| 〈λ−expr〉 〈λ−expr〉

An abstraction is an expression of the form λ〈variable〉.〈λ−expr〉 .
In an abstraction, λx .e, we call x the bound variable and e is the
body.

An application is an expression of the form 〈λ−expr〉 〈λ−expr〉. In
an application, e1 e2, we call e1 the rator (from operator), and e2 is
called the rand (from operand).
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Abstractions

An abstraction λx .e denotes the function that takes an argument a

and returns the function denoted by the body e, in an environment
where x denotes a.

(λx . e) a ≡ e[a/x ]

An abstraction is an anonymous function. The two definitions
below are equivalent.

f x = x + 1
f = λx . x + 1
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Examples

Examples of syntactically legal lambda expressions:

λx . x identity function
λx . x + 1 increment function

(λx . x + 1) 3 increment function applied to 3
(λx . x + 1) ((λx . x + 1) 2) inc applied to the inc of 2

Examples of syntactically illegal lambda expressions:

λ(x + 1). x + 1 bound variable must be a variable, not a
term
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Conventions

1. function application associates to the left:

e1 e2 e3 e4 ≡ (((e1 e2) e3) e4)

2. the scope of λx . . . . extends as far right as possible

λx . e1 e2 e3 . . . en ≡ (λx . (e1 e2 e3 . . . en))

3. nesting of abstractions

λx1 . . . xn. e ≡ (λx1. (. . . (λxn. e)))

Example: λx y . f y x ≡ (λx . (λy . ((f y) x)))
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Bound and Free Variables

An occurrence of a variable x is free if it is not within the scope of
a λx , otherwise it is bound.

This is the same definition of free and bound that we had
previously for quantifiers.
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Lambda Calculus: Calculating

There are three rules (conversions/reductions) for calculating with
the lambda calculus. These rules allow us to simplify or reduce
lambda expressions.

Alpha (α) rename bound variables

Beta (β) reduce / simplify expressions with function
application

Eta (η) equivalent representations of functions
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Substitution

The calculations involve substitution. As in predicate logic, we
have to avoid variable capture.

e[e ′/x ] means substituting e ′ for each free occurrence of x in e.
The substitution is valid if no free variable in e ′ becomes bound in
the result.

Next, we define substitution such that we no longer have to worry
about variable capture.

CS745/ECE-725, Fall 2009, University of Waterloo, Topic 3, Page 26/145

Substitution

e e[e ′/v ]

1 v e ′

2 v ′ (where v 6= v ′) v ′

3 e1 e2 (e1[e
′/v ]) (e2[e

′/v ])

4 λv . e1 λv . e1

5 λv ′. e1 (where v 6= v ′ and λv ′. (e1[e
′/v ])

v ′ is not free in e ′)

6 λv ′. e1 (where v 6= v ′ and λv ′′. (e1[v
′′/v ′])[e ′/v ]

v ′ is free in e ′) where v ′′ is a variable not
free in e ′ or e1

We will assume we are using this substitution in all subsequent
slides.
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Example of Substitution

(λy . y x) [y/x ] y is free in y x

(λy . y x) [y/x ] = λy ′′. ((y x) [y ′′/y ])[y/x ]
= λy ′′. ((y [y ′′/y ]) (x [y ′′/y ]))[y/x ]
= λy ′′. (y ′′ x)[y/x ]
= λy ′′. (y ′′[y/x ]) (x [y/x ])
= λy ′′. y ′′ y
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Alpha Conversions

Alpha conversion: renaming bound variables in abstractions
λx . e 7→

α
λx ′. e[x ′/x ]

legal α-conversion replacing a with b:

λa. (a + 1) 7→
α

λb. (b + 1)

illegal α-conversion :

(a + 1) 7→
α

(b + 1) “a” is a free variable, so can’t be

renamed
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Beta Conversions

Beta conversion: simplifying function application
(λx . e1) e2 7→

β
e1[e2/x ]

Example:

(λa. (a + 1)) 3 7→
β

3 + 1
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Example

What does the following function do?

λx . λy . y
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Eta Conversions

Two functions are the same if they give the same result when
applied to the same arguments. This property is called
extensionality.

The eta conversion is λx . (e x) 7→
η

e provided x has no free

occurrence in e.

Example: λx . f 5 x 7→
η

f 5
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Generalization and Equality

7→
α

, 7→
β

, 7→
η

are also used to describe the application of the

conversion to any subterm. We use 7→ to describe the application
of one of the conversions.

These rules preserve the meaning of the expression, i.e., the
resulting expression denotes the same function. We say that two
expressions are equal (=) if they can be transformed into each
other by a sequence of conversions.
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Extensionality

Recall Leibniz’s Law:
If t1 = t2 is a theorem, then so is P[t1/x ] ⇔ P[t2/x ].

If v is not free in e1 or e2, and e1 v = e2 v

then by Leibniz’s law, λv . e1 v = λv . e2 v

and by η-conversion on both sides e1 = e2

So to prove two λ-expressions are equal (e1 = e2), we can prove
e1 v = e2 v for some v not occurring free in e1 or e2. This is called
proof by extensionality.
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Church-Rosser Theorem

Church-Rosser Theorem: if an expression e0 can be reduced by
zero or more reduction steps to either expression e1 or e2, then
there exists an e such that e1 7→ e and e2 7→ e.

(λa. ((λb. b a) (λx . x + 1)))3
= (λb. b 3) (λx . x + 1)

= (λx . x + 1) 3
= 3 + 1

(λa. ((λb. b a) (λx . x + 1))) 3

= (λa. ((λx. x + 1) a)) 3
= (λx . x + 1) 3
= 3 + 1

Basically, the order of beta reductions doesn’t matter.
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Aside: Eager vs Lazy Evaluation

For beta reduction, there are two common ways to carry out the
reduction.

Eager evaluation: evaluate arguments before substitution

Lazy evaluation: delay evaluation of arguments until needed

Lazy
(λx . x + 1) ((λy . 2 × y) 3)

= ((λy. 2 × y) 3) + 1

= (2 × 3) + 1
= 6 + 1
= 7

Eager
(λx . x + 1) ((λy . 2 × y) 3)

= (λx . x + 1) (2 × 3)

= (λx . x + 1) 6
= 6 + 1
= 7
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Aside: Eager vs Lazy Evaluation

Lazy evaluation can sometimes avoid non-termination (Ω):

Lazy
(λx . ((λy . y) 5)) Ω

= (λy . y) 5
= 5

Eager
(λx . ((λy . y) 5)) Ω
evaluates to Ω
which never terminates
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Aside: Eager and Lazy Evaluation

A naive implementation of lazy evaluation can be inefficient if
arguments are used multiple times in a function body.

Lazy
(λx . x + x) ((λy . 2 ∗ y) 3)

= ((λy . 2 ∗ y) 3) + ((λy . 2 ∗ y) 3)

= (2 ∗ 3) + ((λy . 2 ∗ y) 3)

= 6 + ((λy . 2 ∗ y) 3)

= 6 + (2 ∗ 3)
= 6 + 6

Eager
(λx . x + x) ((λy . 2 ∗ y) 3)

= (λx . x + x) (2 ∗ 3)

= (λx . x + x) 6
= 6 + 6

Most implementations of lazy evaluation use term-sharing
representations so that evaluation of (λy .2∗ y) 3 is done only once.
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Representing Boolean Operators

We can encode the objects true and false and the Boolean
operators as λ-expressions that have the right properties.

true ≡ λx . λy . x

false ≡ λx . λy . y

not ≡ λt. t false true

These definitions have the appropriate properties:

not true = (λt. t false true) true
= true false true
= (λx . λy . x) false true
= (λy . false) true
= false

We can do the same kind of coding to represent pairs and
numbers, etc.
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Functions with Several Arguments

In mathematics, we’re used to writing f (x1, . . . , xn) for the
application the n-ary function f to the arguments x1, . . . , xn.

In the λ-calculus, there are two ways to write such a function:

1. curried: f x1 . . . xn

f expects its arguments “one at a time”

2. uncurried: f (x1, . . . , xn)
f expects its arguments all at the same time

A curried function can be partially applied.
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Lambda Calculus, ML, and HOL

ML and higher order logic both use the lambda calculus to
represent functions.

ML is the meta-language for the theorem prover HOL.

Higher order logic is the object language (logic) for HOL.
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What is a functional language?

ML is an eager functional language.

In an imperative programming language there are expressions and
commands. Expressions evaluate to a value and commands change
the state of the computer.

In a functional program, everything is a expression. There are no
commands. The whole program is a single function.

Instead of loops, functional programs use recursion.

Functions can take other functions as arguments. These are called
higher order functions.

There are no pointers. The data structures used are mostly lists
and trees.

See 2-ml-demo.sml
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Types

ML is a strongly-typed language, with polymorphic typechecking.

strongly typed: strict enforcement of type rules with no

exceptions. All types are known at compile time, i.e. are

statically bound.

A polymorphic function is one that can be applied to an argument
of any type.

Often, ML can infer all the types involved in an expression, so you
don’t have to provide explicitly typing information.

See 2-ml-demo.sml
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Referential Transparency

Generally, functional programs satisfy the property of referential
transparency: we can replace a subexpression with another
expression that is equal to it. The context of the expression
doesn’t matter.

When is x + y 6= y + x?
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Outline
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The HOL system

The HOL theorem proving system is written in ML.

◮ the logic is represented as a datatype in ML

◮ formulae in the logic are instances of this datatype (placed in
single quotes and called ‘terms’)

◮ ML functions manipulate terms in the logic (rules of inference,
tactics)
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Object Language and Meta-Language

ML manipulates expressions in the logic.

Expressions in the logic have ML type “term”.

Forward proof steps (inference rules), and backward proof steps
(tactics) are functions in ML.

A theorem (ML type “thm”) is pair that consists of

1. a list of terms (assumptions)

2. a single term (conclusion)

An inference rule can take a term and produce a theorem. It may
also take other theorems as arguments.
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Single Quotes

◮ Expressions in single back quotes (e.g., ‘!x. P(x)‘) have type
“term frag list” in ML.

Inference rules (implemented as ML functions) take term frag lists.

Antiquotation means that you can use an ML identifier in the
middle of a term frag list and it will replace it with the term
associated with the ML identifier.

(Occasionally you will see an old function that wants a “term”
rather than a “term frag list” as an argument. In this case, put the
term in double quotes as in “!x. P(x)“.
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Higher Order Logic

Recall that in first order logic, quantifiers can only range over
variables. In higher order logics, functions can take functions as
arguments, and quantifiers can range over functions.

This is because higher order logic uses lambda terms (λ-terms) to
describe functions, a much more expressive way to describe
functions than is available in first order logic.

There are multiple kinds of higher order logic. The higher order
logic used in the HOL theorem proving system is a variant of
Church’s simple theory of types [R2]. From now on we will be
refering to the flavour used in the HOL theorem proving system.
Other flavours include those used in PVS [R9], IMPS [R3],
Nuprl [R1], Coq [R6], and Isabelle [R10].
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Logic Syntax

Standard Notation HOL notation

true T

false F

¬t ~t

t1 ∧ t2 t1 /\ t2

t1 ∨ t2 t1 \/ t2

t1 ⇒ t2 t1 ==> t2

t1 = t2 t1 = t2
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Logic Syntax

Standard Notation HOL notation

∀x .t !x.t

∃x .t ?x.t

εx .t @x.t

t → t1 | t2 t => t1 | t2

λx .t \x. t

εx .t means an x such that t. ε is called Hilbert’s choice operator.
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Logic Terms

There are four kinds of terms in higher order logic:

1. Variables, which can be bound by quantifiers

2. Constants

3. Function applications: t1 t2

4. Lambda-abstractions: \x. t

Notice that it uses a different notation for λ than ML.

Identifiers in HOL are case sensitive.

See 3-hol-basics.sml
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Russell’s Paradox

When functions are allowed to take other functions as arguments,
we can run into trouble with paradoxes. The following is a version
of Russell’s paradox:

P x = ¬(x x)

From which we can conclude: P P = ¬(P P)

Paradox: A sound argument leading to a contradiction.
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Russell’s Paradox

An alternative formulation of this problem is: “if the barber of
Seville is a man who shaves all men in Seville who don’t shave
themselves, and only those men, who shaves the barber?”
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Russell’s Paradox

“Russell’s response to the paradox is contained in his so-called
theory of types. His basic idea is that we can avoid reference to S
(the set of all sets that are not members of themselves) by
arranging all sentences into a hierarchy. This hierarchy will consist
of sentences (at the lowest level) about individuals, sentences (at
the next lowest level) about sets of individuals, sentences (at the
next lowest level) about sets of sets of individuals, etc. It is then
possible to refer to all objects for which a given condition (or
predicate) holds only if they are all at the same level or of the
same “type”.”

Src: http://plato.stanford.edu/entries/russell-paradox/
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Logic Types

The HOL system’s logic uses a simplification of Russell’s type
system due to Church with extensions developed by Milner [R7].

Types denote sets of values. Types can be atomic or compound.

Examples of atomic types are bool, num, real.

Compound types are built from other types using type operators.
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Logic Types

Examples of compound types:

◮ σ1 → σ2 is the set of functions with domain the type σ1 and
range the set σ2

◮ σ1#σ2 is the set that is the cartesian product of the types σ1

and σ2

Higher order logic can have polymorphic functions.

The HOL system can infer the types of many expressions so we
don’t have to explicitly type every expression in the logic.

The ML function type_of can be useful to find out the types of
logic terms.

See 3-hol-basics.sml
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Axioms

HOL has very few primitive axioms. You can find out what they
are by typing them at the ML prompt. For example:

BOOL_CASES_AX;

ETA_AX;

SELECT_AX;

INFINITY_AX;

These are ML identifiers associated with elements of type theorem.

See 3-hol-basics.sml
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Primitive Rules of Inference

Src: Gordon [R5]

HOL has only 8 primitive rules of inference at its core. These are
the only ways to create ML objects of type theorem. Everything
else is derived from these. This is the secure core provided by the
LCF implementation style.

We list the rules for completeness but omit the side conditions.

Assumption introduction: ASSUME

t ⊢ t

See 3-hol-basics.sml
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Primitive Rules of Inference

Reflexivity: REFL

⊢ t = t

Beta-conversion: BETA CONV

⊢ (λx .t1) t2 = t1 [t2/x ]
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Primitive Rules of Inference

Substitution: SUBST

Γ1 ⊢ t1 = t2 Γ2 ⊢ t[t1]

Γ1 ∪ Γ2 ⊢ t[t2]

Abstraction: ABS

Γ1 ⊢ t1 = t2

Γ1 ⊢ (λx .t1) = (λx .t2)
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Primitive Rules of Inference

Type instantiation: INST TYPE

Γ1 ⊢ t

Γ1 ⊢ t[σ1, . . . , σn/α1, . . . , αn]

This is a substitution of types for type variables.

Discharging an assumption: DISCH

Γ ⊢ t2

Γ − {t1} ⊢ t1 ⇒ t2
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Primitive Rules of Inference

Modus Ponens: MP

Γ1 ⊢ t1 ⇒ t2 Γ2 ⊢ t1

Γ1 ∪ Γ2 ⊢ t2

These are all ML functions!

See 3-hol-basics.sml
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Soundness, Completeness, and Decidability

The HOL deductive system is sound (see p. 214 of [R4]).

The deductive system is not complete.

The logic is not decidable.
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Outline

The HOL theorem proving system:

◮ Higher order logic
◮ Features of LCF-style theorem provers:

◮ derived rules
◮ theories
◮ backward proof (tactics, tacticals)

◮ Examples
◮ HOL hammers
◮ Writing tactics
◮ Harry Potter
◮ DOIT TAC
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Milner’s Three Great Ideas

1. Derived rules of inference so we can use “bigger” proof steps
rather than always using the primitive steps

2. Theory as a record of facts already proven, and therefore
available as lemmas (proofs can build on other proofs)

3. Tactics to organize the construction of backward proofs and
tacticals to compose tactics (permits proof as a backward
tree, rather than forward linear sequence). Milner’s particular
contribution was the method of translating the solution of the
subgoals into the solution of the goals.
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Milner’s First Great Idea: Derived Rules

A derived rule combines the application of a sequence of rules.

In HOL, derived rules are correct by construction, i.e., they can’t
produce a non-theorem, because they are implemented in terms of
the primitive inference rules.

Representing theorems as an abstract datatype and using the
typing system of ML provides us with this guarantee.

A derived rule produces objects of type theorem.

From a user’s perspective a derived rule is no different than a
primitive rule.
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Examples of Derived Rules

SYM A |- t1 = t2

--------------

A |- t2 = t1

RAA:

CCONTR

A, ~t |- F

-----------------

A |- t
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Examples of Derived Rules

Exists-introduction: EXISTS

A |- S[t]

-----------------

A |- ?x. S[x]

Forall-elimination: SPEC

A |- !x. S

----------------- SPEC ‘t‘

A |- S[t/x]

See Mike Gordon’s notes on the “References” course web page for
the derived rules corresponding to the natural deduction proof
rules we discussed last class.

See 3-hol-basics.sml
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DECIDE

DECIDE is an example of powerful derived rule.

“The decision library contains co-operating decision procedures for
quantifier-free formulas built up from linear natural number
arithmetic, propositional logic, and the equational theories of pairs,
recursive types, and uninterpreted function symbols. . . . The
procedure is based on the approach of Nelson and Oppen.”

Src: HOL documentation

See 3-hol-basics.sml
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Rewriting

Rewrite rules provide for limited “automatic” theorem proving.
Rewriting involves pattern matching and substituting equals for
equals.

HOL contains a number of derived rules based on rewriting that
vary in whether the assumptions and built-in rewrite theorems are
used.

- REWRITE_RULE;

> val it = fn : thm list -> thm -> thm

Rewriting can loop forever. For example, rewriting with
‘‘!m n. m + n = n + m‘‘. Using ONCE_REWRITE_RULE can
avoid this.

See 3-hol-basics.sml
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Conversions

Conversions take terms and return theorems expressing the equality
of that term to another term. BETA_CONV is an example of a
conversion.

Conversionals are functions that combine conversions.

See 3-hol-basics.sml

CS745/ECE-725, Fall 2009, University of Waterloo, Topic 3, Page 74/145

Milner’s Second Great Idea: Theories

In HOL, a theory is a set of theorems that have been proven. It’s a
means of storing groups of related information.

A theory can include: types, type operators, constants, definitions,
axioms, and theorems.

A theory that does not introduce new axioms is called definitional.

When building a theory, we start the HOL session with
new_theory "mytheory";.
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Theories

For example, “numTheory” is a theory that defines the type of
natural numbers, and the constants 0 and SUC. Peano’s axioms
have been proven in this theory. This theory also includes the
induction theorem.

Another well-used theory is that of arithmetic. It includes
definitions of plus, sub, mult, exponentiation, etc.

Many theories come with the HOL distribution. Look in the HOL
distribution directory to see the theories available.

See 3-hol-basics.sml
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Induction

Induction over numbers is a powerful proof technique. The theorem
representing induction has been proven in the HOL system:

- numTheory.INDUCTION;

> val it =

|- !P. P 0 /\

(!n. P n ==> P (SUC n))

==> !n. P n : thm
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Induction Proof Rule

Induction is so common a technique that a forward proof rule, and
tactic (backward proof) exist for using the induction principle.

The derived forward proof rule INDUCT (found in numLib):

A1 |- P[0] A2 |- !n. P[n] ==> P[SUC n]

----------------------------------------- INDUCT

A1 u A2 |- !n. P[n]
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Theories

We can load existing theories using load "theory-name";

Opening a loaded theory makes all the names of the theory
accessible without prefixing them with the theory name.

We can see what theories have been loaded using
print_theory "-".

Once a theorem is proven, we can save it in the current theory
using save_thm ("thm-name",thm-ml-identifier)
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Building Theories

Most of the time in a verification effort, we’d like to build up our
proofs incrementally.

We also might want to introduce new types and constants.

Definitions are conservative in HOL. This means by adding a
definition we can’t make the logic unsound.
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Uninterpreted Types and Constants

An uninterpreted type is one for which we don’t describe its
composition. These are very useful for capturing a level of
abstraction in the specification.

- new_type 0 "aircraft";

> val it = () : unit

An uninterpreted constant is one for which we don’t supply a
definition.

- new_constant

("flightLevel", ‘‘:aircraft -> num‘‘);

> val it = () : unit

For new types, if the arity is 0 (as above) it is a new base type.
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Constant Definitions

val x_def = Define ‘ x = 1 ‘;

val divides_def =

Define ‘divides a b = ?x. b = a * x‘;

val sum_def =

Define ‘(sum 0 = 0) /\

(sum (SUC n) = n + sum n)‘;

Definitions are theorems.

These constant definitions are not always executable.

See 3-hol-basics.sml
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Total Functions

Higher order logic functions are total.

A total function is a function defined for all arguments of its
domain.

A partial function is a function that is not defined for all arguments
of its domain. Division is an example of a partial function. HD is
also an example of a partial function.

In HOL, functions that are usually considered partial, such as HD,
are total functions but they are only partially defined. We only
define the behaviour of HD for certain arguments. The definition of
HD is:

!h t. HD (h::t) = h
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Recursive Functions

In classical logic, arbitrary recursive definitions aren’t permitted.

Primitive recursive functions, which uniquely define functions are
permitted.

HOL looks at the “form” of the definition to ensure that it is
primitive recursive. For example, if it has the form of two cases,
one for 0 and one for SUC x then it can tell it’s okay to allow this
definition.

The ML function “Define” tries to find a measure that shows the
function will terminate and if it can, it does this proof behind the
scenes.

See 3-hol-basics.sml
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Type Introduction

We can introduce new types. Here’s an enumerated type.

Hol_datatype

‘chocolate = Cadburys | Rogers | LauraSecord‘;

The type definition package usually proves some useful theorems
about your type. For example, in this case it proved the theorem:

chocolate_nchotomy

|- !c. (c = Cadburys) \/ (c = Rogers)

\/ (c = LauraSecord)

Use the following to store this theorem in an ML identifier, so it
can be passed to inference rules and tactics:

val chocolate_thm = theorem "chocolate_nchotomy";
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Recursive Types

Labelled binary trees:

Hol_datatype

‘bTree = Leaf of ’a

| Node of ’bTree => ’bTree‘;

The Hol datatype function adds this type to the theory, and adds
the constants Leaf and Node to the theory. It also proves a
number of theorems about the type. For example:

bTree_distinct |-

!a1 a0 a. ~(Leaf a = Node a0 a1)
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Structural Induction

Another theorem proven about the type is:

bTree_induction

|- !P.

(!a. P (Leaf a)) /\

(!b b0. P b /\ P b0 ==> P (Node b b0))

==> !b. P b

This second theorem allows us to do proof by structural induction
on elements of this type.
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Recursive Functions

One can define recursive functions on user-defined types:

val Leaves_def = Define

‘(Leaves (Leaf x) = 1) /\

(Leaves (Node a b) = Leaves a + Leaves b)‘;

Define uses some of the theorems previously proven about the
type bTree to accept this as a recursive definition.
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Lists

Lists are an example of a recursive type. They are found in the
theory listTheory.

open listTheory;

Within this theory is the definition:

Hol_datatype ‘list = NIL | CONS of ’a => list‘;

NIL and CONS are constructors for the elements of the type list.

This theory also defines operations such as HD and TL.
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List Induction

There is also a structural induction principle for lists.

- list_induction;

> val it =

|- !P. P [] /\

(!t. P t ==> !h. P (h::t))

==> !l. P l : thm

In backwards proof, the tactic Induct will try to apply the relevant
induction principle.
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Milner’s Third Great Idea: Tactics

Src: Gordon and Melham [R4], Ch. 24

In backward proof (goal-directed proof), we organize the search for
the proof as a tree, starting with the objective, and decompose the
goal successively. Each allowed decomposition comes with a way of
translating the proofs of the subgoals into the proof of the goal.
The decompositions can be thought of as proof strategies.

Example: To prove a goal that is a conjunction, decompose the
goal into the two conjunct subgoals and in either order prove the
two subgoals.
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Example: Backward Proof

|- fact1 /\ (as1 ==> (conA /\ conB))

|- fact1 |- as1 ==> (conA /\ conB)

as1 |- (conA /\ conB)

as1 |- conA as1 |- conB
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Example: Forward Proof

1 {as1} |- conA premise
2 {as1} |- conB premise
3 {as1} |- conA /\ conB CONJ 1, 2
4 |- as1 ==> conA /\ conB DISCH 3
5 |- fact1 premise
6 |- fact1 /\

(as1 ==> conA /\ conB) CONJ 4,5
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Tactics, Goals, and Justifications

A goal is a list of terms (assumptions), paired with a term
(conclusion). These are the assumptions and conclusions of the
theorem that we wish to prove.

goal = term list # term

A tactic is an ML function that when applied to a goal reduces it
to a list of (sub)goals, along with a justification function mapping
a list of theorems to a theorem. The justification function justifies
the decomposition of the goal. The justification is essentially the
forward proof step if we were doing a forward proof.

tactic = goal -> goal list # proof

proof = thm list -> thm
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Tactics, Goals, and Justifications

As a user, you never have have to worry (or even see) the
justification functions.

A tactic solves a goal if it reduces it to an empty set of subgoals.
The simplest tactic that does this is one that recognizes a goal as
an axiom or already proven theorem. This tactic is called
ACCEPT TAC.
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Backword Proof (Goal Directed Proof)

Goal package consists of command that manipulate the proof
stack:

◮ g ‘goal‘; sets the goal

◮ e(tactic); applies the tactic to the current goal

◮ backup(); backs up one step of the proof

◮ rotate x; moves around the list of subgoals

◮ drop(); drops the current proof being worked on

◮ p(); shows the current goal

See 3-hol-basics.sml
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Tactics

Tactis are specified using a similar idea to natural deduction,
except upside down.

goal

-------------------------

goal1 goal2 ... goaln

These means the tactic reduces the goal above the line to the
subgoals underneath the line.

Goals are written as A ?- t.
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Common Tactics

CONJ TAC

A ?- t1 /\ t2

-----------------------

A ?- t1 A ?- t2

Notice that the subgoals have the same assumptions as the original
goal.
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Theorem Tactics

Some tactics need an additional argument: they need a theorem to
help them reduce the goal to a subgoal.

ACCEPT TAC : thm tactic

Solves a goal if the goal matches the supplied theorem (up to
α-conversion).
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Common Tactics

GEN TAC

A ?- !x.t[x]

------------ GEN_TAC

A ?- t[x’]

This is the reverse of forall-introduction. x ′ is arbitrary.

EXISTS TAC

A ?- ?x.t[x]

------------ EXISTS_TAC ‘u‘

A ?- t[u]

This is the reverse of exists-introduction.
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Common Tactics

DISCH TAC

A ?- x ==> v

------------------ DISCH_TAC

A u {x} ?- v

UNDISCH TAC

A u {x} ?- v

------------------ UNDISCH_TAC ‘x‘

A ?- x ==> v
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Common Tactics

ASSUME TAC

A ?- t

------------------ ASSUME_TAC (A’ |- x)

A u {x} ?- t

where A’ |- x is a previously proven theorem. A’ must be a
subset of A.
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Common Tactics

ASM CASES TAC

A ?- t

------------------------------ ASM_CASES_TAC ‘x‘

A u {x} ?- t A u {~x} ?- t

DISJ CASES TAC

A ?- t

============= DISJ_CASES_TAC (A |- u \/ v)

A u {u} ?- t

A u {v} ?- t
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Common Tactics

STRIP TAC

This tactic removes universal quantifiers (GEN TAC) (including
those on an existential in the antecedent of an implication), puts
antecedents of an implication in the assumption list (DISCH TAC),
and splits conjunctions into two subgoals (CONJ TAC).

Sometimes STRIP TAC does too much!

REWRITE TAC, PURE ONCE REWRITE TAC: backward versions
of REWRITE RULE.

SIMP TAC: simplified the goal using the supplied “simpset” and
additional theorems.
Example: SIMP TAC std ss [].
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Induction Tactic

The tactic for using proof by induction splits the goal into two
subgoals: a base case and a step case. n has type num in the
following, and n’ can’t be free in A:

A ?- !n. P

====================================== INDUCT_TAC

A ?- P [0/n] A u {P} ?- P[SUC n’/n]

See 3-hol-basics.sml
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Commonly Used Tactics

IMP RES TAC: takes a theorem (an implication) and “resolves”
the assumptions with the theorem to add more assumptions.

DECIDE TAC: the backward version of DECIDE

PROVE TAC: a big hammer! combines many of the available
decision procedures coded as HOL derived rules including first
order proof using the model elimination algorithm. PROVE TAC
takes a list of theorems as an argument.
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Tacticals

Tacticals are ways of combining tactics. Tacticals can be used to
create your own tactics so you can reuse proof strategies in
multiple proofs.

Commonly used tacticals:

THEN: Sequencing

THEN : tactic -> tactic -> tactic

See 3-hol-basics.sml
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Finding Theorems

In a system as large and powerful as the HOL system, it is
unfortunately sometimes challenging to find the name of the
relevant tactic to use, or to find the name of an existing theorem
to re-use. Many people have already built useful theories.

You can use the ML function match to help find existing theorems:

- load "DB"; (* loaded and opened in startup.sml *)

- open DB;

- match [] ‘‘x \/ ~x‘‘;

> val it = [(("bool", "EXCLUDED_MIDDLE"),

(|- !t. t \/ ~t, AncestorDB.Thm))]:

((string * string) * (thm * class)) list
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Extensibility of the HOL System

The HOL system is extensible in two main ways:

1. programming new proof procedures: forward and backward
(meta-language)

2. building re-usable theories (object language)

In building new theories, we can:

1. add new types (uninterpreted, enumerated, recursive)

2. add new constant definitions (possibly recursive)

3. add new uninterpreted constants

Using the above, we can embed other formalisms (such as
temporal logic, statecharts, VHDL, etc.) and build proof support
for these other notations.
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Why higher order?

Why was important that the meta-language of the theorem prover
be higher order?
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Outline

The HOL theorem proving system:

◮ Higher order logic
◮ Features of LCF-style theorem provers:

◮ derived rules
◮ theories
◮ backward proof (tactics, tacticals)

◮ Examples
◮ HOL hammers
◮ Writing tactics
◮ Harry Potter
◮ DOIT TAC
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What is Verification?

Recall from Week 1:

Verification involves checking a satisfaction relation, in the form of
a sequent:

M |= φ

where

◮ M is a model (or implementation)

◮ φ is a property (or specification)

◮ |= is a relationship that should hold between M and φ
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Semantic Entailment

For propositional, first order, and higher order logic:

α1, α2, α3 |= φ

means that in all Boolean valuations v where v(α1) = T and
v(α2) = T and v(α3) = T then v(φ) = T, which is equivalent to
saying

(α1 ∧ α2 ∧ α3) ⇒ φ

is a tautology, i.e.,

(α1, α2, α3 |= φ) ≡ |= ((α1 ∧ α2 ∧ α3) ⇒ φ)
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Verification using Higher Order Logic

We can write the description of a system in the logic. So M is a
formula in logic.

We can also write the property φ as a formula in logic.

When we write the description of a system as a formula in the
logic, a satisfying assignment for the formula represents a possible
behaviour of the system.

The satisfaction relation then says all possible behaviours of the
system satisfy the property φ.

Therefore, in this case, the satisfaction relation is implication.
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Soundness

Soundness tells us that if using our theorem prover we show:

⊢M ⇒ φ

then
|= M ⇒ φ

and therefore from the previous slide:

M |= φ

which is our satisfaction relation.
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Example: And Gate

w outp
i1

i2

i1

i2
outp

ANDGate

ANDGate_IMP

See 4-nand-and-ex.sml – three ways to do the same proof.
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n-bit Ripple Carry Adder (5-n-adder-ex.sml)

For the n-bit ripple carry adder, we will have a model
(implementation), and a property (specification) of its behaviour.

Both the model and the property will be expressed in higher order
logic.

We will then prove using HOL that the implementation implies the
specification. This is our satisfaction relation.

When both the model and property are expressed in the same
logic, this means that any satisfying assignment of the
implementation (behaviour) is also a satisfying assignment of the
specification(behaviour).
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1-bit Half Adder

Add two bits.

b

a

cout

sum
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1-bit Full Adder (ADD1 IMP)

Add two bits and a previous carry.

HALFADDER

HALFADDER

OR

sum1 cout2

cout

a b

cin

sum

cout1
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n-bit Ripple-Carry Adder

ADD1_IMP ADD1_IMP ADD1_IMP

a(0)

cin

b(0) a(1) b(1) a(n) b(n)

cout

sum (n)sum (1)sum (0)

Bit 0 is the least significant bit.
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n-bit Ripple-Carry Adder

cout

sum (n)

ADDn_IMP

ba

sum

cin ADD1_IMP

a(n) b(n)
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Outline

The HOL theorem proving system:
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◮ Features of LCF-style theorem provers:
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◮ backward proof (tactics, tacticals)
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◮ Writing tactics
◮ Harry Potter
◮ DOIT TAC
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HOL Hammers

◮ Working with assumptions

◮ Theories vs libraries

◮ Rewriting

◮ Automated reasoners

◮ Resolution

◮ Writing tactics
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Working with Assumptions

Three options (possibly more):

1. referring to terms

2. matching a pattern

3. explicit numbering

All of these styles can be used in the same proof.

ASSUME TAC allows us to add a theorem to the assumption list.

Quoted text in the following are from the on-line HOL reference
guide.
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Assumptions: referring to terms

Move assumptions to and from the antecedent of the goal.

◮ e(DISCH_TAC) “moves the antecedent of an implicative goal
into the assumptions” (part of STRIP_TAC)

◮ e(UNDISCH_TAC q) “undischarges an assumption”. Takes the
assumption q (term frag list) off of the assumption list and
places it as the antecedent of an implication in the goal.

Once in the goal, we can apply all the regular tactics to the
assumption.
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Assumptions: referring to terms

◮ e(UNDISCH_THEN q ttac) finds the first assumption equal
to the term frag list q given, removes it from the assumption
list, ASSUMEs it, passes it to the theorem-tactic (ttac) and
then applies the consequent tactic.

◮ e(DISCH_THEN ttac) removes the antecedent and then
creates a theorem by ASSUMEing it. This new theorem is
passed to the theorem-tactic ttac. The consequent tactic is
then applied.
If the goal is a ==> b, e(DISCH_THEN ttac) grabs a, and
creates the theorem a |- a, and then does e(tac a) on the
goal b using the theorem tactical ttac.
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Assumptions: matching a pattern

PAT ASSUM (Tactical) “Finds the first assumption that matches
the term frag list argument, applies the theorem tactic to it, and
removes this assumption”

e(PAT_ASSUM ‘!x. P x‘ MATCH_MP_TAC);

Advantage: don’t have to write the whole term.

Disadvantage: multiple assumptions may match the pattern.
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Assumptions: explicit numbering

◮ GA n when assumption n is term asm returns the theorem
asm |= asm

◮ e(APP2ASM forward-rule n); applies the forward-rule to
assumption n and adds the result to the assumption list. It
leaves assumption n on the list.

◮ e(DROP [n1,n2,\dots]); removes assumptions n1 and n2

from the assumption list.

Advantage: easier while creating a proof.

Disadvantage: harder when modifying a proof (assumption
numbers change).

These functions are defined in startup.sml .
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Theories

A theory contains theorems that have already been proven.

After starting hol:

- ancestry "scratch";

> val it =

["operator", "ind_type", "while", "num", "prim_rec", "relation",

"arithmetic", "numeral", "normalForms", "one", "marker",

"bool", "sat", "sum", "option", "basicSize", "pred_set",

string list

shows the list of theories already loaded. To start using a theory
other than these, use load "theory-name".

Theories are structured as a hierarchy.
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Theories

To see the theorems in a theory, help "theory-name";. (e.g.,
help "numTheory")

You can access the theorems in a theory, using either

- numTheory.INDUCTION;

or

- open numTheory;

- INDUCTION;

Once opened a theory does not need to be re-opened.
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Libraries

A library contains inference rules and tactics.

Both theories and libraries are grouped by topic (e.g.,
“numTheory” contains the induction theorem, “numLib” contains
INDUCT TAC. Note: the backward proof rule “Induct” is
contained in bossLib.)

Accessing functions in a library is accomplished in the same way as
accessing theorems in a theory.

The following libraries are pre-loaded when you run “hol.unquote”:
bossLib, simpLib, numLib, possibly more.
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Rewrite Flavours

Recall that rewriting substitutes equals for equals.

1. REWRITE TAC: takes a list of theorems and rewrites with
these theorems and the system rewrite rules until no further
rewriting can be done

2. PURE REWRITE TAC: as (1) but do not use the system
rewrite rules

3. ONCE REWRITE TAC: as (1) but only make one rewriting
pass. (This avoid infinite loops.)

4. PURE ONCE REWRITE TAC: as (3) but without system
rewrite rules
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Rewrite Flavours

5. ASM REWRITE TAC: rewrite with the list of theorems and
the assumed assumptions of the current goal

6. FILTER ASM REWRITE TAC: as (5) but only use the
assumptions which satisfy the filter predicate.

Also:
PURE ONCE ASM REWRITE TAC,
ONCE ASM REWRITE TAC,
etc.
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Automated Reasoners

These are all located in bossLib.

PROVE TAC thmlist: first order reasoner; takes a list of theorems
as an argument. Implementation based on technique
of “model elimination”.
“Some output (a row of dots) is currently generated
as PROVE works. If the frequency of dot emission
becomes slow, that is a sign that the term is not
likely to be proved with the current lemmas.” (You
can then interrupt its execution.) If it fails, it doesn’t
change the goal.
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Automated Reasoners

DECIDE TAC: combination of decision procedure; handles
statements of linear arithmetic and propositional
logic.
Linear arithmetic: an equation in n variables x1, . . . xn

of the form c1x1 + c2x2 + . . . cnxn = d where
c1, c2, . . . cn, d are constants. The variables are raised
to the first power. Subtraction and the inequalities
are also included.
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Automated Reasoners

SIMP TAC simp-set thmlist: simplifies a goal with the provided
“simp-set” and theorems in “thmlist”
Common simp-sets are: std ss, arith ss, list ss.
(These strictly increase in strength, meaning ones on
the right contain ones on the left.)

RW TAC simp-set thmlist: “Simplification with case-splitting and
built-in knowledge of declared datatypes. . . . The
case splits arising from conditionals and disjunctions
can result in many unforeseen subgoals.”

Related tactics are: STP TAC, and ZAP TAC (See p. 104 in the
HOL description manual.)
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Resolution by MP

IMP RES TAC thm: tries to repeatedly ‘resolve’ against the
assumptions of a goal by attempting to match the
antecedents the the theorem thm to the assumptions
of the goal. Basically it tries to use MP on the
provided thm and the assumptions of the goal.

RES TAC: Similar to IMP RES TAC except that rather than
working with a provided theorem, it tries to match
the assumptions against each other using MP.
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Resolution by MP

RES TAC can take a long time and generate many additional
assumptions that you don’t need. (For an alternative, see the
tactic that we will compose.)

These two tactics are “resolution by modus ponens”, not the
standard resolution for predicate logic that we will cover later in
the course.
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External Tools

HOL has an interface to well-known SAT solvers such as zchaff
and grasp and a BDD packages.

See the libraries: HolSat, HolBdd.
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Outline

The HOL theorem proving system:

◮ Higher order logic
◮ Features of LCF-style theorem provers:

◮ derived rules
◮ theories
◮ backward proof (tactics, tacticals)

◮ Examples
◮ HOL hammers
◮ Writing tactics (6-new-tactic.sml)
◮ Harry Potter
◮ DOIT TAC
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Harry Potter Demo

◮ See handout for formalization and natural deduction examples.

◮ See 7-harry.sml for proof script.
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Outline

The HOL theorem proving system:

◮ Higher order logic
◮ Features of LCF-style theorem provers:

◮ derived rules
◮ theories
◮ backward proof (tactics, tacticals)

◮ Examples
◮ HOL hammers
◮ Writing tactics (6-new-tactic.sml)
◮ Harry Potter
◮ DOIT TAC
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When to use theorem proving

Interactive mechanized theorem proving can be both challenging
and tedious. It takes a great deal of skill and patience, so you need
to choose when to use a theorem prover carefully.

Theorem provers are good at:

1. Working at a higher level of abstraction and expressiveness

2. Deductive proof

3. Decomposition

4. Induction: numeric, structural, proofs of invariants

5. Complicated arithmetic

6. Embedding other notations
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Example Applications of Theorem Proving

◮ Replicated hardware components

◮ Microarchitecture correctness

◮ Axiomatic software verification (Floyd-Hoare Logic)

◮ Algorithm verification

◮ Abstract requirements validation
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Summary

◮ Mechanized theorem provers do pattern-matching well.

◮ Capabilities:
◮ Bookkeeping
◮ Proof Checking
◮ Automated Proof Procedures

◮ Higher order logic: quantification over functions; functions
can take other functions are arguments

◮ LCF-style theorem proving:
◮ Separation of object language and meta-language
◮ Meta-language is a typed functional language (ML) – secure

core
◮ Backward proof (tactics, tacticals)
◮ Extensibility:

◮ Derived rules/tactics
◮ Theories (theorems, conservative extension by definition:

types, constants,)
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