

TU Dresden, Fakultät Informatik, 30. Juni 2022

Privacy-Preserving Design and Operation of Medical (Research) Registers

Prof. Dr. Hannes Federrath Sicherheit in verteilten Systemen (SVS) http://svs.informatik.uni-hamburg.de

Agenda: Privacy-Preserving Design and Operation of Medical (Research) Registers

- Introduction: Classical approach to the realization of Medical Research Registers
- IDOMENEO approach for a Peripheral Artery Disease (PAD) Research Register
 - Architecture and Workflow
 - Selected Challenges
- PANDA approach for device studies (stents, balloons) in neuroradiology (strokes and aneurysms)
 - Decentralized storage, ready for (federated) machine learning approaches
 - Prepare for upcoming Research Data Law (data usage without informed consent)
- Conclusions and future research directions

Bundesministerium für Wirtschaft und Energie

Privacy-Preserving Design and Operation of Medical (Research) Registers

- Requirements
 - Strong Admission Control and Access Control Mechanisms
 - Encrypted Transmission of Medical Data
 - Personal Data remain in Medical Centers (Hospitals)
 - Decentralized Storage and Linking of Data Sets

Realization

- Isolation of Technical Components within the Register
- Communication to and from the Register via dedicated interfaces only

Design Methods

- Security & Privacy by Design
- Privacy by Default

Scope: Exemplary realization of requirements coming from EU General Data Protection Regulation (GDPR)

Task: Realization of a medical Register for longitudinal studies of minimum 10 years.

Classical approach to the realization of Medical Research Registers

- Large number of Centers (Hospitals) allows an increased number of cases into the Research Data
- Informed Consent as a legal requirement for the inclusion of Study Participants (Patients)
- Centers need to run dedicated Study Hardware
- Some Centers prohibit connecting Study Hardware to local hospital network (transfer data via USB drives or CD-R/W)
- Operation and Maintenance (Updates, Malware protection) difficult to realize (longitudinal studies of > 10 years)

Zero-Day-Exploit Market Example

Zero-Day-Exploit Market Example

[private]									
-::DATE	-::DESCRIPTION	-::TYPE	-::HITS	-::RISK				-::GOLD	-::AUTHOR
2013-04-08	Reallyeasycart 2.8.x Remote Code Execute Vulnerability	php		-	R	D	0	. 10	n0tch
2013-03-07	Drupal LiteCommerce (v.lc3-1.1.3) <= Multiple Vulnerabilities	php		-	R	D	C 4	• 3	KedAns-Dz
2013-03-06	vShare<=2.8.1 SQL injection + Remote Command Execution	php			R	D 🥻	Δ.	25	GoldenEgg
2013-02-27	uTorrent 3.x app exploit 0day	windows			R	0	Δ.	99	_null_
2013-02-19	vBulletin 5.0.0 Beta Release Oday Exploit				R	D	1	285	
2013-02-17	ARASTAR Sql Injection Vulnerability				R	D	<u> </u>	5	spy606
2013-02-16	Ajax File Manager Remote Code Execution Exploit				R	D 4	۱.	3 25	
2013-02-16	A4tech Bloody2 Mouse Activation				R	D 4	Δ.	9 9	Alukard_X
2013-02-16	Dimofinf cms version 3.0.0 Sql Injection Vulnerability	php			R	D	r i	. 30	spy606
2013-02-15	PHP-Nuke module (League 2.4) XSS Vulnerability	php			R	D	٢.	3 2	GoLd_M
2013-02-15	PHP-Nuke Module Nukequiz <= 2.0.0 SQL Injection Vulnerability	php			R	D	()	. 5	GoLd_M
2013-02-14	jibberbook Bypass Admin Vulnerability	php			R	0	Δ,	1780	CharafAnons
2013-02-13	Yahoo.com XSS Persistent + Cookie Exploit	tricks			R	D 🖌	Δ.	1920	paxx
2013-02-13	PostNuke Module phProfession <= 1.5 SQL Injection Vulnerability	php			R	0 1	Δ.	. 5	GoLd_M
2013-02-13	Wordpress NextGEN Gallery 1.9.10 Arbitrary File Upload Exploit (win)	php			R	D (۱.	. 20	bd0rk
2013-02-11	PayPal XSS + Cookie Stealer Exploit	tricks	5559	-	R	D, in	٢.	2800	paxx
2013-02-11	phpBB highlight Arbitrary File Upload Vulnerability	php			R	D 🖌	۱.	. 50	
2013-02-10	Windows Service Pack 2 (explorer.exe) Memory Corruption	windows			R	D	ć ,	3 0	The Black Devil
2013-02-10	Wordpress Funny4You plugin 1.0 Local File Include Vulnerability	php	1589		R	D	٢.	2	bd0rk
2013-02-09	Mozilla Firefox 18.0.2/Opera 12.12/Internet Explorer 9 Memory Corrupti	multiple			R	0	r ,	. ª 25	The Black Devil
2013-02-08	Wordpress privates themes (download.php) - Local File Inclusion	php	2106	-	R	D	r ,	2	Zikou-16
2013-02-05	Facebook Privacy Vulnerability Create Private Messages from Anyone	tricks		-	R	D N	٢ i	. 9 700	buglab
2013-02-03	MS12-020 Remote Desk Top denial of service vulnerability (metasploit)	windows	2707		R	0	r l	. ⁹ 250	The Black Devil
2013-02-02	Apple Safari 6.0.2 (OS X) file:// Multiple Vulnerabilities	macOS		-	R	D.	٢.	. 500	F1restorm_RST
2013-01-26	Wordpress plugins - slidedeck2 pro XSS/File Upload Vulnerability	php	2904	-	R	0 1	۱.	. 5	Zikou-16
2013-01-25	Microsoft Office 2003/2007/2010 Command Execution Oday	windows		-	R	D	Ċ .	.=5000	1337Day Team
2013-01-12	ColdFusion E-Commerce (SHOP) <= Local File Include Vulnerability	php	1811		R	D	1	2 0	KedAns-Dz
2013-01-07	Joomla mega menu module File Upload Vulnerability metasploit	php	4693		R	D		. 2	The Black Devil
2013-01-01	Subrion CMS v2.3.x <= (FU/dDB) Multiple Vulnerabilities	php	639		R	D		2	KedAns-Dz
2012-12-30	PrestaShop E-Commerce v1.5.x->1.5.2 Multiple Vulnerabilities	php	2984	-	R	D .	٢.	J 1	KedAns-Dz

Zero-Day-Exploit Market Example

	[Detailed Information]
Full title:	Microsoft Office 2003/2007/2010 Command Execution Oday
Date add:	2013-01-25
Category:	remote exploits
Verified:	√Verified
Risk:	
Platform:	windows
Views:	12708
Comments:	
Price:	. ³ 5000
Description:	Microsoft Office 2003/2007/2010 all service pack from a command execution vulnerability .
Youtube video:	
Rate up:	10 📋 Rate up
Rate down:	3 🛃 Rate down
Warnings:	
	📑 🗾 🚰 🖻

IDOMENEO approach for a Peripheral Artery Disease (PAD) Research Register

- Large number of Centers (Hospitals) allows an increased number of cases into the Research Data
- Informed Consent as a legal requirement for the inclusion of Study Participants (Patients)
- Centers just use a modern Web Browser
- Centralized storage of Personal Data (strong symmetric encryption) and Medical data (also encrypted) within a Medical Center
- Operation and Maintenance (Updates, Malware protection) of Study Hardware in the hand of the Medical Research Register
- Centers own a symmetric key, extracted via Password Based Key Derivation Function (PBKDF)

Export

Status / Livecycle of a data entry

- How to ensure long-term security/encryption (> 10 years)?
 - Use symmetric cryptographic systems only on core system
 - Limitation: Browser support, TLS uses public key encryption
 - Encrypted layer on top of TLS (Layer 7 encryption)
 - Modular encryption functionalities allow easily changing to state-of-the-art algorithms
- How to protect application server from curious admins during maintenance?
 - Technical staff (server admins) is not allowed to learn about PII and medical data stored
 - Limitation: Admin has root access to server
 - Monitored access (audit trails) during maintenance and double encrypted data base
- How to ensure safe environment on the medical center (client) side?
 - Security depends on secrecy of password (and security code) only known by medical center
 - Limitation: No malware or (insider) attacker present on local machine?
 - Trust model: Medical centers are aware of secure configuration and operation of hardware

Select appropriate key lengths and algorithms?

»SOG-IS (Senior Officials Group Information Systems Security) Crypto Evaluation Scheme Agreed Cryptographic Mechanisms« gives official information

https://www.sogis.eu/documents/cc/crypto/SOGIS-Agreed-Cryptographic-Mechanisms-1.2.pdf

Agreed Block Ciphers.

Primitive	Parameters' sizes	m R/L	Notes
	k = 128 bits	R	
AES [FIPS197, ISO18033-3]	k = 192 bits	R	
	k = 256 bits	R	

Agreed Hash Functions

Primitive	Parameters' sizes (hash length h)	R/L	Notes
	h = 256 bits (SHA-256)	R	
SHA-2 [FIPS180-4, ISO10118-3]	h = 384 bits (SHA-384)	R	
	h = 512 bits (SHA-512)	R	
	$h = 256 \; (\text{SHA-512/h})$	R	
CUA 2 [EIDC009]	h = 256 bits	R	
SHA-3 [FIPS202]	h = 384 bits	R	
	h = 512 bits	R	

SOG-IS Crypto Evaluation Scheme Agreed Cryptographic Mechanisms

Brute-force, exhaustive search

- Attacks via Super Computers and (in the future) Quantum Computers
 - Complexity theoretic systems only
- Protection against Super Computers
 - Use appropriate key lengths
- Protection against Quantum Computers
 - Symmetric systems: Double key lengths to >= 256 Bit
 - Asymmetric systems: Hope in Post-Quantum Cryprography

	Kov	Com	plexity	According to: Bernstein	
	lengths	Super Computer	Quantum Computer	Buchmann, Dahmen: Post Quantum Cryptography. Springer, 2009	
Symm.	128 Bit	2 ¹²⁷	2 ⁶⁴	Crover 1000	
	256 Bit	2 ²⁵⁵	2 ¹²⁸	Grover, 1996	
Asymm.	1024 Bit	≈ 2 ⁹⁰	≈ 2 ²⁵	Shar 1004	
	2048 Bit	2048 Bit ≈ 2 ¹¹⁷	≈ 2 ²⁸	51101, 1994	

- How to ensure long-term security/encryption (>= 10 years)?
 - Use symmetric cryptographic systems only on core system
 - Limitation: Browser support, TLS uses public key encryption
 - Encrypted layer on top of TLS (Layer 7 encryption)
 - Modular encryption functionalities allow easily changing to state-of-the-art algorithms
- How to protect application server from curious admins during maintenance?
 - Technical staff (server admins) is not allowed to learn about PII and medical data stored
 - Limitation: Admin has root access to server
 - Monitored access (audit trails) during maintenance and double encrypted data base
- How to ensure safe environment on the medical center (client) side?
 - Security depends on secrecy of password (and security code) only known by medical center
 - Limitation: No malware or (insider) attacker present on local machine?
 - Trust model: Medical centers are aware of secure configuration and operation of hardware

- How to ensure long-term security/encryption (>= 10 years)?
 - Use symmetric cryptographic systems only on core system
 - Limitation: Browser support, TLS uses public key encryption
 - Encrypted layer on top of TLS (Layer 7 encryption)
 - Modular encryption functionalities allow easily changing to state-of-the-art algorithms
- How to protect application server from curious admins during maintenance?
 - Technical staff (server admins) is not allowed to learn about PII and medical data stored
 - Limitation: Admin has root access to server
 - Monitored access (audit trails) during maintenance and double encrypted data base
- How to ensure safe environment on the medical center (client) side?
 - Security depends on secrecy of password (and security code) only known by medical center
 - Limitation: No malware or (insider) attacker present on local machine?
 - Trust model: Medical centers are aware of secure configuration and operation of hardware

How to ensure safe environment on the medical center (client) side?

- No malware or (insider) attacker present on local machine?
- Medical centers are aware of secure configuration and operation of hardware?

start clearing FUNCTEATEd

Wichmann, 2022

- Dump memory
- Analyzing swap files
- Cold boot attack (memory remanation)

—

How to ensure safe environment on the medical center (client) side?

- No malware or (insider) attacker present on local machine?
- Medical centers are aware of secure configuration and operation of hardware?

Notenterentered

Start clearing deated

Tabclosed

Wichmann, 2022

- Malicious application on Client frequently —
 - Dump memory
 - Analyzing swap files
 - Cold boot attack (memory remanation)

21

Privacy-Preserving Design and Operation of Medical (Research) Registers

- Introduction: Classical approach to the realization of Medical Research Registers
- IDOMENEO approach for a Peripheral Artery Disease (PAD) Research Register
 - Architecture and Workflow
 - Selected Challenges
- PANDA approach for device studies (stents, balloons) in neuroradiology (strokes and aneurysms)
 - Decentralized storage, ready for (federated) machine learning approaches
 - Prepare for upcoming Research Data Law (data usage without informed consent)
- Conclusions and future research directions

Bundesministerium für Wirtschaft und Energie

PANDA approach for device studies (stents, balloons) in neuroradiology

- Large number of Centers (Hospitals) allows an increased number of cases into the Research Data
- Informed Consent as a legal requirement for the inclusion of Study Participants (Patients)
- Data records remain in Centers
- Approach to distributed gathering of research data needed for a concrete research question
- Adaptive k-anonymous response from centers
- Limited number of (similar) requests
- Makes use of privacy-respecting federated learning and secure multi-party computation (SMPC)

Agent k creator

- Central definition of requested variables, their range and their granularity
- Type of query (also repetitive query) with predefined k or patient number

PANDA hardware architecture in Hospitals

Employing SMPC for Decentralized Anonymisation

- Preliminary work [Mohammed et al., 2010] is very efficient, however round-based and insecure
- Proposal of an extended algorithm for Decentralized Anonymization
- Top-down approach by [Mohammed et al., 2010]
 - Begin with fully generalized data (e.g., AGE = ANY, SEX = ANY, ...)
 - One specialization per round (e.g., split ages < 76 and >= 76) based
 p on count statistics gathered via secure sum protocol
 - Specialize until each possible specialization would violate k-anonymity
- Count statistics
 - How many records are contained in each equivalence class?
 - For each equivalence class: How many records would be in sub-classes if this class was specialized?

- Final count statistics leak data to the leading party
- This leaks more information than necessary which can break the k-anonymity guarantees completely, e.g., when combined with a background knowledge attack
- Secure sum protocol insecure, when parties p_{i-1} and p_{i+1} collaborate

Sex	Age	Cancer Diagnosis
ANY	25-28	Breast
ANY	25-28	Lungs
ANY	25-28	Brain
ANY	25-28	Testicle
ANY	25-28	Lungs
ANY	25-28	Skin

Alternative Approach

Secure Sum Protocol

- Each party has an input value x_i
- We want to learn the sum of all inputs without disclosing single inputs

Secure Multiparty Computation

- Each party has an input value x_i
- We want to learn if the sum of all inputs is larger than k without disclosing single inputs or the sum itself

Arithmetic Circuits

- Arithmetic circuits (comprised of multiplication and addition gates) are built over a finite field \mathbb{Z}_p with p > n for n being the number of parties.
- Arithmetic circuits are Turing complete, so any function can be represented via these circuits.

- Using general SMPC frameworks is possible, but can have a large overhead in communication and computation
 - might be acceptable in the concrete scenario since this protocol has to be performed exactly once for a data set to be published afterwards
- Overall: very high complexity of Medical Research Registers due to legal requirements
 - Ethical approval
 - IT security concept, Privacy concept, Role concept, Risk assessment
 - Privacy Impact Analysis (PIA) (within KI-SIGS, BMWI)
- New research project (BMBF, 2023-2026): AnoMed
 - Benchmarking of Anonymization standards for Medical Data

🕇 UHH \rightarrow MIN-Fakultät \rightarrow Fachbereich Informatik \rightarrow Einrichtungen \rightarrow Arbeitsbereiche \rightarrow Security and Privacy \rightarrow Home

WORKING GROUP ON «SECURITY AND PRIVACY»

Security and Privacy

Information systems become more and more important in critical infrastructures, while the Internet has evolved to a critical infrastructure itself. The secure operation of these infrastructures is vital and their failure can have severe impacts up to the loss of human lives. Security refers to the fact that protection goals are achieved in the presence of malicious attacks and system failures. Typical security goals can be confidentiality, integrity, accountability, and availability. Security and privacy in information systems addresses both technical and organizational aspects, such as building and establishing security concepts and security infrastructures as well as risk analysis and risk management.

Privacy can be a conflicting goal to security, but they can also benefit from each other. Hence, it is necessary to balance both when developing secure information systems.

Prof. Dr. Hannes Federrath Fachbereich Informatik Universität Hamburg Vogt-Kölln-Straße 30 D-22527 Hamburg

Telefon +49 40 42883 2358

hannes.federrath@uni-hamburg.de

https://svs.informatik.uni-hamburg.de

With thanks to: Christian Behrendt Daniel Demmler Jens Fiehler Tobias Müller Tom Petersen Henning Pridöhl Pascal Wichmann

•••