A seminormal form for partition algebras

John Enyang

NY Workshop on the Symmetric Group \& Related Topics
8-9 September 2011

Outline

(1) Partition algebras and Schur-Weyl duality.

Outline

(1) Partition algebras and Schur-Weyl duality.
(2) The partition monoid and the diagram presentation for partition algebras.

Outline

(1) Partition algebras and Schur-Weyl duality.
(2) The partition monoid and the diagram presentation for partition algebras.
(3) Jucys-Murphy elements and a new presentation for partition algebras.

Outline

(1) Partition algebras and Schur-Weyl duality.
(2) The partition monoid and the diagram presentation for partition algebras.
(3) Jucys-Murphy elements and a new presentation for partition algebras.
(9) A Murphy-type cellular basis for partition algebras.

Outline

(1) Partition algebras and Schur-Weyl duality.
(2) The partition monoid and the diagram presentation for partition algebras.
(3) Jucys-Murphy elements and a new presentation for partition algebras.
(9) A Murphy-type cellular basis for partition algebras.
(6) Cell modules for partition algebras.

Outline

(1) Partition algebras and Schur-Weyl duality.
(2) The partition monoid and the diagram presentation for partition algebras.
(3) Jucys-Murphy elements and a new presentation for partition algebras.
(9) A Murphy-type cellular basis for partition algebras.
(6) Cell modules for partition algebras.
(1) A seminormal form for partition algebras.

Outline

(1) Partition algebras and Schur-Weyl duality.
(2) The partition monoid and the diagram presentation for partition algebras.
(3) Jucys-Murphy elements and a new presentation for partition algebras.
(9) A Murphy-type cellular basis for partition algebras.
(6) Cell modules for partition algebras.
(1) A seminormal form for partition algebras.

Partition algebras

Partition algebras are a family of diagram algebras

$$
0 \subseteq \mathcal{A}_{\frac{1}{2}}(n) \subseteq \mathcal{A}_{1}(n) \subseteq \mathcal{A}_{1+\frac{1}{2}}(n) \subseteq \cdots \quad\left(\text { for } n \in \mathbb{Z}_{\geq 0}\right)
$$

which arose in the work of P. Martin [Mar] and V.F.R. Jones [Jo] in connection with the Potts model and statistical mechanics.

Schur-Weyl duality

Let V denote the n-dimensional permutation representation of the symmetric group \mathfrak{S}_{n}.

Schur-Weyl duality

Let V denote the n-dimensional permutation representation of the symmetric group \mathfrak{S}_{n}.
Results of Jones [Jo] show that there exist homomorphisms
$\Phi_{k}: \mathcal{A}_{k}(n) \rightarrow \operatorname{End}_{\mathbb{Q} \mathfrak{S}_{n}}\left(V^{\otimes k}\right) \quad$ and $\quad \Psi_{k}: \mathbb{Q} \mathfrak{S}_{k} \rightarrow \operatorname{End}_{\mathcal{A}_{k}(n)}\left(V^{\otimes k}\right)$.
As an $\left(\mathbb{Q} \mathfrak{S}_{n}, \mathcal{A}_{k}(n)\right)$-bimodule,

$$
V^{\otimes k} \cong \bigoplus_{\lambda \in \hat{A}_{k}(n)} S^{\lambda} \otimes A_{k}(n)^{\lambda}
$$

where

- $\hat{A}_{k}(n)$ is an indexing set for the irreducible $\mathcal{A}_{k}(n)$-modules,

Schur-Weyl duality

Let V denote the n-dimensional permutation representation of the symmetric group \mathfrak{S}_{n}.
Results of Jones [Jo] show that there exist homomorphisms
$\Phi_{k}: \mathcal{A}_{k}(n) \rightarrow \operatorname{End}_{\mathbb{Q} \mathfrak{S}_{n}}\left(V^{\otimes k}\right) \quad$ and $\quad \Psi_{k}: \mathbb{Q} \mathfrak{S}_{k} \rightarrow \operatorname{End}_{\mathcal{A}_{k}(n)}\left(V^{\otimes k}\right)$.
As an $\left(\mathbb{Q} \mathfrak{S}_{n}, \mathcal{A}_{k}(n)\right)$-bimodule,

$$
V^{\otimes k} \cong \bigoplus_{\lambda \in \hat{A}_{k}(n)} S^{\lambda} \otimes A_{k}(n)^{\lambda}
$$

where

- $\hat{A}_{k}(n)$ is an indexing set for the irreducible $\mathcal{A}_{k}(n)$-modules,
- $A_{k}(n)^{\lambda}$, for $\lambda \in \hat{A}_{k}(n)$, is an irreducible $\mathcal{A}_{k}(n)$-module,

Schur-Weyl duality

Let V denote the n-dimensional permutation representation of the symmetric group \mathfrak{S}_{n}.
Results of Jones [Jo] show that there exist homomorphisms
$\Phi_{k}: \mathcal{A}_{k}(n) \rightarrow \operatorname{End}_{\mathbb{Q} \mathfrak{S}_{n}}\left(V^{\otimes k}\right) \quad$ and $\quad \Psi_{k}: \mathbb{Q} \mathfrak{S}_{k} \rightarrow \operatorname{End}_{\mathcal{A}_{k}(n)}\left(V^{\otimes k}\right)$.
As an $\left(\mathbb{Q} \mathfrak{S}_{n}, \mathcal{A}_{k}(n)\right)$-bimodule,

$$
V^{\otimes k} \cong \bigoplus_{\lambda \in \hat{A}_{k}(n)} S^{\lambda} \otimes A_{k}(n)^{\lambda}
$$

where

- $\hat{A}_{k}(n)$ is an indexing set for the irreducible $\mathcal{A}_{k}(n)$-modules,
- $A_{k}(n)^{\lambda}$, for $\lambda \in \hat{A}_{k}(n)$, is an irreducible $\mathcal{A}_{k}(n)$-module,
- S^{λ}, for $\lambda \in \hat{A}_{k}(n)$, is an irreducible $\mathbb{Q} \mathfrak{S}_{n}$-module.

Schur-Weyl duality

Let V denote the n-dimensional permutation representation of the symmetric group \mathfrak{S}_{n}.
Results of Jones [Jo] show that there exist homomorphisms
$\Phi_{k}: \mathcal{A}_{k}(n) \rightarrow \operatorname{End}_{\mathbb{Q} \mathfrak{S}_{n}}\left(V^{\otimes k}\right) \quad$ and $\quad \Psi_{k}: \mathbb{Q} \mathfrak{S}_{k} \rightarrow \operatorname{End}_{\mathcal{A}_{k}(n)}\left(V^{\otimes k}\right)$.
As an $\left(\mathbb{Q} \mathfrak{S}_{n}, \mathcal{A}_{k}(n)\right)$-bimodule,

$$
V^{\otimes k} \cong \bigoplus_{\lambda \in \hat{A}_{k}(n)} S^{\lambda} \otimes A_{k}(n)^{\lambda}
$$

where

- $\hat{A}_{k}(n)$ is an indexing set for the irreducible $\mathcal{A}_{k}(n)$-modules,
- $A_{k}(n)^{\lambda}$, for $\lambda \in \hat{A}_{k}(n)$, is an irreducible $\mathcal{A}_{k}(n)$-module,
- S^{λ}, for $\lambda \in \hat{A}_{k}(n)$, is an irreducible $\mathbb{Q} \mathfrak{S}_{n}$-module.

Martin established an analogous relationship between $\mathcal{A}_{k+\frac{1}{2}}(n)$ and the subalgebra $\mathbb{Q} \mathfrak{S}_{n-1} \subseteq \mathbb{Q} \mathfrak{S}_{n}$.

The partition monoid

For $k \in \mathbb{Z}_{\geq 0}$, let

$$
\begin{aligned}
A_{k} & =\left\{\text { set partitions of }\left\{1,2, \ldots, k, 1^{\prime}, 2^{\prime}, \ldots, k^{\prime}\right\}\right\}, \quad \text { and, } \\
A_{k-\frac{1}{2}} & =\left\{d \in A_{k} \mid k \text { and } k^{\prime} \text { are in the same block of } d\right\} .
\end{aligned}
$$

For $k \in \mathbb{Z}_{\geq 0}$, let

$$
\begin{aligned}
A_{k} & =\left\{\text { set partitions of }\left\{1,2, \ldots, k, 1^{\prime}, 2^{\prime}, \ldots, k^{\prime}\right\}\right\}, \quad \text { and, } \\
A_{k-\frac{1}{2}} & =\left\{d \in A_{k} \mid k \text { and } k^{\prime} \text { are in the same block of } d\right\} .
\end{aligned}
$$

Elements of A_{k} may be represented diagrammatically. For example,

$$
\rho=\left\{\left\{1,1^{\prime}, 3,4^{\prime}, 5^{\prime}, 6\right\},\left\{2,2^{\prime}, 3^{\prime}, 4,5,6^{\prime}\right\}\right\}
$$

can be represented as:

The partition monoid

Example. The concatenation product $\rho_{1} \circ \rho_{2}$ of $\rho_{1}, \rho_{2} \in A_{6}$. Let

and

The partition monoid

Example. The concatenation product $\rho_{1} \circ \rho_{2}$ of $\rho_{1}, \rho_{2} \in A_{6}$. Let

and

Then

Let z be an indeterminant and $\kappa=\mathbb{Q}(z)$. The partition algebra $\mathcal{A}_{k}(z)$ is the κ vector space freely generated by A_{k}, with the product

$$
\rho_{1} \rho_{2}=z^{\ell} \rho_{1} \circ \rho_{2}, \quad \text { for } \rho_{1}, \rho_{2} \in A_{k}
$$

where ℓ is the number of blocks removed from the middle row in constructing the composition $\rho_{1} \circ \rho_{2}$.

Let z be an indeterminant and $\kappa=\mathbb{Q}(z)$. The partition algebra $\mathcal{A}_{k}(z)$ is the κ vector space freely generated by A_{k}, with the product

$$
\rho_{1} \rho_{2}=z^{\ell} \rho_{1} \circ \rho_{2}, \quad \text { for } \rho_{1}, \rho_{2} \in A_{k}
$$

where ℓ is the number of blocks removed from the middle row in constructing the composition $\rho_{1} \circ \rho_{2}$.

Partition algebras as diagram algebras

Let z be an indeterminant and $\kappa=\mathbb{Q}(z)$. The partition algebra $\mathcal{A}_{k}(z)$ is the κ vector space freely generated by A_{k}, with the product

$$
\rho_{1} \rho_{2}=z^{\ell} \rho_{1} \circ \rho_{2}, \quad \text { for } \rho_{1}, \rho_{2} \in A_{k}
$$

where ℓ is the number of blocks removed from the middle row in constructing the composition $\rho_{1} \circ \rho_{2}$.

Let $\mathcal{A}_{k-\frac{1}{2}}(z)$ denote the subalgebra of $\mathcal{A}_{k}(z)$ spanned by $A_{k-\frac{1}{2}}$.

A presentation for partition algebras

A presentation for $\mathcal{A}_{k}(z)$ has been given (Halverson and Ram [HR] and East [Ea]) in terms of generators:

$$
\begin{aligned}
& i \quad i+1 \\
& s_{i}=\emptyset \cdots \text { • } \\
& p_{i}=\emptyset \cdots \text { ఏ } \\
& p_{i+\frac{1}{2}}=\emptyset \cdots \text { ! } \\
& (i=1, \ldots, k-1) \\
& (i=1, \ldots, k), \\
& (i=1, \ldots, k-1) .
\end{aligned}
$$

Jucys-Murphy elements

Using Schur-Weyl duality, Halverson and Ram [HR] gave a combinatorial definition in terms of the diagram basis of commuting elements $L_{0}, L_{\frac{1}{2}}, L_{1}, L_{1+\frac{1}{2}}, \ldots$ that play a role analogous to the Jucys-Murphy elements in the representation theory of the symmetric group:

Jucys-Murphy elements

Using Schur-Weyl duality, Halverson and Ram [HR] gave a combinatorial definition in terms of the diagram basis of commuting elements $L_{0}, L_{\frac{1}{2}}, L_{1}, L_{1+\frac{1}{2}}, \ldots$ that play a role analogous to the Jucys-Murphy elements in the representation theory of the symmetric group:

- $L_{i} \in \mathcal{A}_{i}(z)$ and $L_{i+\frac{1}{2}} \in \mathcal{A}_{i+\frac{1}{2}}(z)$ for $i=0,1, \ldots$.

Jucys-Murphy elements

Using Schur-Weyl duality, Halverson and Ram [HR] gave a combinatorial definition in terms of the diagram basis of commuting elements $L_{0}, L_{\frac{1}{2}}, L_{1}, L_{1+\frac{1}{2}}, \ldots$ that play a role analogous to the Jucys-Murphy elements in the representation theory of the symmetric group:

- $L_{i} \in \mathcal{A}_{i}(z)$ and $L_{i+\frac{1}{2}} \in \mathcal{A}_{i+\frac{1}{2}}(z)$ for $i=0,1, \ldots$.
- $L_{\frac{1}{2}}+L_{1}+\cdots+L_{k}$ is central in $\mathcal{A}_{k}(z)$.

Jucys-Murphy elements

Using Schur-Weyl duality, Halverson and Ram [HR] gave a combinatorial definition in terms of the diagram basis of commuting elements $L_{0}, L_{\frac{1}{2}}, L_{1}, L_{1+\frac{1}{2}}, \ldots$ that play a role analogous to the Jucys-Murphy elements in the representation theory of the symmetric group:

- $L_{i} \in \mathcal{A}_{i}(z)$ and $L_{i+\frac{1}{2}} \in \mathcal{A}_{i+\frac{1}{2}}(z)$ for $i=0,1, \ldots$
- $L_{\frac{1}{2}}+L_{1}+\cdots+L_{k}$ is central in $\mathcal{A}_{k}(z)$.
- $L_{\frac{1}{2}}+L_{1}+\cdots+L_{k+\frac{1}{2}}$ is central in $\mathcal{A}_{k+\frac{1}{2}}(z)$.

Jucys-Murphy elements

Using Schur-Weyl duality, Halverson and Ram [HR] gave a combinatorial definition in terms of the diagram basis of commuting elements $L_{0}, L_{\frac{1}{2}}, L_{1}, L_{1+\frac{1}{2}}, \ldots$ that play a role analogous to the Jucys-Murphy elements in the representation theory of the symmetric group:

- $L_{i} \in \mathcal{A}_{i}(z)$ and $L_{i+\frac{1}{2}} \in \mathcal{A}_{i+\frac{1}{2}}(z)$ for $i=0,1, \ldots$
- $L_{\frac{1}{2}}+L_{1}+\cdots+L_{k}$ is central in $\mathcal{A}_{k}(z)$.
- $L_{\frac{1}{2}}+L_{1}+\cdots+L_{k+\frac{1}{2}}$ is central in $\mathcal{A}_{k+\frac{1}{2}}(z)$.
- L_{i} commutes with $\mathcal{A}_{i-\frac{1}{2}}$ for $i=1,2, \ldots$.

Jucys-Murphy elements

Using Schur-Weyl duality, Halverson and Ram [HR] gave a combinatorial definition in terms of the diagram basis of commuting elements $L_{0}, L_{\frac{1}{2}}, L_{1}, L_{1+\frac{1}{2}}, \ldots$ that play a role analogous to the Jucys-Murphy elements in the representation theory of the symmetric group:

- $L_{i} \in \mathcal{A}_{i}(z)$ and $L_{i+\frac{1}{2}} \in \mathcal{A}_{i+\frac{1}{2}}(z)$ for $i=0,1, \ldots$
- $L_{\frac{1}{2}}+L_{1}+\cdots+L_{k}$ is central in $\mathcal{A}_{k}(z)$.
- $L_{\frac{1}{2}}+L_{1}+\cdots+L_{k+\frac{1}{2}}$ is central in $\mathcal{A}_{k+\frac{1}{2}}(z)$.
- L_{i} commutes with $\mathcal{A}_{i-\frac{1}{2}}$ for $i=1,2, \ldots$.
- $L_{i+\frac{1}{2}}$ commutes with $\mathcal{A}_{i}(z)$ for $i=0,1, \ldots$.

Jucys-Murphy elements

Using Schur-Weyl duality, Halverson and Ram [HR] gave a combinatorial definition in terms of the diagram basis of commuting elements $L_{0}, L_{\frac{1}{2}}, L_{1}, L_{1+\frac{1}{2}}, \ldots$ that play a role analogous to the Jucys-Murphy elements in the representation theory of the symmetric group:

- $L_{i} \in \mathcal{A}_{i}(z)$ and $L_{i+\frac{1}{2}} \in \mathcal{A}_{i+\frac{1}{2}}(z)$ for $i=0,1, \ldots$
- $L_{\frac{1}{2}}+L_{1}+\cdots+L_{k}$ is central in $\mathcal{A}_{k}(z)$.
- $L_{\frac{1}{2}}+L_{1}+\cdots+L_{k+\frac{1}{2}}$ is central in $\mathcal{A}_{k+\frac{1}{2}}(z)$.
- L_{i} commutes with $\mathcal{A}_{i-\frac{1}{2}}$ for $i=1,2, \ldots$.
- $L_{i+\frac{1}{2}}$ commutes with $\mathcal{A}_{i}(z)$ for $i=0,1, \ldots$.

The definition of Jucys-Murphy elements given by [HR] is not recursive.

Jucys-Murphy elements

We would like to give a recursive definition of the Jucys-Murphy elements $\left(L_{i}, L_{i+\frac{1}{2}}: i=1,2, \ldots\right)$.

Jucys-Murphy elements

We would like to give a recursive definition of the Jucys-Murphy elements $\left(L_{i}, L_{i+\frac{1}{2}}: i=1,2, \ldots\right)$.
Define $\left(\sigma_{i+1}: i=1,2, \ldots\right)$ and $\left(L_{i}: i=0,1, \ldots\right)$ by

$$
L_{i+1}=-s_{i} L_{i} p_{i+\frac{1}{2}}-p_{i+\frac{1}{2}} L_{i} s_{i}+p_{i+\frac{1}{2}} L_{i} p_{i+1} p_{i+\frac{1}{2}}+s_{i} L_{i} s_{i}+\sigma_{i+1}
$$

where, for $i=2,3, \ldots$,

$$
\begin{aligned}
\sigma_{i+1} & =s_{i-1} s_{i} \sigma_{i} s_{i} s_{i-1}+s_{i} p_{i-\frac{1}{2}} L_{i-1} s_{i} p_{i-\frac{1}{2}} s_{i}+p_{i-\frac{1}{2}} L_{i-1} s_{i} p_{i-\frac{1}{2}} \\
& -s_{i} p_{i-\frac{1}{2}} L_{i-1} s_{i-1} p_{i+\frac{1}{2}} p_{i} p_{i-\frac{1}{2}}-p_{i-\frac{1}{2}} p_{i} p_{i+\frac{1}{2}} s_{i-1} L_{i-1} p_{i-\frac{1}{2}} s_{i}
\end{aligned}
$$

Similarly, define $\left(\sigma_{i+\frac{1}{2}}: i=1,2, \ldots\right)$ and $\left(L_{i+\frac{1}{2}}: i=0,1, \ldots\right)$ by

$$
L_{\frac{1}{2}}=0, \quad \sigma_{\frac{1}{2}}=1, \quad \text { and }, \quad \sigma_{1+\frac{1}{2}}=1
$$

and, for $i=1,2, \ldots$,

$$
L_{i+\frac{1}{2}}=-L_{i} p_{i+\frac{1}{2}}-p_{i+\frac{1}{2}} L_{i}+p_{i+\frac{1}{2}} L_{i} p_{i} p_{i+\frac{1}{2}}+s_{i} L_{i-\frac{1}{2}} s_{i}+\sigma_{i+\frac{1}{2}},
$$

where, for $i=2,3, \ldots$,

$$
\begin{aligned}
\sigma_{i+\frac{1}{2}} & =s_{i-1} s_{i} \sigma_{i-\frac{1}{2}} s_{i} s_{i-1}+p_{i-\frac{1}{2}} L_{i-1} s_{i} p_{i-\frac{1}{2}} s_{i}+s_{i} p_{i-\frac{1}{2}} L_{i-1} s_{i} p_{i-\frac{1}{2}} \\
& -p_{i-\frac{1}{2}} L_{i-1} s_{i-1} p_{i+\frac{1}{2}} p_{i} p_{i-\frac{1}{2}}-s_{i} p_{i-\frac{1}{2}} p_{i} p_{i+\frac{1}{2}} s_{i-1} L_{i-1} p_{i-\frac{1}{2}} s_{i}
\end{aligned}
$$

Jucys-Murphy elements

For example,

and
$\sigma_{3}=\square X+X$,

Jucys-Murphy elements

For example,

and
$=1 x+x+x+x-1 x$
and

Jucys-Murphy elements

For example,

and
$=1 x+x+x+x-1 x$
and

Lemma

For $i=1,2, \ldots$,

$$
\sigma_{i+\frac{1}{2}} s_{i}=s_{i} \sigma_{i+\frac{1}{2}}=\sigma_{i+1} \quad \text { and } \quad \sigma_{i+\frac{1}{2}}^{2}=\sigma_{i+1}^{2}=1
$$

A new presentation for partition algebras

We therefore obtain a new presentation for the partition algebras:

Theorem

The partition algebra $\mathcal{A}_{k}(z)$ is presented by the generators

$$
p_{1}, p_{1+\frac{1}{2}}, p_{2}, \ldots, p_{k-\frac{1}{2}}, p_{k}, \sigma_{2}, \sigma_{2+\frac{1}{2}}, \sigma_{3}, \ldots, \sigma_{k-\frac{1}{2}}, \sigma_{k},
$$

and the following relations:

Theorem

(1) (Involutions)

$$
\begin{aligned}
& \text { a } \sigma_{i+\frac{1}{2}}^{2}=1, \text { for } i=2, \ldots, k-1 . \\
& \text { b } \sigma_{i+1}^{2}=1, \text { for } i=1, \ldots, k-1 .
\end{aligned}
$$

(2) (Braid-like relations)
a $\sigma_{i+1} \sigma_{j+\frac{1}{2}}=\sigma_{j+\frac{1}{2}} \sigma_{i+1}$, if $j \neq i+1$.
b $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$, if $j \neq i+1$.
c $\sigma_{i+\frac{1}{2}} \sigma_{j+\frac{1}{2}}=\sigma_{j+\frac{1}{2}} \sigma_{i+\frac{1}{2}}$, if $j \neq i+1$.
d $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$, for $i=1, \ldots, k-2$, where

$$
s_{\ell}= \begin{cases}\sigma_{\ell+1}, & \text { if } \ell=1 \\ \sigma_{\ell+\frac{1}{2}} \sigma_{\ell+1}, & \text { if } \ell=2, \ldots, k-1\end{cases}
$$

are the Coxeter generators for the symmetric group \mathfrak{S}_{k}.
(3) (Idempotent relations)
a $p_{i}^{2}=z p_{i}$, for $i=1, \ldots, k$.
b $p_{i+\frac{1}{2}}^{2}=p_{i+\frac{1}{2}}^{2}$, for $i=1, \ldots, k-1$.
c $\sigma_{i+1} p_{i+\frac{1}{2}}=p_{i+\frac{1}{2}} \sigma_{i+1}=p_{i+\frac{1}{2}}$, for $i=1, \ldots, k-1$.
d $\sigma_{i+\frac{1}{2}} p_{i+\frac{1}{2}}=p_{i+\frac{1}{2}} \sigma_{i+\frac{1}{2}}=p_{i+\frac{1}{2}}$, for $i=1, \ldots, k-1, \ldots$, etc.

A Murphy basis

We use the new presentation and a Murphy basis to give explicit formulae for the seminormal representations of $\mathcal{A}_{k}(z)$.

A Murphy basis

We use the new presentation and a Murphy basis to give explicit formulae for the seminormal representations of $\mathcal{A}_{k}(z)$.
We require the semisimple branching diagram of the tower

$$
\begin{equation*}
\kappa=\mathcal{A}_{0}(z) \subseteq \mathcal{A}_{\frac{1}{2}}(z) \subseteq \mathcal{A}_{1}(z) \subseteq \mathcal{A}_{1+\frac{1}{2}}(z) \subseteq \cdots \tag{1}
\end{equation*}
$$

The irreducible representations of $\mathcal{A}_{k}(z)$ and $\mathcal{A}_{k+\frac{1}{2}}(z)$ are indexed by the same set:

$$
\hat{A}_{k}=\{(\lambda, \ell) \mid \lambda \vdash k-\ell \text { for } \ell=0,1, \ldots, k\} .
$$

A Murphy basis

We use the new presentation and a Murphy basis to give explicit formulae for the seminormal representations of $\mathcal{A}_{k}(z)$.
We require the semisimple branching diagram of the tower

$$
\begin{equation*}
\kappa=\mathcal{A}_{0}(z) \subseteq \mathcal{A}_{\frac{1}{2}}(z) \subseteq \mathcal{A}_{1}(z) \subseteq \mathcal{A}_{1+\frac{1}{2}}(z) \subseteq \cdots \tag{1}
\end{equation*}
$$

The irreducible representations of $\mathcal{A}_{k}(z)$ and $\mathcal{A}_{k+\frac{1}{2}}(z)$ are indexed by the same set:

$$
\hat{A}_{k}=\{(\lambda, \ell) \mid \lambda \vdash k-\ell \text { for } \ell=0,1, \ldots, k\} .
$$

Build the branching diagram \hat{A} for the tower (1) with
(1) Vertices on level k and level $k+\frac{1}{2}: \hat{A}_{k}$.

A Murphy basis

We use the new presentation and a Murphy basis to give explicit formulae for the seminormal representations of $\mathcal{A}_{k}(z)$.
We require the semisimple branching diagram of the tower

$$
\begin{equation*}
\kappa=\mathcal{A}_{0}(z) \subseteq \mathcal{A}_{\frac{1}{2}}(z) \subseteq \mathcal{A}_{1}(z) \subseteq \mathcal{A}_{1+\frac{1}{2}}(z) \subseteq \cdots \tag{1}
\end{equation*}
$$

The irreducible representations of $\mathcal{A}_{k}(z)$ and $\mathcal{A}_{k+\frac{1}{2}}(z)$ are indexed by the same set:

$$
\hat{A}_{k}=\{(\lambda, \ell) \mid \lambda \vdash k-\ell \text { for } \ell=0,1, \ldots, k\} .
$$

Build the branching diagram \hat{A} for the tower (1) with
(1) Vertices on level k and level $k+\frac{1}{2}: \hat{A}_{k}$.
(2) An edge $(\lambda, \ell) \rightarrow(\mu, m)$ in \hat{A}, for $(\lambda, \ell) \in \hat{A}_{k},(\mu, m) \in \hat{A}_{k+\frac{1}{2}}$, if $\lambda=\mu$, or if λ is obtained from μ by removing a node.

A Murphy basis

We use the new presentation and a Murphy basis to give explicit formulae for the seminormal representations of $\mathcal{A}_{k}(z)$.
We require the semisimple branching diagram of the tower

$$
\begin{equation*}
\kappa=\mathcal{A}_{0}(z) \subseteq \mathcal{A}_{\frac{1}{2}}(z) \subseteq \mathcal{A}_{1}(z) \subseteq \mathcal{A}_{1+\frac{1}{2}}(z) \subseteq \cdots \tag{1}
\end{equation*}
$$

The irreducible representations of $\mathcal{A}_{k}(z)$ and $\mathcal{A}_{k+\frac{1}{2}}(z)$ are indexed by the same set:

$$
\hat{A}_{k}=\{(\lambda, \ell) \mid \lambda \vdash k-\ell \text { for } \ell=0,1, \ldots, k\} .
$$

Build the branching diagram \hat{A} for the tower (1) with
(1) Vertices on level k and level $k+\frac{1}{2}: \hat{A}_{k}$.
(2) An edge $(\lambda, \ell) \rightarrow(\mu, m)$ in \hat{A}, for $(\lambda, \ell) \in \hat{A}_{k},(\mu, m) \in \hat{A}_{k+\frac{1}{2}}$, if $\lambda=\mu$, or if λ is obtained from μ by removing a node.
(3) An edge $(\lambda, \ell) \rightarrow(\mu, m)$ in \hat{A}, for $(\lambda, \ell) \in \hat{A}_{k+\frac{1}{2}}$, $(\mu, m) \in \hat{A}_{k+1}$, if $\lambda=\mu$, or if λ is obtained from μ by adding a node.

A Murphy basis

For $(\lambda, \ell) \in \hat{A}_{k}$, let $\hat{A}_{k}^{(\lambda, \ell)}$ denote the set of paths in \hat{A} from the vertex \emptyset on level 0 to the vertex (λ, ℓ) on level k.

A Murphy basis

For $(\lambda, \ell) \in \hat{A}_{k}$, let $\hat{A}_{k}^{(\lambda, \ell)}$ denote the set of paths in \hat{A} from the vertex \emptyset on level 0 to the vertex (λ, ℓ) on level k. The elements of $\hat{A}_{k}^{(\lambda, \ell)}$ are the partition algebra analogues to the standard tableaux in the representation theory of the symmetric group.

A Murphy basis

For $(\lambda, \ell) \in \hat{A}_{k}$, let $\hat{A}_{k}^{(\lambda, \ell)}$ denote the set of paths in \hat{A} from the vertex \emptyset on level 0 to the vertex (λ, ℓ) on level k.
The elements of $\hat{A}_{k}^{(\lambda, \ell)}$ are the partition algebra analogues to the standard tableaux in the representation theory of the symmetric group.

Theorem

There exist

$$
\left\{p_{\mathfrak{t}}=p_{\mathfrak{t}}^{(k)} \in \mathcal{A}_{k}(z) \mid \mathfrak{t} \in \hat{A}_{k}^{(\lambda, \ell)},(\lambda, \ell) \in \hat{A}_{k}\right\}
$$

and $f_{(\lambda, \ell)}^{(k)} \in \mathcal{A}_{k}(z)$, for $(\lambda, \ell) \in \hat{A}_{k}$, such that

$$
\mathscr{A}_{k}=\left\{p_{\mathrm{t}}^{*} f_{(\lambda, \ell)}^{(k)} p_{\mathrm{t}} \mid \mathfrak{s}, \mathfrak{t} \in \hat{A}_{k}^{(\lambda, \ell)},(\lambda, \ell) \in \hat{A}_{k}, \text { and } \ell=0,1, \ldots k\right\}
$$

is a Murphy-type cellular basis for $\mathcal{A}_{k}(z)$.

For $k=3, \lambda=(1,1)$ and $\ell=1$. The association

$$
\mathfrak{t} \mapsto f_{(\lambda, \ell)}^{(k)} p_{\mathfrak{t}}, \quad \quad \text { for } \mathfrak{t} \in \hat{A}_{k}^{(\lambda, \ell)}
$$

is as follows:

Cell modules

Order the elements of \hat{A}_{k} by writing $(\lambda, \ell) \triangleright(\mu, m)$ if either
(1) $\ell>m$, or
(2) $\ell=m$ and $\lambda \triangleright \mu$ as partitions of $k-\ell$.

Cell modules

Order the elements of \hat{A}_{k} by writing $(\lambda, \ell) \triangleright(\mu, m)$ if either
(1) $\ell>m$, or
(2) $\ell=m$ and $\lambda \triangleright \mu$ as partitions of $k-\ell$.

If $(\lambda, \ell) \in \hat{A}_{k}$, let

$$
\mathcal{A}_{k}^{\triangleright(\lambda, \ell)}=\operatorname{Span}\left\{p_{\mathfrak{s}}^{*} f_{(\mu, m)}^{(k)} p_{\mathfrak{t}} \mid \mathfrak{s}, \mathfrak{t} \in \hat{A}_{k}^{(\mu, m)},(\mu, m) \triangleright(\lambda, \ell)\right\} .
$$

Cell modules

Order the elements of \hat{A}_{k} by writing $(\lambda, \ell) \triangleright(\mu, m)$ if either
(1) $\ell>m$, or
(2) $\ell=m$ and $\lambda \triangleright \mu$ as partitions of $k-\ell$.

If $(\lambda, \ell) \in \hat{A}_{k}$, let

$$
\mathcal{A}_{k}^{\triangleright(\lambda, \ell)}=\operatorname{Span}\left\{p_{\mathfrak{s}}^{*} f_{(\mu, m)}^{(k)} p_{\mathfrak{t}} \mid \mathfrak{s}, \mathfrak{t} \in \hat{A}_{k}^{(\mu, m)},(\mu, m) \triangleright(\lambda, \ell)\right\} .
$$

Lemma

If $(\lambda, \ell) \in \hat{A}_{k}$ and $\mathfrak{t} \in \hat{A}_{k}^{(\lambda, \ell)}$, then there exist $r_{\mathfrak{u}} \in \kappa$, for $\mathfrak{u} \in \hat{A}_{k}^{(\lambda, \ell)}$, such that

$$
p_{\mathfrak{s}}^{*} f_{(\lambda, \ell)}^{(k)} p_{\mathrm{t}} p=\sum_{\mathfrak{u} \in \hat{A}_{k}^{\triangleright(\lambda, \ell)}} r_{\mathfrak{u}} p_{\mathfrak{s}}^{*} f_{(\lambda, \ell)} p_{\mathfrak{u}} \bmod \mathcal{A}_{k}^{(\lambda, \ell)} \quad \text { for all } \mathfrak{s} \in \hat{A}_{k}^{(\lambda, \ell)}
$$

Cell modules

Let $(\lambda, \ell) \in \hat{A}_{k}$. The cell module $A_{k}^{(\lambda, \ell)}$ is the right $\mathcal{A}_{k}(z)$-submodule of $\mathcal{A}_{k}(z) / A_{k}^{\triangleright(\lambda, \ell)}$ with κ-basis

$$
f_{(\lambda, \ell)}^{(k)} p_{\mathfrak{t}}+A_{k}^{\triangleright(\lambda, \ell)}
$$

and right $\mathcal{A}_{k}(z)$ action determined by

$$
f_{(\lambda, \ell)}^{(k)} p_{\mathfrak{t}} p=\sum_{\mathfrak{u} \in \hat{A}_{k}^{\triangleright(\lambda, \ell)}} r_{\mathfrak{u}} f_{(\lambda, \ell)} p_{\mathfrak{u}} \bmod \mathcal{A}_{k}^{(\lambda, \ell)}
$$

Cell modules

Let $(\lambda, \ell) \in \hat{A}_{k}$. The cell module $A_{k}^{(\lambda, \ell)}$ is the right $\mathcal{A}_{k}(z)$-submodule of $\mathcal{A}_{k}(z) / A_{k}^{\triangleright(\lambda, \ell)}$ with κ-basis

$$
f_{(\lambda, \ell)}^{(k)} p_{\mathfrak{t}}+A_{k}^{\triangleright(\lambda, \ell)}
$$

and right $\mathcal{A}_{k}(z)$ action determined by

$$
f_{(\lambda, \ell)}^{(k)} p_{\mathrm{t}} p=\sum_{\mathfrak{u} \in \hat{A}_{k}^{\triangleright(\lambda, \ell)}} r_{\mathfrak{u}} f_{(\lambda, \ell)} p_{\mathfrak{u}} \bmod \mathcal{A}_{k}^{(\lambda, \ell)} .
$$

The Murphy basis is "well behaved" with respect to restriction and induction on cell modules.
The partition algebras form a strongly coherent tower of algebras in the sense of Goodman and Graber [GG].

Cell modules

Let $(\lambda, \ell) \in \hat{A}_{k}$. The cell module $A_{k}^{(\lambda, \ell)}$ is the right $\mathcal{A}_{k}(z)$-submodule of $\mathcal{A}_{k}(z) / A_{k}^{\triangleright(\lambda, \ell)}$ with κ-basis

$$
f_{(\lambda, \ell)}^{(k)} p_{\mathfrak{t}}+A_{k}^{\triangleright(\lambda, \ell)}
$$

and right $\mathcal{A}_{k}(z)$ action determined by

$$
f_{(\lambda, \ell)}^{(k)} p_{\mathfrak{t}} p=\sum_{\mathfrak{u} \in \hat{A}_{k}^{\triangleright(\lambda, \ell)}} r_{\mathfrak{u}} f_{(\lambda, \ell)} p_{\mathfrak{u}} \bmod \mathcal{A}_{k}^{(\lambda, \ell)} .
$$

The Murphy basis is "well behaved" with respect to restriction and induction on cell modules.
The partition algebras form a strongly coherent tower of algebras in the sense of Goodman and Graber [GG].
Consequently, we can show that the Jucys-Murphy elements act as triangular operators on $\mathcal{A}_{k}(z)$.

A seminormal basis

For $(\lambda, \ell) \in \hat{A}_{k}$, let \succ denote the reverse lexicographic order on $\hat{A}_{k}^{(\lambda, \ell)}$ induced by the order \triangleright on \hat{A}_{k}.

Lemma

If $(\lambda, \ell) \in \hat{A}_{k}$ and $\mathfrak{t} \in \hat{A}_{k}^{(\lambda, \ell)}$, then there exist $r_{\mathfrak{u}} \in \kappa$, for $\mathfrak{u} \in \hat{A}_{k}^{(\lambda, \ell)}$, such that

$$
f_{(\lambda, \ell)} p_{\mathrm{t}} L_{i} \equiv c_{\mathrm{t}}(i) f_{(\lambda, \ell)} p_{\mathrm{t}}+\sum_{\mathfrak{u} \succ \mathfrak{t}} r_{\mathfrak{u}} f_{(\lambda, \ell)} p_{\mathfrak{u}} \bmod \mathcal{A}_{k}^{(\lambda, \ell)}
$$

Similarly there exist $r_{\mathfrak{u}}^{\prime} \in \kappa$, for $\mathfrak{u} \in \hat{A}_{k}^{(\lambda, \ell)}$, such that

$$
f_{(\lambda, \ell)} p_{\mathfrak{t}} L_{i+\frac{1}{2}} \equiv c_{\mathfrak{t}}\left(i+\frac{1}{2}\right) f_{(\lambda, \ell)} p_{\mathfrak{t}}+\sum_{\mathfrak{u} \succ \mathfrak{t}} r_{\mathfrak{u}}^{\prime} f_{(\lambda, \ell)} p_{\mathfrak{u}} \quad \bmod \mathcal{A}_{k}^{(\lambda, \ell)}
$$

A seminormal basis

If $a=(i, j)$ is a node, let $c(a)=j-i$ be the content of a. Let $(\mu, m) \in \hat{A}_{k}$. For $\mathfrak{t}=\left(\mu^{(0)}, \mu^{\left(\frac{1}{2}\right)}, \ldots, \mu^{(k)}\right) \in \hat{A}_{k}^{(\mu, m)}$, and $i=1, \ldots, k$, define

$$
\begin{aligned}
c_{\mathfrak{t}}\left(i-\frac{1}{2}\right) & = \begin{cases}\left|\mu^{(i-1)}\right|, & \text { if } \mu^{(i-1)}=\mu^{\left(i-\frac{1}{2}\right)} ; \\
z-c(a), & \text { if } \mu^{\left(i-\frac{1}{2}\right)}=\mu^{(i-1)} \backslash\{a\}, \text { and }\end{cases} \\
c_{\mathfrak{t}}(i) & = \begin{cases}z-\left|\mu^{(i)}\right|, & \text { if } \mu^{(i)}=\mu^{\left(i-\frac{1}{2}\right)}, \\
c(a), & \text { if } \mu^{(i)}=\mu^{\left(i-\frac{1}{2}\right)} \cup\{a\} .\end{cases}
\end{aligned}
$$

A seminormal basis

The triangular action of the Jucys-Murphy elements on the Murphy basis for $\mathcal{A}_{k}(z)$ allows us to diagonalize the Jucys-Murphy elements and obtain a seminormal basis for $\mathcal{A}_{k}(z)$ and each cell module for $\mathcal{A}_{k}(z)$.

A seminormal basis

The triangular action of the Jucys-Murphy elements on the Murphy basis for $\mathcal{A}_{k}(z)$ allows us to diagonalize the Jucys-Murphy elements and obtain a seminormal basis for $\mathcal{A}_{k}(z)$ and each cell module for $\mathcal{A}_{k}(z)$.
Let

$$
\left\{f_{\mathrm{t}}^{(k)} \mid \mathfrak{t} \in \hat{A}_{k}^{(\lambda, \ell)}\right\}
$$

denote the seminormal basis for $A_{k}^{(\lambda, \ell)}$. By construction, the transition between the Murphy and seminormal bases is unitriangular.

A seminormal basis

The triangular action of the Jucys-Murphy elements on the Murphy basis for $\mathcal{A}_{k}(z)$ allows us to diagonalize the Jucys-Murphy elements and obtain a seminormal basis for $\mathcal{A}_{k}(z)$ and each cell module for $\mathcal{A}_{k}(z)$.
Let

$$
\left\{f_{\mathrm{t}}^{(k)} \mid \mathfrak{t} \in \hat{A}_{k}^{(\lambda, \ell)}\right\}
$$

denote the seminormal basis for $A_{k}^{(\lambda, \ell)}$. By construction, the transition between the Murphy and seminormal bases is unitriangular.

Let $\sigma_{i+\frac{1}{2}}(\mathfrak{s}, \mathfrak{t})$ denote the $(\mathfrak{s}, \mathfrak{t})$-entry of the matrix of representing $\sigma_{i+\frac{1}{2}}$ in the seminormal representation.

A seminormal basis

Let $(\lambda, \ell) \in \hat{A}_{k}$ and

$$
\mathfrak{t}=\left(\mathfrak{t}^{(0)}, \mathfrak{t}^{\left(\frac{1}{2}\right)}, \ldots, \mathfrak{t}^{\left(k-\frac{1}{2}\right)}, \mathfrak{t}^{(k)}\right) \in \hat{A}_{k}^{(\lambda, \ell)} .
$$

Theorem

If $\mathfrak{t}^{(i-1)} \neq \mathfrak{t}^{(i)}$ and $\mathfrak{t}^{\left(i-\frac{1}{2}\right)} \neq \mathfrak{t}^{\left(i+\frac{1}{2}\right)}$, and $\mathfrak{t} \sigma_{i+\frac{1}{2}}$ exists, then

$$
\sigma_{i+\frac{1}{2}}(\mathfrak{s}, \mathfrak{t})= \begin{cases}\frac{1}{c_{\mathrm{t}}\left(i+\frac{1}{2}\right)-c_{\mathfrak{t}}\left(i-\frac{1}{2}\right)}, & \text { if } \mathfrak{s}=\mathfrak{t}, \\ 1-\frac{1}{\left(c_{\mathfrak{t}}\left(i+\frac{1}{2}\right)-c_{\mathfrak{t}}\left(i-\frac{1}{2}\right)\right)^{2}}, & \text { if } \mathfrak{s}=\mathfrak{t} \sigma_{i+\frac{1}{2}} \text { and } \mathfrak{s} \succ \mathfrak{t}, \\ 1, & \text { if } \mathfrak{s}=\mathfrak{t} \sigma_{i+\frac{1}{2}} \text { and } \mathfrak{t} \succ \mathfrak{s}, \\ 0, & \text { otherwise. }\end{cases}
$$

A seminormal basis

Theorem

If $\mathfrak{t}^{\left(i-\frac{1}{2}\right)} \neq \mathfrak{t}^{\left(i+\frac{1}{2}\right)}$ and $\mathfrak{t}^{(i)} \neq \mathfrak{t}^{(i+1)}$, and $\mathfrak{t} \sigma_{i+1}$ exists, then

$$
\sigma_{i+1}(\mathfrak{s}, \mathfrak{t})= \begin{cases}\frac{1}{c_{\mathfrak{t}}(i+1)-c_{\mathfrak{t}}(i)}, & \text { if } \mathfrak{s}=\mathfrak{t}, \\ 1-\frac{1}{\left(c_{\mathfrak{t}}(i+1)-c_{\mathfrak{t}}(i)\right)^{2}}, & \text { if } \mathfrak{s}=\mathfrak{t} \sigma_{i+1} \text { and } \mathfrak{s} \succ \mathfrak{t}, \\ 1, & \text { if } \mathfrak{s}=\mathfrak{t} \sigma_{i+1} \text { and } \mathfrak{t} \succ \mathfrak{s}, \\ 0, & \text { otherwise. }\end{cases}
$$

A seminormal basis

Theorem

If $\mathfrak{t}^{\left(i-\frac{1}{2}\right)} \neq \mathfrak{t}^{\left(i+\frac{1}{2}\right)}$ and $\mathfrak{t}^{(i)} \neq \mathfrak{t}^{(i+1)}$, and $\mathfrak{t} \sigma_{i+1}$ exists, then

$$
\sigma_{i+1}(\mathfrak{s}, \mathfrak{t})= \begin{cases}\frac{1}{c_{\mathrm{t}}(i+1)-c_{\mathrm{t}}(i)}, & \text { if } \mathfrak{s}=\mathfrak{t}, \\ 1-\frac{1}{\left(c_{\mathfrak{t}}(i+1)-c_{\mathrm{t}}(i)\right)^{2}}, & \text { if } \mathfrak{s}=\mathfrak{t} \sigma_{i+1} \text { and } \mathfrak{s} \succ \mathfrak{t}, \\ 1, & \text { if } \mathfrak{s}=\mathfrak{t} \sigma_{i+1} \text { and } \mathfrak{t} \succ \mathfrak{s}, \\ 0, & \text { otherwise. }\end{cases}
$$

- We have explicit combinatorial expressions for all the terms

$$
\sigma_{i+\frac{1}{2}}(\mathfrak{s}, \mathfrak{t}), \sigma_{i+1}(\mathfrak{s}, \mathfrak{t}), p_{i+\frac{1}{2}}(\mathfrak{s}, \mathfrak{t}) \text { and } p_{i+1}(\mathfrak{s}, \mathfrak{t})
$$

A seminormal basis

Theorem

If $\mathfrak{t}^{\left(i-\frac{1}{2}\right)} \neq \mathfrak{t}^{\left(i+\frac{1}{2}\right)}$ and $\mathfrak{t}^{(i)} \neq \mathfrak{t}^{(i+1)}$, and $\mathfrak{t} \sigma_{i+1}$ exists, then

$$
\sigma_{i+1}(\mathfrak{s}, \mathfrak{t})= \begin{cases}\frac{1}{c_{\mathrm{t}}(i+1)-c_{\mathrm{t}}(i)}, & \text { if } \mathfrak{s}=\mathfrak{t}, \\ 1-\frac{1}{\left(c_{\mathrm{t}}(i+1)-c_{\mathfrak{t}}(i)\right)^{2}}, & \text { if } \mathfrak{s}=\mathfrak{t} \sigma_{i+1} \text { and } \mathfrak{s} \succ \mathfrak{t}, \\ 1, & \text { if } \mathfrak{s}=\mathfrak{t} \sigma_{i+1} \text { and } \mathfrak{t} \succ \mathfrak{s}, \\ 0, & \text { otherwise. }\end{cases}
$$

- We have explicit combinatorial expressions for all the terms $\sigma_{i+\frac{1}{2}}(\mathfrak{s}, \mathfrak{t}), \sigma_{i+1}(\mathfrak{s}, \mathfrak{t}), p_{i+\frac{1}{2}}(\mathfrak{s}, \mathfrak{t})$ and $p_{i+1}(\mathfrak{s}, \mathfrak{t})$.
- Complete statements of these results can be found in the preprints arXiv:1009.1939 and arXiv:1102.2047.
[Ea] J. East, Generators and relations for partition monoids and algebras, preprint (2007).
[GG] F.M. Goodman and J. Graber, On cellular algebras with Jucys-Murphy elements, J. Algebra 330, 147-176 (2011).
[HR] T. Halverson and A. Ram, Partition algebras, European J. Combin. 26 (2005), 869-921.
[Jo] V.F.R Jones, The Potts model and the symmetric group, in: Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras (Kuzeso, 1993), River Edge, NJ, World Sci. Publishing, 1994.
[Mar] P. Martin, Potts models and related problems in statistical mechanics, Series on Advances in Statistical Mechanics, vol. 5, World Scientific Publishing Co. Inc., Teaneck NJ, 1991.

