
PARASYMPATHOMIMETICS/CHOLINERGICS/CHOLINERGIC AGONISTS

Cholinergic agonists/Parasympathomimetics are drugs that mimic the effects of ACh by binding directly to cholinoceptors (muscarinic or nicotinic).

OR

Drugs which produce actions similar to that of ACh either by directly interacting with cholinergic receptors (cholinergic agonists) or by increasing availability of Ach (anticholinesterases) at these sites.

CLASSIFICATION

DIRECTLY ACTING CHOLINERGIC AGONISTS

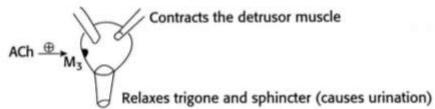
Choline esters

Acetyl choline

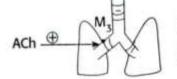
Quaternary ammonium compound

Rapidly hydrolyzed by Cholinesterases

Mechanism of action


Pharmacological actions:

MUSCARINIC ACTIONS:


1. Cardiovascular system

Heart : ↓↓ HR (negative chronotropic effect) $\downarrow \downarrow$ FOC (negative inotropic effect) ACh M₂ ↓↓ A–V conduction (negative dromotropic effect) **Blood vessels:** Vasodilatation ➤ Release of NO [EDRF] -ACh ↓↓BP Endothelial cells 2. Smooth muscles a. Gastrointestinal tract ↑ Tone of the gut ACh 🕀 ↑ Peristaltic movements ↑ GI secretions Relaxes the sphincter (may cause defecation)

b. Urinary bladder

c. Bronchi

Contracts the bronchial smooth muscle (bronchospasm) Increases tracheobronchial secretion – therefore, cholinergic drugs are contraindicated in asthmatics

3. Exocrine glands

Increase in salivary, lacrimal, sweat, bronchial, gastric and other gastrointestinal secretions

4. **Eye**:

Contract ciliary muscle- spasm of acconnodation, near vision Contract sphincter pupillae – **miosis (pupillary constriction)**

NICOTINIC ACTIONS:

- 1. Autonomic ganglia: Depolarization- postganglionic impulse
- 2. Adrenal medulla: Catecholamine release
- 3. Skeletal muscles: contraction
- Ach has no therapeutic application

Methacholine, Carbachol, Bethanechol

- Effective orally
- Methacholine is resistant to pseudocholinesterase but rarely used

- Carbachol and bethanechol are resistant to both cholinesterases and have longer duration of action
- Carbachol is used in glaucoma
- Bethanechol is used in :
- ✓ Hypotonia of bladder
- ✓ Hypotonia of GI smooth muscles
- ✓ Urinary retention and neurogenic bladder
- ✓ Xerostomia

ADR:

- 🖊 Diarrhoea
- + Flushing
- **4** Salivation
- **H**Bradycardia
- **Hypotension**
- **H** Bronchospasm

CHOLINOMIMETIC ALKALOIDS

Pilocarpine

- Obtained from *Pilocarpus microphyllus*
- Muscarinic actions are prominent
- Tertiary amine
- Crosses BBB and cause CNS effects
- Most potent stimulators of secretions such as sweat, tears, and saliva,
- Exhibits muscarinic activity and is used primarily in ophthalmology
- lack of selectivity

Actions:

- Miosis
- Contraction of ciliary muscles- Spasm of accommodation
- Fall in intraocular tension

- Increase sweat(diaphoretic)
- Sialogogue (increase salivary secretions)

Adverse Effects

Eye drops: Burning sensation, painful spasm of accommodation

Long term use cause retinal detachment

USES

In glaucoma

Used to counter the dryness of mouth

INDIRECTLY ACTING CHOLINERGIC DRUGS

- Anticholinesterases
- Inhibit the enzyme cholinesterase and nicotinic receptors of the ANS as well as at NMJs and in the brain
- Anticholinesterases are either Esters of carbamic acids (carbamates) or Derivatives of phosphoric acid(organophosphates)
- ACh Esterase is an enzyme that hydrolyses ACh to acetate and choline and terminates its actions.
- It is located in both pre- and postsynaptic nerve terminals.
- Anticholinesterases inhibit enzyme AchE reversibly/irreversibly
- Thus, ACh is not metabolized, gets accumulated at muscarinic and nicotinic sites and produce cholinergic effects

REVERSIBLE ANTICHOLINESTERASES

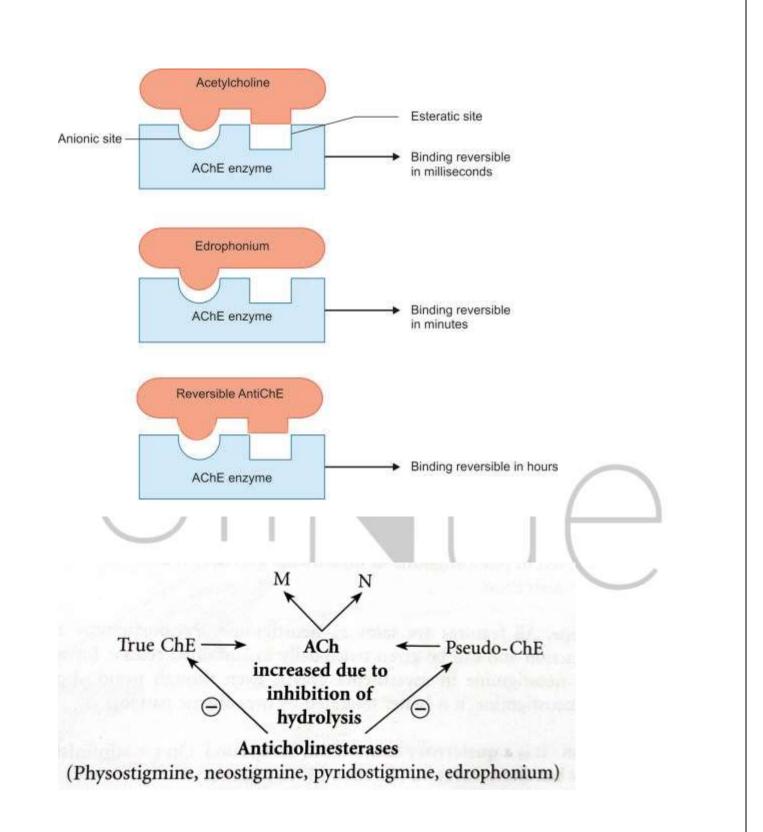
Physostigmine

Neostigmine

Pyridostigmine

Rivastigmine

Edrophonium


Galantamine

Donepezil

• Reversible anticholinesterases inhibit both true and pseudocholinesterases reversibly

MECHANISM OF ACTION:

- ACh is rapidly hydrolysed by both true and pseudocholinesterases
- ACh binds to anionic and esteratic sites of cholinesterase
- Acetylated enzyme undergoes rapid hydrolysis
- Carbamates bind to both anionic and esteratic sites of cholinesterase. So, Ach can't bind the enzyme
- Carbamoylated enzyme undergoes slow hydrolysis to release the enzyme
- Edrophonium binds only to anionic site of ChE
- It forms a weak hydrogen bond with the enzyme
- It diffuses away from the enzyme
- Duration of action is 8-10minutes

PHYSOSTIGMINE (ESERINE)

- Alkaloid obtained from Physostigma venenosum
- Tertiary amine

Actions:

- Stimulates not only the muscarinic and nicotinic sites of the ANS, but also the nicotinic receptors of the NMJ
- Muscarinic stimulation can cause contraction of gastrointestinal smooth muscles, miosis, bradycardia, and hypotension
 (Explain cholinorgic effects)

(Explain cholinergic effects)

- Nicotinic stimulation can cause skeletal muscle twitches, fasciculations, and skeletal muscle paralysis (at higher doses).
- Its duration of action is about 30 minutes to 2 hours

Therapeutic uses:

1. Glaucoma: physostigmine reduces intraocular Pressure by producing miosis, thus facilitates drainage of aqueous humour.

On chronic use - accelerates cataract formation, so rarely used in glaucoma

2. Atropine poisoning: Intravenous administration

Adverse effects: (rarely seen with therapeutic doses)

- well absorbed orally and it enters the CNS cause CNS side effects
- High doses of *physostigmine* may lead to convulsions.
- Bradycardia and a fall in cardiac output may also occur.
- Accumulation of Ach at the NMJ causes continuous depolarization, results in paralysis of skeletal muscle.

NEOSTIGMINE

- Synthetic compound
- It reversibly inhibits ache
- Neostigmine has a quaternary nitrogen. Hence, more polar, is absorbed poorly from the GI tract
- Does not cross BBB and has no central side effects

Actions:

- Pronounced action on NMJ, GIT and urinary bladder
- Increases Ach concentration at NMJ by inhibiting anticholinesterases
- Due to structural similarity with Ach, directly stimulates N_M receptors
- Thus improves muscle power in myasthenia gravis

Therapeutic uses:

- Used to stimulate the bladder and GI tract
- Antidote for competitive neuromuscular- blocking agents.
- Used to manage symptoms of myasthenia gravis
- to overcome toxicity of central-acting antimuscarinic agents such as atropine

Adverse effects:

- Salivation
- Flushing
- Decreased blood pressure
- Nausea
- Abdominal pain
- Diarrhea
- Bronchospasm
- Contraindicated when intestinal Or urinary bladder obstruction is present

	Physostigmine	Neostigmine
1. Source	Natural alkaloid from Physostigma venenosum (Calabar bean)	Synthetic
2. Chemistry	Tertiary amine derivative	Quaternary ammonium compound
3. Oral absorption	Good	Poor
4. CNS actions	Present	Absent
5. Applied to eye	Penetrates cornea	Poor penetration
6. Direct action on N _M cholinoceptors	Absent	Present
7. Prominent effect on	Autonomic effectors	Skeletal muscles
8. Important use	Miotic (glaucoma)	Myasthenia gravis
9. Dose	0.5-1 mg oral/parenteral	0.5-2.5 mg i.m./s.c.
	0.1-1.0% eye drops	15-30 mg orally
10. Duration of action	Systemic 4-6 hrs	3-4 hrs.
	In eye 6 to 24 hrs	

PYRIDOSTIGMINE

- Same as neostigmine
- Longer duration of action
- Preferred to neostigmine in myasthenia gravis

EDROPHONIUM

• Short acting (8-10min)

Uses:

- Diagnosis of myasthenia gravis
- Used to differentiate myasthenic crisis from cholinergic crisis
- In curare poisoning

Adverse effects of anticholinesterases

- Sweating
- Salivation
- Nausea
- Vomiting
- Bradycardia
- Hypotension