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Motivation (1)

• Complex software systems: (a) Probability; (b) Real-time; (c)

Shared-Variable Concurrency

We have proposed a language PTSC, which integrates these

features.

• Semantic Linking:

Denotational Semantics

Algebraic Semantics

Operational Semantics
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Related Work

• Recently, Hoare proposed the challenging research for the

semantic linking between algebra, denotations, transitions

and deductions (in Meeting 52 of WG 2.3).

Denotationals

Deductions Transitions

Algebra
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Contribution

How can we guarantee the consistency between operational semantics

and algebraic semantics for PTSC?

(1) Approach: Deriving operational semantics from algebraic

semantics.

(2) Methodology: Theoretically and Mechanically

• Further Algebraic Laws

• Head Normal Form

• Deriving Operational Semantics from Algebraic Semantics

• Mechanizing the three steps
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Methodology: A Sketch
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Syntax of PTSC (1)

P ::= Skip | x := e | if b then P else P

| while b do P | @b P | #n P | P ; P

| P ⊓ P | P ⊓p P | P ∥p P

Five types of guarded choice:

(1) The first type is composed of a set of assignment-guarded

components.

[]i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}
Healthiness conditions:

(a) ∀i • (
∨

j∈Ji
bij = true) and

(∀j1, j2 ∈ Ji • (j1 ̸= j2) ⇒ ((bij1 ∧ bij2) = false))

(b) Σi∈I pi = 1
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Syntax of PTSC (2)

Five types of guarded choice:

(2) The second type is composed of a set of event-guarded

components.

[]i∈I{@bi Pi}

(3) The third type is composed of one time-delay component.

[]{#1 R}

(4) The fourth type is the guarded choice composition of the first and

second type of guarded choice.

[]i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}
[][]k∈K{@bk Qk}
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Syntax of PTSC (3)

Five types of guarded choice:

(5) The fifth type is the compound of the second and third type of

guarded choice.

[]i∈I{@bi Pi}[]{#1 R}

Example: Let

P = []{ [0.7]choice( true&(x := 5)P1 ) ,

[0.3]choice( (x > 2)&(x := x)P2, (x ≤ 2)&(x := x)P3 )

}
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Algebraic Semantics (1)
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Algebraic Semantics (2)

Laws for guarded choice:

(gchoice-1) []{C1, · · · · · · , Cn} = []{Ci1 , · · · · · · , Cin}
where, Ci1 , · · · , Cin is a permutation of 1, · · · , n.

(gchoice-2) []{[p]choice{false&(x := e)P, G1}, G2}
= []{[p]choice{G1}, G2}

(gchoice-3) []{[p]choice{b1&(x := e)P, b2&(x := e)P, G1}, G2}
= []{[p]choice{(b1 ∨ b2)&(x := e)P, G1}, G2}

(gchoice-6) []{[p]choice{G1}, [q]choice{G1}, G2}
= []{[p+ q]choice{G1}, G2}
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Algebraic Semantics (3)

(1) x := e = []{ [1]choice{true&(x := e) ε} }

(2) #n = []{#1 #(n− 1)}, where n > 1

(3) if b then P else Q

= []{ [1]choice{b&(x := x) P, ¬b&(x := x) Q} }

(4) Assume P = []{C1, . . . , Cn}, then

P ; Q = []{seq(C1, Q), . . . , seq(Cn, Q)}.
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Algebraic Semantics (4)

Parallel Expansion Laws

(par-3-1) Let

P = []i∈I{[pi] choicej∈Ji
(bij&(xij := eij)Pij)}

Q = []k∈K{[qk] choicel∈Lk
(bkl&(xkl := ekl)Pkl)}

Then

P ∥r Q

= []i∈I{[r × pi] choicej∈Ji(bij&(xij := eij)par(Pij , Q, r)}

[][]k∈K{[(1− r)× qk] choicel∈Lk(bkl&(xkl := ekl)par(P,Qkl, r)}
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Algebraic Semantics (5)

Parallel Expansion Laws

(par-3-2) Let P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}
and Q = []k∈K{@ck Qk}

Then

P ∥r Q = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)par(Pij , Q, r)}
[][]k∈K{@ck par(P,Qk, r)}

(par-3-6) Let P = []i∈I{@bi Pi} and Q = []j∈J{@cj Qj}
Then P ∥r Q = []i∈I{@(bi ∧ ¬c) par(Pi, Q, r)}

[][]j∈J{@(cj ∧ ¬b) par(P,Qj , r)}
[][]i∈I∧j∈J{@(bi ∧ cj) par(Pi, Qj , r)}

where, b = ∨i∈I bi and c = ∨j∈J cj
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Algebraic Semantics (5)

(1) P ⊓p Q = []{ [p]choice{true&(x := x)P},
[1− p]choice{true&(x := x)Q}}

(2) Summation:
⊕

{P1, · · · , Pn}

•
⊕

{P1, · · · , Pn} =
⊕

{Pi1 , · · · , Pin}

• If P =
⊕

{P1, · · · , Pn} and Q =
⊕

{Q1, · · · , Qm},
then P ⊓Q =

⊕
{P1, · · · , Pn, Q1, · · · , Qm}

• If P =
⊕

{P1, · · · , Pn},
then P ;Q =

⊕
{(P1;Q), · · · , (Pn;Q)}
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Head Normal Form (1)
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Head Normal Form (2)

We assign every program P a normal form called head normal form

HF(P ), which can be applied in deriving operational semantics from

algebraic semantics.

(1) HF(x := e) =df []{ [1]choice{true&(x := e) ε} }

(2) HF(@b) =df []{@b ε}

(8) If HF(P ) =
⊕

i∈I Pi and HF(Q) =
⊕

j∈J Qj

then HF(P ⊓Q) =df

⊕
i∈I Pi

⊕ ⊕
j∈J Qj

(9) If HF(P ) =
⊕

i∈I Pi and HF(Q) =
⊕

j∈J Qj

then HF(P ∥r Q) =df

⊕
i∈I, j∈J (Pi ∥r Qj)

For HF(Pi ∥r Qj), it can be defined as the result of applying the

parallel expansion laws for HF (Pi) ∥r HF (Qj).
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Animation of Alg. Sem. and HF(P) (1)

Aim: Supporting the mechanical derivation of operational semantics

from algebraic semantics.

Generating Algebraic Laws: npar(S1∥RS2, T )

(1) For S1∥RS2, where S1 and S2 are both of assignment guarded choice.

npar(S1 ∥RS2, T ) :− assignGuardChoice(S1), assignGuardChoice(S2),

assign2L(S1 ∥RS2, T1), assign2R(S1 ∥RS2, T2),

append(T1, T2, T ).

(2) For S1∥RS2, where S1 and S2 are both of event guarded choice.

npar(S1 ∥RS2, T ) :− eventGuardChoice(S1), eventGuardChoice(S2),

event2L(S1 ∥RS2, T1), event2R(S1 ∥RS2, T2),

event2Both(S1 ∥RS2, T3), append(T1, T2, T3, T ).
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Animation of Alg. Sem. and HF(P) (2)

Generating Head Normal Forms: hf(P, T )

(1) Assignment:

hf (V = E, [ [ 1 for true then V = E $ epsilon ] ]).

(5) Nondeterministic processes:

hf (S1 ⊓ S2, T ) :− summation (S1 ⊓ S2, T ).

where

summation (L1 ⊓ L2, T ) :− summation (L1, T1), summation (L2, T2),

append (T1, T2, T ).

summation (S, [S]).

(7)Parallel processes:

hf(S1 ∥RS2, T ) :− summation(S1, S′
1), summation(S2, S′

2),

combination(S′
1 ∥RS′

2, T ).
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Strategy for Deriving Op. Sem. from Alg. Sem.
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Transition Types of Operational Semantics

(1) The execution of an atomic action with certain probability

⟨P, σ⟩ c−→p ⟨P ′, σ′⟩

(2) The time delay

⟨P, σ⟩ 1−→ ⟨P ′, σ′⟩

(3) The selection of the two components for non-deterministic choice.

⟨P, σ⟩ τ−→ ⟨P ′, σ⟩

(4) The triggered case of event @ b:

⟨P, σ⟩ v−→ ⟨P ′, σ⟩
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Derivation Strategy

Definition (Derivation Strategy)

Let HF(P ) =
⊕

i∈I Pi.

(1) If |I| > 1, then ⟨P, σ⟩ τ−→ ⟨Pi, σ⟩ (i ∈ I).

(2) Otherwise,

(a) If HF(P ) =

[]i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)},

then ⟨P, σ⟩ c−→pi ⟨Pij , σ[eij/xij ]⟩, if bij(σ)

(b) If HF(P ) = []i∈I{@bi Pi},

then ⟨P, σ⟩ v−→ ⟨Pi, σ⟩, if bi(σ)

⟨P, σ⟩ 1−→ ⟨P, σ⟩, if
∧

i∈I ¬bi(σ)
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(c) If HF(P ) = []{#1R},

then ⟨P, σ⟩ 1−→ ⟨R, σ⟩.

(d) If HF(P ) =

[]i∈I{[pi] choicej∈J(bij&(xij := eij)Pij)}
[][]k∈K{@ck Qk},

then · · · · · ·

(e) If P = []i∈I{@bi Pi}[]{#1R},

then · · · · · ·

22



'

&

$

%

Deriving Op. Sem. from Alg. Sem.
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Deriving Operational Semantics by Proof (1)

Theorem

(1) ⟨x := e, σ⟩ c−→1 ⟨ε, σ[e/x]⟩

(2) ⟨if b then P else Q , σ⟩ c−→1 ⟨P, σ⟩, if b(σ)

⟨if b then P else Q , σ⟩ c−→1 ⟨Q, σ⟩, if ¬b(σ)

(6) ⟨P ⊓p Q, σ⟩ c−→p ⟨P, σ⟩
⟨P ⊓p Q, σ⟩ c−→1−p ⟨Q, σ⟩
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Deriving Operational Semantics by Proof (2)

Theorem

(1) If ⟨P, σ⟩ τ−→ ⟨P ′, σ′⟩, then ⟨P ⊓Q, σ⟩ τ−→ ⟨P ′, σ′⟩
⟨Q ⊓ P, σ⟩ τ−→ ⟨P ′, σ′⟩

(2) If stable(P ), then ⟨P ⊓Q, σ⟩ τ−→ ⟨P, σ′⟩
⟨Q ⊓ P, σ⟩ τ−→ ⟨P, σ′⟩

Theorem

(1) (a) If ⟨P, σ⟩ τ−→ ⟨P ′, σ⟩ and stable(⟨Q, σ⟩),
then ⟨P ∥p1 Q, σ⟩ τ−→ ⟨par(P ′, Q, p1), σ⟩.

⟨Q ∥p1 P, σ⟩ τ−→ ⟨par(Q,P ′, p1), σ⟩.

(b) If ⟨P, σ⟩ τ−→ ⟨P ′, σ, ⟩ and ⟨Q, σ⟩ τ−→ ⟨Q′, σ⟩,
then ⟨P ∥p1 Q, σ⟩ τ−→ ⟨par(P ′, Q′, p1), σ⟩
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(2) (a) If ⟨P, σ⟩ v−→ ⟨P ′, σ⟩ and stable(⟨Q, σ⟩) and
stableE(⟨Q, σ⟩),

then ⟨P ∥p1 Q, σ⟩ v−→ ⟨par(P ′, Q, p1), σ⟩.
⟨Q ∥p1 P, σ⟩ v−→ ⟨par(Q,P ′, p1), σ⟩.

(b) If ⟨P, σ⟩ v−→ ⟨P ′, σ⟩ and⟨Q, σ⟩ v−→ ⟨Q′, σ⟩,
then ⟨P ∥p1 Q, σ⟩ v−→ ⟨par(P ′, Q′, p1), σ⟩

(3) If ⟨P, σ⟩ c−→p2 ⟨P ′, σ′⟩ and stable(⟨x, σ⟩) and stableE(⟨x, σ⟩)
(x = P, Q),

then ⟨P ∥p1 Q, σ⟩ c−→p1×p2 ⟨par(P ′, Q, p1), σ′⟩

⟨Q ∥p1 P, σ⟩ c−→(1−p1)×p2
⟨par(Q,P ′, p1), σ

′⟩

(4) If ⟨P, σ⟩ 1−→ ⟨P ′, σ′⟩ and ⟨Q, σ⟩ 1−→ ⟨Q′, σ′⟩ and
stable(⟨x, σ⟩) and stableE(⟨x, σ⟩) (x = P, Q),

then ⟨P ∥p1 Q, σ⟩ 1−→ ⟨par(P ′, Q′, p1), σ′⟩.
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Equivalence of Deriv Stra and Tran Syst

Lemma

(1) If transition ⟨P, α⟩ β−→ ⟨P ′, α′⟩ exists in the transition system,

then it also exists in the derivation strategy.

(2) If transition ⟨P, α⟩ β−→ ⟨P ′, α′⟩ exists in the derivation strategy,

then it also exists in the transition system.

Theorem: Regarding the derived operational semantics for our

probabilistic language, the derivation strategy is equivalent to the

transition system.
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Animation Approaches to Operational Semantics

(1) Animation of Operational Semantics:

For the derived operational semantics of PTSC, we can animate this

transition system.

(2) Animation of Derivation Strategy of Operational

Semantics:

With the mechanical approach of algebraic semantics and head normal

form, we can animate the execution of a program based on the

derivation strategy of operational semantics from algebraic semantics.

3 Advantages:

Using the simulated execution of the two animation approaches, the

fact of the equivalence between the derivation strategy and the derived

operational semantics can be shown through various test examples.
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Animation of Operational Semantics for PTSC

Assignment Guarded Component:
(1) assignment guarded choice;

(2) guarded choice composed of assignment and event guarded components

EB $ (Sigma) ∧ Sigma = Sigma ⊗ (V = E) ∧ [S′, Sigma] /−[′v′]→ [ , Sigma]

[[[Pr for EB then (V = E) $ S]|S′], Sigma] −[′c′, Pr]→ [S, Sigma ].

EB $ (Sigma) ∧ [S′, Sigma] −[′c′, Pr′]→ [S1, Sigma ] ∧ [S′, Sigma] /−[′v′]→ [ , Sigma]

[[[ Pr for EB then ( V = E) $ S] | S′], Sigma] −[′c′, Pr′]→ [S1, Sigma ].

[S′, Sigma] −[′v′]→ [S1, Sigma]

[[[ Pr for EB then ( V = E) $ S]|S′], Sigma] −[′v′]→ [S1, Sigma].
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Animation of Gene Oper Sem from Alge Sem (1)

Definition:

(1) If the head normal form of process P can be expressed as a guarded choice,

then the transition rules for the process P are the same as the transition

rules of its corresponding guarded choice.

(2) On the other hand, if the head normal form of process P has a structure of

summation, then the process P can first do [′tau′] transitions and reach to

all the processes that are initially deterministic.

∼ pgc([X | L])
[[X | L], Sigma]−[′tau′]→ [X,Sigma].

L ∼= [ ] ∧ [L, Sigma]−[′tau′]→ [Y, Sigma]

[[ | L], Sigma]−[′tau′]→ [Y, Sigma].

Here, ∼ pgc([X | L]) indicates that the head normal form of [X | L] is not in

the form of the five types of guarded choice, which means it is a summation.
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Conclusion (1)
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Conclusions (2)

Theoretical Approach:

• We have provided algebraic laws. A process can be expressed as

either a guarded choice, or the summation of a set of processes

that are initially deterministic. program.

• We have studied the derivation of the operational semantics for

our language from its algebraic semantics. A transition system

(i.e., operational semantics) for our language can be derived via

the derivation strategy.

• We have investigated the relationship between the derivation

strategy and the derived operational semantics (the equivalence).
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Conclusions (3)

Mechanical Approach:

• We explored the algebraic laws for PTSC using a mechanical

approach. We mainly focused on the mechanical generation of

the parallel expansion laws.

• We studied the mechanical generation of the head normal form

for a program.

• We implemented the theoretical derivation strategy for deriving

the operational semantics from the algebraic semantics. For the

derived operational semantics as a whole system, we also

investigated its animation.
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Current and Future Work

1. Our language PTSC:

We are exploring the denotational semantics for PTSC and doing

the link between various semantics for PTSC.

2. Quality Calculus + PTSC:

Currently we are working on integrating quality calculus with

PTSC.

3. Wireless System and Mobile Ad Hoc Networks:

For wireless system and mobile ad hoc networks, we are studying

various semantics and their linking theories.

4. Cyber-Physical Systems:

We are doing the algebraic semantics, denotational semantics, etc

for Cyber-Physical Systems.
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