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La marée dans un modèle de circulation générale
dans les mers Indonésiennes

JURY
Isabelle Dadou Présidente Professeur-Université Paul
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Abstract

In the Indonesian seas, large tidal currents interact with the rough topography and create

strong internal waves at the tidal frequency, called internal tides. Part of them will eventually

propagate and dissipate far away from generation sites. Their associated mixing upwells cold

and nutrient-rich water that prove to be critical for climate system and for marine resources.

This thesis uses the physical ocean general circulation model, NEMO, as part of the INDESO

project that aims at monitoring the Indonesian marine living resources. Models not taking into

account tidal missing are unable to correctly reproduce the vertical structure of watermasses in

Indonesian seas. However, taking into account this mixing is no simple task as the phenomena

involved in tidal mixing cover a wide spectrum of spatial scales. Internal tides indeed propagate

over thousands of kilometres while dissipation and mixing occurs at centimetric to millimetric

scales. A model capable of resolving all these processes at the same time does not exist. Until

now scientists either parameterised the tidal mixing or used models which only partly resolve

internal tides. More and more scientists introduce explicit tidal forcing in their models but

without knowing where the energy is going and how the internal tides are dissipated. This thesis

intends to quantify energy dissipation in NEMO forced with explicit tidal forcing and compares

it to the dissipation induced by the currently used parameterization. This thesis also provides

new results about the quantification of the tidal energy budget in NEMO. I first contributed

to an INDESO study that aimed at validating the model against several observation data

sets. In a second and third study, I investigated the mixing produced in the model by explicit

tidal forcing and its impact on water mass. Explicit tides forcing proves to produce a mixing

comparable to the one produced by the parameterization. It also produces a significant cooling

of 0.3 °C with maxima reaching 0.8°C in the areas of internal tide generation. The cooling is

stronger on austral winter. The spring tides and neap tides modulate this impact by 0.1°C to

0.3°C. The model generates 75% of the expected internal tides energy, in good agreement with

other previous studies. In the ocean interior, most of it is dissipated by horizontal momentum

dissipation (19 GW), while in reality one would expect dissipation through vertical possesses.

This value is close to the dissipation induced by the parameterization (16 GW). The mixing

is strong over generation sites, and only 20% remains for far field dissipation mainly in the
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Banda and Sulawesi Seas. The model and the recent INDOMIX cruise [Koch-Larrouy et al.

(2015)], which provided direct estimates of the mixing, are surprisingly in good agreement

mainly above straits. However, in regions far away from the energy generation sites where

INDOMIX found NO evidence of intensified mixing, the model produces too strong mixing.

The bias comes from the lack of specific set up of internal tides in the model. More work

is thus needed to improve the modeled dissipation, which is a theme of active research for

the scientific community. I dedicated the last part of my thesis to the quantification of tidal

energy sinks in NEMO. I first worked on a simple academic case: the COMODO internal tides

test case, which analyses the behaviour of a vertically stratified fluid forced by a barotropic

flow interacting over an idealized abyssal plain/slope/shelf topography without bottom friction.

The results of the finite element T-UGOm hydrodynamic model are compared with those of

NEMO. The central issue in calculating tidal energy budget is the separation of barotropic and

baroclinic precesses. To this aim we developed an original method based on the projection

on vertical modes. At first glance, this method compares well with the classical method of

separation using the vertically averaged current. However, when looking into more details at

energy budgets, vertical modes allow a cleaner and more realistic separation between barotropic

and baroclinic tides. This precision will be very useful for the future SWOT mission. Also this

method of separation allows quantification of the energy associated with each mode. This

allowed us to identify an important bias in NEMO: The higher the mode is the shorter the

NEMO wavelengths become compared to the T-UGOm wavelengths. NEMO also produces a

strong numerical mixing that erodes the barotropic tides on the abyssal plain, where there is

no bottom friction. The best suspect might be the 2D/3D coupling scheme implied by the

NEMO’s time splitting. This work pinpoints areas for reflection and investigation to improve

how the model takes into account internal tides dissipation. Based on our separation method,

work is in progress to better quantify tidal energy budget in the Indonesian Seas.

Keywords : INDESO, internal tides, mixing,NEMO,water masses transformation,normal

modes.
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Résumé

Les mers Indonésiennes sont le siège de très fort courants de marée qui interagissent avec la

topographie pour créer des ondes internes à la fréquence de la marée que l’on appelle marée in-

terne. Certaines d’entres elles, vont se propager et se dissiper loin des sources de génération. Le

mélange associé provoque la remontée d’eau plus froide et plus riche en nutriments en surface qui

influence le climat tropical et toute la chaine des écosystèmes marins. Surveiller les ressources

marines est l’objectif du projet INDESO, dont cette thèse fait partie et qui utilise le modèle

physique de circulation générale NEMO. Les modèles qui ne prennent pas en compte le mélange

induit par la marée interne ne sont pas capables de reproduire les masses d’eau en Indonésie.

Mais prendre en compte ce mélange n’est pas facile. En effet, le résoudre entièrement n’est pas

possible car les échelles concernées par les différents processus des ondes internes varient de

plusieurs milliers de kilomètres (propagation) à quelques centimètres/millimètres (dissipation).

De plus en plus de scientifiques introduisent le forçage de la marée dans leur modèle mais sans

savoir où va l’énergie et comment les ondes sont dissipées. Dans cette thèse nous cherchons à

proposer des outils et des débuts de réponses pour participer à une meilleure compréhension

de la dissipation des ondes internes dans le modèle de circulation générale d’océan NEMO.

J’ai, tout d’abord, contribué à une étude d’INDESO sur la validation de NEMO grâce à de

nombreux jeu de données. Ensuite, j’ai cherché à quantifier et à qualifier le mélange induit par

l’introduction de la marée explicite dans le modèle, ainsi que son impact sur les masses d’eau.

La transformation de masses d’eau induite par la marée explicite est comparable à celle produite

par la paramétrisation des ondes internes généralement utilisée dans les mers Indonésiennes. Il

produit un refroidissement de surface de 0.3°C avec des maxima atteignant 0.8°C au niveau des

sites de génération des ondes internes. Le climat et les ressources marines seront certainement

sensibles à ces refroidissements survenant à la fréquence de la marée. Le modèle reproduit

75% de l’énergie attendue de génération des ondes internes, en bon accord avec des études

précédentes. L’essentiel de la dissipation a lieu horizontalement (19GW), alors que, dans la

réalité, on s’attend principalement à une dissipation réalisée grâce à des processus verticaux.

Cette valeur est proche de celle induite par la paramétrisation couramment utilisée (16GW).

Quant à la structure spatiale, l’énergie se dissipe essentiellement localement, au dessus des sites
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de génération, et seulement 20% de l’énergie se propage avant d’être dissipée en aval des sites de

génération, principalement dans la mer de Banda et la mer du Sulawesi. Le modèle, au dessus

des zones de génération, est de façon surprenante en très bon accord avec les mesures in situ de

dissipation obtenues lors de la campagne INDOMIX [Koch-Larrouy et al. (2015)]. Par contre,

dans les régions distantes des sources de génération, le modèle surestime le mélange par rapport

aux observations d’INDOMIX. Ce biais vient principalement du fait qu’il n’y a aucune prise

en compte des processus associés à la dissipation des ondes internes dans le modèle. Ce point

précis est un thème de recherche actif au sein de la communauté scientifique. Dans la dernière

partie de cette thèse j’ai commencé à apporter des éléments de réponse à la quantification des

puits d’énergie dans NEMO. J’ai pour cela travaillé avec le cas test COMODO, qui est une

section d’un fluide stratifié constituée d’une plaine abyssale, d’un talus et d’un plateau, forcée

par la marée et sans friction de fond. Le modèle T-UGOm, un modèle hydrodynamique de

marée avec une grille en éléments finis, est comparé au modèle NEMO. Dans ce cadre, nous

avons développé une méthode originale pour séparer la marée barotrope de la marée barocline.

Elle repose sur la projection en modes normaux. Cette méthode donne, à première vue, des

résultats similaires à ceux obtenus grâce à la méthode plus classique de soustraction par la

moyenne verticale. Cependant, lorsque l’on regarde plus en détail les diagnostiques d’énergie

on trouve que la méthode de projection en modes normaux offre une plus grande précision et

un plus grand réalisme pour séparer la marée barotrope de la marée barocline. Cette précision

sera très utile pour les futures missions SWOT. Par ailleurs, cette méthode donne accès à la

décomposition d’énergie mode par mode et nous a permis d’identifier certains biais. Plus on

monte dans des modes élevés plus les longueurs ondes se raccourcissent dans NEMO par rapport

à T-UGOm. Par ailleurs, NEMO dissipe la marée barotrope dans la plaine abyssale, alors qu’il

n’y a explicitement pas de friction. Ce ne peut pas être la diffusion verticale ou horizontale qui

est à l’œuvre ici, car il n’y a pas de raison physique pour une diffusion sur un fond plat. Le

meilleur candidat pour expliquer cette diffusion serait le couplage 2D/3D du time splitting de

NEMO. Ce travail offre des pistes de recherche nouvelles pour améliorer la prise en compte de

la marée dans les modèles de circulation générale. Un travail est en cours pour appliquer cette

méthode sur l’ensemble de l’archipel Indonésien.

Mots Clés : INDESO, marée interne, mélange, NEMO, transformation de masses d’eau,

modes normaux.
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Chapter 1

Thesis introduction

1.1 Introduction

1.1.1 The context of the INDESO project

The Indonesia, with its 17000 islands is the largest archipelagic country in the World. In-

donesian archipelago lies at the heart of the Coral Triangle and is one of the most important

reservoirs of marine biodiversity on the planet [Allen and Werner (2002); Mora et al. (2003)].

70% of the world coral species is found in this region [Veron et al. (2009)]. The region pro-

vides several billion dollars of annual revenue through fisheries, aquaculture and tourism, with

fishing and aquaculture employing almost 50 million people. Tuna fisheries are a major eco-

nomical sector in Indonesia. If sustainably exploited, Indonesian seas represent a most valuable

source of profit and employment. The need of monitoring and forcasting is thus vital. Work

has to be done to develop sustainable use of the Indonesian marine resources while preventing

unsustainable or illegal practices that undermine these resources.

This is the main objective of the INDESO project (2013-2017), funded by the Ministry of Marine

Affairs and Fisheries (MMAF) of the Republic of Indonesia. To achieve this goal, INDESO has

implemented a “core system” made of 3 components:

1) A satellite receiving station to operationally acquire and process SAR images. These images

are used for detecting and deterring IUU fishing activities, and to monitor oil spills.

2) A suite of numerical ocean models NEMO [Madec (2008)] and PISCES [Aumont (2004)],

forced by satellite and in-situ data to monitor and forecast the evolution of the ocean circula-

tion and biogeochemistry in the Indonesian EEZ. These models are also used to drive a tuna

population dynamics model SEAPODYM [Lehodey et al. (2008)] simulating the evolution of

the regional distribution and abundance of skipjack, yellowfin and bigeye tuna.
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3) A central information system (CIS) acquiring all data produced by the satellite receiving

station, the ocean models, the fish population dynamics models and high-resolution imagery

obtained from various commercial satellites.

All data are distributed to authorized users through a Web portal. Based on this core system,

INDESO aims at providing indispensable information allowing sustainable use of marine re-

sources in Indonesia. INDESO more specifically focuses on seven key application domains (see

figure 1.1): Combating illegal fishing, Managing fish stocks (especially tuna), Monitoring and

management of coastal regions and Marine Protected Areas, Monitoring and protection of coral

reefs Monitoring and support to shrimp producers and industrial aquaculture, Monitoring and

support to seaweed farming, Monitoring and prevention of oil spills.

Figure 1.1: The INDESO project “Eye-Concept” and its environment ; Source:www.cls.fr
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1.1.2 The context of this thesis

The wind stress and the ocean tides are believed to be the only significant sources of mechanical

energy driving the deep ocean mixing necessary to sustain the global overturning circulation

[Wunsch and Ferrari (2004)]. The overall tidal energy budget is estimated to be about 3.5 TW.

Tidal energy is provided by the astronomic bodies (Earth, Moon and Sun) through gravitational

forces work. 2.6 TW of this (mostly barotropic) energy is dissipated through to bottom friction

and 0.9 TW are converted into internal tides, which will further dissipate locally or after

propagation.

Internal tides generation occurs in the area where barotropic flows interact with strong topo-

graphic gradient and create isopycnal heaving at tidal frequency. Barotropic horizontal motions

are converted into vertical velocities over the topography. Part of internal tides could dissipate

and produce vertical mixing locally just after generation, or later after propagation.

Many studies try to quantify the energy generation of the internal tides. For the global ocean

tidal hydrodynamic model with data assimilation [Lyard et al. (2006)] and through inverse

calculation using altimeter data [Egbert and Erofeeva (2002)] indicates that 0.7 TW or roughly

25% – 35% of the barotropic M2 tidal energy is converted through internal tides generation.

Barotropic hydrodynamical models are not capable to resolve explicitly internal tides, hence

energy conversion is parameterized as a wave drag based on bottom topography slope and

barotropic currents, acting as a barotropic energy sink [Lyard et al. (2006); Shriver et al.

(2012); Buijsman et al. (2015)].

In the recent years, OGCMs have been used to estimate internal tides energy in realistic strati-

fication [Niwa and Hibiya (2001a); Niwa (2004); Lorenzo (2006); Jan et al. (2007, 2008); Carter

et al. (2008); Jan and Chen (2009); Zilberman et al. (2009); Arbic et al. (2010); Niwa and Hi-

biya (2011); Carter et al. (2012); Kang and Fringer (2012a); Muller et al. (2012a); Shang et al.

(2015); Nagai and Hibiya (2015)]. In that case, the model explicitly solves internal tides, with

more or less accuracy. Indeed, the mechanism of internal tides dissipation is still highly con-

troversial, however it is usually admitted that a great parts of the energy get finally converted

into ocean mixing.

The proportion of barotropic tides energy converted into baroclinic tides has been discussed

for a long time. Today, the precise quantification of internal tide generation (through energy

budget computation) and the fate of internal tide energy remain open questions. This thesis

constitutes a contribution to the investigation relative to these questions in the context of the
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INDESO project.

The Indonesian archipelago is the only region of the world with strong internal tides generation

in a semi-enclosed area. As a result, all of the internal (or baroclinic) tidal energy remains

trapped locally inside the archipelago and is available for dissipation. Thus, the archipelago is

one of the regions in the World with the largest internal tides generation (10% of the global

value). As a results water mass is transformed when entering the archipelago producing colder

and fresher thermocline water and saltier and colder surface water [Ffield and Gordon (1996);

Hautala et al. (2001); Koch-Larrouy et al. (2007)]. Vertical diffusivity of 1–2.10−4m2/s have

been estimates from observations to be necessary in order to explain the water mass transfor-

mation in the archipelago [Ffield and Gordon (1992)].

Recently, the INDOMIX cruise provided direct estimates of internal tides mixing [Koch-Larrouy

et al. (2015)] with higher values (10−2m2/s) in the shallow and narrow passage (Ombai Strait

and Halmahera portals) in comparison to lower values in the inner Halmahera Sea (10−4m2/s)

or further away from generation sites (10−6m2/s) in the Banda Sea. This new results show

that the mixing induced by internal tides in the Indonesian archipelago is highly heterogeneous

in space, with high values above straits and low values further away from generation sites. In

addition, it demonstrates that internal tides mixing is also strong at the surface.

Modelling in the region is quite challenging because of the numerous processes acting and the

very complex bathymetry. Koch-Larrouy et al. (2007), implemented a tidal parameterization

adapted to the specificities of the Indonesian archipelago. Introduced in an Oceanic General

Circulation Model (OGCM), this parameterization allows the model to better represent the

properties of the water mass evolution in each sub-basin, in good agreement with the obser-

vations [Koch-Larrouy et al. (2007)]. It produces heterogeneous vertical diffusivity as large as

10.10−4m2/s, with an average of 1.5.10−4m2/s. This is in quite good agreement with previous

estimates deduced from observations [Ffield and Gordon (1996)]. This suggests that the total

energy input provided by the tidal parameterization has the right order of magnitude.

This tidal mixing parameterization also cools the sea surface by 0.5°C in annual average, which

reduces the deep convection, and the rain activity (by 20%) [Koch-Larrouy et al. (2007, 2010);

Sprintall et al. (2014)]. The impact on biological activity has not yet been studied, but it

could be guessed from these results that the vertical mixing would have a significant impact on

blooms of phytoplankton by upwelling water richer in nutrients at the surface.

However, this parameterisation was a first step towards taking into account the mixing induced
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by the internal tides, as in reality, the dissipation may not occurs exclusively locally but some

fraction could dissipate in the far field. Also this dissipation may vary in time following the

cycles of variability of the surface tides. Such limitations and the increase of resolution encour-

age scientists to force their Ocean General Circulation Models (OGCMs) by the explicit tidal

forcing (eg: in Indonesian seas: [Castruccio et al. (2013); Kartadikaria et al. (2011); Nagai and

Hibiya (2015)], in Luzon : [Niwa and Hibiya (2001b); Jan et al. (2008); Wang et al. (2016);

Alford et al. (2015)], in Global : [Niwa and Hibiya (2011); Arbic et al. (2012); Simmons et al.

(2004); Shriver et al. (2012)]. The resolution of these models is generaly between 1 to 10 km.

Niwa and Hibiya (2011) show that using a 9km ( 1/12°) resolution the model is able to generate

only 75% of the internal tides. With a 4km ( 1/36°) resolution, the model generates 90% of the

internal tides. With such relatively coarse resolution the processes involved in the dissipation of

the internal tides can’t be resolved. However, studies in the Indonesian archipelago [Castruccio

et al. (2013); Kartadikaria et al. (2011); Nagai and Hibiya (2015)] show that the addition of

explicit tidal forcing produces mixing that improves the water mass, reproducing the homoha-

line Indonesian Water. The question is how the model is able to create mixing when no specific

parameterization is active in the model. Is it done at the correct rate along the lifetime of the

internal tides?

In order to respond at these questions we performed simulations with and without tides and

calculate the kinetic and potential energy dissipations. Validation of these tidal energy estimates

are done using the INDOMIX recent cruise. But these estimates rely on the hypothesis that the

physic induced by wind and hydrodynamic forcing is identical with and without tides, which

may not be entirely true. Also the need of a precise tidal budget in NEMO is needed. The last

part of this thesis work has been achieve in order to provide a method and diagnostics to better

quantify the tidal energy budget in NEMO. The results are presented in this manuscript on a

simple test case and some work is in progress to apply it over the Indonesian region.

The central issue in calculating tidal energy budget is the separation of barotropic and baroclinic

processes, in terms of velocity and pressure. Although intuitive, this issue is nothing but

trivial and needs to define precisely the meaning of ”barotropic dynamics” and ”baroclinic

dynamics” terms. A universal, precise definition does not exist and still trigger some controversy

among researchers. Kelly and Nash (2011) gives a revolutionary comprehension to show the

complexities and the importance of barotropic and internal tides separation in order to remove

spurious tidal energy budget. His study lead to incertitude of the common methods that has

been first introduced by [Baines (1982)] and followed by researchers until now [Niwa and Hibiya

5



(2001a); Jan et al. (2008); Carter et al. (2008); Kang (2010); Zilberman et al. (2009); Niwa and

Hibiya (2011); Jeon et al. (2014); Nagai and Hibiya (2015); Alford et al. (2015); Wang et al.

(2016)].

The main objectives of the thesis are thus: Provide quantification of the energy generation,

dissipation of the tides in NEMO over the Indonesian region; Establish the impact of the

associated dissipation on water mass, surface cooling and its associated variability; Provide

knowledge, tools and diagnostics to better describe the energy route of the tidal fields.

This thesis manuscript is organized as follows: Chapter 2 will first review the currentology,

and hydrography, as well as the tidal properties of the Indonesian seas. The evaluation on the

INDESO physical model is then presented in Chapter 3. Chapter 4 presents results on the effect

on explicit tidal forcing on surface properties, while Chapter 5 shows a more detailed study

that investigate the energy of generation and dissipation of the tides in the model. Chapter

6 presents the controversy on the tidal energetic calculation. Finally, the conclusions of this

thesis are presented in Chapter 7, while a discussion and perspectives to this work are provided

in Chapter 8.

1.2 Introduction(in French)

1.2.1 Le contexte du projet INDESO

Avec ses 17 000 ı̂les, l’Indonésie, est le plus grand pays archipélagique du monde. L’archipel

indonésien, au coeur du triangle de corail, est un des principaux réservoirs de la biodiversité

marine au niveau mondial [Allen and Werner (2002); Mora et al. (2003)]. On y trouve 70% des

espèces de corail connues [Veron et al. (2009)]. La pêche et l’aquaculture emploient près de 50

millions de personnes et constituent, avec le tourisme, une source de revenu importante pour

l’Indonésie. La pêche thonière, en particulier, est un secteur d’activité majeur. Si elles sont

exploitées de façon durables, les mers indonésiennes représentent donc une source de richesse

et d’emploi inestimable. Il est donc indispensable de suivre et de prévoir leur évolution afin

de pouvoir développer une exploitation durable des ressources marines, tout en contrôlant et

en décourageant les activités illégales qui menacent ces ressources. C’est l’objectif principal du

projet INDESO (2013-2017), financé par le ministère des Affaires maritimes et des Pêches de

la République d’Indonésie. Pour atteindre cet objectif, INDESO a mis en place un ”système

central” composé de 3 composants:
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1) Une station de réception d’images satellitaires permettant d’acquérir et de traiter, de manière

opérationnelle, des images SAR. Ces images sont utilisées pour détecter les activités de pêche

illégales et les pollutions par hydrocarbures.

2) Une série de modèles numériques d’océan (NEMO [Madec (2008)] et PISCES, [Aumont

(2004)], forcés par des observations satellitaires et in situ pour simuler et prévoir l’évolution

de la circulation océanique et de la bio-géochimie dans la ZEE indonésienne . Les sorties de

ces deux modèles sont également utilisés pour forcer SEAPODYM [Lehodey et al. (2008)], un

modèle de dynamique de la population simulant l’évolution de l’abondance et la distribution

spatiale des 3 principales espèces de thons exploitées en Indonésie : la bonite, le thon jaune et

le thon obèse.

3) Un système d’information central (CIS) qui stocke toutes les données acquises par la sta-

tion de réception d’images satellitaires ou produites par les différents modèles numériques. Le

CIS distribue également ces données aux utilisateurs autorisés grâce à un serveur Web. IN-

DESO vise ainsi à fournir des informations indispensables permettant une utilisation durable

des ressources marines en Indonésie. INDESO se concentre plus spécifiquement sur sept do-

maines d’application clés (voir figure 1.1): Lutte contre la pêche illégale, gestion des stocks de

poissons (en particulier le thon), surveillance des régions côtières et des aires marines protégées,

surveillance des récifs coralliens, surveillance et support à la crevetticulture et à l’aquaculture

industrielle, surveillance et support à l’algoculture, surveillance des pollutions par hydrocarbu-

res.

1.2.2 Le contexte de cette thèse

Le vent et les marées sont les principales sources d’énergie mécanique provoquant le mélange de

nécessaire pour maintenir la circulation de retournement globale [Wunsch and Ferrari (2004)].

L’apport global d’énergie par la marée est estimé à environ 3,5 TW. Cette énergie est fournie

par les corps astronomiques (Terre, Lune et Soleil) grâce au travail des forces gravitationnelles.

2.6 TW de cette énergie (principalement barotrope) est dissipée par frottement du fond et 0.9

TW sont convertis en marées internes, qui se dissiperont localement ou après propagation. La

génération de la marée interne se produit dans les zones où des écoulements barotropes inter-

agissent avec un gradient topographique fort et créent un soulèvement isopycnal à la fréquence

des marées. Les mouvements horizontaux barotropes sont convertis en vitesses verticales sur la

topographie. Une partie des marées internes peut se dissiper et produire un mélange vertical

7



localement juste après la génération, ou plus tard après la propagation. De nombreuses études

tentent de quantifier la génération d’énergie liée aux marées internes. Lyard et al. (2006), avec

un modèle hydrodynamique de marée global assimilant des données et Egbert and Erofeeva

(2002), avec un calcul inverse utilisant des données altimétriques, estiment que 0,7 TW ou

environ 25% à 35% de l’énergie de la composante barotrope de la marée M2 est converti par

génération de marée interne. Les modèles hydrodynamiques barotropes n’étant pas capables

de résoudre explicitement la marée interne, le transfert d’énergie vers la marée interne y est

paramétrée sous forme de frottement de fond lié à la pente du fond et à la vitesse du courant

barotrope [Lyard et al. (2006); Shriver et al. (2012); Buijsman et al. (2015)]. Au cours des

dernières années, des modèles de circulation générale (OGCM) ont été utilisés pour estimer

l’énergie interne des marées dans une stratification réaliste [Niwa and Hibiya (2001a); Niwa

(2004); Lorenzo (2006); Jan et al. (2007, 2008); Carter et al. (2008); Jan and Chen (2009);

Zilberman et al. (2009); Arbic et al. (2010); Niwa and Hibiya (2011); Carter et al. (2012); Kang

and Fringer (2012a); Muller et al. (2012a); Shang et al. (2015); Nagai and Hibiya (2015)]. Dans

ce cas, le modèle résout explicitement les marées internes, avec plus ou moins de précision. En

effet, le Dans ce cas, le modèle résout explicitement les marées internes, avec plus ou moins de

précision. En effet, le mécanisme de la dissipation interne des marées est encore très controversé,

mais on admet généralement que qu’une part importante de l’énergie est dissipée par mélange

vertical. La proportion de l’énergie des marées barotropes converties en marées baroclines a

été discutée depuis longtemps. Aujourd’hui, la quantification précise de la génération de la

marée interne et le devenir de l’énergie y associée restent des questions ouvertes. Cette thèse

constitue une contribution à l’enquête relative à ces questions dans le cadre du projet INDESO.

L’archipel indonésien est la seule région du monde avec une forte génération de marées internes

dans une zone semi-fermée. En conséquence, toute l’énergie de marée interne (ou barocline)

reste piégée localement à l’intérieur de l’archipel et est disponible pour la dissipation. Ainsi,

l’archipel indonésien est l’une des régions du monde avec la plus grande génération de marées

internes (10% de la valeur globale). En conséquence, les masses d’eau se transforment en en-

trant dans l’archipel : les eaux profondes de la thermocline deviennent plus chaudes et moins

salées alors que les eaux de surfaces se refroidissent et deviennent plus salées [Ffield and Gordon

(1996); Hautala et al. (2001); Koch-Larrouy et al. (2007)]. Il a été estimé qu’une diffusivité

verticale de 1 à 2 10-4 m2/s était nécessaire pour expliquer la transformation des masses d’eau

dans l’archipel [Ffield and Gordon (1992)]. Récemment, la croisière INDOMIX a fourni des

estimations directes du mélange induit par la marée interne [Koch-Larrouy et al. (2015)]. Des

valeurs élevées de diffusivité (10−2m2/s) ont été mesurées dans des passages peu profonds et
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étroits (détroit d’Ombai et Halmahera) et des valeurs faibles ont été observées à l’intérieur de

la mer d’Halmahera (10−4m2/s) ou plus loin des sites de production (10−6m2/s) dans la mer

de Banda. Ces nouveaux résultats montrent que le mélange induit par les marées internes dans

l’archipel indonésien est très hétérogène dans l’espace, avec des valeurs élevées au-dessus des

détroits et des valeurs faibles plus loin des sites de production. En outre, il démontre que le

mélange interne des marées est fort à la surface. La modélisation des mers indonésiennes est très

difficile en raison des nombreux processus qui agissent et de la bathymétrie très complexe. Koch-

Larrouy et al. (2007) , a mis en place une paramétrisation des marées adaptée aux spécificités

de l’archipel indonésien. Introduite dans un OGCM, cette paramétrisation permet au modèle

de mieux représenter l’évolution des propriétés de de la masse d’eau dans chaque sous-bassin, en

accord avec les observations [Koch-Larrouy et al. (2007)]. Cette paramétrisation produit une

diffusivité verticale hétérogène atteignant 10.10−4m2/s, avec une moyenne de 1.5.10−4m2/s.

Cela suggère que l’apport énergétique total fourni par la paramétrisation des marées a le bon

ordre de grandeur. Cette paramétrisation du mélange des marées refroidit également la surface

de la mer de 0,5 ° C en moyenne annuelle, ce qui réduit la convection profonde et la pluviosité

(de -20%) [Koch-Larrouy et al. (2007); Sprintall et al. (2014)]. L’impact sur l’activité biologique

n’a pas encore été étudié, mais on peut penser que le mélange vertical aurait un impact sig-

nificatif sur les blooms de phytoplancton grâce à l’apport en surface d’eaux profondes riches

en nutriments. Cependant, cette paramétrisation n’est qu’une première étape vers la prise en

compte du mélange induit par les marées internes. En réalité, la dissipation ne se produit

pas exclusivement localement mais une fraction de l’énergie peut se dissiper dans le champ

lointain. Cette dissipation peut également varier dans le temps suivant les cycles de variabilité

des marées de surface. De telles limitations et l’augmentation de la résolution encouragent les

scientifiques à inclure dans leurs OGCM une modélisation explicte de la marée (par exemple

dans les mers indonésiennes: [Castruccio et al. (2013); Kartadikaria et al. (2011); Nagai and

Hibiya (2015)] ; à Luzon : [Niwa and Hibiya (2001b); Jan et al. (2008); Wang et al. (2016);

Alford et al. (2015)], au niveau global: [Niwa and Hibiya (2011); Arbic et al. (2012); Simmons

et al. (2004); Shriver et al. (2012)]. La résolution de ces modèles se situe entre 5 et 10 km. Niwa

and Hibiya (2011) montrent qu’en utilisant une résolution de 9 km ( 1/12 °), le modèle ne peut

générer que 75% des marées internes. Avec une résolution de 4 km ( 1/36 °), le modèle génère

90% des marées internes. Avec une résolution relativement grossière, les processus impliqués

dans la dissipation des marées internes ne peuvent pas être complètement résolus. Cependant,

des études dans l’archipel indonésien [Castruccio et al. (2013); Kartadikaria et al. (2011); Nagai

and Hibiya (2015)] montrent que l’ajout d’un forçage de marée explicite produit un mélange
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qui améliore la structure de la masse d’eau et reproduisent l’eau indonésienne homohaline. La

question est de savoir comment ce type de modèle peut créer du mélange en l’absence d’une

paramétrisation spécifique. Est-ce que cela se fait à un taux correct pendant toute la durée de

vie des marées internes? Afin de répondre à ces questions, nous avons effectué une simulation

avec marée et une autre sans marée. Nous avons ensuite comparé la dissipation de quantité de

mouvement et d’énergie potentielle dans ces 2 simulations. La validation de ces estimations de

la dissipation est effectuée à l’aide des résultats de la croisière INDOMIX. Mais ces estimations

s’appuient sur l’hypothèse que la physique induite par le forçage éolien et hydrodynamique est

identique avec et sans la marée, ce qui n’est probablement pas entièrement vrai. De plus, le

besoin d’un budget de marée précis dans NEMO est nécessaire. Dans la dernière partie de cette

thèse, des travaux ont été réalisés afin de fournir une méthode et des diagnostics permettant de

mieux quantifier le budget énergétique de la marée dans NEMO. Les résultats sont présentés

dans ce manuscrit sur un cas de test simple. Des travaux sont en cours pour l’appliquer sur la

région indonésienne. Le problème central dans le calcul du budget énergétique de la marée est

la séparation des processus barotropes et baroclines, en terme de vitesse et de pression. Bien

qu’intuitif, ce problème est loin d’être trivial et nécessite une définition précise de la dynamique

barotrope et de la dynamique barocline. Une définition universelle et précise n’existe pas et

déclenche encore une certaine controverse parmi les chercheurs. Kelly and Nash (2011) propose

une compréhension � révolutionnaire � de ces problèmes afin de mettre en évidence la com-

plexité et l’importance de la séparation barotrope/barocline dans le cadre de l’étude du budget

énergétique de la marée. Son travail questionne la validité des approches courantes introduites

par Baines (1982) et suivies jusqu’à présent par la plupart des chercheurs [Niwa and Hibiya

(2001a); Jan et al. (2008); Carter et al. (2008); Kang (2010); Zilberman et al. (2009); Niwa and

Hibiya (2011); Jeon et al. (2014); Nagai and Hibiya (2015); Alford et al. (2015); Wang et al.

(2016)]. Les principaux objectifs de cette thèse sont donc de 1) Quantifier, dans NEMO, la

production et la dissipation d’énergie liée à la marée dans les mers indonésiennes 2) Etablir

l’impact de la dissipation sur les masses d’eau simulées et sur le refroidissement en surface et sa

variabilité 3) Fournir de nouvelles connaissances, des méthodes et des diagnostics permettant

de mieux décrire les processus de transfert d’énergie liés à la marée.

Ce manuscrit de thèse est organisé comme suit: le chapitre 2 passe en revue la courantologie,

l’hydrographie, et les marées dans les mers indonésiennes. L’évaluation du modèle physique

utilisé dans INDESO est ensuite présentée au chapitre 3. Le chapitre 4 étudie l’impact de la

modélisation explicite de la marée sur les propriétés de surface, tandis que le chapitre 5 présente
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une étude plus détaillée consacrée à la génération et la dissipation de l’énergie liée à la marée.

Le chapitre 6 présente la controverse existant sur le calcul du bilan en énergie de la marée.

Les conclusions de cette thèse sont présentées au chapitre 7. Enfin, une discussion finale et les

perspectives de ce travail sont fournies au chapitre 8.
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2.1 The indonesian archipelago a unique region of the

world

Indonesian Archipelago (IA) is the only area where two major oceans, the Pacific and the

Indian, are connected near the Equator. The IA plays at least two important roles in the global

ocean. The first, concerns its role in the climate system. It encompasses some of the warmest

surface temperatures of the world ocean that drive intense atmospheric convection [Clement

et al. (2005)] and is therefore able to influence climate on the global scale via atmospheric

teleconnections [Neale and Slingo (2003)].

The atmospheric deep convection is the center of the Walker and Hadley Circulation and

is one of the main driving forces of the tropical atmospheric circulation. The Indonesian Seas

contribute to this deep convection as heat and moisture source [Kawamura and Matsuura

(2003)]. As such, the volume of surface heat content in IA is known to impact the state

of the Pacific and Indian oceans as well as air–sea exchange and gives influence to coupled

ocean–climate system [Godfrey (1996); Lukas et al. (1996); Lee et al. (2002); Vranes et al.

(2002); Jochum and Potemra (2008); Koch-Larrouy et al. (2010); Sprintall et al. (2014)].

The second important role is its oceanic pathway in the Pacific to Indian interocean exchange

which is known as Indonesian Through flow (ITF) that transports 10–20 Sv of warm and fresh

waters [Murray and Arief (1988); Fieux et al. (1994); Meyers (1996); Gordon and Fine (1996);

Hautala et al. (2001); Molcard et al. (2001); Susanto and Gordon (2005); Sprintall et al. (2009)].

The IA bathymetry is very complex (see Figure. 2.1), with numerous narrow straits, shal-

low submarine mounts and semi-enclosed basins with sharp shelf break down to 4000m depth

(Sulawesi, Molucca and Seram Seas). IA is the only region of the world where strong internal

tides remains trapped in the semi enclosed seas, so that a large amount of tidal energy remains

available for vertical mixing [Koch-Larrouy et al. (2007, 2008)].

Vertical mixing within the Indonesian seas allow a very strong water mass transformation

of the incoming Pacific waters into Indonesian water. Salinity maximums of the North Pacific

Subtropical Waters (NPSW) of 34.8 PSU (practical salinity unit) and the South Pacific Sub-

tropical Waters (SPSW) 35.4 PSU, are eroded during their residence in the Indonesian seas.

The Indonesian water enterring into the Indian Ocean are characterized by a homohaline water

mass with a salinity of 34.45 PSU. As a result, the tropical Indian Ocean thermocline is cooled

and freshened by the ITF [Song and Gordon (2004); Gordon (2005)].
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2.2 Topography and The Indonesian Through Flow

The INDESO model domain cover most of southeast asian waters including full part of IA. The

Bathymetry in Indonesian Archipelago is shown in figure 2.1. Model latitude varies from 150

south in Indian Ocean to pacific ocean in 220 north. Model longitude covers Andaman seas in

the west ( 950 East) to eastern Papua island in 1440 East.

The model region consists of more than 16000 islands and is lying over a complex bottom

topography. Shallow bottom topography of less than 50 meters can be found in Java seas and

Arafura seas whereas deep bottom topography of more than 6000 meters can be found in the

Indian Ocean, the Pacific Ocean and in the interior of Banda Sea. The region is also formed by

a complex coastline and many straits that create sharp topography gradient. Typical strong

bottom gradient can be found in the region facing the Pacific ocean such as Luzon, Halmahera

and Sangihe Straits and in the region facing to Indian Ocean such as Sunda, Lombok, Alas,

Flores and Timor straits. In the interior seas, the topography is even more complicated as the

small islands are current feature in this region.

The IA is the only low latitude upper passage in the global thermohaline circulation, known

as the Indonesian Through Flow (ITF). To reach the interior of Indonesian seas, Pacific water

must deal with deep gap along Phillipines and New guinea. The main entrance portals to the

the interior seas are the Luzon straits, the Sangihe Straits and the Halmahera seas [Gordon

and Fine (1996); Gordon (2005)]. ITF flow rate average is ranging from 10 - 15 Sv (1 Sv

≡ 106m3s−1)[Potemra (1999); Gordon (2005); van Aken et al. (2009); Gordon et al. (2010);

Wijffels et al. (2008)].

ITF transport has been measured from INSTANT program between 2004-2006 by deploying

three years of moorings at 5 stations along the route : Lombok, Makassar, Lifamatola, Ombai

and Timor straits. The ITF route from Pacific Ocean to Indian ocean can be divided into

western and eastern route into the interior of IS and through south china seas via Luzon Strait

and its total transport can be seen in figure 2.1.

The western route mainly concerns North Pacific waters that flow through the Sulawesi

Sea into the Makassar Strait. Within Makassar Strait, the 680 m deep Dewakang sill permits

only the upper thermocline waters to enter the Flores Sea and flow eastward to the Banda

Sea, or to directly exit into the Indian Ocean via the shallow (300 m) Lombok Strait. The

transport in Makassar strait was measured 11,6 Sv southward direction [Gordon et al. (2010)].
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Smaller contributions of Deeper Pacific water may also take an “eastern” route through the

Maluku Sea and over the deeper (1940 m) sill of Lifamatola Strait into the Banda Sea. The 3-

years mooring data in Lifamatola strait during INSTANT programme [van Aken et al. (2009)]

reflect vigorous horizontal and vertical motion in the lowest 500m over the 2000m deep sill,

with speeds regularly surpassing 100 cm/s. The strong residual flow over the sill in the passage

and internal, mainly diurnal, tides contribute to this bottom intensified motion. The average

volume transport of the deep throughflow from the Maluku Sea to the Seram Sea below 1250m

is 2.5 Sv. At shallower levels, between 1250m and the sea surface, the flow is directed towards

the Maluku Sea, north of the passage. The typical residual velocities in this layer are low

( 3cm/s), contributing to an estimated northward flow of 0.9–1.3 Sv. Finally as secondary

entrance to the IA, South Pacific waters may enter through from Halmahera Sea, as well as

water from fresh water Java.

Lombok Strait, Ombai Strait, and Timor Passage convey the full-depth transport and strat-

ification profile of the ITF from the Pacific Ocean to the Indian Ocean [Sprintall et al. (2009)].

Total mean transport over the 3-year period is 2.6 Sv in Lombok Strait (i.e., toward the Indian

Ocean), 4.9 Sv in Ombai Strait, and 7.5 Sv in Timor Passage. The transport in Timor Passage

is nearly twice as large as historical estimates and represents half of the 15 Sv full-depth ITF

transport that enters the Indian Ocean.

To first order, the seasonal cycle of transport in the thermocline (100–150 m) in all three

exit straits is dominated by regional monsoon forcing, with maximum ITF during the southeast

monsoon. During the northwest monsoon, the surface transport relaxes in Timor and weakly

reverses in Ombai and Lombok, so the main core of the ITF is subsurface.
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Figure 2.1: Main circulation of the Indonesian Through Flow (ITF) and its Volume Transport
(in Sv, 106 m3/s). ITF net transport is of between 10 and 15 Sv. It passes through the

shallow Makassar Strait (9 Sv), through the deep Lifamatola Strait (3 Sv). Another 0.5 to 1.5
Sv passes through Halmahera seas, and 0.5 to 1.5 through Java sea. 3 to 4 Sv flow out

through the shallow Lombok Strait, and 8 to 9 Sv out distributed among the deep Savu,
Sumba, and Timor Straits [Gordon (2005); Talley and Sprintall (2005); van Aken et al.

(2009); Sprintall et al. (2014)]. Bathymetry in 1/12 deg resolution interpolated from Etopo2
(www.ngdc.noaa.gov)

2.3 Surface Properties

The IA experiences a seasonal cycle due to monsoonal winds (figure 1.2), with the principal

rainy season centered on December- February (DJF), and the dry season peaking in July-August

[Aldrian and Dwi Susanto (2003); Chang et al. (2005)]. The ITCZ (Inter Tropical Convergence

Zone) follows this moonsonal cycle and is over the South China Sea from July to September,

and is over the Sunda Island archipelago, dipping into northern Australia from January to

March.

Monsoonal pattern of sea surface temperature and sea surface salinity is shown in figure 2.3.

The monsoonal winds shift the lowest surface salinity into the Java Sea and Southern Makassar
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Strait from January to March, and into the South China Sea from July to September.

Figure 2.2: Mean QuikSCAT wind for Jan (black) and Jul (red), and topography (m).[Chang
et al. (2005)]

At the sea surface, the warmest waters also shift with the seasons: they are further north

from July to September, and further south from January to March. In the austral summer

(Dec, Jan, Feb), winds blow from the north. They are known as the north west monsoon winds

and they bring cold air temperature and tend to cool SST in south china seas and north part

of Indonesia. In summer season, the winds are coming from the south west and they tend

to warm the SST in southern part of IA. In the Austral winter from June to August, SST is

warmer in the northern part of IA, while over Australia the air temperature is colder during

winter season. During southeast monsoon upwelling south of the Java islands, nusatenggara

islands, and Banda Sea are seen.

Wind is the strongest sources that induced seasonal cycle in Indonesian archipelago. Sea

surface salinity reveal the shifts of low salinity water in response to the monsoonal winds (black

arrows) and precipitation patterns. The warm sea surface temperature (SST) of these seas

serves as one of major sources of heat and moisture for the Austral SummerMonsoon [Kawamura

and Matsuura (2003)] and small differences in the SST can lead to significant changes in the
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magnitude of the atmospheric deep convection and climate [Wijffels (2012); Koch-Larrouy et al.

(2010); Sprintall et al. (2014)].

Figure 2.3: Sea surface temperature (SST, top panels) and Sea Surface Salinity (SSS, bottom
panels)(left: southeast monsoon; right: northwest monsoon) based on archived hydrographic

data.[Gordon (2005)]

2.4 Barotropic and Internal Tides in Indonesian Seas

2.4.1 Barotropic tides

Egbert and Erofeeva (2002) assimilated Topex/Poseidon altimeter data into a global barotropic

model by using the method of a generalized inversion scheme. The Semidiurnal M2 constituents

is the largest semidiurnal tidal influence in IA. Map of M2 tides from model-observation can

be seen in figure 2.4(left).
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From the co-tidal phase contour, the propagation of semidiurnal tides is dominated from

Indian Ocean into the interior of Indonesian seas. Amplitude varies between 20 cm to 50 cm

in the open ocean where the lowest amplitude (less than 10cm) is found in the South china

sea and Java sea. Semidiurnal tides have lower amplitude in the Pacific ocean and enter the

Indonesian seas by Luzon strait and Halmahera Sea.

Concerning the diurnal tides, K1 is the largest one in the IA. Map of K1 from the model

from the model and observations can be seen in figure 2.4(right). In contrast with M2, the tidal

pattern in K1 is simpler. Tidal height range from 10 cm in the open seas to 40 cm in the interior

seas. High tidal amplitude up to 65 cm is found in the continental shelf, where in particular in

Karimata Strait, Sunda Shelf and northwestern Australia coast. From the phase lag contours,

we can sea that K1 is mainly passing from Pacific Ocean through IA through Sangihe Strait

and Halmahera Sea. M2 is coming from the Indian Ocean, passes along the shore of the Java

Island and enters to the interior seas through the Nusa Tenggara islands, Ombai and Timor

straits. High amplitudes are found in Indian ocean before entering inner Indonesian seas.
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Figure 2.4: The Cotidal charts of the largest semidiurnal tide M2 (left) and diurnal tide
K1(right) for sea surface amplitude (top) and greenwich phase lags (bottom). Charts are

based on ten years of sea-level measurements from the Topex/Poseidon satellite altimeter into
a nonlinear hydrodyamic model. Figure is coming from Egbert and Erofeeva (2002).
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Figure 2.5: Mean barotropic energy flux vectors for the M2 (left). Mean barotropic energy
flux vectors for the M2 tiden(right). Fluxes smaller than 20 kW m-1 are not drawn. Figure is

copied from Egbert and Erofeeva (2002).

The mean M2 barotropic energy flux can be seen in figure 2.5. The figure show that M2

is mainly coming from the Indian ocean, while K1 is coming from the Pacific. The barotropic

M2 flux enter the interior IA through the islands of Nusa Tenggara and Flores. It is amplified

when entering narrow strait such as Lombok strait, Alat strait 10 150 kW m-1 and exceeding

500 kW m-1 in Ombai and Timor strait. K1 barotropic flux is higher in Sangihe and Lifamatola

straits.

2.4.2 Internal tides

The INDESO domain covers regions with strong internal tides generation. Indeed, regions that

have been reported as sources of internal tides are : Lombok strait, Halmahera seas, Sangihe

strait, Sulu straits, Ombai strait, Makassar strait and Luzon strait [Mitnik et al. (2000); Aiki

et al. (2011); Sari Ningsih (2008); Susanto et al. (2005); Matthews et al. (2011); Robertson and

Ffield (2005, 2008)]. Vertical displacement induced by Internal tides can reach up to 150m in 5

min. This strong vertical heaving may supply nutrients from the deep ocean that nourish coral

reefs and pilot whale populations that forage in their wakes [Moore and Lien (2007); Jan and

Chen (2009); Alford et al. (2015)]. The surface signature from internal tides in IA is detected

from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite with the SAR images

[Jackson (2007)] The example of captured internal tides from MODIS image data is shown in

Figure 2.6. Three selected ”less cloud cover” image were captured in South China Sea, Sulawesi

Sea and Banda Seas. In Sulawesi Sea, there are packets of internal tides propagated to the west
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that may come from the generation of Sangihe strait.There are also internal tides packet that

propagate to southeast coming from the generation site of Sibutu Strait. In the South China

sea, the internal wave packets is coming from the northern Luzon strait. Finally, internal tides

in Banda seas are coming from the Ombai strait.

Figure 2.6: True-color MODIS image of (a) the Sulawesi Sea acquired on 6 March 2006 at
5:25 (b) the southwestern South China Sea acquired on 6 March 2003 at 3:20 UTC (c) the

Banda Sea acquired on 24 February 2004 at 5:05 UTC. (more details in Jackson (2007)

Internal tides surface signature is also detected in Luzon strait from ENVISAT ASAR images

and some ERS-2 SAR images from 2005 to 2010 [Wang et al. (2011)]. Internal waves not only

occur in the Northern South China Sea (between Luzon Strait and Hainan Island), but are also

found in Western South China Sea (along the Vietnamese coast) and Southern South China

Sea as shown in figure 2.7.
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The internal tides coming from the Luzon Strait on the eastern margin of the South China

Sea are the largest waves documented in the global oceans [Alford et al. (2015)]. They shoal onto

the continental slope to the west, the downward displacement of the ocean’s layers associated

with these solitary waves can exceed 150 meter in 5 min [Ramp et al. (2004)].

Figure 2.7: The spatial distribution map of internal waves in South China Sea from 2005 to
2010 from Wang et al. (2011)

2.5 Mixing and Watermass Transformation

Many previous studies have suggested that the most likely factor causing the strong water

mass transformation in the IA would be the internal tides and their associated mixing [Schiller

(2004); Hatayama (2004); Robertson and Ffield (2005)]. IA is the only region of the world

where strong internal tides remain trapped in semi-enclosed seas, so that a large amount of

tidal energy remains available for vertical mixing [Schiller (2004); Alford et al. (1999); Koch-

Larrouy et al. (2008, 2007); Robertson and Ffield (2008); Robertson (2010); Nagai and Hibiya

(2015)].

Temperature and salinity distributions within Indian ocean thermocline depth (figure 2.3)

depict that the IA acts as a ”mix master” that cools and freshen the thermocline water from

Pacific Ocean [Gordon and Fine (1996); Gordon (2005)]. Watermass transformation looking at

Temperature Salinity diagrams within the IA is shown Figure 2.9. The NPSW found in the
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north pacific input box has a salinity of about 34.9 psu and a temperature of about 230C . In

contrast, the SPSW found in the South Pacific input box is characterized by a higher salinity

maximum of around 35.45 psu and the temperature reaches 21.5 0C. Strong vertical mixing in

IS forms the unique, nearly homohaline ITF profile in Indian Ocean, with a salinity of 34.45

PSU. It is interesting to note that SPSW has lost the signature of the salinity maximum already

in the Seram Sea, suggesting that most of the mixing must occur in the Halmahera and Seram

Sea.

First estimates of the integrated vertical mixing in the IA has been done using in-situ

water mass properties and a simple advection–diffusion model [Ffield and Gordon (1992)].

They show that a mixing ten times larger than in the open ocean (Kz ≈ 10−4m−2s−1) was

necessary in order to reproduce the water-mass transformations. Estimates from microstructure

measurements in the Indonesian Archipelago was carried out by [Alford et al. (1999)] in Banda

seas indicating only weak vertical mixing Kz ≈ 10−5m−2s−1 in the upper 300 m. The first

microstructure and finestructure estimates of the mixing in the regions of high internal tide

generation in the Indonesian archipelago were carried out by [Koch-Larrouy et al. (2015)] during

the INDOMIX 2010 cruise. They show that mixing is very heterogeneous with very high values

of Kz ≈ 10−2m−2s−1 (station 1, 3, 5 figure 2.10) in regions of generation. In contrast, region

further away from generation sites (station 2 and 4, figure 2.10) depict smaller or inexistent

mixing in good agreement with Alford et al. (1999)

Figure 2.8: Temperature (upper) and Salinity (lower) in σ = 25 which lies within the upper
thermocline. (Figure from Gordon (2005))
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Figure 2.9: Temperature Salinity diagram in the IA.The data were derived from the World
Ocean Data Base 2001 and additional regional CTD data. (Figure is from Sprintall et al.

(2014) figure.2)
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Figure 2.10: Vertical dissipation (left) and vertical difusivity (right) in Wkg−1 averaged for
each of the 5 stations during INDOMIX cruise [Koch-Larrouy et al. (2015)]
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Chapter 3

Evaluation of an operational ocean model configuration

at (1/120) spatial resolution for the Indonesian seas - Part

1: Ocean physics (published article)
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3.1 Introduction

In the framework of the INDESO project, a regional configuration of the NEMO/OPA 9.0

physical ocean model (Madec et al., 1998) has been developed. It covers the whole Indonesian

EEZ (Exclusive Economic Zone) and is now running every week in a fully operational mode.

This NEMO configuration (named INDO12) has an horizontal resolution of 1/12°. It is coupled

with the biogeochemical model PISCES, (Aumont et al., 2006) and fish population dynamics

model SEAPODYM (Lehodey et al, 2008). INDO12, which is the model used throughout this

thesis, is presented in this paper and its results are validated against several observation data

sets.

The model started in January 2007 from initial hydrographic conditions derived from the op-

erational global ocean forecasting system (at 1/40 ) operated by Mercator Océan. Atmospheric

forcing fields (3-hourly ECMWF model outputs) and the inverse barometer effect are used as

surface forcing. Explicit tidal forcing is extracted along ocean boundaries from TPXO6 global

tidal model. The model is also forced by the fresh water flux from major rivers in Indonesia

and along Malaya peninsula.

To take into account internal tidal mixing, the model explicitly solves the barotropic tides.

At the resolution of the model, only part of the baroclinic energy will be generated (Niwa and

Hibiya, 2011). An additional parameterisation of tidal mixing is thus used to reproduce the

effect of internal tides. This parameterisation has been especially developed for OPA/NEMO in

Indonesian seas (Koch-Larrouy et al., 2007, 2008, 2010). Comparison of the model results with

various data sets, including outputs of the parent model, climatologies, in situ temperature and

salinity measurements, and satellite data, show that:

• The general circulation around and through the Indonesian archipelago is well reproduced

by the INDO12 ocean model.

• The simulated tides agree reasonably well with the TOPEX/POSEIDON, JASON 1 and

JASON2 crossover observations.

• The relative volume transport in the three major outflow passages in the INDO12 simu-

lation is very close to one calculated from the INSTANT estimates

• The simulated vertical mixing is able to erode the South and North Pacific subtropical

water salinity maximum. Compared to climatologies, the inflow coming from North

Pacific seems too salty for NPSW (give full name) and too fresh in surface for NPIW.
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(give full name) Compared to data collected during the INDOMIX cruise, an excessively

strong vertical mixing occurs in Halmahera Sea, on the other hand, T –S profiles fit

quite well in the Banda Sea and the Ombai Strait. Finally, all T –S dia- grams in the

Indonesian Archipelago show that the parent model has definitively not enough efficient

vertical mixing and that a higher resolution model including explicit tides is needed to

mix correctly the Pacific waters in the Indonesian Archipelago.

In summary, in spite of a few weaknesses, INDO12 proves to be able to provide a very realistic

simulation of the ocean circulation and water mass transformation through the Indonesian

Archipelago.

3.2 Scientific paper :

Evaluation of an operational ocean model configuration
at (1/120) spatial resolution for the Indonesian seas
(NEMO2.3/INDO12) – Part 1: Ocean physics

Benoit Tranchant1, Guillaume Reffray2, Eric Greiner2, Dwiyoga Nugroho3,4,

Ariane Koch-Larrouy3 and Philippe Gaspar1

1 CLS, Ramonville Saint-Agne, France

2 Mercator Océan, Ramonville Saint-Agne, France

3 IRD/LEGOS 18 av. Ed. Belin, 31401 Toulouse, France

4 Agency of Research and Development for Marine And Fisheries, MMAF, Jakarta, Indonesia

Published in Geoscientific Model Development Journal, 10 March 2016
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Abstract. INDO12 is a 1/12◦ regional version of the NEMO

physical ocean model covering the whole Indonesian EEZ

(Exclusive Economic Zone). It has been developed and

is now running every week in the framework of the IN-

DESO (Infrastructure Development of Space Oceanography)

project implemented by the Indonesian Ministry of Marine

Affairs and Fisheries.

The initial hydrographic conditions as well as open-

boundary conditions are derived from the operational global

ocean forecasting system at 1/4◦ operated by Mercator

Océan. Atmospheric forcing fields (3-hourly ECMWF (Eu-

ropean Centre for Medium-Range Weather Forecast) analy-

ses) are used to force the regional model. INDO12 is also

forced by tidal currents and elevations, and by the inverse

barometer effect. The turbulent mixing induced by internal

tides is taken into account through a specific parameteri-

sation. In this study we evaluate the model skill through

comparisons with various data sets including outputs of the

parent model, climatologies, in situ temperature and salin-

ity measurements, and satellite data. The biogeochemical

model results assessment is presented in a companion paper

(Gutknecht et al., 2015).

The simulated and altimeter-derived Eddy Kinetic Energy

fields display similar patterns and confirm that tides are a

dominant forcing in the area. The volume transport of the

Indonesian throughflow (ITF) is in good agreement with the

INSTANT estimates while the transport through Luzon Strait

is, on average, westward but probably too weak. Compared to

satellite data, surface salinity and temperature fields display

marked biases in the South China Sea. Significant water mass

transformation occurs along the main routes of the ITF and

compares well with observations. Vertical mixing is able to

modify the South and North Pacific subtropical water-salinity

maximum as seen in T –S diagrams.

In spite of a few weaknesses, INDO12 proves to be able

to provide a very realistic simulation of the ocean circula-

tion and water mass transformation through the Indonesian

Archipelago. Work is ongoing to reduce or eliminate the re-

maining problems in the second INDO12 version.

1 Introduction

INDO12, a 1/12◦ regional version of the NEMO/OPA 9.0

(Madec et al., 1998) physical ocean model covering the

whole Indonesian EEZ (Exclusive Economic Zone) has been

developed in a fully operational mode. It is now running ev-

ery week in the framework of the INDESO (Infrastructure

Development of Space Oceanography) project. This project

has been devised and funded by the Indonesian Ministry

of Marine Affairs and Fisheries to support sustainable ex-

ploitation of Indonesian marine resources. The Indonesian

infrastructure within this project has been designed and di-

mensioned for an operational system at 1/12◦. Compared to

Published by Copernicus Publications on behalf of the European Geosciences Union.
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ORCA12 (Global configuration at 1/12◦), INDO12 includes

the tide effect that induces important processes in the In-

donesian region. Moreover, it is easier to modify and tune

the parameters in a regional configuration, and afterwards

make the global ORCA12 configuration to benefit from the

improvements of the regional configuration. INDESO actu-

ally includes the development of a series of coupled ocean

models including a biogeochemical model and a fish pop-

ulation dynamics models covering three commercially im-

portant tuna species (skipjack, yellowfin and bigeye tunas).

Results of the biogeochemical model are presented in a com-

panion paper (Gutknecht et al., 2015) while simulations of

tuna population dynamics will be discussed in a further pa-

per. More details about the INDESO projects can be found at

http://www.indeso.web.id.

The Indonesian Archipelago is the only area where two

major oceans, the Pacific and the Indian, are connected near

the Equator. An additional complicating factor comes from

the internal variability associated with ENSO. The complex

geometry of the coastlines, the strong tides and the seasonal

reversal of monsoonal winds make it difficult to obtain a de-

tailed and realistic representation of the ocean circulation.

Numerical models of the oceanic circulation through the In-

donesian Archipelago have been developed and prove to be

rather successful.

In this paper, we focused on the physics. A realistic mod-

elling of the circulation in the Indonesian Archipelago helps

to understand the role of the Indonesian throughflow (ITF)

at global scale. ITF carries water from the tropical Pacific

into the Indian Ocean in a region where (i) the bottom

bathymetry is complicated (see Fig. 1), (ii) numerous nar-

row straits and deep interior (semi-enclosed) basins down to

4000 m depth (Sulawesi, Molucca and Seram seas) exist and

(iii) tidal mixing permits the transformation of incoming Pa-

cific source waters into different water masses. Thus, vertical

mixing within the Indonesian Archipelago makes substantial

changes to the incoming stratified Pacific thermocline waters.

The major input of the ITF is the Mindanao Current that

provides water from the upper thermocline (North Pacific

Subtropical Water, NPSW) and North Pacific Intermediate

Water (NPIW). This branch fills the archipelago through the

Sulawesi Sea and then flows through the Makassar Strait

(Gordon, 1986; Murray and Arief, 1988; Gordon and Fine,

1996). Because the Makassar Strait is only 600 m deep, wa-

ters below this depth are prevented from progressing south-

ward. About 80 % of the ITF transport is flowing through

the shallow Makassar Strait (mainly the thermocline waters)

(Gordon et al., 2010). This branch of the ITF flows out of

the archipelago through the Lombok Strait (about 20 % of

the Makassar transport) or eventually reaches the Flores or

Banda seas to finally exit through Ombaï Strait or Timor Pas-

sage (Gordon and Fine, 1996).

Two secondary eastern routes exist. The first route is taken

by South Pacific Intermediate Water (SPIW) going from

the South Equatorial Current (SEC) through the Maluku (or

Molluca) Sea and the Lifamatola Strait into the Banda Sea

and further through the Ombaï Strait or the Timor Passage

into the Indian Ocean. The South Pacific Subtropical Water

(SPSW) from the SEC takes the second route through the

Halmahera and Seram seas and eventually joins the first east-

ern route waters in the Banda Sea.

Finally, an important path of the ITF is the flow through

the SCS (South China Sea) and is referred as South China

Sea throughflow (SCSTF). The cold and salty water inflow

through the Luzon Strait becomes a warm and fresh wa-

ter outflow through the Mindoro and Karimata straits, with

a net volume transport of 2–4 Sv (1 Sv= 106 m3 s−1) (see Qu

et al., 2004).

The Indonesian Archipelago is characterised by strong in-

ternal tides, which are trapped in the different semi-enclosed

seas of the archipelago, inducing a strong mixing of wa-

ter masses. Susanto et al. (2005) observed internal solitary

waves generated in stratified water by interaction of succes-

sive semi-diurnal tidal flows with the sill south of the Lom-

bok Strait. These waves create large vertical displacements

of water masses that are important to vertical transport and

the mixing of biogenic and non-biogenic components in the

water column (Munk and Wunsch, 1998).

Vertical mixing within the Indonesian seas can alter the

incoming stratified Pacific thermocline waters. Salinity max-

imums of Pacific waters, 34.8 PSU (practical salinity unit)

in the North Pacific and 35.4 PSU in the South Pacific, are

eroded during their residence in the Indonesian seas. The ITF

waters entering into the Indian Ocean are characterised by

a unique water mass associated with a unique tropical strati-

fication with a salinity of 34.6 PSU. As a result, the tropical

Indian Ocean is cooled and freshened by the ITF (Song et

al., 2004; Gordon, 2005). Previous studies show that the ver-

tical mixing occurs mainly in regions of sharp topography

such as sills or narrow straits (Ffield and Robertson, 2008;

Koch-Larrouy et al., 2007). However, the exact location of

water mass transformations remains unclear (Koch-Larrouy

et al., 2007). Different measurements of turbulent dissipation

rates made during the INDOMIX 2010 cruise (Koch-Larrouy

et al., 2015) could certainly help to increase our knowledge

and understanding of vertical eddy diffusivity values for use

in numerical models.

To take into account internal tidal mixing, the model ex-

plicitly solves the barotropic tides. At the resolution of the

model, only part of the baroclinic energy will be generated

(Niwa and Hibiya, 2011). Nevertheless, how this energy will

dissipate in the model remains unclear and the tidal mixing

remains insufficient. To this end, an additional parameterisa-

tion of tidal mixing is used to reproduce the effect of internal

tides. This parameterisation has especially been developed

for OPA/NEMO in Indonesian seas and gives satisfying re-

sults compared to observations (Koch-Larrouy et al., 2007,

2008, 2010).

This paper compares the result of the first INDESO simu-

lation against previous results from literature detailed above
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Figure 1. Bathymetry (in metre) of the INDO12 configuration (latitudes: 20◦ S–25◦ N and longitudes: 90–145◦ E) based on

ETOPOV2g/GEBCO1+ in-house adjustments in straits of major interest. Three ITF exits are indicated in red. Main straits/passages are

indicated in white.

in Indonesian seas. It is organised as follows. Section 2

describes the INDO12 configuration. Section 3 shows dif-

ferent model comparisons with different relevant data sets

in the area. We assess INDO12 dynamics against recent

scientific literature. We compare meso-scale variability and

tides with altimeter data and tide gauges. Comparisons with

satellite data such as sea surface temperature (SST) and

sea surface salinity (SSS) are done. We also make compar-

isons with monthly gridded fields combining ARGO (Ar-

ray for Real-time Geostrophic Oceanography) floats, Tri-

angle Trans-Ocean Buoy Network (TRITON), and avail-

able conductivity–temperature–depth (CTD). We compare

model volume transport with transport estimates from the

INSTANT campaign. Regarding the water mass transforma-

tion in the Indonesian seas, we compare T –S (temperature–

salinity) diagrams of the INDO12 simulation to the parent

and to observational data such as climatology, the recent IN-

DOMIX 2010 cruise (Koch-Larrouy et al., 2015) and instan-

taneous data in 2013. Finally, Sect. 4 provides a summary of

the results of this work.

2 The INDO12 configuration

2.1 The NEMO ocean model

The regionalised configuration of the Indonesian seas us-

ing the OPA/NEMO model (Madec et al., 1998; Madec,

2008) in its NEMO2.3 version called INDO12 and de-

veloped at Mercator Océan is the circulation model used

in the INDESO project. This NEMO2.3 version has al-

ready been successfully applied to the IBI (Iberian–Biscay–

Ireland) area (Maraldi et al., 2013). It deals with the addi-

tion of high-frequency processes such as tide and the atmo-

spheric pressure forcing. Specific numerical schemes such

as time-splitting, non-linear free surface (Levier et al., 2007)

and open-boundary algorithms have been implemented or

improved. Specific physical parameterisations for regional

modelling have been added such as the GLS (generic length

scale) turbulence model (Umlauf and Burchard, 2003) in-

cluding wave impact and logarithmic bottom friction. In ad-

dition, the vertical mixing induced by internal tides is taken

into account using the parameterisation of Koch-Larrouy

et al. (2007) by artificially enhancing the vertical viscosity

and the diffusion coefficients. In semi-enclosed seas, an ap-

proximate value of 1.5 cm2 s−1 for eddy diffusivity has been

estimated by Koch-Larrouy et al. (2007). Note that this back-

ground diffusivity is of the same order of magnitude as that

used by Jochum and Potemra (2008).

The domain covers 20◦ S–25◦ N and 90–144◦ E (Fig. 1)

and includes the entire EEZ of Indonesia. The horizontal

grid is an extraction of the global ORCA (the global tripo-

lar grid used in NEMO) grid at 1/12◦ developed at Mercator

Océan. It is a quasi-regular grid over the Indonesian area and

with a mesh approximately equal to 9 km. In the vertical di-

rection, the model uses a partial step z coordinate (Barnier

et al., 2006). The vertical grid is spread over 50 levels and

has a depth-dependent resolution (1 m at surface to 450 m at
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Table 1. Sill depths (m) of the key straits and passages in the Indonesian seas from the scientific literature and those used in INDO12.

Straits or passages Observed estimate INDO12

Inflow passages

Sanhigihe Ridge (divides Pacific Ocean and Sulawesi Sea) 1350a 1250

Makassar Strait (Dewakang sill) 680a 675

Halmahera Sea passages 580a 551

Lifamatola Passage 1940b 1950

Outflow passages

Lombok Strait 300a 200

Strait between Alor and Atauro islands (upstream of Ombaï Strait) 1450d 1400

Wetar Strait (upstream of Ombaï Strait) 2450c 2050

Sumba Strait (north of Sumba Island) 900d 800

Savu Strait (connection between Savu Sea and Indian ocean) 1150d 1100

Timor Passage (southern end) 1890d 1800

Source for sill depths: a Gordon et al. (2003a), b van Aken et al. (1988), c Sprintall et al. (2010), d Sprintall et al. (2009).

Figure 2. Mean circulation at surface (16 m depth) during boreal winter or DJF (left) and boreal summer or JJA (right) during the 2008–2013

period.

the bottom). In the first 10 m, the layer thickness is less than

2 m, then rise to about 10 m at a depth of 50 m.

The bathymetry used in this configuration is based on

ETOPO2V2g (2′) and GEBCO (1′) and has been interpolated

on the NEMO grid without any smoothing. Due to missing

foreshore in the model, a minimal threshold value of 7 m

depth has been fixed. The bathymetry has been locally modi-

fied by hand editing mainly in the straits and passages where

the sill depths have a major influence and constrain the trans-

ports. As in Metzger et al. (2010), we report sill values in

Table 1 and compare them to scientific literature. Note that

correct sill depths are essential for proper model simulation

(Gordon et al., 2003a). Without these changes, the outflow

passages were quite incorrect with most of the flow that goes

through the Lombok Strait instead flowing through the Om-

baï Strait and the Timor Passage. Note that the INDO12 con-

figuration is coupled “online” to the biogeochemistry model

PISCES (Pelagic Iteraction Scheme for Carbon and Ecosys-

tem Studies) (see Gutknecht et al., 2015).

2.2 External forcings

Atmospheric forcing fields come from the European cen-

tre (European Centre for Medium-Range Weather Forecasts,

ECMWF) and have a high frequency (3 h). “Bulk” formu-

lae from CORE are used to model the atmosphere–ocean in-

terface (Large and Yeager, 2004). The surface atmospheric

pressure forcing is also explicitly considered.

This configuration includes explicit tidal forcing. INDO12

has geopotential tidal forcing for M2, S2, N2 and K2 (the

four largest semi-diurnal constituents) and for K1, O1, P1

and Q1 (the four largest diurnal constituents). As in Maraldi
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Figure 3. Mean circulation at 100 m (top) and 300 m (bottom) during boreal winter or DJF (left) and boreal summer or JJA (right) during the

2008–2013 period.

et al. (2013), two long-period tides Mf and Mm and one

non-linear constituent (compound tides) M4 are also added.

These 11 tidal constituents, which come from the astronomi-

cal forcing TPX0.7 data set (Egbert and Erofeeva, 2002), are

used to force open boundaries.

A monthly runoff climatology is built with data on coastal

runoffs and 99 major rivers from Dai and Trenberth (2002)

and prescribed with a flux formulation. In addition, two im-

portant rivers (Mahakam and Kapuas on Borneo island) with

large enough rates (class 3) were added to this database.

The penetration light scheme used in this simulation is

based on a 4-bands decomposition of the light; 54 % of the

solar radiation is trapped in the surface layer with an extinc-

tion depth of 0.35 m and the other part is decomposed follow-

ing the red, green and blue wavelengths (Jerlov, 1968). The

climatological chlorophyll values, required to calculate the

absorption coefficients, were deduced from the global 1/4◦

input file built from the monthly SeaWifs climatological data

(McClain et al., 2004).

The longest available period to force the INDO12 model

and to achieve the operational target set by the INDESO

project was the Mercator Océan Global Ocean Forecasting

System at 1/4◦ (PSY3V3R3) (Lellouche et al., 2013), data

from 2007 to 2013. Therefore, the INDO12 simulation starts

on the 3 January 2007 with initial conditions coming from

the PSY3V3R3 run started 3 months before from a Levitus

climatology (WOA 2005), see Antonov et al. (2006).

These conditions include temperature, salinity, currents

and sea surface height (SSH). Open-boundary conditions

(OBCs) are located on a relaxation band of 10 grid points

(∼ 1◦) and come from daily output of the Global Ocean Fore-

casting System at 1/4◦ of Mercator Océan.

3 INDO12 assessment

In order to evaluate the quality of the INDO12 simulation,

several diagnostics were performed on different variables

such as temperature, salinity and currents. Our performance

analysis confronts the model results to the distinct available

data sets. The first year (2007) of the simulation is considered

as the model spin-up phase. Consequently, only the 2008–

2013 simulated period is assessed.
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Figure 4. Mean EKE (m2 s−2) derived from altimetric data (AVISO products) (left) from INDO12 (right) for 2010–2013 period. EKE from

altimetry is not reliable within a band of 5◦ on both sides of the Equator due to geostrophic approximation.

3.1 The mean circulation

As noted by Ueki el al. (2003), the NGCC (New Guinea

Coastal Current) exhibits a seasonal variability correlated to

the monsoonal wind variation with a north-east wind stress

during the boreal winter and a south-west wind stress dur-

ing the boreal summer. It flows northward usually at the sur-

face and is intensified during the boreal summer. It flows

southeastward during the boreal winter (see Fig. 2). The

New Guinea Coastal Under Current (NGCUC) flows steadily

northwestward during the whole year in the sub-surface ther-

mocline layer (100–300 m) with an intensification during the

boreal summer (see Fig. 3).

In the Pacific region (Fig. 2), the intensity of SEC and

(North Equatorial Counter Current) NECC increase during

boreal winter, and are weaker during boreal summer. The

SEC and NECC are closely linked to the ITCZ (Inter Trop-

ical Convergence Zone). They are stronger from August to

December and weaker from March to May (see McPhaden

et al., 1998).

Between the surface and∼ 100 m depth, the seasonal vari-

ability is well represented in the major exit passages of the

Lombok Strait, Ombaï Strait and Timor Passage with a max-

imum velocity (maximum transport) during the SEM (South

East Monsoon) (Sprintall et al., 2009).

In the SCS, the circulation at the surface is cyclonic dur-

ing the boreal winter and weakly anti-cyclonic during boreal

summer; see (Fig. 2).

In the Indian Ocean, the eastward surface current, the SJC

(South Java Current) flows along the Indian Ocean coast of

Sumatra and Java only during the NEM (North East Mon-

soon). During the SEM, the SJC is mostly in the same di-

rection as the westward flowing ITF (Sprintall et al., 2010),

which is well reproduced in our simulation. The deeper South

Java UnderCurrent (SJUC) flows also along the coast (400–

800 m) in the model. It clearly seems that it is driven by

Kelvin waves as mentioned by Sprintall et al. (2010) since

it flows mainly eastward whatever the monsoon period.

3.2 EKE

In order to describe the mesoscale and the eddy variability,

the mean Eddy Kinetic Energy (EKE) is calculated. The EKE

calculation is performed over the last 3 years (2010–2013)

of the INDO12 simulation and compared to altimetry data

(AVISO products), see Fig. 4.

Saraceno et al. (2008) point out the difficulty of represent-

ing coastal processes with conventional altimeter data. It is

mainly due to intrinsic difficulties such as corrections ap-

plied to the altimeter data near the coast (the wet tropospheric

component, high-frequency oceanographic signals, tidal cor-

rections, etc.). The Indonesian seas are no exception to the

rule due to the presence of numerous islands and an active

atmospheric convection during the monsoons. In addition, in

the equatorial band (5◦ S–5◦ N), the geostrophic approxima-

tion is not valid since the Coriolis force vanishes.

Except in coastal regions, the EKE from INDO12 and the

EKE derived from altimeter data have the same patterns for

strongest values. They are localised along the Vietnam coast,

near the Luzon Strait (Kurushio intrusion in the SCS) and all

along the Java coast (upwelling signature). In the INDO12

simulation, stronger values are found in all the straits and in

the main exits (Lombok, Ombaï and Timor). As in Castruc-

cio et al. (2013), large EKE values are also found within the

Indonesian seas, Celebes Sea, Flores Sea, Molluca Sea and

the southern part of the Banda Sea. In the Pacific, Halmahera

and Mindanao eddies as well as the NGCC also show a strong

signature in the EKE field. On both sides of Luzon Strait, the

EKE from INDO12 exhibits weaker values than the EKE de-

rived from altimeter data (AVISO). These weak EKE values

corroborates the weak inflow as mentioned in the Sect. 3.6.
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Figure 5. Surface tidal elevation complex differences at crossing points between TPX/J1/J2 and FES2012 (left) and INDO12 (right) sym-

bolised by squares. Surface tidal elevation complex differences between tide gauges and FES2012 (left) and INDO12 (right) symbolised by

circles. Units are in centimetres. M2 (top) and K1 (bottom) tidal components.

3.3 Tides

The four primary tidal components, namely M2, S2, K1 and

O1 are found to be the major components that drive tidal

forcing in the Indonesian seas (Ffield and Robertson, 2008;

Kartadikaria et al., 2011). In this section, we present only

two primary tidal components, M2 and K1, the largest am-

plitude semidiurnal and diurnal constituents. Kartadikaria

et al. (2011) have fully described the evolution of the M2 and

the K1 tides in the Indonesian seas. They show that (i) the

propagation of the K1 is simpler than that of the M2 com-

ponent (ii) and the K1 amplitude is smaller than that of M2.

Here, the K1 and M2 constituents are compared to a hydro-

dynamic model of the barotropic tides constrained by satel-

lite altimetry FES2012 (Carrère et al., 2012; Stammer et al.,

2014). The INDO12 tidal sea surface elevation amplitude

and phases were calculated as a complex amplitude using

standard harmonic analysis applied to the sea surface height.

Differences of tidal elevation between satellite altimeter data

(TOPEX/POSEIDON, JASON 1 and JASON2) at crossover

locations and models (INDO12 and FES2012) are shown in

Fig. 5. For the M2 constituent, FES2012 is closest to the ob-

servations excepted in the SCS. On the contrary, for the K1

constituent, INDO12 is closest to the observations except in

the SCS and along the Australian coast. Differences in tidal

elevation between tides gauges (circles) and models are also

given in the same figure. Closer to the coast, the discrepancy

between tide gauges and INDO12 is larger than between tide

gauge and FES2012. This can be attributed to the lack of

resolution along the coast in INDO12 compared to the finite

element FES2012.

Figure 6 shows a power-spectrum analysis of hourly SSH

from tide gauges and from simulated moorings. As in Cas-

truccio et al. (2013), at low frequencies (period larger than

10 days), the model is in very good agreement with the ob-

servations. The spectral analysis shows that SSH fluctuations

depict the same peaks at the dominant tidal frequencies, the

diurnal (O1 and K1) and semidiurnal (M2 and S2). The same

intensity is found in the model and in the observations. It

confirms that tides are a dominant forcing in the area, and

that the tidal current is dominated by the diurnal (O1 and

K1) and semidiurnal (M2 and S2) frequencies. Non-linear

constituents are represented by additional peaks at the higher

harmonics that contain less energy in the model than the ob-

servations. As mentioned in Ffield and Robertson (2008),

model errors are mainly due to a topography, stratification,

resolution, and tidal forcing. Indeed, tide gauges are very

close to the coast where the INDO12 model is less able to
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Figure 6. Power spectral density of the SSH for the model (red solid line) and for Tide gauges (blue solid line) at different locations ((a)

Padang (East Sumatra), (b) Vung Tau (SCS/South Vietnam) and (c) Malakal (Pacific)), calculated during 2009–2012 period. Right panel is

a detailed view of the left panel.
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Figure 7. Mean bias (PSU) of the INDO12 SSS (monthly means) relative to Aquarius L3 (V3.0) (top) and JAMSTEC

(ARGO+TRITON+CTD) (bottom) from August 2011 to December 2013.

well represent non-linear processes. Finally, non-linear tides

seems also to have more energy in the model near the east of

Sumatra coast (Fig. 6a) than in the Pacific (Fig. 6c).

3.4 SSS: comparisons with Aquarius and Argo

monthly data

Due to the important role of the low salinity surface layer

waters (coming from the SCS southward throughflow) on the

ITF (Gordon et al., 2012), it is important to assess the SSS

fields of INDO12.

3.4.1 Aquarius data

We used the Aquarius Level 3 SSS standard mapped image

data that contain gridded 1◦ spatial resolution SSS averaged

over 1 month. This particular data set is the monthly sea sur-

face salinity product for version 3.0 of the Aquarius data set,

which is the official second release of the operational data

from AQUARIUS/SAC-D mission. A summary of improve-

ments to this new version of the Aquarius data is available.

For the previous version (V2.0), the estimated error for

(monthly mean) was around 0.3–0.4 PSU (Lagerloef and

the Aquarius team, 2013). A recent paper of Menezes

et al. (2013) shows that root mean square (rms) difference be-

tween the Aquarius (7-day Level-3 product version 2.0) and

Argo is about 0.28 PSU in the tropical eastern basin of the

Indian ocean (5–20◦ S; 90–140◦ E), i.e. in a region where the

fresh ITF is spread westward. In addition, in a very recent

paper, Tang et al. (2014) show that the monthly rms differ-

ence with respect to Argo between 40◦ S and 40◦ N for all

Aquarius SSS data products (V2.0) can be reduced to below

0.2 PSU with some limitations.

3.4.2 JAMSTEC data

As in Tang et al. (2014), we use a monthly gridded data set

of global oceanic salinity on 1◦× 1◦ grid processed and de-

livered by the Japan Agency for Marine-Earth Science and

Technology (JAMSTEC) (Hosoda et al., 2008). This prod-

uct is derived from the use of the optimal interpolation (OI)
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Figure 8. RMSD (top) and correlation (bottom) of INDO12 with respect to Aquarius (left) and JAMSTEC (ARGO+TRITON+CTD)

(right) monthly map from August 2011 to December 2013.

method that builds the gridded fields from ARGO floats,

TRITON and available CTD.

The salinity values at 10 m depth from INDO12 are com-

pared with the first level of JAMSTEC salinity at 10 dbar

(∼ 10 m depth).

The advantage of the monthly Aquarius data is the spatial

coverage. Monthly JAMSTEC data do not cover the Indone-

sian seas due to a lack of in situ data.

3.4.3 Results

For both data sets, a negative bias exist in the Pacific re-

gion (Fig. 7) except near the Mindanao loop current where

a positive bias exist mainly in winter. It is more pronounced

with the Aquarius data set. We show that the probability

density function (pdf) of the SSS misfit is biased and non-

symmetric, which corroborates the fact that processes and/or

water masses into the Pacific and Indian oceans are differ-

ent. The biases relative to each data set are consistent for the

same coverage except in the northern Pacific (above 10◦N)

where Aquarius SSS data are probably polluted by strong

RFI (Radio Frequency Interference); see Kim et al. (2014)

and Le Vine et al. (2014). They are quite similar but stronger

for Aquarius. In the Indian Ocean, a positive bias exists just

after the ITF exit. It becomes negative near the Eastern Gyral

Current (EGC) that flows eastward near 15◦ S. In the upper

ocean, a strong salinity front exists between the fresh wa-

ter from the ITF in the SEC and the salty subtropical waters

(Menezes et al., 2013). Note also that the ITW joins the SEC

and spreads westward in the Indian Ocean by advection and

diffusion (Gordon et al., 1997).

Un-correlated biases near the west-Sumatra coast are lo-

cated in the vicinity of many islands that could pollute the

Aquarius signal. The RMSD (root mean square deviation)

between JAMSTEC and INDO12 in this region is higher

(Fig. 8) than the RMSD between Aquarius and INDO12.

A strong negative bias (too fresh) exists in the SCS, which

is more (in winter) or less (in summer) important depending

on the season (not shown here). It could be related to an E–P
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Figure 9. Mean temporal correlation between the (INDO12-Aquarius) SSS bias and the (INDO12-JAMSTEC) SSS bias and salinity inter-

polation error of JAMSTEC (ARGO+TRITON+CTD) calculated from August 2011 to December 2013.

(evaporation–precipitation) bias in the ECMWF precipitation

flux where the model simulation of precipitation is particu-

larly poor over Indonesia (see Kidd et al., 2013; Dee et al.,

2011). In a recent paper, Zeng et al. (2014) argue that the

smaller LST (Luzon Strait Transport) is a plausible cause of

the freshening in 2012. In our model, the too strong freshen-

ing could also be due to a too weak transport at Luzon.

A positive bias exists in the southern tropical Indian Ocean

except during April–May–June when the bias tends to be

negative. There is a seasonal variation of the bias into the

Pacific. In the interior domain, the bias is less pronounced

and there is not a seasonal signal.

RMSD and correlations in SSS between Aquarius and

INDO12 are quite similar to those between JAMSTEC and

INDO12 in the Pacific and Indian oceans. In the interior

domain, RMSD/correlation (Fig. 8) between Aquarius and

INDO12 are larger/smaller in the Java Sea (monsoon vari-

ability), in the Gulf of Thailand and in the Taiwan Strait

(probably due to land contamination).

A region in the Indian Ocean (95◦ E–15◦ S) is charac-

terised by a smaller correlation between both INDO12 and

both data sets. It is certainly due to a systematic bias in

the boundary conditions. This bias can be related to a lesser

accuracy of MDT (mean dynamic topography) (Rio et al.,

2011) in the South Indian Ocean. Indeed, the MDT is in-

volved in the process of SLA (sea level anomaly) data assim-

ilation in the parent ocean forecasting system. From Fig. 9

(left), we show that in the Indian Ocean, the three main op-

posite differences (statistically significant) between the two

data sets (uncorrelated biases) are in the Timor Sea, in the

Andaman Sea and on the west-coast of Sumatra. These dif-

ferences can be partially explained by the salinity interpo-

lation errors shown on Fig. 9 (right) since the maximums

are found at the same locations. The Timor Sea is mainly

located on the continental shelf, which would results in the

large interpolation errors due to the absence of ARGO floats.

An uncorrelated bias exists at the entrance of the Indonesian

domain, in the Celebes Sea and corresponds to the maximum

of the salinity interpolation errors.

Due to the lack of JAMSTEC data in the interior domain, it

is difficult to conclude on the quality of Aquarius data. Nev-

ertheless, comparisons in the SCS (Sect. 3.5.3) have shown

that the INDO12 model is fresher than the in situ data at the

surface, which is corroborated here with Aquarius data.

3.5 SST: comparisons to AMSR-E and Argo

monthly data

The SST of the Indonesian seas is of major interest to air–

sea interaction at regional and global scales (see for example

Sanchez et al., 2008). This is due largely to the convection

process.

3.5.1 AMSR-E data

We use the SST data retrieved from observations of the satel-

lite microwave radiometer Advanced Microwave Scanning

Radiometer on board EOS (AMSR-E). The advantage of

using microwave data instead of infrared data is that the

clouds’ influence can be neglected. For this study, in order

to be close to the horizontal resolution (1◦× 1◦) of JAM-

STEC (see above), we use the nighttime monthly averages

SST map (1◦× 1◦) from the AMSR-E version 7 SSTs (see

www.remss.com). The TAO array shows AMSR-E to have

very small biases (−0.03 ◦C) and SD (0.41 ◦C) (Gentemann

et al., 2010).

3.5.2 JAMSTEC data

As in Tang et al. (2014), we use a monthly gridded data set of

global oceanic temperature on 1◦×1◦ grid processed and de-
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Figure 10. Mean bias (◦C) of the INDO12 SST (monthly means) relative to AMSR-E (V7.0) (top) and JAMSTEC

(ARGO+TRITON+CTD) (bottom) for the years 2008–2010.

livered by the JAMSTEC (Hosoda et al., 2008). This product

is derived from the use of the OI method that builds the grid-

ded fields from ARGO floats, TRITON, and available CTD.

The temperature values at 10 m depth from INDO12 are

used to compare with the first level of JAMSTEC tempera-

ture at 10 dbar (∼ 10 m depth).

3.5.3 Results

Compared to both data sets, the SST in the model is too warm

overall (Fig. 10). The SST bias is larger in the SCS where the

influence of SCSTF is important (Qu et al., 2006) through

the Luzon Strait. Positive biases are of similar amplitude be-

tween the two data sets and are mainly located in the Pacific

region. This increased the confidence in the positive bias in

the SCS and corroborates the negative bias in the SSS. A too

weak deep-water overflow in the Luzon Strait can also ex-

plained this large bias. Zhao et al. (2014) show that enhanced

mixing in the SCS is a key process responsible for the density

difference between the Pacific and SCS, which in turn drives

the deep circulation in the Luzon Strait.

There is only one important region where the INDO12

SST is significantly too cold, it is in the southern part of

the INDO12 domain, i.e. in the southern tropical Indian

Ocean. The negative bias relative to JAMSTEC is larger

than the bias relative to AMSR-E as it is for the RMSD

(Fig. 11). It is localised in the Eastern Gyral Current (EGC)

that flows eastward near 15◦ S, i.e. in the same region where

a positive SSS bias exist (see previous section). In the In-

donesian Archipelago, the SST bias relative to AMSR-E is

slightly positive except in the Flores and Molluca seas and

in the Timor Passage where the bias is slightly negative.

The Timor Passage is the only region where a non-correlated

bias exists between the two data sets (Fig. 12a). It still cor-

responds to the maximum of the temperature interpolation

errors (Fig. 12b) in JAMSTEC. The temporal correlation

(Fig. 11) is rather high everywhere and consistent between
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Figure 11. RMSD (top) and correlation (bottom) of INDO12 SST with respect to AMSR-E (left) and JAMSTEC (ARGO+TRITON+CTD)

(right) calculated from monthly means (2008–2010).

two data sets. Only one region located near the Halmahera

eddy and along the SEC seems less correlated.

3.6 Volume transport (ITF and SCSTF)

The ITF flows along three main routes (Sprintall et al., 2004)

and a good representation is given in (Gordon et al., 2012;

Fig. 1).

The main western route is the flow taken by the North

Pacific Subtropical Water coming from the North Equato-

rial Current (NEC) via the Mindanao Current through the

Celebes Sea, along the Makassar Strait, into the Flores Sea

and the Lombok or the Ombaï straits into the Indian Ocean.

In the southern part of the Makassar Strait, only the upper

thermocline waters can flow southward into the Flores and

Banda seas due to the Dewakang sill (650 m).

The second path is taken by the South Pacific sub-

thermocline water, going from the SEC through the Maluku

Sea and the Lifamatola Strait into the Banda Sea and further

through the Ombaï Strait or the Timor Passage into the In-

dian Ocean. The Lifamatola Strait, at 1940 m, regulates the

flow of deep Pacific water into the interior Indonesian seas.

Talley and Sprintall (2005) show that the IIW (Intermedi-

ate Indonesian Water) attains most of its characteristics im-

mediately downstream of the Lifamatola Strait as a result of

the diapycnal mixing of the intermediate Pacific Ocean wa-

ter masses. They also estimate a large total southward trans-

port (∼ 3 Sv). Below 1250 m, the average volume transport

through Lifamatola during INSTANT (about 1.5 years be-

tween January 2004 and July 2005) was 2.5± 1.5 Sv (van

Aken and Brodjonegoro, 2009). It is a fairly robust num-

ber with an uncertainty of ∼ 5 % below 1250 m, which is

not the case above 1250 m with an uncertainty that exceeds

50 % (Gordon et al., 2010). Finally, the total transport mea-

sured by INSTANT (El Niño period) below 200 m is 1.1 Sv.

In our simulation (2008–2013), the total transport is quite

null and flows northward (1.6± 3 Sv) below 1250 m with

no inter-annual variability. Above 1250 m, the net inflow is

southward and varies with ENSO (El Niño–Southern Oscil-

lation). It is stronger during La Niña and weaker during El

Niño. From Fig. 13, we show that the upper thermocline wa-

ters flow southward. The flow is northward between 400 and

1400 m. The only deep water flowing southward is located

below 1400 m with a maximum near 1700 m depth in spite
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Figure 12. Mean temporal correlation between the (INDO12-AMSR-E) SST bias and the (INDO12-JAMSTEC) SST bias (a) and temperature

interpolation error of JAMSTEC (ARGO+TRITON+CTD) (b) calculated from 2008 to 2010.

Table 2. Mean volume transport in the ITF (Sv and Ratio) for Lom-

bok Strait, Ombaï Strait and Timor passages. Mean values from

INSTANT (2004–2006) and from the INDO12 simulation (2008–

2013).

Straits INSTANT INDO12

(2004–2006) (2008–2013)

Sv % Sv %

Lombok 2.6 17.3 2.07 16.7

Ombai 4.9 32.7 2.76 22.2

Timor 7.5 50 7.58 61.1

Total 15 12.41

of the presence of an opposite flow on the eastern side of the

strait. It is a strong discrepancy with measurements and can

be attributed to the bathymetry located upstream of the strait

or to the open-boundary conditions.

The SPSW (South Pacific Subtropical Water) from the

SEC takes the third route through the Halmahera and Seram

seas and joins the second route waters in the Banda Sea.

We consider the transport through the three major out-

flow passages of Lombok, Ombaï and Timor to determine

the ITF transport estimates as in Sprintall et al. (2009). Ta-

ble 2 gives absolute values of transport in each strait and to-

tal transport for the 2008–2013 simulated period compared

to the INSTANT estimates (Gordon et al., 2010). The to-

tal value measured by INSTANTS (15 Sv) is stronger than

in the model (12.4 Sv). This might be attributed to the pre-

scribed ocean forcing fields given by the Mercator Océan

Global Ocean Forecasting System at 1/4◦ (PSY3V3R3) and

to an inaccurate bathymetry in the important straits. Also, IN-

STANT estimates and simulated INDO12 volume transports

are not calculated over the same period and therefore have

different ENSO signals.

Figure 13. Mean of the along-strait velocity (ms−1) in the Lifam-

atola Strait (2008–2013). Contour (dashed lines) means a negative

value (southward flow). Contour (solid lines) means a positive value

(northward flow).

Significant transport variability during the INSTANT pe-

riod is linked to the ENSO and to the IOD (Indian Ocean

Dipole) phenomena (Sprintall et al., 2009; Gordon et al.,

2008; Van Sebille et al., 2014). The INSTANT estimates

also reveal inter-annual fluctuation; see Table 1 of Gordon

et al. (2010). Nevertheless, Sprintall and Revelard (2014) ar-

gue that the 3-year time series alone is not sufficient to com-

prehensively resolve the inter-annual signal. In the INDO12

simulation, Fig. 14 shows that a strong inter-annual variabil-

ity exists and is more or less pronounced depending both

on locations and on competing ENSO/IOD events. In 2008

and 2013, ENSO and IOD signals are generally weak but

the simulated ITF transports are among the largest in the pe-
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Figure 14. Model volume transport (Sv) into three main exits: Lom-

bok (red), Ombaï (Brown), Timor (green) at different years. The

Instant estimates (2004–2006) are shaded.

riod, particularly in the Ombaï and Timor straits. In 2011 and

2012, there is no ENSO event and a positive IOD, and it gives

quite equivalent total transports. In 2009, the only El Niño of

the simulation period takes place and no IOD event; conse-

quently, the weakest ITF transport of the period occurs that

year. In 2010, La Niña coincides with a negative IOD. In this

case, the ITF transport is reduced with the weakest transport

in Ombaï and the negative IOD seems to prevail. In a recent

paper, Sprintall and Revelard (2014) argue that Indian Ocean

dynamics likely win out over the Pacific Ocean dynamics

during concurrent ENSO and IOD events. Indeed, the ITF

transport variability would be linked both to spatial patterns

of SLA and to zonal wind stress anomalies. During concur-

rent La Niña and negative IOD events (e.g. 2010), a stronger

SSH signature exists in both the Pacific and Indian Oceans

with higher SLA throughout the Indonesian Archipelago.

At the same time, a westerly wind anomaly (September–

December) in the tropical Indian Ocean would reverse the

upper layer of the ITF transport (Lombok, Ombaï and Timor)

via the downwelling Kelvin waves. Whereas during a solo

La Niña event, only a slight SLA imbalance exists in the Pa-

cific latitude bands around 5–10◦. This leads to off-equatorial

Rossby waves, which result in an increase in Timor volume

transport as suggested by McClean et al. (2005). Note that

during the INDO12 simulation (2008–2013), there was no

such event.

In order to better compare the relative transport in each of

the three exit straits, we give the ratio with regard to the total

mean transport volume and compare them with INSTANT

estimates (Gordon et al., 2010); see Table 2.

On the one hand, this ratio (%) in the INDO12 simulation

is very close to the INSTANT estimates values for Lombok

Strait, but on the other hand this ratio is lower for the Om-

baï Strait and stronger in the Timor Passage. However, if we

Figure 15. Main areas of water mass transformation. Colour shad-

ing indicates salinity at 92 m depth.

compare the absolute volume transport (Sv) in the Timor Pas-

sage, it compares favorably to INSTANT estimates, whereas

the Ombaï Strait transport is substantially weaker than IN-

STANT estimates; see also Fig. 14. In a recent paper, Oke

et al. (2013) found the same kind of differences with a longer

reanalysis.

The SCSTF affects the near-surface flow in the Makas-

sar Strait (Qu et al., 2006). It leads to the subsurface maxi-

mum in the southward current of the Makassar Strait. Gor-

don et al. (2003b) showed that the intrusion of freshwater

from the SCS effectively inhibits the Makassar Strait surface

water from freely flowing southward. As a consequence, the

ITF heat transport is significantly reduced during the north-

east monsoon season. The Luzon Strait is the major pathway

between the SCS and the Pacific Ocean. The LST is esti-

mated to be westward and about −4± 5.1 Sv at 120.75◦ E

(Hsin et al., 2012). In the INDO12 simulation, this vol-

ume transport is westward and around −0.4 Sv. This leads

to a lack of salt water coming from the Pacific Ocean. Re-

cent studies suggested different ways of improvement. Hurl-

burt et al. (2011) shows that simulations are very sensitive

to model resolution and to the accuracy of the topography

and sill depths within the narrow straits in the Philippine

Archipelago. More recently, Zhao et al. (2014) show that the

transport of the deep circulation increases with diapycnal dif-

fusivity in the deep SCS and Luzon Strait.

3.7 Water masses transformation

In this section, we deal with the water masses transforma-

tion in the Indonesian seas. We compare INDO12 T –S dia-

grams with WOA 2013 climatology and with parent model

(PSY3) in several sub-basins along the pathways within the

Indonesian Archipelago as in Koch-Larrouy et al. (2007);

see Fig. 15. T –S diagrams of parent and INDO12 models

are compared to INDOMIX CTD data in July 2010 (Koch-
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Figure 16. T –S diagrams from INDO12 simulation (green line) averaged on the North Pacific area (a) and the South Pacific area (b) and

compared to climatologies WOA 2009 (dotted line) and PSY3V3R3 (yellow) in 2012. Salinity (PSU) and temperature (◦C) are plotted along

x and y axes, respectively.

Larrouy et al., 2015). Model and climatology (WOA2009)

T –S diagrams are also compared to instantaneous data

(WOD 2013) on both sides of Luzon Strait.

In addition to these T –S diagrams, we highlight different

biases into the MLD (mixed layer depth) that give indications

on upper ocean stratification.

3.7.1 Comparisons with parent model and WOA2013

climatology

Water masses from the INDO12 simulation (averaged all

over the period from 2008 to 2013) are compared with those

of the WOA 2013 climatology (Boyer et al., 2013) and with

those of the parent model (PSY3V3R3) in main areas of wa-

ter mass transformation, see Fig. 15.

At the main entrance, the Mindanao Current drives the

North Pacific water characterised by a salinity maximum

(34.8 PSU), the NPSW and a minimum of 34.2 PSU (North

Pacific Intermediate Water, NPIW). Coming from the North

Pacific, the NPSW is saltier in the INDO12 simulation than

in the WOA 2013 climatology. The NPIW and the surface

water are fresher (Fig. 16a).

SPSW enter also into the Indonesian seas and are charac-

terised by a salinity maximum around 35.45 PSU. Compared

to the WOA 2013 climatology, the SPSW in the INDO12

simulation are slightly too warm at the surface and at the

sub-surface (Fig. 16b).

Because open-boundary conditions are close to the North

and South Pacific waters properties, the INDO12 and parent

model (PSY3V3R3) differ from WOA 2013 climatology in

the same way.

When comparing T –S diagram in the interiors seas be-

tween the regional model that includes tidal mixing to the

parent model that does not include any additional mixing,

we find that the tidal mixing of the SPSW has occurred be-

fore entering the Banda Sea (Fig. 17a, b, c). In the Banda,

Seram and Timor regions, the North and the South Pacific

subtropical salinity maximums are strongly attenuated in the

INDO12 simulation. It is not the case for the parent simula-

tion.

In particular, the SPSW salinity maximum is strongly

eroded from its entrance in the Halmahera Sea and van-

ishes already in the Seram Sea as noted by Koch-Larrouy

et al. (2007). The tidal mixing strongly improves the water

masses. However, there are still some biases between the cli-

matology and the INDO12 simulation that could come from

observed biases at the entrance of the domain.

During their residence in the Indonesian Archipelago, the

incoming Pacific waters are transformed to produce a unique

water mass associated with a unique homohaline tropical

stratification (34.58 PSU, below 20 ◦C); see T –S diagrams in

the Timor region on Fig. 18. In the Timor and Banda regions,

at the surface there is a strong freshening compared to the

climatology. But comparisons do not take into account the
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Figure 17. T –S diagrams from INDO12 simulation (blue line) averaged on different areas, (a) Halmahera Strait and Seram Sea, (b) Banda

Sea and Makassar Strait, (c) Flores Sea and Timor Passage compared to climatologies WOA 2013 (red dotted line) and PSY3V3R3 (yellow

line) for the 2008–2013 period. Salinity (PSU) and temperature (◦C) are plotted along x and y axes, respectively.

inter-annual variability and some disparities exist depending

on the year (Figs. 8 and 12). This freshening is not observed

at the entrance of the Indonesian domain (NPW). It is due to

the surface fresh water coming from the Java Sea water that

represents the major freshwater input (70 %, Koch-Larrouy

et al., 2008). Moreover, a too strong freshening is observed

in the model (see Sect. 3.7.3 and 3.4.1). Surface water of

Makassar Strait and Flores Sea are lower than 33.8 PSU. It is

certainly due to a lack of salt water coming from the Pacific

Ocean; see Sect. 3.6 and 3.7.3. This behaviour is enhanced

in 2011 (Fig. 18) when the LST is the strongest (−1.19 Sv)

in the INDO12 simulation. The effect of a too strong mixing

in the Banda Sea (Fig. 17b) can also enhance the too strong

freshening at the surface.

Comparing the model over a limited period of time to

a climatology that suffers from a lack of data to properly
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Figure 18. T –S diagrams from INDO12 simulation (blue line) averaged on the Timor region and compared to climatologies WOA 2013

(red dotted line) and PSY3V3R3 (yellow line) for years 2008 to 2013. Salinity (PSU) and temperature (◦C) are plotted along x and y axes,

respectively.

represent inter-annual variability and regional rapid changes

between the seas of the archipelago, is an imperfect exer-

cise to validate the model. Fortunately, the INDOMIX cruise

occurred during the period of our simulation, providing a

unique data set to validate the model.

3.7.2 Comparisons with CTD from INDOMIX

campaign

The INDOMIX cruise (July 2010, Koch-Larrouy et al., 2015)

recovers in situ measurements in one of the most energetic

section for internal tides through the Halmahera Sea and

the Ombaï Strait. Classical fine-scale CTD/LADCP measure-

ments have been performed together with micro-structure

measurements at five locations, two at the entrance of the

Halmahera Sea (S0, S1), two in the Halmahera Sea (S2, S3),
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Figure 19. Locations of CTD moorings during the INDOMIX cam-

paign (July 2010).

one in the Banda Sea (S4) and two (S5a/S5b) in the Ombaï

Strait (Fig. 19).

Koch-Larrouy et al. (2007) argued that the vertical mixing

due to internal tides of the SPSW occurs mainly within the

Halmahera and Seram seas before entering the Banda Sea.

In the following section, we compared instantaneous

INDOMIX profiles (July 2010) to parent model (daily

mean) and to the INDO12 simulation (hourly instantaneous)

profiles. We see that before entering the Halmahera Sea

(Fig. 20/S0), a maximum of salinity is present, and is in

better agreement with observations in INDO12 simulation

compared to the parent model. The combined effect of the

horizontal resolution and explicit tides has a crucial role.

The INDO12 model exhibits a zigzag shape profile that sug-

gests intense lateral mixing probably produces by the explicit

tides.

In the Halmahera Strait (Fig. 20/S1), the salinity maxi-

mum has already been reduced both in the observations and

in the simulations. The vertical mixing seems to be too strong

in the INDO12 simulations since the mixed layer is too salty

and the lower thermocline is warmer and fresher. It is in bet-

ter agreement with observation than the parent model that

exhibits strong salinity a maximum.

At the S2 and S3 locations in the Halmahera Sea (Fig. 20),

T –S profiles display temperature and salinity structure with

“wiggles” and step features in the thermocline (more pro-

nounced than in S1 location). Ffield and Robertson (2008)

found a similar temperature fine structures associated to the

straits, the shallow shelves, and the proximity of the shelf-

slope boundary in the Indonesian seas. This phenomenon

seems to be amplified during the windy JJA southeast Mon-

soon time period when the upper thermocline is less strati-

fied, especially during La Niña years that which corresponds

to July 2010. They associated this temperature fine structure

with internal wave activity that can be a precursor to turbu-

lent vertical mixing. It is not clear if the horizontal and ver-

tical resolution of INDO12 prevents the reproduction of this

wave activity or if it occurs slightly away of the station loca-

tion.

As in S1, the mixing seems too strong since the mixed

layer is too salty and the lower thermocline is warmer and

fresher.

INDO12 T –S diagrams compare quite well with the IN-

DOMIX data in the Banda Sea (S4). It is the result of the

mixing and the advection of water masses coming from the

Java and the Flores seas. In the Ombaï Strait (S5), INDO12

fits very well with the INDOMIX data below the pycnocline.

The NPIW (density 26.5) seems to be well mixed in the ob-

servations, certainly by isopycnal mixing but it is no the case

in the INDO12 simulation where the NIPW signature is still

present.

Finally, all T –S diagrams in the interior domain show that

the parent model has definitively not enough efficient vertical

mixing and that a higher-resolution model including explicit

tides is needed to mix correctly Pacific waters in the Indone-

sian Archipelago.

It is also interesting to know where are located the most

important bias and errors in the vertical. This gives an ad-

ditional indication about the upper ocean stratification. In

Fig. 21a, b, c, d, most of the salinity biases for INDO12

show two significant maximums, a negative bias in the mixed

layer (0–50 m) and a positive bias at 150–200 m depth. The

model is fresher than the observations in the lower thermo-

cline where salty waters from SPSW penetrate into the In-

donesian seas. Moreover, this twice as large for S0 (Fig. 21a)

as for S1, S2 and S3 (Fig. 21b, c, d). As previously men-

tioned, this indicates that an excessively strong mixing oc-

curs in the Halmahera Strait and the Seram Sea. The par-

ent model shows a systematic negative bias over the whole

water column for salinity with two pronounced peaks near

the SPSW penetration and in the mixed layer. Except in S0

where two peaks exist, maximum errors (RMSD) are found

below the mixed layer depth (near 100 m), i.e. in the upper

thermocline. In S4 (Fig. 21e), a positive salinity bias exists

only in the mixed layer depth for INDO12 whereas in S5

(Fig. 21e) a slight salty bias exists over the whole water col-

umn with a maximum in the upper thermocline. Except in

S0, INDO12 temperature at S1, S2 and S3 is too warm (neg-

ative bias) down to 300 m depth, i.e. in the lower thermo-

cline. Below 600 m depth, a cold bias exists (positive) with

a gradually increase at S2 (Fig. 21c). In S4 (Banda Sea), it

is quite different since two opposite biases exist in the lower

and upper thermocline and no more significant positive bias

for deep layers. As previously mentioned, the NIPW signa-

ture is present at S5 location (Fig. 21f) with a larger bias

near 800 m depth but with also a larger variability since the

RMSD is larger.
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Figure 20. Collocated T –S diagrams to INDOMIX data (red) from hourly fields of INDO12 simulation (dark blue) and from daily mean

fields of parent model PSY3 (green) in July 2010 at all mooring locations. Salinity (PSU) and temperature (◦C) are plotted along x and

y axes, respectively.

3.7.3 Comparisons to in situ data in the SCS

(October–December 2013)

Comparisons of INDO12 simulations and WOA 2009 clima-

tology collocated with real in situ profiles (WOD 2013) have

been done in on both sides of the Luzon Strait for the autumn

2013 (October–December). We focus on the SCS region that

is connected to the Pacific Ocean through the Luzon Strait

in the northern part. In the southern part of the basin, the

region links with the Java Sea through the Karimata Strait,

and with the Sulu Sea through mainly through the Mindoro

Strait. The fresh SCS water entering the Java Sea through

the Karimata Strait inhibits the warm surface water from the
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Figure 21.
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Figure 21. Bias and RMSD of salinity (up) and temperature (bottom) between INDOMIX data and INDO12 (blue line) and parent model

PSY3 (green line) at at all mooring locations. Data are binned in 25 m depth intervals for the first 100 m depth and in 50 m depth interval for

deeper layers.

Pacific flowing southward in the Makassar Strait during the

boreal winter (Gordon et al., 2003b; Qu et al., 2006; Tozuka

et al., 2007). As the Makassar throughflow amounts to 80 %

of the total ITF, the SCS effect is a major contributor to the

overall variability of the ITF vertical structure. Whereas that

the Karimata transport is mostly seasonal (Fang et al., 2010),

the circulation of the SCS demonstrates an inter-annual vari-

ation related to the ENSO. Gordon et al. (2012) suggest that

the building of a “freshwater plug” in the western Sulawesi

Sea (via the Sibutu Passage) during prolonged El Niño pe-

riods inhibits the Mindanao surface layer injection into the

Makassar Strait. On the contrary, during La Niña the “fresh-

water plug” is dissipated, which leads to the penetration of

surface water from the tropical Pacific Ocean.

On both sides of the Luzon Strait (Fig. 22), the INDO12

model tends to be fresher mainly at the surface. This indi-

cates that not enough Pacific waters enter into the SCS and

it corroborates the too weak volume transport of thermo-

cline waters observed at the Luzon Strait, see Sect. 3.6. The

INDO12 model (Fig. 22a) show NPSW and NPIW already

shown previously (Fig. 16a) and it is quite close to observa-

tions. In the SCS (Fig. 22b), the INDO12 model is too fresh.

T –S profiles shows that vertical mixing acts by disrupting

the NPSW but in a too strong way by the INDO12 model.

The SCS region is known as a place where the representation

and the localisation of internal waves and their associated

vertical mixing is still difficult to quantify. Recently Alford

et al. (2015) made new measurements in the Luzon Strait

to better understand the formation of the world’s strongest

known internal waves.

As in the previous section, the bias and the RMSD of salin-

ity and temperature are shown on both sides of the Luzon

Strait; see Fig. 23a, b. On the eastern side of Luzon Strait

(Fig. 23a), salinity biases are mainly located in the first 50 m

and are significant for the INDO12 model only. After the Lu-

zon Strait, salinity biases are larger and spread deeper down

to 200 m for the INDO12 model only. The climatology seems

to have no significant biases and RMSD of salinity is equiv-

alent for the climatology and the INDO12 model. For tem-

perature biases, opposite biases exist for the INDO12 mod-

els and in a lesser extend for the WOA 2009 climatology.

From too cold (positive bias) on the eastern side of the Luzon

Strait, the sea surface temperature becomes too warm (nega-

tive bias) on its western side and systematically too cold from

the upper thermocline to the bottom. It is not the case for the
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Figure 22. Collocated T –S diagrams to in situ data (red) from INDO12 simulation (blue) and from climatology WOA2009 (green) on both

sides of the Luzon Strait (purple square) from October to December 2013. Salinity (PSU) and temperature (◦C) are plotted along x and

y axes, respectively.

WOA 2009 climatology that is systematically too cold (pos-

itive bias) over the whole water column.

4 Summary

The INDESO operational system has been designed to moni-

tor the evolution of the circulation, biogeochemistry and fish

population dynamics within the Indonesian seas. Practically,

INDESO addresses the needs of the Balitbang KP for a com-

plete new oceanographic centre in Perancak, Bali, from the

building to the computer systems, the satellite antenna, and

the transfer of expertise to the Indonesian experts. Since mid-

September 2014, the entire system (Ocean, Biogeochemistry

and Fish population dynamics) is fully operational in Peran-

cak (see http://www.indeso.web.id) and delivers 10-day fore-

cast/2 weeks hindcast on a weekly basis. In order to validate

the ocean physic, the INDO12 model based on NEMO 2.3

was integrated during 7 years (2007–2013). This period is

fairly short but it was the longest operational period able to

be constrained by the global ocean forecasting system at 1/4◦

(PSY3V3R3).

Overall, the mean circulation induced by the main equa-

torial and coastal currents (i.e. NGCC, SEC, NECC, SJC)

is well reproduced by the INDO12 ocean model. Except in

coastal regions, the EKE from INDO12 and the EKE derived

from altimeter data share the same patterns. On both sides of

the Luzon Strait, the weak EKE values from INDO12 cor-

roborates the weak SCSTF. The model estimations of com-

plex elevation amplitudes (amplitude and phase) agree rea-

sonably well with the TOPEX/POSEIDON, JASON 1 and

JASON2 crossover observations, with better agreement for

the diurnal constituents K1 than the semidiurnal constituent

M2. A power-spectrum analysis of the hourly SSH from tide

gauges and from simulated moorings shows that the model

is in very good agreement with the observations at low fre-

quencies. It confirms that tides are a dominant forcing in

the area, and that the tidal current is dominated by the di-

urnal (O1 and K1) and semidiurnal (M2 and S2) frequen-

cies. The non-linear constituents (higher harmonics) contain

less energy in the INDO12 model than the observations due

to a lesser accuracy of non-linear processes near the coast.

Compared to two different SST data sets, one from space

(AMSR-E) and one from an in situ product (JAMSTEC), an

overall warm bias exists and it is quite equivalent between the

two data sets. It is also consistent with the SSS bias (fresh

bias). Stronger values of the SST biases are located in the

SCS. Only one region is too cold, it is in the southern tropical

Indian Ocean. In the Indonesian Archipelago, it is difficult to

discern a general trend due to the large interpolation errors

and the lack of data.

We need to improve the large discrepancy in the SCS both

for SSS and SST that are influenced both locally by the mon-

soons and remotely by the SCSTF/ITF. As mentioned by Qu

et al. (2009), despite the considerable progress that has been

made in the past years, our understanding of the SCSTF is far

from complete. They also pointed out that Mindoro Strait can

play a significant role by shifting the NEC bifurcation (Min-

danao Eddy) and then the Kurushio intrusion. This enhances

the importance to have realistic Pacific open-boundary con-

ditions, which influences the position of the Mindanao Eddy.

We show that monthly SSS from space (Aquarius V3.0) and

from an in situ product (JAMSTEC) are quite consistent. This

shows that the INDO12 model SSS is too low in the SCS and

it corroborates the too weak volume transport of thermocline

waters observed in the Luzon Strait. A positive bias exists

in the southern tropical Indian Ocean (95◦ E–15◦ S) where

a smaller correlation between both INDO12 and both the ob-

servation data sets exist. It is certainly due to a systematic
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Figure 23. Bias and RMSD of salinity between real data (WOD 2013) and INDO12 (blue) and WOA 2009 (green) on both sides of Luzon

Strait (purple squares) from October to December 2013. Data are binned in 50 m depth intervals for the first 200 m depths and in 100 m depth

interval for deeper layers.

bias in the eastern boundary conditions related to a lesser ac-

curacy of the MDT.

Zhao et al. (2014) show that the enhanced mixing in the

SCS is a key process responsible for the density difference

between the Pacific and the SCS, which in turn drives the

deep circulation in the Luzon Strait.

The relative volume transport in the three major outflow

passages in the INDO12 simulation is very close to one cal-

culated from the INSTANT estimates. There is still an im-

balance between the Timor Strait (too strong) and the Ombaï

Strait (too weak). The LST is westward but still too weak.

It could be due to the model resolution and to the accuracy

of the topography in the Philippine Archipelago as suggested

by Hurlburt et al. (2011). In a recent study, Zhao et al. (2014)

argue that an increase of the diapycnal diffusivity in the

deep SCS and the Luzon Strait enhances the transport of the

deep circulation. A strong discrepancy exists between the

few existing measurements and the INDO12 simulation in

the Lifamatola Strait. As for the LST, it might be attributed

to the bathymetry located upstream of the strait but also to

the prescribed ocean forcing fields given by the Operational

Ocean Forecasting System at 1/4◦ (PSY3V3R3). This could

also explain the fact that the total transport in the INDO12

model is lower. Note also that the INSTANT estimates and

the simulated INDO12 volume transports are not calculated

over the same period (different ENSO/IOD signals).

The model is forced by explicit tides, which are able to

generate part of the total internal tides energy. Accordingly

to Niwa and Hibiya (2011), only 60 % of the baroclinic en-

ergy can be generated with a 1/12◦ model. The model is also

forced by an existing parameterisation of the mixing (Koch-

Larrouy et al., 2007). The resulting vertical mixing is able to

erode the South and North Pacific subtropical water-salinity

maximum as seen in the T –S diagrams. Compared to cli-

matologies, the inflow coming from North Pacific seems too

salty for NPSW and too fresh in surface for NPIW, the inflow

coming from South Pacific seems too salty and too warm

in surface and sub-surface. The SPSW salinity maximum is
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strongly eroded from its entrance in the Halmahera Sea and

vanishes in the Seram Sea. A too fresh surface water mass

coming from the SCS throughflow and also a too strong mix-

ing in the Banda Sea could explain a strong surface fresh-

ening into the Timor water masses. Nevertheless, an inter-

annual variability exists depending on the year.

Compared to data collected during the INDOMIX cruise,

an excessively strong vertical mixing occurs in the INDO12

model into the Halmahera Sea, which is not able to repro-

duce the observed “wiggles” and step features in the ther-

mocline. On the other hand, T –S profiles fit quite well in

the Banda Sea and the Ombaï Strait. Finally, all T –S dia-

grams in the Indonesian Archipelago show that the parent

model has definitively not enough efficient vertical mixing

and that a higher-resolution model including explicit tides is

needed to mix correctly the Pacific waters in the Indonesian

Archipelago.

Compared to WOD (2013) in situ data, the INDO12 model

tends to be fresher mainly at the surface in the SCS. This con-

firms what it has been previously observed in the SCS with

SSS and SST satellite data. It is certainly the consequence of

a too weak transport of Pacific water at the Luzon Strait.

Different possible ways of improving the INDO12 model

can be suggested. A recent and better tidal forcing (FES

2012; see Carrère et al., 2012) could improve tidal currents.

New boundary conditions from the 1/12◦ global ocean fore-

casting model are also planned and should be more consis-

tent (same horizontal resolution and same bathymetry). In

addition, the new 1/12◦ global ocean forecasting system will

start from the WOA 2013 climatology. This new initialisia-

tion should improve the deeper T –S biases found in the In-

donesian Archipelago where there is not enough observation

data to efficiently constrain the model with the data assim-

ilation system. They could give us some indications of the

Mindanao Eddy influence on the LST. Next developments

should also include an improved bathymetry in major straits

(entrance and exit). A specific study on vertical mixing in-

duced by internal waves is necessary in order to improve the

current tidal mixing parameterisation.

Finally, although the ITF has a major impact on the global

ocean circulation and climate variability, there are still too

few measurements in the Indonesian Archipelago.

Code and data availability

The INDO12 configuration is based on the NEMO2.3 ver-

sion developed at Mercator Océan. All specificities included

in the NEMO code version 2.3 are now freely available in

the recent version NEMO 3.6; see the NEMO web site http:

//www.nemo-ocean.eu. The INDO12/NEMO2.3 configura-

tion and all the input files used in the present paper are avail-

able upon request (please contact benoit.tranchant@cls.fr).

World Ocean Database and World Ocean Atlas are avail-

able at https://www.nodc.noaa.gov. Aquarius data L3 (V3.0)

data are available at http://podaac.jpl.nasa.gov/dataaccess.

AMSR data are produced by Remote Sensing Systems and

sponsored by the NASA Earth Science MEaSUREs DIS-

COVER Project and the NASA AMSR-E Science Team.

Data are available at www.remss.com. JAMSTEC data

are available at http://www.jamstec.go.jp/ARGO/argo_web/

prod/oi_prs_e.html
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Chapter 4

Modelling Explicit tides in the Indonesian seas: an im-

portant process for surface sea water properties (accepted

article)
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4.1 Introduction

In the previous chapter we showed that the INDO12 model was able to provide a realistic

simulation of the ocean circulation and water mass transformation through the Indonesian

Archipelago. The vertical mixing induced by internal tides is taken into account by INDO12.

This model explicitly solves the barotropic tides and uses the vertical mixing parameterisation

of Koch-Larrouy et al. (2007) which artificially enhances the vertical viscosity and the diffusion

coefficient.

The inclusion of barotropic tides in the model can create strong internal waves at the

tidal frequency, called internal tides. These internal tides are generated on the slope of sharp

topography and eventually will propagate in the interior of the ocean. When an internal tide

gets unstable it will break, resulting in a strong mixing. This mixing upwells cold, salty water

and nutrients richer water from bllow and downwells warmer and fresher water from the surface

at deeper depth. This upwelling of cold nutrient-richer water at the surface, could prove to be

critic for climate system and for marine resources.

The objective of this chapter, and the following submitted paper, is thus to study the impact

of the internal tides produced by the model on the surface properties and, in particular, the

sea surface temperature.

To this aim, we conducted three simulations in order to examine the impact of tides on

surface properties. The EXPL run includes explicit tidal forcing and the reference configura-

tion (CTRL) doesn’t. The PARAM simulation is forced by the Koch-Larrouy et al. (2007)

parameterisation. All of them are forced by the same buoyancy and wind forcing.The results of

the three simulations are compared in order to understand exactly how, when and where tidal

mixing influences surface temperature.

The tides induce a cooling at the surface is of 0.3 °C with maxima of 0.8°C at the location of

internal tides energy. The cycle of spring tides and neap tides produces modulate this impact

by 0.1°C to 0.3°C. These results suggest that this mixing might also upwell nutrients at the

surface, which in turn influence the survival rate of most planktonic organisms at the base of

the whole marine ecosystem.
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A R T I C L E I N F O

Keywords:
INDESO
ITF
Internal tides
Vertical mixing
Explicit tides
Ocean Physical General Circulation Model
(OGCM)

A B S T R A C T

Very intense internal tides take place in Indonesian seas. They dissipate and affect the vertical distribution of
temperature and currents, which in turn influence the survival rates and transports of most planktonic organisms
at the base of the whole marine ecosystem. This study uses the INDESO physical model to characterize the
internal tides spatio-temporal patterns in the Indonesian Seas. The model reproduced internal tide dissipation in
agreement with previous fine structure and microstructure observed in-situ in the sites of generation. The model
also produced similar water mass transformation as the previous parameterization of Koch-Larrouy et al. (2007),
and show good agreement with observations. The resulting cooling at the surface is 0.3 °C, with maxima of 0.8 °C
at the location of internal tides energy, with stronger cooling in austral winter. The cycle of spring tides and neap
tides modulates this impact by 0.1 °C to 0.3 °C. These results suggest that mixing due to internal tides might also
upwell nutrients at the surface at a frequency similar to the tidal frequencies. Implications for biogeochemical
modelling are important.

1. Introduction

The Indonesian archipelago, with its estimated 17,000 islands is a
unique region in the world. It contains much of the world's marine
biodiversity and is part of the “Coral Triangle”, the global hotspot of
marine biodiversity (Allen and Werner, 2002; Mora et al., 2003; Allen,
2007; Veron et al., 2009). In addition to biodiversity, the physical
oceanography of this region is remarkable by several aspects. Among
them, the large tidal currents coming either from the Indian Ocean or
the Pacific Oceans interact with the rough topography and create strong
internal wave at the tidal frequency, called internal tides (Fig. 1). These
internal tides are generated on the slope of sharp topography and
eventually propagate in the interior of the ocean. When an internal tide
gets instable, it breaks, resulting in a strong mixing. This mixing up-
wells cold, salty and nutrient-rich water from below and downwells
warm and fresh water from the surface to deeper depth. This mixing,
and the upwelling of cold nutrient-rich waters at the surface, could be
critical for the climate system and for marine resources. Second, In-
donesia also has the warmest oceanic waters on earth. These waters

feed the most powerful atmospheric convective activity. The resulting
large tropical atmospheric circulation affects, via teleconnexion, the
global system. In such an energetic atmospheric region, any modulation
of the ocean heat surface content by oceanic processes can have a large
impact on local and tropical climate (Koch-Larrouy et al., 2010;
Sprintall et al., 2014). Lastly, the Indonesian seas offer the only low
latitude passage in the world for water flowing from the Pacific Ocean
to the Indian Ocean, which is referred to as the Indonesian throughflow
(ITF) (Murray and Arief, 1988; Fieux et al., 1994; Gordon and Fine,
1996; Hautala et al., 2001; Molcard et al., 2001).

In fine, Indonesian islands and their surrounding waters provide
several billion dollars of annual revenue through fisheries, aquaculture
and tourism. Tuna fisheries are a major economical sector in Indonesia,
and fishing and aquaculture employ almost 6.4 million people (source
from Fisheries and Aquaculture Department, http://www.fao.org/
fishery/facp/IDN/en#CountrySector-Overview).

An accurate monitoring and forecasting system for the ocean is
certainly vital to manage Indonesia waters and its resources. To help
meeting these challenging objectives the INDESO (Infrastructure
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Development of Space Oceanography) project was developed for the
Government of Indonesia. With this project, Indonesia has implemented
a new system for the monitoring and management of its tuna resources.
Within INDESO, physical and biogeochemical coupled models are used
to constrain a dynamical tuna population model SEAPODYM (Lehodey
et al., 2008). In this study, we use for the first time the physical model
to study the impact on surface properties of internal tides mixing and
discuss the spatio-temporal patterns in the Indonesia Seas.

1.1. Background information on internal tides in the Indonesian region.

Internal tides are generated when barotropic (or surface) tides os-
cillate over a topography feature (Fig. 1). Barotropic horizontal motions
are converted into vertical velocities (red arrow, Fig. 1) over the to-
pography. As the ocean is a stratified fluid (thin horizontal blue line
representing the isopycnal layers, Fig. 1), the vertical velocity will act
as a vertical generator of wave at the tidal frequency. Part of the in-
ternal tides can dissipate and produce vertical mixing (green arrow,
Fig. 1) locally just after generation, or later after propagation. The fate
of internal tides can be traced using satellite and Radar images as it has
been done in the Lombok strait for example (Mitnik et al., 2000; Sari
Ningsih, 2008; Aiki et al., 2011; Matthews et al., 2011; Astawa Karang
et al., 2012; Ray and Susanto, 2016) or in the Sulawesi Sea (Nagai and
Hibiya, 2015). Signature of internal tides are also found in in-situ data.
For instance, direct yo-yo station measurement in Lifamatola (Ffield
and Gordon, 1996) and in Labani channel (Purwandana, 2014) shows
the oscillation of isopycnal in the thermocline over the tidal period.

The Indonesian archipelago is the only region of the world with
strong internal tides generation in a semi-enclosed area. Therefore, all
of the internal (or baroclinic) tidal energy remains trapped locally in-
side the archipelago and is available for dissipation, and the archipe-
lago has the largest internal tide generation value (10% of the global
value). As a result, water mass is transformed when entering the ar-
chipelago, producing colder and fresher thermocline water and saltier
and cooler surface water (Ffield and Gordon, 1996; Hautala et al., 2001;
Koch-Larrouy et al., 2007). A vertical diffusivity of 1–2 · 10−4 m2/s has

been estimated from observations in order to explain the water mass
transformation in the archipelago (Ffield and Gordon, 1992).

Recently, the INDOMIX cruise (Koch-Larrouy et al., 2015) provided
direct estimates of internal tide mixing with higher values (10−2 m2/s)
in the shallow and narrow passage between Ombai Strait and Halma-
hera, in comparison to lower values in the inner Halmahera Sea
(10−4 m2/s) or further away from generation sites (10−6 m2/s) in the
Banda Sea. These new results showed that the mixing induced by in-
ternal tides in the Indonesian archipelago is highly heterogeneous in
space, with high values within straits. In addition, it demonstrated that
internal tide mixing is also strong at the surface.

Modelling in the region is quite challenging because of the nu-
merous processes at play and the very complex bathymetry. Koch-
Larrouy et al. (2007), implemented a tidal parameterization adapted to
the specificities of the Indonesian archipelago. Introduced in an
Oceanic General Circulation Model (OGCM), this parameterization al-
lowed the model to better represent the properties of the water mass
evolution in each sub-basin, in good agreement with the observations
(Koch-Larrouy et al., 2007). This model produced heterogeneous ver-
tical diffusivity as large as 10 · 10−4 m2/s, with an average of
1.5 · 10−4 m2/s. This suggested that the total energy input provided by
the tidal parameterization had the right order of magnitude. The tidal
mixing parameterization resulted in the cooling of the sea surface by
0.5 °C in annual average, which reduced the deep convection, and the
rain activity (by ~20%) (Koch-Larrouy et al., 2010; Sprintall et al.,
2014). The impact on biological activity has not yet been studied, but it
could be guessed from these results that the vertical mixing would have
a significant impact on blooms of phytoplankton by upwelling water
richer in nutrients at the surface. However this tidal mixing para-
meterization did not take into account the propagation of internal tides
and thus the mixing that could occur further away from generation
sites. It also does not take into account the upwelling of the base of the
mixed layer associated to the isopycnal displacement of the wave when
it propagates away from generation zones (Fig. 1).

Recently, with the increase of model resolution, a larger number of
studies now includes the explicit forcing by the tides (Castruccio et al.,

Fig. 1. Schematic of internal tides generation, propagation and dissipation. The barotropic (or surface) tides oscillate horizontally in the plain ocean (red arrow). It loses part of its energy
at the bottom due to bottom friction (red arrow) or when internal tides are generated (black arrow). When the tidal currents encounter the topography feature (brown) it creates vertical
currents on its sides (red arrows). This vertical motion in a stratified ocean acts as a vertical generator of waves at tidal frequency. Part of internal tides will dissipate and produce vertical
mixing (green arrow) locally just after generation, or later after propagation. When internal tides propagate it can be seen isopycnal displacements (blue line) in the interior sea, and if the
internal tides are very strong vertical displacement signature can also be seen at the surface. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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2013; Nagai and Hibiya, 2015; Tranchant et al., 2016). However, in-
ternal tides cover horizontal scales of several 100 km for their propa-
gation to 1 cm/mm for their dissipation. It is thus impossible for any
kind of model to accurately reproduce at the same time all the processes
related to the internal tides. (Niwa and Hibiya, 2011) showed that with
a 1/12° resolution, a model is able to reproduce only 75% of the in-
ternal tides generation. With a 1/36° resolution model, the score rises to
90%. However, specific parameterization for their dissipation must be
used and it does not yet exist such specific parameterization for OGCM
in the literature. The dissipation of internal tides in OGCM is under
active research and is beyond the scope of the present study. We em-
phasize that we did not expect the model to dissipate the internal tides
exactly as observed, but we expected that part of the modelled internal
tides behaviour would be similar to the observations.

2. Method and data

2.1. Model and simulations

This study used the INDESO configuration detailed in Tranchant
et al. (2016). The horizontal resolution is 1/12° and the domain covers
all Indonesian seas, the South China Sea, as well as the Luzon strait,
known as one of the strongest internal tides generator in the region. In
the southern part it covers the Northern Australian Shelf (Fig. 2).
Vertical grid uses Z-partial steps with 50 variable layers going from few
meters resolution at the surface and 250 m at the bottom. Initial and
open boundary conditions (OBCs) are forced by the Mercator-Ocean
Global Ocean Forecasting System at 1/4° (PSY3V3R3). These conditions
include temperature, salinity, currents and Sea Surface Height (SSH).
Open boundary conditions (OBCs) are located on a relaxation band of
10 grid points (~1°).

Atmospheric forcing fields came from the European center
(ECMWF) and had a high frequency (3 h). “Bulk” formulae from CORE
were used to model the atmosphere-ocean interface (Large and Yeager,
2004). The surface atmospheric pressure forcing was also explicitly
considered. There was no restoring tem in SST nor in SSS.

Tracer advection scheme is an upstream biased third order scheme
(Tranchant et al., 2016) and is diffusive. Horizontal diffusion is done by
a bilaplacian formulation with a Kh coefficient of 1.25 · 1010 m2/s.
Vertical diffusivity, Kz, is calculated through the turbulence vertical
closure GLS (generic length scale) (Umlauf and Burchard, 2003) in-
cluding wave impact and logarithmic bottom friction.

This configuration included explicit tidal forcing, with 11 tidal
constituents. As in Shriver et al. (2012), INDESO configuration had
geopotential tidal forcing for M2, S2, N2 and K2 (the four largest
semidiurnal constituents) and for K1, O1, P1 and Q1 (the four largest
diurnal constituents). As in Maraldi et al. (2013), two long-period tides
Mf and Mm and one non-linear constituent (compound tides) M4 were
also added. Explicit tides were resolved non-linearly in the model using
explicit free surface (Madec, 2008). These 11 tidal constituents coming
from the astronomical forcing TPX0.7 (Egbert and Erofeeva, 2002) were
used to force open boundaries. More details about the configuration can
be found in Tranchant et al. (2016).

2.2. Numerical experiments

We used three main simulations.
1) The CTRL simulation did not include any effect of the tides,
2) The EXPL simulation included explicit tidal forcing, as explained

above.
3) The PARAM simulation was forced by the Koch-Larrouy et al.

(2007) parameterisation.

Fig. 2. Bottom topography over the model domain and names of the main seas and straits described in this paper. Coloured stars represent the 5 stations of the INDOMIX cruise. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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All of the simulations were forced by the same buoyancy and wind
forcing. Simulations started January 3rd 2007 until December 31st
2011. Outputs are daily average and the four last years are analysed
after spin up. Shorter run (1–31 July 2010) with instantaneous hourly
output were also performed in order to calculate the vertical dissipation
from the model and compare it to the INDOMIX 2010 cruise described

below (Koch-Larrouy et al., 2015).

2.3. Dissipation rates.

Energy diagnostics and precise evaluations of the energy dissipation
in the model are essential elements of our study. They are detailed

Fig. 3. Instantaneous vertical velocity at 142 m depth on 07th of June 2010, 16:00 UTC for the EXPL simulation.

Fig. 4. True-colour MODIS image of the Sulawesi Sea acquired on 6 March 2006 at 5:25 UTC. Five groups of internal waves are visible in western half of the sea, two propagating west
toward Borneo, two wave groups propagating southeast toward Celebes (or Sulawesi), and the partial signature of a fifth group visible immediately adjacent to the coast of Sulawesi
(adapted from Figure 5 of Jackson (2007). Copyright (2007) American Geophysical Union). (b) Instantaneous model vertical velocity at 1000 m depth on 10 July 2010 at 15:30 UTC.
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below. The model kinetic energy (KE) equation can be written as fol-
lows:
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∇
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  
(1)

where the subscript u is the velocity, p the pression and ρ0 the ocean
density (1020 kg/m3), “h” denotes a horizontal vector, κz is the vertical

viscosity, Dh the contribution of lateral diffusion processes and Dtime the
dissipation of kinetic energy by the time stepping scheme. The dis-
sipation of kinetic energy by diffusive processes (Ediss) is computed as
the spatial integral of the diffusive terms εh and εv in Eq. (1)
(Nikurashin et al., 2012; Jouanno et al., 2016):

∭= +E d d d(ε ε ) x y zdiss h v (2)

2.4. INDOMIX data.

We compared the dissipation of the model forced by explicit tides to
the recent INDOMIX results (Koch-Larrouy et al., 2015). The cruise was
held in July 2015 and measurements were done at five 24 h-yoyo-sta-
tions. The strategy of measurement was done such as different regions
of internal tides energy could be sampled. Three sites above straits have
been sampled: Station St1 was located at the entrance of the Halmahera
Sea, St3 at the exit of the Halmahera sea and St5 at the Ombai strait
(Fig. 2). Further away from generation site but still under the possible
influence of propagating internal tides, St2 was located in the middle of
Halmahera Sea. Finally, St4, in the Banda Sea (Fig. 1) was very far away
from any generation site so that it could be verify that there was no
influence of the tides. For each station, a microstructure profiler able to
measure turbulence at scale of 1 mm/1 cm provides direct estimates of
dissipation (Koch-Larrouy et al., 2015).

3. Results

3.1. Internal tidal mixing in the INDESO model

Vertical instantaneous velocities at 142 m depth of the EXPL simu-
lation (Fig. 3) show evidences of internal tides propagation from several
locations such as Luzon strait, Sangihe chain (H1), Lifamatola strait,
Sibutu Chanel, Halmahera Sea (V2) and Lombok Strait (V1). Propaga-
tion from Luzon strait occurs toward both sides of the seamount, to the
eastern and the western directions. In the western direction, after 2
reflexions, i.e., 2 positive vertical velocity signals, the signal is much
weaker and we conclude that it must have been dissipated during the
propagation. Signal toward the eastern direction is stronger and three
significant reflexions at the surface can be seen before complete dis-
sipation. Similarly, the Sangihe islands, the Sibutu Chanel and Lifa-
matola strait create strong propagating internal tides in the model
(Fig. 3). The interaction with the inner seas may stop the internal tides
from further propagation as seen in the Sulu Sea and in the Seram Sea.
Also, in this inner part of the archipelago, the interaction between
several generation sources make the signal noisier, as seen for example
for the Sulawesi Sea that exhibits internal tides coming from either
Sangihe Island (H1) or Sibutu Chanel.

Satellite true colour image from MODIS (in Nagai and Hibiya, 2015)
Fig. 4) reveals five groups of internal waves, visible in the western half
of the sea: two propagating west toward Borneo, two wave groups
propagating southeast toward Sulawesi, and the partial signature of a
fifth group visible immediately adjacent to the coast of Sulawesi. The
model compares well to this image as we clearly see internal waves
corresponding to groups 1, 2 and 4 (green lines) validating qualitatively
the direction of propagation from Sangihe islands and from Sibutu
channel.

Vertical sections of the isopycnal displacement (vertical veloci-
ty × time) show for Sangihe Islands (section H2 on Fig. 3) strong signal
on the eastern side of the ridge (Fig. 5a). The internal tides propagate
toward the east and the signal is quite coherent, although, the positive
isopycnal displacement at 123 and 122°E might come from Sibutu
channel at the northern part of the Sulawesi Sea. In addition, internal
tides that generate on the eastern side of the western part of the ridge
and propagating to the east are also seen. They reach the surface just
above the eastern part of the ridge. Part of the internal tides generating

Fig. 5. Snapshopt of Isopycnal displacement (m) for July 07, 2010 at 16:00 UTC and
kinetic energy dissipation (log10 Ediss, Eq. (2), W/kg) averaged over July 2010 for vertical
sections H1, V1 and V2 defined Fig. 3.
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on the same location are also propagating to the west, but the signal is
weaker and rapidly damped.

Dissipation associated to the internal tides has been calculated fol-
lowing eq. 2. The model produces strong dissipation right above the
eastern part of the ridge from the bottom until the surface (Fig. 5b). The
surface strong mixing is also found between 124°E and 125°E as part of
the reflexion of the internal tides generated at 125°E.

In the shallower Lombok strait (section V1 on Fig. 3), internal tides
are also generated on both side of the slope and the isopycnal dis-
placement is very strong in the first 500 m (Fig. 5c). This leads to a
dissipation of 10−6 W/kg in the thermocline and close to the surface
(Fig. 5d). The northern side of the strait exhibits stronger displacement
and mixing. The model reproduces propagation toward the south al-
though it concerns small part of the internal tides.

In the Halmahera and Seram Seas (section V2 on Fig. 3), the suc-
cession of the shallow passages and the semi-enclosed Seas favour multi
sites of generation and interference of wave activity, and thus a strong
vertical mixing background (10−8 W/kg) is found, although it is far
away from the generation sites (Fig. 5e and f). A surface intensified
mixing induced by internal tides is found above the three passages and
also in the northern part of Halmahera Sea, reaching a dissipation of
10−6 W/kg. The Fig. 6 shows a zoom in the surface and sub-surface

layers of the dissipation and the mixed layer depth. It is clearly seen
that the additional tidal mixing is surface intensified and below the
mixed layers, and thus capable of upwelling cold and nutrients rich
water at the surface as shown in Luzon (Jan and Chen, 2009).

The spatially integrated dissipation of the tides (Eq. 2) is shown
Fig. 7. The model shows intensified dissipation close to the generation
sites such as Sangihe Chain, Luzon, Sibutu, Lombok, Lifamatola and
Dewakang Straits or Halmahera portals with values close to 10−1 W/
m2. In the big Sulawesi, Banda seas and South China Sea as well as in
the smaller Halmahera and Molluca Seas, we clearly see intensified
dissipation further away from generation sites with smaller values of
10−2 W/m2. Finally, on the Australian shelf, in the southern South
China Sea and Java Sea as well as in the Southern part of the Andaman
Sea, bottom friction due to the tides produce large dissipation between
10−2 and 10−1 W/m2.

3.2. Comparison of model mixing with observations

The INDESO model (Fig. 7) agrees well with the Ffield and
Robertson (2008) fine structure estimates, which indicate intensified
tidal mixing in Ombai, Lifamatola and Dewakang Straits, in Molucca
Sea, in the Banda Sea offshore the Muna and Buton Island (125°E, 6°S),

Fig. 6. Zoom from surface to 300 m depth in
Fig. 5. (a), (b) and (c) are kinetic energy dis-
sipation (log10, Eq. (2), W/kg) for vertical sec-
tions H1, V1 and V2 in Fig. 3 respectively. The
minimum and maximum of mixed layer depth
(MLD) over one month (July 2010) is overplot on
each vertical section (min: dashed, and max:
plain white lines).
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in the Flores Sea, and in the eastern part of the Australian shelf.
During the INDOMIX cruise in July 2015, direct estimates of dis-

sipation from microstructure in Halmahera Sea, Banda Sea and Ombai
Strait have been obtained (Fig. 8a). Vertical dissipation estimates over
the three main straits Ombai Strait (St5, red), Northern Halmahera (St1,
yellow) and southern Halmahera (St3, green) portals show very good
agreement between INDOMIX and EXPL, with values between 10−7

and 10−6 W/kg for both model and microstructure measurements. In
contrast, region further away from generation sites (st2) are over-
estimated by the model, which shows value of 10−8 W/kg in compar-
ison smaller dissipations between 10−9 and 10−10 W/kg below 200 m.
In the Banda Sea, far away from the generation sites, there is no evi-
dence in the observation of internal tides activity (10−10 W/kg) the
model still produce 10−9 W/kg of dissipation.

If we look more closely in the first 400 m (Fig. 8b), the agreement
between the model forced by explicit tides and the observation is closer
than elsewhere in the water column, apart for St4. This station still
overestimates the dissipation by one or two order of magnitude, while
there is no evidence of additional mixing in the observations. It is
striking that both for the model (EXPL) and for the observations, the
mixing is very strong at the base of the mixed layer and in the ther-
mocline with similar value for both of them, between 10−8 and

10−7 W/kg.

3.3. Impact of mixing on water mass and sea surface temperature: spatio-
temporal patterns

Impact of the mixing on water masses is illustrated by a tempera-
ture-salinity diagram from the Banda Sea (Fig. 9). CTRL presents a large
bias in salinity, with a maximum in the thermocline of 35 psu while in
the observation, the value is closer to 34.5 psu. The simulations that
included the effect of the tides, either PARAM or EXPL, show better
agreement with the observations, including a salinity maximum in the
thermocline of 34.55 psu. We remark that both PARAM and EXPL
produce almost the same water mass transformation when the forcing
terms and the method of taking into account the internal tides are very
different.

For the whole Indonesia, the impact of mixing on the sea surface
temperature (SST) is shown Fig. 10. Both PARAM and EXPL induce an
annual cooling that ranged between 0.2 and 0.8 °C (Fig. 8a), in good
agreement with previous studies (Koch-Larrouy et al., 2007, 2010; Kida
and Wijffels, 2012). In the region where the parameterization is applied
(inner seas of the archipelago, see Koch-Larrouy et al., 2007) the SST
cooling obtained with PARAM and with EXPL is very similar, and

Fig. 7. Spatially integrated dissipation (log10 Ediss, Eq. (2)) below
mixed layer depth.

Fig. 8. (a) Dissipation (in W/kg) from INDOMIX station
(Koch-Larrouy et al. 2015), using microstructure direct es-
timates (thin line) compared to horizontal kinetic energy
dissipation (in W/kg) from EXPL calculated following from
Eq. (2). Colours refer to the 5 different stations (see Fig. 2
for location). The length of the box shows the uncertainties
of the method. (b) Zoom between 0 and 400 m.
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slightly stronger for PARAM than for EXPL. For both simulations, the
cooling is heterogeneous in space and stronger above topographic
features such as Sibutu, Lifamatola, Lombok and Dewakang Straits,
where internal tides are generated (about 0.7 °C for EXPL-CTRL and
0.8–0.9 °C for PARAM). This agrees well with the total dissipation
produced by the tides in the model (Fig. 7).

In the Indonesian interior seas the residual mean cooling is between
0.2 and 0.4 °C and is advected by the ITF toward the Indian Ocean, in
both simulations. EXPL presents additional cooling compare to PARAM
above the Australian shelf, in South China Sea, in Andaman Sea and in
Luzon Strait. The cooling in the Luzon strait comes from internal tides
generated in Luzon that were not taking into account in the previous
PARAM study of Koch-Larrouy et al. (2007). Conversely, the warming
in the South China Sea is the result of exchanges intensified by high
tidal currents in Malacca Strait, between the colder South China Sea
and the warmer Andaman Sea. Finally, the cooling over Australian shelf
comes from the strong surface tidal currents that, on the shallow shelf,
produce intense mixing (Fig. 7).

Temporally, the impact of tidal mixing on the SST is observed with a
distinct seasonal cycle in EXPL (Fig. 10c, d, e and f). On basin average,
tidal mixing cools the SST during South East Monsoon the most, as
previously showed by Kida and Wijffels (2012). A decrease in cooling is
observed during spring and autumn, when the Monsoonal winds are
weaker, also in good agreement with Kida and Wijffels (2012).

During austral winter, which corresponds to South East Monsoon,
strong cooling is found in region of intensified mixing such as in the
Island chain between Sulu and Sulawesi Seas, or downstream of the
Lombok, Ombai and Lifamatola Straits. In this season, cooling is found
to cover large area from the southern side of the Nusa Tenggara toward
the Indian Ocean and from the Seram and Halmahera Seas and the
Lifamatola passage to the northern part and norther-eastern part of the
Banda Sea. The vertical mixing induced by the tides during austral
winter is more efficient because the strong monsoonal winds upwell the
thermocline. Colder waters are closer to the surface and thus mixing is
more efficient to cool the surface. This spatially large cooling of the SST
found during South East Monsoon suggests that tidal mixing is likely
capable of affecting the atmosphere during the season of deep

atmospheric convection over the Indonesian Seas.
Cooling of the SST is found to occur more locally in other seasons. In

North West Monsoon, cooling is observed along the shelf-break of the
Australian shelf and in the northern part of the Lifamatola Passage as
well as in Sibutu Chanel and the southern part of Sulu Sea (Fig. 7b).
Strong cooling is also found in the Island chain between Sulu and Su-
lawesi Seas. The winds are reversed and create at this season a down-
welling, which do not favour a surface cooling due to mixing by the
tides.

The M2 and S2 semidiurnal tides combine to produce a fortnightly
(14.8 days, spring tides-neap tides) modulation, firstly documented in
the observations of the Indonesian archipelago by Ffield and Gordon
(1996). Over a fortnight the SST range is between 0.1 and 0.15 °C in the
main regions of intensified mixing induced by internal tides, such as
Luzon, Dewakang, Makassar, Ombai and Lifamatola Straits as well as in
the Islands chain between Sulu and Sulawesi Seas, at the entrance of the
Halmahera Sea or in the Sangihe Islands (Fig. 11). In Lombok and Si-
butu straits, it is even larger than 0.3 °C (not shown). Also in the shelf-
break of the Australian shelf the signal is quite strong, as well as in the
northern part of China Sea. In addition the internal tides propagating
away from the Luzon Strait or from Sangihe Islands show intensified
signal at the Msf frequency. In the northern part of the domain, the
signal is noisy and this might be due to the presence of open boundary
conditions.

These results compare fairly well in the Nusantarra Islands, in
Seram Sea and in the Sibutu Islands to the recent results of Ray and
Susanto (2016) (Fig. 1 in their paper) using satellite data. However, the
model produces more energy in Dewakang, Makassar, Lifamatola and
Malacca Straits and in the entrance of Halmahera Sea, which are re-
gions of intense tidal activity. In contrast, the model does not exhibit
any Msf tidal signal in the in Sumba Strait, which does not agree with
the study of Ray and Susanto (2016). This might be due to lack of re-
solution in Sape Strait, connecting Flores Sea and Sumba strait, that
prevents semidiurnal tides to generate and passes through the strait.
The signal away from the Australian shelf covers a large area where it
has been shown that the coupling between ocean and atmosphere is
quite efficient (Koch-Larrouy et al., 2010). Also the South China Sea
and the Luzon Strait show strong variability at the Msf frequency over
basin large domain. Modulation at the Msf (14.8 days) frequency might
be of some importance for the intraseasonal variability of the SST at
large scale and thus for the convective activity as shown for the Gulf of
California (Martinez-Diaz-de-Leon et al., 2013). This could be one of the
sources of modulation of the rain activity in the region that would in-
terfere with the passing Madden Julian Oscillation (MJO) (Madden and
Julian, 1994; Zhang, 2008).

4. Summary, discussion and perspective

INDESO physical model was forced by explicit tides and was able to
reproduce part of the internal tides. They were generated by the in-
teraction of the tidal currents on the topography in the stratified ocean.
As observed, part of them radiated away from generation sites. The
model is able to reproduce quite well the direction of propagation, as in
the Sulawesi Sea. Mixing is found in the model right after generation
close to the seamount, but also in the whole water column above the
seamount, and in particular close to the surface. In addition, some
mixing is also found at the surface further away from the topography
feature.

The model shows intensified dissipation close to the generation sites
such as Sangihe, Lombok, Lifamatola, Dewakang Straits or Halmahera
portals. In Sulawesi and Banda Seas, we also clearly see intensified
dissipation further away from generation sites. The model dissipation
agrees well with the spatial fine structure obtained by Ffield and
Robertson (2008) for Ombai, Dewakang and Lifamatola Straits, and
Molucca and Flores seas.

The model and the recent INDOMIX cruise (Koch-Larrouy et al.,

Fig. 9. Temperature-salinity diagram in the Banda Sea from CTRL simulation (blue line),
EXPL simulation (red line), PARAM simulation (green line) and climatologies WOA 2013
(www.nodc.noaa.gov). Plot shows horizontally averaged properties on a box
(124.75°E–130.83°E; 6.65°S–4.41°S). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Sea surface temperature (SST) annual anomaly for (a) PARAM-CTRL and (b) EXPL-CTRL. Sea surface temperature (SST) seasonal anomaly for EXPL-CTRL averaged over: (c)
July–August–September (JAS), (d) January–February–March (JFM) (e) April–May–June (AMJ) and (f) October–November–December (OND).
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2015), which provided direct estimates of the mixing, are in good
agreement mainly above straits (station St1, St3 and St5 of INDOMIX).
However, in regions far away from any generation sites (Banda Sea)
where INDOMIX and also Alford et al. (1999) found no evidence of
intensified mixing, the model produced a too strong mixing. Also,
below 200 m, in station St2 the model produced stronger mixing
compared to the observation.

Both parameterization and explicit tides produced similar water
transformation and allowed reproducing the homohaline Indonesian
water, whereas in the simulation without tides (CTRL) the model pro-
duced large salinity bias.

In basin average, the intensified surface mixing is able to cool the
sea surface between 0.3 and 0.7 °C. EXPL and PARAM produce similar
SST cooling structure above generation sites, which is slightly stronger
for PARAM (0.8 °C). The EXPL simulation produced also cooling due to
strait exchange of water mass properties (Malacca strait) and due to
dissipation at the bottom above the Australian shelf that were not re-
produce in PARAM.

Temporally, the cooling is stronger during South East Monsoon
(austral winter), when the winds favour upwelling along the Java coast
and in the northern eastern part of the archipelago. Whereas for the
other seasons the cooling is localised in small regions of intensified
mixing. During South East Monsoon (austral winter) the cooling covers
basin scale regions and thus might be of some importance for mod-
ulating the above convection and rain in the atmosphere, as shown in
Koch-Larrouy et al. (2010).

In addition, the fortnightly (14.8 days) modulation of the cooling
due to the tides (spring tides-neap tides) is strong over all straits of
intense internal tides generation, such as Luzon, Dewakang, Lifamatola,
Ombai, Lombok Straits, Halmahera entrance and Sibutu Islands, as well
as in the shelf break of the Australian Shelf and in the South China Sea.
The large-scale signal at Msf frequency in the Australian shelf and in the
South China Sea might inprints tidal modulation of the atmosphere

convective system as found in California for example (Martinez-Diaz-
de-Leon et al., 2013). Further research need to be done at sea to in-
vestigate if tidal frequency is found in the rain and convective data.

The first limitation of this study is the spatial resolution of the
model, which does not allow reproducing correctly the internal tides.
As shown in Niwa and Hibiya (2011) a model with 1/12° resolution is
able of reproducing only 75% of the internal tides generation due to
both insufficient resolution of the bathymetry slopes and of the tidal
currents. Furthermore, once generated, the internal tides are dissipated
by the model by parameterisation or numerical set ups that are not
specifically adapted to the physics of the tides, but rather to larger scale
processes or to eddy diffusivity. Thus, the model might not dissipate
tides as observed and produces unrealistic mixing. Indeed, when com-
paring the model to the recent INDOMIX cruise, the model produces
higher background mixing in Banda Sea, region where in reality no
mixing as been found (Alford et al., 1999; Koch-Larrouy et al., 2015), as
well as below 200 m in the inner Halmahera Sea. These shortcomings
likely come from the lack of specific set up to dissipate the internal tides
once generated. More work is required to solve this problem.

Knowing these limitations, we also show that the model reproduced
part of the internal tides in qualitatively good agreement with
INDOMIX for their propagation (in Sulawesi) or their intensity in region
of high mixing (at St1, St3 and St5 of INDOMIX stations). The model is
worth using as a first step to predict the influence of internal tidal
mixing to surface properties. However, in future studies it will be im-
portant to quantify the exact dissipation produced by the model when
adding explicit tides and improve both the resolution and the physics of
the model, to take into better account the special behaviour of internal
tides.

This study has focused on the impact of mixing on sea surface
temperature. The results can be easily transposable for nutrients and
biomass as shown in previous studies (e.g. Franks and Chen, 1996;
Souza and Pineda, 2001; da Silva et al., 2002; Jan and Chen, 2009)

Fig. 11. Amplitude of the harmonic analysis of the SST at the Msf (M2-S2, 14.8 days) frequency (in °C) for EXPL.
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since the vertical mixing would upwell deeper layer richer in nutrients
at the surface. Microscale turbulence maintains well-mixed biomass and
nutrients within the turbulent surface boundary layer as well as driving
nutrient fluxes into the mixed layer (e.g. Lewis et al., 1976). Also, when
the internal tides propagate, it can generate vertical displacement of the
base of the mixed layer (as shown in Fig. 1) and trigger phytoplankton
blooms, by periodically heaving biomass into the euphotic zone
(Holloway and Denman, 1989; da Silva et al., 2002). Finally, tidal
fronts can also produce phytoplankton blooms (Franks and Chen,
1996). We can thus assume that where the mixing is intensified and
there is a surface cooling, this mixing would also modulate at annual,
seasonal and intraseasonal timescale the nutrients enrichment of the
surface layers. Finally, we can also assume from Fig. 3 that the pro-
pagation of the internal tides can produce blooms of phytoplankton
along their route.

This study has shown that it would be worth improving the re-
solution and the representation of the dissipation of the internal tides in
the model, as it may improve the realism of the tides. This may also be
of some importance for generating better the submesoscales fronts as
shown in Lévy et al. (2012). The tides are important for nutrients up-
welling at mixing site, on propagation route of internal tides or at tidal
front, as well as for connectivity (larvae transport) and maintenance of
ecological diversity. Their behaviors could influence the trophic chain
of the Indonesian Seas ecosystems, and we hope this study provides the
foundation for future enhanced biophysical modelling (Lehodey et al.,
2017).
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Chapter 5

Mixing induced by explicit tides in a realistic simulation

of the Indonesian Seas. (Paper to be submitted)
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5.1 Mixing induced by explicit tides in a realistic simu-

lation of the Indonesian Seas

5.1.1 Introduction

Context

Internal tides in the Indonesian archipelago are very active and produce intense mixing. As a

result, the salinity maximum of the North and the South Pacific Subtropical Water (NPSW and

SPSW) is strongly eroded to produce a nearly homohaline water when exiting the Indonesian

archipelago [Gordon (1986); Hautala et al. (2001); Ffield and Gordon (1992); Gordon (2005);

Sprintall et al. (2014)] .

A vertical diffusivity 10 times higher than in the open ocean (1.10−4m2/s) is necessary to

reproduce the water masses as observed [Ffield and Gordon (1992)]. Actually, the mixing is

non-heterogeneous and higher values reaching 1.10−2m2/s can be observed above straits as

shown in the recent INDOMIX cruise [Koch-Larrouy et al. (2015)]. Models who do not take

into account this additional mixing induced by the tides produce large biases (see Koch-Larrouy

et al.; Sasaki et al.).

However, in order to take into account this mixing several scientific challenges are to over-

pass. Internal tides are generated by the barotropic surface tides that create vertical velocity

in the stratified ocean above seamount or self break at tidal frequency. The length scale of the

generation is thus of the scale of the bathymetry. Once generated the internal tides propagate

eventually far away from the generation site as for example in Luzon (eg: Zhao et al.; Xu

and Yin; Chao et al.; Alford et al.; Johnston et al.; Rainville et al.) where the internal tides

could propagate for several 100 km. Finally, they would eventually dissipate with a scale of

turbulence of cm/mm. A model capable of resolving all processes involved in the life of an

internal tide (from cm to 1000 km) does not exist. Until now scientists either parameterised

the additional mixing Koch-Larrouy et al. (2007) hereinafter KL07 or forced their model by

explicit tides and partly resolved the internal tides [Kartadikaria et al. (2011); Castruccio et al.

(2013); Nagai and Hibiya (2015)].

Our study began with this statement and our intention is to properly quantify the energy of

the dissipation when adding of explicit forcing in the model and compare it to the one induced
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by the parameterization.

5.1.2 The internal tides in the Indonesian Seas

In the Indonesian seas, the strong surface tidal currents [Egbert and Erofeeva (2002); Ray et al.

(2005)] interact with the very complex topography composed by numerous narrow straits,

shallow passages and abrupt shelf breaks [Gordon et al. (2003); Gordon (2005); van Aken

et al. (2009)] and generate very strong internal tides. The generation of internal tides in the

Indonesian archipelago represents 10% of the global value, between 110 GW in KL07 and 85

GW in Nagai and Hibiya (2015) (calculation in smaller domain than KL07 excluding Luzon

Strait). Luzon strait generation estimates vary depending on the region and number of tidal

component used : 14 GW for M2 [Niwa (2004)],12.4 GW for K1 [Jan et al. (2007)], 30 GW for

M2+K1 [Jan et al. (2008)], 18.8 GW [Kerry et al. (2013)], 24.1 GW for M2+K1 [Alford et al.

(2011)], 24 GW for M2+K1 [Alford et al. (2015)], 24.9-41.1 GW for M2+S2+K1+O1 [Wang

et al. (2016)], or 17.3 GW [Xu and Yin (2016)]. South China Sea, Lifamatola, Dewakang,

Ombai, Buru straits, Halmahera portails and Sangihe islands 5.1 also allow strong generation

of internal tides [Robertson and Ffield (2008); Koch-Larrouy et al. (2007); Hatayama (2004)].

In the interior of the archipelago, the numerous and small seas do not allow propagation

over a large region and it is reasonable to assume that the internal tides will dissipate in the sea

where they have been generated. Using this assumption, Koch-Larrouy et al.(2007) adapted the

parameterisation developed for open ocean by St. Laurent and Garrett (2002) to the small and

semi enclosed seas of the Indonesian archipelago. It prescribes an additional vertical diffusivity,

calculated knowing the sites and energy of generation (FES2004, Lyard et al. (2006)), with

an idealized vertical profile, maximum in the thermocline, under the assumption that 100% of

the energy will dissipate locally. This parametrisation improve the water mass representation

in all seas of the domain, with a very good agreement with observations [Koch-Larrouy et al.

(2007, 2008, 2010); Tranchant et al. (2016)] and allow reproducing the homohaline water at the

outflow portals. The averaged vertical diffusivity (Kz) generated is of 1.5x10−4m/s, which is

the same order of magnitude as the one predicted by Ffield and Gordon (1992). Above straits

of generation vertical diffusivity of 10−2m/s are found in Koch-Larrouy et al. (2015).

When tested in a coupled model this parameterization reduces the Sea Surface Temperature

(SST) by 0.5degC in annual average, which reduces in turn the precipitation by 20%, leading

to a more realistic representation of the atmospheric convection [Koch-Larrouy et al. (2010);
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Sprintall et al. (2014)]. This impact is larger in austral winter, when the thermocline is shallower

due to the monsoonal winds [Kida and Richards (2009); Kida and Wijffels (2012); Nugroho

et al. (2017)]. However, this parameterisation was a first step towards taking into account the

mixing induced by the internal tides, as in reality, the dissipation may not occurs exclusively

locally but some fraction could dissipate in the far field. Also this dissipation may vary in

time following the cycles of variability of the surface tides. Such limitations and the increase of

resolution encourage scientists to force their Ocean General Circulation Models (OGCMs) by

the explicit tidal forcing (eg: in Indonesian seas : Castruccio et al.; Kartadikaria et al.; Nagai

and Hibiya, in Luzon : Niwa and Hibiya, in Global : Niwa and Hibiya (2014); Arbic et al.

(2012); Simmons et al. (2004); Shriver et al. (2012). The resolution of these models is between

5 to 10 km. Niwa and Hibiya. 2011 show that using a 9km (∼ 1/12deg) resolution the model

is able to generate only 75% of the internal tides. With a 4km (∼ 1/36deg) resolution, the

model generates 90% of the internal tides. With such relatively coarse resolution the processes

involved in the dissipation of the internal tides can not be resolved. However, studies in the

Indonesian archipelago [Castruccio et al. (2013); Nagai and Hibiya (2015); Kartadikaria et al.

(2011)] show that the addition of explicit tidal forcing produces mixing that improves the water

mass, reproducing the homohaline Indonesian Water.

The question rises then of how much mixing is introduced when forcing by explicit tides?

How the model dissipates it, horizontally vertically? In our study we want to answer these

questions. We will quantify the generation, propagation and dissipation done by the model and

compare it with recent observations [Koch-Larrouy et al. (2015)], with the parameterisation

KL07, and with a tidal hydrodynamic model with data assimilation [Lyard et al. (2017)].

We will also quantify the near field and far field dissipation and the spring vs. neap tides

dissipation. In this study we perform a set of numerical experiments to answer these questions:

with the parameterisation of KL07, PARAM, with explicit tidal forcing, EXPL, and without

any additional forcing, CTRL. Simulations are conducted for 5 years and the last 4 years are

analysed. We also performed simulation with hourly output during july 2010, as in INDOMIX

cruise.

The paper is organized as follow. Section 2 describes the model, the numerical set up and

the INDOMIX observations we use in this study, as well as the calculation of energy dissipation

we perform. Then section 3 describes the results that are organized as follow. First we describe

rapidly the tides reproduced by the model and compare it to observations. We then show the

impact of the tidal mixing on water mass, parameterized or explicitly forced in the model. Then
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we calculate the energy generation and dissipation in the different simulation and compare it for

EXPL and PARAM. Finally, we compare this energy dissipation to the recent in-situ INDOMIX

cruise.

5.2 Methods and Data

5.2.1 Model and Simulations

This study uses the INDESO configuration detailed in Tranchant et al. (2016). The horizontal

resolution is 1/12deg and the domain covers all Indonesian seas, the South China Sea, as

well as the Luzon strait, known as one of the strongest internal tides generation in the region

and in the southern part it covers the Northern Australian Shelf (figure 1). Vertical grid

uses Z-partial steps with 50 variable layers going from few meters resolution at the surface

and 250 m at the bottom. Initial and open boundary conditions (OBCs) are forced by the

Mercator-Ocean Global Ocean Forecasting System at 1/4deg (PSY3V3R3). These conditions

include temperature, salinity, currents and Sea Surface Height (SSH). Open boundary onditions

(OBCs) are located on a relaxation band of 10 grid points (∼ 1deg). Atmospheric forcing fields

come from the European center (ECMWF) and have a high frequency (3 hours). ”Bulk”

formulae from CORE are used to model the atmosphere-ocean interface [Large and Yeager

(2004)]. The surface atmospheric pressure forcing is also explicitly considered. There is NO

restoring tem in SST nor in SSS. This configuration includes explicit tidal forcing, with 11 tidal

constituents. As in Shriver et al. (2012), INDESO configuration has geopotential tidal forcing

for M2 , S2 , N2 and K2 (the four largest semidiurnal constituents) and for K1 , O1 , P1 and

Q1 (the four largest diurnal constituents). As in Maraldi et al. (2011), two long-period tides Mf

and Mm and one non-linear constituent (compound tides) M4 are also added. These 11 tidal

constituents coming from the astronomical forcing TPX0.7 [Egbert and Erofeeva (2002)] are

used to force open boundaries. More details about the configuration can be found in [Tranchant

et al. (2016)]. Specific physical parameterisations for regional modelling are used such as the

GLS (generic length scale) turbulence model [Umlauf and Burchard (2003)] including wave

impact and logarithmic bottom friction.
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5.2.2 Numerical experiments

We present in this paper three main simulations. The EXPL run includes explicit tidal forcing

and the reference configuration (CTRL) doesn’t, while the PARAM simulation is forced by the

Koch-Larrouy et al. (2007) parameterisation. All of them are forced by the same buoyancy and

wind forcing. Simulations start January 3rd 2007 until December 31th 2011. Outputs are sets

as daily average and the four last years are analysed after spin up. Shorter run (1 – 31 July

2010) with instantaneous hourly output are also performed in order to calculate the vertical

dissipation from the model and compare it to the INDOMIX cruise [Koch-Larrouy et al., 2015]

held in July 2010.

5.2.3 FES2014 numerical simulation

In this paper, we compare the modelled tides to the barotropic model FES2014 [Carrere et al.

(2016); Lyard et al. (2017)]. FES2014 is the last version of the FES (Finite Element Solution)

tide model developed in 2014-2016. It is an improved version of the FES2012 model [Carrere

(2012)]. FES2014 takes advantage of longer altimeter time series and better altimeter standards,

improved modelling and data assimilation techniques, a more accurate ocean bathymetry and

a refined mesh in most of shallow water regions. Special efforts have been dedicated to address

the major non-linear tides issue and to the determination of accurate tidal currents. FES2014

is based on the resolution of the tidal barotropic equations (T-UGO model) in a spectral

configuration. This configuration is used by AVISO to remove tides from altimetry data, as it

has proven to given very good prediction of barotropic tides. It has a finite element grid ( 2.9

million nodes). The ’free’ solution (independent of in situ and remote-sensing data assimilation)

gives already very good tidal prediction, which is improved by assimilating long-term altimetry

data (Topex/ Poseidon, Jason-1, Jason-2, TPN-J1N, and ERS-1, ERS-2, ENVISAT) and tidal

gauges through an improved representer assimilation method. It resolved 34 tidal components

(2N2, EPS2, J1, K1, K2, L2, La2, M2, M3, M4, M6, M8, Mf, MKS2, Mm, MN4, MS4, MSf,

MSqm, Mtm, Mu2, N2, N4, Nu2, O1, P1, Q1, R2, S1, S2, S4, Sa, Ssa, T2). In addition, it

includes geocentric (elastic) tide and also loading tides. Internal tides is parameterized as a sink

of energy of barotropic tides. This has been shown to be an essential step towards improvement

of the tidal predictions [Le Provost (2003)], as the sink of energy due to internal tides generation,

improves the barotropic tides, which compares weel with independent altimetry data. The

global conversion rate is of 1.1 TW, in good agreement with independent estimates [Egbert
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and Ray (2001)], which gives confidence on the estimate of internal tides generation.

5.2.4 INDOMIX in-situ data

In this study we compare the dissipation of the model forced by explicit tides to the recent

INDOMIX results [Koch-Larrouy et al. (2015)]. The cruise was held in July 2015 and measure-

ments were done at 5 24h-yoyo-stations. The strategy of measurement is done such as region of

different internal tides energy is sampled. Three sites above straits have been sampled: Station

St1 is located at the entrance of the Halmahera Sea (figure 1), St3 at the exit of the Halmahera

sea and St5 at the Ombai strait. Further away from generation site but still under the possible

influence of propagating internal tides, St2 is located in the middle of Halmahera Sea. Finally,

St4, in the Banda Sea (figure 1) is very far away from any generation site so that it could be

verify that there was no influence of the tides. For each station, estimates of dissipation are

done using direct estimate of dissipation provided by a microstructure profiler able to measure

the dissipation at scale of 1mm/1cm.

5.2.5 Generation rate

In the general circulation model forced by explicit tides, we calculate the generation rate of

internal tides for each tidal components following Kelly et al. (2010):

Ct= 〈ūhP ′|z=H .∇H〉 (5.1)

P ′ and uh are the perturbation hydrostatic pressure associated to internal tides and horizontal

barotropic flow analysed for four main components (M2, K1 S2 and O1) and formed in complex

tidal frequency. The angle brackets are a time average over a wave period.This formulation has

similar interpretation as previous one from Niwa and Hibiya (2001a)

Ctniwa = g
∫
ρ′w̄ (5.2)

For the hydrodynamical 2D model FES2014, a parameterization is prescribe to retrieve energy

to the barotropic field. The energy transfer from the barotropic to the baroclinic modes(internal

tides generation rates) is parameterized as follows:

~D = Cρκ−1N
(
~∇H~u

)
~∇H (5.3)

84



where κ is the typical topography horizontal wave number, H is the ocean mean depth, N is

a depth-weighted average buoyancy frequency, with weights decreasing linearly from the ocean

bottom up to the surface to account for the vertical velocity upward linear profile Lyard et al.

(2006) and C = 200 (dimensionless) is an empirical tuning coefficient.

5.2.6 Dissipation rate

In PARAM

The Koch-Larrouy et al.,(2007) parameterization of tidal mixing follows the general formulation

for the vertical eddy diffusivity proposed by St. Laurent and Garrett,(2002). In this formulation

the vertical diffusivity resulting from internal tide breaking, ktides is expressed as a function

of the energy transfer from barotropic tides to baroclinic tides which is a function of space and

stratification :

ktides = qΓE(x,y)F (z)
ρN2 (5.4)

where Γ=0.2 is the mixing efficiency, N the Brunt-Vaisala frequency, ρ the density, q the

tidal dissipation efficiency, E(x,y) the energy transfer per unit of area from barotropic tides

to baroclinic tides and F (z) its vertical structure. Koch-Larrouy et al. propose that q =

1, assuming that all the energy will dissipated locally, and proposed F (z) maximum in the

thermocline. The associated dissipation introduced in the model can be calculated as:

εpot =
∫
ρktidesN

2 (5.5)

In EXPL and CTRL

Energy diagnostics and precise evaluations of the energy dissipation in the model are essential

elements of our study. They are detailed below. The model kinetic energy (KE) equation can

be written as follows [Jouanno et al. (2016)]:

1
2ρ0∇tu2

h︸ ︷︷ ︸
KE

=−ρ0uh
(
~uh. ~∇h

)
−ρ0 ~uh. ~w∇zuh︸ ︷︷ ︸

ADV

− ~uh. ~∇hp︸ ︷︷ ︸
PRESS

+ρ0uh.Dh︸ ︷︷ ︸
εh

+ρ0uh.∇z (κv∇huh)︸ ︷︷ ︸
εv

+Dtime

(5.6)
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where the subscript “h” denotes a horizontal vector,uh is horizontal velocity vector where w

is vertical velocity vector, ρ0 is the background density, p is hydrostatic pressure, κv is the

vertical viscosity, Dh is the contribution of lateral diffusion processes and Dtime the dissipation

of kinetic energy by the time stepping scheme. The two first part of right hand side (RHS) in

eq.5.6 are the horizontal and vertical advection terms. Third part in RHS is pressure works.

Fourth and fifth terms in RHS are horizontal and vertical diffusion, while the last term is the

dissipation of kinetic energy by the time stepping scheme. We use bilaplacian operator for

horizontal(geopotential) lateral diffusion on momentum with a constant value 1.25.1010m2/s.

εkinv =
∫∫∫ (

ρ0κv
∂uh
∂z

.
∂uh
∂z

)
dxdydz+

∫∫
(uh.τs−uh.τb)dxdy (5.7)

where (uh.τs) is the wind stress and (uh.τb) is bottom stress, i.e the friction

εkinh =
∫∫∫

ρ0
√
κh

[(
∂2uh
∂x

)
.

(
∂2uh
∂x

)
+
(
∂2uh
∂y

)
.

(
∂2uh
∂y

)]
dxdydz (5.8)

The total dissipation of kinetic energy by spatial diffusive processes (Ediss) is computed as the

total spatial integral of diffusive terms (εkinh + εkinv ) Jouanno et al. (2016). The model potential

energy (PE) equation can be written as follows:

(
∂ρ

∂t
+∇(ρuh)

)
gz = ∂ρ

∂z
gz+

∂
(
κz

∂ρ
∂z

)
∂z

gz︸ ︷︷ ︸
εpotv

+Fsurface (5.9)

Where Fsurface are all the forcing terms at the surface. The dissipation of internal tides is

not resolved explicitly in the model and may happen through various terms: horizontal or

vertical diffusion due to the shear (εkinh ,εkinv ,friction(uh.τb) or vertical destruction of buoyancy

(εpotv ). In this paper we calculate these terms (εkinh ,εkinv ,friction,εpotv ) for both the EXPL and

the CTRL simulations and make the difference for each term between the two simulations to

assess the tidal contribution. Indeed, in simulation including thermodynamical forcing such as

ours, it is not trivial to calculate dissipation terms of the tides only as dissipation is non linear,

which make it difficult to separate dissipation of the tides from the rest of the circulation. The

calculation we propose here is unperfected as it assumes that the rest of the physic apart from

the tides will produce the same dissipation with or without tides, which may not be entirely

true. However we believe that these effects are smaller than the first order that we are looking

for, and that as a first step it will give coherent results. Note also that the tides may also

dissipate through numerical dissipation such as the asselin filter or the barotropic filter, etc. In
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this study we do not calculate these terms, as they may be of second order.

5.3 Results

5.3.1 Impact on water mass

As previously shown by other modelling studies [Castruccio et al. (2013); Kartadikaria et al.

(2011); Nagai and Hibiya (2015)] the explicit tidal forcing significantly modifies the water

mass in the Indonesian Throughflow (figure 5.2 ). The salinity maximum of the South Pacific

Subtropical Water (SPSW) at the entrance (box e1) in the CTRL simulation (blue line) is

of about 35.6 psu. It remains almost unchanged in Halmahera and Seram seas while the

observations (black line) show water in Seram Sea almost homohaline water due to strong

vertical mixing in the Halmahera seas. The simulation including the explicit tidal forcing

(EXPL) reproduces better this salty erosion at the eastern entrance than CTRL. Actually,

it produces a water mass transformation as the one observed in PARAM. Along the western

route, the model (CTRL, PARAM and EXPL) has a salinity bias at the entrance (box w1)

and the salinity maximum is of 34.55 psu when in the observations it is 34.5 psu. This bias

remains all along the western route until Banda and Flores seas. The simulation with explicit

tidal forcing does a better job in reproducing the salinity erosion. As for the eastern route,

the EXPL simulation reproduces a very similar water mass transformation as in PARAM for

the western route. The question is then how the mixing produced by the parameterisation

compares to the one produced by the model when introducing the explicit tidal forcing. In

section 5.3.5 we will compare the energy dissipation for both PARAM and EXPL.

5.3.2 Semidiurnal and diurnal tides

We present the two primary tidal components, M2 and K1, resolved by the EXPL simulation, as

both of them form the largest amplitude of the semidiurnal and diurnal tides in the Indonesian

seas [Robertson and Ffield (2008); Kartadikaria et al. (2011)]. In figure 5.3, they are compared

with the FES2014 simulation [Carrere et al. (2016); Lyard et al. (2017)]. EXPL show internal

tides signature that are not explicitly calculated in FES2014. The general value of phase

and amplitude for both M2 and K1 reproduced by EXPL are in quite good agreement with the

FES2014 simulation. They both show that the semidiurnal tides enter from both the Pacific and
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Indian oceans converging in Makassar Strait and in the Seram Sea with an amphidromic point

forming above the Australian shelf. Diurnal tides were dominated by the Pacific Ocean tide.

The amplitude of the semi-diurnal tide presents maxima on the Australian shelf, in the Adaman

Sea both in quite good agreement with the FES2014 simulation. However, EXPL exhibits too

large amplitude from Sulawesi Sea to Makassar Strait between 70 and 80 cm when in FES2014

it is about 10 cm less. On the contrary M2 amplitude in South China Sea is underestimated in

comparison to the FES2014 model. K1 show better agreement to the FES2014 simulation in the

South China Sea, however it underestimates the amplitude in the Eastern edge of Banda Sea.

When comparing to the tidal elevation estimated from TOPEX/Jason1/Jason2 crossovers (See

Tranchant et al.(2016), fig 5 right panels), the model successfully replicates them with better

agreement for the diurnal constituents - RMS differences of 1 to 3 cm in the domain except in

the South China Sea, RMS differences of 6 to 7 cm – and for the semidiurnal constituents –

RMS differences of 2 to 4 cm in the domain except over the Asutralian shelf and southward of

Lombok Strait, RMS differences of 7 to 10 cm. In addition, a power Spectrum of the model SSH

is compared to several tide gauges at the coast and show very good agreement with observations

(Tranchant et al.,(2016), fig 6). The spectral analysis shows that SSH fluctuations depict the

same peaks at the dominant tidal frequencies, the diurnal (O1 and K1) and semidiurnal (M2

and S2). The same intensity is found in the model and in the observations (see Tranchant

et al.,(2016) for more details). The barotropic field is in quite good agreement with previous

model study the tides in the Indonesian seas [Castruccio et al. (2013); Kartadikaria et al. (2011);

Robertson and Ffield (2008)].

5.3.3 Generation of baroclinic tides

Internal tides generation are calculated for EXPL following eq. (1) for the four primary tidal

components, namely M2, S2 K1 and O1, which are found to be the major components that

drive tidal forcing in the Indonesian seas [Robertson and Ffield (2005, 2008); Kartadikaria

et al. (2011)]. As previously shown in earlier studies [Castruccio et al. (2013); Hatayama

(2004); Robertson and Ffield (2005); Nagai and Hibiya (2015)] strong internal tides generate

above main straits and shallow passage in the EXPL simulation. It is compared to the internal

tides generation in FES2014 [Carrere et al. (2016); Lyard et al. (2017)] calculated as a wave

drag coefficient wave drag has the direction of the topography gradient (eq.30 in Lyard et al.

(2006)). FES2014 with its high finite element resolution gives a good estimate of internal

tides conversation rate, helping barotropic tides to loose energy and compares better to the
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altimetry data [Le Provost (2003)]. Both models exhibit strong generation energy (10−0W/kg)

at Luzon strait, Sangihe chain, Lifamatola strait, Sibutu Chanel, Halmahera Sea, Buru, Ombai

and Lombok Straits (figure5.4). Also the inner arc of the western part of Banda as well as

the Dewakang, Timor and Makassar Straits and the Buton and Muna Islands present smaller

energy of generation (10−1W/kg) in good agreement for both simulations. Note that in our

model the conversion term is not strictly positive and similar results are found in other studies

[Niwa (2004); Carter et al. (2008); Zilberman et al. (2009); Kang and Fringer (2012b); Nagai

and Hibiya (2015)]. The latest study explain the negative values from the average operation

of the complex variable (eq.5.1), when p′ and are not at the same phase, the cosinus could

be negative. We propose possible scenario when it could happened: (1) when the baroclinic

tides propagates and encounter a bathymetry feature where there is another internal tides

generation, most probably the recent internal tides may not have the same phase as the ancient

one as barotropic tides do not propagate at the same phase; (2) if dissipation occurs (through

friction and/or horizontal or vertical dissipation) this will change the phase of baroclinic tides

in comparison to the barotropic tides, and may product negative values. Table 5.1 compares

the integrated values of generation energy for both models on the total domain, on the inner

seas and Luzon strait. For the entire domain, INDESO configuration produces about 215 GW

of internal tides for the four main components (M2+K1+S2+O1). FES2014 gives a total of

295 GW for the four main components. For the Inner seas, along the ITF region, INDESO

configuration produces about 123 GW of internal tides, while, for FES2014 it is 165 GW. The

model with a 1/12ˆ0 resolution, in the global domain, produces about 73% of the internal tides

estimated by the higher resolution FES2014 and 74% in the inner seas. This result is in very

good agreement with the previous estimate of Niwa and Hibiya (2011), who predicted that a

model with 1/12ˆ0 resolution would reproduces only 75% of the internal tides energy for the four

main components (M2+K1+S2+O1). Surprisingly, for Luzon the model produces more internal

tides (50GW) than the FES2014 simulation (48GW), when we would have expected smaller

value of about 36GW, if the model had respected the same rule of 75% of generation of the tides

of FES2014. This might be due to a too large incoming barotropic flux across the slope, and/or

poor resolution of bathymetry features. In addition, energy input for the parameterization

is calculated in the inner seas (where the parameterization is enhanced). It uses only two

components with the ratio: 1.25*M2 + K1. The values are smaller than for FES2014 with

122.7 GW in comparison to 165.5 GW due to poorer resolution, which accidentally is closer to

INDESO simulation (123 GW).
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5.3.4 Propagation of baroclinic tides

Figure 5.5 show the signature of propagating internal tides generated by EXPL. Propagation

from Luzon strait occurs towards both sides of the seamount, ie to the eastern and the western

directions. In the western direction, the baroclinic tide propagates southwestward. After 5

reflexions at the surface (positive anomaly) the signal is much weaker. We can still see three

more reflexions but very weak. We conclude that it must dissipate during the propagation.

Signal towards the eastern direction is seen on a larger distance. Similarly, the Sangihe islands,

the Sibutu and Lifamatola straits create strong propagating internal tides in the model. The

interaction with the inner seas may stop the internal tides from further propagation as seen in

the Sulu Sea and in the Seram Sea. Also in this inner part of the archipelago the interaction

between several generation sources make the signal more noisy as for example in Sulawesi sea

that exhibit internal tides coming from either Sangihe Island or Sibutu Strait.

Satellite true color image from MODIS [Jackson (2007), figure 3 and 5 of his paper] provide

a qualitative validation when comparing to the model isopycnal displacement (figure 5.5a) and

show for both of them clear propagation of internal tides from Sulawesi Sea (figure 5.5b) and

within Ombai Strait (figure 5.5c). In Sulawesi Sea, the MODIS image reveals five groups of

internal waves, visible in western half of the sea, two propagating west toward Borneo, two wave

groups propagating southeast toward Sulawesi, and the partial signature of a fifth group visible

immediately adjacent to the coast of Sulawesi. The model compares well to this image as we

clearly see internal waves corresponding to group 1, 2 and 4 (green lines) validating qualitatively

the direction of propagation from Sangihe islands and from Sibutu channel. Generated in the

Ombai Strait, internal tides propagate northward towards Buru Island.

The model represent fairly well this propagation both in terms of direction and distance

of propagation. Wang et al.,(2011) , using more than 2500 images from several satellite in-

struments (ENVISAT ASAR, ERS-2 SAR, MODIS and HJ-1A/1B), show that internal waves

propagation from Luzon can reach the Hainan Island (see figure 5.1), and few of them propa-

gate further south in the South China Sea. However, in the model, internal tides are strongly

dissipated after 400 km and do not propagate as far as observed. This first step comparison

with available observations gives confidence in the model, at least for direction of propagation

but a more quantitative validation would be needed with other type of in-situ observation. In

the next sub-section, we will compare the diffusion of the model to recent INDOMIX cruise.
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5.3.5 Dissipation

In this paper we are looking at the sink of both potential and kinetic energy associated to

the tides following equations 5.7,5.8 and 5.9. Assessing the dissipation of the tides only in our

simulation that includes also thermodynamical forcing is not obvious. In this study, we choose

to run twin experiments with and without tides to retrieve the tidal energy. Doing that we

assume that the non-tidal physic will be the same in CTRL and EXPL, which may be not

entirely true as non-linear exchanges may occur between the mean flow and the tides, but we

assume that at first order it is correct. In a following study, we plan to compare this results

to other simulations forced only by the tides to validate this hypothesis. In addition, in this

paper, we compare the dissipation rates calculated as mentioned above to the one obtained by

the parameterisation of Koch-Larrouy et al.,(2007).

Friction

The friction of EXPL-CTRL is shown figure 5.6. It may correspond to the friction due to

barotropic or baroclinic tides. Separate them is not possible with our simulation only as friction

is a non linear process. Above all internal tides generation sites friction is quite strong with

values of 1.10−1W/m2, such as Luzon strait Sibuttu, Sangihe chain, Lifamatola Dewakang,

Makassar and Ombai, straits as well as Halmahera portals. In addition, the friction is intensified

over the shallow Seas such as Java Sea, northern part of South China Sea and over the Australian

shelf with values between 10−2 and 10−1W/m2, which may be attributed to the barotropic tides.

In the deeper but small sea such as Malukku and Seram Seas and Timor passage the friction

is between 10−3 and 10−3W/m2. The integrated values for the whole domain is 316.35 GW,

out of which 61 GW is lost in the inner seas and 26.52 GW in the Luzon box (figure 5.6). The

remaining energy is lost in the Admaman Sea and in the southern part of the South China Sea

and Java Sea as well as in the southern part of the Australian shelf (not shown).

Horizontal Vs vertical dissipation

Figure 5.7 and 5.8 show vertical distribution of dissipation rate for PARAM, EXPL and CTRL.

For PARAM the enhanced dissipation due to the tides comes from the additional vertical

diffusivity, Ktides (eq. 5.4), prescribed locally above generation sites [Koch-Larrouy et al.

(2007)]. In figure 5.7a, we show the equivalent dissipation rate for PARAM computed following
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eq 5.5. Intensified dissipation is found above generation sites of 10−6W/kg: in Sulawesi Sea

(section H1, see figure 5.5 for localization), both above Sangihe Chain and on the Sibuttu strait

slope, above Lombok strait (section V1), in section V2, on the slope of the Ombai strait and

close to the Buton and Muna islands at 50S in the Banda Sea, and finally along section V3,

within the entire Halmahera Sea. For all section, vertical profile of enhanced dissipation is

maximum in the thermocline as prescribed in Koch-Larrouy et al. (2007). Figure 5.7 (b and

c) show εkinh for EXPL and CTRL respectively. The tidal forcing in EXPL produces stronger

horizontal dissipation compared to CTRL on both sides of the Sangihe chain (H1, see figure

5.5 for localisation) above the 1500 m sill with values of 10−7W/kg and also on the slope of

Sibutu Strait (10−8W/kg). We also note smaller additional energy in the inner Sulawesi Sea

below the mixed layer with hot spot between 10−9 and 10−8W/kg. For Lombok strait (Section

V1), strong dissipation due to the tides is found in EXPL above the strait and on the northern

part of it, with values as high as 10−6W/kg, and also on the southern slope with values of

10−8W/kg, that does not appear in CTRL. On the Ombai northern edge (section V2) strong

energy is dissipated above the slope between 4000m and the surface, with values between 10−7

and 10−6W/kg. We also see clearly hot spot of intensified dissipation in EXPL of 10−8W/Kg

all along the section, that are associated to the tides since we don’t see them in CTRL. The

region of intensified mixing between 80S until 4000m and 6.50S concerning the first 500m is

the signature of northward propagating internal tides generated in the Ombai slope. We note

another point of generation over the seamount at 60S. Signature of intensified mixing further

north may also come from the generation site in the Buton and Muna Islands. Finally within

the Halmahera Sea, several points of generation are seen at 20 S, 10S and 0.50N, with higher

dissipation of 10−8W/kg. Once generated the internal tides remain trapped in the Halmahera

semi enclosed sea and explain higher value than for the other sections further away from the

generation site, with values between 10−8 and 10−7W/kg. We also note that the generation is

stronger in the northern part of the Halmahera Sea than in the southern part with more hot

spot of mixing with values close to 10−6W/kg. In contrast, the vertical dissipation εkinv and

εpotv of EXPL (figure 6) does not exhibit significant tidal signature, as they are very similar to

CTRL. We still note a small increase of mixing in εkinv above straits of the order of 10−10W/kg,

with rare hot spot of mixing between 10−8 and 10−7W/kg mainly at the bottom in Lombok and

Halmahera. As for εpotv , we do not see on these sections significant differences between CTRL

and EXPL. When calculating the integrated value of these dissipation rates below the mixed

layer (table 5.2), we found the same result. The internal tides in the model when forced by

explicit tides (EXPL) are dissipated mainly by the kinetic horizontal dissipation (hkin), with
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rate of 19.9 GW in the inner seas. Another 3 GW comes from the vertical kinetic dissipation

(εkinv ). While vertical potential dissipation does not show significant value. Similar results are

found for Luzon strait, with horizontal dissipation of 10.5 GW and vertical dissipation is 3 GW

and 0.4 GW, for kinetic and potential energy respectively. We conclude that the main term

that dissipates the additional energy from the tidal forcing is done by the horizontal dissipation,

and in the following sections we will concentrate on the (εkinh ) to study the spatial and temporal

distribution of the dissipation of the tides.

The tidal energy dissipation obtained in EXPL compares well with the one added by the

parameterization. For PARAM, the dissipation of the tides is 16.8 GW. In addition, PARAM

produces less vertical dissipation, in comparison with CTRL, εkinv = -3 W/kg, which can be un-

derstood as follow: the additional mixing induced by the parameterization of the tides destroys

the stratification and the fronts, reducing the global instability of the ocean, thus the turbulent

kinetic scheme (tke) work less in PARAM than in CTRL.

Local, near field and farfield dissipation

The integrated horizontal distribution of dissipation of the tides is shown for the Luzon and

ITF regions (figure 5.9). The model, as previously discussed, shows intensified dissipation close

to the generation sites such as Sangihe, Lombok, Lifamatola, Dewakang Straits or Halmahera

portals. In Sulawesi and Banda seas, we clearly see intensified dissipation further away from

generation sites. In section 5.3.4, we have seen that the model is able to create propagative

internal tides, from Ombai, from Sangihe or from Luzon. The next step is now to quantify

how much energy is dissipated far from the generation site. In this sub-section, we try to

quantify the dissipation at the generation site, near to it and far from it. Of course, the limit

between local, near field and far field is arbitrary and we make several sensitivity tests of the

distance from generation site to document it. We construct a mask for generation sites using

the conversion rate from barotrope to baroclinic tides of both FES2014 and our model (figure

5.4). When generation rate for both simulations reach significant values (1.10−2W/m2), we

defined the region as a generation site. Note, that using our simulation only to construct this

mask is not satisfactory because it produces some noise (positive/negative values) far away

from generation sites in open sea (see section 5.3.3 for possible explaination), which are not

related to internal tides generation. We verify that generation terms match for each region for

both models, and that what we remove from our model is only associated to this noise of the

conversion term (not shown). When applying this mask to the horizontal dissipation produced
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by EXPL due to the tides (figure 5.7b), we obtain figure (5.9a-d) and (5.9e-h) for the Luzon and

ITF regions respectively. The total dissipation above generation site is 10.8 GW in the inner

archipelago, i.e. 56% of the total dissipation over this region. For Luzon, the local dissipation

is of 6 GW, which represent also 56% of the total dissipation this strait. Dissipation in the

near field is defined within a distance of 6 points from the generation source, i.e. approximately

54km (figure 5.9c and g). About 25% (5 GW) is dissipated near the generation sites. We

perform tests for this distance within the range of 1 to 6 points (see table 5.3 and 5.4) from the

generation point, and the near field dissipation ranges between approximately 2.6 to 5 GW,

when changing the distance from 36 km to 54 km, which correspond to 15 to 25% of the total

dissipation in the inner seas. The semi enclosed Seram, Halmahera and Malukku seas are so

small that almost all the energy remains in the near field. Similarly, the Flores, Savu and

Timor seas are almost entirely concerned by the near-field dissipation. What remain for the

far field dissipation is the Sulawesi sea, part of the inner Banda Sea and the Indian and Pacific

Ocean. The total of far field dissipation vary from 4 to 6 GW, depending on the distance

chosen between 36 and 54 km respectively, which represents between 20 and 30% of the total

dissipation (table 5.3). The main signal comes from dissipation in the southern Sulawesi Sea,

with values of 10 -2 W/m2, with internal tides coming either from Sibuttu Strait or Sangihe

Islands. We verify that this signal is not the signature generation of internal tides (not shown).

Also in the inner Sulawesi Sea, coming from Sangihe Chain signature of the propagative tides

is seen. The signal is stronger closer to the Sangihe chain and decrease progressively from 10-2

to 10-3 W/m2. For Luzon strait, near field represents between 25 and 29% of the total, when

varying the distance from 36 to 54 km, and the far field between 15 and 20%. For both the

inner seas and the Luzon strait the proportion of far, vs. near field is very similar 19 and 15%

for the far field and 25 or 29% for near field respectively.

5.3.6 Comparison to in-situ estimates

The model agree well with the Ffield and Robertson (2008) finestructure estimates, which

indicate intensified tidal mixing in Ombai, Lifamatola and Dewakang straits, in Molucca Sea,

in the Banda Sea offshore the Muna and Buton Island (1250E, 60S), and in the Flores Sea, as well

as in the eastern part of the Australian shelf. However, this estimates only give spatial structure

but not quantitative estimate. During the INDOMIX cruise (July 2010), direct estimates of

dissipation from microstructure in Halmahera Sea, Banda Sea and Ombai Strait have been

obtained (figure 5.10). Vertical dissipation estimates over the three main straits Ombai Strait
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(St5, red), Northern Halmahera (St1, yellow) and southern Halmahera (St3, green) portals

show very good agreement between INDOMIX and EXPL, with values between 10−7 and 10−6

W/kg for both model and microstructure measurements. In contrast, region further away from

generation sites (st2) showing in the observation smaller mixing between 10−9 and 10−10 W/kg

below 200m are overestimated by the model, which show value of 10−8 W/kg. Also in the Banda

Sea, far away from generation sites, in the observation there is no evidence of internal tides

activity (10−10−W/kg) the model still produce 10−9 W/kg of dissipation. In the first 400m

(figure 5.10b), the agreement between the model forced by explicit tides and the observations is

better than for the entire water column, apart for St4, which still overestimate the dissipation

by one or two order of magnitude when in the observation there is no evidence of additional

mixing. What is striking is that both for the model (EXPL) and for the observations, the

mixing is very strong at the base of the mixed layer and in the thermocline with similar value

for both of them between 10−8 and 10−7 W/kg. The surface intensified mixing cools and

modulates the surface water properties at tidal frequencies [Koch-Larrouy et al. (2007, 2008,

2010); Kida and Wijffels (2012); Nugroho et al. (2017)].

5.3.7 Spring tides and neap tides

The M2 and S2 semidiurnal tides combine to produce a fortnightly (14.8 days, spring tides-

neap tides) modulation, firstly documented in the observations of the Indonesian archipelago by

Ffield and Gordon (1996). There is about a seven-day interval between spring and neap tides.

Figure 5.11 show horizontal kinetic dissipation (εkinh ) for four regions for both neap tides and

spring tides: Luzon strait (B1), Sulawesi sea and Sangihe chain (B2), the eastern archipelago

including, Halmahera Sea and Lifamatola Strait (B3) and the Ombai Strait with the Southern

Banda Sea (B4).

Table 5.5 show the integrated values of εkinh for both spring and neap tides. Note that these

values are calculated by removing CTRL from EXPL. We verify that values for CTRL are the

same between spring and neap tides (not shown). So the difference between spring and neap

tides obtained in table 5.5 are only due to the tides.

For Luzon strait (B1), dissipation for spring tides is of 16 GW when it is only 8.8 GW for

neap tides, which correspond to an increase of 60 % in comparison to the mean value. This

increase of dissipation during spring tides is seen above the seamount, but also downstream

in the interior of the Sulawesi Sea. For Sulawesi region (B2), dissipation is larger both at
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generation site of Sangihe and Sibuttu Strait and in the Sulawesi sea interior in spring tides

than in neap tides. Spring tides generate double dissipation than neap tides (7.6 GW, 1.7 GW),

which correspond to 125% more energy in spring tides than in the mean. For the Eastern

entrance of the archipelago (B3), the dissipation over a fortnight cycle varies by only 25% from

the mean (7.6 GW for spring vs. 6 GW for Neap tides). Spring and Neap tides, in contrast

to the two previous regions, are of the same order of magnitude. We still note smaller increase

during spring tides above all main straits of generation such as Buru and Lifamatola straits

and Halmahera portals and in the interior Halmahera Sea. Finally for Southern Banda region

(B4), spring tides produce two times more dissipation than neap tides, but both of them are

relatively small (2 GW vs. 1.1 GW).

As previously shown in this study, the horizontal dissipation εkinh described above exhibits

the largest signal of the tides in comparison to the vertical terms (eq. 5.6 to 5.9). However, we

still note a small increase of vertical kinetic dissipation εkinv due to the tides between spring and

Neap tides in Luzon strait (B1) and in Sangihe chain (B2) (table 5.5). No significant changes

are seen for vertical dissipation of potential energy (εpotv ) (table 5.5).

5.4 Summary

More and more studies are including explicit tides to their simulation in the Indonesian seas,

as it has shown to improve water mass properties [Castruccio et al. (2013); Kartadikaria et al.

(2011); Nagai and Hibiya (2015); Tranchant et al. (2016)]. However, General Circulation Models

are not able to resolve internal tides properly. Firstly, with 1/12° resolution it has been shown

that only 75% of generation could be retrieve [Niwa and Hibiya (2014)]. But more importantly,

how the model will dissipate the additional tidal energy is a big unknown. Our study aims

at quantifying how much and how mixing is reproduced by the model when forced by explicit

tides.

In this paper, we show, as previous studies [Castruccio et al. (2013); Kartadikaria et al.

(2011); Nagai and Hibiya (2015); Tranchant et al. (2016)] that introducing internal tides im-

prove the water mass transformation in the Indonesian Through Flow. In fact, we show that

it produces very similar response than the dedicated parameterization constructed by Koch-

Larrouy et al.,(2007). The maximum of salinity of the Pacific Subtropical Water is eroded at

almost the same rate for both PARAM and EXPL, and the model is able to reproduce at the

exit of the archipelago the homohaline water characteristic of the Indonesian Water.
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The barotropic tides main features are well reproduced by the model. M2 enters from the

Indian and Pacific oceans while K1 enters mainly from the Pacific Ocean. Amplitude and

Phase compares well with the hydrodynamic assimilated model FES2014 [Lyard et al. (2017)].

We note some biases for M2 over the Australian shelf and in the Pacific before entering Luzon

Strait, as well as in Flores and Makassar strait, while for K1, the larger bias is mainly in the

south china sea. These biases are comparable to the one obtain by other study [Kartadikaria

et al. (2011)] at such resolution.

Also, the model reproduces qualitatively well the direction of propagation coming from

Luzon, Sangihe and Sibuttu in Sulawesi Sea and Ombai strait when comparing to previous

study Wang et al. (2011, 2016); Jackson (2007) using SAR images. This validation is only

qualitative and validation using in-situ data, such as gliders or current meters or dedicated

analysis of altimetry data, would be needed to properly validate the propagation of the internal

tides in the model.

Generation of internal tides is 215 GW, upon which 123 GW is generated in the inner seas

while 50 GW is converted over Luzon Strait. The model reproduces 74% of the conversion

rate (295 GW) calculated by the hydrodynamical model FES2014 for the entire domain, which

provides a good estimate of internal tides generation thanks to its high resolution finite element

grid [Carrere et al. (2016); Lyard et al. (2017)]. This result is in good agreement with the pre-

vious study of Niwa and Hibiya,(2014), who predicted that model, with such resolution, would

reproduce 75% of the total internal tides conversion. In addition, the previous parameterization

Koch-Larrouy et al.,(2007), using an older version of FES2004, has an energy input for internal

tides of 195GW over the total domain and 123 GW over the inner seas. The good agreement

with previous studies, give us confidence to study the becoming of dissipation in the model, as

it should offers food for thought not only for our model but for all general circulation models.

We thus calculate dissipation as sinks of energy of potential and Kinetic energy as described

in equations 5.7 to 5.9. Since dissipation is highly non linear it is not possible to separate the

friction due to the barotropic and due to the baroclinic. The total friction induced by the tides

is 316 GW, out of which 61 GW is lost in the inner seas, while 26 GW in Luzon Strait. In the

total domain, the horizontal and vertical dissipation done by the tides is 48.3 GW, while in the

inner seas it is 22.4 GW and in Luzon 13.7 GW. In the inner seas, where the parameterization

(Koch-Larrouy et al. (2007)) is added, PARAM exhibits 16.3 GW, which is of the same order of

magnitude as the 22.4 GW for the simulation forced by explicit tides. The good agreement for

dissipation due to the internal tides for both EXPL and PARAM may explain the very similar
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water mass transformation along the ITF path of both simulations.

About 85% of the dissipation in the inner seas, is dissipated by the horizontal shear (19GW),

while in the total domain and in Luzon domain 60% is dissipated horizontally. The rest is

dissipated (15% in the inner seas and 30% in Luzon) is dissipated through vertical shear.

Vertical dissipation via potential energy is not significant. This result is anti-intuitive, since

we would have expected that internal tides would dissipate through vertical shear [Eden et al.

(2014)].

Most of the dissipation occurs at the generation sites (55%) or close to it (25%). 20%

remain for the far field dissipation, in the inner seas. For Luzon strait, the proportions are

similar with slightly less dissipation in the far field. The model dissipation agrees well with

the spatial finestructure obtained by Ffield and Robertson (2008) for Ombai, Dewakang and

Lifamatola straits, and Molucca and Flores seas. And it is in very good agreement with the

recent INDOMIX microstructure estimates [Koch-Larrouy et al. (2015)], above the three straits

measured (station St1, St3 and St5 of INDOMIX). However, in regions far away from any

generation sites (Banda Sea) where INDOMIX and also Alford et al. (1999) found NO evidence

of intensified mixing, the model produces too strong mixing. Also, below 200m, in station St2

the model produces stronger mixing compare to the observation. These biases might come

from the fact that the model doesn’t have any specific set up to dissipate the internal tides

once generated. More work has to be done in order to solve this problem.

Another key point when dealing with dissipation of internal tides is to look at vertical

distribution. EXPL produces intensified dissipation at the bottom, which is in good agreement

with the profiles obtained in the INDOMIX cruise. The previous parameterisation made the

assumption maximum in the thermocline, which is not what is reproduced by the model nor

the observations. However, all three methods found very strong and comparable dissipation

at the surface and in the thermocline. This surface mixing explain surface cooling of 0.2 to

0.8°C [Nugroho et al. (2017); Koch-Larrouy et al. (2008, 2010)] which is very important for

local atmospheric convection and global tropical climate [Koch-Larrouy et al. (2010); Sprintall

et al. (2014); Jochum and Potemra (2008)]. Over Spring tides, dissipation is 60 to 125% larger

than the mean in the Luzon strait and Sulawesi Sea, whereas it has a smaller variation in the

eastern part of the archipelago. Dissipation is stronger above straits for spring tides than neap

tides. In fact, in the interior seas signal is also stronger during spring tides as propagation

seems more efficient during spring tides than neap tides.
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5.5 Discussion/perspective

The first limitation of this study is the resolution of the model, which does not allow repro-

ducing correctly the internal tides. As shown in Niwa and Hibiya (2011) and also found in

this study, the model with 1/12° resolution is able of reproducing only 75 % of the internal

tides generation due to both insufficient resolution of the bathymetry slopes and of the tidal

currents. Furthermore, once generated, the internal tides are dissipated by the model by pa-

rameterisations or numerical set up that are NOT specifically adapted to the physics of the

tides, but rather to the larger scale processes or to eddy diffusivity. Thus it might not dissipate

them as observed and produces unrealistic mixing. Indeed, when comparing the model to the

recent INDOMIX cruise, the model produces higher background mixing in Banda Sea, region

where in reality no mixing as been found Alford et al. (2015); Koch-Larrouy et al. (2015), and

below 200m in the inner Halmahera Sea. In reality, where internal waves dissipate and cause

mixing is not really known. It is thought that non-linear wave-wave interactions and scattering

when internal waves reflect off the ocean floor cause low vertical wavenumber modes to cascade

to higher wavenumbers. At higher vertical wavenumbers, there is increased vertical shear and

eventually a shear instability, and hence mixing, results. Of course OGCM are not able to cor-

rectly resolve this energy cascade. Our results show that most of the dissipation in the model

occurs through horizontal shear. This result is anti-intuitive, since we would have expected

that internal tides would dissipate through vertical shear. We thus identify a significant bias of

this model that may also be found in all general circulation models since actually there is no

special care to take into account internal tides in such models. Our study offers a new clew of

how to improve internal tides dissipation. In future research, work has to be done so that the

dissipation occurs through vertical processes. Maybe need to established new parameterisation

for the partially resolved internal tides.
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5.6 Figures

Figure 5.1: Model Domain with geographic names used in the study. INDOMIX station is
shown in Upper right inset figure
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Figure 5.2: Figure of water mass transformation shown in TS diagram
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Figure 5.3: Amplitude and Phase of the M2 and K1 tide components (a and c) FES2014 and
(b and d) M2 and K1 tide components in EXPL simulation. Amplitude is indicated with a
shaded color in centimeters. Co-phase is plotted every 600 indicated with the contoured line

in degree
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Figure 5.4: Barotropic to internal tides conversion rate for inner Indonesian sea (a and b) and
Luzon (c and d) in EXPL simulation (left side) and wave drag in FES2014 (right side). The

units are W/m2.
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Figure 5.5: Snapshot of the model- predicted isopycnal displacement at 1150 m on 12th of
July 2010, 11:00 UTC from EXPL simulation (a,d and e). True-color MODIS image of the

Sulawesi Sea acquired on 6 March 2006 at 5:25 UTC and for Banda sea acquired on 24
February 2004 at 5:05 UTC (b and c) from Jackson (2007) compared with EXPL simulation

on the same region
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Figure 5.6: Bottom friction dissipation from EXPL-CTRL in Luzon strait (a) and inner
Indonesian sea(b)
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Figure 5.7: Instantaneous vertical distribution of dissipation rate during spring tide on 12
July 2010: 00:00 UTC for εv PARAM (left),εh EXPL (middle) and εh CTRL (left) along the

lines H1, H2,V1,V2 in figure 5.5a respectively.The units are in W/kg
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Figure 5.8: Instantaneous vertical distribution of dissipation rate during spring tide on 12
July 2010: 00:00 UTC for εz CTRL (a),εz EXPL (b), εpot CTRL (c), εpot EXPL (d) (along

the lines H1,V1,V2 in figure 5.5a respectively). The units are in W/kg

107



Figure 5.9: Horizontal dissipation rate in Luzon strait (a-d) and in inner indonesian sea (e-h).
Total dissipation (a,e) is localized above area of internal tides generation (b,f), near field

dissipation(c,g) and far field dissipation (d-h) for Luzon and Inner indonesian sea respectively.
Total dissipation shown as number inside each figures. The units are in Gigawatt

Figure 5.10: (a) dissipation (in W/kg ) from INDOMIX station (Koch-Larrouy et al. 2015),
using microstructure direct estimates (thin line) compared to horizontal kinetic energy

dissipation (in W/kg ) from EXPL calculated following from equation (2). Colours refer to
the 5 different stations (see figure 2 for location). The length of the box shows the

uncertainties of the method. (b) zoom between 0-400m
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Figure 5.11: Horizontal dissipation rate (εh) for each box area in figure 5.6 for region B1
during spring tide (12/07/2010,21:00 UTC) and neap tide(20/07/2010,03:00 UTC) ,region B2
during spring tide (13/07/2010,01:00 UTC) and neap tide(20/07/2010,03:00 UTC), region B3
during spring tide (12/07/2010,01:00 UTC) and neap tide(20/07/2010,01:00 UTC), region B4
during spring tide (12/07/2010,05:00 UTC) and neap tide(20/07/2010,01:00 UTC). The units

are in W/kg
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5.7 Tables

Total Domain Inner seas Luzon

FES2014 295 165.5 42.85

INDESO 215 123 50

Table 5.1: Total internal tides energy generation in FES2014 and INDESO. The units are in
Gigawatt

EXPL-CTRL(Inner seas) PARM-CTRL(Inner seas) EXPL-CTRL(Luzon)

εh 19.9 0 10.5

εv 3 -3 3

εpot 0.4 16.8 0.4

Table 5.2: Total energy dissipation following equation 5.7 - 5.9 under mixed layer
depth(MLD). The units are in Gigawatt

Distance (in Km) 9 18 27 36 45 54

Local 10.8 10.8 10.8 10.8 10.8 10.8

Far 4.8 3.5 2.6 2.1 1.8 1.4

Near 3.9 5.2 6.1 6.5 6.9 7.2

Total 19.5 19.5 19.5 19.5 19.5 19.5

Table 5.3: Total local, near and far field horizontal dissipation energy away from generation
site (9,18,27,36,45,54 Km) in inner seas. The units are in Gigawatt

Distance (in Km) 9 18 27 36 45 54

Local 6.0 6.0 6.0 6.0 6.0 6.0

Far 3.3 2.9 2.4 2.1 1.8 1.6

Near 1.3 1.8 2.2 2.5 2.8 3.0

Total 10.6 10.6 10.6 10.6 10.6 10.6

Table 5.4: Total local, near and far field horizontal dissipation energy away from generation
site (9,18,27,36,45,54 Km) in Luzon strait. The units are in Gigawatt
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B1(Spring) B1(Neap) B2(Spring) B2(neap)

εkinh 16 8.8 7.6 1.7

εkinv 3.2 0.8 2.5 0.0

εpotv 0.3 0.1 0.4 0.0

B3(Spring) B3(Neap) B4(Spring) B4(neap)

εkinh 7.6 6 2.0 1.1

εkinv 0.5 0.0 0.0 0.0

εpotv 0.0 0.1 0.0 0.0

Table 5.5: Total dissipation (EXPL-CTRL) obtained during spring tides and neap tides for
each box area in figure 5.6. The units are in Gigawatt
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6.1 Introduction

The wind stress and the ocean tides are believed to be the only significant sources of mechanical

energy driving the deep ocean mixing necessary to sustain the global overturning circulation

[Wunsch and Ferrari (2004)]. The overall tidal energy budget (time-averaged) is estimated to

be about 3.5 TW. Tidal energy is provided by the astronomic bodies (Earth, Moon and Sun)

through gravitational forces work. 2.6 TW of this (mostly barotropic) energy is dissipated

through to bottom friction and 0.9 TW are converted into internal tides which will further

dissipate locally or after propagation. The mechanism of internal tides dissipation is still

highly controversial, however it is usually admitted that a great parts of the energy get finally

converted into ocean mixing.

The proportion of barotropic tides energy converted into baroclinic tides has been discussed

for a long time. Tidal hydrodynamic model with data assimilation [Lyard et al. (2006)] and

through inverse calculation using altimeter data [Egbert and Ray (2001)] indicates that 0.7 TW

or roughly 25% – 35% of the barotropic M2 tidal energy is converted through internal tides

generation. Barotropic hydrodynamical models are not capable to resolve explicitly internal

tides, hence energy conversion is parameterized as a wave drag based on bottom topography

slope and barotropic currents, acting as a barotropic energy sink [Lyard et al. (2006); Shriver

et al. (2012); Buijsman et al. (2015)]. In the recent years, OGCMs have been used to estimate

internal tides energy in realistic stratification [Jan et al. (2007, 2008); Jan and Chen (2009);

Carter et al. (2008); Kang and Fringer (2012a); Lorenzo (2006); Muller et al. (2012b); Nagai and

Hibiya (2015); Niwa (2004); Niwa and Hibiya (2001a, 2014); Shang et al. (2015); Zilberman

et al. (2009); Wang et al. (2016)]. In that case, internal tides are explicitly solved by the

model, with more or less accuracy. More recently, the linear theory estimate of the abyssal hills

contribution to the conversion of the M2 barotropic tides into internal tide represents of the

10% of the 0.6–0.8 TW conversion in regions deeper than 500 m by larger topographic scales

[Mattias Green and Nycander (2012); Melet et al. (2013)].
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The internal tides generation occurs in the area where barotropic flows interact with strong

topographic gradient and create isopycnal heaving at tidal frequency. Because the across-

slope velocity (hence vertical velocity as prescribed by the bottom impermeability condition)

increases as depth diminishes, isopycnal heaving tends to be stronger in the upper slope region.

In addition, the enhanced stratification found in the upper ocean will increase isopycnal heaving

effects in those regions. For those reasons, most of internal tides generation is expected to occur

at the upper part of continental slopes and ocean ridges.

Today, the precise quantification of internal tide generation (through energy budget com-

putation) and the fate of internal tide energy remains open questions.

The central issue in calculating tidal energy budget is the separation of barotropic and

baroclinic precesses, in terms of velocity and pressure. Although intuitive, this issue is nothing

but trivial and needs to define precisely the meaning of ”barotropic dynamics” and ”baroclinic

dynamics” terms. A universal, precise definition does not exist and still trigger some controversy

among researchers. The most common definitions can be summarized as follow: 1, barotropic

tides are the ones that would be present in absence of ocean stratification (uniform density

ocean), and baroclinic tides the departure from those barotropic tides when stratification is

taken into account; 2, barotropic tides are the depth-averaged part of the tidal dynamics in

a stratified ocean, baroclinic tides being then the residual between the full 3D tides and the

barotropic tides; 3, barotropic tides are the fast mode (in the vertical modes theory frame, see

[Gill.,1982]), and baroclinic tides the slow modes. This variety of definitions not only creates

different types of tidal energy calculation but also lead to different understanding of how the

barotropic tides contribute in the global mechanical energy budget.

First definition has been widely adopted by many authors [Kunze et al. (2002)] and proved

to be useful to some extents (rigid-lid assumption). However it is strongly deemed by the fact

that internal tide generation will take energy from the barotropic motion, hence barotropic tides

in a non-stratified ocean will significantly differs from barotropic tides in a stratified ocean. As

a consequence, the ”baroclinic” tides obtained by differencing non-stratified ocean tides and

stratified ocean tides will contain parasite barotropic residuals.

Second definition is quite conventional and popular, and mostly acceptable for first order

analysis. It reflects the idea that baroclinic quantities vanish when integrated with depth

(also called baroclinicity condition). This assumption has some consistency with the vertical

modes vision when making the rigid lid approximation, which eliminate the fast mode (this

approximation is however inappropriate in the internal tide case, as the gradient of barotropic
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tides and internal tides sea surface displacements, hence current, can have the same order of

magnitude, the shorter wavelength of internal tides compensating for the smaller sea surface

displacement amplitude). Still, it remains controversial for various reasons. One is that it can

not be valid in region where the barotropic velocity profile is non-uniform because of bottom

friction effects, typically in macro-tidal shelfs seas. More importantly, it is much too simplified

when assessing energy budget that are sensitive to second order details and tends to lead to

quite unphysical energy budget computation.

Third definition has a much better physical meaning, a stronger formal and theoretical

background, and has attracted much attention in the tidal community. However vertical modes

theory is usually seen as valid in a flat bottom context, but failing in a sloping topography

case. However, they are some empirical and analytical indications that vertical modes theory

will hold even in uneven topography conditions.

Starting from the second approach, some attempts have been made to tackle the spurious

energy budget issue. As clearly mentionned in [Kelly et al. (2010)], the various attempts found

in literature can be written in the general form:

ps (x,z) = P + p̄ (6.1)

pi (x,z) = p−P − p̂ (6.2)

where p, P , ps, pi are total, depth averaged, surface tide, internal tide pressure respectively.

p̂ is an arbitrary pressure adjustment term which definition will vary following the various

approaches. No special treatment is deployed for velocities, keeping intact the usual splitting

based on depth averaging. interestingly enough, the authors derive a new and more physical

pressure adjustment term by making analogy between classical energy budget formulation and

its expression in the vertical modes framework. But interestingly enough, the best empirical

arbitrary correction leads to a formulation similar to the one that can be straight-forwardly

obtained from vertical modes approach.

In consequence, for this study, we propose to make a more formal use of vertical modes

decomposition to define and separate barotropic and baroclinic dynamics. The derivations

will be illustrated by the COMODO internal test case, with simulations performed using 2

different models. First one is the time-stepping, finite difference, C-grid coordinates, 3D NEMO

model [Madec (2008)]. The second model is the frequency-domain, un-structured finite element

T-UGOm model [Lyard et al. (2012)],(https://www5.obs-mip.fr/sirocco/ocean-models/tugo/).
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Both model are implemented on the same domain (made of a flat abyssal plain, a continental

slope and a flat shelf, with transverse periodic boundary conditions), and make the hydrostatic

assumption. Test case prescribes null bottom friction, and horizontal/vertical diffusion kept as

small as permitted by model stability. This chapter is organized as follows:

• The assessment of the barotropic and baroclinic definition will be reviewed in section 2.

• Section 3 presents a derivation of vertical modes decomposition equations.

• Section 4 discusses the model description for NEMO model and TUGO model.

• Section 5 covers the complete separation technique for barotropic and baroclinic.

• Section 6 Provides a detailed derivation of the tidal energy diagnostic.

• Section 7 focuses on results on numerical Internal tides case using COMODO test case

The conclusion is given in section 8

6.2 Barotropic and baroclinic tides definition

Over decades, depth averaging methods have been used to separate barotropic and baroclinic

dynamics. Depth-averaged quantities are considered as related to barotropic motion, and the

vertically varying part as related to the baroclinic motion. This view has been widely ac-

cepted and carried out in physical oceanography, including internal tides studies. However,

this straight forward separation, and further variants, has been debated by many researcher

because it leads to unsatisfactory tidal energy budget [Gerkema and van Haren (2007); Hol-

loway (1996); Kelly and Nash (2010); Kunze et al. (2002); Niwa and Hibiya (2001a); Baines

(1973)].

As mentioned in introduction, three class of definitions (and subsequent separation tech-

niques) can be found in litterature. The first one, proposed by Baines (1973) (P ′A) defines

internal tides motion as a perturbation term obtained by removing the barotropic motion that

would exist in a unstratified ocean. Internal tides represents as density perturbation (ρ′) and

has been adapted to calculate tidal energy budget by [Niwa and Hibiya (2001a); Niwa (2004);

Khatiwala (2003)]. Lu et al. (2001) follows this approach over a simple steep slope bottom

topography consisting deep and shallow region and found large amplitude periodic variations

over the flat regions. These anomalous periodic variations indicate that the internal tides

mode is not properly separated from barotropic parts. Moreover Lorenzo (2006) found that

barotropic parts produce by unstratified simulation is slightly different with stratified simula-
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tions. This is because the internal tide acts as a drag mechanism on the barotropic tide that

resulting in weaker barotropic currents and eventually creates error in internal tides pressure.

In practice Lorenzo (2006) propose to define internal tides by using pressure fluid at rest (not

including free surface contribution) instead of using pressure from unstratified simulations. The

barotropic pressure define as the calculation of pressure in the external-mode(depth average)

of their model. The internal tides pressure from this methods is :

p′A(x,y,z, t) = p(x,y,z, t)−P0(z) (6.1)

where P0(z) is the pressure at rest. This definition of internal tides pressure has been widely

used to calculate the tidal energy budget by Niwa and Hibiya (2001a); Jan et al. (2007); Niwa

and Hibiya (2011); Park and Watts (2005); Nagai and Hibiya (2015); Jan et al. (2007). Again,

this approach fails to account for pressure variations due to isopycnal heaving linked with purely

barotropic dynamics.

Second definition was introduced by Kunze et al. (2002) (P ′B). Internal tides is define as

isopycnal heaving that can be obtained from both model and observations. This technique

practically calculates the internal tides pressure from buoyancy terms after substracting the

depth averaged buoyancy. The equations from this methods are:

p′B(z) =
∫ 0

z
b̃
(
z′
)
dz′− 1

d

∫ 0

d

∫ 0

z
b̃
(
z′
)
dz′dz (6.2)

where b̃ = −N2ξ. N is buoyancy frequency ξ is isopycnal displacement and d is total depth.

Isopycnal displacement can be derived by observation data (e.g mooring data) or by extract-

ing vertical velocity components associate to internal tides frequency [Holloway (1996)]. Ku-

rapov et al. (2003) found spurious barotropic to internal tides energy generation by using this

technique. Spurious terms is found as positive and negative value in the energy conversion.

Zilberman et al. (2009) and Carter et al. (2012) argued that the spurious energy conversion

terms produce from phase difference between the vertical velocity of barotropic tides and the

perturbation pressure of the internal tides. On the other hand Kelly et al. (2010) propose

technique to eliminate spurious conversion by changing the isopycnal displacement by move-

ment of free surface. I prevent to use this technique because its complicity adapted. Moreover,

this technique propose that the barotropic and internal tides is independently terated. Thus

the concisten terms in the calculation of closed energy budget can not be achieved from this

definition.
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A variant of the second approach comes from the study of Kelly et al. (2010). Barotropic

tides pressure is expressed as the depth average of total pressure plus a new depth dependent

profile of pressure, which is due to isopycnal heaving by movement of the free surface. Internal

tide velocity and pressure are defined as total variables minus the barotropic tide components.

By using analogy with energy budget written under the modal decomposition formalism, this

technique solved all inconsistency that comes from surface pressure due to isopycnal displace-

ment. Energy diagnostics computed from idealised, steep slope simulations show no spurious

energy flux after remofing pressure surface due to isopycnal heaving. From the idealized bot-

tom slope, the energy cascade from barotropic to internal tides show a reasonable structure.

Another test using realistic stratification by Kelly et al. (2012) gives a consistent barotropic

energy flux with energy conversion and has good agreement with observations.

The decomposition techniques by Kelly et al. (2010) can reasonably accepted, but more

importantly suggests us to directly operate the barotropic and baroclinic dynamics separation

by using the vertical modes approach. This techniques had not fully proven before to be

adequate in a realistic forcing and complex bottom topography model configuration such as the

NEMO’s Indonesian seas configuration. Here, I propose develop and assess the definition of

barotropic tides as ”fast mode” and internal tides as ”slow modes” and to examine the vertical

modes separation capabilities to address qualitatively and quantitatively the energy budget

diagnostics issue.

6.3 Vertical Modes Decomposition

6.3.1 Momentum and continuity equation in vertical modes

We are seeking for the dynamical perturbation of a stratified ocean under the internal

wave excitation. Starting from three dimensional conservative form of momentum, continuity

equation and mass conservation by using hydrostatic approximation:

ρ0
∂u

∂t
−ρ0fv =−∂p

∂x
(6.1)

ρ0
∂v

∂t
−ρ0fu=−∂p

∂y
(6.2)

ρ0
∂w

∂t
=−∂p

∂z
−ρg (6.3)
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The continuity equation, under Boussinesq approximation, yields:

∇.u = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (6.4)

where u = u(x,y,z, t), v = v(x,y,z, t), w = w(x,y,z, t) are perturbation velocities in x-,y- and

z- direction. and u = (u,v,w) is the perturbation velocity vector. ρ is insitu density perturba-

tion from state equation and p=p(x,y,z, t) is hydrostatic pressure. Continuity and momentum

equations are combined to eliminate horizontal velocities and obtain a system of equations by

where w and ρ are the only variables.

Comment: elimination of horizontal advection would be natural if treating a purely periodic

case, as advection would project into higher harmonics.

First step consists in modifying the horizontal momentum equation. The primitive momen-

tum equations (eq.6.1 and eq.6.2) are differentiated with respect to time and rearranged as:

for u velocity (x-direction):

∂2u

∂t2
−f ∂v

∂t
=− 1

ρ0

∂2p

∂x∂t
(6.5)

Replacing ∂v
∂t from primitive equations (eq.6.2) yields:

∂2u

∂t2
+f2u=

(
∂2

∂t2
+f2

)
u=− 1

ρ0

∂2p

∂x∂t
−f 1

ρ0

∂p

∂y
(6.6)

Operating similarly for v velocity (y-direction):

∂2v

∂t2
+f2v =

(
∂2

∂t2
+f2

)
v =− 1

ρ0

∂2p

∂y∂t
+f

1
ρ0

∂p

∂x
(6.7)

By ignoring changes of f with latitude, differentiated equation 6.6 and equation 6.7

with respect to x,y and z respectively, the transform momentum equations are:

∂

∂x

(
∂2

∂t2
+f2

)
u= ∂u

∂x

(
∂2

∂t2
+f2

)
=− 1

ρ0

∂2p

∂2x∂t
−f 1

ρ0

∂2p

∂x∂y
(6.8)

∂

∂y

(
∂2

∂t2
+f2

)
v = ∂v

∂y

(
∂2

∂t2
+f2

)
=− 1

ρ0

∂2p

∂2y∂t
+f

1
ρ0

∂2p

∂x∂y
(6.9)
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Transforming Boussinesq continuity equation yields:

(
∂2

∂t2
+f2

)
∂w

∂z
=−

(
∂2

∂t2
+f2

)
∂u

∂x
−
(
∂2

∂t2
+f2

)
∂v

∂y
(6.10)

Then forming the internal wave equation by combining equation 6.8 and equation 6.9

to equation 6.10 yields:

(
∂2

∂t2
+f2

)
∂w

∂z
= 1
ρ0

∂

∂t

(
∇2
hp
)

(6.11)

in non rotating fluid (ignoring coriolis effect), the above equation simplifies into:

∂2w

∂z∂t
= 1
ρ0
∇2
hp (6.12)

At this point, we need an additional equation for w,p variables closure by re-arranging ver-

tical velocity equation:

Hydrostatic pressure:

∂p0(z)
∂z

=−ρ0(z)g (6.13)

∂p(z)
∂z

=−ρ(z)g (6.14)

Density advection:

dρ

dt
= ∂ρ

∂t
+u.∇ρ= ∂ρ

∂t
+w

∂ρ

∂z
= 0 (6.15)

Discarding horizontal advection, the evolution of density perturbations is given by:

∂ρ

∂t
=−w∂ρ0

∂z
(6.16)

This a central equation in vertical modes derivation, that assumes change in density is solely

due to vertical heaving of background density.

Differentiating eq. 6.3 with time yields:

ρ0
∂2w

∂t2
=− ∂2p

∂t∂z
−g∂ρ

∂t
(6.17)
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Combining the equation 6.17 and equation 6.16 yields:

ρ0
∂2w

∂t2
=− ∂2p

∂t∂z
+g

dρ0
dz

w (6.18)

introducing Brunt-Vaissala frequency

N2 =−g 1
ρ0

dρ0
dz

(6.19)

By combining equations 6.18 and 6.19, the second base equation yields:

∂2w

∂t2
+N2w =− 1

ρ0

∂2p′

∂t∂z
(6.20)

Comment: density heaving is sometimes express directly as isopycnal displacement ”s”:

∂s

∂t
= w (6.21)

or after reformulation

∂ρ

∂t
=−gρ0N

2∂s

∂t
(6.22)

As pressure pertubation is null when displacement is null:

ρ=− 1
gρ0

N2s (6.23)

This approach has been followed for instance in Kunze et al. (2002) and Zilberman et al.

(2009). It allows to exchange vertical w with vertical displacement s in vertical modes deriva-

tion.However, it must be noticed that the vertical structure will be identical.

6.3.2 Pressure and vertical velocity modes

We have obtained a coupled system of two equations and two unknowns (vertical velocity and

pressure anomaly). This system can then solved by separation of variables method, i.e.

by seeking the solution of equations 6.11 and 6.20 by separation of variables of the form:
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p′ = p̂(z) p̃(x,y, t) (6.24)

w = ŵ (z) w̃ (x,y, t) (6.25)

Treating first base equation

Rewriting equation 6.11 by virtue of 6.24 and 6.25 yields:

(
∂2

∂t2
+f2

)
∂w

∂z
=
(
∂2w̃

∂t2
(x,y, t) +f2w̃ (x,y, t)

)
∂ŵ

∂z
(z) (6.26)

1
ρ0 (z)

∂
(
∇2
hp
′
)

∂t
= 1
ρ0 (z) p̂(z) ∂

∂t

(
∇2
hp̃(x,y, t)

)
(6.27)

finally :

(
∂2w̃

∂t2
(x,y, t) +f2w̃ (x,y, t)

)
∂ŵ

∂z
(z) = 1

ρ0 (z) p̂(z) ∂
∂t

(
∇2
hp̃(x,y, t)

)
(6.28)

Separating (x,y, t) and (z) terms, 6.28 yields:

(
∂2w̃

∂t2
+f2w̃

)[
∂

∂t

(
∇2
hp̃
)]−1

(x,y, t) = 1
ρ0
p̂

[
∂ŵ

∂z

]−1
(z) = cste= c2e (6.29)

Equation 6.28 can then be splitted into separate w vertical and horizontal mode equations:

w velocity for vertical mode:

c2e
∂ŵ

∂z
(z) = 1

ρ0 (z) p̂(z) (6.30)

w velocity for for horizontal mode:

(
∂2w̃

∂t2
(x,y, t) +f2w̃ (x,y, t)

)
= c2e

∂

∂t

(
∇2
hp̃(x,y, t)

)
(6.31)

Here ce is the phase velocity of the different modes and acts as a separation constant and can

be obtained from the eigen value problem : c2e = 1
λ
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Treating second base equation

Equation 6.30 and equation 6.31 is re-arrange to introduce buoyancy. By inserting equation

6.24 and 6.25 to buoyancy terms in equation 6.19, and neglecting w time derivatives (as usual

in hydrostatic approximation) :

N2w =N2ŵ(z)ŵ(x,y, t) =− 1
ρ0

∂2p

∂t∂z
=− 1

ρ0

∂p

∂z
(z)∂η̂

∂t
(x,y, t) (6.32)

Two equations can be deduced (for vertical and horizontal modes)from the previous equality:

N2ŵ (z) = 1
ρ0

∂p̂

∂z
(z) (6.33)

w̃ (x,y, t) = ∂p̃

∂t
(x,y, t) (6.34)

Comment: if assuming periodic perturbation, there is no necessity to neglect w time deriva-

tives, and eq. 6.35 would rewrite:

(N2−ω2)ŵ (z) = 1
ρ0

∂p̂

∂z
(z) (6.35)

However, this is equivalent to reconsider the hydrostatic approximation. In case where vertical

modes are used to analyze hydrostatic simulations, it might ne be consistent.

Vertical velocity modal equations

Replacing p in 6.35 from 6.30 We get the final form of vertical mode of w :

1
ρ0 (z)

∂

∂z

(
ρ0 (z) ∂ŵ

∂z
(z)
)

+ N2 (z)
c2e

ŵ (z) (6.36)

Replacing w in 6.34 from 6.31 We get the final form of horizontal mode w:

(
∂2w̃

∂t2
(x,y, t) +f2w̃ (x,y, t)

)
= c2e

(
∇2
hw̃ (x,y, t)

)
(6.37)

This equation is the equivalent to wave equation of barotropic gravity waves.
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Pressure modal equation

Vertical modes for pressure is obtained by replacing h in equation 6.30 with equation 6.35

yields:

ρ0 (z) ∂
∂z

(
1

N2 (z)ρ0 (z)
∂p̂(z)
∂z

+ 1
c2e
p̂(z)

)
= 0 (6.38)

and horizontal mode for pressure is

w̃ (x,y, t) = ∂p̃

∂t
(x,y, t) (6.39)

Both vertical velocity (eq. 6.36) and pressure (eq. 6.38) vertical equations are Sturm-

Liouville equations. Solutions are then obtained by prescribing boundary conditions, described

in next section.

Comment: In mathematics and its applications, a classical Sturm–Liouville theory, named

after Jacques Charles François Sturm (1803–1855) and Joseph Liouville (1809–1882), is the

theory of a real second-order linear differential equation of the form:

d

dx
p(x) d

dx
y+ q(x)y+λw(x)y = 0 (6.40)

where y is a function of the free variable x. Here the functions p(x), q(x), and w(x) > 0

are specified at the outset. In the simplest of cases all coefficients are continuous on the finite

closed interval [a,b], and p has continuous derivative. In this simplest of all cases, this function

y is called a solution if it is continuously differentiable on (a,b) and satisfies the equation (’1’)

at every point in (a,b). In addition, the unknown function y is typically required to satisfy

some boundary conditions at a and b. The function w(x), which is sometimes called r(x), is

called the ”weight” or ”density” function.

The value of λ is not specified in the equation; finding the values of λ for which there exists

a non-trivial solution of (’1’) satisfying the boundary conditions is part of the problem called

the Sturm–Liouville (S–L) problem.

Such values of λ, when they exist, are called the eigenvalues of the boundary value prob-

lem defined by eq. 6.40 and the prescribed set of boundary conditions. The corresponding

solutions (for such a λ) are the eigenfunctions of this problem. Under normal assumptions
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on the coefficient functions p(x), q(x), and w(x) above, they induce a Hermitian differential

operator in some function space defined by boundary conditions. The resulting theory of the

existence and asymptotic behavior of the eigenvalues, the corresponding qualitative theory

of the eigenfunctions and their completeness in a suitable function space became known as

Sturm–Liouville theory. This theory is important in applied mathematics, where S–L problems

occur very commonly, particularly when dealing with linear partial differential equations that

are separable.

A Sturm–Liouville (S–L) problem is said to be regular if p(x),w(x)> 0, and p(x), p′(x), q(x),

and w(x) are continuous functions over the finite interval [a, b], and has separated boundary

conditions of the form

α1y(a) +α2y
′(a) = 0 (6.41)

β1y(b) +β2y
′(b) = 0 (6.42)

Under the assumption that the S–L problem is regular, the main tenet of Sturm–Liouville

theory states that:

The eigenvalues λ1, λ2, λ3, ... of the regular Sturm–Liouville problem eq. 6.40, 6.41, 6.42

are real and can be ordered such that

λ1 < λ2 < λ3 < · · ·< λn < · · · →∞ (6.43)

Corresponding to each eigenvalue λn is a unique (up to a normalization constant) eigenfunction

yn(x) which has exactly n−1 zeros in (a, b). The eigenfunction yn(x) is called the n-th funda-

mental solution satisfying the regular Sturm–Liouville problem eq. 6.40, 6.41, 6.42. Providing

that coefficients in 6.41, 6.42 are not dependent upon λ, the normalized eigenfunctions form an

orthonormal basis

∫ b

a
yn(x)ym(x)w(x)dx= δmn (6.44)

in the Hilbert space L2([a,b],w(x)dx). Here δmn is the Kronecker delta. As it will be seen in

next sections, it will not be the case for vertical velocity modes.
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Primary boundary conditions

The usual boundary conditions are set at surface for pressure (free surface or rigid lid) and null

vertical velocity at bottom. As it will be needed in the following, let’s recall the impermeability

condition

w = ω+v.∇s+ ∂s

∂t
(6.45)

where ω is velocity across s, v horizontal velocity.

Vertical velocity boundary condition:

Considering ocean bottom (i.e. s(x,y,t)=-h) as an impermeable (i.e. ω = 0) and non-moving

interface (i.e. ∂s
∂t = 0):

w(z=−h) =−v(z=−h).∇d (6.46)

Imposing null vertical velocity at bottom (Dirichlet-type boundary condition):

ŵ(z=−h)w̃(x,y, t) = 0 =⇒ ŵ(z=−h) = 0 (6.47)

It can be easily seen from eq. 6.46 that this conditions hold naturally in flat bottom case, and

is disputable in sloping bottom case.

Surface pressure condition: in free surface case, it is obtained by the fact that pressure

must vanish a the free surface. Free surface (i.e. s = η) impermeability condition (ω = 0) is

given by:

w(z=η) = v(z=η).∇η+ ∂η

∂t
(6.48)

The usual approximation consists then in neglecting v(z=η).∇η (small perturbation approxima-

tion). Impermeability condition then becomes:

w(z=η) = ∂η

∂t
(6.49)

Writing hydrostatic condition:

p(z=0) = ρ0gη (6.50)
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Combining the two above equations yields:

∂p

∂t
= ρ0gw (6.51)

By virtue of variable separation, it gives:

p̂(z=0) = ρ0gŵ (6.52)

Eliminating ŵ by using eq. 6.35 finally yields:

g
∂p̂

∂z
(z) +N2p̂(z) = 0 (6.53)

Comment: use of rigid-lid surface condition can be abundantly found in literature (see for

instance Kunze et al. (2002),Zilberman et al. (2009)). It would lead to have vertical derivative

of pressure and vertical velocity to vanish at z = 0. It seems to us as being not convenient with

respect to the use of vertical modes decompositions of free-surface simulations. Actually, the

rigid-lid surface condition will remove the fast (barotropic) mode from the st of modes solution

of the Sturm-Liouville problem. As a consequence, barotropic/baroclinic separation of tidal

dynamics can not be performed by modal decomposition, and must be performed by other means

such as depth-averaging.

Secondary boundary conditions

Secondary boundary conditions are deduced from primary boundary conditions. Combining

w bottom boundary condition 6.46 with equations 6.35 yields the Neuman-type boundary

condition:

∂p̂

∂z
(z =−h) = 0 (6.54)

Combining p surface boundary condition 6.52 with equations 6.30 yields Neuman-type

boundary condition:

c2e
∂ŵ

∂z
(z)−gŵ(z) = 0 (6.55)
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Final boundary conditions

The final set of modal boundary conditions for vertical velocity is:

c2e
∂ŵ

∂z
(z)−gŵ(z) = 0 at z = 0 (6.56)

ŵ(z) = 0 at z =−h (6.57)

and for pressure:

g
∂p̂

∂z
(z) +N2p̂(z) = 0 at z = 0 (6.58)

∂p̂

∂z
(z) = 0 at z =−h (6.59)

It must be noticed that w surface boundary condition depends upon the separation constant

(i.e. introducing a mode dependance), which as some consequences on modes orthogonality.

6.3.3 Horizontal velocity modes

Horizontal velocity in -x and -y direction is decompose similar way. Starting by using equation

6.6 and equation 6.7 and introducing uh = u,v

∂2u

∂t2
+f2u=

(
∂2

∂t2
+f2

)
u=− 1

ρ0

∂2p

∂x∂t
−f 1

ρ0

∂p

∂y
(6.60)

by virtue of variable separation, it yields:

u= û(z)ũ(x,y, t) (6.61)

ρ0(z) û(z)
p̂(z) = constant (6.62)

The constant can arbritrary chosen, from Gill,1982

ρ0(z) û(z)
p̂(z) = 1

g
(6.63)

Barotropic mode is define by the mode-0 (fast mode) in the solutions. higher modes (mode

≥ 1)is slow (baroclinic modes)
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6.3.4 Internal tides special case

In case where dealing with period dynamics, for instance tides, some simplifications automati-

cally arise in time derivative terms. Because modal equations are linear, it is possible to project

those equations in the complex space. For any periodic variable u, we can write:

u(x,y,z, t) = û(z)ũ(x,y, t) = û(z)<(ũc(x,y,ω)ejωt) (6.64)

where ũc is the complex-valued function associated with ũ. Similarly:

uc(x,y,z, t) = û(z)ũ(x,y, t) = û(z)ũ(x,y,ω)ejωt (6.65)

where uc is the complex-valued function associated with u. Time first and second derivatives

take the simple expression:

∂ũ

∂t
= jωũ (6.66)

∂2ũ

∂t2
=−ω2ũ (6.67)

Then the horizontal modal equation for w (eq. 6.37) in the complex space yields:

(
f2−ω2

)
w̃ = c2e∇2

hw̃ (6.68)

This is an harmonic equation, also called wave equation. It is similar to the wave equation that

would be obtained from the barotropic, shallow-water equations of tides, replacing w̃ with free

surface η and ce with barotropic phase celerity (gh) 1
2 . To some extent, at least in linearized,

flat bottom conditions where modes do not interact together, modal separation leads to a so-

lution being the linear superposition of horizontally propagating ”shallow-water” waves with

specific vertical phase celerity. This is even more easy to understand for special cases such 2

density-layer problem.

Plane wave (particular) solutions can be easily derived from the wave equation, and this prop-

erty is widely exploited in internal waves literature. Assuming propagation follows the x axis,

and amplitude and horizontal wave number are constant, solution takes the form:

w̃ = w̃ae
−jkx (6.69)
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Space first and second derivatives take the simple expression:

∂ũ

∂x
= jkũ (6.70)

∂2ũ

∂x2 =−k2ũ (6.71)

Replacing ũ in Eq. 6.68 yields the simple dispersion relationship:

(
ω2−f2

)
= c2ek

2 (6.72)

Comment : the academic internal tides test case discussed in the following sections will

enforce solutions to be of plane waves nature in flat bottom sections of the domain. This is

the reason why introducing them here. However, one should remember that plane waves are

extremely particular gravity waves, that are barely observed in true oceanic conditions when

considering barotropic or internal tides. In the case of barotropic tides, most tidal structures

can be identified as coastal Kelvin waves or rotating waves (around amphidromic points). Both

are particular solutions of the wave equation, but contrary to the plane wave solutions, they are

not limited inside regions bounded by the north and south critical latitudes. Similarly, ocean

internal tides, as observed in altimetry or in numerical model simulations, do not appear to be of

plane wave nature, as they often display along-propagation and across-propragation horizontal

length scales of similar order (plane waves would require to have across-propragation length

scales to be one order larger thant the along-propagation). Unfortunately, the overwehlming

simplicity of the plane wave approximation has made it extremily popular, and probably mis-

used in many studies dedicated to real ocean internal tides.

6.3.5 Practical decomposition on vertical modes

Vertical modes numerical computation:

The vertical modes are computed by forming the linear system based on vertical velocity

(respectively pressure) modal equation and boundary conditions at each horizontal grid’s nodes.

Mathematical libraries provide solvers to solve for eigenvectors and associated eigenvalues. It

must be noticed that some solvers have scope restriction (such as limitation to symetric matrix,

readily broken by free-surface boundary condition, or non-even spaced model levels). In prac-

tice, vertical modes computation and simulations decomposition has been performed by using
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the SIROCCO tools, which make use of the DGGEV LAPACK routine to solve the generalized

eigenvector/eigenvalue problem. It must be emphasized that the formulation of the discrete

Sturm-Liouville problem must be as closed as feasible to the dynamical model discretisation,

first in the vertical grid level/layer setting (for instance vertical level/layer remapping should

be avoid), but ideally also in term of vertical numerical schemes.

The internal tide propagation is sensitive to potential density vertical contrast, as com-

pressibility effects are neutral with respect to vertical restoring forces. Therefore Brunt-Väisälä

frequency N must be computed either by using potential density or by using in situ density

with pressure taken at density layers mid-position (i.e. levels). In case of unstable stratification

(i.e. ∂ρ
∂z > 0), a null value is assigned to N .

For a given grid point, with L valid levels, the maximum number of acceptable eigenvalues

λ (i.e. strictly real, positive valued) for vertical velocity w will be theoretically L, but will in

fact reduce to L− 1. At same grid point, with L− 1 valid layers, the maximum number of

acceptable eigenvalues λ for pressure perturbation p is L−1. Maximum number of eigenvalues

may not be reached, in particular when the Brunt-Väisälä frequency N is null at a given level

(this will rarely happen in realistic cases, namely in unstable conditions, but can be frequently

found in academic cases such two-layers stratification case).

In practice, there is no necessity to solve both for w and p Sturm-Liouville problem, as the

latter can be numerically deduced from eq. 6.35.

Vertical modes orthgonality and normalization:

Reformulating pressure vertical mode equation 6.38 under eq. 6.40 formulation, and apply-

ing eq. 6.44, orthogonality of p̂ is expressed by:

∫ 0

−h

1
ρ0(z) p̂m(z)p̂n(z)dz = 0 m 6= n (6.73)

Using p̂ and û relationship (eq. 6.62), orthogonality of û can be deduced from orthogonality of

p̂:

∫ 0

−h
ρ0(z)ûm(z)ûn(z)dz = 0 m 6= n (6.74)
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The vertical and horizontal components of variable separation are defined modulus a multi-

plying factor. Before performing modal decomposition (i.e. decomposing a given 3D field upon

related vertical modes), it is necessary to define a practical normalization. We make the choice

of making the vertical mode profile dimensionless by using:

1
h

∫ 0

−h
û2(z)dz = 1 (6.75)

This normalization has the advantage to keep close to the vertical average operator. As the

vertical profile is dimensionless, the horizontal mode component hold the variable units.

Vertical modes decomposition:

Let’s take 3D x-velocity u example. Once the vertical modes set {ûn} numerically computed,

decomposition consists in seeking for the horizontal mode ũn such that:

u(x,y,z, t) =
M−1∑

0
ûm(z)ũm(x,y, t) + ε(x,y,z, t) (6.76)

where M is the number of available modes, i.e. modes having an acceptable phase celerity ce,

and ε the part of the field u that does not project on modes. This residual can be seen as

the dynamical residuals not compatible with the physics and assumptions sustaining the modal

derivation. However, if vertical modes forms a vector basis which rank equal the number of

model valid layers (i.e. typically non-masked layers in z-coordinates grids), the residuals will

automatically be zero, so of no signification on vertical modes derivation consistency. To some

extent, it is the similar issue of decomposing non-periodic signal with Fourier discrete trans-

form, the recomposed Fourier series will always fit the original signal. Actually this will be the

case in most realistic ocean fields cases (remember p,u modes are orthogonal, hence linearly

independent, and number of modes will generally fit the number of discrete grid layers).

In the case of analyzing internal waves fields, first step will be to perform an harmonic

analysis and decomposes the the so-obtained complex-valued field:

u(x,y,z,ω) =
M−1∑

0
ûm(z)ũm(x,y,ω) + ε(x,y,z,ω) (6.77)

As {ûm} modes are orthonormal (in the sense of normalization defined in eq. 6.75), scalar
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product of field u with a given vertical mode ûn will simplify in:

1
h

∫ 0

−h
ûmudz = 1

h

∫ 0

−h
ûn

M−1∑
0
ûmũm+ ε

dz = ũm+ 1
h

∫ 0

−h
ûmεdz (6.78)

In case where residual is zero, decomposition could be obtained by:

ũm = 1
h

∫ 0

−h
ûmudz (6.79)

This method cannot be used in w mode case, as they are not orthogonal (because of surface

boundary condition). In that case we compute horizontal mode component by minimizing for

each horizontal grid node (x,y):

J =
∥∥∥∥∥∥u(x,y,z,ω)−

M−1∑
0
ûm(z)ũm(x,y,ω)

∥∥∥∥∥∥
2

(6.80)

where:

φ ·ψ = 1
h

∫ 0

−h
φψ∗dz (6.81)

‖φ‖2 = φ ·φ (6.82)

The equivalent discrete formulation is then given by:

J =
K∑
1

∥∥∥∥∥∥uk−
M−1∑

0
ûm,kũm

∥∥∥∥∥∥
2

(6.83)

6.4 Models description

Discussion on barotropic and baroclinic dynamics separation and subsequent energy derivation

will be illustrated in following sections by its application to the COMODO internal tide test

case using the NEMO time-stepping model and the frequency-domain solver available in T-

UGOm model. A brief description of those two hydrodynamical models is given in the next

subsections.
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6.4.1 Primitive equations in NEMO Model

Time-stepping numerical internal tides simulation is conducted using NEMO (ver 3.6 STABLE)

model Madec (2008). NEMO is a non linear, non hydrostatic model using C grid in the

horizontal and has a variable grid in the vertical. We partly detail the derivation of the energy

equations which are given by sets of equations in NEMO model. The equations consist of

primitive momentum and tracer equation,the continuity equation, the equation of pressure

gradient and density equation. The primitive momentum equations and the continuity equation

in NEMO are:

∂uh
∂t

=−(uh.∇h)uh−w
∂uh
∂z
− 1
ρ0
∇hP −fk×uh+Du+Fh (6.1)

−→
∇ .u = 0 (6.2)

subscript ”h” denotes a horizontal vector and t is time. P is hydrostatic total pressure, f is

coriolis terms.Dh
u,D

h
v ,D

T ,DS are the parameterisations of small-scale physics for momentum,

temperature and salinity. F hu ,F hv ,F T ,FS are surface forcing terms. g is potential gravity. ρ0 is

the background density, ρ = ρ(T,S,P ) is insitu density calculated from equation of state(not

shown). Laplace operator is define as ∇= ∂
∂x + ∂

∂y + ∂
∂z where ∇h = ∂

∂x + ∂
∂y

The equation of tracer is: .

∂T

∂t
=−∇.(TU) +DT +F T (6.3)

where T and S is the tracer of temperature and salinity respectively.

∂S

∂t
=−∇.(SU) +DS +FS (6.4)

Total pressure is given by:

P = Ps+Phyd
ρ0

(6.5)

Where Ps and Phyd are surface and hydrostatic pressure respectively.

Ps = ρgη (6.6)
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The hydrostatic pressure is diagnosed from hydrostatic pressure gradient.

∂Phyd
∂z

=−ρgz (6.7)

Boundary Condition

An ocean is bounded by complex coastlines, bottom topography at its base and an air-sea

or ice-sea interface at its top. These boundaries can be defined by two surfaces, z = d(x,y)

and z = η (x,y,z, t), where d is the depth of the ocean bottom and η is the height of the sea

surface. Both d and η are usually referenced to a given surface, z = 0. the velocity normal to

the ocean bottom and coastlines is zero (in other words, the bottom velocity is parallel to solid

boundaries). The kinematic boundary condition in the surface can be expressed as :

w = ∂η

∂t
+u.∇hη at z = η (6.8)

w = u.∇hH at z =−h (6.9)

Non-linear variable volume is choosen in free surface treatment where water surface elevation

(η) is is defined by means of an equation of motion of the sea surface height, and the ocean

surface is generally permeable to fresh water flux. (qw):

∂η

∂t
= w(at z=η)− qw (6.10)

The stress at the bottom is parameterised as :

(τx, τy) = ρCd

√
u2 +v2 (u,v) at z =−h (6.11)

where Cd = 0.0025 is the friction coeeficient.

Total kinetic energy equation is obtained by multiplying eq.(6.1) by ρ0Uh and the kinetic

energy equation can be written as follows:

1
2
∂u2

h

∂t︸ ︷︷ ︸
Ek

=−ρ0uh (uh.∇h)uh−ρ0uh.w
∂uh
∂z
−ρ0uh.

1
ρ0
∇hP +uh.D

u+uh.Fh (6.12)

148



6.4.2 T-UGOm frequency-domain 3D model equations

In the following we do an intensive use og Leibniz rule:

d
dx

(∫ b(x)

a(x)
f(x,t)dt

)
= f(x,b(x)) · d

dxb(x) − f(x,a(x)) · d
dxa(x) +

∫ b(x)

a(x)

∂

∂x
f(x,t)dt (6.13)

Idem for the Stokes formula:

∇·pu = p∇·u+∇p ·u (6.14)

Base equations, hydrostatic and Boussinesq approximations

In the following, we describe the main ingredients of the 3D frequency-domain T-UGOm solver.

Momentum equation:

∂u

∂t
+∇· (uu)−fv =−1

ρ

∂p

∂x
+Dx+ ∂

∂z

(
κv
∂u

∂z

)
+g

∂Π
∂x

(6.15)

∂v

∂t
+∇· (vu) +fu=−1

ρ

∂p

∂y
+Dy + ∂

∂z

(
κv
∂v

∂z

)
+g

∂Π
∂y

(6.16)

where u,v are horizontal velocity component, u = (u,v,w) is the 3D velocity vector, κv is

the vertical viscosity coefficient, (Dx,Dy) the horizontal diffusion and Π is the astronomical

and self-attraction potential (expressed in length unit). Horizontal diffusion rarely reflects

any molecular viscosity effects in numerical models, but is usually used to parametrize sub-

grid scale’s effects and stabilize the numerical advection schemes. In fine, we want to build a

frequency-domain solver, where no stabilization at all is needed, so it is traditionnally omitted

and for simplicity this term will not be discussed here. Also, the test case illustration has no

tidal potential forcing and again we also not discuss it here.

Continuity equation, under Boussinesq approximation, reads:

∇·u = 0 (6.17)
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Density advection:

dρ

dt
= ∂ρ

∂t
+u.∇ρ= 0 (6.18)

Density advection, conservative form:

dρ

dt
= ∂ρ

∂t
+∇·ρu−ρ∇·u = ∂ρ

∂t
+∇·ρu = 0 (6.19)

Layer-integrated equations

Vertical discretisation is achieved by defining model variables to be layer-integrated velocity and

layer-averaged density. Actually, a more sophisticated density vertical discretisation is needed

over slopping topography where isopycnals do intersect model levels (therefore T-UGOm uses

a piecewise linear vertical discretisation), but the former allows to derive the model equation

at greater simplicity without loss of generality. Equations of model variables are then obtained

by integrating primitive equations between discrete model levels σ.

Horizontal momentum equation

Horizontal momentum equation, acceleration term:

∫ σ1

σ0

∂u

∂t
+∇· (uu) = ∂

∂t

∫ σ1

σ0
u+∇h ·

∫ σ1

σ0
uv+ [$u]σ1

σ0
(6.20)

∫ σ1

σ0

∂v

∂t
+∇· (vu) = ∂

∂t

∫ σ1

σ0
v+∇h ·

∫ σ1

σ0
vv+ [$v]σ1

σ0
(6.21)

where v = (u,v) is the horizontal velocity vector. Horizontal momentum equation, pressure

gradient term:

∫ σ1

σ0

∂p

∂x
= ∂

∂x

∫ σ1

σ0
p+

[
p
∂σ

∂x

]σ1

σ0

(6.22)

Further development in the pressure gradient term will be dependent upon denisty discretisation

choices on the vertical, and will not be displayed here. Horizontal momentum equation, vertical

diffusion term:

∫ σ1

σ0

∂

∂z

(
κv
∂u

∂z

)
=
[
κv
∂u

∂z

]σ1

σ0

(6.23)
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with the classical boundary conditions. At ocean bottom, it reads:

κv
∂u

∂z
=−‖u∗‖u∗ (6.24)

κv
∂v

∂z
=−‖u∗‖v∗ (6.25)

where u∗ = (u∗,v∗,w∗) is the frictional velocity. It is approximated by the usual parametriza-

tion:

u∗ = CDuz=−h (6.26)

with CD a friction coefficient that can be either directly prescribed or deduced from the log-

arithmic parametrization. At ocean free surface, in absence of surface wind stress (dismissed

here, for simplicity), it reads:

κv
∂u

∂z
= κv

∂v

∂z
= 0 (6.27)

Density advection equation

∫ σ1

σ0

∂ρ

∂t
+∇· (ρu) = ∂

∂t

∫ σ1

σ0
ρ+∇h ·

∫ σ1

σ0
ρv+ [$ρ]σ1

σ0
= 0 (6.28)

Continuity equation

∫ σ1

σ0
∇·u =∇h ·

∫ σ1

σ0
v+ [w−v ·∇hs]σ1

σ0
=∇h ·

∫ σ1

σ0
v+

[
$+ ∂s

∂t

]σ1

σ0

= 0 (6.29)

Finally we define model levels as impermeable, moving levels (i.e.$ = 0), making T-UGOm

semi-Lagrangian on the vertical. Continuity equation then reads:

∇h ·
∫ σ1

σ0
v+ ∂∆σ

∂t
= 0 (6.30)

Layer-integrated, frequency-domain equations

Last step consists in writting first order, quasi-linearized frequency domain equation.The tech-

nique to transform time-domain equation toward frequency-domain can be summarized as fol-

low. Let a dynamical system writes such as:

L(u,p) = 0 (6.31)
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and complex-valued variable as:

u(x,y,z, t) = <
(
uc(x,y,z)eiωt

)
(6.32)

where uc is a complex-valued function. Frequency-domain equation are obtained by applying

the convolution operator:

1
T

∫ T

0
L(u,p)eiωtdt= Lc(uc,pc) = 0 (6.33)

Let’ define the complex-valued kth level position σk:

σk = sk +ηk (6.34)

where s is vertical level position at rest, and η level vertical displacement from s. Uppermost

level is ocean free surface, and lowermost is ocean bottom.

Let’ define the complex-valued density ρ′:

ρ(x,ω) = ρ0(x) +ρ′(x,ω) (6.35)

where x = (x,y,z). Let’ define the complex-valued pressure, under hydrostatic approxima-

tion:

p(x,y,σk+1) = p(x,y,σk) +
∫ σk+1

σk
ρ0dz+ +

∫ sk+1

sk
ρ′dz (6.36)

In practice, it is equivalent to retain only terms at ω frequency, hence eliminating pe-

riodic terms cross-products such as advection terms (that in fact will be part of higher or

sub-harmonics equations). Let’s define complex-valued transport variables U and V :

U =
∫ σ1

σ0
u V =

∫ σ1

σ0
v (6.37)

Spectral (frequency-domain) momentum equations, in hydrostatic and Boussinesq approx-

imations yield:

jωU −fV =− 1
ρ0

∫ σ1

σ0

∂p

∂x
dz+

[
κv
∂u

∂z

]σ1

σ0

(6.38)
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jωV +fU =− 1
ρ0

∫ σ1

σ0

∂p

∂y
dz+

[
κv
∂v

∂z

]σ1

σ0

(6.39)

Frequency-domain continuity equation yields:

∂∆σ
∂t

+∇h ·V = jω∆η+∇h ·V = 0 (6.40)

Density advection (under impermeable level condition yields):

∂

∂t

∫ σ1

σ0
ρ+∇h ·

∫ σ1

σ0
ρv = ∂ρ′

∂t
∆s+ρ0

∂∆η
∂t

+∇h ·ρ0V = 0 (6.41)

Using Eq. 6.40 in the previous equation, it yields

jωρ′∆s+∇hρ0 ·V = 0 (6.42)

3D wave equation

The 3D wave equation is obtained by eliminating velocity variables in continuity and density

perturbation equations. Using lumped transport equations (hence blockwise diagonal transport

matrices), transport vector can be expressed has a non-trivial matrix product of level excursion

and density perturbation:

MV = G1η+G2ρ
′ (6.43)

Replacing its expression in continuity and density perturbation equations leads to a sparse

linear system where level excursion η and density perturbation ρ′ remain the only (but coupled)

unknowns:

jω∆η+∇h ·M−1
(
G1η+G2ρ

′
)

= 0 (6.44)

jω∆sρ′+∇h ·ρ0M−1
(
G1η+G2ρ

′
)

= 0 (6.45)

Level excursion η and density perturbation ρ′ coupled equations are solved by using usual

finite element (Galerkin) technique. Then solutions are replaced in eq. 6.43 to obtain the 3D

tidal velocities/transport.
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Numerical settings

T-UGOm can use triangle and quadrangles unstructured meshes. At the moment, 3D equations

have been implemented only for triangle domain partition.Various numerical discretisation can

be implemented on the finite element grid. For horizontal discretisation, the most commonly

used is defined by P0 horizontal transport (i.e. uniform in the triangle) and P1 level displacement

and density. On the vertical, we use layer-uniform transport and piece-wise (in layer) linear

density.

6.5 Barotropic/baroclinic separation

The two main aspects of barotropic/baroclinic separation is first to operate separation for state

vector variables such as u, p, etc... but also to provide the corresponding momentum equations.

Usual approach consist in defing the barotropic quantities, and then to obtain the baroclinic

one by difference with the original quantities. It must be reminded in the following that u, ρ,

p are perturbation quantities. However, in the frame of internal tides, u represent the full tidal

velocities as they can be seen as perturbation of a given state at rest.

A critical quantity to define is the perturbation pressure. Let start from density split up:

ρ(x,y,z, t) = ρ0(z) +ρ′(x,y,z, t) = ρ̄+ρ′0(z) +ρ′(x,y,z, t) (6.1)

Examination of pressure term gives:

∇hp=∇
∫ η

z
ρgdz′ =

∫ η

z
∇hρ′gdz′+ [ρ∇hs]ηz =

∫ η

z
∇hρ′gdz′+ρ|z=ηg∇hη (6.2)

Let’s reformulate this equation:

∇hp=
∫ 0

z
∇hρ′gdz′+

∫ η

0
∇hρ′gdz′+ρ|z=ηg∇hη (6.3)

As change in density is considered to be due to vertical advection only:

ρ′(z = η) = ρ0(z = 0) (6.4)
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By writing the impermeability condition at first order (w(z = 0) = ∂η
∂t ):

∂ρ′

∂t
(z = 0) =−∂ρ0

∂z
(z = 0)∂η

∂t
(6.5)

As ρ′ = 0 when η = 0, it yields:

ρ′(z = 0) =−∂ρ0
∂z

(z = 0)η (6.6)

At first order:

∫ η

0
∇hρ′gdz′ =−

∂ρ0
∂z

(z = 0)gη∇hη (6.7)

It is of second oder compared to other terms in eq. 6.3. Moreover, in tidal applications,

this term will project in to permanent and sub-harmonics of the considered wave. Reversely,

when dealing with non-linear or compound tides, it will be necessary to taken into account the

contribution of the generating tides to the non-linear tide pressure.

∇hp=∇hp′ =∇h
(∫ 0

z
ρ′gdz′+ρ0|z=0gη

)
(6.8)

where

p′ =
∫ 0

z
ρ′gdz′+ρ0|z=0gη (6.9)

Again, when dealing with internal tide, the complex-valued perturbation pressure p′ is

obtained from the (harmonically analyzed) complex-valued density perturbation ρ′ and sea

surface elevation η.

6.5.1 Principles

Classical variable separation can be unified in the following way. First let’s define depth-

averaging operator notation:

〈u〉= 1
h

∫ 0

−h
udz (6.10)

Then let’s define the following vertical, normalized convolution operator:
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〈u〉ψ = 〈uψ〉= 1
h

∫ 0

−h
uψ(z)dz, 1

h

∫ 0

−h
ψ2(z)dz = 1 (6.11)

In case where we choose ψ ≡ 1, I operator is the depth-averaging operator:

〈u〉1 = 〈u〉= 1
h

∫ 0

−h
udz (6.12)

Let’s formulate the momentum equation as:

L(u,p) = 0 (6.13)

Then dynamical separation is obtained by selecting an appropriate ψ profile so that:

ubt(x,y,z, t) = 〈u〉ψ (x,y, t)ψ(z), ubc(x,y,z, t) = u−ubt (6.14)

Corresponding barotropic 3D equation is obtained by:

〈L(u,p)〉ψψ(z) = 0 (6.15)

(equivalent to shallow-water ψ-equation)

〈L(u,p)〉ψ = 0 (6.16)

and corresponding 3D baroclinic equation is obtained by:

L(u,p)−〈L(u,p)〉ψψ(z) = 0 (6.17)

Again, in case where ψ≡ 1, this would lead to the usual shallow-water momentum equation.

It is worthy to notice that:

〈ubc〉ψ = 0 (6.18)

Let’s take a closer look at 3D-equivalent Laplace’s tidal momentum equations:
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ρ
∂u

∂t
−ρfv =−∂p

∂x
(6.19)

It is quite clear that the pressure gradient term will need some transformation. First let’s

derive the so-called modified Leibniz rule, obtained from combining the usual Leibniz rule with

product derivation rule :

∂

∂x

∫ 0

−h
φdz =

∫ 0

−h

∂φ

∂x
dz+

[
φ
∂s

∂x

]0

−h
=
∫ 0

−h

∂φ

∂x
dz+φ(z=−h)

∂h

∂x
(6.20)

∂

∂x

(
1
h

∫ 0

−h
φdz

)
= 1
h

∂

∂x

∫ 0

−h
φdz− 1

h2
∂h

∂x

∫ 0

−h
φdz (6.21)

Combining the two above equations yields:

∂

∂x

(
1
h

∫ 0

−h
φdz

)
= 1
h

∫ 0

−h

∂φ

∂x
dz− 1

h

∂h

∂x

(
1
h

∫ 0

−h
φdz−φ(z=−h)

)
(6.22)

It can straight-forward reformulated as:

∂

∂x
〈φ〉=

〈
∂φ

∂x

〉
− 1
h

∂h

∂x

(
〈φ〉−φ(z=−h)

)
(6.23)

Applied to pressure term in eq. 6.16, it yields:

〈
∂pψ

∂x

〉
= ∂

∂x
〈pψ〉+ 1

h

∂h

∂x

(
〈pψ〉−pψ(z=−h)

)
(6.24)

Separating barotropic and baroclinic terms yields:

〈
∂pψ

∂x

〉
= ∂

∂x
〈pbtψ〉+

1
h

∂h

∂x

(
〈pbtψ〉−pbtψ(z=−h)

)
− 1
h

∂h

∂x
pbcψ(z=−h) (6.25)

This relation establishes the partition between barotropic and baroclinic terms in the mo-

mentum equation and allows for defining the barotropic/baroclinic coupling term (also called
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production term):

τiw =−1
h
pbcψ(z=−h)∇d (6.26)

Comment: using 0 as surface level is an acceptable approximation for the horizontal mo-

mentum equation, it is no more the case for the continuity and hydrostatic equations.

6.5.2 Depth-averaging separation approach

As above-mentioned, depth-averaging separation approach is equivalent to choose ψ≡ 1. Using

a uniform profile function ψ makes barotropic variables independent upon z:

vbt(x,y, t) = 1
h+η

∫ η

−h
vdz (6.27)

pbt(x,y, t) = 1
h+η

∫ η

−h
pdz (6.28)

At first order for horizontal momentum equation case:

vbt = 1
h

∫ 0

−h
vdz (6.29)

pbt = 1
h

∫ 0

−h
pdz (6.30)

Barotropic equations are obtained by convolution of 3D equation with the (vertical) scalar

product based operator. Looking at pressure term from eq. 6.25, we first notice that:

〈pbt〉−pbt(z=−h) = 0 (6.31)

Finally horizontal pressure gradient term yields:

〈
∂p

∂x

〉
= ∂

∂x
〈pbt〉−

1
h

∂h

∂x
pbc(z=−h) (6.32)
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6.5.3 Vertical modes separation approach

Notations:

u(x,y,z, t) = û0(z)ũ0(x,y, t) +
M−1∑

1
ûm(z)ũm(x,y, t) = ubt+ubc (6.33)

p(x,y,z, t) = p̂0(z)p̃0(x,y, t) +
M−1∑

1
p̂m(z)p̃m(x,y, t) = pbt+pbc (6.34)

Let’s start with 3D-equivalent Laplace’s tidal equations:

ρ
∂u

∂t
−ρfv =−∂p

∂x
(6.35)

Barotropic equations are obtained by convolution of 3D equation with the (vertical) scalar

product based operator:

1
h

∫ 0

−h
ρu(x,y,z, t)û0(z)dz = ũ0(x,y, t) (6.36)

Let’s start with time acceleration. Ignoring change with time of vertical modes, and invoking

vertical modes orthonormal properties:

1
h

∫ 0

−h
ρ
∂u

∂t
û0dz = ∂ũ0

∂t
(6.37)

Coriolis term:

1
h

∫ 0

−h
ρfvû0dz = fṽ0 (6.38)

Transormation of the pressure gradient requires some more sophisticated manipulations. As

vertical modes do depend upon z only:

∫ 0

−h

∂p

∂x
û0dz =

∫ 0

−h

∂pû0
∂x

dz (6.39)
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Finally:

1
h

∫ 0

−h

∂p

∂x
û0dz = ∂p̃0

∂x
+ 1
h

∂h

∂x
(p̃0− (p0û0)z=−h)− 1

h

∂h

∂x
(pbcû0)z=−h (6.40)

Vector notation:

1
h

∫ 0

−h
û0∇hpdz =∇hp̃0− [pû0 ·∇s]0−h (6.41)

τiw =−1
h
pbcû0(z=−h)∇d (6.42)

It is interesting to emphasize first order similarity with depth-averaging derivation. Noting

that:

û0 ' 1 (6.43)

and consequently that:

p̃0− (p0û0)z=−h = p̃0
(
1− û2

0(z−h)
)
' 0 (6.44)

then:

1
h

∫ 0

−h

∂p

∂x
û0dz ≈

∂p̃0
∂x
− 1
h

∂h

∂x
pbcz=−h (6.45)

In other words, the internal tide coupling term is similar in vertical modes approach and

depth-averaging approach. To some extent, differences will mostly arise from state vector

separation.

6.6 Tidal energy diagnostics

6.6.1 Time-average energy budget

Energy fluxes formulation

In tidal studies, the examination of time-averaged energy budget is a powerful approach to

depict tidal mechanisms. In a permanent regime (i.e. time-invariant amplitude and phase of
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tidal variables), kinetic energy variation over a period is zero:

1
T

∫ T

0
−∇p ·udt+ 1

T

∫ T

0
F ·udt= 0 (6.1)

where u = (u,v,w) is the 3D velocity vector and F the resultant forces at the exception of

pressure gradient. The above equation clearly depicts that pressure forces rate of work equili-

brates all other forces rate of work. Making use of Stokes formula and Boussinesq continuity

equation, it yields:

∇p ·u = (∇·pu−p∇·u) =∇·pu (6.2)

Finally:

∫ T

0
∇·pudt=

∫ T

0
F ·udt (6.3)

In other words, pressure forces rate of work can be written as the divergence of pu, usually

named as energy flux divergence. Despite valuable, 3D budget estimates are rather difficult to

interpret, and looking at the depth-integrated budget is a much more synthetic approach. Let

us examine the pressure term:

∫ η

−h
∇·pudz =

∫ η

−h
∇h ·pvdz+ [pw]η−h (6.4)

where v = (u,v) is the horizontal velocity vector. Let examine those two right terms. First

by using Leibniz rule, it yields:

∫ η

−h
∇·pvdz =∇h ·

∫ η

−h
pvdz− [pv ·∇s]s=ηs=−h (6.5)

As pressure vanishes at sea surface (i.e. neglecting atmospheric pressure loading), they

simplify in:

∫ η

−h
∇h ·pvdz =∇h ·

∫ η

−h
pvdz−pv(z=−h) ·∇d (6.6)

and

[pw]η−h =−pw(z=−h) (6.7)
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From ocean bottom impermeability equation, w is given by:

w(z=−h) =−v(z=−h) ·∇d (6.8)

Therefore:

[pw]η−h =−pw(z=−h) = pv(z=−h) ·∇d (6.9)

Finally we obtain the classical relationship for depth-integrated pressure rate of work:

∫ η

−h
∇p ·udz =∇h ·

∫ η

−h
pvdz (6.10)

where the depth-integrated pressure work is equal to the divergence of the horizontal energy

flux vector. Formulating time-integrated equation yields:

1
T

∫ T

0
∇h ·

∫ η

−h
pvdzdt= 1

T

∫ T

0

∫ η

−h
F ·udzdt (6.11)

Practical application

∫ T

0
∇h ·

∫ η

−h
pvdzdt=

∫ T

0
∇h ·

∫ 0

−h
pvdzdt+

∫ T

0
∇h ·

∫ η

0
pvdzdt (6.12)

As integration limits are independant, first right-hand side term yields:

∫ T

0
∇h ·

∫ 0

−h
pvdzdt=∇h ·

∫ 0

−h

∫ T

0
pvdtdz (6.13)

Formulated for u and v components of horizontal velocity:

∫ T

0
∇h ·

∫ 0

−h
pudzdt=∇h ·

∫ 0

−h

∫ T

0
pudtdz = 1

2T∇h ·
∫ 0

−h
apau cos(Gp−Gu)dz (6.14)

where ap,Gp is amplitude and phase lag of pressure, and au,Gu is amplitude and phase lag of

u-component. Similarly:

∫ T

0
∇h ·

∫ 0

−h
pvdzdt=∇h ·

∫ 0

−h

∫ T

0
pvdtdz = 1

2T∇h ·
∫ 0

−h
apav cos(Gp−Gv)dz (6.15)

Time-averaged, depth-integrated energy fluxes are maximum for in-phase u and p (propagating

wave) and null for in-quadrature u and p (stationary wave). Let examin the second right-hand
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side term:

∫ η

0
pvdz ≈

∫ η

0
ρsg (η− z)dzvs =−1

2ρsg
[
(η− z)2]η

0
vs =−1

2ρsgη
2vs (6.16)

It is of null average over one tidal period. Finally:

1
T

∫ T

0
∇h ·

∫ η

−h
pvdzdt= 1

T

∫ T

0

∫ η

−h
F ·udzdt=∇h ·

∫ 0

−h
φdz (6.17)

where φ= (apau cos(Gp−Gu),apav cos(Gp−Gv).

Comment on pressure rate of work calculation

The derivation of pressure forces (time-averaged, depth-integrated) rate of work from the hori-

zontal divergence of (time-averaged, depth-integrated) energy fluxes offers the great advantage

to enable separate barotropic and baroclinic estimates (actually separate modes estimates),

but is usually sensitive to residual pollution by numerical defects. In particular, in the case

of staggered grid such as the NEMO’s C-grid, normal fluxes need to be computed at velocity

nodes, and then average divergence on the tracer cell can be more safely estimated by flux

budget at cell sides (this is in fact a finite volume derivation, equivalent to the semi-empirical

finite difference derivation). Similarly, space-integrated rate of work computed from flux bud-

get at boundaries is also highly sensitive to numerical details (and defects). An alternative

consists in directly estimating pressure gradient rate of work (but losing barotropic/baroclinic

nice orthogonality and separation properties):

∫ η

−h
∇p ·udz =

∫ η

−h
∇hp ·vdz+

∫ η

−h

∂p

∂z
wdz (6.18)

Using hydrostatic approximation:

∫ η

−h
∇p ·udz =

∫ η

−h
∇hp ·vdz−g

∫ η

−h
ρwdz =

∫ η

−h
∇hp ·vdz−g

∫ η

−h
(ρ0 +ρ′)wdz (6.19)

∫ η

−h
(ρ0 +ρ′)wdz =

∫ 0

−h
(ρ0 +ρ′)wdz+

∫ η

0
(ρ0 +ρ′)wdz (6.20)

ρ0 contribution to first right-hand term side is null:

1
T

∫ T

0

(∫ 0

−h
ρ0wdz

)
dt= 1

T

∫ 0

−h

(∫ T

0
ρ0wdt

)
dz = 0 (6.21)

163



as w is periodic and ρ0 is constant with time. Let’s examine ρ0 contribution to second right-

hand term. Making the approximation w ≈ ∂η
∂t near ocean sea surface:

∫ η

0
ρ0wdz ≈

∫ η

0
ρ0,s

∂η

∂t
dz (6.22)

where ρ0,s is surface average density. Then:

1
T

∫ T

0

(∫ η

0
ρ0wdz

)
dt≈ 1

T

∫ T

0
ρ0,s

1
2
∂η2

∂t
dt= 1

T
ρ0,s

[
η2

2

]T
0

= 0 (6.23)

ρ0 contribution to right-hand side is approximately null. Let’s examine ρ′ contribution to the

first right-hand term. Using vertical modes approximation:

∂ρ′

∂t
= ∂ρ0

∂z
w =−ρ0

g
N2w (6.24)

Then:

∫ 0

−h
ρ′wdz =

∫ 0

−h
ρ′
∂ρ′

∂t
dz = 1

2

∫ 0

−h

∂ρ′
2

∂t
dz (6.25)

1
T

∫ T

0

∫ 0

h

∂ρ′
2

∂t
dz

dt= 1
T

∫ 0

h

∫ T

0

∂ρ′
2

∂t
dt

dz = 1
T

∫ 0

h

[
ρ′

2]T
0
dz = 0 (6.26)

Let’s examine ρ′ contribution to the second right-hand term:

1
T

∫ T

0

(∫ η

0
ρ′wdz

)
dt≈ 1

T

∫ T

0
ρ0,s

1
2
∂η2

∂t
dt= 1

T
ρ0,s

[
η2

2

]T
0

= 0 (6.27)

Finally, the vertical velocity term contribution to the time-averaged, depth-integrated pres-

sure rate of work can be considered as negligible, hence allowing for limiting computation to

horizontal terms.

6.6.2 Depth-averaging separation approach

Barotropic Tidal Energy

In order to obtain barotropic tidal kinetic energy equation, all dynamic variables in 6.12 are

projected into tidal complex amplitude where variables U ,V ,V and ρ̃ represent all velocity in

-u,-v,-w direction and density in tidal complex amplitude respectively.

Tidal kinetic energy is integrated in one tidal cycle, thus the avection, coriolis and surface
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forcing terms is negligable. The barotropic/depth averaged (denoted by overbar sign) tidal

energy kinetic average in one tidal cycle is given by :

1
2
∂U

∂t
=− 1

ρ0d
Uh∇hP (6.28)

where d=h+η is total depth

The dissipation terms by the viscosity and diffusivity as well as forcing terms can be ex-

pressed as barotropic tidal equation. In this study all dissipation terms related to tidal kinetoc

energy is neglected.

Over sloping topography, taking the depth average of a horizontal gradient requires the

use of Leibniz’s theorem [i.e., Kundu et al. (2004) and Kelly and Nash (2010)]. The resulting

Leibnitz rule of integration where ϕ can be u,v velocities,pression(P ) or Energy (E). and m is

either in x− or y− direction. :

∂

∂m

∫ β(m)

α(m)

∂ϕ

∂m
∂z =

∫ β(m)

α(m)

∂ϕ

∂m
∂z+ϕ(m,β (m)) ∂β

∂m
−ϕ(m,α (m)) ∂α

∂m
(6.29)

the developed leibnitz rule is written as :

∇h
∫ β

α
ϕ=

∫ β

α
∇hϕ+ [ϕ∇h]βα (6.30)

Employing leibnitz rule in 6.29 to equation 6.28 resulting the barotropic kinetic energy

equation as :

∫ η

d
u.∇hp=∇h

∫ η

d
up− [up∇S]ηd−

∫ η

d
p∇hu (6.31)

where S is surface. Using modified leibnitz rule in equation 6.30 by using ϕ= up yields:

∇h
∫ η

d
up=

∫ η

d
∇h.up+ [up∇S ]η−h (6.32)

by inserting equation 6.32 to equation 6.31 gives,

∫ η

h
u.∇hp=

∫ η

d
∇hup+ [up∇S ]η−h− [up∇S]η−h−

∫ η

−h
p∇hu (6.33)
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and resulting :

∫ η

d
u.∇hP =

∫ η

−h
∇hup−

(
up′

)
z=−h

∇hd−
∫ η

−h
p∇hu (6.34)

Equation of barotropic energy is :

Ek = 1
2ρ0u(u.∇h) +ρ0u2.w−

∫ η

d
∇hup−

(
up′

)
z=−h

∇hd−
∫ η

d
p∇hu (6.35)

the last term in equation 6.35 its physical interpretation is not entirely intuitive Kurapov et al.

(2003).The final barotropic tidal energy average in one tidal cycle yields:

Ek =
∫ η

d
∇hup−

(
up′

)
z=−h

∇hd (6.36)

Baroclinic Tidal Energy

Baroclinic tidal energy is derived by substracting barotropic momentum in equation 6.28 from

total momentum equation 6.1 gives :

∂Uit
∂t

=− 1
ρ0h

Uh∇hPit (6.37)

where ”it” sign denotes the internal tides as perturbation parts derived from total - depth av-

erage. Employing leibnitz rule in equation 6.30 and integrated in one tidal cycle, the baroclinic

depth integrated energy equation is :

Ekit =
(
up′

)
z=−h

∇h+
∫ η

d
p′∇hu′ (6.38)

The final baroclinic tidal energy yields:

Ekit =
∫ η

d
∇hu′p′+

(
up′

)
z=−h

∇hd (6.39)

First part RHS and second part in THS from both equation 6.36 and equation 6.39 is

divergence of barotropic/baroclinic flux energythe energy conversion terms from barotropic to

baroclinic respectively.

Both barotropic and baroclinic kinetic energy has flux divergence terms and conversion

terms. The conversion terms in equation 6.36 has different sign with conversion terms in

equation 6.39. The conversion term represent topographic internal tide generation and also
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the energy transfer from both barotropic and baroclinic. This is interesting because we can

approach the conversion terms in such barotropic or in baroclinic equation.

6.6.3 Vertical modes separation approach

Depth integrated kinetic energy

As vertical modes are orthonormals:

∫ η

−h
ρ0u2dz = ρ0

M−1∑
0
ũ2
m (6.40)

Energy fluxes

Let’s expand eq. 6.10 by using vertical modes decomposition:

∫ η

−h
pvdz =

∫ η

−h

M−1∑
n=0

p̂n(z)p̃n(x,y, t)
M−1∑
m=0

ûm(z)ṽm(x,y, t)
dz (6.41)

For a given m,n term:

∫ η

−h
p̂n(z)p̃n(x,y, t)ûm(z)ṽm(x,y, t)dz =

(∫ η

−h
ûm(z)p̂n(z)dz

)
p̃m(x,y, t)ṽm(x,y, t) (6.42)

As vertical modes are orthonormals:

∫ η

−h
ûm(z)p̂n(z)dz = δm,n (6.43)

Then the total energy flux vector can be expressed as the sum of modal energy vectors:

∫ η

−h
pvdz =

M−1∑
0
p̃m(x,y, t)ṽm(x,y, t) (6.44)

In internal tide applications, time -varying variables are replaced by complex-valued vari-

ables:

p̃m(x,y, t) = <
(
ap,me

−Gp,mejωt
)

(6.45)

ũm(x,y, t) = <
(
au,me

−Gu,mejωt
)

(6.46)

ṽm(x,y, t) = <
(
av,me

−Gv,mejωt
)

(6.47)

Finally the two components of the time-averaged, depth-integrated energy flux are given
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by:

∫ T

0
p̃m(x,y, t)ũm(x,y, t)dz = 1

2ap,mau,m cos(Gu,m−Gp,m) (6.48)

∫ T

0
p̃m(x,y, t)ṽm(x,y, t)dz = 1

2ap,mav,m cos(Gv,m−Gp,m) (6.49)

Internal tides production term

From eq. 6.42, depth-integrated internal wave drag rate of work yields:

∫ 0

−h
τiw ·v0dz = (pbcû0)z=−h∇h · ṽ

(
1
h

∫ 0

−h
û2

0dz

)
= (pbcû0)z=−h∇h ·v (6.50)

as modes are normalized so that 1
h

∫ 0
−h û

2
mdz = 1.

6.7 Numerical COMODO internal tide test case

This section implement the definition of barotropic and internal tides on the calculation of

tidal energy budget using idealised numerical case. This test case has objectives to study the

generation of internal tides and model study about the energetics of internal tides.

6.7.1 Test case description

The simulation on COMODO internal waves test case (http://www.comodo-ocean.fr/) is a

vertically stratified field forced by a barotropic flow interacting over an idealized abyssal

plain/slope/shelf topography and without bottom friction (figure 6.1). The configuration

was set up by Pichon and Maze (1990). COMODO test case has a linear stratification

(N2 = 0.002s−2). The domain is 880 km wide and has 40 vertical levels. Model runs for

30 days. It is set long enough to limit undesirable effects of the open boundaries. The domain

consists of three parts. Deep water (4000m) region found in west-side of the domain followed

by steep continental slope (about 20 %) until shallow water part in east-side (200m). The

idealized bathymetry consists of:

• an abyssal plain at 4000m between x = 0 and x = 430km

• a continental slope between x ∼ 430 km and x ∼ 480 km with initial slope is (sin(x )/x ).

The horizontal grid resolution is 1 km in all domain. There is no grid refinement above the

slope. The Coriolis parameter is set to f = 1.04510x10−4s−1 (corresponding to a latitude of

168



46.95N). Density is based on linear equation of state by using

ρ= ρ0− rn a0 ∗ (θ0−10) (6.1)

With rn a0 = 1.6550x10−1kg.m−3.C−1

Figure 6.1: Model domain in COMODO test case. Color is density

Boundary conditions:

Purely barotropic open boundary conditions are set at both extremities. To avoid internal

tides generated at the continental slope to reach domain limits (and get reflected there), solution

is damped toward barotropic solution in boundary buffer zone through a relaxation coefficient

of the form:

κ= e−
d
λ

τ
(6.2)

with the time scale τ = 0.05∗86400s and the space scale λ= 20000m. The relaxation is switched

to 0 when the relaxation time scale is greater than 120 days (i.e. κ < 1/(120 ∗ 86400), corre-

sponding to d≈ 156km).

Comment: in the test configuration used here (uniform N), the expected horizontal wave-

length of the first baroclinic mode is about 160 km, i.e. the buffer zones extent compare with

the longest expected horizontal wavelength. Empirically, it has been observed that internal tides

first mode is not fully damped before reaching the open limits, thus moderatly triggering some

wave reflection. Ideally, it would be necessary to slightly extend the buffer zone.by increasing

the horizontal scale λ. However, to keep consistent with existing COMODO experiments, the

test case original setting has been kept unchanged.
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Modal decomposition:

Despite an analytical solution is not available for the test case, periodicity condition and vertical

modes framework allows us for inferring some properties of the theoretical solution(actually the

shallow-water problem, that could be seen as a one-layer 3D problem, has theoretical solution

that is also of plane wave nature on flat bottom and Bessel functions-based nature above the

continental slope). At first order (i.e. making rigid lid approximation), in case where N is

uniform, dispersion relationship reads:

mncn =N (6.3)

where m = nπ
h is the vertical wavenumber, and cn = Nh

nπ the vertical phase celerity. The theo-

retical vertical mode profile are sinusoidal functions, and applying boundary conditions yields:

ŵn(z) = sin(mnz) (6.4)

p̂n(z) = cos(mnz) (6.5)

In practice, especially for vertical modes decomposition computations, it is not only un-

necessary but also inconvenient to make the rigid lid approximation. However, the

main characteristics of vertical modes are captured in this approximation. Following eq. 6.72,

in flat bottom regions, plane wave horizontal wavenumber is given by:

kn =

(
ω2−f2

) 1
2

cn
(6.6)

First order validation of modes computation can consist in comparing the numerical modal

celerities with theoretical values. However, it must be noticed that the discrete nature of the

numerically-solved Sturm-Liouville problem will be responsible for numerical dispersion, and

agreement between theoretical and numerical vertical celerities will decrease when the mode

number increases. Also, horizontal resolution can be not sufficient to solve for higher modes

horizontal structure, hence leading to dispersed or unsolved modes (in our test case, this will

mainly occur on the shelf section of the domain). Consequently it is necessary to first solve

vertical modes on the model vertical grid, and to operate the verification of modes vertical

and horizontal wavenumbers in numerical solution with numerical but not theoretical vertical

modes predicates.
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Figure 6.2: modes horizontal˙wavelengths in meters (for a standard σ-layer vertical grid as in
T-UGOm simulations)

In the T-UGOm and NEMO COMODO simulations presented in the next sections, the

vertical grids differs (T-UGOM has be run a standard 40 σ-layers vertical grid, and NEMO on

a 40 layers z-grid with vertical resolution increasing near the surface). This will trigger some

differences in vertical modes, especially for the higher ones. However, both solve the full set of

modes over the abyssal plain, as the highest mode wavelength is larger than twice the horizontal

grid resolution. Reversely, both will solve only the first 6 modes (barotropic one included) as the

horizontal grid resolution is not sufficient to capture the higher modes horizontal wavelength.

This strongly suggests to use flexible grids, where the resolution coupling between vertical and

horizontal grids could be set more consistent. The main difficulty in doing so lies in that it is

necessary to take a kind of climatological stratification (if this makes any sense) into account

to determine the optimal grid setting.
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6.7.2 Numerical model configuration

NEMO configuration

The bathymetry is chosen to represent the continental slope. The barotropic tide S2 is intro-

duced at the eastern and western boundaries. The residual tide current across the boundaries

is set to 0.

Calculation of tidal/internal tides kinetic energy is depending the condition on the bottom

grid. The non-uniform bottom thickness variation in Z-partial steps leading to complexity in

depth dependent vertical grid calculation. In order to examine the bottom sensitivity, I compare

different simulation using Z-partial steps grid and S-coordinates grid.

Grid size is set to 880 x 1, with cell size of 1 kilometer. Only one cell in the y-coordinates

grid thus periodic boundary condition is used in order to treat flux in y- direction. UBS

scheme is used for momentum and TVD advection scheme for tracer. There is no explicit

horizontal diffusivity. Vertical viscosity is constant = 1x10−4m2.s−1, and vertical diffusivity

is zero. All simulation runs for 30 days with instantaneous hourly outputs. Harmonic analysis

for barotropic tides S2 calculated on last twenty days of simulation. Hydrostatic pressure (p)

in the tracer points grid is calculated by:

p [n] = g ρ0 η+ (0.5 ρ g z [n]) ; for n= 1[layer1] (6.7)

p [n+ 1] = p [n−1] + (0.5 ρ g z [n]) ; for [n > 1] (6.8)

T-UGOm configuration

T-UGO is used in its hydrostatic, spectral (i.e. frequency domain) mode, solving layer inte-

grated spectral equations in the three dimensional spectral form of wave continuity equations.

T-UGOm grid is evenly spaced in the horizontal dimensions at a 1 kilometer resolution, and uses

terrain following coordinates in vertical. In spectral simulation, there are no temporal deriva-

tion, hence no implicit diffusion linked with the time derivation/advection scheme. This is the

advantage by using T-UGO model in COMODO test case so we can compare the propagation

of internal tides in the spectral model without influence of physical nor numerical dissipation

(as found in NEMO simulation).

In a realistic configuration, one would take profit of the flexibility of finite element grids in
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Figure 6.3: T-UGOm horizontal grid and LGP0xLGP1 discretion nodes. Pressure/elevation
(continuous) linear discretisation is LGP1 (green nodes), velocity (discontinuous)

discretisation is LGP0 (red nodes). x-direction resolution is 1 kilometer.

horizontal to increase resolution above the continental slope and shelf, where dynamics length

scales get much shorter than above the abyssal plain. In particular, the horizontal modes

wavelengths are not resolved on the shelf except for the very first ones. However, to keep the

twin experiments (NEMO/T-UGOm) as much similar as possible, the T-UGOm horizontal grid

is set to mimic the NEMO structured grid.

6.7.3 Internal tides simulations

In the following, we will describe the internal tides simulation results both for the NEMO and

T-UGOm model. For the present, no 3D analytical solution, exact nor approximated, is known

for the COMODO test case. To some extents, the comparisons between both model solutions

gives us an estimate for modeling errors and uncertainties.

Horizontal and vertical velocities snapshots are displayed in figures 6.4 and 6.5. Both compo-

nents are dominated by the internal tides dynamics, except for the u velocity component on

the shelf where barotropic and baroclinic velocities can be of similar order, at least in T-UGOm

solution (this point will be discussed in next sections).

As it could be expected, NEMO solutions are much smoother than T-UGOm solutions.

First NEMO numerical schemes are known to have implicit diffusion, and vertical viscosity was

not set to zero for numerical stability reasons. In contrast, T-UGOm are absolutely diffusion-

less, leaving noisy, short wavelength dynamics to propagate without damping. In addition,

T-UGOm display respects the discontinuous discretization of velocity, where NEMO display is

partially smoothed by usual C-grid interpolation.

The main internal tides characteristics are similar in both simulations, showing however some

significant differences in the details. The internal tides beam is generated at the upper part

of the shelf slope, and the beam slope fits the expected value. This can be easily explained

by the fact that, in uniform N conditions, isopycnal heaving is directly proportional to vertical

velocity, which reaches its maximum above the slope where barotropic horizontal motion is

accelerated by water column constriction. In real ocean, uniform N conditions are rarely met,
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Figure 6.4: Instantaneous horizontal velocity for T-UGOm non diffusive (top) and NEMO
(bottom)). Units are m/s

but again maximum N values are reached in permanent/seasonal thermoclines or at mixed layer

bottom, in any cases in the upper part of the oceans. Internal tides get damped when reaching

the relaxation buffer zone at both domain extremities. In T-UGOm solution, the beam is more

focused, while in NEMO solution it get wider and smoother after about 100km propagation

toward the western open boundary. In the abyssal plain, intensity of velocity is of similar or-

der of magnitude. In T-UGOm solution, the beam is unchanged and of higher intensity until

it reaches the relaxation buffer, while NEMO beam has smaller intensity and is also slightly

damped during propagation. Contrary to T-UGOM, NEMO’s solution shows no internal tides

signature on the continental shelf. As discussed earlier, this might be due to the fact that the

internal tides propagating toward the shelf are much less energetic than the one propagating

toward the abyssal plain, and then can be easily damped by numerical diffusion or dissipation

(NEMO). It might also be due to the fact that the wave speed on shelf is comparable to the

barotropic physical velocity, hence is capable of de-structuring the wave propagation over the

shelf (Doppler effect). This mechanism is not reproduced in the frequency-domain solution of

T-UGOm (unless iterative processing being used, which was not the case here).

To illustrate effect of vertical viscosity, u and w velocity components obtained from T-UGOm

with a kv = 5e−2) viscosity coefficient are displayed in figure 6.6. On one hand, short wave-

length patterns are no more visible, but on the other hand, amplitudes are reduced compared to

T-UGOm non-viscous simulations, and continuously damped along propagation from the shelf
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Figure 6.5: Instantaneous vertical velocity for T-UGOm non diffusive (top) and NEMO
(bottom). Units are m/s

edge (generation site) toward open boundaries. In addition, internal tides are rapidly damped

on the shelf. The internal tide beam keeps quite focused (more than the one in NEMO solu-

tion), and most of extra-beam internal tide signature has vanished. To some extent, it shows

that NEMO solution is not affected by diffusion-related mechanism, and that more complex

numerical aterfacts must be at work.

A more detailled diagnostics can be obtained by examining the modal decomposition of

solutions. In Figure 6.7, we display the modal decomposition coefficients for the u component

(lower modes only). Mode 0 (barotropic) coefficients are similar for the two models. Baroclinic

mode coefficients show some interesting differences. The main discrepancies between T-UGOm

and NEMO are first, the point that the NEMO’s coefficients decrease from generation site

toward the western open boundary (abyssal plain) indicating a partial internal tide dissipation

along propagation, and second, the quick and total dissipation of internal tides over the shelf

in NEMO’s solution. The rate of decrease over the abyssal plain of NEMO’s modal coefficient

seems to be higher when mode number increases, suggesting a scale-dependent mechanism

such as momentum diffusion. When looking at phase lag, T-UGOm and NEMO solution are

quite similar for the lowest modes, with wavelength consistent with theoritical, expected values.

However, in mode 4 and 5, it is quite clear that NEMO wavelengths are shorter that the ones

from T-UGOm simulations. This is of some surprise, as diffusion could alter the horizontal
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Figure 6.6: Viscous (kv = 5e−2) T-UGOm instantaneous horizontal velocity (top) vertical
velocity(bottom). Units are m/s

wave-number, but not by increasing it (i.e. by shortening the horizontal wavelengths) but the

reverse. This is an issue that would need further investigations in NEMO simulations.

Mode 1 coefficient amplitude show some oscillation above the abyssal plain, in NEMO and

T-UGOm solution. It is due to the combination of a (strong) westward propagating wave with

a (weak) eastward propagating wave. In absence of internal tide generation at the western

boundary, the eastward component must arise from a reflection of the westward component.

Actually, mode 1 horizontal wavelength is about 160 kilometers, comparable to the relaxation

buffer zone, and therefore is not fully damped before reaching the domain limit. Mode 2 wave,

which horizontal wavelength is half of the one of mode 1, shows much reduced reflection effect,

and higher modes are clearly free of wave reflecting effects. This is also the case for all modes

traveling onto the shelf part of the domain, because their horizontal wave length are about 20

times lower than over the abyssal plain, hence the ratio wavelength/buffer zone extent is much

smaller, and damping is consequently much more efficient.

Reconstitution (i.e. multiplicative combination of modal coefficient with vertical modes

profiles) of 3D modal harmonic velocity u, from T-UGOm solution, is shown in Figures 6.8.

The barotropic mode is close to what would be expected from a uniform density simulation,

with velocity amplitude being of a few centimeters per seconds on the abyssal plain and then

increasing to reach about 50 cm/s on the shelf part of the domain. Baroclinic modes show
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Figure 6.7: Modal decomposition coefficients for NEMO and T-UGOm horizontal velocity.
Amplitude (m/s) on the left, phase lag (degrees) on the right.
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amplitude ranging from a few cm/s up to 5 cm/s on the abyssal plain (hence greater than

the barotropic one) and also show amplification on the shelf. The strong decrease close to the

western and eastern boundaries are due to the relaxation term. As mentioned in earlier sections,

first baroclinic mode amplitude shows some variations from the generation spot toward the

western boundary, and its amplitude not totally vanishing there, showing insufficient damping

and wave reflection effects.

Figure 6.8: S2 horizontal velocity modal decomposition for NEMO solutions, (left) amplitude
(m/s), (right) phase lag (degrees). From mode 0 (top) to mode 4 (bottom)

6.7.4 Energy budget

As internal tide beams have the same angle independently of mode number, the global beam

will show a focused beam, at least if diffusion is not at work. Most of the internal tide gen-

eration clearly takes place in the upper part of the continental slope. As N and slope being

uniform, highest generation will occur where barotropic vertical velocity is maximum, i.e. where

horizontal velocity get accelerated by topography constriction.

Time averaged energy budget provides a synthetic view of the tidal dynamics. It can be

used to highlight physical processes, such as the internal tide generation mechanisms, but also
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can reveal some numerical properties of the models. The first step consists in separating the

tidal solutions into barotropic and baroclinic components, using vertical modes decomposition.

The COMODO test case is frictionless, and most of the present numerical models can easily

reproduce this constraint. It is also aimed to be diffusion-less, this condition being more

difficult to respect as first numerical schemes can be implicitly diffusive, and some minimal

vertical diffusion might be necessary to guarantee the numerical stability.

In the ideal conditions, total energy fluxes, which is the sum of the barotropic and baro-

clinic energy fluxes by virtue of modes orthogonality (see Eq. 6.44), and which divergence do

balance dissipation terms, hence being null, should be preserved untouched in the whole do-

main. Consequently, barotropic and baroclinic energy fluxes should remain constant along the

wave propagation, except at the continental slope (where barotropic energy is converted into

baroclinic energy) and inside the relaxation buffer zone, where baroclinic energy fluxes must

decrease vanish. At internal tide generation site, the barotropic energy conversion (Eq. 6.42)

must match the divergence of barotropic energy flux and hence be the inverse of baroclinic

energy divergence.

Let us examine NEMO solution. The amplitude of depth-integrated barotropic and baro-

clinic energy fluxes are shown on Figure 6.9 (bottom topography has been added to localize

energy conversion). Looking at baroclinic energy fluxes, it is negative over the abyssal plain

(hence energy is traveling from the generation site toward the western boundary where it is

disspated by the relaxation term) and uniformly zero above the shelf (consistently with NEMO

snapshots displayed in earlier section). The baroclinic energy flux is created at the upper part

of the slope and reaches 7.1Wm−1. Barotropic energy flux is positive (hence energy is traveling

from the western boundary toward the eastern boundary), with a sudden drop of 8.3Wm−1

above internal tide generation site. Both numbers (internal tide energy gain and barotropic

energy loss) should match in a dissipation-less simulation, but they do not match exactly in

the case of NEMO, indicating that some numerical and/or physical dissipation occurs. This is

confirmed as one can observe a significant energy fluxes decrease from slope toward the abyssal

limit in NEMO’s solution. More worrying, one can also notice a significant and continuous

decrease of the barotropic energy flux travelling from the western boundary toward the eastern

boundary. As no bottom friction applies, this loss of energy, notably on the shelf part of the

domain, must be linked with numerical dissipation. Horizontal or vertical diffusion can be at

work, but this seems quite unlikely, especially as conditions for significant diffusion are physi-
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Figure 6.9: Tidally averaged, depth integrated energy flux in x-direction. (a) Barotropic flux,
(b) internal tides flux. Units are Wm−1

cally not met on flat bottom portions of the domain for barotropic dynamics. The best suspect

might be the 2D/3D coupling scheme implied by the NEMO’s time splitting.

Fig. 6.10 shows the spatial distribution of internal tide (baroclinic) energy production term

and the divergence of depth-integrated barotropic and baroclinic energy fluxes. Again both
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shoud match exactly except in relaxation buffer zones. It is nearly the case, which capture

slightly less energy than barotropic mode are producing at peak generation location. Nega-

tive divergence on the abyssal plain is due to baroclinic energy loss mentioned in the above

paragraph. A schematic view of the energy budget, computed from the NEMO solution, is

summarized in Figure 6.11.

On Fig. 6.12, we compare energy diagnostics of both T-UGOm and NEMO. Both are com-

parable, however the T-UGOm solution does not show barotropic nor baroclinic energy erosion

along propagation, at no surprise as it can be solved in a true diffusion-less mode. To illustrate

of what would be the effects of vertical diffusion, the diffusive T-UGOm solution diagnostics

has been also plotted. It is interesting to notice that, first T-UGOm diffusive and non-diffusive

barotropic fluxes are indistinguishable for barotropic fluxes, and second that T-UGOm diffusive

baroclinic fluxes tends to resemble NEMO’s fluxes.

To complete the discussion upon energy budget, it is interesting to examine the barotropic

energy sink effect on the barotropic sea surface elevation. Fig. 6.13 displays the sea surface

amplitude for the homogeneous density solution and the uniform Brünt-Vaissala solution. In

the first solution, in absence of stratification, no internal tide can developped. In the second

solution, a clear drop of amplitude (hence of potential energy) can be seen above the internal

tide generation area. This drop of amplitude not only depicts the consequence of barotropic

energy conversion, but also shows that small scales changes can appear in barotropic tides

amplitude above the internal tide generation area. This is something to remember when trying

to isolate barotropic and baroclinic sea surface signatures by using horizontal scales filtering.

6.7.5 Modal decomposition versus depth-averaging decomposition

In the preceding section, the separation of barotropic and baroclinic quantities has been oper-

ated by modal separation (i.e. the barotopic mode is identified as the modal ”fast” component,

and the baroclinic mode is the summation of any other ”slow” modes). Another approach,

widely used in literature, consists in assuming that the barotropic dynamics obey the depth-

integrated Navier-Stokes equations. The baroclinic dynamics is then deduced by make the

difference between 3D dynamics and the so-obtained barotropic one.

Differences between the two approaches can be considered as subtle, and to some extent
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both methods differ only by the choice of a weighting function in vertical integration operator.

However, the modal separation should be preferred for two reasons. First, it is based upon

truly dynamical considerations on wave celerity. Second, it opens the way to investigate more

precisely the internal tides properties, this means not only offering a simple barotropic ver-

sus baroclinic separation but also a full modal separation. As length scales of modes spread

on a great range, it allows to examine not only the physical contents but also the numerical

characteristics of models at those various length scale. Of course, depth-averaging approach

is often chosen because its great simplicity and effortless workout, and vertical modes are not

proven to be pertinent in sloping topography regions. However, depth-averaging approach can

be awfully misleading when investigating some details that need a rigorous methodology to be

properly captured. As an example, Fig. 6.14 shows the depth-integrated baroclinic energy flux

computation based on modal and averaging separation techniques.

While the modal separation diagnostics show the expected uniform barotropic and baroclinic

fluxes above the abyssal plain (ot of the relaxation buffer zone), the depth-averaging separation

diagnostics show anomalous (and compensating) oscillations that would lead to the conclusion

that barotropic and baroclinic modes exchange energy in flat bottom conditions. There are no

mechanism to do so in T-UGOm (friction-less and diffusion-less) solutions. This is the sign that

barotropic and baroclinic dynamics are not properly separated by depth-averaging separation.

The oscillations amplitude reaches less than 10 per cent of the baroclinic energy flux value,

which is not so bad at first glance, but it will blur any defect in the model numerics. And

testing model numerics are what test cases are made for.

6.8 Conclusions

Internal tides simulations have been successfully achieved from the NEMO and T-UGOm nu-

merical codes. Results from both models are quite similar, still showing some significant differ-

ences The diffusion-free T-UGOm solutions are much noisier than NEMO ones, which reversely

are somehow too smooth. For the latter, it seems that explicit vertical diffusion plus some

numerical implicit diffusion are responsible for NEMO smooth solutions. The examination of

the baroclinic energy flux in NEMO solution indicates a clear baroclinic energy decrease from

the generation region (continental slope) toward the abyssal domain limit. The decrease of

barotropic energy from the western open limit, both above the abyssal plain and shelf, is even

more striking in a frictionless context. The cause of barotropic energy dissipation is not known,
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but might be linked to the time-splitting technique used in NEMO.

Despite inherent limitations, mostly linked to linearization, vertical modes are a powerful

tool to decompose and analyze internal tides simulations and to provide a deep insight in the

model through time-averaged energy examination. Proper vertical modes computation and

model decomposition need a careful approach, as energy-related quantities are quite sensitive

to numerical details.

In this test case, the separation of barotropic and baroclinic quantities has been operated by

modal separation (i.e. the barotopic mode is identified as the modal ”fast” component, and the

baroclinic mode is the summation of any other ”slow” modes). We have compared this separa-

tion approach with the usual depth-averaging approach. At first glance, differences are limited,

the most significant being associated with energy quantities. For instance, depth-averaging

technique is showing some unrealistic features in energy fluxes estimates, comparably to what

was found in Kelly et al., 2010 investigations. But in the perspective of using energy budget

to investigate (and hopefully correct) numerical deficiencies, we do want to emphasize that

the modal approach should be preferred as it is more physically consistent, despite increased

complexity.
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Figure 6.10: Tidally averaged depth integrated energy fluxes for NEMO. (a) Conversion, (b)
Internal tides flux divergence. Units are Wm−2
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Figure 6.11: Diagrams of the internal tides energy budget above the ridge. The Conversion,
∇·Fbt, ∇·Fbc and Diss denote the area-integrated conversion rate from barotropic to

baroclinic tidal energy, divergence of barotropic and baroclinic energy flux, and dissipation
rate of the baroclinic energy (GW), respectively.
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Figure 6.12: Comparison of barotropic flux (top) and baroclinic flux(bottom) for NEMO
(blue lines), TUGO without diffusion(red lines) and TUGO with (kv = 5e−2) diffusion(green

lines). Units are Wm−1

Figure 6.13: S2 free surface, mode 0 (barotropic) amplitude. T-UGOm uniform density
simulation (blue) and uniform N simulation (test case) (green))
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Figure 6.14: T-UGOm solution, comparison of barotropic depth-integrated x-flux (top) and
baroclinic x-flux (bottom) from average method (red lines) and vertical modes decomposition

(blue lines). Units are Wm−1
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7.1 Conclusion

The Indonesian archipelago is one of the most important reservoirs of marine biodiversity on

the planet, which supports tremendous activities in fisheries, aquaculture and tourism. The

need of monitoring and forcasting is thus vital. This challenging objective was made possible

through the INDESO (Infrastructure Development of Space Oceanography) project funded by

the Indonesian Ministry of Marine Affairs and Fisheries. It gives Indonesia a new system for

the monitoring and management of its marine living resources. In this project, physical and

biogeochemical coupled ocean models are used to constrain a tuna population dynamics model.

My thesis is part of this immense project, and focuses on the NEMO model, which was

used to simulate the ocean circulation in the Indonesian Seas. The main objectives of my thesis

is to investigate the origine and the fate of the tides produced by the model when it is force

by explicit tidal forcing; and more particularly its mixing, its realism and its impact on water

mass and on surface properties as they may in turn impact biogeochemical model and tuna

distribution.

It has been already shown that introducing explicit tides in the model produce mixing that

improves water masses in the Indonesian seas [Castruccio et al. (2013); Kartadikaria et al.

(2011); Nagai and Hibiya (2015)]. What we don’t know yet is precisely how much and how it

happens in the model and how it compares to previous parameterization formulation [Koch-

Larrouy et al. (2007)] or in-situ data [Koch-Larrouy et al. (2015)]. In this thesis the mixing

induced by the explicit forcing of the tides in NEMO is quantified, both by comparing simulation

with and without tides and by using specific diagnostics applied on a simple test case. When
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possible generation and dissipation energy are compared to the FES2014 model and to the

previous parameterization and to in-situ observations.

I first contributed to a study that aimed at validating the INDESO ocean model (NEMO)

against several observation data sets. In a second and third study, we investigated the mix-

ing produced in the model by explicit tidal forcing and its impact on water mass. Overall,

the mean circulation induced by the main equatorial and coastal currents (i.e. NGCC, SEC,

NECC, SJC) is well reproduced by the INDESO ocean model. Except in coastal regions, the

EKE from the model and the EKE derived from altimeter data share the same patterns. On

both sides of the Luzon Strait, the weak EKE values from the model corroborates the weak

SCSTF. The model estimations of complex elevation amplitudes (amplitude and phase) agree

reasonably well with the TOPEX/POSEIDON, JASON 1 and JASON2 crossover observations,

with better agreement for the diurnal constituents K1 than the semidiurnal constituent M2.

These Amplitudes and Phases compare well with the hydrodynamic assimilated model FES2014

[Carrere et al. (2016)]. We note some biases for M2 over the Australian shelf and in the Pacific

before entering Luzon Strait, as well as in Flores Sea and Makassar Strait, while for K1, the

larger bias is mainly in the South China Sea. These biases are comparable to the one obtain

by other studies with similar resolution [Kartadikaria et al. (2011)] at such resolution.

Also, the model reproduces qualitatively well the direction of propagation coming from

Luzon, Sangihe and Sibuttu in Sulawesi Sea and Ombai strait when comparing to previous

study [Jackson (2007); Wang et al. (2011, 2016)] using SAR images. This validation is only

qualitative, since it does not allow to quantify how much energy is radiated away from the

generation sites and validation using in-situ data, such as gliders or current meters or dedicated

analysis of altimetry data, would be needed to properly validate the propagation of the internal

tides in the model. In this thesis, we show, as previous studies [Castruccio et al. (2013);

Kartadikaria et al. (2011); Nagai and Hibiya (2015)] that introducing internal tides improves

the water mass transformation in the Indonesian Through Flow. In fact, we show that it

produces results similar to those obtained with the dedicated parameterization constructed by

Koch-Larrouy et al. (2007).

The salinity maximum of the Pacific Subtropical Water is eroded at almost the same rate

for both PARAM and EXPL, and the model is able to reproduce at the exit of the archipelago

the homohaline water characteristic of the Indonesian Water. It also produces a significant

cooling of 0.3 °C with maxima of 0.8°C at the location of internal tides energy. The impact of

this cooling is stronger during austral winter.
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We then try to quantify the energy generation and dissipation associated to the tides. The

model generates 75% of the expected internal tides energy (215 GW for NEMO and 295 GW

calculated by the hydrodynamical model FES2014 with assimated data). This result is in good

agreement with a previous study [Niwa and Hibiya (2011)].

In the archipelago, the dissipation due to the internal tides (22GW) for EXPL is in relative

good agreement with PARAM (16 GW) may explain the very similar water mass transformation

along the ITF path of both simulations. Most of it (85%) is dissipated by horizontal kinetic

dissipation (19GW), while only 15% is dissipated through vertical shear. This result is anti-

intuitive, since we would have expected that internal tides would dissipate through vertical

shear. Finally, most of the dissipation occurs over (55%) or near (25%) generation sites, and

only 20% remains for far field dissipation mainly in Banda and Sulawesi Sea. Over Spring tides,

dissipation is 60 to 125% larger than the mean in the Luzon strait and Sulawesi Sea, whereas

it has a smaller variation in the eastern part of the archipelago. The cycle of spring tides and

neap tides produces modulate the surface cooling impact by 0.1°C to 0.3°C. Both climate and

ecosystem may be sensitive to this cooling/upwelling at tidal frequencies.

The model dissipation agrees well with the spatial finestructure obtained by Ffield and

Robertson (2008) for Ombai, Dewakang and Lifamatola straits, and Molucca and Flores seas.

It is also in very good agreement with the recent INDOMIX microstructure estimates [Koch-

Larrouy et al. (2015)], above the three straits measured (station St1, St3 and St5 of INDOMIX).

However, the model produces too strong mixing in regions far away from the generation sites

(Banda Sea) where INDOMIX and also Alford et al. (1999) found NO evidence of intensified

mixing. Also, below 200m, in station St2 the model produces stronger mixing compared to the

observation. These biases might come from the fact that the model doesn’t have any specific

set up to dissipate the internal tides once generated. More work has to be done in order to

solve this problem.

I dedicated the last part of my thesis to the quantification of tidal energy sinks in NEMO. I

first worked on a simple academic case: the COMODO internal tides test case, which analyses

the behaviour of a vertically stratified fluid forced by a barotropic flow interacting over an

idealized abyssal plain/slope/shelf topography without bottom friction. The results of the finite

element T-UGOm hydrodynamic model are compared with those of NEMO. Internal tides are

similar between the two models. The diffusion-free T-UGOm solutions are much noisier than

NEMO ones, which reversely are somehow too smooth. For the latter, it seems that explicit

diffusion plus some numerical implicit diffusion are responsible for NEMO smooth solutions.
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The examination of the baroclinic energy flux in NEMO solution indicates a clear baroclinic

energy decrease from the generation region (continental slope) toward the abyssal domain limit.

The decrease of barotropic energy from the western open limit, both above the abyssal plain and

shelf, is even more striking in a frictionless context. The cause of barotropic energy dissipation

is not known, but might be linked to the time-splitting technique used in NEMO. In this last

study, I participate to the development of an original method for separating barotropic and

baroclinic tides based on the projection on vertical modes. Despite inherent limitations, mostly

linked to linearization, vertical modes are a powerful tool to decompose and analyze internal

tides simulations and to provide a deep insight in the model through time-averaged energy

examination.

Proper vertical modes computation and model decomposition need a careful approach, as

energy-related quantities are quite sensitive to numerical details. We have compared this separa-

tion approach with the usual depth-averaging approach. At first glance, differences are limited,

the most significant being associated with energy quantities. For instance, depth-averaging

technique is showing some unrealistic features in energy fluxes estimates, comparably to what

was found in Kelly et al. (2010) investigations. While the modal separation diagnostics show

the expected uniform barotropic and baroclinic fluxes above the abyssal plain (off the relaxation

buffer zone), the depth-averaging separation diagnostics show anomalous (and compensating)

oscillations that would lead to the conclusion that barotropic and baroclinic modes exchange

energy in flat bottom conditions. There are no mechanisms to do so in T-UGOm (friction-less

and diffusion-less) solutions. This is the sign that barotropic and baroclinic dynamics are not

properly separated by depth-averaging separation.

Furthermore, this method opens the way to investigate more precisely the internal tides

properties, this means not only offering a simple barotropic versus baroclinic separation but

also a full modal separation. As length scales of modes spread on a great range, it allows

examining not only the physical contents but also the numerical characteristics of models at

those various length scale. As an example, it allows us to identify an important bias for NEMO:

for mode 4 and 5 NEMO wavelengths are shorter that the ones from T-UGOm simulations. This

is of some surprise, as diffusion could alter the horizontal wave-number, but not by increasing it

(i.e. by shortening the horizontal wavelengths) but the reverse. This is an issue that would need

further investigations in NEMO simulations. Thus, in the perspective of using energy budget

to investigate numerical deficiencies, modal approach in contrast to averaging approach should

be preferred as it is more physically consistent and more precise, despite increased complexity.
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This precision will prove to be useful for the future SWOT mission.

7.2 Conclusion (in French)

L’archipel Indonésien est l’un des réservoirs de la biodiversité marine le plus important sur

la Terre. Il permet de nombreuses activités liées à la pêche à l’aquaculture et au tourisme.

Le besoin de surveiller et de prévoir les stocks est donc essentiel. Ce difficile objectif est

rendu possible grâce au projet INDESO (Developpement de l’infrsactructure de l’océanographie

spatiale). Ce projet est financé par le Ministère des affaires étrangères et des pêches Indonésien.

Dans ce projet un système de modèles coupés physique et biogéochimique est utilisé pour forcé

un modèle de dynamique de population de Thons.

Ma thèse fait partie de cet immense projet et se concentre sur le modèle NEMO, qui a été

utilisé pour les simulations océaniques des mers Indonésiennes. Le principal objectif de ma

thèse est de mieux comprendre l’origine et le devenir des ondes internes lorsque le modèle est

forcé par la marée explicite, avec une attention particulière sur le mélange : son réalisme, son

impact sur les masses d’eau et sur les propriétés de surface.

Il a déjà été montré, par de précédentes études qu’introduire le forçage de la marée ex-

plicite produit un mélange important qui permet d’améliorer les masses d’eau dans les mers

Indonésiennes [Kartadikaria et al. (2011); Castruccio et al. (2013)]. Ce qui n’avait pas été

étudié encore jusqu’à ce jour, était de savoir précisément comment cela a lieu dans le modèle et

de le quantifier ainsi que le comparer avec la précédente paramétrisation [Koch-Larrouy et al.

(2007)] ou les données in-situ [Koch-Larrouy et al. (2015)]. Dans cette thèse, nous quantifions

le mélange induit par le forçage explicite de la marée dans NEMO en comparant des simula-

tions sur la région Indonésienne avec et sans marée dans un premier temps et en utilisant des

diagnostiques spécialement développés que nous avons testé dans un cas test idéalisé. Nous

avons aussi comparé les énergies de génération et de dissipation au modèle hydrodynamique

avec assimilation de données ainsi qu’à la paramétrisation et aux données in-situ.

Au début de ma thèse j’ai contribué à une étude visant à valider le modèle océanique

d’INDESO grâce à plusieurs jeux de donnée. Dans une seconde et troisième étude le mélange

induit par la marée explicite et son impact sur les masses d’eau a été étudié. De manière

générale, la circulation moyenne induite par les principaux courants équatoriaux et côtiers

(i.e. NGCC, SEC, NECC, SJC) est bien reproduite par le modèle INDESO. A part pour les
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régions côtières, l’Energie cinétique tourbillonnaire (EKE) est bien reproduite par le modèle en

comparaison avec les données altimétriques. De part et d’autre du détroit de Luzon, les faibles

valeurs de l’EKE du modèle sont cohérentes avec le SCSTF. Les amplitudes et phases des

hauteur de mers sont en général bon accord avec données de point de croisement des altimètres

TOPEX/POSEIDON, JASON 1 and JASON2, avec un meilleur accord pour la composante

diurne de la marée K1 que pour la composant semi-diurne M2. Ces mêmes amplitudes et

phases sont aussi en bon accord avec le modèle assimilé FES2014 [Carrere (2012)]. On note

cependant un léger biais au dessus du talus continental Australien et dans l’océan Pacifique, en

amont du détrit de Luzon, ainsi que la mer de Flores et le détroit de Makassar pour M2. Par

ailleurs, pour K1 des biais plus importants se retrouvent principalement dans la mer de Chine.

Ces biais restent comparables à ceux trouvés par les précédentes études effectuées sur la région

avec les mêmes résolutions que celles que nous utilisons [Kartadikaria et al. (2011)].

Par ailleurs, le modèle reproduit bien de manière qualitative la direction de propagation

des ondes internes induites par le forçage explicit de la marée qui partent des détroits de

Luzon, Sibuttu ou Ombai ou de la chaine d’iles de Sangihe lorsque l’on compare aux études

précédentes utilisant les données des images SAR [Jackson (2007); Wang et al. (2011, 2016)].

Cette validation n’est que qualitative car elle ne pemet pas de vérifier que la quantité d’énergie

se propageant loin des sources de generation est en bon accord avec la réalité. Des données

in-situ seraient nécessaires pour valider proprement la propagation des ondes créées induites

par la prise en compte de la marée explicite dans le modèle. Dans cette thèse, comme dans

de précédentes études [Kartadikaria et al. (2011); Castruccio et al. (2013); Nagai and Hibiya

(2015)], l’on retrouve que la marée explicite produit un mélange considérable qui améliore les

masses d’eau. Nous montrons ici qu’il s’agit en fait du même impact sur les masses d’eau que

ceux produits par la paramétrisation [Koch-Larrouy et al. (2007)].

Le maximum de salinité des eaux subtropicales de l’océan Pacifique est érodé à la même

vitesse pour EXPL et pour PARAM, qui sont capables de reproduire l’eau homogène en salinité

caractéristique de l’eau Indonésienne. Un refroidissement de surface de 0.3°C est aussi trouvé

avec des mamximas à 0.8°C au dessus des sites de génération. L’impact de ce refroidissement

est plus fort en été austral. Nous avons cherché ensuite à quantifier l’énergie de génération

et de dissipation associées à la marée. Le modèle génère 75% de l’énergie attendue associée

aux ondes internes (215 GW pour NEMO and 295 GW calculée par le modèle hydrodynamic

avec assimilation de données FES2014). Ce résultat est en parfait accord avec la précédente

estimation de Niwa and Hibiya (2011).
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Nous avons calculé que dans l’archipel Indonésien la dissipation due aux ondes internes

(22GW) pour EXPL est en relativement bon accord avec PARAM (16GW), ce qui explique

sûrement le bon accord pour la transformation des masses d’eau. La plupart (85%) est perdue

par dissipation horizontale cinétique (19GW). Le reste (15%) est dissipé grâce au cisaillement

vertical. Finalement, la plupart de la dissipation a lieu au dessus (55%) ou près (25%) des sites

de génération avec 20% d’énergie se dissipant loin des sources de génération dans les mers de

Banda et de Sulawesi. Pendant les vives eaux, la dissipation est plus forte de 60 à 125% que la

moyenne sur le cycle dans le détroit de Luzon et dans la mer de Sulawesi. Les variations snot

plus faibles dans l’est de l’archipel. Cette modulation lors du cycle des vives eaux/mortes eaux

module aussi le refroidissement de surface par des valeurs entre 0.1 et 0.3°C. Il est certain que

le climat et l’ensemble de l’écosystème doivent être sensibles à ces modulations à la fréquence

de la marée.

La dissipation du modèle est en bon accord avec les estimation faites par Ffield and Robert-

son (2008) utilisant des données de finestructures qui prévoient une intensification du mélange

pour les détroits de Ombai, Dewakang et Lifamatola ainsi que dans les mers de Molucca et

Flores. Au dessus de zones de génération, le modèle est aussi en très bon accord avec les récents

estimés issus de la campagne INDOMIX à partir de données de microstructures [Koch-Larrouy

et al. (2015)]. Cependant, le modèle surestime le mélange par 2 ordre de grandeur dans les

région plus loin des sites de génération comme par example dans Banda, où Alford et al. (1999)

ne trouve pas de mélange significatif non plus, et sous 200 dans la mer d’Halmahera. Ces

biais sont certainement le résultats du fait que le modèle ne contient aucune paramétrisation

spécifique pour la dissipation des ondes internes de marée. Il sera important dans de futures

études de travailler pour améliorer cette prise en compte.

J’ai consacré la dernière partie de ma thèse à la quantification précise des puits d’énergie

dans NEMO. J’ai tout d’abord travaillé sur un cas test simplifié, le cas test de marée interne

de COMODO qiu analyse le comportement d’un fluide stratifié forcé par la marée à la ren-

contre d’un talus continental. Le domaine est composé d’une plaine abyssale, d’un talus et

d’un plateau. Les résultats du modèle hydrodynamique T-UGOm sont comparés avec ceux de

NEMO. Les ondes internes de marée sont assez similaires dans les deux modèles. Le modèle T-

UGOm qui est non diffusif fournit des solutions qui sont plus bruitées que NEMO. A l’inverse,

les solutions de NEMO paraissent un peu trop diffuses. Pour ce dernier il apparâıt que la

diffusion explicite plus de la diffusion numérique implicite sont responsables pour les solutions

très diffuses de NEMO. L’examination des flux d’energie barocline dans NEMO montrent une
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très claire perte d’énergie barocline depuis la zone de génération (le talus continental) jusqu’au

dessus de la plaine abyssale. Par ailleurs, La marée barotrope perd aussi beaucoup d’énergie

sur la plaine abyssale et sur le plateau, ce qui est d’autant plus intriguant que cette configura-

tion n’a pas de friction. La raison ce la perte d’énergie barotrope n’est pas connue, mais l’on

pourrait suspecter les techniques du découpage du schéma temporel pour les modes rapides

(barotropes) et les modes lents (baroclines).

Dans cette dernière étude, j’ai participé au développement d’une méthode originale pour

séparer la marée barotrope de la marée barocline, qui repose sur la projection des modes nor-

maux. A part quelques limitations inhérentes à la méthode, principalement des hypothèse de

linéarisation, les modes verticaux sont des outils puissants pour décomposer et analyser des

simulations d’onde internes, car ils fournissent des détails précis lorsque l’on regarde l’énergie

de la marée moyenne. Les énergies intégrées de la marée sont très sensibles aux calculs successifs

de décomposition en modes propre et de bilan d’énergie. Par exemple, la méthode classique de

séparation en utilisant la moyenne verticale, montre des résultats irréalistes dans le cas test CO-

MODO, s’agissant des flux d’énergie, qui sont comparables aux résultats trouvés par Kelly and

Nash (2010). En effet, la décomposition en mode normaux permet d’obtenir les flux uniformes

de marées barotrope et barocline comme attendu, alor que la méthode de moyenne presente

des oscillations compensées incorrectes qui pourraient faire croire à des échanges d’énergie entre

le barotrope et le barocline dans la plaine abyssal en fond plat. C’est en fait le signe d’une

mauvaise séparation par la méthode de la moyenne. Par ailleurs cette méthode nous permet de

pousser plus loin les analyses en offrant une séparation modes par modes. Comme les échelles

spatiales des modes couvrent un grand spectre de valeurs, cela permet d’examiner non seulement

le contenu physique mais aussi les caractéristiques numériques des modèles sur ces différentes

échelles spatiales. Par exemple, cela nous permet d’identifier un biais important pour NEMO

qui reproduit des longueurs d’onde pour les modes élevés (4 et 5) qui sont trop courtes par

rapport à T-UGOm. C’est assez surprenant car la diffusion peut réduire le nombre d’onde (et

donc augmenter la longueur d’onde). Ce résultat ouvre la porte à de nouvelles recherches pour

essayer de comprendre les raisons d’un tel comportement. Nous avons donc démontré que dans

la perspective de réaliser des bilans d’énergie précis pour chercher les défauts numériques, la

méthode utilisant les modes normaux est préférable à celle utilisant la moyenne sur la verticale.

La précision que l’on aquièrera ainsi sera précieuse pour la future mission SWOT.
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8.1 Discussion/perspective

The first limitation of this study is the resolution of the model, which does not allow repro-

ducing correctly the internal tides. As shown in Niwa and Hibiya (2011) and also found in

this study, the model with 1/12° resolution is able of reproducing only 75% of the internal

tides generation due to both insufficient resolution of the bathymetry slopes and of the tidal

currents. Furthermore, once generated, the internal tides are dissipated by the model by pa-

rameterisations or numerical set up that are NOT specifically adapted to the physics of the

tides, but rather to the larger scale processes or to eddy diffusivity. Thus it might not dissipate

them as observed and produces unrealistic mixing. In reality, where internal waves dissipate

and cause mixing is not really known. It is thought that non-linear wave-wave interactions and

scattering when internal waves reflect off the ocean floor cause low vertical wavenumber modes

to cascade to higher wavenumbers. At higher vertical wavenumbers, there is increased vertical

shear and eventually a shear instability, and hence mixing, results. Of course OGCM are not

able to correctly resolve this energy cascade.

Our results show that most of the dissipation in the model occurs through horizontal shear.

This result is anti-intuitive, since we would have expected that internal tides would dissipate

through vertical shear. We thus identify a significant bias of this model that may also be found

in all general circulation models since actually there is no special care to take into account

internal tides in such models.

On main conclusion is also of this thesis is that the model produces too much far-field

dissipation (20%). Indeed, when comparing the model to the recent INDOMIX cruise, the

model produces higher background mixing in Banda Sea, region where in reality no mixing

as been found [Alford et al. (1999); Koch-Larrouy et al. (2015)], and below 200m in the inner

Halmahera Sea.

In addition, we found also that the model produces too much mixing of the barotropic tides

on a flat abyssal plain without friction in the COMODO test case and unrealistic wavelength

at higher modes. Some work are in progress in order to quantify this energy budget using

the method tested in the COMODO test case, over the entire INDESO domain with NEMO.

Two other simulations forced only by the tides, with (INDESO barotropic test case) and with

stratification (INDESO baroclinic test case) have been performed that are under analysis, as

well as the INDESO simulation previously describe.
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Our study offers at least few new clews of how to improve internal tides dissipation. In future

research, work has to be done so that the dissipation occurs through vertical processes and at

the right rate. We maybe need to established new parameterisation for the partially resolved

internal tides. Knowing these limitations, we also show that the model reproduce part of the

internal tides in qualitatively good agreement for its propagation (in Sulawesi) or its intensity,

which is in surprising very good agreement in region of high mixing (at St1, St3 and St5 of

INDOMIX stations). In addition, the water mass properties are well reproduced compare to

observations. This model would be worth to use to study the impact of the tidal mixing and its

variability on biogeochemical surface properties. Indeed, we show that they have an important

impact on sea surface temperature. The results can be easily transposable for nutrients and

biomass as shown in previous studies [eg: Franks and Chen (1996); Souza and Pineda (2001);

da Silva et al. (2002); Jan and Chen (2009)] since the vertical mixing would upwell deeper

layer richer in nutrients at the surface. Microscale turbulence maintains well-mixed biomass

and nutrients within the turbulent surface boundary layer as well as driving nutrient fluxes

into the mixed layer [e.g. Lewis et al. (1976)]. Also when the internal tides propagate it could

generate vertical displacement of the base of the mixed layer that would produce blooms of

phytoplankton, by periodically heaving biomass into the euphotic zone [da Silva et al. (2002);

Holloway and Denman (1989)].

Finally, tidal fronts can also produce phytoplankton blooms [Franks and Chen (1996)]. We

can thus assume that where the mixing is intensified and there is a surface cooling, this mixing

would also modulate at annual, seasonal and intraseasonal timescale the nutrients enrichment

of the surface layers. Also we can assume from figure 3 (in chapter 4) that the propagation of

the internal tides will eventually produce blooms of phytoplankton along their route.

In future work, this study shows that it would be worth to improve the resolution and the

representation of the dissipation of the internal tides in the model, as it may improve the realism

of the tides, which are important for nutrients upwelling at mixing site, on propagation route

of internal tides or at tidal front, as well as for connectivity (larvae transport) and diversity,

which are sensitive to temperature and currents and thus the whole ecosystem chain. This may

also be of some importance for generating better the submesoscales fronts as shown in Lévy

et al. (2012).
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8.2 Discussion/perspective (in French)

La première limitation de cette étude est la résolution du modèle, qui ne permet pas de re-

produire la marée interne correctement. Comme précédemment montré par Niwa and Hibiya

(2011) et que l’on retrouve dans cette thèse le modèle au 1/12° est capable de reproduire 75%

de la génération attendue des ondes internes, à cause d’une résolution insufficante des pentes

de la bathymétrie et des courants de marée. Par ailleurs, une fois générées, la marée interne

est dissipée dans le modèles par des paramétrization ou par une représentation explicit du

mélange qui ne prend pas en compte les modes rapides de la marée barotropes ni les spécificités

de la marée barocline, mais plutôt adaptés à une physique plus grande échelle et plus lente.

En conséquence, il n’y a aucune raison pour que le modèle produise une dissipation proche

des observations. Dans la réalité, on pense que les interactions non linéaires ondes-ondes et

la dispersion lors de la réflexion des ondes internes sur le fond marin pourrait forcer l’énergie

contenue dans les faibles nombres d’onde à être transférer vers des nombres d’onde plus élevés.

Et pour ces nombres d’ondes élevés, le cisaillement vertical est plus élevé ce qui peut provoquer

des instabilités verticales et donc du mélange. Bien sûr les OGCMs ne sont pas capables de

résoudre cette cascade d’énergie.

Nos résultats montrent que la plupart de la dissipation intérieure du modèle a lieu grâce

à des processus de diffusion horizontale. Ce résultat est contre intuitif, car dans la réalité on

s’attend à une marée interne qui se dissiperait grâce à des processus de cisaillement verticaux.

Nous avons donc identifié une important biais du modèle qui pourrait aussi se retrouver dans

d’autres OGCMs.

Une autre conclusion importante de ce travail de thèse est que le modèle produit trop de

dissipatoin far field. (20%). En effet, dans les mers de Banda et d’Halmahera en comparant

au résultats des données d’INDOMIX et d’une ancienne campagne [Alford et al. (1999); Koch-

Larrouy et al. (2015)], le modèle montre un mélange résiduel trop fort alors que les sites de

génération sont relativement éloignés.

De plus, nous avons quantifié dans le cas test COMODO, que le modèle produisait un

mélange trop important qui erode la marée barotrope et barocline. Pour la marée barootrope

c’est assez surprenant car il n’y a aucun processus physique permettant de l’expliquer, sur un

fond plat. Un travail est en cours pour appliquer les outils de diagnostiques des flux d’énergie sur

le domaine entier d’INDESO. Pour cela j’ai réalisé deux simulations supplémentaires forcées
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uniquement par la marée sans stratification (le cas test barotrope d’INDESO) et avec une

stratification idéalisée (le cas test barocline d’INDESO).

Notre étude offre de nouvelles pistes de réflexions de comment améliorer le modèle en identi-

fiant précisément ces biais. Bien sûr un long travail reste à faire pour améliorer le modèle grâce

à de nouvelles paramétrisations ou formulations adaptées aux ondes internes. Malgré toutes

ces limitations et ces biais identifiés, un autre résultat auquel on ne s’attendait pas, est que le

modèle reproduit le mélange associé à la marée interne en très bon accord avec les observations

in-situ dans les endroits de génération. De même, les masses d’eau sont en très bon accord avec

les observations, ce qui donne confiance en le modèle (à part peut-être dans les mers intérieures)

pour étudier l’impact de ce mélange et de sa variabilité sur les champs biogéochimiques. En

effet l’impact que nous avons décrit sur le refroidissement de surface peut être facilement trans-

posable au flux biogéochimiques de nutriment ou de biomasse comme montré dans d’autres

études (e.g.: Franks and Chen (1996); Souza and Pineda (2001); da Silva et al. (2002); Jan

and Chen (2009) . En effet le mélange à la base de la couche de mélange peut apporter en

surface les nutriments présents dans les couches plus profondes en surface. La turbulence de

microéchelle permet de maintenir la biomasses et les nutriments dans la couche de mélange

bien homogène ainsi que les flux vers la couche de mélange [e.g. Lewis et al. (1976)]. De plus

quand les ondes internes se propagent, elle peuvent générer un déplacement vertical à la base

de la couche de mélange qui peut produire des floraison printanière de phytoplancton, grâce à

des incursion périodiques de biomasse dans la couche euphotique zone [da Silva et al. (2002);

Holloway and Denman (1989)].

Il est donc légitime de s’attendre à ce que partout où nous avons trouvé un fort mélange et

un refroidissement important en surface induit par la marée, ce mélange puisse aussi moduler à

des échelles annuelle, saisonnière et intrsaisonnière (spring/neap tides) les flux biogéochimiques.

On peut aussi faire l’hypothèse que lorsque le modèle reproduit une propagation des ondes

internes, celle-ci pourrait produire des floraisons printanière le long du chemin de propagation.

On peut-être imaginer qu’en validant la couleur de l’eau le long de ces chemins de propagation

on puisse avoir une autre validation (ou infirmation) de la quantité d’énergie se propageant au

loin. Mais ce dernier point est aussi sensible à beaucoup d’autres paramètres du modèle.

Dans des travaux futures, cette étude montre qu’il sera important de tester ces résultats à

plus haute résolution, et d’avoir des études dédiées pour l’amélioration de la prise en compte de

la dissipation de la marée dans NEMO. En effet ce dernier point pourrait améliorer le réalisme

de la marée dans le modèle qui important pour les flux verticaux de nutriment, le long de la
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propagation et dans les front de marée, ainsi que pour la connectivité (transport des larves) et

diversité, qui sont eux même sensibles aux températures et aux courants et donc pourrait avoir

une influence sur toute la chaine de l’écosystème. La résolution peut aussi avoir un impact

direct sur la meilleure représentation de fronts de sub-mesoéchelle [Lévy et al. (2012)].
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